|  | //===-- X86ISelPattern.cpp - A pattern matching inst selector for X86 -----===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file was developed by the LLVM research group and is distributed under | 
|  | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines a pattern matching instruction selector for X86. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86.h" | 
|  | #include "X86InstrBuilder.h" | 
|  | #include "X86RegisterInfo.h" | 
|  | #include "llvm/CallingConv.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SelectionDAGISel.h" | 
|  | #include "llvm/CodeGen/SSARegMap.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Support/CFG.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include <set> | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | // FIXME: temporary. | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | static cl::opt<bool> EnableFastCC("enable-x86-fastcc", cl::Hidden, | 
|  | cl::desc("Enable fastcc on X86")); | 
|  |  | 
|  | namespace { | 
|  | // X86 Specific DAG Nodes | 
|  | namespace X86ISD { | 
|  | enum NodeType { | 
|  | // Start the numbering where the builtin ops leave off. | 
|  | FIRST_NUMBER = ISD::BUILTIN_OP_END, | 
|  |  | 
|  | /// FILD64m - This instruction implements SINT_TO_FP with a | 
|  | /// 64-bit source in memory and a FP reg result.  This corresponds to | 
|  | /// the X86::FILD64m instruction.  It has two inputs (token chain and | 
|  | /// address) and two outputs (FP value and token chain). | 
|  | FILD64m, | 
|  |  | 
|  | /// CALL/TAILCALL - These operations represent an abstract X86 call | 
|  | /// instruction, which includes a bunch of information.  In particular the | 
|  | /// operands of these node are: | 
|  | /// | 
|  | ///     #0 - The incoming token chain | 
|  | ///     #1 - The callee | 
|  | ///     #2 - The number of arg bytes the caller pushes on the stack. | 
|  | ///     #3 - The number of arg bytes the callee pops off the stack. | 
|  | ///     #4 - The value to pass in AL/AX/EAX (optional) | 
|  | ///     #5 - The value to pass in DL/DX/EDX (optional) | 
|  | /// | 
|  | /// The result values of these nodes are: | 
|  | /// | 
|  | ///     #0 - The outgoing token chain | 
|  | ///     #1 - The first register result value (optional) | 
|  | ///     #2 - The second register result value (optional) | 
|  | /// | 
|  | /// The CALL vs TAILCALL distinction boils down to whether the callee is | 
|  | /// known not to modify the caller's stack frame, as is standard with | 
|  | /// LLVM. | 
|  | CALL, | 
|  | TAILCALL, | 
|  | }; | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  X86TargetLowering - X86 Implementation of the TargetLowering interface | 
|  | namespace { | 
|  | class X86TargetLowering : public TargetLowering { | 
|  | int VarArgsFrameIndex;            // FrameIndex for start of varargs area. | 
|  | int ReturnAddrIndex;              // FrameIndex for return slot. | 
|  | int BytesToPopOnReturn;           // Number of arg bytes ret should pop. | 
|  | int BytesCallerReserves;          // Number of arg bytes caller makes. | 
|  | public: | 
|  | X86TargetLowering(TargetMachine &TM) : TargetLowering(TM) { | 
|  | // Set up the TargetLowering object. | 
|  |  | 
|  | // X86 is weird, it always uses i8 for shift amounts and setcc results. | 
|  | setShiftAmountType(MVT::i8); | 
|  | setSetCCResultType(MVT::i8); | 
|  | setSetCCResultContents(ZeroOrOneSetCCResult); | 
|  | setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0 | 
|  |  | 
|  | // Set up the register classes. | 
|  | // FIXME: Eliminate these two classes when legalize can handle promotions | 
|  | // well. | 
|  | addRegisterClass(MVT::i1, X86::R8RegisterClass); | 
|  | addRegisterClass(MVT::i8, X86::R8RegisterClass); | 
|  | addRegisterClass(MVT::i16, X86::R16RegisterClass); | 
|  | addRegisterClass(MVT::i32, X86::R32RegisterClass); | 
|  |  | 
|  | setOperationAction(ISD::SINT_TO_FP       , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::BRCONDTWOWAY     , MVT::Other, Expand); | 
|  | setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Expand); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand); | 
|  | setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand); | 
|  | setOperationAction(ISD::SEXTLOAD         , MVT::i1   , Expand); | 
|  | setOperationAction(ISD::SREM             , MVT::f64  , Expand); | 
|  | setOperationAction(ISD::CTPOP            , MVT::i8   , Expand); | 
|  | setOperationAction(ISD::CTTZ             , MVT::i8   , Expand); | 
|  | setOperationAction(ISD::CTLZ             , MVT::i8   , Expand); | 
|  | setOperationAction(ISD::CTPOP            , MVT::i16  , Expand); | 
|  | setOperationAction(ISD::CTTZ             , MVT::i16  , Expand); | 
|  | setOperationAction(ISD::CTLZ             , MVT::i16  , Expand); | 
|  | setOperationAction(ISD::CTPOP            , MVT::i32  , Expand); | 
|  | setOperationAction(ISD::CTTZ             , MVT::i32  , Expand); | 
|  | setOperationAction(ISD::CTLZ             , MVT::i32  , Expand); | 
|  |  | 
|  | setOperationAction(ISD::READIO           , MVT::i1   , Expand); | 
|  | setOperationAction(ISD::READIO           , MVT::i8   , Expand); | 
|  | setOperationAction(ISD::READIO           , MVT::i16  , Expand); | 
|  | setOperationAction(ISD::READIO           , MVT::i32  , Expand); | 
|  | setOperationAction(ISD::WRITEIO          , MVT::i1   , Expand); | 
|  | setOperationAction(ISD::WRITEIO          , MVT::i8   , Expand); | 
|  | setOperationAction(ISD::WRITEIO          , MVT::i16  , Expand); | 
|  | setOperationAction(ISD::WRITEIO          , MVT::i32  , Expand); | 
|  |  | 
|  | // These should be promoted to a larger select which is supported. | 
|  | setOperationAction(ISD::SELECT           , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::SELECT           , MVT::i8   , Promote); | 
|  |  | 
|  | if (X86ScalarSSE) { | 
|  | // Set up the FP register classes. | 
|  | addRegisterClass(MVT::f32, X86::RXMMRegisterClass); | 
|  | addRegisterClass(MVT::f64, X86::RXMMRegisterClass); | 
|  |  | 
|  | setOperationAction(ISD::EXTLOAD,  MVT::f32, Expand); | 
|  | setOperationAction(ISD::ZEXTLOAD, MVT::f32, Expand); | 
|  |  | 
|  | // We don't support sin/cos/sqrt/fmod | 
|  | setOperationAction(ISD::FSIN , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOS , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FABS , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FNEG , MVT::f64, Expand); | 
|  | setOperationAction(ISD::SREM , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSIN , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOS , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FABS , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FNEG , MVT::f32, Expand); | 
|  | setOperationAction(ISD::SREM , MVT::f32, Expand); | 
|  | } else { | 
|  | // Set up the FP register classes. | 
|  | addRegisterClass(MVT::f64, X86::RFPRegisterClass); | 
|  |  | 
|  | if (!UnsafeFPMath) { | 
|  | setOperationAction(ISD::FSIN           , MVT::f64  , Expand); | 
|  | setOperationAction(ISD::FCOS           , MVT::f64  , Expand); | 
|  | } | 
|  |  | 
|  | addLegalFPImmediate(+0.0); // FLD0 | 
|  | addLegalFPImmediate(+1.0); // FLD1 | 
|  | addLegalFPImmediate(-0.0); // FLD0/FCHS | 
|  | addLegalFPImmediate(-1.0); // FLD1/FCHS | 
|  | } | 
|  | computeRegisterProperties(); | 
|  | } | 
|  |  | 
|  | // Return the number of bytes that a function should pop when it returns (in | 
|  | // addition to the space used by the return address). | 
|  | // | 
|  | unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn; } | 
|  |  | 
|  | // Return the number of bytes that the caller reserves for arguments passed | 
|  | // to this function. | 
|  | unsigned getBytesCallerReserves() const { return BytesCallerReserves; } | 
|  |  | 
|  | /// LowerOperation - Provide custom lowering hooks for some operations. | 
|  | /// | 
|  | virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG); | 
|  |  | 
|  | /// LowerArguments - This hook must be implemented to indicate how we should | 
|  | /// lower the arguments for the specified function, into the specified DAG. | 
|  | virtual std::vector<SDOperand> | 
|  | LowerArguments(Function &F, SelectionDAG &DAG); | 
|  |  | 
|  | /// LowerCallTo - This hook lowers an abstract call to a function into an | 
|  | /// actual call. | 
|  | virtual std::pair<SDOperand, SDOperand> | 
|  | LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CC, | 
|  | bool isTailCall, SDOperand Callee, ArgListTy &Args, | 
|  | SelectionDAG &DAG); | 
|  |  | 
|  | virtual SDOperand LowerVAStart(SDOperand Chain, SDOperand VAListP, | 
|  | Value *VAListV, SelectionDAG &DAG); | 
|  | virtual std::pair<SDOperand,SDOperand> | 
|  | LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV, | 
|  | const Type *ArgTy, SelectionDAG &DAG); | 
|  |  | 
|  | virtual std::pair<SDOperand, SDOperand> | 
|  | LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth, | 
|  | SelectionDAG &DAG); | 
|  |  | 
|  | SDOperand getReturnAddressFrameIndex(SelectionDAG &DAG); | 
|  |  | 
|  | private: | 
|  | // C Calling Convention implementation. | 
|  | std::vector<SDOperand> LowerCCCArguments(Function &F, SelectionDAG &DAG); | 
|  | std::pair<SDOperand, SDOperand> | 
|  | LowerCCCCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, | 
|  | bool isTailCall, | 
|  | SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG); | 
|  |  | 
|  | // Fast Calling Convention implementation. | 
|  | std::vector<SDOperand> LowerFastCCArguments(Function &F, SelectionDAG &DAG); | 
|  | std::pair<SDOperand, SDOperand> | 
|  | LowerFastCCCallTo(SDOperand Chain, const Type *RetTy, bool isTailCall, | 
|  | SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG); | 
|  | }; | 
|  | } | 
|  |  | 
|  | std::vector<SDOperand> | 
|  | X86TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { | 
|  | if (F.getCallingConv() == CallingConv::Fast && EnableFastCC) | 
|  | return LowerFastCCArguments(F, DAG); | 
|  | return LowerCCCArguments(F, DAG); | 
|  | } | 
|  |  | 
|  | std::pair<SDOperand, SDOperand> | 
|  | X86TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, | 
|  | bool isVarArg, unsigned CallingConv, | 
|  | bool isTailCall, | 
|  | SDOperand Callee, ArgListTy &Args, | 
|  | SelectionDAG &DAG) { | 
|  | assert((!isVarArg || CallingConv == CallingConv::C) && | 
|  | "Only C takes varargs!"); | 
|  | if (CallingConv == CallingConv::Fast && EnableFastCC) | 
|  | return LowerFastCCCallTo(Chain, RetTy, isTailCall, Callee, Args, DAG); | 
|  | return  LowerCCCCallTo(Chain, RetTy, isVarArg, isTailCall, Callee, Args, DAG); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                    C Calling Convention implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | std::vector<SDOperand> | 
|  | X86TargetLowering::LowerCCCArguments(Function &F, SelectionDAG &DAG) { | 
|  | std::vector<SDOperand> ArgValues; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  |  | 
|  | // Add DAG nodes to load the arguments...  On entry to a function on the X86, | 
|  | // the stack frame looks like this: | 
|  | // | 
|  | // [ESP] -- return address | 
|  | // [ESP + 4] -- first argument (leftmost lexically) | 
|  | // [ESP + 8] -- second argument, if first argument is four bytes in size | 
|  | //    ... | 
|  | // | 
|  | unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot | 
|  | for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { | 
|  | MVT::ValueType ObjectVT = getValueType(I->getType()); | 
|  | unsigned ArgIncrement = 4; | 
|  | unsigned ObjSize; | 
|  | switch (ObjectVT) { | 
|  | default: assert(0 && "Unhandled argument type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8:  ObjSize = 1;                break; | 
|  | case MVT::i16: ObjSize = 2;                break; | 
|  | case MVT::i32: ObjSize = 4;                break; | 
|  | case MVT::i64: ObjSize = ArgIncrement = 8; break; | 
|  | case MVT::f32: ObjSize = 4;                break; | 
|  | case MVT::f64: ObjSize = ArgIncrement = 8; break; | 
|  | } | 
|  | // Create the frame index object for this incoming parameter... | 
|  | int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); | 
|  |  | 
|  | // Create the SelectionDAG nodes corresponding to a load from this parameter | 
|  | SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); | 
|  |  | 
|  | // Don't codegen dead arguments.  FIXME: remove this check when we can nuke | 
|  | // dead loads. | 
|  | SDOperand ArgValue; | 
|  | if (!I->use_empty()) | 
|  | ArgValue = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN, | 
|  | DAG.getSrcValue(NULL)); | 
|  | else { | 
|  | if (MVT::isInteger(ObjectVT)) | 
|  | ArgValue = DAG.getConstant(0, ObjectVT); | 
|  | else | 
|  | ArgValue = DAG.getConstantFP(0, ObjectVT); | 
|  | } | 
|  | ArgValues.push_back(ArgValue); | 
|  |  | 
|  | ArgOffset += ArgIncrement;   // Move on to the next argument... | 
|  | } | 
|  |  | 
|  | // If the function takes variable number of arguments, make a frame index for | 
|  | // the start of the first vararg value... for expansion of llvm.va_start. | 
|  | if (F.isVarArg()) | 
|  | VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); | 
|  | ReturnAddrIndex = 0;     // No return address slot generated yet. | 
|  | BytesToPopOnReturn = 0;  // Callee pops nothing. | 
|  | BytesCallerReserves = ArgOffset; | 
|  |  | 
|  | // Finally, inform the code generator which regs we return values in. | 
|  | switch (getValueType(F.getReturnType())) { | 
|  | default: assert(0 && "Unknown type!"); | 
|  | case MVT::isVoid: break; | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | MF.addLiveOut(X86::EAX); | 
|  | break; | 
|  | case MVT::i64: | 
|  | MF.addLiveOut(X86::EAX); | 
|  | MF.addLiveOut(X86::EDX); | 
|  | break; | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | MF.addLiveOut(X86::ST0); | 
|  | break; | 
|  | } | 
|  | return ArgValues; | 
|  | } | 
|  |  | 
|  | std::pair<SDOperand, SDOperand> | 
|  | X86TargetLowering::LowerCCCCallTo(SDOperand Chain, const Type *RetTy, | 
|  | bool isVarArg, bool isTailCall, | 
|  | SDOperand Callee, ArgListTy &Args, | 
|  | SelectionDAG &DAG) { | 
|  | // Count how many bytes are to be pushed on the stack. | 
|  | unsigned NumBytes = 0; | 
|  |  | 
|  | if (Args.empty()) { | 
|  | // Save zero bytes. | 
|  | Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain, | 
|  | DAG.getConstant(0, getPointerTy())); | 
|  | } else { | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) | 
|  | switch (getValueType(Args[i].second)) { | 
|  | default: assert(0 && "Unknown value type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | case MVT::f32: | 
|  | NumBytes += 4; | 
|  | break; | 
|  | case MVT::i64: | 
|  | case MVT::f64: | 
|  | NumBytes += 8; | 
|  | break; | 
|  | } | 
|  |  | 
|  | Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain, | 
|  | DAG.getConstant(NumBytes, getPointerTy())); | 
|  |  | 
|  | // Arguments go on the stack in reverse order, as specified by the ABI. | 
|  | unsigned ArgOffset = 0; | 
|  | SDOperand StackPtr = DAG.getCopyFromReg(X86::ESP, MVT::i32, | 
|  | DAG.getEntryNode()); | 
|  | std::vector<SDOperand> Stores; | 
|  |  | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
|  | SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); | 
|  | PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); | 
|  |  | 
|  | switch (getValueType(Args[i].second)) { | 
|  | default: assert(0 && "Unexpected ValueType for argument!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | // Promote the integer to 32 bits.  If the input type is signed use a | 
|  | // sign extend, otherwise use a zero extend. | 
|  | if (Args[i].second->isSigned()) | 
|  | Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first); | 
|  | else | 
|  | Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first); | 
|  |  | 
|  | // FALL THROUGH | 
|  | case MVT::i32: | 
|  | case MVT::f32: | 
|  | Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
|  | Args[i].first, PtrOff, | 
|  | DAG.getSrcValue(NULL))); | 
|  | ArgOffset += 4; | 
|  | break; | 
|  | case MVT::i64: | 
|  | case MVT::f64: | 
|  | Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
|  | Args[i].first, PtrOff, | 
|  | DAG.getSrcValue(NULL))); | 
|  | ArgOffset += 8; | 
|  | break; | 
|  | } | 
|  | } | 
|  | Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores); | 
|  | } | 
|  |  | 
|  | std::vector<MVT::ValueType> RetVals; | 
|  | MVT::ValueType RetTyVT = getValueType(RetTy); | 
|  | RetVals.push_back(MVT::Other); | 
|  |  | 
|  | // The result values produced have to be legal.  Promote the result. | 
|  | switch (RetTyVT) { | 
|  | case MVT::isVoid: break; | 
|  | default: | 
|  | RetVals.push_back(RetTyVT); | 
|  | break; | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | RetVals.push_back(MVT::i32); | 
|  | break; | 
|  | case MVT::f32: | 
|  | if (X86ScalarSSE) | 
|  | RetVals.push_back(MVT::f32); | 
|  | else | 
|  | RetVals.push_back(MVT::f64); | 
|  | break; | 
|  | case MVT::i64: | 
|  | RetVals.push_back(MVT::i32); | 
|  | RetVals.push_back(MVT::i32); | 
|  | break; | 
|  | } | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Callee); | 
|  | Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); | 
|  | Ops.push_back(DAG.getConstant(0, getPointerTy())); | 
|  | SDOperand TheCall = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL, | 
|  | RetVals, Ops); | 
|  | Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, TheCall); | 
|  |  | 
|  | SDOperand ResultVal; | 
|  | switch (RetTyVT) { | 
|  | case MVT::isVoid: break; | 
|  | default: | 
|  | ResultVal = TheCall.getValue(1); | 
|  | break; | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | ResultVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, TheCall.getValue(1)); | 
|  | break; | 
|  | case MVT::f32: | 
|  | // FIXME: we would really like to remember that this FP_ROUND operation is | 
|  | // okay to eliminate if we allow excess FP precision. | 
|  | ResultVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, TheCall.getValue(1)); | 
|  | break; | 
|  | case MVT::i64: | 
|  | ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, TheCall.getValue(1), | 
|  | TheCall.getValue(2)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return std::make_pair(ResultVal, Chain); | 
|  | } | 
|  |  | 
|  | SDOperand | 
|  | X86TargetLowering::LowerVAStart(SDOperand Chain, SDOperand VAListP, | 
|  | Value *VAListV, SelectionDAG &DAG) { | 
|  | // vastart just stores the address of the VarArgsFrameIndex slot. | 
|  | SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32); | 
|  | return DAG.getNode(ISD::STORE, MVT::Other, Chain, FR, VAListP, | 
|  | DAG.getSrcValue(VAListV)); | 
|  | } | 
|  |  | 
|  |  | 
|  | std::pair<SDOperand,SDOperand> | 
|  | X86TargetLowering::LowerVAArg(SDOperand Chain, SDOperand VAListP, | 
|  | Value *VAListV, const Type *ArgTy, | 
|  | SelectionDAG &DAG) { | 
|  | MVT::ValueType ArgVT = getValueType(ArgTy); | 
|  | SDOperand Val = DAG.getLoad(MVT::i32, Chain, | 
|  | VAListP, DAG.getSrcValue(VAListV)); | 
|  | SDOperand Result = DAG.getLoad(ArgVT, Chain, Val, | 
|  | DAG.getSrcValue(NULL)); | 
|  | unsigned Amt; | 
|  | if (ArgVT == MVT::i32) | 
|  | Amt = 4; | 
|  | else { | 
|  | assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) && | 
|  | "Other types should have been promoted for varargs!"); | 
|  | Amt = 8; | 
|  | } | 
|  | Val = DAG.getNode(ISD::ADD, Val.getValueType(), Val, | 
|  | DAG.getConstant(Amt, Val.getValueType())); | 
|  | Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
|  | Val, VAListP, DAG.getSrcValue(VAListV)); | 
|  | return std::make_pair(Result, Chain); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                    Fast Calling Convention implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // The X86 'fast' calling convention passes up to two integer arguments in | 
|  | // registers (an appropriate portion of EAX/EDX), passes arguments in C order, | 
|  | // and requires that the callee pop its arguments off the stack (allowing proper | 
|  | // tail calls), and has the same return value conventions as C calling convs. | 
|  | // | 
|  | // This calling convention always arranges for the callee pop value to be 8n+4 | 
|  | // bytes, which is needed for tail recursion elimination and stack alignment | 
|  | // reasons. | 
|  | // | 
|  | // Note that this can be enhanced in the future to pass fp vals in registers | 
|  | // (when we have a global fp allocator) and do other tricks. | 
|  | // | 
|  |  | 
|  | /// AddLiveIn - This helper function adds the specified physical register to the | 
|  | /// MachineFunction as a live in value.  It also creates a corresponding virtual | 
|  | /// register for it. | 
|  | static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg, | 
|  | TargetRegisterClass *RC) { | 
|  | assert(RC->contains(PReg) && "Not the correct regclass!"); | 
|  | unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC); | 
|  | MF.addLiveIn(PReg, VReg); | 
|  | return VReg; | 
|  | } | 
|  |  | 
|  |  | 
|  | std::vector<SDOperand> | 
|  | X86TargetLowering::LowerFastCCArguments(Function &F, SelectionDAG &DAG) { | 
|  | std::vector<SDOperand> ArgValues; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  |  | 
|  | // Add DAG nodes to load the arguments...  On entry to a function the stack | 
|  | // frame looks like this: | 
|  | // | 
|  | // [ESP] -- return address | 
|  | // [ESP + 4] -- first nonreg argument (leftmost lexically) | 
|  | // [ESP + 8] -- second nonreg argument, if first argument is 4 bytes in size | 
|  | //    ... | 
|  | unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot | 
|  |  | 
|  | // Keep track of the number of integer regs passed so far.  This can be either | 
|  | // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both | 
|  | // used). | 
|  | unsigned NumIntRegs = 0; | 
|  |  | 
|  | for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { | 
|  | MVT::ValueType ObjectVT = getValueType(I->getType()); | 
|  | unsigned ArgIncrement = 4; | 
|  | unsigned ObjSize = 0; | 
|  | SDOperand ArgValue; | 
|  |  | 
|  | switch (ObjectVT) { | 
|  | default: assert(0 && "Unhandled argument type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | if (NumIntRegs < 2) { | 
|  | if (!I->use_empty()) { | 
|  | unsigned VReg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::AL, | 
|  | X86::R8RegisterClass); | 
|  | ArgValue = DAG.getCopyFromReg(VReg, MVT::i8, DAG.getRoot()); | 
|  | DAG.setRoot(ArgValue.getValue(1)); | 
|  | } | 
|  | ++NumIntRegs; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ObjSize = 1; | 
|  | break; | 
|  | case MVT::i16: | 
|  | if (NumIntRegs < 2) { | 
|  | if (!I->use_empty()) { | 
|  | unsigned VReg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::AX, | 
|  | X86::R16RegisterClass); | 
|  | ArgValue = DAG.getCopyFromReg(VReg, MVT::i16, DAG.getRoot()); | 
|  | DAG.setRoot(ArgValue.getValue(1)); | 
|  | } | 
|  | ++NumIntRegs; | 
|  | break; | 
|  | } | 
|  | ObjSize = 2; | 
|  | break; | 
|  | case MVT::i32: | 
|  | if (NumIntRegs < 2) { | 
|  | if (!I->use_empty()) { | 
|  | unsigned VReg = AddLiveIn(MF,NumIntRegs ? X86::EDX : X86::EAX, | 
|  | X86::R32RegisterClass); | 
|  | ArgValue = DAG.getCopyFromReg(VReg, MVT::i32, DAG.getRoot()); | 
|  | DAG.setRoot(ArgValue.getValue(1)); | 
|  | } | 
|  | ++NumIntRegs; | 
|  | break; | 
|  | } | 
|  | ObjSize = 4; | 
|  | break; | 
|  | case MVT::i64: | 
|  | if (NumIntRegs == 0) { | 
|  | if (!I->use_empty()) { | 
|  | unsigned BotReg = AddLiveIn(MF, X86::EAX, X86::R32RegisterClass); | 
|  | unsigned TopReg = AddLiveIn(MF, X86::EDX, X86::R32RegisterClass); | 
|  |  | 
|  | SDOperand Low=DAG.getCopyFromReg(BotReg, MVT::i32, DAG.getRoot()); | 
|  | SDOperand Hi =DAG.getCopyFromReg(TopReg, MVT::i32, Low.getValue(1)); | 
|  | DAG.setRoot(Hi.getValue(1)); | 
|  |  | 
|  | ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Low, Hi); | 
|  | } | 
|  | NumIntRegs = 2; | 
|  | break; | 
|  | } else if (NumIntRegs == 1) { | 
|  | if (!I->use_empty()) { | 
|  | unsigned BotReg = AddLiveIn(MF, X86::EDX, X86::R32RegisterClass); | 
|  | SDOperand Low = DAG.getCopyFromReg(BotReg, MVT::i32, DAG.getRoot()); | 
|  | DAG.setRoot(Low.getValue(1)); | 
|  |  | 
|  | // Load the high part from memory. | 
|  | // Create the frame index object for this incoming parameter... | 
|  | int FI = MFI->CreateFixedObject(4, ArgOffset); | 
|  | SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); | 
|  | SDOperand Hi = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN, | 
|  | DAG.getSrcValue(NULL)); | 
|  | ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Low, Hi); | 
|  | } | 
|  | ArgOffset += 4; | 
|  | NumIntRegs = 2; | 
|  | break; | 
|  | } | 
|  | ObjSize = ArgIncrement = 8; | 
|  | break; | 
|  | case MVT::f32: ObjSize = 4;                break; | 
|  | case MVT::f64: ObjSize = ArgIncrement = 8; break; | 
|  | } | 
|  |  | 
|  | // Don't codegen dead arguments.  FIXME: remove this check when we can nuke | 
|  | // dead loads. | 
|  | if (ObjSize && !I->use_empty()) { | 
|  | // Create the frame index object for this incoming parameter... | 
|  | int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); | 
|  |  | 
|  | // Create the SelectionDAG nodes corresponding to a load from this | 
|  | // parameter. | 
|  | SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); | 
|  |  | 
|  | ArgValue = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN, | 
|  | DAG.getSrcValue(NULL)); | 
|  | } else if (ArgValue.Val == 0) { | 
|  | if (MVT::isInteger(ObjectVT)) | 
|  | ArgValue = DAG.getConstant(0, ObjectVT); | 
|  | else | 
|  | ArgValue = DAG.getConstantFP(0, ObjectVT); | 
|  | } | 
|  | ArgValues.push_back(ArgValue); | 
|  |  | 
|  | if (ObjSize) | 
|  | ArgOffset += ArgIncrement;   // Move on to the next argument. | 
|  | } | 
|  |  | 
|  | // Make sure the instruction takes 8n+4 bytes to make sure the start of the | 
|  | // arguments and the arguments after the retaddr has been pushed are aligned. | 
|  | if ((ArgOffset & 7) == 0) | 
|  | ArgOffset += 4; | 
|  |  | 
|  | VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs. | 
|  | ReturnAddrIndex = 0;             // No return address slot generated yet. | 
|  | BytesToPopOnReturn = ArgOffset;  // Callee pops all stack arguments. | 
|  | BytesCallerReserves = 0; | 
|  |  | 
|  | // Finally, inform the code generator which regs we return values in. | 
|  | switch (getValueType(F.getReturnType())) { | 
|  | default: assert(0 && "Unknown type!"); | 
|  | case MVT::isVoid: break; | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | MF.addLiveOut(X86::EAX); | 
|  | break; | 
|  | case MVT::i64: | 
|  | MF.addLiveOut(X86::EAX); | 
|  | MF.addLiveOut(X86::EDX); | 
|  | break; | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | MF.addLiveOut(X86::ST0); | 
|  | break; | 
|  | } | 
|  | return ArgValues; | 
|  | } | 
|  |  | 
|  | std::pair<SDOperand, SDOperand> | 
|  | X86TargetLowering::LowerFastCCCallTo(SDOperand Chain, const Type *RetTy, | 
|  | bool isTailCall, SDOperand Callee, | 
|  | ArgListTy &Args, SelectionDAG &DAG) { | 
|  | // Count how many bytes are to be pushed on the stack. | 
|  | unsigned NumBytes = 0; | 
|  |  | 
|  | // Keep track of the number of integer regs passed so far.  This can be either | 
|  | // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both | 
|  | // used). | 
|  | unsigned NumIntRegs = 0; | 
|  |  | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) | 
|  | switch (getValueType(Args[i].second)) { | 
|  | default: assert(0 && "Unknown value type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | if (NumIntRegs < 2) { | 
|  | ++NumIntRegs; | 
|  | break; | 
|  | } | 
|  | // fall through | 
|  | case MVT::f32: | 
|  | NumBytes += 4; | 
|  | break; | 
|  | case MVT::i64: | 
|  | if (NumIntRegs == 0) { | 
|  | NumIntRegs = 2; | 
|  | break; | 
|  | } else if (NumIntRegs == 1) { | 
|  | NumIntRegs = 2; | 
|  | NumBytes += 4; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // fall through | 
|  | case MVT::f64: | 
|  | NumBytes += 8; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Make sure the instruction takes 8n+4 bytes to make sure the start of the | 
|  | // arguments and the arguments after the retaddr has been pushed are aligned. | 
|  | if ((NumBytes & 7) == 0) | 
|  | NumBytes += 4; | 
|  |  | 
|  | Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain, | 
|  | DAG.getConstant(NumBytes, getPointerTy())); | 
|  |  | 
|  | // Arguments go on the stack in reverse order, as specified by the ABI. | 
|  | unsigned ArgOffset = 0; | 
|  | SDOperand StackPtr = DAG.getCopyFromReg(X86::ESP, MVT::i32, | 
|  | DAG.getEntryNode()); | 
|  | NumIntRegs = 0; | 
|  | std::vector<SDOperand> Stores; | 
|  | std::vector<SDOperand> RegValuesToPass; | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
|  | switch (getValueType(Args[i].second)) { | 
|  | default: assert(0 && "Unexpected ValueType for argument!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | if (NumIntRegs < 2) { | 
|  | RegValuesToPass.push_back(Args[i].first); | 
|  | ++NumIntRegs; | 
|  | break; | 
|  | } | 
|  | // Fall through | 
|  | case MVT::f32: { | 
|  | SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); | 
|  | PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); | 
|  | Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
|  | Args[i].first, PtrOff, | 
|  | DAG.getSrcValue(NULL))); | 
|  | ArgOffset += 4; | 
|  | break; | 
|  | } | 
|  | case MVT::i64: | 
|  | if (NumIntRegs < 2) {    // Can pass part of it in regs? | 
|  | SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, | 
|  | Args[i].first, DAG.getConstant(1, MVT::i32)); | 
|  | SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, | 
|  | Args[i].first, DAG.getConstant(0, MVT::i32)); | 
|  | RegValuesToPass.push_back(Lo); | 
|  | ++NumIntRegs; | 
|  | if (NumIntRegs < 2) {   // Pass both parts in regs? | 
|  | RegValuesToPass.push_back(Hi); | 
|  | ++NumIntRegs; | 
|  | } else { | 
|  | // Pass the high part in memory. | 
|  | SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); | 
|  | PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); | 
|  | Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
|  | Hi, PtrOff, DAG.getSrcValue(NULL))); | 
|  | ArgOffset += 4; | 
|  | } | 
|  | break; | 
|  | } | 
|  | // Fall through | 
|  | case MVT::f64: | 
|  | SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); | 
|  | PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); | 
|  | Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
|  | Args[i].first, PtrOff, | 
|  | DAG.getSrcValue(NULL))); | 
|  | ArgOffset += 8; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!Stores.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores); | 
|  |  | 
|  | // Make sure the instruction takes 8n+4 bytes to make sure the start of the | 
|  | // arguments and the arguments after the retaddr has been pushed are aligned. | 
|  | if ((ArgOffset & 7) == 0) | 
|  | ArgOffset += 4; | 
|  |  | 
|  | std::vector<MVT::ValueType> RetVals; | 
|  | MVT::ValueType RetTyVT = getValueType(RetTy); | 
|  |  | 
|  | RetVals.push_back(MVT::Other); | 
|  |  | 
|  | // The result values produced have to be legal.  Promote the result. | 
|  | switch (RetTyVT) { | 
|  | case MVT::isVoid: break; | 
|  | default: | 
|  | RetVals.push_back(RetTyVT); | 
|  | break; | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | RetVals.push_back(MVT::i32); | 
|  | break; | 
|  | case MVT::f32: | 
|  | if (X86ScalarSSE) | 
|  | RetVals.push_back(MVT::f32); | 
|  | else | 
|  | RetVals.push_back(MVT::f64); | 
|  | break; | 
|  | case MVT::i64: | 
|  | RetVals.push_back(MVT::i32); | 
|  | RetVals.push_back(MVT::i32); | 
|  | break; | 
|  | } | 
|  |  | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Callee); | 
|  | Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); | 
|  | // Callee pops all arg values on the stack. | 
|  | Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); | 
|  |  | 
|  | // Pass register arguments as needed. | 
|  | Ops.insert(Ops.end(), RegValuesToPass.begin(), RegValuesToPass.end()); | 
|  |  | 
|  | SDOperand TheCall = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL, | 
|  | RetVals, Ops); | 
|  | Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, TheCall); | 
|  |  | 
|  | SDOperand ResultVal; | 
|  | switch (RetTyVT) { | 
|  | case MVT::isVoid: break; | 
|  | default: | 
|  | ResultVal = TheCall.getValue(1); | 
|  | break; | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | ResultVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, TheCall.getValue(1)); | 
|  | break; | 
|  | case MVT::f32: | 
|  | // FIXME: we would really like to remember that this FP_ROUND operation is | 
|  | // okay to eliminate if we allow excess FP precision. | 
|  | ResultVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, TheCall.getValue(1)); | 
|  | break; | 
|  | case MVT::i64: | 
|  | ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, TheCall.getValue(1), | 
|  | TheCall.getValue(2)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return std::make_pair(ResultVal, Chain); | 
|  | } | 
|  |  | 
|  | SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) { | 
|  | if (ReturnAddrIndex == 0) { | 
|  | // Set up a frame object for the return address. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4); | 
|  | } | 
|  |  | 
|  | return DAG.getFrameIndex(ReturnAddrIndex, MVT::i32); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | std::pair<SDOperand, SDOperand> X86TargetLowering:: | 
|  | LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth, | 
|  | SelectionDAG &DAG) { | 
|  | SDOperand Result; | 
|  | if (Depth)        // Depths > 0 not supported yet! | 
|  | Result = DAG.getConstant(0, getPointerTy()); | 
|  | else { | 
|  | SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG); | 
|  | if (!isFrameAddress) | 
|  | // Just load the return address | 
|  | Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(), RetAddrFI, | 
|  | DAG.getSrcValue(NULL)); | 
|  | else | 
|  | Result = DAG.getNode(ISD::SUB, MVT::i32, RetAddrFI, | 
|  | DAG.getConstant(4, MVT::i32)); | 
|  | } | 
|  | return std::make_pair(Result, Chain); | 
|  | } | 
|  |  | 
|  | /// LowerOperation - Provide custom lowering hooks for some operations. | 
|  | /// | 
|  | SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { | 
|  | switch (Op.getOpcode()) { | 
|  | default: assert(0 && "Should not custom lower this!"); | 
|  | case ISD::SINT_TO_FP: | 
|  | assert(Op.getValueType() == MVT::f64 && | 
|  | Op.getOperand(0).getValueType() == MVT::i64 && | 
|  | "Unknown SINT_TO_FP to lower!"); | 
|  | // We lower sint64->FP into a store to a temporary stack slot, followed by a | 
|  | // FILD64m node. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); | 
|  | SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  | SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(), | 
|  | Op.getOperand(0), StackSlot, DAG.getSrcValue(NULL)); | 
|  | std::vector<MVT::ValueType> RTs; | 
|  | RTs.push_back(MVT::f64); | 
|  | RTs.push_back(MVT::Other); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Store); | 
|  | Ops.push_back(StackSlot); | 
|  | return DAG.getNode(X86ISD::FILD64m, RTs, Ops); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                      Pattern Matcher Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses | 
|  | /// SDOperand's instead of register numbers for the leaves of the matched | 
|  | /// tree. | 
|  | struct X86ISelAddressMode { | 
|  | enum { | 
|  | RegBase, | 
|  | FrameIndexBase, | 
|  | } BaseType; | 
|  |  | 
|  | struct {            // This is really a union, discriminated by BaseType! | 
|  | SDOperand Reg; | 
|  | int FrameIndex; | 
|  | } Base; | 
|  |  | 
|  | unsigned Scale; | 
|  | SDOperand IndexReg; | 
|  | unsigned Disp; | 
|  | GlobalValue *GV; | 
|  |  | 
|  | X86ISelAddressMode() | 
|  | : BaseType(RegBase), Scale(1), IndexReg(), Disp(), GV(0) { | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  |  | 
|  | namespace { | 
|  | Statistic<> | 
|  | NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added"); | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | /// ISel - X86 specific code to select X86 machine instructions for | 
|  | /// SelectionDAG operations. | 
|  | /// | 
|  | class ISel : public SelectionDAGISel { | 
|  | /// ContainsFPCode - Every instruction we select that uses or defines a FP | 
|  | /// register should set this to true. | 
|  | bool ContainsFPCode; | 
|  |  | 
|  | /// X86Lowering - This object fully describes how to lower LLVM code to an | 
|  | /// X86-specific SelectionDAG. | 
|  | X86TargetLowering X86Lowering; | 
|  |  | 
|  | /// RegPressureMap - This keeps an approximate count of the number of | 
|  | /// registers required to evaluate each node in the graph. | 
|  | std::map<SDNode*, unsigned> RegPressureMap; | 
|  |  | 
|  | /// ExprMap - As shared expressions are codegen'd, we keep track of which | 
|  | /// vreg the value is produced in, so we only emit one copy of each compiled | 
|  | /// tree. | 
|  | std::map<SDOperand, unsigned> ExprMap; | 
|  |  | 
|  | /// TheDAG - The DAG being selected during Select* operations. | 
|  | SelectionDAG *TheDAG; | 
|  | public: | 
|  | ISel(TargetMachine &TM) : SelectionDAGISel(X86Lowering), X86Lowering(TM) { | 
|  | } | 
|  |  | 
|  | virtual const char *getPassName() const { | 
|  | return "X86 Pattern Instruction Selection"; | 
|  | } | 
|  |  | 
|  | unsigned getRegPressure(SDOperand O) { | 
|  | return RegPressureMap[O.Val]; | 
|  | } | 
|  | unsigned ComputeRegPressure(SDOperand O); | 
|  |  | 
|  | /// InstructionSelectBasicBlock - This callback is invoked by | 
|  | /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. | 
|  | virtual void InstructionSelectBasicBlock(SelectionDAG &DAG); | 
|  |  | 
|  | virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF); | 
|  |  | 
|  | bool isFoldableLoad(SDOperand Op, SDOperand OtherOp, | 
|  | bool FloatPromoteOk = false); | 
|  | void EmitFoldedLoad(SDOperand Op, X86AddressMode &AM); | 
|  | bool TryToFoldLoadOpStore(SDNode *Node); | 
|  | bool EmitOrOpOp(SDOperand Op1, SDOperand Op2, unsigned DestReg); | 
|  | void EmitCMP(SDOperand LHS, SDOperand RHS, bool isOnlyUse); | 
|  | bool EmitBranchCC(MachineBasicBlock *Dest, SDOperand Chain, SDOperand Cond); | 
|  | void EmitSelectCC(SDOperand Cond, MVT::ValueType SVT, | 
|  | unsigned RTrue, unsigned RFalse, unsigned RDest); | 
|  | unsigned SelectExpr(SDOperand N); | 
|  |  | 
|  | X86AddressMode SelectAddrExprs(const X86ISelAddressMode &IAM); | 
|  | bool MatchAddress(SDOperand N, X86ISelAddressMode &AM); | 
|  | void SelectAddress(SDOperand N, X86AddressMode &AM); | 
|  | bool EmitPotentialTailCall(SDNode *Node); | 
|  | void EmitFastCCToFastCCTailCall(SDNode *TailCallNode); | 
|  | void Select(SDOperand N); | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in | 
|  | /// the main function. | 
|  | static void EmitSpecialCodeForMain(MachineBasicBlock *BB, | 
|  | MachineFrameInfo *MFI) { | 
|  | // Switch the FPU to 64-bit precision mode for better compatibility and speed. | 
|  | int CWFrameIdx = MFI->CreateStackObject(2, 2); | 
|  | addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx); | 
|  |  | 
|  | // Set the high part to be 64-bit precision. | 
|  | addFrameReference(BuildMI(BB, X86::MOV8mi, 5), | 
|  | CWFrameIdx, 1).addImm(2); | 
|  |  | 
|  | // Reload the modified control word now. | 
|  | addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); | 
|  | } | 
|  |  | 
|  | void ISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) { | 
|  | // If this function has live-in values, emit the copies from pregs to vregs at | 
|  | // the top of the function, before anything else. | 
|  | MachineBasicBlock *BB = MF.begin(); | 
|  | if (MF.livein_begin() != MF.livein_end()) { | 
|  | SSARegMap *RegMap = MF.getSSARegMap(); | 
|  | for (MachineFunction::livein_iterator LI = MF.livein_begin(), | 
|  | E = MF.livein_end(); LI != E; ++LI) { | 
|  | const TargetRegisterClass *RC = RegMap->getRegClass(LI->second); | 
|  | if (RC == X86::R8RegisterClass) { | 
|  | BuildMI(BB, X86::MOV8rr, 1, LI->second).addReg(LI->first); | 
|  | } else if (RC == X86::R16RegisterClass) { | 
|  | BuildMI(BB, X86::MOV16rr, 1, LI->second).addReg(LI->first); | 
|  | } else if (RC == X86::R32RegisterClass) { | 
|  | BuildMI(BB, X86::MOV32rr, 1, LI->second).addReg(LI->first); | 
|  | } else if (RC == X86::RFPRegisterClass) { | 
|  | BuildMI(BB, X86::FpMOV, 1, LI->second).addReg(LI->first); | 
|  | } else if (RC == X86::RXMMRegisterClass) { | 
|  | BuildMI(BB, X86::MOVAPDrr, 1, LI->second).addReg(LI->first); | 
|  | } else { | 
|  | assert(0 && "Unknown regclass!"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // If this is main, emit special code for main. | 
|  | if (Fn.hasExternalLinkage() && Fn.getName() == "main") | 
|  | EmitSpecialCodeForMain(BB, MF.getFrameInfo()); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel | 
|  | /// when it has created a SelectionDAG for us to codegen. | 
|  | void ISel::InstructionSelectBasicBlock(SelectionDAG &DAG) { | 
|  | // While we're doing this, keep track of whether we see any FP code for | 
|  | // FP_REG_KILL insertion. | 
|  | ContainsFPCode = false; | 
|  | MachineFunction *MF = BB->getParent(); | 
|  |  | 
|  | // Scan the PHI nodes that already are inserted into this basic block.  If any | 
|  | // of them is a PHI of a floating point value, we need to insert an | 
|  | // FP_REG_KILL. | 
|  | SSARegMap *RegMap = MF->getSSARegMap(); | 
|  | if (BB != MF->begin()) | 
|  | for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); | 
|  | I != E; ++I) { | 
|  | assert(I->getOpcode() == X86::PHI && | 
|  | "Isn't just PHI nodes?"); | 
|  | if (RegMap->getRegClass(I->getOperand(0).getReg()) == | 
|  | X86::RFPRegisterClass) { | 
|  | ContainsFPCode = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute the RegPressureMap, which is an approximation for the number of | 
|  | // registers required to compute each node. | 
|  | ComputeRegPressure(DAG.getRoot()); | 
|  |  | 
|  | TheDAG = &DAG; | 
|  |  | 
|  | // Codegen the basic block. | 
|  | Select(DAG.getRoot()); | 
|  |  | 
|  | TheDAG = 0; | 
|  |  | 
|  | // Finally, look at all of the successors of this block.  If any contain a PHI | 
|  | // node of FP type, we need to insert an FP_REG_KILL in this block. | 
|  | for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), | 
|  | E = BB->succ_end(); SI != E && !ContainsFPCode; ++SI) | 
|  | for (MachineBasicBlock::iterator I = (*SI)->begin(), E = (*SI)->end(); | 
|  | I != E && I->getOpcode() == X86::PHI; ++I) { | 
|  | if (RegMap->getRegClass(I->getOperand(0).getReg()) == | 
|  | X86::RFPRegisterClass) { | 
|  | ContainsFPCode = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Final check, check LLVM BB's that are successors to the LLVM BB | 
|  | // corresponding to BB for FP PHI nodes. | 
|  | const BasicBlock *LLVMBB = BB->getBasicBlock(); | 
|  | const PHINode *PN; | 
|  | if (!ContainsFPCode) | 
|  | for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB); | 
|  | SI != E && !ContainsFPCode; ++SI) | 
|  | for (BasicBlock::const_iterator II = SI->begin(); | 
|  | (PN = dyn_cast<PHINode>(II)); ++II) | 
|  | if (PN->getType()->isFloatingPoint()) { | 
|  | ContainsFPCode = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Insert FP_REG_KILL instructions into basic blocks that need them.  This | 
|  | // only occurs due to the floating point stackifier not being aggressive | 
|  | // enough to handle arbitrary global stackification. | 
|  | // | 
|  | // Currently we insert an FP_REG_KILL instruction into each block that uses or | 
|  | // defines a floating point virtual register. | 
|  | // | 
|  | // When the global register allocators (like linear scan) finally update live | 
|  | // variable analysis, we can keep floating point values in registers across | 
|  | // basic blocks.  This will be a huge win, but we are waiting on the global | 
|  | // allocators before we can do this. | 
|  | // | 
|  | if (ContainsFPCode) { | 
|  | BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0); | 
|  | ++NumFPKill; | 
|  | } | 
|  |  | 
|  | // Clear state used for selection. | 
|  | ExprMap.clear(); | 
|  | RegPressureMap.clear(); | 
|  | } | 
|  |  | 
|  |  | 
|  | // ComputeRegPressure - Compute the RegPressureMap, which is an approximation | 
|  | // for the number of registers required to compute each node.  This is basically | 
|  | // computing a generalized form of the Sethi-Ullman number for each node. | 
|  | unsigned ISel::ComputeRegPressure(SDOperand O) { | 
|  | SDNode *N = O.Val; | 
|  | unsigned &Result = RegPressureMap[N]; | 
|  | if (Result) return Result; | 
|  |  | 
|  | // FIXME: Should operations like CALL (which clobber lots o regs) have a | 
|  | // higher fixed cost?? | 
|  |  | 
|  | if (N->getNumOperands() == 0) { | 
|  | Result = 1; | 
|  | } else { | 
|  | unsigned MaxRegUse = 0; | 
|  | unsigned NumExtraMaxRegUsers = 0; | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | 
|  | unsigned Regs; | 
|  | if (N->getOperand(i).getOpcode() == ISD::Constant) | 
|  | Regs = 0; | 
|  | else | 
|  | Regs = ComputeRegPressure(N->getOperand(i)); | 
|  | if (Regs > MaxRegUse) { | 
|  | MaxRegUse = Regs; | 
|  | NumExtraMaxRegUsers = 0; | 
|  | } else if (Regs == MaxRegUse && | 
|  | N->getOperand(i).getValueType() != MVT::Other) { | 
|  | ++NumExtraMaxRegUsers; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (O.getOpcode() != ISD::TokenFactor) | 
|  | Result = MaxRegUse+NumExtraMaxRegUsers; | 
|  | else | 
|  | Result = MaxRegUse == 1 ? 0 : MaxRegUse-1; | 
|  | } | 
|  |  | 
|  | //std::cerr << " WEIGHT: " << Result << " ";  N->dump(); std::cerr << "\n"; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// NodeTransitivelyUsesValue - Return true if N or any of its uses uses Op. | 
|  | /// The DAG cannot have cycles in it, by definition, so the visited set is not | 
|  | /// needed to prevent infinite loops.  The DAG CAN, however, have unbounded | 
|  | /// reuse, so it prevents exponential cases. | 
|  | /// | 
|  | static bool NodeTransitivelyUsesValue(SDOperand N, SDOperand Op, | 
|  | std::set<SDNode*> &Visited) { | 
|  | if (N == Op) return true;                        // Found it. | 
|  | SDNode *Node = N.Val; | 
|  | if (Node->getNumOperands() == 0 ||      // Leaf? | 
|  | Node->getNodeDepth() <= Op.getNodeDepth()) return false; // Can't find it? | 
|  | if (!Visited.insert(Node).second) return false;  // Already visited? | 
|  |  | 
|  | // Recurse for the first N-1 operands. | 
|  | for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) | 
|  | if (NodeTransitivelyUsesValue(Node->getOperand(i), Op, Visited)) | 
|  | return true; | 
|  |  | 
|  | // Tail recurse for the last operand. | 
|  | return NodeTransitivelyUsesValue(Node->getOperand(0), Op, Visited); | 
|  | } | 
|  |  | 
|  | X86AddressMode ISel::SelectAddrExprs(const X86ISelAddressMode &IAM) { | 
|  | X86AddressMode Result; | 
|  |  | 
|  | // If we need to emit two register operands, emit the one with the highest | 
|  | // register pressure first. | 
|  | if (IAM.BaseType == X86ISelAddressMode::RegBase && | 
|  | IAM.Base.Reg.Val && IAM.IndexReg.Val) { | 
|  | bool EmitBaseThenIndex; | 
|  | if (getRegPressure(IAM.Base.Reg) > getRegPressure(IAM.IndexReg)) { | 
|  | std::set<SDNode*> Visited; | 
|  | EmitBaseThenIndex = true; | 
|  | // If Base ends up pointing to Index, we must emit index first.  This is | 
|  | // because of the way we fold loads, we may end up doing bad things with | 
|  | // the folded add. | 
|  | if (NodeTransitivelyUsesValue(IAM.Base.Reg, IAM.IndexReg, Visited)) | 
|  | EmitBaseThenIndex = false; | 
|  | } else { | 
|  | std::set<SDNode*> Visited; | 
|  | EmitBaseThenIndex = false; | 
|  | // If Base ends up pointing to Index, we must emit index first.  This is | 
|  | // because of the way we fold loads, we may end up doing bad things with | 
|  | // the folded add. | 
|  | if (NodeTransitivelyUsesValue(IAM.IndexReg, IAM.Base.Reg, Visited)) | 
|  | EmitBaseThenIndex = true; | 
|  | } | 
|  |  | 
|  | if (EmitBaseThenIndex) { | 
|  | Result.Base.Reg = SelectExpr(IAM.Base.Reg); | 
|  | Result.IndexReg = SelectExpr(IAM.IndexReg); | 
|  | } else { | 
|  | Result.IndexReg = SelectExpr(IAM.IndexReg); | 
|  | Result.Base.Reg = SelectExpr(IAM.Base.Reg); | 
|  | } | 
|  |  | 
|  | } else if (IAM.BaseType == X86ISelAddressMode::RegBase && IAM.Base.Reg.Val) { | 
|  | Result.Base.Reg = SelectExpr(IAM.Base.Reg); | 
|  | } else if (IAM.IndexReg.Val) { | 
|  | Result.IndexReg = SelectExpr(IAM.IndexReg); | 
|  | } | 
|  |  | 
|  | switch (IAM.BaseType) { | 
|  | case X86ISelAddressMode::RegBase: | 
|  | Result.BaseType = X86AddressMode::RegBase; | 
|  | break; | 
|  | case X86ISelAddressMode::FrameIndexBase: | 
|  | Result.BaseType = X86AddressMode::FrameIndexBase; | 
|  | Result.Base.FrameIndex = IAM.Base.FrameIndex; | 
|  | break; | 
|  | default: | 
|  | assert(0 && "Unknown base type!"); | 
|  | break; | 
|  | } | 
|  | Result.Scale = IAM.Scale; | 
|  | Result.Disp = IAM.Disp; | 
|  | Result.GV = IAM.GV; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// SelectAddress - Pattern match the maximal addressing mode for this node and | 
|  | /// emit all of the leaf registers. | 
|  | void ISel::SelectAddress(SDOperand N, X86AddressMode &AM) { | 
|  | X86ISelAddressMode IAM; | 
|  | MatchAddress(N, IAM); | 
|  | AM = SelectAddrExprs(IAM); | 
|  | } | 
|  |  | 
|  | /// MatchAddress - Add the specified node to the specified addressing mode, | 
|  | /// returning true if it cannot be done.  This just pattern matches for the | 
|  | /// addressing mode, it does not cause any code to be emitted.  For that, use | 
|  | /// SelectAddress. | 
|  | bool ISel::MatchAddress(SDOperand N, X86ISelAddressMode &AM) { | 
|  | switch (N.getOpcode()) { | 
|  | default: break; | 
|  | case ISD::FrameIndex: | 
|  | if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.Val == 0) { | 
|  | AM.BaseType = X86ISelAddressMode::FrameIndexBase; | 
|  | AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex(); | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | case ISD::GlobalAddress: | 
|  | if (AM.GV == 0) { | 
|  | AM.GV = cast<GlobalAddressSDNode>(N)->getGlobal(); | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | case ISD::Constant: | 
|  | AM.Disp += cast<ConstantSDNode>(N)->getValue(); | 
|  | return false; | 
|  | case ISD::SHL: | 
|  | // We might have folded the load into this shift, so don't regen the value | 
|  | // if so. | 
|  | if (ExprMap.count(N)) break; | 
|  |  | 
|  | if (AM.IndexReg.Val == 0 && AM.Scale == 1) | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1))) { | 
|  | unsigned Val = CN->getValue(); | 
|  | if (Val == 1 || Val == 2 || Val == 3) { | 
|  | AM.Scale = 1 << Val; | 
|  | SDOperand ShVal = N.Val->getOperand(0); | 
|  |  | 
|  | // Okay, we know that we have a scale by now.  However, if the scaled | 
|  | // value is an add of something and a constant, we can fold the | 
|  | // constant into the disp field here. | 
|  | if (ShVal.Val->getOpcode() == ISD::ADD && ShVal.hasOneUse() && | 
|  | isa<ConstantSDNode>(ShVal.Val->getOperand(1))) { | 
|  | AM.IndexReg = ShVal.Val->getOperand(0); | 
|  | ConstantSDNode *AddVal = | 
|  | cast<ConstantSDNode>(ShVal.Val->getOperand(1)); | 
|  | AM.Disp += AddVal->getValue() << Val; | 
|  | } else { | 
|  | AM.IndexReg = ShVal; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::MUL: | 
|  | // We might have folded the load into this mul, so don't regen the value if | 
|  | // so. | 
|  | if (ExprMap.count(N)) break; | 
|  |  | 
|  | // X*[3,5,9] -> X+X*[2,4,8] | 
|  | if (AM.IndexReg.Val == 0 && AM.BaseType == X86ISelAddressMode::RegBase && | 
|  | AM.Base.Reg.Val == 0) | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1))) | 
|  | if (CN->getValue() == 3 || CN->getValue() == 5 || CN->getValue() == 9) { | 
|  | AM.Scale = unsigned(CN->getValue())-1; | 
|  |  | 
|  | SDOperand MulVal = N.Val->getOperand(0); | 
|  | SDOperand Reg; | 
|  |  | 
|  | // Okay, we know that we have a scale by now.  However, if the scaled | 
|  | // value is an add of something and a constant, we can fold the | 
|  | // constant into the disp field here. | 
|  | if (MulVal.Val->getOpcode() == ISD::ADD && MulVal.hasOneUse() && | 
|  | isa<ConstantSDNode>(MulVal.Val->getOperand(1))) { | 
|  | Reg = MulVal.Val->getOperand(0); | 
|  | ConstantSDNode *AddVal = | 
|  | cast<ConstantSDNode>(MulVal.Val->getOperand(1)); | 
|  | AM.Disp += AddVal->getValue() * CN->getValue(); | 
|  | } else { | 
|  | Reg = N.Val->getOperand(0); | 
|  | } | 
|  |  | 
|  | AM.IndexReg = AM.Base.Reg = Reg; | 
|  | return false; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::ADD: { | 
|  | // We might have folded the load into this mul, so don't regen the value if | 
|  | // so. | 
|  | if (ExprMap.count(N)) break; | 
|  |  | 
|  | X86ISelAddressMode Backup = AM; | 
|  | if (!MatchAddress(N.Val->getOperand(0), AM) && | 
|  | !MatchAddress(N.Val->getOperand(1), AM)) | 
|  | return false; | 
|  | AM = Backup; | 
|  | if (!MatchAddress(N.Val->getOperand(1), AM) && | 
|  | !MatchAddress(N.Val->getOperand(0), AM)) | 
|  | return false; | 
|  | AM = Backup; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Is the base register already occupied? | 
|  | if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.Val) { | 
|  | // If so, check to see if the scale index register is set. | 
|  | if (AM.IndexReg.Val == 0) { | 
|  | AM.IndexReg = N; | 
|  | AM.Scale = 1; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise, we cannot select it. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Default, generate it as a register. | 
|  | AM.BaseType = X86ISelAddressMode::RegBase; | 
|  | AM.Base.Reg = N; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Emit2SetCCsAndLogical - Emit the following sequence of instructions, | 
|  | /// assuming that the temporary registers are in the 8-bit register class. | 
|  | /// | 
|  | ///  Tmp1 = setcc1 | 
|  | ///  Tmp2 = setcc2 | 
|  | ///  DestReg = logicalop Tmp1, Tmp2 | 
|  | /// | 
|  | static void Emit2SetCCsAndLogical(MachineBasicBlock *BB, unsigned SetCC1, | 
|  | unsigned SetCC2, unsigned LogicalOp, | 
|  | unsigned DestReg) { | 
|  | SSARegMap *RegMap = BB->getParent()->getSSARegMap(); | 
|  | unsigned Tmp1 = RegMap->createVirtualRegister(X86::R8RegisterClass); | 
|  | unsigned Tmp2 = RegMap->createVirtualRegister(X86::R8RegisterClass); | 
|  | BuildMI(BB, SetCC1, 0, Tmp1); | 
|  | BuildMI(BB, SetCC2, 0, Tmp2); | 
|  | BuildMI(BB, LogicalOp, 2, DestReg).addReg(Tmp1).addReg(Tmp2); | 
|  | } | 
|  |  | 
|  | /// EmitSetCC - Emit the code to set the specified 8-bit register to 1 if the | 
|  | /// condition codes match the specified SetCCOpcode.  Note that some conditions | 
|  | /// require multiple instructions to generate the correct value. | 
|  | static void EmitSetCC(MachineBasicBlock *BB, unsigned DestReg, | 
|  | ISD::CondCode SetCCOpcode, bool isFP) { | 
|  | unsigned Opc; | 
|  | if (!isFP) { | 
|  | switch (SetCCOpcode) { | 
|  | default: assert(0 && "Illegal integer SetCC!"); | 
|  | case ISD::SETEQ: Opc = X86::SETEr; break; | 
|  | case ISD::SETGT: Opc = X86::SETGr; break; | 
|  | case ISD::SETGE: Opc = X86::SETGEr; break; | 
|  | case ISD::SETLT: Opc = X86::SETLr; break; | 
|  | case ISD::SETLE: Opc = X86::SETLEr; break; | 
|  | case ISD::SETNE: Opc = X86::SETNEr; break; | 
|  | case ISD::SETULT: Opc = X86::SETBr; break; | 
|  | case ISD::SETUGT: Opc = X86::SETAr; break; | 
|  | case ISD::SETULE: Opc = X86::SETBEr; break; | 
|  | case ISD::SETUGE: Opc = X86::SETAEr; break; | 
|  | } | 
|  | } else { | 
|  | // On a floating point condition, the flags are set as follows: | 
|  | // ZF  PF  CF   op | 
|  | //  0 | 0 | 0 | X > Y | 
|  | //  0 | 0 | 1 | X < Y | 
|  | //  1 | 0 | 0 | X == Y | 
|  | //  1 | 1 | 1 | unordered | 
|  | // | 
|  | switch (SetCCOpcode) { | 
|  | default: assert(0 && "Invalid FP setcc!"); | 
|  | case ISD::SETUEQ: | 
|  | case ISD::SETEQ: | 
|  | Opc = X86::SETEr;    // True if ZF = 1 | 
|  | break; | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT: | 
|  | Opc = X86::SETAr;    // True if CF = 0 and ZF = 0 | 
|  | break; | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETGE: | 
|  | Opc = X86::SETAEr;   // True if CF = 0 | 
|  | break; | 
|  | case ISD::SETULT: | 
|  | case ISD::SETLT: | 
|  | Opc = X86::SETBr;    // True if CF = 1 | 
|  | break; | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE: | 
|  | Opc = X86::SETBEr;   // True if CF = 1 or ZF = 1 | 
|  | break; | 
|  | case ISD::SETONE: | 
|  | case ISD::SETNE: | 
|  | Opc = X86::SETNEr;   // True if ZF = 0 | 
|  | break; | 
|  | case ISD::SETUO: | 
|  | Opc = X86::SETPr;    // True if PF = 1 | 
|  | break; | 
|  | case ISD::SETO: | 
|  | Opc = X86::SETNPr;   // True if PF = 0 | 
|  | break; | 
|  | case ISD::SETOEQ:      // !PF & ZF | 
|  | Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETEr, X86::AND8rr, DestReg); | 
|  | return; | 
|  | case ISD::SETOLT:      // !PF & CF | 
|  | Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETBr, X86::AND8rr, DestReg); | 
|  | return; | 
|  | case ISD::SETOLE:      // !PF & (CF || ZF) | 
|  | Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETBEr, X86::AND8rr, DestReg); | 
|  | return; | 
|  | case ISD::SETUGT:      // PF | (!ZF & !CF) | 
|  | Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETAr, X86::OR8rr, DestReg); | 
|  | return; | 
|  | case ISD::SETUGE:      // PF | !CF | 
|  | Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETAEr, X86::OR8rr, DestReg); | 
|  | return; | 
|  | case ISD::SETUNE:      // PF | !ZF | 
|  | Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETNEr, X86::OR8rr, DestReg); | 
|  | return; | 
|  | } | 
|  | } | 
|  | BuildMI(BB, Opc, 0, DestReg); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// EmitBranchCC - Emit code into BB that arranges for control to transfer to | 
|  | /// the Dest block if the Cond condition is true.  If we cannot fold this | 
|  | /// condition into the branch, return true. | 
|  | /// | 
|  | bool ISel::EmitBranchCC(MachineBasicBlock *Dest, SDOperand Chain, | 
|  | SDOperand Cond) { | 
|  | // FIXME: Evaluate whether it would be good to emit code like (X < Y) | (A > | 
|  | // B) using two conditional branches instead of one condbr, two setcc's, and | 
|  | // an or. | 
|  | if ((Cond.getOpcode() == ISD::OR || | 
|  | Cond.getOpcode() == ISD::AND) && Cond.Val->hasOneUse()) { | 
|  | // And and or set the flags for us, so there is no need to emit a TST of the | 
|  | // result.  It is only safe to do this if there is only a single use of the | 
|  | // AND/OR though, otherwise we don't know it will be emitted here. | 
|  | Select(Chain); | 
|  | SelectExpr(Cond); | 
|  | BuildMI(BB, X86::JNE, 1).addMBB(Dest); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Codegen br not C -> JE. | 
|  | if (Cond.getOpcode() == ISD::XOR) | 
|  | if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(Cond.Val->getOperand(1))) | 
|  | if (NC->isAllOnesValue()) { | 
|  | unsigned CondR; | 
|  | if (getRegPressure(Chain) > getRegPressure(Cond)) { | 
|  | Select(Chain); | 
|  | CondR = SelectExpr(Cond.Val->getOperand(0)); | 
|  | } else { | 
|  | CondR = SelectExpr(Cond.Val->getOperand(0)); | 
|  | Select(Chain); | 
|  | } | 
|  | BuildMI(BB, X86::TEST8rr, 2).addReg(CondR).addReg(CondR); | 
|  | BuildMI(BB, X86::JE, 1).addMBB(Dest); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SetCCSDNode *SetCC = dyn_cast<SetCCSDNode>(Cond); | 
|  | if (SetCC == 0) | 
|  | return true;                       // Can only handle simple setcc's so far. | 
|  |  | 
|  | unsigned Opc; | 
|  |  | 
|  | // Handle integer conditions first. | 
|  | if (MVT::isInteger(SetCC->getOperand(0).getValueType())) { | 
|  | switch (SetCC->getCondition()) { | 
|  | default: assert(0 && "Illegal integer SetCC!"); | 
|  | case ISD::SETEQ: Opc = X86::JE; break; | 
|  | case ISD::SETGT: Opc = X86::JG; break; | 
|  | case ISD::SETGE: Opc = X86::JGE; break; | 
|  | case ISD::SETLT: Opc = X86::JL; break; | 
|  | case ISD::SETLE: Opc = X86::JLE; break; | 
|  | case ISD::SETNE: Opc = X86::JNE; break; | 
|  | case ISD::SETULT: Opc = X86::JB; break; | 
|  | case ISD::SETUGT: Opc = X86::JA; break; | 
|  | case ISD::SETULE: Opc = X86::JBE; break; | 
|  | case ISD::SETUGE: Opc = X86::JAE; break; | 
|  | } | 
|  | Select(Chain); | 
|  | EmitCMP(SetCC->getOperand(0), SetCC->getOperand(1), SetCC->hasOneUse()); | 
|  | BuildMI(BB, Opc, 1).addMBB(Dest); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned Opc2 = 0;  // Second branch if needed. | 
|  |  | 
|  | // On a floating point condition, the flags are set as follows: | 
|  | // ZF  PF  CF   op | 
|  | //  0 | 0 | 0 | X > Y | 
|  | //  0 | 0 | 1 | X < Y | 
|  | //  1 | 0 | 0 | X == Y | 
|  | //  1 | 1 | 1 | unordered | 
|  | // | 
|  | switch (SetCC->getCondition()) { | 
|  | default: assert(0 && "Invalid FP setcc!"); | 
|  | case ISD::SETUEQ: | 
|  | case ISD::SETEQ:   Opc = X86::JE;  break;     // True if ZF = 1 | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT:   Opc = X86::JA;  break;     // True if CF = 0 and ZF = 0 | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETGE:   Opc = X86::JAE; break;     // True if CF = 0 | 
|  | case ISD::SETULT: | 
|  | case ISD::SETLT:   Opc = X86::JB;  break;     // True if CF = 1 | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE:   Opc = X86::JBE; break;     // True if CF = 1 or ZF = 1 | 
|  | case ISD::SETONE: | 
|  | case ISD::SETNE:   Opc = X86::JNE; break;     // True if ZF = 0 | 
|  | case ISD::SETUO:   Opc = X86::JP;  break;     // True if PF = 1 | 
|  | case ISD::SETO:    Opc = X86::JNP; break;     // True if PF = 0 | 
|  | case ISD::SETUGT:      // PF = 1 | (ZF = 0 & CF = 0) | 
|  | Opc = X86::JA;       // ZF = 0 & CF = 0 | 
|  | Opc2 = X86::JP;      // PF = 1 | 
|  | break; | 
|  | case ISD::SETUGE:      // PF = 1 | CF = 0 | 
|  | Opc = X86::JAE;      // CF = 0 | 
|  | Opc2 = X86::JP;      // PF = 1 | 
|  | break; | 
|  | case ISD::SETUNE:      // PF = 1 | ZF = 0 | 
|  | Opc = X86::JNE;      // ZF = 0 | 
|  | Opc2 = X86::JP;      // PF = 1 | 
|  | break; | 
|  | case ISD::SETOEQ:      // PF = 0 & ZF = 1 | 
|  | //X86::JNP, X86::JE | 
|  | //X86::AND8rr | 
|  | return true;    // FIXME: Emit more efficient code for this branch. | 
|  | case ISD::SETOLT:      // PF = 0 & CF = 1 | 
|  | //X86::JNP, X86::JB | 
|  | //X86::AND8rr | 
|  | return true;    // FIXME: Emit more efficient code for this branch. | 
|  | case ISD::SETOLE:      // PF = 0 & (CF = 1 || ZF = 1) | 
|  | //X86::JNP, X86::JBE | 
|  | //X86::AND8rr | 
|  | return true;    // FIXME: Emit more efficient code for this branch. | 
|  | } | 
|  |  | 
|  | Select(Chain); | 
|  | EmitCMP(SetCC->getOperand(0), SetCC->getOperand(1), SetCC->hasOneUse()); | 
|  | BuildMI(BB, Opc, 1).addMBB(Dest); | 
|  | if (Opc2) | 
|  | BuildMI(BB, Opc2, 1).addMBB(Dest); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// EmitSelectCC - Emit code into BB that performs a select operation between | 
|  | /// the two registers RTrue and RFalse, generating a result into RDest.  Return | 
|  | /// true if the fold cannot be performed. | 
|  | /// | 
|  | void ISel::EmitSelectCC(SDOperand Cond, MVT::ValueType SVT, | 
|  | unsigned RTrue, unsigned RFalse, unsigned RDest) { | 
|  | enum Condition { | 
|  | EQ, NE, LT, LE, GT, GE, B, BE, A, AE, P, NP, | 
|  | NOT_SET | 
|  | } CondCode = NOT_SET; | 
|  |  | 
|  | static const unsigned CMOVTAB16[] = { | 
|  | X86::CMOVE16rr,  X86::CMOVNE16rr, X86::CMOVL16rr,  X86::CMOVLE16rr, | 
|  | X86::CMOVG16rr,  X86::CMOVGE16rr, X86::CMOVB16rr,  X86::CMOVBE16rr, | 
|  | X86::CMOVA16rr,  X86::CMOVAE16rr, X86::CMOVP16rr,  X86::CMOVNP16rr, | 
|  | }; | 
|  | static const unsigned CMOVTAB32[] = { | 
|  | X86::CMOVE32rr,  X86::CMOVNE32rr, X86::CMOVL32rr,  X86::CMOVLE32rr, | 
|  | X86::CMOVG32rr,  X86::CMOVGE32rr, X86::CMOVB32rr,  X86::CMOVBE32rr, | 
|  | X86::CMOVA32rr,  X86::CMOVAE32rr, X86::CMOVP32rr,  X86::CMOVNP32rr, | 
|  | }; | 
|  | static const unsigned CMOVTABFP[] = { | 
|  | X86::FCMOVE ,  X86::FCMOVNE, /*missing*/0, /*missing*/0, | 
|  | /*missing*/0,  /*missing*/0, X86::FCMOVB , X86::FCMOVBE, | 
|  | X86::FCMOVA ,  X86::FCMOVAE, X86::FCMOVP , X86::FCMOVNP | 
|  | }; | 
|  | static const unsigned SSE_CMOVTAB[] = { | 
|  | 0 /* CMPEQSS */, 4 /* CMPNEQSS */, 1 /* CMPLTSS */, 2 /* CMPLESS */, | 
|  | 2 /* CMPLESS */, 1 /* CMPLTSS */, /*missing*/0, /*missing*/0, | 
|  | /*missing*/0,  /*missing*/0, /*missing*/0, /*missing*/0 | 
|  | }; | 
|  |  | 
|  | if (SetCCSDNode *SetCC = dyn_cast<SetCCSDNode>(Cond)) { | 
|  | if (MVT::isInteger(SetCC->getOperand(0).getValueType())) { | 
|  | switch (SetCC->getCondition()) { | 
|  | default: assert(0 && "Unknown integer comparison!"); | 
|  | case ISD::SETEQ:  CondCode = EQ; break; | 
|  | case ISD::SETGT:  CondCode = GT; break; | 
|  | case ISD::SETGE:  CondCode = GE; break; | 
|  | case ISD::SETLT:  CondCode = LT; break; | 
|  | case ISD::SETLE:  CondCode = LE; break; | 
|  | case ISD::SETNE:  CondCode = NE; break; | 
|  | case ISD::SETULT: CondCode = B; break; | 
|  | case ISD::SETUGT: CondCode = A; break; | 
|  | case ISD::SETULE: CondCode = BE; break; | 
|  | case ISD::SETUGE: CondCode = AE; break; | 
|  | } | 
|  | } else if (X86ScalarSSE) { | 
|  | switch (SetCC->getCondition()) { | 
|  | default: assert(0 && "Unknown scalar fp comparison!"); | 
|  | case ISD::SETEQ:  CondCode = EQ; break; | 
|  | case ISD::SETNE:  CondCode = NE; break; | 
|  | case ISD::SETULT: | 
|  | case ISD::SETLT:  CondCode = LT; break; | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE:  CondCode = LE; break; | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETGT:  CondCode = GT; break; | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETGE:  CondCode = GE; break; | 
|  | } | 
|  | } else { | 
|  | // On a floating point condition, the flags are set as follows: | 
|  | // ZF  PF  CF   op | 
|  | //  0 | 0 | 0 | X > Y | 
|  | //  0 | 0 | 1 | X < Y | 
|  | //  1 | 0 | 0 | X == Y | 
|  | //  1 | 1 | 1 | unordered | 
|  | // | 
|  | switch (SetCC->getCondition()) { | 
|  | default: assert(0 && "Unknown FP comparison!"); | 
|  | case ISD::SETUEQ: | 
|  | case ISD::SETEQ:  CondCode = EQ; break;     // True if ZF = 1 | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT:  CondCode = A;  break;     // True if CF = 0 and ZF = 0 | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETGE:  CondCode = AE; break;     // True if CF = 0 | 
|  | case ISD::SETULT: | 
|  | case ISD::SETLT:  CondCode = B;  break;     // True if CF = 1 | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE:  CondCode = BE; break;     // True if CF = 1 or ZF = 1 | 
|  | case ISD::SETONE: | 
|  | case ISD::SETNE:  CondCode = NE; break;     // True if ZF = 0 | 
|  | case ISD::SETUO:  CondCode = P;  break;     // True if PF = 1 | 
|  | case ISD::SETO:   CondCode = NP; break;     // True if PF = 0 | 
|  | case ISD::SETUGT:      // PF = 1 | (ZF = 0 & CF = 0) | 
|  | case ISD::SETUGE:      // PF = 1 | CF = 0 | 
|  | case ISD::SETUNE:      // PF = 1 | ZF = 0 | 
|  | case ISD::SETOEQ:      // PF = 0 & ZF = 1 | 
|  | case ISD::SETOLT:      // PF = 0 & CF = 1 | 
|  | case ISD::SETOLE:      // PF = 0 & (CF = 1 || ZF = 1) | 
|  | // We cannot emit this comparison as a single cmov. | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // There's no SSE equivalent of FCMOVE.  In some cases we can fake it up, in | 
|  | // Others we will have to do the PowerPC thing and generate an MBB for the | 
|  | // true and false values and select between them with a PHI. | 
|  | if (X86ScalarSSE) { | 
|  | if (CondCode != NOT_SET) { | 
|  | unsigned CMPSOpc = (SVT == MVT::f64) ? X86::CMPSDrr : X86::CMPSSrr; | 
|  | unsigned CMPSImm = SSE_CMOVTAB[CondCode]; | 
|  | // FIXME check for min | 
|  | // FIXME check for max | 
|  | // FIXME check for reverse | 
|  | unsigned LHS = SelectExpr(Cond.getOperand(0)); | 
|  | unsigned RHS = SelectExpr(Cond.getOperand(1)); | 
|  | // emit compare mask | 
|  | unsigned MaskReg = MakeReg(SVT); | 
|  | BuildMI(BB, CMPSOpc, 3, MaskReg).addReg(LHS).addReg(RHS).addImm(CMPSImm); | 
|  | // emit and with mask | 
|  | unsigned TrueMask = MakeReg(SVT); | 
|  | unsigned AndOpc = (SVT == MVT::f32) ? X86::ANDPSrr : X86::ANDPDrr; | 
|  | BuildMI(BB, AndOpc, 2, TrueMask).addReg(RTrue).addReg(MaskReg); | 
|  | // emit and with inverse mask | 
|  | unsigned FalseMask = MakeReg(SVT); | 
|  | unsigned AndnOpc = (SVT == MVT::f32) ? X86::ANDNPSrr : X86::ANDNPDrr; | 
|  | BuildMI(BB, AndnOpc, 2, FalseMask).addReg(RFalse).addReg(MaskReg); | 
|  | // emit or into dest reg | 
|  | unsigned OROpc = (SVT == MVT::f32) ? X86::ORPSrr : X86::ORPDrr; | 
|  | BuildMI(BB, OROpc, 2, RDest).addReg(TrueMask).addReg(FalseMask); | 
|  | return; | 
|  | } else { | 
|  | // do the test and branch thing | 
|  | // Get the condition into the zero flag. | 
|  | unsigned CondReg = SelectExpr(Cond); | 
|  | BuildMI(BB, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg); | 
|  |  | 
|  | // Create an iterator with which to insert the MBB for copying the false | 
|  | // value and the MBB to hold the PHI instruction for this SetCC. | 
|  | MachineBasicBlock *thisMBB = BB; | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  | ilist<MachineBasicBlock>::iterator It = BB; | 
|  | ++It; | 
|  |  | 
|  | //  thisMBB: | 
|  | //  ... | 
|  | //   TrueVal = ... | 
|  | //   cmpTY ccX, r1, r2 | 
|  | //   bCC sinkMBB | 
|  | //   fallthrough --> copy0MBB | 
|  | MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); | 
|  | BuildMI(BB, X86::JNE, 1).addMBB(sinkMBB); | 
|  | MachineFunction *F = BB->getParent(); | 
|  | F->getBasicBlockList().insert(It, copy0MBB); | 
|  | F->getBasicBlockList().insert(It, sinkMBB); | 
|  | // Update machine-CFG edges | 
|  | BB->addSuccessor(copy0MBB); | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | //  copy0MBB: | 
|  | //   %FalseValue = ... | 
|  | //   # fallthrough to sinkMBB | 
|  | BB = copy0MBB; | 
|  | // Update machine-CFG edges | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | //  sinkMBB: | 
|  | //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] | 
|  | //  ... | 
|  | BB = sinkMBB; | 
|  | BuildMI(BB, X86::PHI, 4, RDest).addReg(RFalse) | 
|  | .addMBB(copy0MBB).addReg(RTrue).addMBB(thisMBB); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned Opc = 0; | 
|  | if (CondCode != NOT_SET) { | 
|  | switch (SVT) { | 
|  | default: assert(0 && "Cannot select this type!"); | 
|  | case MVT::i16: Opc = CMOVTAB16[CondCode]; break; | 
|  | case MVT::i32: Opc = CMOVTAB32[CondCode]; break; | 
|  | case MVT::f64: Opc = CMOVTABFP[CondCode]; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, if we weren't able to fold this, just emit the condition and test | 
|  | // it. | 
|  | if (CondCode == NOT_SET || Opc == 0) { | 
|  | // Get the condition into the zero flag. | 
|  | unsigned CondReg = SelectExpr(Cond); | 
|  | BuildMI(BB, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg); | 
|  |  | 
|  | switch (SVT) { | 
|  | default: assert(0 && "Cannot select this type!"); | 
|  | case MVT::i16: Opc = X86::CMOVE16rr; break; | 
|  | case MVT::i32: Opc = X86::CMOVE32rr; break; | 
|  | case MVT::f64: Opc = X86::FCMOVE; break; | 
|  | } | 
|  | } else { | 
|  | // FIXME: CMP R, 0 -> TEST R, R | 
|  | EmitCMP(Cond.getOperand(0), Cond.getOperand(1), Cond.Val->hasOneUse()); | 
|  | std::swap(RTrue, RFalse); | 
|  | } | 
|  | BuildMI(BB, Opc, 2, RDest).addReg(RTrue).addReg(RFalse); | 
|  | } | 
|  |  | 
|  | void ISel::EmitCMP(SDOperand LHS, SDOperand RHS, bool HasOneUse) { | 
|  | unsigned Opc; | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) { | 
|  | Opc = 0; | 
|  | if (HasOneUse && isFoldableLoad(LHS, RHS)) { | 
|  | switch (RHS.getValueType()) { | 
|  | default: break; | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opc = X86::CMP8mi;  break; | 
|  | case MVT::i16: Opc = X86::CMP16mi; break; | 
|  | case MVT::i32: Opc = X86::CMP32mi; break; | 
|  | } | 
|  | if (Opc) { | 
|  | X86AddressMode AM; | 
|  | EmitFoldedLoad(LHS, AM); | 
|  | addFullAddress(BuildMI(BB, Opc, 5), AM).addImm(CN->getValue()); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (RHS.getValueType()) { | 
|  | default: break; | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opc = X86::CMP8ri;  break; | 
|  | case MVT::i16: Opc = X86::CMP16ri; break; | 
|  | case MVT::i32: Opc = X86::CMP32ri; break; | 
|  | } | 
|  | if (Opc) { | 
|  | unsigned Tmp1 = SelectExpr(LHS); | 
|  | BuildMI(BB, Opc, 2).addReg(Tmp1).addImm(CN->getValue()); | 
|  | return; | 
|  | } | 
|  | } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(RHS)) { | 
|  | if (!X86ScalarSSE && (CN->isExactlyValue(+0.0) || | 
|  | CN->isExactlyValue(-0.0))) { | 
|  | unsigned Reg = SelectExpr(LHS); | 
|  | BuildMI(BB, X86::FTST, 1).addReg(Reg); | 
|  | BuildMI(BB, X86::FNSTSW8r, 0); | 
|  | BuildMI(BB, X86::SAHF, 1); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | Opc = 0; | 
|  | if (HasOneUse && isFoldableLoad(LHS, RHS)) { | 
|  | switch (RHS.getValueType()) { | 
|  | default: break; | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opc = X86::CMP8mr;  break; | 
|  | case MVT::i16: Opc = X86::CMP16mr; break; | 
|  | case MVT::i32: Opc = X86::CMP32mr; break; | 
|  | } | 
|  | if (Opc) { | 
|  | X86AddressMode AM; | 
|  | EmitFoldedLoad(LHS, AM); | 
|  | unsigned Reg = SelectExpr(RHS); | 
|  | addFullAddress(BuildMI(BB, Opc, 5), AM).addReg(Reg); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (LHS.getValueType()) { | 
|  | default: assert(0 && "Cannot compare this value!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opc = X86::CMP8rr;  break; | 
|  | case MVT::i16: Opc = X86::CMP16rr; break; | 
|  | case MVT::i32: Opc = X86::CMP32rr; break; | 
|  | case MVT::f32: Opc = X86::UCOMISSrr; break; | 
|  | case MVT::f64: Opc = X86ScalarSSE ? X86::UCOMISDrr : X86::FUCOMIr; break; | 
|  | } | 
|  | unsigned Tmp1, Tmp2; | 
|  | if (getRegPressure(LHS) > getRegPressure(RHS)) { | 
|  | Tmp1 = SelectExpr(LHS); | 
|  | Tmp2 = SelectExpr(RHS); | 
|  | } else { | 
|  | Tmp2 = SelectExpr(RHS); | 
|  | Tmp1 = SelectExpr(LHS); | 
|  | } | 
|  | BuildMI(BB, Opc, 2).addReg(Tmp1).addReg(Tmp2); | 
|  | } | 
|  |  | 
|  | /// isFoldableLoad - Return true if this is a load instruction that can safely | 
|  | /// be folded into an operation that uses it. | 
|  | bool ISel::isFoldableLoad(SDOperand Op, SDOperand OtherOp, bool FloatPromoteOk){ | 
|  | if (Op.getOpcode() == ISD::LOAD) { | 
|  | // FIXME: currently can't fold constant pool indexes. | 
|  | if (isa<ConstantPoolSDNode>(Op.getOperand(1))) | 
|  | return false; | 
|  | } else if (FloatPromoteOk && Op.getOpcode() == ISD::EXTLOAD && | 
|  | cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::f32) { | 
|  | // FIXME: currently can't fold constant pool indexes. | 
|  | if (isa<ConstantPoolSDNode>(Op.getOperand(1))) | 
|  | return false; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If this load has already been emitted, we clearly can't fold it. | 
|  | assert(Op.ResNo == 0 && "Not a use of the value of the load?"); | 
|  | if (ExprMap.count(Op.getValue(1))) return false; | 
|  | assert(!ExprMap.count(Op.getValue(0)) && "Value in map but not token chain?"); | 
|  | assert(!ExprMap.count(Op.getValue(1))&&"Token lowered but value not in map?"); | 
|  |  | 
|  | // If there is not just one use of its value, we cannot fold. | 
|  | if (!Op.Val->hasNUsesOfValue(1, 0)) return false; | 
|  |  | 
|  | // Finally, we cannot fold the load into the operation if this would induce a | 
|  | // cycle into the resultant dag.  To check for this, see if OtherOp (the other | 
|  | // operand of the operation we are folding the load into) can possible use the | 
|  | // chain node defined by the load. | 
|  | if (OtherOp.Val && !Op.Val->hasNUsesOfValue(0, 1)) { // Has uses of chain? | 
|  | std::set<SDNode*> Visited; | 
|  | if (NodeTransitivelyUsesValue(OtherOp, Op.getValue(1), Visited)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// EmitFoldedLoad - Ensure that the arguments of the load are code generated, | 
|  | /// and compute the address being loaded into AM. | 
|  | void ISel::EmitFoldedLoad(SDOperand Op, X86AddressMode &AM) { | 
|  | SDOperand Chain   = Op.getOperand(0); | 
|  | SDOperand Address = Op.getOperand(1); | 
|  |  | 
|  | if (getRegPressure(Chain) > getRegPressure(Address)) { | 
|  | Select(Chain); | 
|  | SelectAddress(Address, AM); | 
|  | } else { | 
|  | SelectAddress(Address, AM); | 
|  | Select(Chain); | 
|  | } | 
|  |  | 
|  | // The chain for this load is now lowered. | 
|  | assert(ExprMap.count(SDOperand(Op.Val, 1)) == 0 && | 
|  | "Load emitted more than once?"); | 
|  | if (!ExprMap.insert(std::make_pair(Op.getValue(1), 1)).second) | 
|  | assert(0 && "Load emitted more than once!"); | 
|  | } | 
|  |  | 
|  | // EmitOrOpOp - Pattern match the expression (Op1|Op2), where we know that op1 | 
|  | // and op2 are i8/i16/i32 values with one use each (the or).  If we can form a | 
|  | // SHLD or SHRD, emit the instruction (generating the value into DestReg) and | 
|  | // return true. | 
|  | bool ISel::EmitOrOpOp(SDOperand Op1, SDOperand Op2, unsigned DestReg) { | 
|  | if (Op1.getOpcode() == ISD::SHL && Op2.getOpcode() == ISD::SRL) { | 
|  | // good! | 
|  | } else if (Op2.getOpcode() == ISD::SHL && Op1.getOpcode() == ISD::SRL) { | 
|  | std::swap(Op1, Op2);  // Op1 is the SHL now. | 
|  | } else { | 
|  | return false;  // No match | 
|  | } | 
|  |  | 
|  | SDOperand ShlVal = Op1.getOperand(0); | 
|  | SDOperand ShlAmt = Op1.getOperand(1); | 
|  | SDOperand ShrVal = Op2.getOperand(0); | 
|  | SDOperand ShrAmt = Op2.getOperand(1); | 
|  |  | 
|  | unsigned RegSize = MVT::getSizeInBits(Op1.getValueType()); | 
|  |  | 
|  | // Find out if ShrAmt = 32-ShlAmt  or  ShlAmt = 32-ShrAmt. | 
|  | if (ShlAmt.getOpcode() == ISD::SUB && ShlAmt.getOperand(1) == ShrAmt) | 
|  | if (ConstantSDNode *SubCST = dyn_cast<ConstantSDNode>(ShlAmt.getOperand(0))) | 
|  | if (SubCST->getValue() == RegSize) { | 
|  | // (A >> ShrAmt) | (A << (32-ShrAmt)) ==> ROR A, ShrAmt | 
|  | // (A >> ShrAmt) | (B << (32-ShrAmt)) ==> SHRD A, B, ShrAmt | 
|  | if (ShrVal == ShlVal) { | 
|  | unsigned Reg, ShAmt; | 
|  | if (getRegPressure(ShrVal) > getRegPressure(ShrAmt)) { | 
|  | Reg = SelectExpr(ShrVal); | 
|  | ShAmt = SelectExpr(ShrAmt); | 
|  | } else { | 
|  | ShAmt = SelectExpr(ShrAmt); | 
|  | Reg = SelectExpr(ShrVal); | 
|  | } | 
|  | BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt); | 
|  | unsigned Opc = RegSize == 8 ? X86::ROR8rCL : | 
|  | (RegSize == 16 ? X86::ROR16rCL : X86::ROR32rCL); | 
|  | BuildMI(BB, Opc, 1, DestReg).addReg(Reg); | 
|  | return true; | 
|  | } else if (RegSize != 8) { | 
|  | unsigned AReg, BReg; | 
|  | if (getRegPressure(ShlVal) > getRegPressure(ShrVal)) { | 
|  | BReg = SelectExpr(ShlVal); | 
|  | AReg = SelectExpr(ShrVal); | 
|  | } else { | 
|  | AReg = SelectExpr(ShrVal); | 
|  | BReg = SelectExpr(ShlVal); | 
|  | } | 
|  | unsigned ShAmt = SelectExpr(ShrAmt); | 
|  | BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt); | 
|  | unsigned Opc = RegSize == 16 ? X86::SHRD16rrCL : X86::SHRD32rrCL; | 
|  | BuildMI(BB, Opc, 2, DestReg).addReg(AReg).addReg(BReg); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ShrAmt.getOpcode() == ISD::SUB && ShrAmt.getOperand(1) == ShlAmt) | 
|  | if (ConstantSDNode *SubCST = dyn_cast<ConstantSDNode>(ShrAmt.getOperand(0))) | 
|  | if (SubCST->getValue() == RegSize) { | 
|  | // (A << ShlAmt) | (A >> (32-ShlAmt)) ==> ROL A, ShrAmt | 
|  | // (A << ShlAmt) | (B >> (32-ShlAmt)) ==> SHLD A, B, ShrAmt | 
|  | if (ShrVal == ShlVal) { | 
|  | unsigned Reg, ShAmt; | 
|  | if (getRegPressure(ShrVal) > getRegPressure(ShlAmt)) { | 
|  | Reg = SelectExpr(ShrVal); | 
|  | ShAmt = SelectExpr(ShlAmt); | 
|  | } else { | 
|  | ShAmt = SelectExpr(ShlAmt); | 
|  | Reg = SelectExpr(ShrVal); | 
|  | } | 
|  | BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt); | 
|  | unsigned Opc = RegSize == 8 ? X86::ROL8rCL : | 
|  | (RegSize == 16 ? X86::ROL16rCL : X86::ROL32rCL); | 
|  | BuildMI(BB, Opc, 1, DestReg).addReg(Reg); | 
|  | return true; | 
|  | } else if (RegSize != 8) { | 
|  | unsigned AReg, BReg; | 
|  | if (getRegPressure(ShlVal) > getRegPressure(ShrVal)) { | 
|  | AReg = SelectExpr(ShlVal); | 
|  | BReg = SelectExpr(ShrVal); | 
|  | } else { | 
|  | BReg = SelectExpr(ShrVal); | 
|  | AReg = SelectExpr(ShlVal); | 
|  | } | 
|  | unsigned ShAmt = SelectExpr(ShlAmt); | 
|  | BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt); | 
|  | unsigned Opc = RegSize == 16 ? X86::SHLD16rrCL : X86::SHLD32rrCL; | 
|  | BuildMI(BB, Opc, 2, DestReg).addReg(AReg).addReg(BReg); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ConstantSDNode *ShrCst = dyn_cast<ConstantSDNode>(ShrAmt)) | 
|  | if (ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(ShlAmt)) | 
|  | if (ShrCst->getValue() < RegSize && ShlCst->getValue() < RegSize) | 
|  | if (ShrCst->getValue() == RegSize-ShlCst->getValue()) { | 
|  | // (A >> 5) | (A << 27) --> ROR A, 5 | 
|  | // (A >> 5) | (B << 27) --> SHRD A, B, 5 | 
|  | if (ShrVal == ShlVal) { | 
|  | unsigned Reg = SelectExpr(ShrVal); | 
|  | unsigned Opc = RegSize == 8 ? X86::ROR8ri : | 
|  | (RegSize == 16 ? X86::ROR16ri : X86::ROR32ri); | 
|  | BuildMI(BB, Opc, 2, DestReg).addReg(Reg).addImm(ShrCst->getValue()); | 
|  | return true; | 
|  | } else if (RegSize != 8) { | 
|  | unsigned AReg, BReg; | 
|  | if (getRegPressure(ShlVal) > getRegPressure(ShrVal)) { | 
|  | BReg = SelectExpr(ShlVal); | 
|  | AReg = SelectExpr(ShrVal); | 
|  | } else { | 
|  | AReg = SelectExpr(ShrVal); | 
|  | BReg = SelectExpr(ShlVal); | 
|  | } | 
|  | unsigned Opc = RegSize == 16 ? X86::SHRD16rri8 : X86::SHRD32rri8; | 
|  | BuildMI(BB, Opc, 3, DestReg).addReg(AReg).addReg(BReg) | 
|  | .addImm(ShrCst->getValue()); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned ISel::SelectExpr(SDOperand N) { | 
|  | unsigned Result; | 
|  | unsigned Tmp1, Tmp2, Tmp3; | 
|  | unsigned Opc = 0; | 
|  | SDNode *Node = N.Val; | 
|  | SDOperand Op0, Op1; | 
|  |  | 
|  | if (Node->getOpcode() == ISD::CopyFromReg) { | 
|  | if (MRegisterInfo::isVirtualRegister(cast<RegSDNode>(Node)->getReg()) || | 
|  | cast<RegSDNode>(Node)->getReg() == X86::ESP) { | 
|  | // Just use the specified register as our input. | 
|  | return cast<RegSDNode>(Node)->getReg(); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned &Reg = ExprMap[N]; | 
|  | if (Reg) return Reg; | 
|  |  | 
|  | switch (N.getOpcode()) { | 
|  | default: | 
|  | Reg = Result = (N.getValueType() != MVT::Other) ? | 
|  | MakeReg(N.getValueType()) : 1; | 
|  | break; | 
|  | case X86ISD::TAILCALL: | 
|  | case X86ISD::CALL: | 
|  | // If this is a call instruction, make sure to prepare ALL of the result | 
|  | // values as well as the chain. | 
|  | ExprMap[N.getValue(0)] = 1; | 
|  | if (Node->getNumValues() > 1) { | 
|  | Result = MakeReg(Node->getValueType(1)); | 
|  | ExprMap[N.getValue(1)] = Result; | 
|  | for (unsigned i = 2, e = Node->getNumValues(); i != e; ++i) | 
|  | ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); | 
|  | } else { | 
|  | Result = 1; | 
|  | } | 
|  | break; | 
|  | case ISD::ADD_PARTS: | 
|  | case ISD::SUB_PARTS: | 
|  | case ISD::SHL_PARTS: | 
|  | case ISD::SRL_PARTS: | 
|  | case ISD::SRA_PARTS: | 
|  | Result = MakeReg(Node->getValueType(0)); | 
|  | ExprMap[N.getValue(0)] = Result; | 
|  | for (unsigned i = 1, e = N.Val->getNumValues(); i != e; ++i) | 
|  | ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (N.getOpcode()) { | 
|  | default: | 
|  | Node->dump(); | 
|  | assert(0 && "Node not handled!\n"); | 
|  | case ISD::FP_EXTEND: | 
|  | assert(X86ScalarSSE && "Scalar SSE FP must be enabled to use f32"); | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | BuildMI(BB, X86::CVTSS2SDrr, 1, Result).addReg(Tmp1); | 
|  | return Result; | 
|  | case ISD::CopyFromReg: | 
|  | Select(N.getOperand(0)); | 
|  | if (Result == 1) { | 
|  | Reg = Result = ExprMap[N.getValue(0)] = | 
|  | MakeReg(N.getValue(0).getValueType()); | 
|  | } | 
|  | switch (Node->getValueType(0)) { | 
|  | default: assert(0 && "Cannot CopyFromReg this!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | BuildMI(BB, X86::MOV8rr, 1, | 
|  | Result).addReg(cast<RegSDNode>(Node)->getReg()); | 
|  | return Result; | 
|  | case MVT::i16: | 
|  | BuildMI(BB, X86::MOV16rr, 1, | 
|  | Result).addReg(cast<RegSDNode>(Node)->getReg()); | 
|  | return Result; | 
|  | case MVT::i32: | 
|  | BuildMI(BB, X86::MOV32rr, 1, | 
|  | Result).addReg(cast<RegSDNode>(Node)->getReg()); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::FrameIndex: | 
|  | Tmp1 = cast<FrameIndexSDNode>(N)->getIndex(); | 
|  | addFrameReference(BuildMI(BB, X86::LEA32r, 4, Result), (int)Tmp1); | 
|  | return Result; | 
|  | case ISD::ConstantPool: | 
|  | Tmp1 = cast<ConstantPoolSDNode>(N)->getIndex(); | 
|  | addConstantPoolReference(BuildMI(BB, X86::LEA32r, 4, Result), Tmp1); | 
|  | return Result; | 
|  | case ISD::ConstantFP: | 
|  | ContainsFPCode = true; | 
|  | Tmp1 = Result;   // Intermediate Register | 
|  | if (cast<ConstantFPSDNode>(N)->getValue() < 0.0 || | 
|  | cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0)) | 
|  | Tmp1 = MakeReg(MVT::f64); | 
|  |  | 
|  | if (cast<ConstantFPSDNode>(N)->isExactlyValue(+0.0) || | 
|  | cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0)) | 
|  | BuildMI(BB, X86::FLD0, 0, Tmp1); | 
|  | else if (cast<ConstantFPSDNode>(N)->isExactlyValue(+1.0) || | 
|  | cast<ConstantFPSDNode>(N)->isExactlyValue(-1.0)) | 
|  | BuildMI(BB, X86::FLD1, 0, Tmp1); | 
|  | else | 
|  | assert(0 && "Unexpected constant!"); | 
|  | if (Tmp1 != Result) | 
|  | BuildMI(BB, X86::FCHS, 1, Result).addReg(Tmp1); | 
|  | return Result; | 
|  | case ISD::Constant: | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Cannot use constants of this type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opc = X86::MOV8ri;  break; | 
|  | case MVT::i16: Opc = X86::MOV16ri; break; | 
|  | case MVT::i32: Opc = X86::MOV32ri; break; | 
|  | } | 
|  | BuildMI(BB, Opc, 1,Result).addImm(cast<ConstantSDNode>(N)->getValue()); | 
|  | return Result; | 
|  | case ISD::UNDEF: | 
|  | if (Node->getValueType(0) == MVT::f64) { | 
|  | // FIXME: SHOULD TEACH STACKIFIER ABOUT UNDEF VALUES! | 
|  | BuildMI(BB, X86::FLD0, 0, Result); | 
|  | } else { | 
|  | BuildMI(BB, X86::IMPLICIT_DEF, 0, Result); | 
|  | } | 
|  | return Result; | 
|  | case ISD::GlobalAddress: { | 
|  | GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal(); | 
|  | BuildMI(BB, X86::MOV32ri, 1, Result).addGlobalAddress(GV); | 
|  | return Result; | 
|  | } | 
|  | case ISD::ExternalSymbol: { | 
|  | const char *Sym = cast<ExternalSymbolSDNode>(N)->getSymbol(); | 
|  | BuildMI(BB, X86::MOV32ri, 1, Result).addExternalSymbol(Sym); | 
|  | return Result; | 
|  | } | 
|  | case ISD::ZERO_EXTEND: { | 
|  | int DestIs16 = N.getValueType() == MVT::i16; | 
|  | int SrcIs16  = N.getOperand(0).getValueType() == MVT::i16; | 
|  |  | 
|  | // FIXME: This hack is here for zero extension casts from bool to i8.  This | 
|  | // would not be needed if bools were promoted by Legalize. | 
|  | if (N.getValueType() == MVT::i8) { | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | BuildMI(BB, X86::MOV8rr, 1, Result).addReg(Tmp1); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | if (isFoldableLoad(N.getOperand(0), SDOperand())) { | 
|  | static const unsigned Opc[3] = { | 
|  | X86::MOVZX32rm8, X86::MOVZX32rm16, X86::MOVZX16rm8 | 
|  | }; | 
|  |  | 
|  | X86AddressMode AM; | 
|  | EmitFoldedLoad(N.getOperand(0), AM); | 
|  | addFullAddress(BuildMI(BB, Opc[SrcIs16+DestIs16*2], 4, Result), AM); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | static const unsigned Opc[3] = { | 
|  | X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOVZX16rr8 | 
|  | }; | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | BuildMI(BB, Opc[SrcIs16+DestIs16*2], 1, Result).addReg(Tmp1); | 
|  | return Result; | 
|  | } | 
|  | case ISD::SIGN_EXTEND: { | 
|  | int DestIs16 = N.getValueType() == MVT::i16; | 
|  | int SrcIs16  = N.getOperand(0).getValueType() == MVT::i16; | 
|  |  | 
|  | // FIXME: Legalize should promote bools to i8! | 
|  | assert(N.getOperand(0).getValueType() != MVT::i1 && | 
|  | "Sign extend from bool not implemented!"); | 
|  |  | 
|  | if (isFoldableLoad(N.getOperand(0), SDOperand())) { | 
|  | static const unsigned Opc[3] = { | 
|  | X86::MOVSX32rm8, X86::MOVSX32rm16, X86::MOVSX16rm8 | 
|  | }; | 
|  |  | 
|  | X86AddressMode AM; | 
|  | EmitFoldedLoad(N.getOperand(0), AM); | 
|  | addFullAddress(BuildMI(BB, Opc[SrcIs16+DestIs16*2], 4, Result), AM); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | static const unsigned Opc[3] = { | 
|  | X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOVSX16rr8 | 
|  | }; | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | BuildMI(BB, Opc[SrcIs16+DestIs16*2], 1, Result).addReg(Tmp1); | 
|  | return Result; | 
|  | } | 
|  | case ISD::TRUNCATE: | 
|  | // Fold TRUNCATE (LOAD P) into a smaller load from P. | 
|  | // FIXME: This should be performed by the DAGCombiner. | 
|  | if (isFoldableLoad(N.getOperand(0), SDOperand())) { | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Unknown truncate!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opc = X86::MOV8rm;  break; | 
|  | case MVT::i16: Opc = X86::MOV16rm; break; | 
|  | } | 
|  | X86AddressMode AM; | 
|  | EmitFoldedLoad(N.getOperand(0), AM); | 
|  | addFullAddress(BuildMI(BB, Opc, 4, Result), AM); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Handle cast of LARGER int to SMALLER int using a move to EAX followed by | 
|  | // a move out of AX or AL. | 
|  | switch (N.getOperand(0).getValueType()) { | 
|  | default: assert(0 && "Unknown truncate!"); | 
|  | case MVT::i8:  Tmp2 = X86::AL;  Opc = X86::MOV8rr;  break; | 
|  | case MVT::i16: Tmp2 = X86::AX;  Opc = X86::MOV16rr; break; | 
|  | case MVT::i32: Tmp2 = X86::EAX; Opc = X86::MOV32rr; break; | 
|  | } | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | BuildMI(BB, Opc, 1, Tmp2).addReg(Tmp1); | 
|  |  | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Unknown truncate!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Tmp2 = X86::AL;  Opc = X86::MOV8rr;  break; | 
|  | case MVT::i16: Tmp2 = X86::AX;  Opc = X86::MOV16rr; break; | 
|  | } | 
|  | BuildMI(BB, Opc, 1, Result).addReg(Tmp2); | 
|  | return Result; | 
|  |  | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP: { | 
|  | Tmp1 = SelectExpr(N.getOperand(0));  // Get the operand register | 
|  | unsigned PromoteOpcode = 0; | 
|  |  | 
|  | // We can handle any sint to fp, and 8 and 16 uint to fp with the direct | 
|  | // sse conversion instructions. | 
|  | if (X86ScalarSSE) { | 
|  | MVT::ValueType SrcTy = N.getOperand(0).getValueType(); | 
|  | MVT::ValueType DstTy = N.getValueType(); | 
|  | switch (SrcTy) { | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | PromoteOpcode = (N.getOpcode() == ISD::UINT_TO_FP) ? | 
|  | X86::MOVZX32rr8 : X86::MOVSX32rr8; | 
|  | break; | 
|  | case MVT::i16: | 
|  | PromoteOpcode = (N.getOpcode() == ISD::UINT_TO_FP) ? | 
|  | X86::MOVZX32rr16 : X86::MOVSX32rr16; | 
|  | break; | 
|  | default: | 
|  | assert(N.getOpcode() != ISD::UINT_TO_FP); | 
|  | break; | 
|  | } | 
|  | if (PromoteOpcode) { | 
|  | BuildMI(BB, PromoteOpcode, 1, Tmp2).addReg(Tmp1); | 
|  | Tmp1 = Tmp2; | 
|  | } | 
|  | Opc = (DstTy == MVT::f64) ? X86::CVTSI2SDrr : X86::CVTSI2SSrr; | 
|  | BuildMI(BB, Opc, 1, Result).addReg(Tmp1); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // FIXME: Most of this grunt work should be done by legalize! | 
|  | ContainsFPCode = true; | 
|  |  | 
|  | // Promote the integer to a type supported by FLD.  We do this because there | 
|  | // are no unsigned FLD instructions, so we must promote an unsigned value to | 
|  | // a larger signed value, then use FLD on the larger value. | 
|  | // | 
|  | MVT::ValueType PromoteType = MVT::Other; | 
|  | MVT::ValueType SrcTy = N.getOperand(0).getValueType(); | 
|  | unsigned RealDestReg = Result; | 
|  | switch (SrcTy) { | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | // We don't have the facilities for directly loading byte sized data from | 
|  | // memory (even signed).  Promote it to 16 bits. | 
|  | PromoteType = MVT::i16; | 
|  | PromoteOpcode = Node->getOpcode() == ISD::SINT_TO_FP ? | 
|  | X86::MOVSX16rr8 : X86::MOVZX16rr8; | 
|  | break; | 
|  | case MVT::i16: | 
|  | if (Node->getOpcode() == ISD::UINT_TO_FP) { | 
|  | PromoteType = MVT::i32; | 
|  | PromoteOpcode = X86::MOVZX32rr16; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | // Don't fild into the real destination. | 
|  | if (Node->getOpcode() == ISD::UINT_TO_FP) | 
|  | Result = MakeReg(Node->getValueType(0)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (PromoteType != MVT::Other) { | 
|  | Tmp2 = MakeReg(PromoteType); | 
|  | BuildMI(BB, PromoteOpcode, 1, Tmp2).addReg(Tmp1); | 
|  | SrcTy = PromoteType; | 
|  | Tmp1 = Tmp2; | 
|  | } | 
|  |  | 
|  | // Spill the integer to memory and reload it from there. | 
|  | unsigned Size = MVT::getSizeInBits(SrcTy)/8; | 
|  | MachineFunction *F = BB->getParent(); | 
|  | int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size); | 
|  |  | 
|  | switch (SrcTy) { | 
|  | case MVT::i32: | 
|  | addFrameReference(BuildMI(BB, X86::MOV32mr, 5), | 
|  | FrameIdx).addReg(Tmp1); | 
|  | addFrameReference(BuildMI(BB, X86::FILD32m, 5, Result), FrameIdx); | 
|  | break; | 
|  | case MVT::i16: | 
|  | addFrameReference(BuildMI(BB, X86::MOV16mr, 5), | 
|  | FrameIdx).addReg(Tmp1); | 
|  | addFrameReference(BuildMI(BB, X86::FILD16m, 5, Result), FrameIdx); | 
|  | break; | 
|  | default: break; // No promotion required. | 
|  | } | 
|  |  | 
|  | if (Node->getOpcode() == ISD::UINT_TO_FP && Result != RealDestReg) { | 
|  | // If this is a cast from uint -> double, we need to be careful when if | 
|  | // the "sign" bit is set.  If so, we don't want to make a negative number, | 
|  | // we want to make a positive number.  Emit code to add an offset if the | 
|  | // sign bit is set. | 
|  |  | 
|  | // Compute whether the sign bit is set by shifting the reg right 31 bits. | 
|  | unsigned IsNeg = MakeReg(MVT::i32); | 
|  | BuildMI(BB, X86::SHR32ri, 2, IsNeg).addReg(Tmp1).addImm(31); | 
|  |  | 
|  | // Create a CP value that has the offset in one word and 0 in the other. | 
|  | static ConstantInt *TheOffset = ConstantUInt::get(Type::ULongTy, | 
|  | 0x4f80000000000000ULL); | 
|  | unsigned CPI = F->getConstantPool()->getConstantPoolIndex(TheOffset); | 
|  | BuildMI(BB, X86::FADD32m, 5, RealDestReg).addReg(Result) | 
|  | .addConstantPoolIndex(CPI).addZImm(4).addReg(IsNeg).addSImm(0); | 
|  | } | 
|  | return RealDestReg; | 
|  | } | 
|  | case ISD::FP_TO_SINT: | 
|  | case ISD::FP_TO_UINT: { | 
|  | // FIXME: Most of this grunt work should be done by legalize! | 
|  | Tmp1 = SelectExpr(N.getOperand(0));  // Get the operand register | 
|  |  | 
|  | // If the target supports SSE2 and is performing FP operations in SSE regs | 
|  | // instead of the FP stack, then we can use the efficient CVTSS2SI and | 
|  | // CVTSD2SI instructions. | 
|  | if (ISD::FP_TO_SINT == N.getOpcode() && X86ScalarSSE) { | 
|  | if (MVT::f32 == N.getOperand(0).getValueType()) { | 
|  | BuildMI(BB, X86::CVTSS2SIrr, 1, Result).addReg(Tmp1); | 
|  | } else if (MVT::f64 == N.getOperand(0).getValueType()) { | 
|  | BuildMI(BB, X86::CVTSD2SIrr, 1, Result).addReg(Tmp1); | 
|  | } else { | 
|  | assert(0 && "Not an f32 or f64?"); | 
|  | abort(); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Change the floating point control register to use "round towards zero" | 
|  | // mode when truncating to an integer value. | 
|  | // | 
|  | MachineFunction *F = BB->getParent(); | 
|  | int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); | 
|  | addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx); | 
|  |  | 
|  | // Load the old value of the high byte of the control word... | 
|  | unsigned HighPartOfCW = MakeReg(MVT::i8); | 
|  | addFrameReference(BuildMI(BB, X86::MOV8rm, 4, HighPartOfCW), | 
|  | CWFrameIdx, 1); | 
|  |  | 
|  | // Set the high part to be round to zero... | 
|  | addFrameReference(BuildMI(BB, X86::MOV8mi, 5), | 
|  | CWFrameIdx, 1).addImm(12); | 
|  |  | 
|  | // Reload the modified control word now... | 
|  | addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); | 
|  |  | 
|  | // Restore the memory image of control word to original value | 
|  | addFrameReference(BuildMI(BB, X86::MOV8mr, 5), | 
|  | CWFrameIdx, 1).addReg(HighPartOfCW); | 
|  |  | 
|  | // We don't have the facilities for directly storing byte sized data to | 
|  | // memory.  Promote it to 16 bits.  We also must promote unsigned values to | 
|  | // larger classes because we only have signed FP stores. | 
|  | MVT::ValueType StoreClass = Node->getValueType(0); | 
|  | if (StoreClass == MVT::i8 || Node->getOpcode() == ISD::FP_TO_UINT) | 
|  | switch (StoreClass) { | 
|  | case MVT::i1: | 
|  | case MVT::i8:  StoreClass = MVT::i16; break; | 
|  | case MVT::i16: StoreClass = MVT::i32; break; | 
|  | case MVT::i32: StoreClass = MVT::i64; break; | 
|  | default: assert(0 && "Unknown store class!"); | 
|  | } | 
|  |  | 
|  | // Spill the integer to memory and reload it from there. | 
|  | unsigned Size = MVT::getSizeInBits(StoreClass)/8; | 
|  | int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size); | 
|  |  | 
|  | switch (StoreClass) { | 
|  | default: assert(0 && "Unknown store class!"); | 
|  | case MVT::i16: | 
|  | addFrameReference(BuildMI(BB, X86::FIST16m, 5), FrameIdx).addReg(Tmp1); | 
|  | break; | 
|  | case MVT::i32: | 
|  | addFrameReference(BuildMI(BB, X86::FIST32m, 5), FrameIdx).addReg(Tmp1); | 
|  | break; | 
|  | case MVT::i64: | 
|  | addFrameReference(BuildMI(BB, X86::FISTP64m, 5), FrameIdx).addReg(Tmp1); | 
|  | break;    } | 
|  |  | 
|  | switch (Node->getValueType(0)) { | 
|  | default: | 
|  | assert(0 && "Unknown integer type!"); | 
|  | case MVT::i32: | 
|  | addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Result), FrameIdx); | 
|  | break; | 
|  | case MVT::i16: | 
|  | addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Result), FrameIdx); | 
|  | break; | 
|  | case MVT::i8: | 
|  | case MVT::i1: | 
|  | addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Result), FrameIdx); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Reload the original control word now. | 
|  | addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); | 
|  | return Result; | 
|  | } | 
|  | case ISD::ADD: | 
|  | Op0 = N.getOperand(0); | 
|  | Op1 = N.getOperand(1); | 
|  |  | 
|  | if (isFoldableLoad(Op0, Op1, true)) { | 
|  | std::swap(Op0, Op1); | 
|  | goto FoldAdd; | 
|  | } | 
|  |  | 
|  | if (isFoldableLoad(Op1, Op0, true)) { | 
|  | FoldAdd: | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Cannot add this type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opc = X86::ADD8rm;  break; | 
|  | case MVT::i16: Opc = X86::ADD16rm; break; | 
|  | case MVT::i32: Opc = X86::ADD32rm; break; | 
|  | case MVT::f32: Opc = X86::ADDSSrm; break; | 
|  | case MVT::f64: | 
|  | // For F64, handle promoted load operations (from F32) as well! | 
|  | if (X86ScalarSSE) { | 
|  | assert(Op1.getOpcode() == ISD::LOAD && "SSE load not promoted"); | 
|  | Opc = X86::ADDSDrm; | 
|  | } else { | 
|  | Opc = Op1.getOpcode() == ISD::LOAD ? X86::FADD64m : X86::FADD32m; | 
|  | } | 
|  | break; | 
|  | } | 
|  | X86AddressMode AM; | 
|  | EmitFoldedLoad(Op1, AM); | 
|  | Tmp1 = SelectExpr(Op0); | 
|  | addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // See if we can codegen this as an LEA to fold operations together. | 
|  | if (N.getValueType() == MVT::i32) { | 
|  | ExprMap.erase(N); | 
|  | X86ISelAddressMode AM; | 
|  | MatchAddress(N, AM); | 
|  | ExprMap[N] = Result; | 
|  |  | 
|  | // If this is not just an add, emit the LEA.  For a simple add (like | 
|  | // reg+reg or reg+imm), we just emit an add.  It might be a good idea to | 
|  | // leave this as LEA, then peephole it to 'ADD' after two address elim | 
|  | // happens. | 
|  | if (AM.Scale != 1 || AM.BaseType == X86ISelAddressMode::FrameIndexBase|| | 
|  | AM.GV || (AM.Base.Reg.Val && AM.IndexReg.Val && AM.Disp)) { | 
|  | X86AddressMode XAM = SelectAddrExprs(AM); | 
|  | addFullAddress(BuildMI(BB, X86::LEA32r, 4, Result), XAM); | 
|  | return Result; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1)) { | 
|  | Opc = 0; | 
|  | if (CN->getValue() == 1) {   // add X, 1 -> inc X | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Cannot integer add this type!"); | 
|  | case MVT::i8:  Opc = X86::INC8r; break; | 
|  | case MVT::i16: Opc = X86::INC16r; break; | 
|  | case MVT::i32: Opc = X86::INC32r; break; | 
|  | } | 
|  | } else if (CN->isAllOnesValue()) { // add X, -1 -> dec X | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Cannot integer add this type!"); | 
|  | case MVT::i8:  Opc = X86::DEC8r; break; | 
|  | case MVT::i16: Opc = X86::DEC16r; break; | 
|  | case MVT::i32: Opc = X86::DEC32r; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Opc) { | 
|  | Tmp1 = SelectExpr(Op0); | 
|  | BuildMI(BB, Opc, 1, Result).addReg(Tmp1); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Cannot add this type!"); | 
|  | case MVT::i8:  Opc = X86::ADD8ri; break; | 
|  | case MVT::i16: Opc = X86::ADD16ri; break; | 
|  | case MVT::i32: Opc = X86::ADD32ri; break; | 
|  | } | 
|  | if (Opc) { | 
|  | Tmp1 = SelectExpr(Op0); | 
|  | BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); | 
|  | return Result; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Cannot add this type!"); | 
|  | case MVT::i8:  Opc = X86::ADD8rr; break; | 
|  | case MVT::i16: Opc = X86::ADD16rr; break; | 
|  | case MVT::i32: Opc = X86::ADD32rr; break; | 
|  | case MVT::f32: Opc = X86::ADDSSrr; break; | 
|  | case MVT::f64: Opc = X86ScalarSSE ? X86::ADDSDrr : X86::FpADD; break; | 
|  | } | 
|  |  | 
|  | if (getRegPressure(Op0) > getRegPressure(Op1)) { | 
|  | Tmp1 = SelectExpr(Op0); | 
|  | Tmp2 = SelectExpr(Op1); | 
|  | } else { | 
|  | Tmp2 = SelectExpr(Op1); | 
|  | Tmp1 = SelectExpr(Op0); | 
|  | } | 
|  |  | 
|  | BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | return Result; | 
|  |  | 
|  | case ISD::FSQRT: | 
|  | Tmp1 = SelectExpr(Node->getOperand(0)); | 
|  | if (X86ScalarSSE) { | 
|  | Opc = (N.getValueType() == MVT::f32) ? X86::SQRTSSrr : X86::SQRTSDrr; | 
|  | BuildMI(BB, Opc, 1, Result).addReg(Tmp1); | 
|  | } else { | 
|  | BuildMI(BB, X86::FSQRT, 1, Result).addReg(Tmp1); | 
|  | } | 
|  | return Result; | 
|  |  | 
|  | // FIXME: | 
|  | // Once we can spill 16 byte constants into the constant pool, we can | 
|  | // implement SSE equivalents of FABS and FCHS. | 
|  | case ISD::FABS: | 
|  | case ISD::FNEG: | 
|  | case ISD::FSIN: | 
|  | case ISD::FCOS: | 
|  | assert(N.getValueType()==MVT::f64 && "Illegal type for this operation"); | 
|  | Tmp1 = SelectExpr(Node->getOperand(0)); | 
|  | switch (N.getOpcode()) { | 
|  | default: assert(0 && "Unreachable!"); | 
|  | case ISD::FABS: BuildMI(BB, X86::FABS, 1, Result).addReg(Tmp1); break; | 
|  | case ISD::FNEG: BuildMI(BB, X86::FCHS, 1, Result).addReg(Tmp1); break; | 
|  | case ISD::FSIN: BuildMI(BB, X86::FSIN, 1, Result).addReg(Tmp1); break; | 
|  | case ISD::FCOS: BuildMI(BB, X86::FCOS, 1, Result).addReg(Tmp1); break; | 
|  | } | 
|  | return Result; | 
|  |  | 
|  | case ISD::MULHU: | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Unsupported VT!"); | 
|  | case MVT::i8:  Tmp2 = X86::MUL8r;  break; | 
|  | case MVT::i16: Tmp2 = X86::MUL16r;  break; | 
|  | case MVT::i32: Tmp2 = X86::MUL32r;  break; | 
|  | } | 
|  | // FALL THROUGH | 
|  | case ISD::MULHS: { | 
|  | unsigned MovOpc, LowReg, HiReg; | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Unsupported VT!"); | 
|  | case MVT::i8: | 
|  | MovOpc = X86::MOV8rr; | 
|  | LowReg = X86::AL; | 
|  | HiReg = X86::AH; | 
|  | Opc = X86::IMUL8r; | 
|  | break; | 
|  | case MVT::i16: | 
|  | MovOpc = X86::MOV16rr; | 
|  | LowReg = X86::AX; | 
|  | HiReg = X86::DX; | 
|  | Opc = X86::IMUL16r; | 
|  | break; | 
|  | case MVT::i32: | 
|  | MovOpc = X86::MOV32rr; | 
|  | LowReg = X86::EAX; | 
|  | HiReg = X86::EDX; | 
|  | Opc = X86::IMUL32r; | 
|  | break; | 
|  | } | 
|  | if (Node->getOpcode() != ISD::MULHS) | 
|  | Opc = Tmp2;  // Get the MULHU opcode. | 
|  |  | 
|  | Op0 = Node->getOperand(0); | 
|  | Op1 = Node->getOperand(1); | 
|  | if (getRegPressure(Op0) > getRegPressure(Op1)) { | 
|  | Tmp1 = SelectExpr(Op0); | 
|  | Tmp2 = SelectExpr(Op1); | 
|  | } else { | 
|  | Tmp2 = SelectExpr(Op1); | 
|  | Tmp1 = SelectExpr(Op0); | 
|  | } | 
|  |  | 
|  | // FIXME: Implement folding of loads into the memory operands here! | 
|  | BuildMI(BB, MovOpc, 1, LowReg).addReg(Tmp1); | 
|  | BuildMI(BB, Opc, 1).addReg(Tmp2); | 
|  | BuildMI(BB, MovOpc, 1, Result).addReg(HiReg); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::SUB: | 
|  | case ISD::MUL: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: { | 
|  | static const unsigned SUBTab[] = { | 
|  | X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, 0, | 
|  | X86::SUB8rm, X86::SUB16rm, X86::SUB32rm, X86::FSUB32m, X86::FSUB64m, | 
|  | X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, X86::FpSUB  , X86::FpSUB, | 
|  | }; | 
|  | static const unsigned SSE_SUBTab[] = { | 
|  | X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, 0, | 
|  | X86::SUB8rm, X86::SUB16rm, X86::SUB32rm, X86::SUBSSrm, X86::SUBSDrm, | 
|  | X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, X86::SUBSSrr, X86::SUBSDrr, | 
|  | }; | 
|  | static const unsigned MULTab[] = { | 
|  | 0, X86::IMUL16rri, X86::IMUL32rri, 0, 0, | 
|  | 0, X86::IMUL16rm , X86::IMUL32rm, X86::FMUL32m, X86::FMUL64m, | 
|  | 0, X86::IMUL16rr , X86::IMUL32rr, X86::FpMUL  , X86::FpMUL, | 
|  | }; | 
|  | static const unsigned SSE_MULTab[] = { | 
|  | 0, X86::IMUL16rri, X86::IMUL32rri, 0, 0, | 
|  | 0, X86::IMUL16rm , X86::IMUL32rm, X86::MULSSrm, X86::MULSDrm, | 
|  | 0, X86::IMUL16rr , X86::IMUL32rr, X86::MULSSrr, X86::MULSDrr, | 
|  | }; | 
|  | static const unsigned ANDTab[] = { | 
|  | X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, 0, | 
|  | X86::AND8rm, X86::AND16rm, X86::AND32rm, 0, 0, | 
|  | X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, 0, | 
|  | }; | 
|  | static const unsigned ORTab[] = { | 
|  | X86::OR8ri, X86::OR16ri, X86::OR32ri, 0, 0, | 
|  | X86::OR8rm, X86::OR16rm, X86::OR32rm, 0, 0, | 
|  | X86::OR8rr, X86::OR16rr, X86::OR32rr, 0, 0, | 
|  | }; | 
|  | static const unsigned XORTab[] = { | 
|  | X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, 0, | 
|  | X86::XOR8rm, X86::XOR16rm, X86::XOR32rm, 0, 0, | 
|  | X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, 0, | 
|  | }; | 
|  |  | 
|  | Op0 = Node->getOperand(0); | 
|  | Op1 = Node->getOperand(1); | 
|  |  | 
|  | if (Node->getOpcode() == ISD::OR && Op0.hasOneUse() && Op1.hasOneUse()) | 
|  | if (EmitOrOpOp(Op0, Op1, Result)) // Match SHLD, SHRD, and rotates. | 
|  | return Result; | 
|  |  | 
|  | if (Node->getOpcode() == ISD::SUB) | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(0))) | 
|  | if (CN->isNullValue()) {   // 0 - N -> neg N | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Cannot sub this type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opc = X86::NEG8r;  break; | 
|  | case MVT::i16: Opc = X86::NEG16r; break; | 
|  | case MVT::i32: Opc = X86::NEG32r; break; | 
|  | } | 
|  | Tmp1 = SelectExpr(N.getOperand(1)); | 
|  | BuildMI(BB, Opc, 1, Result).addReg(Tmp1); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1)) { | 
|  | if (CN->isAllOnesValue() && Node->getOpcode() == ISD::XOR) { | 
|  | Opc = 0; | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Cannot add this type!"); | 
|  | case MVT::i1:  break;  // Not supported, don't invert upper bits! | 
|  | case MVT::i8:  Opc = X86::NOT8r;  break; | 
|  | case MVT::i16: Opc = X86::NOT16r; break; | 
|  | case MVT::i32: Opc = X86::NOT32r; break; | 
|  | } | 
|  | if (Opc) { | 
|  | Tmp1 = SelectExpr(Op0); | 
|  | BuildMI(BB, Opc, 1, Result).addReg(Tmp1); | 
|  | return Result; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fold common multiplies into LEA instructions. | 
|  | if (Node->getOpcode() == ISD::MUL && N.getValueType() == MVT::i32) { | 
|  | switch ((int)CN->getValue()) { | 
|  | default: break; | 
|  | case 3: | 
|  | case 5: | 
|  | case 9: | 
|  | // Remove N from exprmap so SelectAddress doesn't get confused. | 
|  | ExprMap.erase(N); | 
|  | X86AddressMode AM; | 
|  | SelectAddress(N, AM); | 
|  | // Restore it to the map. | 
|  | ExprMap[N] = Result; | 
|  | addFullAddress(BuildMI(BB, X86::LEA32r, 4, Result), AM); | 
|  | return Result; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Cannot xor this type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opc = 0; break; | 
|  | case MVT::i16: Opc = 1; break; | 
|  | case MVT::i32: Opc = 2; break; | 
|  | } | 
|  | switch (Node->getOpcode()) { | 
|  | default: assert(0 && "Unreachable!"); | 
|  | case ISD::SUB: Opc = X86ScalarSSE ? SSE_SUBTab[Opc] : SUBTab[Opc]; break; | 
|  | case ISD::MUL: Opc = X86ScalarSSE ? SSE_MULTab[Opc] : MULTab[Opc]; break; | 
|  | case ISD::AND: Opc = ANDTab[Opc]; break; | 
|  | case ISD::OR:  Opc =  ORTab[Opc]; break; | 
|  | case ISD::XOR: Opc = XORTab[Opc]; break; | 
|  | } | 
|  | if (Opc) {  // Can't fold MUL:i8 R, imm | 
|  | Tmp1 = SelectExpr(Op0); | 
|  | BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); | 
|  | return Result; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isFoldableLoad(Op0, Op1, true)) | 
|  | if (Node->getOpcode() != ISD::SUB) { | 
|  | std::swap(Op0, Op1); | 
|  | goto FoldOps; | 
|  | } else { | 
|  | // For FP, emit 'reverse' subract, with a memory operand. | 
|  | if (N.getValueType() == MVT::f64 && !X86ScalarSSE) { | 
|  | if (Op0.getOpcode() == ISD::EXTLOAD) | 
|  | Opc = X86::FSUBR32m; | 
|  | else | 
|  | Opc = X86::FSUBR64m; | 
|  |  | 
|  | X86AddressMode AM; | 
|  | EmitFoldedLoad(Op0, AM); | 
|  | Tmp1 = SelectExpr(Op1); | 
|  | addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM); | 
|  | return Result; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isFoldableLoad(Op1, Op0, true)) { | 
|  | FoldOps: | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Cannot operate on this type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opc = 5; break; | 
|  | case MVT::i16: Opc = 6; break; | 
|  | case MVT::i32: Opc = 7; break; | 
|  | case MVT::f32: Opc = 8; break; | 
|  | // For F64, handle promoted load operations (from F32) as well! | 
|  | case MVT::f64: | 
|  | assert((!X86ScalarSSE || Op1.getOpcode() == ISD::LOAD) && | 
|  | "SSE load should have been promoted"); | 
|  | Opc = Op1.getOpcode() == ISD::LOAD ? 9 : 8; break; | 
|  | } | 
|  | switch (Node->getOpcode()) { | 
|  | default: assert(0 && "Unreachable!"); | 
|  | case ISD::SUB: Opc = X86ScalarSSE ? SSE_SUBTab[Opc] : SUBTab[Opc]; break; | 
|  | case ISD::MUL: Opc = X86ScalarSSE ? SSE_MULTab[Opc] : MULTab[Opc]; break; | 
|  | case ISD::AND: Opc = ANDTab[Opc]; break; | 
|  | case ISD::OR:  Opc =  ORTab[Opc]; break; | 
|  | case ISD::XOR: Opc = XORTab[Opc]; break; | 
|  | } | 
|  |  | 
|  | X86AddressMode AM; | 
|  | EmitFoldedLoad(Op1, AM); | 
|  | Tmp1 = SelectExpr(Op0); | 
|  | if (Opc) { | 
|  | addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM); | 
|  | } else { | 
|  | assert(Node->getOpcode() == ISD::MUL && | 
|  | N.getValueType() == MVT::i8 && "Unexpected situation!"); | 
|  | // Must use the MUL instruction, which forces use of AL. | 
|  | BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(Tmp1); | 
|  | addFullAddress(BuildMI(BB, X86::MUL8m, 1), AM); | 
|  | BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | if (getRegPressure(Op0) > getRegPressure(Op1)) { | 
|  | Tmp1 = SelectExpr(Op0); | 
|  | Tmp2 = SelectExpr(Op1); | 
|  | } else { | 
|  | Tmp2 = SelectExpr(Op1); | 
|  | Tmp1 = SelectExpr(Op0); | 
|  | } | 
|  |  | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Cannot add this type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opc = 10; break; | 
|  | case MVT::i16: Opc = 11; break; | 
|  | case MVT::i32: Opc = 12; break; | 
|  | case MVT::f32: Opc = 13; break; | 
|  | case MVT::f64: Opc = 14; break; | 
|  | } | 
|  | switch (Node->getOpcode()) { | 
|  | default: assert(0 && "Unreachable!"); | 
|  | case ISD::SUB: Opc = X86ScalarSSE ? SSE_SUBTab[Opc] : SUBTab[Opc]; break; | 
|  | case ISD::MUL: Opc = X86ScalarSSE ? SSE_MULTab[Opc] : MULTab[Opc]; break; | 
|  | case ISD::AND: Opc = ANDTab[Opc]; break; | 
|  | case ISD::OR:  Opc =  ORTab[Opc]; break; | 
|  | case ISD::XOR: Opc = XORTab[Opc]; break; | 
|  | } | 
|  | if (Opc) { | 
|  | BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | } else { | 
|  | assert(Node->getOpcode() == ISD::MUL && | 
|  | N.getValueType() == MVT::i8 && "Unexpected situation!"); | 
|  | // Must use the MUL instruction, which forces use of AL. | 
|  | BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(Tmp1); | 
|  | BuildMI(BB, X86::MUL8r, 1).addReg(Tmp2); | 
|  | BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  | case ISD::ADD_PARTS: | 
|  | case ISD::SUB_PARTS: { | 
|  | assert(N.getNumOperands() == 4 && N.getValueType() == MVT::i32 && | 
|  | "Not an i64 add/sub!"); | 
|  | // Emit all of the operands. | 
|  | std::vector<unsigned> InVals; | 
|  | for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i) | 
|  | InVals.push_back(SelectExpr(N.getOperand(i))); | 
|  | if (N.getOpcode() == ISD::ADD_PARTS) { | 
|  | BuildMI(BB, X86::ADD32rr, 2, Result).addReg(InVals[0]).addReg(InVals[2]); | 
|  | BuildMI(BB, X86::ADC32rr,2,Result+1).addReg(InVals[1]).addReg(InVals[3]); | 
|  | } else { | 
|  | BuildMI(BB, X86::SUB32rr, 2, Result).addReg(InVals[0]).addReg(InVals[2]); | 
|  | BuildMI(BB, X86::SBB32rr, 2,Result+1).addReg(InVals[1]).addReg(InVals[3]); | 
|  | } | 
|  | return Result+N.ResNo; | 
|  | } | 
|  |  | 
|  | case ISD::SHL_PARTS: | 
|  | case ISD::SRA_PARTS: | 
|  | case ISD::SRL_PARTS: { | 
|  | assert(N.getNumOperands() == 3 && N.getValueType() == MVT::i32 && | 
|  | "Not an i64 shift!"); | 
|  | unsigned ShiftOpLo = SelectExpr(N.getOperand(0)); | 
|  | unsigned ShiftOpHi = SelectExpr(N.getOperand(1)); | 
|  | unsigned TmpReg = MakeReg(MVT::i32); | 
|  | if (N.getOpcode() == ISD::SRA_PARTS) { | 
|  | // If this is a SHR of a Long, then we need to do funny sign extension | 
|  | // stuff.  TmpReg gets the value to use as the high-part if we are | 
|  | // shifting more than 32 bits. | 
|  | BuildMI(BB, X86::SAR32ri, 2, TmpReg).addReg(ShiftOpHi).addImm(31); | 
|  | } else { | 
|  | // Other shifts use a fixed zero value if the shift is more than 32 bits. | 
|  | BuildMI(BB, X86::MOV32ri, 1, TmpReg).addImm(0); | 
|  | } | 
|  |  | 
|  | // Initialize CL with the shift amount. | 
|  | unsigned ShiftAmountReg = SelectExpr(N.getOperand(2)); | 
|  | BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg); | 
|  |  | 
|  | unsigned TmpReg2 = MakeReg(MVT::i32); | 
|  | unsigned TmpReg3 = MakeReg(MVT::i32); | 
|  | if (N.getOpcode() == ISD::SHL_PARTS) { | 
|  | // TmpReg2 = shld inHi, inLo | 
|  | BuildMI(BB, X86::SHLD32rrCL, 2,TmpReg2).addReg(ShiftOpHi) | 
|  | .addReg(ShiftOpLo); | 
|  | // TmpReg3 = shl  inLo, CL | 
|  | BuildMI(BB, X86::SHL32rCL, 1, TmpReg3).addReg(ShiftOpLo); | 
|  |  | 
|  | // Set the flags to indicate whether the shift was by more than 32 bits. | 
|  | BuildMI(BB, X86::TEST8ri, 2).addReg(X86::CL).addImm(32); | 
|  |  | 
|  | // DestHi = (>32) ? TmpReg3 : TmpReg2; | 
|  | BuildMI(BB, X86::CMOVNE32rr, 2, | 
|  | Result+1).addReg(TmpReg2).addReg(TmpReg3); | 
|  | // DestLo = (>32) ? TmpReg : TmpReg3; | 
|  | BuildMI(BB, X86::CMOVNE32rr, 2, | 
|  | Result).addReg(TmpReg3).addReg(TmpReg); | 
|  | } else { | 
|  | // TmpReg2 = shrd inLo, inHi | 
|  | BuildMI(BB, X86::SHRD32rrCL,2,TmpReg2).addReg(ShiftOpLo) | 
|  | .addReg(ShiftOpHi); | 
|  | // TmpReg3 = s[ah]r  inHi, CL | 
|  | BuildMI(BB, N.getOpcode() == ISD::SRA_PARTS ? X86::SAR32rCL | 
|  | : X86::SHR32rCL, 1, TmpReg3) | 
|  | .addReg(ShiftOpHi); | 
|  |  | 
|  | // Set the flags to indicate whether the shift was by more than 32 bits. | 
|  | BuildMI(BB, X86::TEST8ri, 2).addReg(X86::CL).addImm(32); | 
|  |  | 
|  | // DestLo = (>32) ? TmpReg3 : TmpReg2; | 
|  | BuildMI(BB, X86::CMOVNE32rr, 2, | 
|  | Result).addReg(TmpReg2).addReg(TmpReg3); | 
|  |  | 
|  | // DestHi = (>32) ? TmpReg : TmpReg3; | 
|  | BuildMI(BB, X86::CMOVNE32rr, 2, | 
|  | Result+1).addReg(TmpReg3).addReg(TmpReg); | 
|  | } | 
|  | return Result+N.ResNo; | 
|  | } | 
|  |  | 
|  | case ISD::SELECT: | 
|  | if (getRegPressure(N.getOperand(1)) > getRegPressure(N.getOperand(2))) { | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  | Tmp3 = SelectExpr(N.getOperand(2)); | 
|  | } else { | 
|  | Tmp3 = SelectExpr(N.getOperand(2)); | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  | } | 
|  | EmitSelectCC(N.getOperand(0), N.getValueType(), Tmp2, Tmp3, Result); | 
|  | return Result; | 
|  |  | 
|  | case ISD::SDIV: | 
|  | case ISD::UDIV: | 
|  | case ISD::SREM: | 
|  | case ISD::UREM: { | 
|  | assert((N.getOpcode() != ISD::SREM || MVT::isInteger(N.getValueType())) && | 
|  | "We don't support this operator!"); | 
|  |  | 
|  | if (N.getOpcode() == ISD::SDIV) { | 
|  | // We can fold loads into FpDIVs, but not really into any others. | 
|  | if (N.getValueType() == MVT::f64 && !X86ScalarSSE) { | 
|  | // Check for reversed and unreversed DIV. | 
|  | if (isFoldableLoad(N.getOperand(0), N.getOperand(1), true)) { | 
|  | if (N.getOperand(0).getOpcode() == ISD::EXTLOAD) | 
|  | Opc = X86::FDIVR32m; | 
|  | else | 
|  | Opc = X86::FDIVR64m; | 
|  | X86AddressMode AM; | 
|  | EmitFoldedLoad(N.getOperand(0), AM); | 
|  | Tmp1 = SelectExpr(N.getOperand(1)); | 
|  | addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM); | 
|  | return Result; | 
|  | } else if (isFoldableLoad(N.getOperand(1), N.getOperand(0), true) && | 
|  | N.getOperand(1).getOpcode() == ISD::LOAD) { | 
|  | if (N.getOperand(1).getOpcode() == ISD::EXTLOAD) | 
|  | Opc = X86::FDIV32m; | 
|  | else | 
|  | Opc = X86::FDIV64m; | 
|  | X86AddressMode AM; | 
|  | EmitFoldedLoad(N.getOperand(1), AM); | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM); | 
|  | return Result; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | // FIXME: These special cases should be handled by the lowering impl! | 
|  | unsigned RHS = CN->getValue(); | 
|  | bool isNeg = false; | 
|  | if ((int)RHS < 0) { | 
|  | isNeg = true; | 
|  | RHS = -RHS; | 
|  | } | 
|  | if (RHS && (RHS & (RHS-1)) == 0) {   // Signed division by power of 2? | 
|  | unsigned Log = log2(RHS); | 
|  | unsigned SAROpc, SHROpc, ADDOpc, NEGOpc; | 
|  | switch (N.getValueType()) { | 
|  | default: assert("Unknown type to signed divide!"); | 
|  | case MVT::i8: | 
|  | SAROpc = X86::SAR8ri; | 
|  | SHROpc = X86::SHR8ri; | 
|  | ADDOpc = X86::ADD8rr; | 
|  | NEGOpc = X86::NEG8r; | 
|  | break; | 
|  | case MVT::i16: | 
|  | SAROpc = X86::SAR16ri; | 
|  | SHROpc = X86::SHR16ri; | 
|  | ADDOpc = X86::ADD16rr; | 
|  | NEGOpc = X86::NEG16r; | 
|  | break; | 
|  | case MVT::i32: | 
|  | SAROpc = X86::SAR32ri; | 
|  | SHROpc = X86::SHR32ri; | 
|  | ADDOpc = X86::ADD32rr; | 
|  | NEGOpc = X86::NEG32r; | 
|  | break; | 
|  | } | 
|  | unsigned RegSize = MVT::getSizeInBits(N.getValueType()); | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | unsigned TmpReg; | 
|  | if (Log != 1) { | 
|  | TmpReg = MakeReg(N.getValueType()); | 
|  | BuildMI(BB, SAROpc, 2, TmpReg).addReg(Tmp1).addImm(Log-1); | 
|  | } else { | 
|  | TmpReg = Tmp1; | 
|  | } | 
|  | unsigned TmpReg2 = MakeReg(N.getValueType()); | 
|  | BuildMI(BB, SHROpc, 2, TmpReg2).addReg(TmpReg).addImm(RegSize-Log); | 
|  | unsigned TmpReg3 = MakeReg(N.getValueType()); | 
|  | BuildMI(BB, ADDOpc, 2, TmpReg3).addReg(Tmp1).addReg(TmpReg2); | 
|  |  | 
|  | unsigned TmpReg4 = isNeg ? MakeReg(N.getValueType()) : Result; | 
|  | BuildMI(BB, SAROpc, 2, TmpReg4).addReg(TmpReg3).addImm(Log); | 
|  | if (isNeg) | 
|  | BuildMI(BB, NEGOpc, 1, Result).addReg(TmpReg4); | 
|  | return Result; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  | } else { | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | } | 
|  |  | 
|  | bool isSigned = N.getOpcode() == ISD::SDIV || N.getOpcode() == ISD::SREM; | 
|  | bool isDiv    = N.getOpcode() == ISD::SDIV || N.getOpcode() == ISD::UDIV; | 
|  | unsigned LoReg, HiReg, DivOpcode, MovOpcode, ClrOpcode, SExtOpcode; | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Cannot sdiv this type!"); | 
|  | case MVT::i8: | 
|  | DivOpcode = isSigned ? X86::IDIV8r : X86::DIV8r; | 
|  | LoReg = X86::AL; | 
|  | HiReg = X86::AH; | 
|  | MovOpcode = X86::MOV8rr; | 
|  | ClrOpcode = X86::MOV8ri; | 
|  | SExtOpcode = X86::CBW; | 
|  | break; | 
|  | case MVT::i16: | 
|  | DivOpcode = isSigned ? X86::IDIV16r : X86::DIV16r; | 
|  | LoReg = X86::AX; | 
|  | HiReg = X86::DX; | 
|  | MovOpcode = X86::MOV16rr; | 
|  | ClrOpcode = X86::MOV16ri; | 
|  | SExtOpcode = X86::CWD; | 
|  | break; | 
|  | case MVT::i32: | 
|  | DivOpcode = isSigned ? X86::IDIV32r : X86::DIV32r; | 
|  | LoReg = X86::EAX; | 
|  | HiReg = X86::EDX; | 
|  | MovOpcode = X86::MOV32rr; | 
|  | ClrOpcode = X86::MOV32ri; | 
|  | SExtOpcode = X86::CDQ; | 
|  | break; | 
|  | case MVT::f32: | 
|  | BuildMI(BB, X86::DIVSSrr, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | return Result; | 
|  | case MVT::f64: | 
|  | Opc = X86ScalarSSE ? X86::DIVSDrr : X86::FpDIV; | 
|  | BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Set up the low part. | 
|  | BuildMI(BB, MovOpcode, 1, LoReg).addReg(Tmp1); | 
|  |  | 
|  | if (isSigned) { | 
|  | // Sign extend the low part into the high part. | 
|  | BuildMI(BB, SExtOpcode, 0); | 
|  | } else { | 
|  | // Zero out the high part, effectively zero extending the input. | 
|  | BuildMI(BB, ClrOpcode, 1, HiReg).addImm(0); | 
|  | } | 
|  |  | 
|  | // Emit the DIV/IDIV instruction. | 
|  | BuildMI(BB, DivOpcode, 1).addReg(Tmp2); | 
|  |  | 
|  | // Get the result of the divide or rem. | 
|  | BuildMI(BB, MovOpcode, 1, Result).addReg(isDiv ? LoReg : HiReg); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::SHL: | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | if (CN->getValue() == 1) {   // X = SHL Y, 1  -> X = ADD Y, Y | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Cannot shift this type!"); | 
|  | case MVT::i8:  Opc = X86::ADD8rr; break; | 
|  | case MVT::i16: Opc = X86::ADD16rr; break; | 
|  | case MVT::i32: Opc = X86::ADD32rr; break; | 
|  | } | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp1); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Cannot shift this type!"); | 
|  | case MVT::i8:  Opc = X86::SHL8ri; break; | 
|  | case MVT::i16: Opc = X86::SHL16ri; break; | 
|  | case MVT::i32: Opc = X86::SHL32ri; break; | 
|  | } | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  | } else { | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | } | 
|  |  | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Cannot shift this type!"); | 
|  | case MVT::i8 : Opc = X86::SHL8rCL; break; | 
|  | case MVT::i16: Opc = X86::SHL16rCL; break; | 
|  | case MVT::i32: Opc = X86::SHL32rCL; break; | 
|  | } | 
|  | BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2); | 
|  | BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | return Result; | 
|  | case ISD::SRL: | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Cannot shift this type!"); | 
|  | case MVT::i8:  Opc = X86::SHR8ri; break; | 
|  | case MVT::i16: Opc = X86::SHR16ri; break; | 
|  | case MVT::i32: Opc = X86::SHR32ri; break; | 
|  | } | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  | } else { | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | } | 
|  |  | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Cannot shift this type!"); | 
|  | case MVT::i8 : Opc = X86::SHR8rCL; break; | 
|  | case MVT::i16: Opc = X86::SHR16rCL; break; | 
|  | case MVT::i32: Opc = X86::SHR32rCL; break; | 
|  | } | 
|  | BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2); | 
|  | BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | return Result; | 
|  | case ISD::SRA: | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Cannot shift this type!"); | 
|  | case MVT::i8:  Opc = X86::SAR8ri; break; | 
|  | case MVT::i16: Opc = X86::SAR16ri; break; | 
|  | case MVT::i32: Opc = X86::SAR32ri; break; | 
|  | } | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  | } else { | 
|  | Tmp2 = SelectExpr(N.getOperand(1)); | 
|  | Tmp1 = SelectExpr(N.getOperand(0)); | 
|  | } | 
|  |  | 
|  | switch (N.getValueType()) { | 
|  | default: assert(0 && "Cannot shift this type!"); | 
|  | case MVT::i8 : Opc = X86::SAR8rCL; break; | 
|  | case MVT::i16: Opc = X86::SAR16rCL; break; | 
|  | case MVT::i32: Opc = X86::SAR32rCL; break; | 
|  | } | 
|  | BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2); | 
|  | BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); | 
|  | return Result; | 
|  |  | 
|  | case ISD::SETCC: | 
|  | EmitCMP(N.getOperand(0), N.getOperand(1), Node->hasOneUse()); | 
|  | EmitSetCC(BB, Result, cast<SetCCSDNode>(N)->getCondition(), | 
|  | MVT::isFloatingPoint(N.getOperand(1).getValueType())); | 
|  | return Result; | 
|  | case ISD::LOAD: | 
|  | // Make sure we generate both values. | 
|  | if (Result != 1) {  // Generate the token | 
|  | if (!ExprMap.insert(std::make_pair(N.getValue(1), 1)).second) | 
|  | assert(0 && "Load already emitted!?"); | 
|  | } else | 
|  | Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); | 
|  |  | 
|  | switch (Node->getValueType(0)) { | 
|  | default: assert(0 && "Cannot load this type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opc = X86::MOV8rm; break; | 
|  | case MVT::i16: Opc = X86::MOV16rm; break; | 
|  | case MVT::i32: Opc = X86::MOV32rm; break; | 
|  | case MVT::f32: Opc = X86::MOVSSrm; break; | 
|  | case MVT::f64: | 
|  | if (X86ScalarSSE) { | 
|  | Opc = X86::MOVSDrm; | 
|  | } else { | 
|  | Opc = X86::FLD64m; | 
|  | ContainsFPCode = true; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N.getOperand(1))){ | 
|  | Select(N.getOperand(0)); | 
|  | addConstantPoolReference(BuildMI(BB, Opc, 4, Result), CP->getIndex()); | 
|  | } else { | 
|  | X86AddressMode AM; | 
|  |  | 
|  | SDOperand Chain   = N.getOperand(0); | 
|  | SDOperand Address = N.getOperand(1); | 
|  | if (getRegPressure(Chain) > getRegPressure(Address)) { | 
|  | Select(Chain); | 
|  | SelectAddress(Address, AM); | 
|  | } else { | 
|  | SelectAddress(Address, AM); | 
|  | Select(Chain); | 
|  | } | 
|  |  | 
|  | addFullAddress(BuildMI(BB, Opc, 4, Result), AM); | 
|  | } | 
|  | return Result; | 
|  | case X86ISD::FILD64m: | 
|  | // Make sure we generate both values. | 
|  | assert(Result != 1 && N.getValueType() == MVT::f64); | 
|  | if (!ExprMap.insert(std::make_pair(N.getValue(1), 1)).second) | 
|  | assert(0 && "Load already emitted!?"); | 
|  |  | 
|  | { | 
|  | X86AddressMode AM; | 
|  |  | 
|  | SDOperand Chain   = N.getOperand(0); | 
|  | SDOperand Address = N.getOperand(1); | 
|  | if (getRegPressure(Chain) > getRegPressure(Address)) { | 
|  | Select(Chain); | 
|  | SelectAddress(Address, AM); | 
|  | } else { | 
|  | SelectAddress(Address, AM); | 
|  | Select(Chain); | 
|  | } | 
|  |  | 
|  | addFullAddress(BuildMI(BB, X86::FILD64m, 4, Result), AM); | 
|  | } | 
|  | return Result; | 
|  |  | 
|  | case ISD::EXTLOAD:          // Arbitrarily codegen extloads as MOVZX* | 
|  | case ISD::ZEXTLOAD: { | 
|  | // Make sure we generate both values. | 
|  | if (Result != 1) | 
|  | ExprMap[N.getValue(1)] = 1;   // Generate the token | 
|  | else | 
|  | Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); | 
|  |  | 
|  | if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N.getOperand(1))) | 
|  | if (Node->getValueType(0) == MVT::f64) { | 
|  | assert(cast<VTSDNode>(Node->getOperand(3))->getVT() == MVT::f32 && | 
|  | "Bad EXTLOAD!"); | 
|  | addConstantPoolReference(BuildMI(BB, X86::FLD32m, 4, Result), | 
|  | CP->getIndex()); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | X86AddressMode AM; | 
|  | if (getRegPressure(Node->getOperand(0)) > | 
|  | getRegPressure(Node->getOperand(1))) { | 
|  | Select(Node->getOperand(0)); // chain | 
|  | SelectAddress(Node->getOperand(1), AM); | 
|  | } else { | 
|  | SelectAddress(Node->getOperand(1), AM); | 
|  | Select(Node->getOperand(0)); // chain | 
|  | } | 
|  |  | 
|  | switch (Node->getValueType(0)) { | 
|  | default: assert(0 && "Unknown type to sign extend to."); | 
|  | case MVT::f64: | 
|  | assert(cast<VTSDNode>(Node->getOperand(3))->getVT() == MVT::f32 && | 
|  | "Bad EXTLOAD!"); | 
|  | addFullAddress(BuildMI(BB, X86::FLD32m, 5, Result), AM); | 
|  | break; | 
|  | case MVT::i32: | 
|  | switch (cast<VTSDNode>(Node->getOperand(3))->getVT()) { | 
|  | default: | 
|  | assert(0 && "Bad zero extend!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | addFullAddress(BuildMI(BB, X86::MOVZX32rm8, 5, Result), AM); | 
|  | break; | 
|  | case MVT::i16: | 
|  | addFullAddress(BuildMI(BB, X86::MOVZX32rm16, 5, Result), AM); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case MVT::i16: | 
|  | assert(cast<VTSDNode>(Node->getOperand(3))->getVT() <= MVT::i8 && | 
|  | "Bad zero extend!"); | 
|  | addFullAddress(BuildMI(BB, X86::MOVSX16rm8, 5, Result), AM); | 
|  | break; | 
|  | case MVT::i8: | 
|  | assert(cast<VTSDNode>(Node->getOperand(3))->getVT() == MVT::i1 && | 
|  | "Bad zero extend!"); | 
|  | addFullAddress(BuildMI(BB, X86::MOV8rm, 5, Result), AM); | 
|  | break; | 
|  | } | 
|  | return Result; | 
|  | } | 
|  | case ISD::SEXTLOAD: { | 
|  | // Make sure we generate both values. | 
|  | if (Result != 1) | 
|  | ExprMap[N.getValue(1)] = 1;   // Generate the token | 
|  | else | 
|  | Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); | 
|  |  | 
|  | X86AddressMode AM; | 
|  | if (getRegPressure(Node->getOperand(0)) > | 
|  | getRegPressure(Node->getOperand(1))) { | 
|  | Select(Node->getOperand(0)); // chain | 
|  | SelectAddress(Node->getOperand(1), AM); | 
|  | } else { | 
|  | SelectAddress(Node->getOperand(1), AM); | 
|  | Select(Node->getOperand(0)); // chain | 
|  | } | 
|  |  | 
|  | switch (Node->getValueType(0)) { | 
|  | case MVT::i8: assert(0 && "Cannot sign extend from bool!"); | 
|  | default: assert(0 && "Unknown type to sign extend to."); | 
|  | case MVT::i32: | 
|  | switch (cast<VTSDNode>(Node->getOperand(3))->getVT()) { | 
|  | default: | 
|  | case MVT::i1: assert(0 && "Cannot sign extend from bool!"); | 
|  | case MVT::i8: | 
|  | addFullAddress(BuildMI(BB, X86::MOVSX32rm8, 5, Result), AM); | 
|  | break; | 
|  | case MVT::i16: | 
|  | addFullAddress(BuildMI(BB, X86::MOVSX32rm16, 5, Result), AM); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case MVT::i16: | 
|  | assert(cast<VTSDNode>(Node->getOperand(3))->getVT() == MVT::i8 && | 
|  | "Cannot sign extend from bool!"); | 
|  | addFullAddress(BuildMI(BB, X86::MOVSX16rm8, 5, Result), AM); | 
|  | break; | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::DYNAMIC_STACKALLOC: | 
|  | // Generate both result values. | 
|  | if (Result != 1) | 
|  | ExprMap[N.getValue(1)] = 1;   // Generate the token | 
|  | else | 
|  | Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); | 
|  |  | 
|  | // FIXME: We are currently ignoring the requested alignment for handling | 
|  | // greater than the stack alignment.  This will need to be revisited at some | 
|  | // point.  Align = N.getOperand(2); | 
|  |  | 
|  | if (!isa<ConstantSDNode>(N.getOperand(2)) || | 
|  | cast<ConstantSDNode>(N.getOperand(2))->getValue() != 0) { | 
|  | std::cerr << "Cannot allocate stack object with greater alignment than" | 
|  | << " the stack alignment yet!"; | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | Select(N.getOperand(0)); | 
|  | BuildMI(BB, X86::SUB32ri, 2, X86::ESP).addReg(X86::ESP) | 
|  | .addImm(CN->getValue()); | 
|  | } else { | 
|  | if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { | 
|  | Select(N.getOperand(0)); | 
|  | Tmp1 = SelectExpr(N.getOperand(1)); | 
|  | } else { | 
|  | Tmp1 = SelectExpr(N.getOperand(1)); | 
|  | Select(N.getOperand(0)); | 
|  | } | 
|  |  | 
|  | // Subtract size from stack pointer, thereby allocating some space. | 
|  | BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(Tmp1); | 
|  | } | 
|  |  | 
|  | // Put a pointer to the space into the result register, by copying the stack | 
|  | // pointer. | 
|  | BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::ESP); | 
|  | return Result; | 
|  |  | 
|  | case X86ISD::TAILCALL: | 
|  | case X86ISD::CALL: { | 
|  | // The chain for this call is now lowered. | 
|  | ExprMap.insert(std::make_pair(N.getValue(0), 1)); | 
|  |  | 
|  | bool isDirect = isa<GlobalAddressSDNode>(N.getOperand(1)) || | 
|  | isa<ExternalSymbolSDNode>(N.getOperand(1)); | 
|  | unsigned Callee = 0; | 
|  | if (isDirect) { | 
|  | Select(N.getOperand(0)); | 
|  | } else { | 
|  | if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { | 
|  | Select(N.getOperand(0)); | 
|  | Callee = SelectExpr(N.getOperand(1)); | 
|  | } else { | 
|  | Callee = SelectExpr(N.getOperand(1)); | 
|  | Select(N.getOperand(0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this call has values to pass in registers, do so now. | 
|  | if (Node->getNumOperands() > 4) { | 
|  | // The first value is passed in (a part of) EAX, the second in EDX. | 
|  | unsigned RegOp1 = SelectExpr(N.getOperand(4)); | 
|  | unsigned RegOp2 = | 
|  | Node->getNumOperands() > 5 ? SelectExpr(N.getOperand(5)) : 0; | 
|  |  | 
|  | switch (N.getOperand(4).getValueType()) { | 
|  | default: assert(0 && "Bad thing to pass in regs"); | 
|  | case MVT::i1: | 
|  | case MVT::i8:  BuildMI(BB, X86::MOV8rr , 1,X86::AL).addReg(RegOp1); break; | 
|  | case MVT::i16: BuildMI(BB, X86::MOV16rr, 1,X86::AX).addReg(RegOp1); break; | 
|  | case MVT::i32: BuildMI(BB, X86::MOV32rr, 1,X86::EAX).addReg(RegOp1);break; | 
|  | } | 
|  | if (RegOp2) | 
|  | switch (N.getOperand(5).getValueType()) { | 
|  | default: assert(0 && "Bad thing to pass in regs"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | BuildMI(BB, X86::MOV8rr , 1, X86::DL).addReg(RegOp2); | 
|  | break; | 
|  | case MVT::i16: | 
|  | BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(RegOp2); | 
|  | break; | 
|  | case MVT::i32: | 
|  | BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RegOp2); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (GlobalAddressSDNode *GASD = | 
|  | dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) { | 
|  | BuildMI(BB, X86::CALLpcrel32, 1).addGlobalAddress(GASD->getGlobal(),true); | 
|  | } else if (ExternalSymbolSDNode *ESSDN = | 
|  | dyn_cast<ExternalSymbolSDNode>(N.getOperand(1))) { | 
|  | BuildMI(BB, X86::CALLpcrel32, | 
|  | 1).addExternalSymbol(ESSDN->getSymbol(), true); | 
|  | } else { | 
|  | if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { | 
|  | Select(N.getOperand(0)); | 
|  | Tmp1 = SelectExpr(N.getOperand(1)); | 
|  | } else { | 
|  | Tmp1 = SelectExpr(N.getOperand(1)); | 
|  | Select(N.getOperand(0)); | 
|  | } | 
|  |  | 
|  | BuildMI(BB, X86::CALL32r, 1).addReg(Tmp1); | 
|  | } | 
|  |  | 
|  | // Get caller stack amount and amount the callee added to the stack pointer. | 
|  | Tmp1 = cast<ConstantSDNode>(N.getOperand(2))->getValue(); | 
|  | Tmp2 = cast<ConstantSDNode>(N.getOperand(3))->getValue(); | 
|  | BuildMI(BB, X86::ADJCALLSTACKUP, 2).addImm(Tmp1).addImm(Tmp2); | 
|  |  | 
|  | if (Node->getNumValues() != 1) | 
|  | switch (Node->getValueType(1)) { | 
|  | default: assert(0 && "Unknown value type for call result!"); | 
|  | case MVT::Other: return 1; | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL); | 
|  | break; | 
|  | case MVT::i16: | 
|  | BuildMI(BB, X86::MOV16rr, 1, Result).addReg(X86::AX); | 
|  | break; | 
|  | case MVT::i32: | 
|  | BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::EAX); | 
|  | if (Node->getNumValues() == 3 && Node->getValueType(2) == MVT::i32) | 
|  | BuildMI(BB, X86::MOV32rr, 1, Result+1).addReg(X86::EDX); | 
|  | break; | 
|  | case MVT::f64:     // Floating-point return values live in %ST(0) | 
|  | if (X86ScalarSSE) { | 
|  | ContainsFPCode = true; | 
|  | BuildMI(BB, X86::FpGETRESULT, 1, X86::FP0); | 
|  |  | 
|  | unsigned Size = MVT::getSizeInBits(MVT::f64)/8; | 
|  | MachineFunction *F = BB->getParent(); | 
|  | int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size); | 
|  | addFrameReference(BuildMI(BB, X86::FST64m, 5), FrameIdx).addReg(X86::FP0); | 
|  | addFrameReference(BuildMI(BB, X86::MOVSDrm, 4, Result), FrameIdx); | 
|  | break; | 
|  | } else { | 
|  | ContainsFPCode = true; | 
|  | BuildMI(BB, X86::FpGETRESULT, 1, Result); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return Result+N.ResNo-1; | 
|  | } | 
|  | case ISD::READPORT: | 
|  | // First, determine that the size of the operand falls within the acceptable | 
|  | // range for this architecture. | 
|  | // | 
|  | if (Node->getOperand(1).getValueType() != MVT::i16) { | 
|  | std::cerr << "llvm.readport: Address size is not 16 bits\n"; | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | // Make sure we generate both values. | 
|  | if (Result != 1) {  // Generate the token | 
|  | if (!ExprMap.insert(std::make_pair(N.getValue(1), 1)).second) | 
|  | assert(0 && "readport already emitted!?"); | 
|  | } else | 
|  | Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); | 
|  |  | 
|  | Select(Node->getOperand(0));  // Select the chain. | 
|  |  | 
|  | // If the port is a single-byte constant, use the immediate form. | 
|  | if (ConstantSDNode *Port = dyn_cast<ConstantSDNode>(Node->getOperand(1))) | 
|  | if ((Port->getValue() & 255) == Port->getValue()) { | 
|  | switch (Node->getValueType(0)) { | 
|  | case MVT::i8: | 
|  | BuildMI(BB, X86::IN8ri, 1).addImm(Port->getValue()); | 
|  | BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL); | 
|  | return Result; | 
|  | case MVT::i16: | 
|  | BuildMI(BB, X86::IN16ri, 1).addImm(Port->getValue()); | 
|  | BuildMI(BB, X86::MOV16rr, 1, Result).addReg(X86::AX); | 
|  | return Result; | 
|  | case MVT::i32: | 
|  | BuildMI(BB, X86::IN32ri, 1).addImm(Port->getValue()); | 
|  | BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::EAX); | 
|  | return Result; | 
|  | default: break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now, move the I/O port address into the DX register and use the IN | 
|  | // instruction to get the input data. | 
|  | // | 
|  | Tmp1 = SelectExpr(Node->getOperand(1)); | 
|  | BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Tmp1); | 
|  | switch (Node->getValueType(0)) { | 
|  | case MVT::i8: | 
|  | BuildMI(BB, X86::IN8rr, 0); | 
|  | BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL); | 
|  | return Result; | 
|  | case MVT::i16: | 
|  | BuildMI(BB, X86::IN16rr, 0); | 
|  | BuildMI(BB, X86::MOV16rr, 1, Result).addReg(X86::AX); | 
|  | return Result; | 
|  | case MVT::i32: | 
|  | BuildMI(BB, X86::IN32rr, 0); | 
|  | BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::EAX); | 
|  | return Result; | 
|  | default: | 
|  | std::cerr << "Cannot do input on this data type"; | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// TryToFoldLoadOpStore - Given a store node, try to fold together a | 
|  | /// load/op/store instruction.  If successful return true. | 
|  | bool ISel::TryToFoldLoadOpStore(SDNode *Node) { | 
|  | assert(Node->getOpcode() == ISD::STORE && "Can only do this for stores!"); | 
|  | SDOperand Chain  = Node->getOperand(0); | 
|  | SDOperand StVal  = Node->getOperand(1); | 
|  | SDOperand StPtr  = Node->getOperand(2); | 
|  |  | 
|  | // The chain has to be a load, the stored value must be an integer binary | 
|  | // operation with one use. | 
|  | if (!StVal.Val->hasOneUse() || StVal.Val->getNumOperands() != 2 || | 
|  | MVT::isFloatingPoint(StVal.getValueType())) | 
|  | return false; | 
|  |  | 
|  | // Token chain must either be a factor node or the load to fold. | 
|  | if (Chain.getOpcode() != ISD::LOAD && Chain.getOpcode() != ISD::TokenFactor) | 
|  | return false; | 
|  |  | 
|  | SDOperand TheLoad; | 
|  |  | 
|  | // Check to see if there is a load from the same pointer that we're storing | 
|  | // to in either operand of the binop. | 
|  | if (StVal.getOperand(0).getOpcode() == ISD::LOAD && | 
|  | StVal.getOperand(0).getOperand(1) == StPtr) | 
|  | TheLoad = StVal.getOperand(0); | 
|  | else if (StVal.getOperand(1).getOpcode() == ISD::LOAD && | 
|  | StVal.getOperand(1).getOperand(1) == StPtr) | 
|  | TheLoad = StVal.getOperand(1); | 
|  | else | 
|  | return false;  // No matching load operand. | 
|  |  | 
|  | // We can only fold the load if there are no intervening side-effecting | 
|  | // operations.  This means that the store uses the load as its token chain, or | 
|  | // there are only token factor nodes in between the store and load. | 
|  | if (Chain != TheLoad.getValue(1)) { | 
|  | // Okay, the other option is that we have a store referring to (possibly | 
|  | // nested) token factor nodes.  For now, just try peeking through one level | 
|  | // of token factors to see if this is the case. | 
|  | bool ChainOk = false; | 
|  | if (Chain.getOpcode() == ISD::TokenFactor) { | 
|  | for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) | 
|  | if (Chain.getOperand(i) == TheLoad.getValue(1)) { | 
|  | ChainOk = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ChainOk) return false; | 
|  | } | 
|  |  | 
|  | if (TheLoad.getOperand(1) != StPtr) | 
|  | return false; | 
|  |  | 
|  | // Make sure that one of the operands of the binop is the load, and that the | 
|  | // load folds into the binop. | 
|  | if (((StVal.getOperand(0) != TheLoad || | 
|  | !isFoldableLoad(TheLoad, StVal.getOperand(1))) && | 
|  | (StVal.getOperand(1) != TheLoad || | 
|  | !isFoldableLoad(TheLoad, StVal.getOperand(0))))) | 
|  | return false; | 
|  |  | 
|  | // Finally, check to see if this is one of the ops we can handle! | 
|  | static const unsigned ADDTAB[] = { | 
|  | X86::ADD8mi, X86::ADD16mi, X86::ADD32mi, | 
|  | X86::ADD8mr, X86::ADD16mr, X86::ADD32mr, | 
|  | }; | 
|  | static const unsigned SUBTAB[] = { | 
|  | X86::SUB8mi, X86::SUB16mi, X86::SUB32mi, | 
|  | X86::SUB8mr, X86::SUB16mr, X86::SUB32mr, | 
|  | }; | 
|  | static const unsigned ANDTAB[] = { | 
|  | X86::AND8mi, X86::AND16mi, X86::AND32mi, | 
|  | X86::AND8mr, X86::AND16mr, X86::AND32mr, | 
|  | }; | 
|  | static const unsigned ORTAB[] = { | 
|  | X86::OR8mi, X86::OR16mi, X86::OR32mi, | 
|  | X86::OR8mr, X86::OR16mr, X86::OR32mr, | 
|  | }; | 
|  | static const unsigned XORTAB[] = { | 
|  | X86::XOR8mi, X86::XOR16mi, X86::XOR32mi, | 
|  | X86::XOR8mr, X86::XOR16mr, X86::XOR32mr, | 
|  | }; | 
|  | static const unsigned SHLTAB[] = { | 
|  | X86::SHL8mi, X86::SHL16mi, X86::SHL32mi, | 
|  | /*Have to put the reg in CL*/0, 0, 0, | 
|  | }; | 
|  | static const unsigned SARTAB[] = { | 
|  | X86::SAR8mi, X86::SAR16mi, X86::SAR32mi, | 
|  | /*Have to put the reg in CL*/0, 0, 0, | 
|  | }; | 
|  | static const unsigned SHRTAB[] = { | 
|  | X86::SHR8mi, X86::SHR16mi, X86::SHR32mi, | 
|  | /*Have to put the reg in CL*/0, 0, 0, | 
|  | }; | 
|  |  | 
|  | const unsigned *TabPtr = 0; | 
|  | switch (StVal.getOpcode()) { | 
|  | default: | 
|  | std::cerr << "CANNOT [mem] op= val: "; | 
|  | StVal.Val->dump(); std::cerr << "\n"; | 
|  | case ISD::MUL: | 
|  | case ISD::SDIV: | 
|  | case ISD::UDIV: | 
|  | case ISD::SREM: | 
|  | case ISD::UREM: return false; | 
|  |  | 
|  | case ISD::ADD: TabPtr = ADDTAB; break; | 
|  | case ISD::SUB: TabPtr = SUBTAB; break; | 
|  | case ISD::AND: TabPtr = ANDTAB; break; | 
|  | case ISD:: OR: TabPtr =  ORTAB; break; | 
|  | case ISD::XOR: TabPtr = XORTAB; break; | 
|  | case ISD::SHL: TabPtr = SHLTAB; break; | 
|  | case ISD::SRA: TabPtr = SARTAB; break; | 
|  | case ISD::SRL: TabPtr = SHRTAB; break; | 
|  | } | 
|  |  | 
|  | // Handle: [mem] op= CST | 
|  | SDOperand Op0 = StVal.getOperand(0); | 
|  | SDOperand Op1 = StVal.getOperand(1); | 
|  | unsigned Opc = 0; | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1)) { | 
|  | switch (Op0.getValueType()) { // Use Op0's type because of shifts. | 
|  | default: break; | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opc = TabPtr[0]; break; | 
|  | case MVT::i16: Opc = TabPtr[1]; break; | 
|  | case MVT::i32: Opc = TabPtr[2]; break; | 
|  | } | 
|  |  | 
|  | if (Opc) { | 
|  | if (!ExprMap.insert(std::make_pair(TheLoad.getValue(1), 1)).second) | 
|  | assert(0 && "Already emitted?"); | 
|  | Select(Chain); | 
|  |  | 
|  | X86AddressMode AM; | 
|  | if (getRegPressure(TheLoad.getOperand(0)) > | 
|  | getRegPressure(TheLoad.getOperand(1))) { | 
|  | Select(TheLoad.getOperand(0)); | 
|  | SelectAddress(TheLoad.getOperand(1), AM); | 
|  | } else { | 
|  | SelectAddress(TheLoad.getOperand(1), AM); | 
|  | Select(TheLoad.getOperand(0)); | 
|  | } | 
|  |  | 
|  | if (StVal.getOpcode() == ISD::ADD) { | 
|  | if (CN->getValue() == 1) { | 
|  | switch (Op0.getValueType()) { | 
|  | default: break; | 
|  | case MVT::i8: | 
|  | addFullAddress(BuildMI(BB, X86::INC8m, 4), AM); | 
|  | return true; | 
|  | case MVT::i16: Opc = TabPtr[1]; | 
|  | addFullAddress(BuildMI(BB, X86::INC16m, 4), AM); | 
|  | return true; | 
|  | case MVT::i32: Opc = TabPtr[2]; | 
|  | addFullAddress(BuildMI(BB, X86::INC32m, 4), AM); | 
|  | return true; | 
|  | } | 
|  | } else if (CN->getValue()+1 == 0) {   // [X] += -1 -> DEC [X] | 
|  | switch (Op0.getValueType()) { | 
|  | default: break; | 
|  | case MVT::i8: | 
|  | addFullAddress(BuildMI(BB, X86::DEC8m, 4), AM); | 
|  | return true; | 
|  | case MVT::i16: Opc = TabPtr[1]; | 
|  | addFullAddress(BuildMI(BB, X86::DEC16m, 4), AM); | 
|  | return true; | 
|  | case MVT::i32: Opc = TabPtr[2]; | 
|  | addFullAddress(BuildMI(BB, X86::DEC32m, 4), AM); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | addFullAddress(BuildMI(BB, Opc, 4+1),AM).addImm(CN->getValue()); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have [mem] = V op [mem], try to turn it into: | 
|  | // [mem] = [mem] op V. | 
|  | if (Op1 == TheLoad && StVal.getOpcode() != ISD::SUB && | 
|  | StVal.getOpcode() != ISD::SHL && StVal.getOpcode() != ISD::SRA && | 
|  | StVal.getOpcode() != ISD::SRL) | 
|  | std::swap(Op0, Op1); | 
|  |  | 
|  | if (Op0 != TheLoad) return false; | 
|  |  | 
|  | switch (Op0.getValueType()) { | 
|  | default: return false; | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opc = TabPtr[3]; break; | 
|  | case MVT::i16: Opc = TabPtr[4]; break; | 
|  | case MVT::i32: Opc = TabPtr[5]; break; | 
|  | } | 
|  |  | 
|  | // Table entry doesn't exist? | 
|  | if (Opc == 0) return false; | 
|  |  | 
|  | if (!ExprMap.insert(std::make_pair(TheLoad.getValue(1), 1)).second) | 
|  | assert(0 && "Already emitted?"); | 
|  | Select(Chain); | 
|  | Select(TheLoad.getOperand(0)); | 
|  |  | 
|  | X86AddressMode AM; | 
|  | SelectAddress(TheLoad.getOperand(1), AM); | 
|  | unsigned Reg = SelectExpr(Op1); | 
|  | addFullAddress(BuildMI(BB, Opc, 4+1), AM).addReg(Reg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// If node is a ret(tailcall) node, emit the specified tail call and return | 
|  | /// true, otherwise return false. | 
|  | /// | 
|  | /// FIXME: This whole thing should be a post-legalize optimization pass which | 
|  | /// recognizes and transforms the dag.  We don't want the selection phase doing | 
|  | /// this stuff!! | 
|  | /// | 
|  | bool ISel::EmitPotentialTailCall(SDNode *RetNode) { | 
|  | assert(RetNode->getOpcode() == ISD::RET && "Not a return"); | 
|  |  | 
|  | SDOperand Chain = RetNode->getOperand(0); | 
|  |  | 
|  | // If this is a token factor node where one operand is a call, dig into it. | 
|  | SDOperand TokFactor; | 
|  | unsigned TokFactorOperand = 0; | 
|  | if (Chain.getOpcode() == ISD::TokenFactor) { | 
|  | for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) | 
|  | if (Chain.getOperand(i).getOpcode() == ISD::CALLSEQ_END || | 
|  | Chain.getOperand(i).getOpcode() == X86ISD::TAILCALL) { | 
|  | TokFactorOperand = i; | 
|  | TokFactor = Chain; | 
|  | Chain = Chain.getOperand(i); | 
|  | break; | 
|  | } | 
|  | if (TokFactor.Val == 0) return false;  // No call operand. | 
|  | } | 
|  |  | 
|  | // Skip the CALLSEQ_END node if present. | 
|  | if (Chain.getOpcode() == ISD::CALLSEQ_END) | 
|  | Chain = Chain.getOperand(0); | 
|  |  | 
|  | // Is a tailcall the last control operation that occurs before the return? | 
|  | if (Chain.getOpcode() != X86ISD::TAILCALL) | 
|  | return false; | 
|  |  | 
|  | // If we return a value, is it the value produced by the call? | 
|  | if (RetNode->getNumOperands() > 1) { | 
|  | // Not returning the ret val of the call? | 
|  | if (Chain.Val->getNumValues() == 1 || | 
|  | RetNode->getOperand(1) != Chain.getValue(1)) | 
|  | return false; | 
|  |  | 
|  | if (RetNode->getNumOperands() > 2) { | 
|  | if (Chain.Val->getNumValues() == 2 || | 
|  | RetNode->getOperand(2) != Chain.getValue(2)) | 
|  | return false; | 
|  | } | 
|  | assert(RetNode->getNumOperands() <= 3); | 
|  | } | 
|  |  | 
|  | // CalleeCallArgAmt - The total number of bytes used for the callee arg area. | 
|  | // For FastCC, this will always be > 0. | 
|  | unsigned CalleeCallArgAmt = | 
|  | cast<ConstantSDNode>(Chain.getOperand(2))->getValue(); | 
|  |  | 
|  | // CalleeCallArgPopAmt - The number of bytes in the call area popped by the | 
|  | // callee.  For FastCC this will always be > 0, for CCC this is always 0. | 
|  | unsigned CalleeCallArgPopAmt = | 
|  | cast<ConstantSDNode>(Chain.getOperand(3))->getValue(); | 
|  |  | 
|  | // There are several cases we can handle here.  First, if the caller and | 
|  | // callee are both CCC functions, we can tailcall if the callee takes <= the | 
|  | // number of argument bytes that the caller does. | 
|  | if (CalleeCallArgPopAmt == 0 &&                  // Callee is C CallingConv? | 
|  | X86Lowering.getBytesToPopOnReturn() == 0) {  // Caller is C CallingConv? | 
|  | // Check to see if caller arg area size >= callee arg area size. | 
|  | if (X86Lowering.getBytesCallerReserves() >= CalleeCallArgAmt) { | 
|  | //std::cerr << "CCC TAILCALL UNIMP!\n"; | 
|  | // If TokFactor is non-null, emit all operands. | 
|  |  | 
|  | //EmitCCCToCCCTailCall(Chain.Val); | 
|  | //return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Second, if both are FastCC functions, we can always perform the tail call. | 
|  | if (CalleeCallArgPopAmt && X86Lowering.getBytesToPopOnReturn()) { | 
|  | // If TokFactor is non-null, emit all operands before the call. | 
|  | if (TokFactor.Val) { | 
|  | for (unsigned i = 0, e = TokFactor.getNumOperands(); i != e; ++i) | 
|  | if (i != TokFactorOperand) | 
|  | Select(TokFactor.getOperand(i)); | 
|  | } | 
|  |  | 
|  | EmitFastCCToFastCCTailCall(Chain.Val); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // We don't support mixed calls, due to issues with alignment.  We could in | 
|  | // theory handle some mixed calls from CCC -> FastCC if the stack is properly | 
|  | // aligned (which depends on the number of arguments to the callee).  TODO. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static SDOperand GetAdjustedArgumentStores(SDOperand Chain, int Offset, | 
|  | SelectionDAG &DAG) { | 
|  | MVT::ValueType StoreVT; | 
|  | switch (Chain.getOpcode()) { | 
|  | case ISD::CALLSEQ_START: | 
|  | // If we found the start of the call sequence, we're done.  We actually | 
|  | // strip off the CALLSEQ_START node, to avoid generating the | 
|  | // ADJCALLSTACKDOWN marker for the tail call. | 
|  | return Chain.getOperand(0); | 
|  | case ISD::TokenFactor: { | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.reserve(Chain.getNumOperands()); | 
|  | for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) | 
|  | Ops.push_back(GetAdjustedArgumentStores(Chain.getOperand(i), Offset,DAG)); | 
|  | return DAG.getNode(ISD::TokenFactor, MVT::Other, Ops); | 
|  | } | 
|  | case ISD::STORE:       // Normal store | 
|  | StoreVT = Chain.getOperand(1).getValueType(); | 
|  | break; | 
|  | case ISD::TRUNCSTORE:  // FLOAT store | 
|  | StoreVT = cast<VTSDNode>(Chain.getOperand(4))->getVT(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDOperand OrigDest = Chain.getOperand(2); | 
|  | unsigned OrigOffset; | 
|  |  | 
|  | if (OrigDest.getOpcode() == ISD::CopyFromReg) { | 
|  | OrigOffset = 0; | 
|  | assert(cast<RegSDNode>(OrigDest)->getReg() == X86::ESP); | 
|  | } else { | 
|  | // We expect only (ESP+C) | 
|  | assert(OrigDest.getOpcode() == ISD::ADD && | 
|  | isa<ConstantSDNode>(OrigDest.getOperand(1)) && | 
|  | OrigDest.getOperand(0).getOpcode() == ISD::CopyFromReg && | 
|  | cast<RegSDNode>(OrigDest.getOperand(0))->getReg() == X86::ESP); | 
|  | OrigOffset = cast<ConstantSDNode>(OrigDest.getOperand(1))->getValue(); | 
|  | } | 
|  |  | 
|  | // Compute the new offset from the incoming ESP value we wish to use. | 
|  | unsigned NewOffset = OrigOffset + Offset; | 
|  |  | 
|  | unsigned OpSize = (MVT::getSizeInBits(StoreVT)+7)/8;  // Bits -> Bytes | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, NewOffset); | 
|  | SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); | 
|  |  | 
|  | SDOperand InChain = GetAdjustedArgumentStores(Chain.getOperand(0), Offset, | 
|  | DAG); | 
|  | if (Chain.getOpcode() == ISD::STORE) | 
|  | return DAG.getNode(ISD::STORE, MVT::Other, InChain, Chain.getOperand(1), | 
|  | FIN); | 
|  | assert(Chain.getOpcode() == ISD::TRUNCSTORE); | 
|  | return DAG.getNode(ISD::TRUNCSTORE, MVT::Other, InChain, Chain.getOperand(1), | 
|  | FIN, DAG.getSrcValue(NULL), DAG.getValueType(StoreVT)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// EmitFastCCToFastCCTailCall - Given a tailcall in the tail position to a | 
|  | /// fastcc function from a fastcc function, emit the code to emit a 'proper' | 
|  | /// tail call. | 
|  | void ISel::EmitFastCCToFastCCTailCall(SDNode *TailCallNode) { | 
|  | unsigned CalleeCallArgSize = | 
|  | cast<ConstantSDNode>(TailCallNode->getOperand(2))->getValue(); | 
|  | unsigned CallerArgSize = X86Lowering.getBytesToPopOnReturn(); | 
|  |  | 
|  | //std::cerr << "****\n*** EMITTING TAIL CALL!\n****\n"; | 
|  |  | 
|  | // Adjust argument stores.  Instead of storing to [ESP], f.e., store to frame | 
|  | // indexes that are relative to the incoming ESP.  If the incoming and | 
|  | // outgoing arg sizes are the same we will store to [InESP] instead of | 
|  | // [CurESP] and the ESP referenced will be relative to the incoming function | 
|  | // ESP. | 
|  | int ESPOffset = CallerArgSize-CalleeCallArgSize; | 
|  | SDOperand AdjustedArgStores = | 
|  | GetAdjustedArgumentStores(TailCallNode->getOperand(0), ESPOffset, *TheDAG); | 
|  |  | 
|  | // Copy the return address of the caller into a virtual register so we don't | 
|  | // clobber it. | 
|  | SDOperand RetVal; | 
|  | if (ESPOffset) { | 
|  | SDOperand RetValAddr = X86Lowering.getReturnAddressFrameIndex(*TheDAG); | 
|  | RetVal = TheDAG->getLoad(MVT::i32, TheDAG->getEntryNode(), | 
|  | RetValAddr, TheDAG->getSrcValue(NULL)); | 
|  | SelectExpr(RetVal); | 
|  | } | 
|  |  | 
|  | // Codegen all of the argument stores. | 
|  | Select(AdjustedArgStores); | 
|  |  | 
|  | if (RetVal.Val) { | 
|  | // Emit a store of the saved ret value to the new location. | 
|  | MachineFunction &MF = TheDAG->getMachineFunction(); | 
|  | int ReturnAddrFI = MF.getFrameInfo()->CreateFixedObject(4, ESPOffset-4); | 
|  | SDOperand RetValAddr = TheDAG->getFrameIndex(ReturnAddrFI, MVT::i32); | 
|  | Select(TheDAG->getNode(ISD::STORE, MVT::Other, TheDAG->getEntryNode(), | 
|  | RetVal, RetValAddr)); | 
|  | } | 
|  |  | 
|  | // Get the destination value. | 
|  | SDOperand Callee = TailCallNode->getOperand(1); | 
|  | bool isDirect = isa<GlobalAddressSDNode>(Callee) || | 
|  | isa<ExternalSymbolSDNode>(Callee); | 
|  | unsigned CalleeReg = 0; | 
|  | if (!isDirect) CalleeReg = SelectExpr(Callee); | 
|  |  | 
|  | unsigned RegOp1 = 0; | 
|  | unsigned RegOp2 = 0; | 
|  |  | 
|  | if (TailCallNode->getNumOperands() > 4) { | 
|  | // The first value is passed in (a part of) EAX, the second in EDX. | 
|  | RegOp1 = SelectExpr(TailCallNode->getOperand(4)); | 
|  | if (TailCallNode->getNumOperands() > 5) | 
|  | RegOp2 = SelectExpr(TailCallNode->getOperand(5)); | 
|  |  | 
|  | switch (TailCallNode->getOperand(4).getValueType()) { | 
|  | default: assert(0 && "Bad thing to pass in regs"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(RegOp1); | 
|  | RegOp1 = X86::AL; | 
|  | break; | 
|  | case MVT::i16: | 
|  | BuildMI(BB, X86::MOV16rr, 1,X86::AX).addReg(RegOp1); | 
|  | RegOp1 = X86::AX; | 
|  | break; | 
|  | case MVT::i32: | 
|  | BuildMI(BB, X86::MOV32rr, 1,X86::EAX).addReg(RegOp1); | 
|  | RegOp1 = X86::EAX; | 
|  | break; | 
|  | } | 
|  | if (RegOp2) | 
|  | switch (TailCallNode->getOperand(5).getValueType()) { | 
|  | default: assert(0 && "Bad thing to pass in regs"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | BuildMI(BB, X86::MOV8rr, 1, X86::DL).addReg(RegOp2); | 
|  | RegOp2 = X86::DL; | 
|  | break; | 
|  | case MVT::i16: | 
|  | BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(RegOp2); | 
|  | RegOp2 = X86::DX; | 
|  | break; | 
|  | case MVT::i32: | 
|  | BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RegOp2); | 
|  | RegOp2 = X86::EDX; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Adjust ESP. | 
|  | if (ESPOffset) | 
|  | BuildMI(BB, X86::ADJSTACKPTRri, 2, | 
|  | X86::ESP).addReg(X86::ESP).addImm(ESPOffset); | 
|  |  | 
|  | // TODO: handle jmp [mem] | 
|  | if (!isDirect) { | 
|  | BuildMI(BB, X86::TAILJMPr, 1).addReg(CalleeReg); | 
|  | } else if (GlobalAddressSDNode *GASD = dyn_cast<GlobalAddressSDNode>(Callee)){ | 
|  | BuildMI(BB, X86::TAILJMPd, 1).addGlobalAddress(GASD->getGlobal(), true); | 
|  | } else { | 
|  | ExternalSymbolSDNode *ESSDN = cast<ExternalSymbolSDNode>(Callee); | 
|  | BuildMI(BB, X86::TAILJMPd, 1).addExternalSymbol(ESSDN->getSymbol(), true); | 
|  | } | 
|  | // ADD IMPLICIT USE RegOp1/RegOp2's | 
|  | } | 
|  |  | 
|  |  | 
|  | void ISel::Select(SDOperand N) { | 
|  | unsigned Tmp1, Tmp2, Opc; | 
|  |  | 
|  | if (!ExprMap.insert(std::make_pair(N, 1)).second) | 
|  | return;  // Already selected. | 
|  |  | 
|  | SDNode *Node = N.Val; | 
|  |  | 
|  | switch (Node->getOpcode()) { | 
|  | default: | 
|  | Node->dump(); std::cerr << "\n"; | 
|  | assert(0 && "Node not handled yet!"); | 
|  | case ISD::EntryToken: return;  // Noop | 
|  | case ISD::TokenFactor: | 
|  | if (Node->getNumOperands() == 2) { | 
|  | bool OneFirst = | 
|  | getRegPressure(Node->getOperand(1))>getRegPressure(Node->getOperand(0)); | 
|  | Select(Node->getOperand(OneFirst)); | 
|  | Select(Node->getOperand(!OneFirst)); | 
|  | } else { | 
|  | std::vector<std::pair<unsigned, unsigned> > OpsP; | 
|  | for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) | 
|  | OpsP.push_back(std::make_pair(getRegPressure(Node->getOperand(i)), i)); | 
|  | std::sort(OpsP.begin(), OpsP.end()); | 
|  | std::reverse(OpsP.begin(), OpsP.end()); | 
|  | for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) | 
|  | Select(Node->getOperand(OpsP[i].second)); | 
|  | } | 
|  | return; | 
|  | case ISD::CopyToReg: | 
|  | if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { | 
|  | Select(N.getOperand(0)); | 
|  | Tmp1 = SelectExpr(N.getOperand(1)); | 
|  | } else { | 
|  | Tmp1 = SelectExpr(N.getOperand(1)); | 
|  | Select(N.getOperand(0)); | 
|  | } | 
|  | Tmp2 = cast<RegSDNode>(N)->getReg(); | 
|  |  | 
|  | if (Tmp1 != Tmp2) { | 
|  | switch (N.getOperand(1).getValueType()) { | 
|  | default: assert(0 && "Invalid type for operation!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opc = X86::MOV8rr; break; | 
|  | case MVT::i16: Opc = X86::MOV16rr; break; | 
|  | case MVT::i32: Opc = X86::MOV32rr; break; | 
|  | case MVT::f32: Opc = X86::MOVAPSrr; break; | 
|  | case MVT::f64: | 
|  | if (X86ScalarSSE) { | 
|  | Opc = X86::MOVAPDrr; | 
|  | } else { | 
|  | Opc = X86::FpMOV; | 
|  | ContainsFPCode = true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | BuildMI(BB, Opc, 1, Tmp2).addReg(Tmp1); | 
|  | } | 
|  | return; | 
|  | case ISD::RET: | 
|  | if (N.getOperand(0).getOpcode() == ISD::CALLSEQ_END || | 
|  | N.getOperand(0).getOpcode() == X86ISD::TAILCALL || | 
|  | N.getOperand(0).getOpcode() == ISD::TokenFactor) | 
|  | if (EmitPotentialTailCall(Node)) | 
|  | return; | 
|  |  | 
|  | switch (N.getNumOperands()) { | 
|  | default: | 
|  | assert(0 && "Unknown return instruction!"); | 
|  | case 3: | 
|  | assert(N.getOperand(1).getValueType() == MVT::i32 && | 
|  | N.getOperand(2).getValueType() == MVT::i32 && | 
|  | "Unknown two-register value!"); | 
|  | if (getRegPressure(N.getOperand(1)) > getRegPressure(N.getOperand(2))) { | 
|  | Tmp1 = SelectExpr(N.getOperand(1)); | 
|  | Tmp2 = SelectExpr(N.getOperand(2)); | 
|  | } else { | 
|  | Tmp2 = SelectExpr(N.getOperand(2)); | 
|  | Tmp1 = SelectExpr(N.getOperand(1)); | 
|  | } | 
|  | Select(N.getOperand(0)); | 
|  |  | 
|  | BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1); | 
|  | BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(Tmp2); | 
|  | break; | 
|  | case 2: | 
|  | if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { | 
|  | Select(N.getOperand(0)); | 
|  | Tmp1 = SelectExpr(N.getOperand(1)); | 
|  | } else { | 
|  | Tmp1 = SelectExpr(N.getOperand(1)); | 
|  | Select(N.getOperand(0)); | 
|  | } | 
|  | switch (N.getOperand(1).getValueType()) { | 
|  | default: assert(0 && "All other types should have been promoted!!"); | 
|  | case MVT::f32: | 
|  | if (X86ScalarSSE) { | 
|  | // Spill the value to memory and reload it into top of stack. | 
|  | unsigned Size = MVT::getSizeInBits(MVT::f32)/8; | 
|  | MachineFunction *F = BB->getParent(); | 
|  | int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size); | 
|  | addFrameReference(BuildMI(BB, X86::MOVSSmr, 5), FrameIdx).addReg(Tmp1); | 
|  | addFrameReference(BuildMI(BB, X86::FLD32m, 4, X86::FP0), FrameIdx); | 
|  | BuildMI(BB, X86::FpSETRESULT, 1).addReg(X86::FP0); | 
|  | ContainsFPCode = true; | 
|  | } else { | 
|  | assert(0 && "MVT::f32 only legal with scalar sse fp"); | 
|  | abort(); | 
|  | } | 
|  | break; | 
|  | case MVT::f64: | 
|  | if (X86ScalarSSE) { | 
|  | // Spill the value to memory and reload it into top of stack. | 
|  | unsigned Size = MVT::getSizeInBits(MVT::f64)/8; | 
|  | MachineFunction *F = BB->getParent(); | 
|  | int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size); | 
|  | addFrameReference(BuildMI(BB, X86::MOVSDmr, 5), FrameIdx).addReg(Tmp1); | 
|  | addFrameReference(BuildMI(BB, X86::FLD64m, 4, X86::FP0), FrameIdx); | 
|  | BuildMI(BB, X86::FpSETRESULT, 1).addReg(X86::FP0); | 
|  | ContainsFPCode = true; | 
|  | } else { | 
|  | BuildMI(BB, X86::FpSETRESULT, 1).addReg(Tmp1); | 
|  | } | 
|  | break; | 
|  | case MVT::i32: | 
|  | BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 1: | 
|  | Select(N.getOperand(0)); | 
|  | break; | 
|  | } | 
|  | if (X86Lowering.getBytesToPopOnReturn() == 0) | 
|  | BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction | 
|  | else | 
|  | BuildMI(BB, X86::RETI, 1).addImm(X86Lowering.getBytesToPopOnReturn()); | 
|  | return; | 
|  | case ISD::BR: { | 
|  | Select(N.getOperand(0)); | 
|  | MachineBasicBlock *Dest = | 
|  | cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock(); | 
|  | BuildMI(BB, X86::JMP, 1).addMBB(Dest); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case ISD::BRCOND: { | 
|  | MachineBasicBlock *Dest = | 
|  | cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock(); | 
|  |  | 
|  | // Try to fold a setcc into the branch.  If this fails, emit a test/jne | 
|  | // pair. | 
|  | if (EmitBranchCC(Dest, N.getOperand(0), N.getOperand(1))) { | 
|  | if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { | 
|  | Select(N.getOperand(0)); | 
|  | Tmp1 = SelectExpr(N.getOperand(1)); | 
|  | } else { | 
|  | Tmp1 = SelectExpr(N.getOperand(1)); | 
|  | Select(N.getOperand(0)); | 
|  | } | 
|  | BuildMI(BB, X86::TEST8rr, 2).addReg(Tmp1).addReg(Tmp1); | 
|  | BuildMI(BB, X86::JNE, 1).addMBB(Dest); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | case ISD::LOAD: | 
|  | // If this load could be folded into the only using instruction, and if it | 
|  | // is safe to emit the instruction here, try to do so now. | 
|  | if (Node->hasNUsesOfValue(1, 0)) { | 
|  | SDOperand TheVal = N.getValue(0); | 
|  | SDNode *User = 0; | 
|  | for (SDNode::use_iterator UI = Node->use_begin(); ; ++UI) { | 
|  | assert(UI != Node->use_end() && "Didn't find use!"); | 
|  | SDNode *UN = *UI; | 
|  | for (unsigned i = 0, e = UN->getNumOperands(); i != e; ++i) | 
|  | if (UN->getOperand(i) == TheVal) { | 
|  | User = UN; | 
|  | goto FoundIt; | 
|  | } | 
|  | } | 
|  | FoundIt: | 
|  | // Only handle unary operators right now. | 
|  | if (User->getNumOperands() == 1) { | 
|  | ExprMap.erase(N); | 
|  | SelectExpr(SDOperand(User, 0)); | 
|  | return; | 
|  | } | 
|  | } | 
|  | ExprMap.erase(N); | 
|  | SelectExpr(N); | 
|  | return; | 
|  | case ISD::READPORT: | 
|  | case ISD::EXTLOAD: | 
|  | case ISD::SEXTLOAD: | 
|  | case ISD::ZEXTLOAD: | 
|  | case ISD::DYNAMIC_STACKALLOC: | 
|  | case X86ISD::TAILCALL: | 
|  | case X86ISD::CALL: | 
|  | ExprMap.erase(N); | 
|  | SelectExpr(N); | 
|  | return; | 
|  | case ISD::CopyFromReg: | 
|  | case X86ISD::FILD64m: | 
|  | ExprMap.erase(N); | 
|  | SelectExpr(N.getValue(0)); | 
|  | return; | 
|  |  | 
|  | case ISD::TRUNCSTORE: {  // truncstore chain, val, ptr, SRCVALUE, storety | 
|  | X86AddressMode AM; | 
|  | MVT::ValueType StoredTy = cast<VTSDNode>(N.getOperand(4))->getVT(); | 
|  | assert((StoredTy == MVT::i1 || StoredTy == MVT::f32 || | 
|  | StoredTy == MVT::i16 /*FIXME: THIS IS JUST FOR TESTING!*/) | 
|  | && "Unsupported TRUNCSTORE for this target!"); | 
|  |  | 
|  | if (StoredTy == MVT::i16) { | 
|  | // FIXME: This is here just to allow testing.  X86 doesn't really have a | 
|  | // TRUNCSTORE i16 operation, but this is required for targets that do not | 
|  | // have 16-bit integer registers.  We occasionally disable 16-bit integer | 
|  | // registers to test the promotion code. | 
|  | Select(N.getOperand(0)); | 
|  | Tmp1 = SelectExpr(N.getOperand(1)); | 
|  | SelectAddress(N.getOperand(2), AM); | 
|  |  | 
|  | BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1); | 
|  | addFullAddress(BuildMI(BB, X86::MOV16mr, 5), AM).addReg(X86::AX); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Store of constant bool? | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) { | 
|  | Select(N.getOperand(0)); | 
|  | SelectAddress(N.getOperand(2), AM); | 
|  | } else { | 
|  | SelectAddress(N.getOperand(2), AM); | 
|  | Select(N.getOperand(0)); | 
|  | } | 
|  | addFullAddress(BuildMI(BB, X86::MOV8mi, 5), AM).addImm(CN->getValue()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (StoredTy) { | 
|  | default: assert(0 && "Cannot truncstore this type!"); | 
|  | case MVT::i1: Opc = X86::MOV8mr; break; | 
|  | case MVT::f32: | 
|  | assert(!X86ScalarSSE && "Cannot truncstore scalar SSE regs"); | 
|  | Opc = X86::FST32m; break; | 
|  | } | 
|  |  | 
|  | std::vector<std::pair<unsigned, unsigned> > RP; | 
|  | RP.push_back(std::make_pair(getRegPressure(N.getOperand(0)), 0)); | 
|  | RP.push_back(std::make_pair(getRegPressure(N.getOperand(1)), 1)); | 
|  | RP.push_back(std::make_pair(getRegPressure(N.getOperand(2)), 2)); | 
|  | std::sort(RP.begin(), RP.end()); | 
|  |  | 
|  | Tmp1 = 0;   // Silence a warning. | 
|  | for (unsigned i = 0; i != 3; ++i) | 
|  | switch (RP[2-i].second) { | 
|  | default: assert(0 && "Unknown operand number!"); | 
|  | case 0: Select(N.getOperand(0)); break; | 
|  | case 1: Tmp1 = SelectExpr(N.getOperand(1)); break; | 
|  | case 2: SelectAddress(N.getOperand(2), AM); break; | 
|  | } | 
|  |  | 
|  | addFullAddress(BuildMI(BB, Opc, 4+1), AM).addReg(Tmp1); | 
|  | return; | 
|  | } | 
|  | case ISD::STORE: { | 
|  | X86AddressMode AM; | 
|  |  | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | Opc = 0; | 
|  | switch (CN->getValueType(0)) { | 
|  | default: assert(0 && "Invalid type for operation!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opc = X86::MOV8mi; break; | 
|  | case MVT::i16: Opc = X86::MOV16mi; break; | 
|  | case MVT::i32: Opc = X86::MOV32mi; break; | 
|  | } | 
|  | if (Opc) { | 
|  | if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) { | 
|  | Select(N.getOperand(0)); | 
|  | SelectAddress(N.getOperand(2), AM); | 
|  | } else { | 
|  | SelectAddress(N.getOperand(2), AM); | 
|  | Select(N.getOperand(0)); | 
|  | } | 
|  | addFullAddress(BuildMI(BB, Opc, 4+1), AM).addImm(CN->getValue()); | 
|  | return; | 
|  | } | 
|  | } else if (GlobalAddressSDNode *GA = | 
|  | dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) { | 
|  | assert(GA->getValueType(0) == MVT::i32 && "Bad pointer operand"); | 
|  |  | 
|  | if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) { | 
|  | Select(N.getOperand(0)); | 
|  | SelectAddress(N.getOperand(2), AM); | 
|  | } else { | 
|  | SelectAddress(N.getOperand(2), AM); | 
|  | Select(N.getOperand(0)); | 
|  | } | 
|  | addFullAddress(BuildMI(BB, X86::MOV32mi, 4+1), | 
|  | AM).addGlobalAddress(GA->getGlobal()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check to see if this is a load/op/store combination. | 
|  | if (TryToFoldLoadOpStore(Node)) | 
|  | return; | 
|  |  | 
|  | switch (N.getOperand(1).getValueType()) { | 
|  | default: assert(0 && "Cannot store this type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opc = X86::MOV8mr; break; | 
|  | case MVT::i16: Opc = X86::MOV16mr; break; | 
|  | case MVT::i32: Opc = X86::MOV32mr; break; | 
|  | case MVT::f32: Opc = X86::MOVSSmr; break; | 
|  | case MVT::f64: Opc = X86ScalarSSE ? X86::MOVSDmr : X86::FST64m; break; | 
|  | } | 
|  |  | 
|  | std::vector<std::pair<unsigned, unsigned> > RP; | 
|  | RP.push_back(std::make_pair(getRegPressure(N.getOperand(0)), 0)); | 
|  | RP.push_back(std::make_pair(getRegPressure(N.getOperand(1)), 1)); | 
|  | RP.push_back(std::make_pair(getRegPressure(N.getOperand(2)), 2)); | 
|  | std::sort(RP.begin(), RP.end()); | 
|  |  | 
|  | Tmp1 = 0; // Silence a warning. | 
|  | for (unsigned i = 0; i != 3; ++i) | 
|  | switch (RP[2-i].second) { | 
|  | default: assert(0 && "Unknown operand number!"); | 
|  | case 0: Select(N.getOperand(0)); break; | 
|  | case 1: Tmp1 = SelectExpr(N.getOperand(1)); break; | 
|  | case 2: SelectAddress(N.getOperand(2), AM); break; | 
|  | } | 
|  |  | 
|  | addFullAddress(BuildMI(BB, Opc, 4+1), AM).addReg(Tmp1); | 
|  | return; | 
|  | } | 
|  | case ISD::CALLSEQ_START: | 
|  | Select(N.getOperand(0)); | 
|  | // Stack amount | 
|  | Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue(); | 
|  | BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(Tmp1); | 
|  | return; | 
|  | case ISD::CALLSEQ_END: | 
|  | Select(N.getOperand(0)); | 
|  | return; | 
|  | case ISD::MEMSET: { | 
|  | Select(N.getOperand(0));  // Select the chain. | 
|  | unsigned Align = | 
|  | (unsigned)cast<ConstantSDNode>(Node->getOperand(4))->getValue(); | 
|  | if (Align == 0) Align = 1; | 
|  |  | 
|  | // Turn the byte code into # iterations | 
|  | unsigned CountReg; | 
|  | unsigned Opcode; | 
|  | if (ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Node->getOperand(2))) { | 
|  | unsigned Val = ValC->getValue() & 255; | 
|  |  | 
|  | // If the value is a constant, then we can potentially use larger sets. | 
|  | switch (Align & 3) { | 
|  | case 2:   // WORD aligned | 
|  | CountReg = MakeReg(MVT::i32); | 
|  | if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Node->getOperand(3))) { | 
|  | BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/2); | 
|  | } else { | 
|  | unsigned ByteReg = SelectExpr(Node->getOperand(3)); | 
|  | BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1); | 
|  | } | 
|  | BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val); | 
|  | Opcode = X86::REP_STOSW; | 
|  | break; | 
|  | case 0:   // DWORD aligned | 
|  | CountReg = MakeReg(MVT::i32); | 
|  | if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Node->getOperand(3))) { | 
|  | BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/4); | 
|  | } else { | 
|  | unsigned ByteReg = SelectExpr(Node->getOperand(3)); | 
|  | BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2); | 
|  | } | 
|  | Val = (Val << 8) | Val; | 
|  | BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val); | 
|  | Opcode = X86::REP_STOSD; | 
|  | break; | 
|  | default:  // BYTE aligned | 
|  | CountReg = SelectExpr(Node->getOperand(3)); | 
|  | BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val); | 
|  | Opcode = X86::REP_STOSB; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | // If it's not a constant value we are storing, just fall back.  We could | 
|  | // try to be clever to form 16 bit and 32 bit values, but we don't yet. | 
|  | unsigned ValReg = SelectExpr(Node->getOperand(2)); | 
|  | BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg); | 
|  | CountReg = SelectExpr(Node->getOperand(3)); | 
|  | Opcode = X86::REP_STOSB; | 
|  | } | 
|  |  | 
|  | // No matter what the alignment is, we put the source in ESI, the | 
|  | // destination in EDI, and the count in ECX. | 
|  | unsigned TmpReg1 = SelectExpr(Node->getOperand(1)); | 
|  | BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg); | 
|  | BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1); | 
|  | BuildMI(BB, Opcode, 0); | 
|  | return; | 
|  | } | 
|  | case ISD::MEMCPY: { | 
|  | Select(N.getOperand(0));  // Select the chain. | 
|  | unsigned Align = | 
|  | (unsigned)cast<ConstantSDNode>(Node->getOperand(4))->getValue(); | 
|  | if (Align == 0) Align = 1; | 
|  |  | 
|  | // Turn the byte code into # iterations | 
|  | unsigned CountReg; | 
|  | unsigned Opcode; | 
|  | switch (Align & 3) { | 
|  | case 2:   // WORD aligned | 
|  | CountReg = MakeReg(MVT::i32); | 
|  | if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Node->getOperand(3))) { | 
|  | BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/2); | 
|  | } else { | 
|  | unsigned ByteReg = SelectExpr(Node->getOperand(3)); | 
|  | BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1); | 
|  | } | 
|  | Opcode = X86::REP_MOVSW; | 
|  | break; | 
|  | case 0:   // DWORD aligned | 
|  | CountReg = MakeReg(MVT::i32); | 
|  | if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Node->getOperand(3))) { | 
|  | BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/4); | 
|  | } else { | 
|  | unsigned ByteReg = SelectExpr(Node->getOperand(3)); | 
|  | BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2); | 
|  | } | 
|  | Opcode = X86::REP_MOVSD; | 
|  | break; | 
|  | default:  // BYTE aligned | 
|  | CountReg = SelectExpr(Node->getOperand(3)); | 
|  | Opcode = X86::REP_MOVSB; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // No matter what the alignment is, we put the source in ESI, the | 
|  | // destination in EDI, and the count in ECX. | 
|  | unsigned TmpReg1 = SelectExpr(Node->getOperand(1)); | 
|  | unsigned TmpReg2 = SelectExpr(Node->getOperand(2)); | 
|  | BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg); | 
|  | BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1); | 
|  | BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2); | 
|  | BuildMI(BB, Opcode, 0); | 
|  | return; | 
|  | } | 
|  | case ISD::WRITEPORT: | 
|  | if (Node->getOperand(2).getValueType() != MVT::i16) { | 
|  | std::cerr << "llvm.writeport: Address size is not 16 bits\n"; | 
|  | exit(1); | 
|  | } | 
|  | Select(Node->getOperand(0)); // Emit the chain. | 
|  |  | 
|  | Tmp1 = SelectExpr(Node->getOperand(1)); | 
|  | switch (Node->getOperand(1).getValueType()) { | 
|  | case MVT::i8: | 
|  | BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(Tmp1); | 
|  | Tmp2 = X86::OUT8ir;  Opc = X86::OUT8rr; | 
|  | break; | 
|  | case MVT::i16: | 
|  | BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(Tmp1); | 
|  | Tmp2 = X86::OUT16ir; Opc = X86::OUT16rr; | 
|  | break; | 
|  | case MVT::i32: | 
|  | BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1); | 
|  | Tmp2 = X86::OUT32ir; Opc = X86::OUT32rr; | 
|  | break; | 
|  | default: | 
|  | std::cerr << "llvm.writeport: invalid data type for X86 target"; | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | // If the port is a single-byte constant, use the immediate form. | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node->getOperand(2))) | 
|  | if ((CN->getValue() & 255) == CN->getValue()) { | 
|  | BuildMI(BB, Tmp2, 1).addImm(CN->getValue()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, move the I/O port address into the DX register. | 
|  | unsigned Reg = SelectExpr(Node->getOperand(2)); | 
|  | BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg); | 
|  | BuildMI(BB, Opc, 0); | 
|  | return; | 
|  | } | 
|  | assert(0 && "Should not be reached!"); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// createX86PatternInstructionSelector - This pass converts an LLVM function | 
|  | /// into a machine code representation using pattern matching and a machine | 
|  | /// description file. | 
|  | /// | 
|  | FunctionPass *llvm::createX86PatternInstructionSelector(TargetMachine &TM) { | 
|  | return new ISel(TM); | 
|  | } |