| //===-- GrapAuxillary.cpp- Auxillary functions on graph ----------*- C++ -*--=// |
| // |
| //auxillary function associated with graph: they |
| //all operate on graph, and help in inserting |
| //instrumentation for trace generation |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Graph.h" |
| #include "llvm/BasicBlock.h" |
| #include <algorithm> |
| #include <iostream> |
| |
| using std::list; |
| using std::map; |
| using std::vector; |
| using std::cerr; |
| |
| //check if 2 edges are equal (same endpoints and same weight) |
| static bool edgesEqual(Edge ed1, Edge ed2); |
| |
| //Get the vector of edges that are to be instrumented in the graph |
| static void getChords(vector<Edge > &chords, Graph g, Graph st); |
| |
| //Given a tree t, and a "directed graph" g |
| //replace the edges in the tree t with edges that exist in graph |
| //The tree is formed from "undirectional" copy of graph |
| //So whatever edges the tree has, the undirectional graph |
| //would have too. This function corrects some of the directions in |
| //the tree so that now, all edge directions in the tree match |
| //the edge directions of corresponding edges in the directed graph |
| static void removeTreeEdges(Graph g, Graph& t); |
| |
| //Now we select a subset of all edges |
| //and assign them some values such that |
| //if we consider just this subset, it still represents |
| //the path sum along any path in the graph |
| static map<Edge, int> getEdgeIncrements(Graph& g, Graph& t); |
| |
| //Based on edgeIncrements (above), now obtain |
| //the kind of code to be inserted along an edge |
| //The idea here is to minimize the computation |
| //by inserting only the needed code |
| static void getCodeInsertions(Graph &g, map<Edge, getEdgeCode *> &Insertions, |
| vector<Edge > &chords, |
| map<Edge,int> &edIncrements); |
| |
| //Move the incoming dummy edge code and outgoing dummy |
| //edge code over to the corresponding back edge |
| static void moveDummyCode(const vector<Edge> &stDummy, |
| const vector<Edge> &exDummy, |
| const vector<Edge> &be, |
| map<Edge, getEdgeCode *> &insertions); |
| |
| |
| |
| //Do graph processing: to determine minimal edge increments, |
| //appropriate code insertions etc and insert the code at |
| //appropriate locations |
| void processGraph(Graph &g, |
| Instruction *rInst, |
| Instruction *countInst, |
| vector<Edge >& be, |
| vector<Edge >& stDummy, |
| vector<Edge >& exDummy){ |
| //Given a graph: with exit->root edge, do the following in seq: |
| //1. get back edges |
| //2. insert dummy edges and remove back edges |
| //3. get edge assignments |
| //4. Get Max spanning tree of graph: |
| // -Make graph g2=g undirectional |
| // -Get Max spanning tree t |
| // -Make t undirectional |
| // -remove edges from t not in graph g |
| //5. Get edge increments |
| //6. Get code insertions |
| //7. move code on dummy edges over to the back edges |
| |
| |
| //This is used as maximum "weight" for |
| //priority queue |
| //This would hold all |
| //right as long as number of paths in the graph |
| //is less than this |
| const int INFINITY=99999999; |
| |
| |
| //step 1-3 are already done on the graph when this function is called |
| #ifdef DEBUG_PATH_PROFILES |
| printGraph(g); |
| #endif |
| //step 4: Get Max spanning tree of graph |
| |
| //now insert exit to root edge |
| //if its there earlier, remove it! |
| //assign it weight INFINITY |
| //so that this edge IS ALWAYS IN spanning tree |
| //Note than edges in spanning tree do not get |
| //instrumented: and we do not want the |
| //edge exit->root to get instrumented |
| //as it MAY BE a dummy edge |
| Edge ed(g.getExit(),g.getRoot(),INFINITY); |
| g.addEdge(ed,INFINITY); |
| Graph g2=g; |
| |
| //make g2 undirectional: this gives a better |
| //maximal spanning tree |
| g2.makeUnDirectional(); |
| #ifdef DEBUG_PATH_PROFILES |
| printGraph(g2); |
| #endif |
| Graph *t=g2.getMaxSpanningTree(); |
| #ifdef DEBUG_PATH_PROFILES |
| printGraph(*t); |
| #endif |
| //now edges of tree t have weights reversed |
| //(negative) because the algorithm used |
| //to find max spanning tree is |
| //actually for finding min spanning tree |
| //so get back the original weights |
| t->reverseWts(); |
| |
| //Ordinarily, the graph is directional |
| //lets converts the graph into an |
| //undirectional graph |
| //This is done by adding an edge |
| //v->u for all existing edges u->v |
| t->makeUnDirectional(); |
| |
| //Given a tree t, and a "directed graph" g |
| //replace the edges in the tree t with edges that exist in graph |
| //The tree is formed from "undirectional" copy of graph |
| //So whatever edges the tree has, the undirectional graph |
| //would have too. This function corrects some of the directions in |
| //the tree so that now, all edge directions in the tree match |
| //the edge directions of corresponding edges in the directed graph |
| removeTreeEdges(g, *t); |
| #ifdef DEBUG_PATH_PROFILES |
| cerr<<"Spanning tree---------\n"; |
| printGraph(*t); |
| cerr<<"-------end spanning tree\n"; |
| #endif |
| //now remove the exit->root node |
| //and re-add it with weight 0 |
| //since infinite weight is kinda confusing |
| g.removeEdge(ed); |
| Edge edNew(g.getExit(), g.getRoot(),0); |
| g.addEdge(edNew,0); |
| if(t->hasEdge(ed)){ |
| t->removeEdge(ed); |
| t->addEdge(edNew,0); |
| } |
| |
| #ifdef DEBUG_PATH_PROFILES |
| printGraph(g); |
| printGraph(*t); |
| #endif |
| //step 5: Get edge increments |
| |
| //Now we select a subset of all edges |
| //and assign them some values such that |
| //if we consider just this subset, it still represents |
| //the path sum along any path in the graph |
| map<Edge, int> increment=getEdgeIncrements(g,*t); |
| #ifdef DEBUG_PATH_PROFILES |
| //print edge increments for debugging |
| for(map<Edge, int>::iterator M_I=increment.begin(), M_E=increment.end(); |
| M_I!=M_E; ++M_I){ |
| printEdge(M_I->first); |
| cerr<<"Increment for above:"<<M_I->second<<"\n"; |
| } |
| #endif |
| |
| //step 6: Get code insertions |
| |
| //Based on edgeIncrements (above), now obtain |
| //the kind of code to be inserted along an edge |
| //The idea here is to minimize the computation |
| //by inserting only the needed code |
| vector<Edge> chords; |
| getChords(chords, g, *t); |
| |
| map<Edge, getEdgeCode *> codeInsertions; |
| getCodeInsertions(g, codeInsertions, chords,increment); |
| |
| #ifdef DEBUG_PATH_PROFILES |
| //print edges with code for debugging |
| cerr<<"Code inserted in following---------------\n"; |
| for(map<Edge, getEdgeCode *>::iterator cd_i=codeInsertions->begin(), |
| cd_e=codeInsertions->end(); cd_i!=cd_e; ++cd_i){ |
| printEdge(cd_i->first); |
| cerr<<cd_i->second->getCond()<<":"<<cd_i->second->getInc()<<"\n"; |
| } |
| cerr<<"-----end insertions\n"; |
| #endif |
| //step 7: move code on dummy edges over to the back edges |
| |
| //Move the incoming dummy edge code and outgoing dummy |
| //edge code over to the corresponding back edge |
| moveDummyCode(stDummy, exDummy, be, codeInsertions); |
| |
| #ifdef DEBUG_PATH_PROFILES |
| //debugging info |
| cerr<<"After moving dummy code\n"; |
| for(map<Edge, getEdgeCode *>::iterator cd_i=codeInsertions.begin(), |
| cd_e=codeInsertions.end(); cd_i != cd_e; ++cd_i){ |
| printEdge(cd_i->first); |
| cerr<<cd_i->second->getCond()<<":" |
| <<cd_i->second->getInc()<<"\n"; |
| } |
| cerr<<"Dummy end------------\n"; |
| #endif |
| |
| //see what it looks like... |
| //now insert code along edges which have codes on them |
| for(map<Edge, getEdgeCode *>::iterator MI=codeInsertions.begin(), |
| ME=codeInsertions.end(); MI!=ME; ++MI){ |
| Edge ed=MI->first; |
| insertBB(ed, MI->second, rInst, countInst); |
| } |
| } |
| |
| |
| |
| //check if 2 edges are equal (same endpoints and same weight) |
| static bool edgesEqual(Edge ed1, Edge ed2){ |
| return ((ed1==ed2) && ed1.getWeight()==ed2.getWeight()); |
| } |
| |
| //Get the vector of edges that are to be instrumented in the graph |
| static void getChords(vector<Edge > &chords, Graph g, Graph st){ |
| //make sure the spanning tree is directional |
| //iterate over ALL the edges of the graph |
| list<Node *> allNodes=g.getAllNodes(); |
| for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE; |
| ++NI){ |
| Graph::nodeList node_list=g.getNodeList(*NI); |
| for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end(); |
| NLI!=NLE; ++NLI){ |
| Edge f(*NI, NLI->element,NLI->weight); |
| if(!(st.hasEdgeAndWt(f)))//addnl |
| chords.push_back(f); |
| } |
| } |
| } |
| |
| //Given a tree t, and a "directed graph" g |
| //replace the edges in the tree t with edges that exist in graph |
| //The tree is formed from "undirectional" copy of graph |
| //So whatever edges the tree has, the undirectional graph |
| //would have too. This function corrects some of the directions in |
| //the tree so that now, all edge directions in the tree match |
| //the edge directions of corresponding edges in the directed graph |
| static void removeTreeEdges(Graph g, Graph& t){ |
| list<Node* > allNodes=t.getAllNodes(); |
| for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE; |
| ++NI){ |
| Graph::nodeList nl=t.getNodeList(*NI); |
| for(Graph::nodeList::iterator NLI=nl.begin(), NLE=nl.end(); NLI!=NLE;++NLI){ |
| Edge ed(NLI->element, *NI, NLI->weight); |
| //if(!g.hasEdge(ed)) t.removeEdge(ed); |
| if(!g.hasEdgeAndWt(ed)) t.removeEdge(ed);//tree has only one edge |
| //between any pair of vertices, so no need to delete by edge wt |
| } |
| } |
| } |
| |
| //Assign a value to all the edges in the graph |
| //such that if we traverse along any path from root to exit, and |
| //add up the edge values, we get a path number that uniquely |
| //refers to the path we travelled |
| int valueAssignmentToEdges(Graph& g){ |
| list<Node *> revtop=g.reverseTopologicalSort(); |
| map<Node *,int > NumPaths; |
| for(list<Node *>::iterator RI=revtop.begin(), RE=revtop.end(); RI!=RE; ++RI){ |
| if(g.isLeaf(*RI)) |
| NumPaths[*RI]=1; |
| else{ |
| NumPaths[*RI]=0; |
| list<Node *> succ=g.getSuccNodes(*RI); |
| for(list<Node *>::iterator SI=succ.begin(), SE=succ.end(); SI!=SE; ++SI){ |
| Edge ed(*RI,*SI,NumPaths[*RI]); |
| g.setWeight(ed); |
| NumPaths[*RI]+=NumPaths[*SI]; |
| } |
| } |
| } |
| return NumPaths[g.getRoot()]; |
| } |
| |
| //This is a helper function to get the edge increments |
| //This is used in conjuntion with inc_DFS |
| //to get the edge increments |
| //Edge increment implies assigning a value to all the edges in the graph |
| //such that if we traverse along any path from root to exit, and |
| //add up the edge values, we get a path number that uniquely |
| //refers to the path we travelled |
| //inc_Dir tells whether 2 edges are in same, or in different directions |
| //if same direction, return 1, else -1 |
| static int inc_Dir(Edge e,Edge f){ |
| if(e.isNull()) |
| return 1; |
| |
| //check that the edges must have atleast one common endpoint |
| assert(*(e.getFirst())==*(f.getFirst()) || |
| *(e.getFirst())==*(f.getSecond()) || |
| *(e.getSecond())==*(f.getFirst()) || |
| *(e.getSecond())==*(f.getSecond())); |
| |
| if(*(e.getFirst())==*(f.getSecond()) || |
| *(e.getSecond())==*(f.getFirst())) |
| return 1; |
| |
| return -1; |
| } |
| |
| //used for getting edge increments (read comments above in inc_Dir) |
| //inc_DFS is a modification of DFS |
| static void inc_DFS(Graph& g,Graph& t,map<Edge, int>& Increment, |
| int events, Node *v, Edge e){ |
| |
| list<Node *> allNodes=t.getAllNodes(); |
| |
| for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE; |
| ++NI){ |
| Graph::nodeList node_list=t.getNodeList(*NI); |
| for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end(); |
| NLI!= NLE; ++NLI){ |
| Edge f(*NI, NLI->element,NLI->weight); |
| if(!edgesEqual(f,e) && *v==*(f.getSecond())){ |
| int dir_count=inc_Dir(e,f); |
| int wt=1*f.getWeight(); |
| inc_DFS(g,t, Increment, dir_count*events+wt, f.getFirst(), f); |
| } |
| } |
| } |
| |
| for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE; |
| ++NI){ |
| Graph::nodeList node_list=t.getNodeList(*NI); |
| for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end(); |
| NLI!=NLE; ++NLI){ |
| Edge f(*NI, NLI->element,NLI->weight); |
| if(!edgesEqual(f,e) && *v==*(f.getFirst())){ |
| int dir_count=inc_Dir(e,f); |
| int wt=1*f.getWeight(); |
| inc_DFS(g,t, Increment, dir_count*events+wt, |
| f.getSecond(), f); |
| } |
| } |
| } |
| |
| allNodes=g.getAllNodes(); |
| for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE; |
| ++NI){ |
| Graph::nodeList node_list=g.getNodeList(*NI); |
| for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end(); |
| NLI!=NLE; ++NLI){ |
| Edge f(*NI, NLI->element,NLI->weight); |
| if(!(t.hasEdgeAndWt(f)) && (*v==*(f.getSecond()) || |
| *v==*(f.getFirst()))){ |
| int dir_count=inc_Dir(e,f); |
| Increment[f]+=dir_count*events; |
| } |
| } |
| } |
| } |
| |
| //Now we select a subset of all edges |
| //and assign them some values such that |
| //if we consider just this subset, it still represents |
| //the path sum along any path in the graph |
| static map<Edge, int> getEdgeIncrements(Graph& g, Graph& t){ |
| //get all edges in g-t |
| map<Edge, int> Increment; |
| |
| list<Node *> allNodes=g.getAllNodes(); |
| |
| for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE; |
| ++NI){ |
| Graph::nodeList node_list=g.getNodeList(*NI); |
| for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end(); |
| NLI!=NLE; ++NLI){ |
| Edge ed(*NI, NLI->element,NLI->weight); |
| if(!(t.hasEdge(ed))){ |
| Increment[ed]=0;; |
| } |
| } |
| } |
| |
| Edge *ed=new Edge(); |
| inc_DFS(g,t,Increment, 0, g.getRoot(), *ed); |
| |
| |
| for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE; |
| ++NI){ |
| Graph::nodeList node_list=g.getNodeList(*NI); |
| for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end(); |
| NLI!=NLE; ++NLI){ |
| Edge ed(*NI, NLI->element,NLI->weight); |
| if(!(t.hasEdge(ed))){ |
| int wt=ed.getWeight(); |
| Increment[ed]+=wt; |
| } |
| } |
| } |
| |
| return Increment; |
| } |
| |
| //Based on edgeIncrements (above), now obtain |
| //the kind of code to be inserted along an edge |
| //The idea here is to minimize the computation |
| //by inserting only the needed code |
| static void getCodeInsertions(Graph &g, map<Edge, getEdgeCode *> &instr, |
| vector<Edge > &chords, |
| map<Edge,int> &edIncrements){ |
| |
| //Register initialization code |
| vector<Node *> ws; |
| ws.push_back(g.getRoot()); |
| while(ws.size()>0){ |
| Node *v=ws.back(); |
| ws.pop_back(); |
| //for each edge v->w |
| Graph::nodeList succs=g.getNodeList(v); |
| |
| for(Graph::nodeList::iterator nl=succs.begin(), ne=succs.end(); |
| nl!=ne; ++nl){ |
| int edgeWt=nl->weight; |
| Node *w=nl->element; |
| //if chords has v->w |
| Edge ed(v,w); |
| |
| bool hasEdge=false; |
| for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end(); |
| CI!=CE && !hasEdge;++CI){ |
| if(*CI==ed){ |
| hasEdge=true; |
| } |
| } |
| if(hasEdge){ |
| getEdgeCode *edCd=new getEdgeCode(); |
| edCd->setCond(1); |
| edCd->setInc(edIncrements[ed]); |
| instr[ed]=edCd; |
| } |
| else if((g.getPredNodes(w)).size()==1){ |
| ws.push_back(w); |
| } |
| else{ |
| getEdgeCode *edCd=new getEdgeCode(); |
| edCd->setCond(2); |
| edCd->setInc(0); |
| instr[ed]=edCd; |
| } |
| } |
| } |
| |
| /////Memory increment code |
| ws.push_back(g.getExit()); |
| |
| while(!ws.empty()) { |
| Node *w=ws.back(); |
| ws.pop_back(); |
| |
| //for each edge v->w |
| list<Node *> preds=g.getPredNodes(w); |
| for(list<Node *>::iterator pd=preds.begin(), pe=preds.end(); pd!=pe; ++pd){ |
| Node *v=*pd; |
| //if chords has v->w |
| |
| Edge ed(v,w); |
| getEdgeCode *edCd=new getEdgeCode(); |
| bool hasEdge=false; |
| for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end(); CI!=CE; |
| ++CI){ |
| if(*CI==ed){ |
| hasEdge=true; |
| break; |
| } |
| } |
| if(hasEdge){ |
| char str[100]; |
| if(instr[ed]!=NULL && instr[ed]->getCond()==1){ |
| instr[ed]->setCond(4); |
| } |
| else{ |
| edCd->setCond(5); |
| edCd->setInc(edIncrements[ed]); |
| instr[ed]=edCd; |
| } |
| |
| } |
| else if(g.getSuccNodes(v).size()==1) |
| ws.push_back(v); |
| else{ |
| edCd->setCond(6); |
| instr[ed]=edCd; |
| } |
| } |
| } |
| |
| ///// Register increment code |
| for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end(); CI!=CE; ++CI){ |
| getEdgeCode *edCd=new getEdgeCode(); |
| if(instr[*CI]==NULL){ |
| edCd->setCond(3); |
| edCd->setInc(edIncrements[*CI]); |
| instr[*CI]=edCd; |
| } |
| } |
| } |
| |
| //Add dummy edges corresponding to the back edges |
| //If a->b is a backedge |
| //then incoming dummy edge is root->b |
| //and outgoing dummy edge is a->exit |
| void addDummyEdges(vector<Edge > &stDummy, |
| vector<Edge > &exDummy, |
| Graph &g, vector<Edge> &be){ |
| for(vector<Edge >::iterator VI=be.begin(), VE=be.end(); VI!=VE; ++VI){ |
| Edge ed=*VI; |
| Node *first=ed.getFirst(); |
| Node *second=ed.getSecond(); |
| g.removeEdge(ed); |
| |
| if(!(*second==*(g.getRoot()))){ |
| Edge *st=new Edge(g.getRoot(), second); |
| |
| //check if stDummy doesn't have it already |
| if(find(stDummy.begin(), stDummy.end(), *st) == stDummy.end()) |
| stDummy.push_back(*st); |
| g.addEdgeForce(*st); |
| } |
| |
| if(!(*first==*(g.getExit()))){ |
| Edge *ex=new Edge(first, g.getExit()); |
| |
| if (find(exDummy.begin(), exDummy.end(), *ex) == exDummy.end()) { |
| exDummy.push_back(*ex); |
| g.addEdgeForce(*ex); |
| } |
| } |
| } |
| } |
| |
| //print a given edge in the form BB1Label->BB2Label |
| void printEdge(Edge ed){ |
| cerr<<((ed.getFirst())->getElement()) |
| ->getName()<<"->"<<((ed.getSecond()) |
| ->getElement())->getName()<< |
| ":"<<ed.getWeight()<<"\n"; |
| } |
| |
| //Move the incoming dummy edge code and outgoing dummy |
| //edge code over to the corresponding back edge |
| static void moveDummyCode(const vector<Edge> &stDummy, |
| const vector<Edge> &exDummy, |
| const vector<Edge> &be, |
| map<Edge, getEdgeCode *> &insertions){ |
| typedef vector<Edge >::const_iterator vec_iter; |
| |
| #ifdef DEBUG_PATH_PROFILES |
| //print all back, st and ex dummy |
| cerr<<"BackEdges---------------\n"; |
| for(vec_iter VI=be.begin(); VI!=be.end(); ++VI) |
| printEdge(*VI); |
| cerr<<"StEdges---------------\n"; |
| for(vec_iter VI=stDummy.begin(); VI!=stDummy.end(); ++VI) |
| printEdge(*VI); |
| cerr<<"ExitEdges---------------\n"; |
| for(vec_iter VI=exDummy.begin(); VI!=exDummy.end(); ++VI) |
| printEdge(*VI); |
| cerr<<"------end all edges\n"; |
| #endif |
| |
| std::vector<Edge> toErase; |
| for(map<Edge,getEdgeCode *>::iterator MI=insertions.begin(), |
| ME=insertions.end(); MI!=ME; ++MI){ |
| Edge ed=MI->first; |
| getEdgeCode *edCd=MI->second; |
| bool dummyHasIt=false; |
| #ifdef DEBUG_PATH_PROFILES |
| cerr<<"Current edge considered---\n"; |
| printEdge(ed); |
| #endif |
| //now check if stDummy has ed |
| for(vec_iter VI=stDummy.begin(), VE=stDummy.end(); VI!=VE && !dummyHasIt; |
| ++VI){ |
| if(*VI==ed){ |
| #ifdef DEBUG_PATH_PROFILES |
| cerr<<"Edge matched with stDummy\n"; |
| #endif |
| dummyHasIt=true; |
| bool dummyInBe=false; |
| //dummy edge with code |
| for(vec_iter BE=be.begin(), BEE=be.end(); BE!=BEE && !dummyInBe; ++BE){ |
| Edge backEdge=*BE; |
| Node *st=backEdge.getSecond(); |
| Node *dm=ed.getSecond(); |
| if(*dm==*st){ |
| //so this is the back edge to use |
| #ifdef DEBUG_PATH_PROFILES |
| cerr<<"Moving to backedge\n"; |
| printEdge(backEdge); |
| #endif |
| getEdgeCode *ged=new getEdgeCode(); |
| ged->setCdIn(edCd); |
| toErase.push_back(ed); |
| insertions[backEdge]=ged; |
| dummyInBe=true; |
| } |
| } |
| assert(dummyInBe); |
| } |
| } |
| if(!dummyHasIt){ |
| //so exDummy may hv it |
| bool inExDummy=false; |
| for(vec_iter VI=exDummy.begin(), VE=exDummy.end(); VI!=VE && !inExDummy; |
| ++VI){ |
| if(*VI==ed){ |
| inExDummy=true; |
| #ifdef DEBUG_PATH_PROFILES |
| cerr<<"Edge matched with exDummy\n"; |
| #endif |
| bool dummyInBe2=false; |
| //dummy edge with code |
| for(vec_iter BE=be.begin(), BEE=be.end(); BE!=BEE && !dummyInBe2; |
| ++BE){ |
| Edge backEdge=*BE; |
| Node *st=backEdge.getFirst(); |
| Node *dm=ed.getFirst(); |
| if(*dm==*st){ |
| //so this is the back edge to use |
| getEdgeCode *ged; |
| if(insertions[backEdge]==NULL) |
| ged=new getEdgeCode(); |
| else |
| ged=insertions[backEdge]; |
| toErase.push_back(ed); |
| ged->setCdOut(edCd); |
| insertions[backEdge]=ged; |
| dummyInBe2=true; |
| } |
| } |
| assert(dummyInBe2); |
| } |
| } |
| } |
| } |
| |
| #ifdef DEBUG_PATH_PROFILES |
| cerr<<"size of deletions: "<<toErase.size()<<"\n"; |
| #endif |
| |
| for(vector<Edge >::iterator vmi=toErase.begin(), vme=toErase.end(); vmi!=vme; |
| ++vmi) |
| insertions.erase(*vmi); |
| |
| #ifdef DEBUG_PATH_PROFILES |
| cerr<<"SIZE OF INSERTIONS AFTER DEL "<<insertions.size()<<"\n"; |
| #endif |
| } |
| |
| |
| //print the graph (for debugging) |
| void printGraph(Graph g){ |
| list<Node *> lt=g.getAllNodes(); |
| cerr<<"Graph---------------------\n"; |
| for(list<Node *>::iterator LI=lt.begin(); |
| LI!=lt.end(); ++LI){ |
| cerr<<((*LI)->getElement())->getName()<<"->"; |
| Graph::nodeList nl=g.getNodeList(*LI); |
| for(Graph::nodeList::iterator NI=nl.begin(); |
| NI!=nl.end(); ++NI){ |
| cerr<<":"<<"("<<(NI->element->getElement()) |
| ->getName()<<":"<<NI->element->getWeight()<<","<<NI->weight<<")"; |
| } |
| cerr<<"\n"; |
| } |
| cerr<<"--------------------Graph\n"; |
| } |