|  | //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "DAGISelMatcher.h" | 
|  | #include "CodeGenDAGPatterns.h" | 
|  | #include "CodeGenRegisters.h" | 
|  | #include "llvm/TableGen/Record.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringMap.h" | 
|  | #include <utility> | 
|  | using namespace llvm; | 
|  |  | 
|  |  | 
|  | /// getRegisterValueType - Look up and return the ValueType of the specified | 
|  | /// register. If the register is a member of multiple register classes which | 
|  | /// have different associated types, return MVT::Other. | 
|  | static MVT::SimpleValueType getRegisterValueType(Record *R, | 
|  | const CodeGenTarget &T) { | 
|  | bool FoundRC = false; | 
|  | MVT::SimpleValueType VT = MVT::Other; | 
|  | const CodeGenRegister *Reg = T.getRegBank().getReg(R); | 
|  | ArrayRef<CodeGenRegisterClass*> RCs = T.getRegBank().getRegClasses(); | 
|  |  | 
|  | for (unsigned rc = 0, e = RCs.size(); rc != e; ++rc) { | 
|  | const CodeGenRegisterClass &RC = *RCs[rc]; | 
|  | if (!RC.contains(Reg)) | 
|  | continue; | 
|  |  | 
|  | if (!FoundRC) { | 
|  | FoundRC = true; | 
|  | VT = RC.getValueTypeNum(0); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If this occurs in multiple register classes, they all have to agree. | 
|  | assert(VT == RC.getValueTypeNum(0)); | 
|  | } | 
|  | return VT; | 
|  | } | 
|  |  | 
|  |  | 
|  | namespace { | 
|  | class MatcherGen { | 
|  | const PatternToMatch &Pattern; | 
|  | const CodeGenDAGPatterns &CGP; | 
|  |  | 
|  | /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts | 
|  | /// out with all of the types removed.  This allows us to insert type checks | 
|  | /// as we scan the tree. | 
|  | TreePatternNode *PatWithNoTypes; | 
|  |  | 
|  | /// VariableMap - A map from variable names ('$dst') to the recorded operand | 
|  | /// number that they were captured as.  These are biased by 1 to make | 
|  | /// insertion easier. | 
|  | StringMap<unsigned> VariableMap; | 
|  |  | 
|  | /// NextRecordedOperandNo - As we emit opcodes to record matched values in | 
|  | /// the RecordedNodes array, this keeps track of which slot will be next to | 
|  | /// record into. | 
|  | unsigned NextRecordedOperandNo; | 
|  |  | 
|  | /// MatchedChainNodes - This maintains the position in the recorded nodes | 
|  | /// array of all of the recorded input nodes that have chains. | 
|  | SmallVector<unsigned, 2> MatchedChainNodes; | 
|  |  | 
|  | /// MatchedGlueResultNodes - This maintains the position in the recorded | 
|  | /// nodes array of all of the recorded input nodes that have glue results. | 
|  | SmallVector<unsigned, 2> MatchedGlueResultNodes; | 
|  |  | 
|  | /// MatchedComplexPatterns - This maintains a list of all of the | 
|  | /// ComplexPatterns that we need to check.  The patterns are known to have | 
|  | /// names which were recorded.  The second element of each pair is the first | 
|  | /// slot number that the OPC_CheckComplexPat opcode drops the matched | 
|  | /// results into. | 
|  | SmallVector<std::pair<const TreePatternNode*, | 
|  | unsigned>, 2> MatchedComplexPatterns; | 
|  |  | 
|  | /// PhysRegInputs - List list has an entry for each explicitly specified | 
|  | /// physreg input to the pattern.  The first elt is the Register node, the | 
|  | /// second is the recorded slot number the input pattern match saved it in. | 
|  | SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs; | 
|  |  | 
|  | /// Matcher - This is the top level of the generated matcher, the result. | 
|  | Matcher *TheMatcher; | 
|  |  | 
|  | /// CurPredicate - As we emit matcher nodes, this points to the latest check | 
|  | /// which should have future checks stuck into its Next position. | 
|  | Matcher *CurPredicate; | 
|  | public: | 
|  | MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp); | 
|  |  | 
|  | ~MatcherGen() { | 
|  | delete PatWithNoTypes; | 
|  | } | 
|  |  | 
|  | bool EmitMatcherCode(unsigned Variant); | 
|  | void EmitResultCode(); | 
|  |  | 
|  | Matcher *GetMatcher() const { return TheMatcher; } | 
|  | private: | 
|  | void AddMatcher(Matcher *NewNode); | 
|  | void InferPossibleTypes(); | 
|  |  | 
|  | // Matcher Generation. | 
|  | void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes); | 
|  | void EmitLeafMatchCode(const TreePatternNode *N); | 
|  | void EmitOperatorMatchCode(const TreePatternNode *N, | 
|  | TreePatternNode *NodeNoTypes); | 
|  |  | 
|  | // Result Code Generation. | 
|  | unsigned getNamedArgumentSlot(StringRef Name) { | 
|  | unsigned VarMapEntry = VariableMap[Name]; | 
|  | assert(VarMapEntry != 0 && | 
|  | "Variable referenced but not defined and not caught earlier!"); | 
|  | return VarMapEntry-1; | 
|  | } | 
|  |  | 
|  | /// GetInstPatternNode - Get the pattern for an instruction. | 
|  | const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins, | 
|  | const TreePatternNode *N); | 
|  |  | 
|  | void EmitResultOperand(const TreePatternNode *N, | 
|  | SmallVectorImpl<unsigned> &ResultOps); | 
|  | void EmitResultOfNamedOperand(const TreePatternNode *N, | 
|  | SmallVectorImpl<unsigned> &ResultOps); | 
|  | void EmitResultLeafAsOperand(const TreePatternNode *N, | 
|  | SmallVectorImpl<unsigned> &ResultOps); | 
|  | void EmitResultInstructionAsOperand(const TreePatternNode *N, | 
|  | SmallVectorImpl<unsigned> &ResultOps); | 
|  | void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, | 
|  | SmallVectorImpl<unsigned> &ResultOps); | 
|  | }; | 
|  |  | 
|  | } // end anon namespace. | 
|  |  | 
|  | MatcherGen::MatcherGen(const PatternToMatch &pattern, | 
|  | const CodeGenDAGPatterns &cgp) | 
|  | : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0), | 
|  | TheMatcher(0), CurPredicate(0) { | 
|  | // We need to produce the matcher tree for the patterns source pattern.  To do | 
|  | // this we need to match the structure as well as the types.  To do the type | 
|  | // matching, we want to figure out the fewest number of type checks we need to | 
|  | // emit.  For example, if there is only one integer type supported by a | 
|  | // target, there should be no type comparisons at all for integer patterns! | 
|  | // | 
|  | // To figure out the fewest number of type checks needed, clone the pattern, | 
|  | // remove the types, then perform type inference on the pattern as a whole. | 
|  | // If there are unresolved types, emit an explicit check for those types, | 
|  | // apply the type to the tree, then rerun type inference.  Iterate until all | 
|  | // types are resolved. | 
|  | // | 
|  | PatWithNoTypes = Pattern.getSrcPattern()->clone(); | 
|  | PatWithNoTypes->RemoveAllTypes(); | 
|  |  | 
|  | // If there are types that are manifestly known, infer them. | 
|  | InferPossibleTypes(); | 
|  | } | 
|  |  | 
|  | /// InferPossibleTypes - As we emit the pattern, we end up generating type | 
|  | /// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we | 
|  | /// want to propagate implied types as far throughout the tree as possible so | 
|  | /// that we avoid doing redundant type checks.  This does the type propagation. | 
|  | void MatcherGen::InferPossibleTypes() { | 
|  | // TP - Get *SOME* tree pattern, we don't care which.  It is only used for | 
|  | // diagnostics, which we know are impossible at this point. | 
|  | TreePattern &TP = *CGP.pf_begin()->second; | 
|  |  | 
|  | try { | 
|  | bool MadeChange = true; | 
|  | while (MadeChange) | 
|  | MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP, | 
|  | true/*Ignore reg constraints*/); | 
|  | } catch (...) { | 
|  | errs() << "Type constraint application shouldn't fail!"; | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// AddMatcher - Add a matcher node to the current graph we're building. | 
|  | void MatcherGen::AddMatcher(Matcher *NewNode) { | 
|  | if (CurPredicate != 0) | 
|  | CurPredicate->setNext(NewNode); | 
|  | else | 
|  | TheMatcher = NewNode; | 
|  | CurPredicate = NewNode; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Pattern Match Generation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// EmitLeafMatchCode - Generate matching code for leaf nodes. | 
|  | void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) { | 
|  | assert(N->isLeaf() && "Not a leaf?"); | 
|  |  | 
|  | // Direct match against an integer constant. | 
|  | if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) { | 
|  | // If this is the root of the dag we're matching, we emit a redundant opcode | 
|  | // check to ensure that this gets folded into the normal top-level | 
|  | // OpcodeSwitch. | 
|  | if (N == Pattern.getSrcPattern()) { | 
|  | const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm")); | 
|  | AddMatcher(new CheckOpcodeMatcher(NI)); | 
|  | } | 
|  |  | 
|  | return AddMatcher(new CheckIntegerMatcher(II->getValue())); | 
|  | } | 
|  |  | 
|  | DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); | 
|  | if (DI == 0) { | 
|  | errs() << "Unknown leaf kind: " << *N << "\n"; | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | Record *LeafRec = DI->getDef(); | 
|  | if (// Handle register references.  Nothing to do here, they always match. | 
|  | LeafRec->isSubClassOf("RegisterClass") || | 
|  | LeafRec->isSubClassOf("RegisterOperand") || | 
|  | LeafRec->isSubClassOf("PointerLikeRegClass") || | 
|  | LeafRec->isSubClassOf("SubRegIndex") || | 
|  | // Place holder for SRCVALUE nodes. Nothing to do here. | 
|  | LeafRec->getName() == "srcvalue") | 
|  | return; | 
|  |  | 
|  | // If we have a physreg reference like (mul gpr:$src, EAX) then we need to | 
|  | // record the register | 
|  | if (LeafRec->isSubClassOf("Register")) { | 
|  | AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(), | 
|  | NextRecordedOperandNo)); | 
|  | PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (LeafRec->isSubClassOf("ValueType")) | 
|  | return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName())); | 
|  |  | 
|  | if (LeafRec->isSubClassOf("CondCode")) | 
|  | return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName())); | 
|  |  | 
|  | if (LeafRec->isSubClassOf("ComplexPattern")) { | 
|  | // We can't model ComplexPattern uses that don't have their name taken yet. | 
|  | // The OPC_CheckComplexPattern operation implicitly records the results. | 
|  | if (N->getName().empty()) { | 
|  | errs() << "We expect complex pattern uses to have names: " << *N << "\n"; | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | // Remember this ComplexPattern so that we can emit it after all the other | 
|  | // structural matches are done. | 
|  | MatchedComplexPatterns.push_back(std::make_pair(N, 0)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | errs() << "Unknown leaf kind: " << *N << "\n"; | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, | 
|  | TreePatternNode *NodeNoTypes) { | 
|  | assert(!N->isLeaf() && "Not an operator?"); | 
|  | const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator()); | 
|  |  | 
|  | // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is | 
|  | // a constant without a predicate fn that has more that one bit set, handle | 
|  | // this as a special case.  This is usually for targets that have special | 
|  | // handling of certain large constants (e.g. alpha with it's 8/16/32-bit | 
|  | // handling stuff).  Using these instructions is often far more efficient | 
|  | // than materializing the constant.  Unfortunately, both the instcombiner | 
|  | // and the dag combiner can often infer that bits are dead, and thus drop | 
|  | // them from the mask in the dag.  For example, it might turn 'AND X, 255' | 
|  | // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks | 
|  | // to handle this. | 
|  | if ((N->getOperator()->getName() == "and" || | 
|  | N->getOperator()->getName() == "or") && | 
|  | N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() && | 
|  | N->getPredicateFns().empty()) { | 
|  | if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) { | 
|  | if (!isPowerOf2_32(II->getValue())) {  // Don't bother with single bits. | 
|  | // If this is at the root of the pattern, we emit a redundant | 
|  | // CheckOpcode so that the following checks get factored properly under | 
|  | // a single opcode check. | 
|  | if (N == Pattern.getSrcPattern()) | 
|  | AddMatcher(new CheckOpcodeMatcher(CInfo)); | 
|  |  | 
|  | // Emit the CheckAndImm/CheckOrImm node. | 
|  | if (N->getOperator()->getName() == "and") | 
|  | AddMatcher(new CheckAndImmMatcher(II->getValue())); | 
|  | else | 
|  | AddMatcher(new CheckOrImmMatcher(II->getValue())); | 
|  |  | 
|  | // Match the LHS of the AND as appropriate. | 
|  | AddMatcher(new MoveChildMatcher(0)); | 
|  | EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0)); | 
|  | AddMatcher(new MoveParentMatcher()); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that the current opcode lines up. | 
|  | AddMatcher(new CheckOpcodeMatcher(CInfo)); | 
|  |  | 
|  | // If this node has memory references (i.e. is a load or store), tell the | 
|  | // interpreter to capture them in the memref array. | 
|  | if (N->NodeHasProperty(SDNPMemOperand, CGP)) | 
|  | AddMatcher(new RecordMemRefMatcher()); | 
|  |  | 
|  | // If this node has a chain, then the chain is operand #0 is the SDNode, and | 
|  | // the child numbers of the node are all offset by one. | 
|  | unsigned OpNo = 0; | 
|  | if (N->NodeHasProperty(SDNPHasChain, CGP)) { | 
|  | // Record the node and remember it in our chained nodes list. | 
|  | AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() + | 
|  | "' chained node", | 
|  | NextRecordedOperandNo)); | 
|  | // Remember all of the input chains our pattern will match. | 
|  | MatchedChainNodes.push_back(NextRecordedOperandNo++); | 
|  |  | 
|  | // Don't look at the input chain when matching the tree pattern to the | 
|  | // SDNode. | 
|  | OpNo = 1; | 
|  |  | 
|  | // If this node is not the root and the subtree underneath it produces a | 
|  | // chain, then the result of matching the node is also produce a chain. | 
|  | // Beyond that, this means that we're also folding (at least) the root node | 
|  | // into the node that produce the chain (for example, matching | 
|  | // "(add reg, (load ptr))" as a add_with_memory on X86).  This is | 
|  | // problematic, if the 'reg' node also uses the load (say, its chain). | 
|  | // Graphically: | 
|  | // | 
|  | //         [LD] | 
|  | //         ^  ^ | 
|  | //         |  \                              DAG's like cheese. | 
|  | //        /    | | 
|  | //       /    [YY] | 
|  | //       |     ^ | 
|  | //      [XX]--/ | 
|  | // | 
|  | // It would be invalid to fold XX and LD.  In this case, folding the two | 
|  | // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG' | 
|  | // To prevent this, we emit a dynamic check for legality before allowing | 
|  | // this to be folded. | 
|  | // | 
|  | const TreePatternNode *Root = Pattern.getSrcPattern(); | 
|  | if (N != Root) {                             // Not the root of the pattern. | 
|  | // If there is a node between the root and this node, then we definitely | 
|  | // need to emit the check. | 
|  | bool NeedCheck = !Root->hasChild(N); | 
|  |  | 
|  | // If it *is* an immediate child of the root, we can still need a check if | 
|  | // the root SDNode has multiple inputs.  For us, this means that it is an | 
|  | // intrinsic, has multiple operands, or has other inputs like chain or | 
|  | // glue). | 
|  | if (!NeedCheck) { | 
|  | const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator()); | 
|  | NeedCheck = | 
|  | Root->getOperator() == CGP.get_intrinsic_void_sdnode() || | 
|  | Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() || | 
|  | Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() || | 
|  | PInfo.getNumOperands() > 1 || | 
|  | PInfo.hasProperty(SDNPHasChain) || | 
|  | PInfo.hasProperty(SDNPInGlue) || | 
|  | PInfo.hasProperty(SDNPOptInGlue); | 
|  | } | 
|  |  | 
|  | if (NeedCheck) | 
|  | AddMatcher(new CheckFoldableChainNodeMatcher()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this node has an output glue and isn't the root, remember it. | 
|  | if (N->NodeHasProperty(SDNPOutGlue, CGP) && | 
|  | N != Pattern.getSrcPattern()) { | 
|  | // TODO: This redundantly records nodes with both glues and chains. | 
|  |  | 
|  | // Record the node and remember it in our chained nodes list. | 
|  | AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() + | 
|  | "' glue output node", | 
|  | NextRecordedOperandNo)); | 
|  | // Remember all of the nodes with output glue our pattern will match. | 
|  | MatchedGlueResultNodes.push_back(NextRecordedOperandNo++); | 
|  | } | 
|  |  | 
|  | // If this node is known to have an input glue or if it *might* have an input | 
|  | // glue, capture it as the glue input of the pattern. | 
|  | if (N->NodeHasProperty(SDNPOptInGlue, CGP) || | 
|  | N->NodeHasProperty(SDNPInGlue, CGP)) | 
|  | AddMatcher(new CaptureGlueInputMatcher()); | 
|  |  | 
|  | for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { | 
|  | // Get the code suitable for matching this child.  Move to the child, check | 
|  | // it then move back to the parent. | 
|  | AddMatcher(new MoveChildMatcher(OpNo)); | 
|  | EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i)); | 
|  | AddMatcher(new MoveParentMatcher()); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void MatcherGen::EmitMatchCode(const TreePatternNode *N, | 
|  | TreePatternNode *NodeNoTypes) { | 
|  | // If N and NodeNoTypes don't agree on a type, then this is a case where we | 
|  | // need to do a type check.  Emit the check, apply the tyep to NodeNoTypes and | 
|  | // reinfer any correlated types. | 
|  | SmallVector<unsigned, 2> ResultsToTypeCheck; | 
|  |  | 
|  | for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) { | 
|  | if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue; | 
|  | NodeNoTypes->setType(i, N->getExtType(i)); | 
|  | InferPossibleTypes(); | 
|  | ResultsToTypeCheck.push_back(i); | 
|  | } | 
|  |  | 
|  | // If this node has a name associated with it, capture it in VariableMap. If | 
|  | // we already saw this in the pattern, emit code to verify dagness. | 
|  | if (!N->getName().empty()) { | 
|  | unsigned &VarMapEntry = VariableMap[N->getName()]; | 
|  | if (VarMapEntry == 0) { | 
|  | // If it is a named node, we must emit a 'Record' opcode. | 
|  | AddMatcher(new RecordMatcher("$" + N->getName(), NextRecordedOperandNo)); | 
|  | VarMapEntry = ++NextRecordedOperandNo; | 
|  | } else { | 
|  | // If we get here, this is a second reference to a specific name.  Since | 
|  | // we already have checked that the first reference is valid, we don't | 
|  | // have to recursively match it, just check that it's the same as the | 
|  | // previously named thing. | 
|  | AddMatcher(new CheckSameMatcher(VarMapEntry-1)); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N->isLeaf()) | 
|  | EmitLeafMatchCode(N); | 
|  | else | 
|  | EmitOperatorMatchCode(N, NodeNoTypes); | 
|  |  | 
|  | // If there are node predicates for this node, generate their checks. | 
|  | for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i) | 
|  | AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i])); | 
|  |  | 
|  | for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i) | 
|  | AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]), | 
|  | ResultsToTypeCheck[i])); | 
|  | } | 
|  |  | 
|  | /// EmitMatcherCode - Generate the code that matches the predicate of this | 
|  | /// pattern for the specified Variant.  If the variant is invalid this returns | 
|  | /// true and does not generate code, if it is valid, it returns false. | 
|  | bool MatcherGen::EmitMatcherCode(unsigned Variant) { | 
|  | // If the root of the pattern is a ComplexPattern and if it is specified to | 
|  | // match some number of root opcodes, these are considered to be our variants. | 
|  | // Depending on which variant we're generating code for, emit the root opcode | 
|  | // check. | 
|  | if (const ComplexPattern *CP = | 
|  | Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) { | 
|  | const std::vector<Record*> &OpNodes = CP->getRootNodes(); | 
|  | assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match"); | 
|  | if (Variant >= OpNodes.size()) return true; | 
|  |  | 
|  | AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant]))); | 
|  | } else { | 
|  | if (Variant != 0) return true; | 
|  | } | 
|  |  | 
|  | // Emit the matcher for the pattern structure and types. | 
|  | EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes); | 
|  |  | 
|  | // If the pattern has a predicate on it (e.g. only enabled when a subtarget | 
|  | // feature is around, do the check). | 
|  | if (!Pattern.getPredicateCheck().empty()) | 
|  | AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck())); | 
|  |  | 
|  | // Now that we've completed the structural type match, emit any ComplexPattern | 
|  | // checks (e.g. addrmode matches).  We emit this after the structural match | 
|  | // because they are generally more expensive to evaluate and more difficult to | 
|  | // factor. | 
|  | for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) { | 
|  | const TreePatternNode *N = MatchedComplexPatterns[i].first; | 
|  |  | 
|  | // Remember where the results of this match get stuck. | 
|  | MatchedComplexPatterns[i].second = NextRecordedOperandNo; | 
|  |  | 
|  | // Get the slot we recorded the value in from the name on the node. | 
|  | unsigned RecNodeEntry = VariableMap[N->getName()]; | 
|  | assert(!N->getName().empty() && RecNodeEntry && | 
|  | "Complex pattern should have a name and slot"); | 
|  | --RecNodeEntry;  // Entries in VariableMap are biased. | 
|  |  | 
|  | const ComplexPattern &CP = | 
|  | CGP.getComplexPattern(((DefInit*)N->getLeafValue())->getDef()); | 
|  |  | 
|  | // Emit a CheckComplexPat operation, which does the match (aborting if it | 
|  | // fails) and pushes the matched operands onto the recorded nodes list. | 
|  | AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry, | 
|  | N->getName(), NextRecordedOperandNo)); | 
|  |  | 
|  | // Record the right number of operands. | 
|  | NextRecordedOperandNo += CP.getNumOperands(); | 
|  | if (CP.hasProperty(SDNPHasChain)) { | 
|  | // If the complex pattern has a chain, then we need to keep track of the | 
|  | // fact that we just recorded a chain input.  The chain input will be | 
|  | // matched as the last operand of the predicate if it was successful. | 
|  | ++NextRecordedOperandNo; // Chained node operand. | 
|  |  | 
|  | // It is the last operand recorded. | 
|  | assert(NextRecordedOperandNo > 1 && | 
|  | "Should have recorded input/result chains at least!"); | 
|  | MatchedChainNodes.push_back(NextRecordedOperandNo-1); | 
|  | } | 
|  |  | 
|  | // TODO: Complex patterns can't have output glues, if they did, we'd want | 
|  | // to record them. | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Node Result Generation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N, | 
|  | SmallVectorImpl<unsigned> &ResultOps){ | 
|  | assert(!N->getName().empty() && "Operand not named!"); | 
|  |  | 
|  | // A reference to a complex pattern gets all of the results of the complex | 
|  | // pattern's match. | 
|  | if (const ComplexPattern *CP = N->getComplexPatternInfo(CGP)) { | 
|  | unsigned SlotNo = 0; | 
|  | for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) | 
|  | if (MatchedComplexPatterns[i].first->getName() == N->getName()) { | 
|  | SlotNo = MatchedComplexPatterns[i].second; | 
|  | break; | 
|  | } | 
|  | assert(SlotNo != 0 && "Didn't get a slot number assigned?"); | 
|  |  | 
|  | // The first slot entry is the node itself, the subsequent entries are the | 
|  | // matched values. | 
|  | for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) | 
|  | ResultOps.push_back(SlotNo+i); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned SlotNo = getNamedArgumentSlot(N->getName()); | 
|  |  | 
|  | // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target | 
|  | // version of the immediate so that it doesn't get selected due to some other | 
|  | // node use. | 
|  | if (!N->isLeaf()) { | 
|  | StringRef OperatorName = N->getOperator()->getName(); | 
|  | if (OperatorName == "imm" || OperatorName == "fpimm") { | 
|  | AddMatcher(new EmitConvertToTargetMatcher(SlotNo)); | 
|  | ResultOps.push_back(NextRecordedOperandNo++); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | ResultOps.push_back(SlotNo); | 
|  | } | 
|  |  | 
|  | void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N, | 
|  | SmallVectorImpl<unsigned> &ResultOps) { | 
|  | assert(N->isLeaf() && "Must be a leaf"); | 
|  |  | 
|  | if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) { | 
|  | AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0))); | 
|  | ResultOps.push_back(NextRecordedOperandNo++); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If this is an explicit register reference, handle it. | 
|  | if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { | 
|  | Record *Def = DI->getDef(); | 
|  | if (Def->isSubClassOf("Register")) { | 
|  | const CodeGenRegister *Reg = | 
|  | CGP.getTargetInfo().getRegBank().getReg(Def); | 
|  | AddMatcher(new EmitRegisterMatcher(Reg, N->getType(0))); | 
|  | ResultOps.push_back(NextRecordedOperandNo++); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Def->getName() == "zero_reg") { | 
|  | AddMatcher(new EmitRegisterMatcher(0, N->getType(0))); | 
|  | ResultOps.push_back(NextRecordedOperandNo++); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle a reference to a register class. This is used | 
|  | // in COPY_TO_SUBREG instructions. | 
|  | if (Def->isSubClassOf("RegisterOperand")) | 
|  | Def = Def->getValueAsDef("RegClass"); | 
|  | if (Def->isSubClassOf("RegisterClass")) { | 
|  | std::string Value = getQualifiedName(Def) + "RegClassID"; | 
|  | AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); | 
|  | ResultOps.push_back(NextRecordedOperandNo++); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle a subregister index. This is used for INSERT_SUBREG etc. | 
|  | if (Def->isSubClassOf("SubRegIndex")) { | 
|  | std::string Value = getQualifiedName(Def); | 
|  | AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); | 
|  | ResultOps.push_back(NextRecordedOperandNo++); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | errs() << "unhandled leaf node: \n"; | 
|  | N->dump(); | 
|  | } | 
|  |  | 
|  | /// GetInstPatternNode - Get the pattern for an instruction. | 
|  | /// | 
|  | const TreePatternNode *MatcherGen:: | 
|  | GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) { | 
|  | const TreePattern *InstPat = Inst.getPattern(); | 
|  |  | 
|  | // FIXME2?: Assume actual pattern comes before "implicit". | 
|  | TreePatternNode *InstPatNode; | 
|  | if (InstPat) | 
|  | InstPatNode = InstPat->getTree(0); | 
|  | else if (/*isRoot*/ N == Pattern.getDstPattern()) | 
|  | InstPatNode = Pattern.getSrcPattern(); | 
|  | else | 
|  | return 0; | 
|  |  | 
|  | if (InstPatNode && !InstPatNode->isLeaf() && | 
|  | InstPatNode->getOperator()->getName() == "set") | 
|  | InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1); | 
|  |  | 
|  | return InstPatNode; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | mayInstNodeLoadOrStore(const TreePatternNode *N, | 
|  | const CodeGenDAGPatterns &CGP) { | 
|  | Record *Op = N->getOperator(); | 
|  | const CodeGenTarget &CGT = CGP.getTargetInfo(); | 
|  | CodeGenInstruction &II = CGT.getInstruction(Op); | 
|  | return II.mayLoad || II.mayStore; | 
|  | } | 
|  |  | 
|  | static unsigned | 
|  | numNodesThatMayLoadOrStore(const TreePatternNode *N, | 
|  | const CodeGenDAGPatterns &CGP) { | 
|  | if (N->isLeaf()) | 
|  | return 0; | 
|  |  | 
|  | Record *OpRec = N->getOperator(); | 
|  | if (!OpRec->isSubClassOf("Instruction")) | 
|  | return 0; | 
|  |  | 
|  | unsigned Count = 0; | 
|  | if (mayInstNodeLoadOrStore(N, CGP)) | 
|  | ++Count; | 
|  |  | 
|  | for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) | 
|  | Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP); | 
|  |  | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | void MatcherGen:: | 
|  | EmitResultInstructionAsOperand(const TreePatternNode *N, | 
|  | SmallVectorImpl<unsigned> &OutputOps) { | 
|  | Record *Op = N->getOperator(); | 
|  | const CodeGenTarget &CGT = CGP.getTargetInfo(); | 
|  | CodeGenInstruction &II = CGT.getInstruction(Op); | 
|  | const DAGInstruction &Inst = CGP.getInstruction(Op); | 
|  |  | 
|  | // If we can, get the pattern for the instruction we're generating.  We derive | 
|  | // a variety of information from this pattern, such as whether it has a chain. | 
|  | // | 
|  | // FIXME2: This is extremely dubious for several reasons, not the least of | 
|  | // which it gives special status to instructions with patterns that Pat<> | 
|  | // nodes can't duplicate. | 
|  | const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N); | 
|  |  | 
|  | // NodeHasChain - Whether the instruction node we're creating takes chains. | 
|  | bool NodeHasChain = InstPatNode && | 
|  | InstPatNode->TreeHasProperty(SDNPHasChain, CGP); | 
|  |  | 
|  | // Instructions which load and store from memory should have a chain, | 
|  | // regardless of whether they happen to have an internal pattern saying so. | 
|  | if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP) | 
|  | && (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad || | 
|  | II.hasSideEffects)) | 
|  | NodeHasChain = true; | 
|  |  | 
|  | bool isRoot = N == Pattern.getDstPattern(); | 
|  |  | 
|  | // TreeHasOutGlue - True if this tree has glue. | 
|  | bool TreeHasInGlue = false, TreeHasOutGlue = false; | 
|  | if (isRoot) { | 
|  | const TreePatternNode *SrcPat = Pattern.getSrcPattern(); | 
|  | TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) || | 
|  | SrcPat->TreeHasProperty(SDNPInGlue, CGP); | 
|  |  | 
|  | // FIXME2: this is checking the entire pattern, not just the node in | 
|  | // question, doing this just for the root seems like a total hack. | 
|  | TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP); | 
|  | } | 
|  |  | 
|  | // NumResults - This is the number of results produced by the instruction in | 
|  | // the "outs" list. | 
|  | unsigned NumResults = Inst.getNumResults(); | 
|  |  | 
|  | // Loop over all of the operands of the instruction pattern, emitting code | 
|  | // to fill them all in.  The node 'N' usually has number children equal to | 
|  | // the number of input operands of the instruction.  However, in cases | 
|  | // where there are predicate operands for an instruction, we need to fill | 
|  | // in the 'execute always' values.  Match up the node operands to the | 
|  | // instruction operands to do this. | 
|  | SmallVector<unsigned, 8> InstOps; | 
|  | for (unsigned ChildNo = 0, InstOpNo = NumResults, e = II.Operands.size(); | 
|  | InstOpNo != e; ++InstOpNo) { | 
|  |  | 
|  | // Determine what to emit for this operand. | 
|  | Record *OperandNode = II.Operands[InstOpNo].Rec; | 
|  | if (OperandNode->isSubClassOf("OperandWithDefaultOps") && | 
|  | !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) { | 
|  | // This is a predicate or optional def operand; emit the | 
|  | // 'default ops' operands. | 
|  | const DAGDefaultOperand &DefaultOp | 
|  | = CGP.getDefaultOperand(OperandNode); | 
|  | for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) | 
|  | EmitResultOperand(DefaultOp.DefaultOps[i], InstOps); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const TreePatternNode *Child = N->getChild(ChildNo); | 
|  |  | 
|  | // Otherwise this is a normal operand or a predicate operand without | 
|  | // 'execute always'; emit it. | 
|  | unsigned BeforeAddingNumOps = InstOps.size(); | 
|  | EmitResultOperand(Child, InstOps); | 
|  | assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands"); | 
|  |  | 
|  | // If the operand is an instruction and it produced multiple results, just | 
|  | // take the first one. | 
|  | if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction")) | 
|  | InstOps.resize(BeforeAddingNumOps+1); | 
|  |  | 
|  | ++ChildNo; | 
|  | } | 
|  |  | 
|  | // If this node has input glue or explicitly specified input physregs, we | 
|  | // need to add chained and glued copyfromreg nodes and materialize the glue | 
|  | // input. | 
|  | if (isRoot && !PhysRegInputs.empty()) { | 
|  | // Emit all of the CopyToReg nodes for the input physical registers.  These | 
|  | // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src). | 
|  | for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) | 
|  | AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second, | 
|  | PhysRegInputs[i].first)); | 
|  | // Even if the node has no other glue inputs, the resultant node must be | 
|  | // glued to the CopyFromReg nodes we just generated. | 
|  | TreeHasInGlue = true; | 
|  | } | 
|  |  | 
|  | // Result order: node results, chain, glue | 
|  |  | 
|  | // Determine the result types. | 
|  | SmallVector<MVT::SimpleValueType, 4> ResultVTs; | 
|  | for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) | 
|  | ResultVTs.push_back(N->getType(i)); | 
|  |  | 
|  | // If this is the root instruction of a pattern that has physical registers in | 
|  | // its result pattern, add output VTs for them.  For example, X86 has: | 
|  | //   (set AL, (mul ...)) | 
|  | // This also handles implicit results like: | 
|  | //   (implicit EFLAGS) | 
|  | if (isRoot && !Pattern.getDstRegs().empty()) { | 
|  | // If the root came from an implicit def in the instruction handling stuff, | 
|  | // don't re-add it. | 
|  | Record *HandledReg = 0; | 
|  | if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) | 
|  | HandledReg = II.ImplicitDefs[0]; | 
|  |  | 
|  | for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) { | 
|  | Record *Reg = Pattern.getDstRegs()[i]; | 
|  | if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; | 
|  | ResultVTs.push_back(getRegisterValueType(Reg, CGT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is the root of the pattern and the pattern we're matching includes | 
|  | // a node that is variadic, mark the generated node as variadic so that it | 
|  | // gets the excess operands from the input DAG. | 
|  | int NumFixedArityOperands = -1; | 
|  | if (isRoot && | 
|  | (Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))) | 
|  | NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren(); | 
|  |  | 
|  | // If this is the root node and multiple matched nodes in the input pattern | 
|  | // have MemRefs in them, have the interpreter collect them and plop them onto | 
|  | // this node. If there is just one node with MemRefs, leave them on that node | 
|  | // even if it is not the root. | 
|  | // | 
|  | // FIXME3: This is actively incorrect for result patterns with multiple | 
|  | // memory-referencing instructions. | 
|  | bool PatternHasMemOperands = | 
|  | Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP); | 
|  |  | 
|  | bool NodeHasMemRefs = false; | 
|  | if (PatternHasMemOperands) { | 
|  | unsigned NumNodesThatLoadOrStore = | 
|  | numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP); | 
|  | bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) && | 
|  | NumNodesThatLoadOrStore == 1; | 
|  | NodeHasMemRefs = | 
|  | NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) || | 
|  | NumNodesThatLoadOrStore != 1)); | 
|  | } | 
|  |  | 
|  | assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) && | 
|  | "Node has no result"); | 
|  |  | 
|  | AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(), | 
|  | ResultVTs.data(), ResultVTs.size(), | 
|  | InstOps.data(), InstOps.size(), | 
|  | NodeHasChain, TreeHasInGlue, TreeHasOutGlue, | 
|  | NodeHasMemRefs, NumFixedArityOperands, | 
|  | NextRecordedOperandNo)); | 
|  |  | 
|  | // The non-chain and non-glue results of the newly emitted node get recorded. | 
|  | for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) { | 
|  | if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break; | 
|  | OutputOps.push_back(NextRecordedOperandNo++); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MatcherGen:: | 
|  | EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, | 
|  | SmallVectorImpl<unsigned> &ResultOps) { | 
|  | assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?"); | 
|  |  | 
|  | // Emit the operand. | 
|  | SmallVector<unsigned, 8> InputOps; | 
|  |  | 
|  | // FIXME2: Could easily generalize this to support multiple inputs and outputs | 
|  | // to the SDNodeXForm.  For now we just support one input and one output like | 
|  | // the old instruction selector. | 
|  | assert(N->getNumChildren() == 1); | 
|  | EmitResultOperand(N->getChild(0), InputOps); | 
|  |  | 
|  | // The input currently must have produced exactly one result. | 
|  | assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm"); | 
|  |  | 
|  | AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator())); | 
|  | ResultOps.push_back(NextRecordedOperandNo++); | 
|  | } | 
|  |  | 
|  | void MatcherGen::EmitResultOperand(const TreePatternNode *N, | 
|  | SmallVectorImpl<unsigned> &ResultOps) { | 
|  | // This is something selected from the pattern we matched. | 
|  | if (!N->getName().empty()) | 
|  | return EmitResultOfNamedOperand(N, ResultOps); | 
|  |  | 
|  | if (N->isLeaf()) | 
|  | return EmitResultLeafAsOperand(N, ResultOps); | 
|  |  | 
|  | Record *OpRec = N->getOperator(); | 
|  | if (OpRec->isSubClassOf("Instruction")) | 
|  | return EmitResultInstructionAsOperand(N, ResultOps); | 
|  | if (OpRec->isSubClassOf("SDNodeXForm")) | 
|  | return EmitResultSDNodeXFormAsOperand(N, ResultOps); | 
|  | errs() << "Unknown result node to emit code for: " << *N << '\n'; | 
|  | throw std::string("Unknown node in result pattern!"); | 
|  | } | 
|  |  | 
|  | void MatcherGen::EmitResultCode() { | 
|  | // Patterns that match nodes with (potentially multiple) chain inputs have to | 
|  | // merge them together into a token factor.  This informs the generated code | 
|  | // what all the chained nodes are. | 
|  | if (!MatchedChainNodes.empty()) | 
|  | AddMatcher(new EmitMergeInputChainsMatcher | 
|  | (MatchedChainNodes.data(), MatchedChainNodes.size())); | 
|  |  | 
|  | // Codegen the root of the result pattern, capturing the resulting values. | 
|  | SmallVector<unsigned, 8> Ops; | 
|  | EmitResultOperand(Pattern.getDstPattern(), Ops); | 
|  |  | 
|  | // At this point, we have however many values the result pattern produces. | 
|  | // However, the input pattern might not need all of these.  If there are | 
|  | // excess values at the end (such as implicit defs of condition codes etc) | 
|  | // just lop them off.  This doesn't need to worry about glue or chains, just | 
|  | // explicit results. | 
|  | // | 
|  | unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes(); | 
|  |  | 
|  | // If the pattern also has (implicit) results, count them as well. | 
|  | if (!Pattern.getDstRegs().empty()) { | 
|  | // If the root came from an implicit def in the instruction handling stuff, | 
|  | // don't re-add it. | 
|  | Record *HandledReg = 0; | 
|  | const TreePatternNode *DstPat = Pattern.getDstPattern(); | 
|  | if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){ | 
|  | const CodeGenTarget &CGT = CGP.getTargetInfo(); | 
|  | CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator()); | 
|  |  | 
|  | if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) | 
|  | HandledReg = II.ImplicitDefs[0]; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) { | 
|  | Record *Reg = Pattern.getDstRegs()[i]; | 
|  | if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; | 
|  | ++NumSrcResults; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(Ops.size() >= NumSrcResults && "Didn't provide enough results"); | 
|  | Ops.resize(NumSrcResults); | 
|  |  | 
|  | // If the matched pattern covers nodes which define a glue result, emit a node | 
|  | // that tells the matcher about them so that it can update their results. | 
|  | if (!MatchedGlueResultNodes.empty()) | 
|  | AddMatcher(new MarkGlueResultsMatcher(MatchedGlueResultNodes.data(), | 
|  | MatchedGlueResultNodes.size())); | 
|  |  | 
|  | AddMatcher(new CompleteMatchMatcher(Ops.data(), Ops.size(), Pattern)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ConvertPatternToMatcher - Create the matcher for the specified pattern with | 
|  | /// the specified variant.  If the variant number is invalid, this returns null. | 
|  | Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern, | 
|  | unsigned Variant, | 
|  | const CodeGenDAGPatterns &CGP) { | 
|  | MatcherGen Gen(Pattern, CGP); | 
|  |  | 
|  | // Generate the code for the matcher. | 
|  | if (Gen.EmitMatcherCode(Variant)) | 
|  | return 0; | 
|  |  | 
|  | // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence. | 
|  | // FIXME2: Split result code out to another table, and make the matcher end | 
|  | // with an "Emit <index>" command.  This allows result generation stuff to be | 
|  | // shared and factored? | 
|  |  | 
|  | // If the match succeeds, then we generate Pattern. | 
|  | Gen.EmitResultCode(); | 
|  |  | 
|  | // Unconditional match. | 
|  | return Gen.GetMatcher(); | 
|  | } |