|  | //===- RDFGraph.cpp -------------------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Target-independent, SSA-based data flow graph for register data flow (RDF). | 
|  | // | 
|  | #include "RDFGraph.h" | 
|  | #include "RDFRegisters.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineDominanceFrontier.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/MC/LaneBitmask.h" | 
|  | #include "llvm/MC/MCInstrDesc.h" | 
|  | #include "llvm/MC/MCRegisterInfo.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/Target/TargetSubtargetInfo.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <cstring> | 
|  | #include <iterator> | 
|  | #include <set> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace rdf; | 
|  |  | 
|  | // Printing functions. Have them here first, so that the rest of the code | 
|  | // can use them. | 
|  | namespace llvm { | 
|  | namespace rdf { | 
|  |  | 
|  | raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P) { | 
|  | if (!P.Mask.all()) | 
|  | OS << ':' << PrintLaneMask(P.Mask); | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | template<> | 
|  | raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) { | 
|  | auto &TRI = P.G.getTRI(); | 
|  | if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs()) | 
|  | OS << TRI.getName(P.Obj.Reg); | 
|  | else | 
|  | OS << '#' << P.Obj.Reg; | 
|  | OS << PrintLaneMaskOpt(P.Obj.Mask); | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | template<> | 
|  | raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) { | 
|  | auto NA = P.G.addr<NodeBase*>(P.Obj); | 
|  | uint16_t Attrs = NA.Addr->getAttrs(); | 
|  | uint16_t Kind = NodeAttrs::kind(Attrs); | 
|  | uint16_t Flags = NodeAttrs::flags(Attrs); | 
|  | switch (NodeAttrs::type(Attrs)) { | 
|  | case NodeAttrs::Code: | 
|  | switch (Kind) { | 
|  | case NodeAttrs::Func:   OS << 'f'; break; | 
|  | case NodeAttrs::Block:  OS << 'b'; break; | 
|  | case NodeAttrs::Stmt:   OS << 's'; break; | 
|  | case NodeAttrs::Phi:    OS << 'p'; break; | 
|  | default:                OS << "c?"; break; | 
|  | } | 
|  | break; | 
|  | case NodeAttrs::Ref: | 
|  | if (Flags & NodeAttrs::Undef) | 
|  | OS << '/'; | 
|  | if (Flags & NodeAttrs::Dead) | 
|  | OS << '\\'; | 
|  | if (Flags & NodeAttrs::Preserving) | 
|  | OS << '+'; | 
|  | if (Flags & NodeAttrs::Clobbering) | 
|  | OS << '~'; | 
|  | switch (Kind) { | 
|  | case NodeAttrs::Use:    OS << 'u'; break; | 
|  | case NodeAttrs::Def:    OS << 'd'; break; | 
|  | case NodeAttrs::Block:  OS << 'b'; break; | 
|  | default:                OS << "r?"; break; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | OS << '?'; | 
|  | break; | 
|  | } | 
|  | OS << P.Obj; | 
|  | if (Flags & NodeAttrs::Shadow) | 
|  | OS << '"'; | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA, | 
|  | const DataFlowGraph &G) { | 
|  | OS << Print<NodeId>(RA.Id, G) << '<' | 
|  | << Print<RegisterRef>(RA.Addr->getRegRef(G), G) << '>'; | 
|  | if (RA.Addr->getFlags() & NodeAttrs::Fixed) | 
|  | OS << '!'; | 
|  | } | 
|  |  | 
|  | template<> | 
|  | raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) { | 
|  | printRefHeader(OS, P.Obj, P.G); | 
|  | OS << '('; | 
|  | if (NodeId N = P.Obj.Addr->getReachingDef()) | 
|  | OS << Print<NodeId>(N, P.G); | 
|  | OS << ','; | 
|  | if (NodeId N = P.Obj.Addr->getReachedDef()) | 
|  | OS << Print<NodeId>(N, P.G); | 
|  | OS << ','; | 
|  | if (NodeId N = P.Obj.Addr->getReachedUse()) | 
|  | OS << Print<NodeId>(N, P.G); | 
|  | OS << "):"; | 
|  | if (NodeId N = P.Obj.Addr->getSibling()) | 
|  | OS << Print<NodeId>(N, P.G); | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | template<> | 
|  | raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) { | 
|  | printRefHeader(OS, P.Obj, P.G); | 
|  | OS << '('; | 
|  | if (NodeId N = P.Obj.Addr->getReachingDef()) | 
|  | OS << Print<NodeId>(N, P.G); | 
|  | OS << "):"; | 
|  | if (NodeId N = P.Obj.Addr->getSibling()) | 
|  | OS << Print<NodeId>(N, P.G); | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | template<> | 
|  | raw_ostream &operator<< (raw_ostream &OS, | 
|  | const Print<NodeAddr<PhiUseNode*>> &P) { | 
|  | printRefHeader(OS, P.Obj, P.G); | 
|  | OS << '('; | 
|  | if (NodeId N = P.Obj.Addr->getReachingDef()) | 
|  | OS << Print<NodeId>(N, P.G); | 
|  | OS << ','; | 
|  | if (NodeId N = P.Obj.Addr->getPredecessor()) | 
|  | OS << Print<NodeId>(N, P.G); | 
|  | OS << "):"; | 
|  | if (NodeId N = P.Obj.Addr->getSibling()) | 
|  | OS << Print<NodeId>(N, P.G); | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | template<> | 
|  | raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) { | 
|  | switch (P.Obj.Addr->getKind()) { | 
|  | case NodeAttrs::Def: | 
|  | OS << PrintNode<DefNode*>(P.Obj, P.G); | 
|  | break; | 
|  | case NodeAttrs::Use: | 
|  | if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef) | 
|  | OS << PrintNode<PhiUseNode*>(P.Obj, P.G); | 
|  | else | 
|  | OS << PrintNode<UseNode*>(P.Obj, P.G); | 
|  | break; | 
|  | } | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | template<> | 
|  | raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) { | 
|  | unsigned N = P.Obj.size(); | 
|  | for (auto I : P.Obj) { | 
|  | OS << Print<NodeId>(I.Id, P.G); | 
|  | if (--N) | 
|  | OS << ' '; | 
|  | } | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | template<> | 
|  | raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) { | 
|  | unsigned N = P.Obj.size(); | 
|  | for (auto I : P.Obj) { | 
|  | OS << Print<NodeId>(I, P.G); | 
|  | if (--N) | 
|  | OS << ' '; | 
|  | } | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | template <typename T> | 
|  | struct PrintListV { | 
|  | PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {} | 
|  |  | 
|  | using Type = T; | 
|  | const NodeList &List; | 
|  | const DataFlowGraph &G; | 
|  | }; | 
|  |  | 
|  | template <typename T> | 
|  | raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) { | 
|  | unsigned N = P.List.size(); | 
|  | for (NodeAddr<T> A : P.List) { | 
|  | OS << PrintNode<T>(A, P.G); | 
|  | if (--N) | 
|  | OS << ", "; | 
|  | } | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | template<> | 
|  | raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) { | 
|  | OS << Print<NodeId>(P.Obj.Id, P.G) << ": phi [" | 
|  | << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']'; | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | template<> | 
|  | raw_ostream &operator<< (raw_ostream &OS, | 
|  | const Print<NodeAddr<StmtNode*>> &P) { | 
|  | const MachineInstr &MI = *P.Obj.Addr->getCode(); | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | OS << Print<NodeId>(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc); | 
|  | // Print the target for calls and branches (for readability). | 
|  | if (MI.isCall() || MI.isBranch()) { | 
|  | MachineInstr::const_mop_iterator T = | 
|  | llvm::find_if(MI.operands(), | 
|  | [] (const MachineOperand &Op) -> bool { | 
|  | return Op.isMBB() || Op.isGlobal() || Op.isSymbol(); | 
|  | }); | 
|  | if (T != MI.operands_end()) { | 
|  | OS << ' '; | 
|  | if (T->isMBB()) | 
|  | OS << "BB#" << T->getMBB()->getNumber(); | 
|  | else if (T->isGlobal()) | 
|  | OS << T->getGlobal()->getName(); | 
|  | else if (T->isSymbol()) | 
|  | OS << T->getSymbolName(); | 
|  | } | 
|  | } | 
|  | OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']'; | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | template<> | 
|  | raw_ostream &operator<< (raw_ostream &OS, | 
|  | const Print<NodeAddr<InstrNode*>> &P) { | 
|  | switch (P.Obj.Addr->getKind()) { | 
|  | case NodeAttrs::Phi: | 
|  | OS << PrintNode<PhiNode*>(P.Obj, P.G); | 
|  | break; | 
|  | case NodeAttrs::Stmt: | 
|  | OS << PrintNode<StmtNode*>(P.Obj, P.G); | 
|  | break; | 
|  | default: | 
|  | OS << "instr? " << Print<NodeId>(P.Obj.Id, P.G); | 
|  | break; | 
|  | } | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | template<> | 
|  | raw_ostream &operator<< (raw_ostream &OS, | 
|  | const Print<NodeAddr<BlockNode*>> &P) { | 
|  | MachineBasicBlock *BB = P.Obj.Addr->getCode(); | 
|  | unsigned NP = BB->pred_size(); | 
|  | std::vector<int> Ns; | 
|  | auto PrintBBs = [&OS] (std::vector<int> Ns) -> void { | 
|  | unsigned N = Ns.size(); | 
|  | for (int I : Ns) { | 
|  | OS << "BB#" << I; | 
|  | if (--N) | 
|  | OS << ", "; | 
|  | } | 
|  | }; | 
|  |  | 
|  | OS << Print<NodeId>(P.Obj.Id, P.G) << ": --- BB#" << BB->getNumber() | 
|  | << " --- preds(" << NP << "): "; | 
|  | for (MachineBasicBlock *B : BB->predecessors()) | 
|  | Ns.push_back(B->getNumber()); | 
|  | PrintBBs(Ns); | 
|  |  | 
|  | unsigned NS = BB->succ_size(); | 
|  | OS << "  succs(" << NS << "): "; | 
|  | Ns.clear(); | 
|  | for (MachineBasicBlock *B : BB->successors()) | 
|  | Ns.push_back(B->getNumber()); | 
|  | PrintBBs(Ns); | 
|  | OS << '\n'; | 
|  |  | 
|  | for (auto I : P.Obj.Addr->members(P.G)) | 
|  | OS << PrintNode<InstrNode*>(I, P.G) << '\n'; | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | template<> | 
|  | raw_ostream &operator<< (raw_ostream &OS, | 
|  | const Print<NodeAddr<FuncNode*>> &P) { | 
|  | OS << "DFG dump:[\n" << Print<NodeId>(P.Obj.Id, P.G) << ": Function: " | 
|  | << P.Obj.Addr->getCode()->getName() << '\n'; | 
|  | for (auto I : P.Obj.Addr->members(P.G)) | 
|  | OS << PrintNode<BlockNode*>(I, P.G) << '\n'; | 
|  | OS << "]\n"; | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | template<> | 
|  | raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) { | 
|  | OS << '{'; | 
|  | for (auto I : P.Obj) | 
|  | OS << ' ' << Print<RegisterRef>(I, P.G); | 
|  | OS << " }"; | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | template<> | 
|  | raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) { | 
|  | P.Obj.print(OS); | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | template<> | 
|  | raw_ostream &operator<< (raw_ostream &OS, | 
|  | const Print<DataFlowGraph::DefStack> &P) { | 
|  | for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) { | 
|  | OS << Print<NodeId>(I->Id, P.G) | 
|  | << '<' << Print<RegisterRef>(I->Addr->getRegRef(P.G), P.G) << '>'; | 
|  | I.down(); | 
|  | if (I != E) | 
|  | OS << ' '; | 
|  | } | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | } // end namespace rdf | 
|  | } // end namespace llvm | 
|  |  | 
|  | // Node allocation functions. | 
|  | // | 
|  | // Node allocator is like a slab memory allocator: it allocates blocks of | 
|  | // memory in sizes that are multiples of the size of a node. Each block has | 
|  | // the same size. Nodes are allocated from the currently active block, and | 
|  | // when it becomes full, a new one is created. | 
|  | // There is a mapping scheme between node id and its location in a block, | 
|  | // and within that block is described in the header file. | 
|  | // | 
|  | void NodeAllocator::startNewBlock() { | 
|  | void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize); | 
|  | char *P = static_cast<char*>(T); | 
|  | Blocks.push_back(P); | 
|  | // Check if the block index is still within the allowed range, i.e. less | 
|  | // than 2^N, where N is the number of bits in NodeId for the block index. | 
|  | // BitsPerIndex is the number of bits per node index. | 
|  | assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) && | 
|  | "Out of bits for block index"); | 
|  | ActiveEnd = P; | 
|  | } | 
|  |  | 
|  | bool NodeAllocator::needNewBlock() { | 
|  | if (Blocks.empty()) | 
|  | return true; | 
|  |  | 
|  | char *ActiveBegin = Blocks.back(); | 
|  | uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize; | 
|  | return Index >= NodesPerBlock; | 
|  | } | 
|  |  | 
|  | NodeAddr<NodeBase*> NodeAllocator::New() { | 
|  | if (needNewBlock()) | 
|  | startNewBlock(); | 
|  |  | 
|  | uint32_t ActiveB = Blocks.size()-1; | 
|  | uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize; | 
|  | NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd), | 
|  | makeId(ActiveB, Index) }; | 
|  | ActiveEnd += NodeMemSize; | 
|  | return NA; | 
|  | } | 
|  |  | 
|  | NodeId NodeAllocator::id(const NodeBase *P) const { | 
|  | uintptr_t A = reinterpret_cast<uintptr_t>(P); | 
|  | for (unsigned i = 0, n = Blocks.size(); i != n; ++i) { | 
|  | uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]); | 
|  | if (A < B || A >= B + NodesPerBlock*NodeMemSize) | 
|  | continue; | 
|  | uint32_t Idx = (A-B)/NodeMemSize; | 
|  | return makeId(i, Idx); | 
|  | } | 
|  | llvm_unreachable("Invalid node address"); | 
|  | } | 
|  |  | 
|  | void NodeAllocator::clear() { | 
|  | MemPool.Reset(); | 
|  | Blocks.clear(); | 
|  | ActiveEnd = nullptr; | 
|  | } | 
|  |  | 
|  | // Insert node NA after "this" in the circular chain. | 
|  | void NodeBase::append(NodeAddr<NodeBase*> NA) { | 
|  | NodeId Nx = Next; | 
|  | // If NA is already "next", do nothing. | 
|  | if (Next != NA.Id) { | 
|  | Next = NA.Id; | 
|  | NA.Addr->Next = Nx; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fundamental node manipulator functions. | 
|  |  | 
|  | // Obtain the register reference from a reference node. | 
|  | RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const { | 
|  | assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); | 
|  | if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef) | 
|  | return G.unpack(Ref.PR); | 
|  | assert(Ref.Op != nullptr); | 
|  | return G.makeRegRef(*Ref.Op); | 
|  | } | 
|  |  | 
|  | // Set the register reference in the reference node directly (for references | 
|  | // in phi nodes). | 
|  | void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) { | 
|  | assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); | 
|  | assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef); | 
|  | Ref.PR = G.pack(RR); | 
|  | } | 
|  |  | 
|  | // Set the register reference in the reference node based on a machine | 
|  | // operand (for references in statement nodes). | 
|  | void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) { | 
|  | assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); | 
|  | assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)); | 
|  | (void)G; | 
|  | Ref.Op = Op; | 
|  | } | 
|  |  | 
|  | // Get the owner of a given reference node. | 
|  | NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) { | 
|  | NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext()); | 
|  |  | 
|  | while (NA.Addr != this) { | 
|  | if (NA.Addr->getType() == NodeAttrs::Code) | 
|  | return NA; | 
|  | NA = G.addr<NodeBase*>(NA.Addr->getNext()); | 
|  | } | 
|  | llvm_unreachable("No owner in circular list"); | 
|  | } | 
|  |  | 
|  | // Connect the def node to the reaching def node. | 
|  | void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) { | 
|  | Ref.RD = DA.Id; | 
|  | Ref.Sib = DA.Addr->getReachedDef(); | 
|  | DA.Addr->setReachedDef(Self); | 
|  | } | 
|  |  | 
|  | // Connect the use node to the reaching def node. | 
|  | void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) { | 
|  | Ref.RD = DA.Id; | 
|  | Ref.Sib = DA.Addr->getReachedUse(); | 
|  | DA.Addr->setReachedUse(Self); | 
|  | } | 
|  |  | 
|  | // Get the first member of the code node. | 
|  | NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const { | 
|  | if (Code.FirstM == 0) | 
|  | return NodeAddr<NodeBase*>(); | 
|  | return G.addr<NodeBase*>(Code.FirstM); | 
|  | } | 
|  |  | 
|  | // Get the last member of the code node. | 
|  | NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const { | 
|  | if (Code.LastM == 0) | 
|  | return NodeAddr<NodeBase*>(); | 
|  | return G.addr<NodeBase*>(Code.LastM); | 
|  | } | 
|  |  | 
|  | // Add node NA at the end of the member list of the given code node. | 
|  | void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) { | 
|  | NodeAddr<NodeBase*> ML = getLastMember(G); | 
|  | if (ML.Id != 0) { | 
|  | ML.Addr->append(NA); | 
|  | } else { | 
|  | Code.FirstM = NA.Id; | 
|  | NodeId Self = G.id(this); | 
|  | NA.Addr->setNext(Self); | 
|  | } | 
|  | Code.LastM = NA.Id; | 
|  | } | 
|  |  | 
|  | // Add node NA after member node MA in the given code node. | 
|  | void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA, | 
|  | const DataFlowGraph &G) { | 
|  | MA.Addr->append(NA); | 
|  | if (Code.LastM == MA.Id) | 
|  | Code.LastM = NA.Id; | 
|  | } | 
|  |  | 
|  | // Remove member node NA from the given code node. | 
|  | void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) { | 
|  | NodeAddr<NodeBase*> MA = getFirstMember(G); | 
|  | assert(MA.Id != 0); | 
|  |  | 
|  | // Special handling if the member to remove is the first member. | 
|  | if (MA.Id == NA.Id) { | 
|  | if (Code.LastM == MA.Id) { | 
|  | // If it is the only member, set both first and last to 0. | 
|  | Code.FirstM = Code.LastM = 0; | 
|  | } else { | 
|  | // Otherwise, advance the first member. | 
|  | Code.FirstM = MA.Addr->getNext(); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | while (MA.Addr != this) { | 
|  | NodeId MX = MA.Addr->getNext(); | 
|  | if (MX == NA.Id) { | 
|  | MA.Addr->setNext(NA.Addr->getNext()); | 
|  | // If the member to remove happens to be the last one, update the | 
|  | // LastM indicator. | 
|  | if (Code.LastM == NA.Id) | 
|  | Code.LastM = MA.Id; | 
|  | return; | 
|  | } | 
|  | MA = G.addr<NodeBase*>(MX); | 
|  | } | 
|  | llvm_unreachable("No such member"); | 
|  | } | 
|  |  | 
|  | // Return the list of all members of the code node. | 
|  | NodeList CodeNode::members(const DataFlowGraph &G) const { | 
|  | static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; }; | 
|  | return members_if(True, G); | 
|  | } | 
|  |  | 
|  | // Return the owner of the given instr node. | 
|  | NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) { | 
|  | NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext()); | 
|  |  | 
|  | while (NA.Addr != this) { | 
|  | assert(NA.Addr->getType() == NodeAttrs::Code); | 
|  | if (NA.Addr->getKind() == NodeAttrs::Block) | 
|  | return NA; | 
|  | NA = G.addr<NodeBase*>(NA.Addr->getNext()); | 
|  | } | 
|  | llvm_unreachable("No owner in circular list"); | 
|  | } | 
|  |  | 
|  | // Add the phi node PA to the given block node. | 
|  | void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) { | 
|  | NodeAddr<NodeBase*> M = getFirstMember(G); | 
|  | if (M.Id == 0) { | 
|  | addMember(PA, G); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(M.Addr->getType() == NodeAttrs::Code); | 
|  | if (M.Addr->getKind() == NodeAttrs::Stmt) { | 
|  | // If the first member of the block is a statement, insert the phi as | 
|  | // the first member. | 
|  | Code.FirstM = PA.Id; | 
|  | PA.Addr->setNext(M.Id); | 
|  | } else { | 
|  | // If the first member is a phi, find the last phi, and append PA to it. | 
|  | assert(M.Addr->getKind() == NodeAttrs::Phi); | 
|  | NodeAddr<NodeBase*> MN = M; | 
|  | do { | 
|  | M = MN; | 
|  | MN = G.addr<NodeBase*>(M.Addr->getNext()); | 
|  | assert(MN.Addr->getType() == NodeAttrs::Code); | 
|  | } while (MN.Addr->getKind() == NodeAttrs::Phi); | 
|  |  | 
|  | // M is the last phi. | 
|  | addMemberAfter(M, PA, G); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Find the block node corresponding to the machine basic block BB in the | 
|  | // given func node. | 
|  | NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB, | 
|  | const DataFlowGraph &G) const { | 
|  | auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool { | 
|  | return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB; | 
|  | }; | 
|  | NodeList Ms = members_if(EqBB, G); | 
|  | if (!Ms.empty()) | 
|  | return Ms[0]; | 
|  | return NodeAddr<BlockNode*>(); | 
|  | } | 
|  |  | 
|  | // Get the block node for the entry block in the given function. | 
|  | NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) { | 
|  | MachineBasicBlock *EntryB = &getCode()->front(); | 
|  | return findBlock(EntryB, G); | 
|  | } | 
|  |  | 
|  | // Target operand information. | 
|  | // | 
|  |  | 
|  | // For a given instruction, check if there are any bits of RR that can remain | 
|  | // unchanged across this def. | 
|  | bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum) | 
|  | const { | 
|  | return TII.isPredicated(In); | 
|  | } | 
|  |  | 
|  | // Check if the definition of RR produces an unspecified value. | 
|  | bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum) | 
|  | const { | 
|  | const MachineOperand &Op = In.getOperand(OpNum); | 
|  | if (Op.isRegMask()) | 
|  | return true; | 
|  | assert(Op.isReg()); | 
|  | if (In.isCall()) | 
|  | if (Op.isDef() && Op.isDead()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check if the given instruction specifically requires | 
|  | bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum) | 
|  | const { | 
|  | if (In.isCall() || In.isReturn() || In.isInlineAsm()) | 
|  | return true; | 
|  | // Check for a tail call. | 
|  | if (In.isBranch()) | 
|  | for (const MachineOperand &O : In.operands()) | 
|  | if (O.isGlobal() || O.isSymbol()) | 
|  | return true; | 
|  |  | 
|  | const MCInstrDesc &D = In.getDesc(); | 
|  | if (!D.getImplicitDefs() && !D.getImplicitUses()) | 
|  | return false; | 
|  | const MachineOperand &Op = In.getOperand(OpNum); | 
|  | // If there is a sub-register, treat the operand as non-fixed. Currently, | 
|  | // fixed registers are those that are listed in the descriptor as implicit | 
|  | // uses or defs, and those lists do not allow sub-registers. | 
|  | if (Op.getSubReg() != 0) | 
|  | return false; | 
|  | RegisterId Reg = Op.getReg(); | 
|  | const MCPhysReg *ImpR = Op.isDef() ? D.getImplicitDefs() | 
|  | : D.getImplicitUses(); | 
|  | if (!ImpR) | 
|  | return false; | 
|  | while (*ImpR) | 
|  | if (*ImpR++ == Reg) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // | 
|  | // The data flow graph construction. | 
|  | // | 
|  |  | 
|  | DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, | 
|  | const TargetRegisterInfo &tri, const MachineDominatorTree &mdt, | 
|  | const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi) | 
|  | : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi), | 
|  | LiveIns(PRI) { | 
|  | } | 
|  |  | 
|  | // The implementation of the definition stack. | 
|  | // Each register reference has its own definition stack. In particular, | 
|  | // for a register references "Reg" and "Reg:subreg" will each have their | 
|  | // own definition stacks. | 
|  |  | 
|  | // Construct a stack iterator. | 
|  | DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S, | 
|  | bool Top) : DS(S) { | 
|  | if (!Top) { | 
|  | // Initialize to bottom. | 
|  | Pos = 0; | 
|  | return; | 
|  | } | 
|  | // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty). | 
|  | Pos = DS.Stack.size(); | 
|  | while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1])) | 
|  | Pos--; | 
|  | } | 
|  |  | 
|  | // Return the size of the stack, including block delimiters. | 
|  | unsigned DataFlowGraph::DefStack::size() const { | 
|  | unsigned S = 0; | 
|  | for (auto I = top(), E = bottom(); I != E; I.down()) | 
|  | S++; | 
|  | return S; | 
|  | } | 
|  |  | 
|  | // Remove the top entry from the stack. Remove all intervening delimiters | 
|  | // so that after this, the stack is either empty, or the top of the stack | 
|  | // is a non-delimiter. | 
|  | void DataFlowGraph::DefStack::pop() { | 
|  | assert(!empty()); | 
|  | unsigned P = nextDown(Stack.size()); | 
|  | Stack.resize(P); | 
|  | } | 
|  |  | 
|  | // Push a delimiter for block node N on the stack. | 
|  | void DataFlowGraph::DefStack::start_block(NodeId N) { | 
|  | assert(N != 0); | 
|  | Stack.push_back(NodeAddr<DefNode*>(nullptr, N)); | 
|  | } | 
|  |  | 
|  | // Remove all nodes from the top of the stack, until the delimited for | 
|  | // block node N is encountered. Remove the delimiter as well. In effect, | 
|  | // this will remove from the stack all definitions from block N. | 
|  | void DataFlowGraph::DefStack::clear_block(NodeId N) { | 
|  | assert(N != 0); | 
|  | unsigned P = Stack.size(); | 
|  | while (P > 0) { | 
|  | bool Found = isDelimiter(Stack[P-1], N); | 
|  | P--; | 
|  | if (Found) | 
|  | break; | 
|  | } | 
|  | // This will also remove the delimiter, if found. | 
|  | Stack.resize(P); | 
|  | } | 
|  |  | 
|  | // Move the stack iterator up by one. | 
|  | unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const { | 
|  | // Get the next valid position after P (skipping all delimiters). | 
|  | // The input position P does not have to point to a non-delimiter. | 
|  | unsigned SS = Stack.size(); | 
|  | bool IsDelim; | 
|  | assert(P < SS); | 
|  | do { | 
|  | P++; | 
|  | IsDelim = isDelimiter(Stack[P-1]); | 
|  | } while (P < SS && IsDelim); | 
|  | assert(!IsDelim); | 
|  | return P; | 
|  | } | 
|  |  | 
|  | // Move the stack iterator down by one. | 
|  | unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const { | 
|  | // Get the preceding valid position before P (skipping all delimiters). | 
|  | // The input position P does not have to point to a non-delimiter. | 
|  | assert(P > 0 && P <= Stack.size()); | 
|  | bool IsDelim = isDelimiter(Stack[P-1]); | 
|  | do { | 
|  | if (--P == 0) | 
|  | break; | 
|  | IsDelim = isDelimiter(Stack[P-1]); | 
|  | } while (P > 0 && IsDelim); | 
|  | assert(!IsDelim); | 
|  | return P; | 
|  | } | 
|  |  | 
|  | // Register information. | 
|  |  | 
|  | RegisterSet DataFlowGraph::getLandingPadLiveIns() const { | 
|  | RegisterSet LR; | 
|  | const Function &F = *MF.getFunction(); | 
|  | const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn() | 
|  | : nullptr; | 
|  | const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); | 
|  | if (RegisterId R = TLI.getExceptionPointerRegister(PF)) | 
|  | LR.insert(RegisterRef(R)); | 
|  | if (RegisterId R = TLI.getExceptionSelectorRegister(PF)) | 
|  | LR.insert(RegisterRef(R)); | 
|  | return LR; | 
|  | } | 
|  |  | 
|  | // Node management functions. | 
|  |  | 
|  | // Get the pointer to the node with the id N. | 
|  | NodeBase *DataFlowGraph::ptr(NodeId N) const { | 
|  | if (N == 0) | 
|  | return nullptr; | 
|  | return Memory.ptr(N); | 
|  | } | 
|  |  | 
|  | // Get the id of the node at the address P. | 
|  | NodeId DataFlowGraph::id(const NodeBase *P) const { | 
|  | if (P == nullptr) | 
|  | return 0; | 
|  | return Memory.id(P); | 
|  | } | 
|  |  | 
|  | // Allocate a new node and set the attributes to Attrs. | 
|  | NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) { | 
|  | NodeAddr<NodeBase*> P = Memory.New(); | 
|  | P.Addr->init(); | 
|  | P.Addr->setAttrs(Attrs); | 
|  | return P; | 
|  | } | 
|  |  | 
|  | // Make a copy of the given node B, except for the data-flow links, which | 
|  | // are set to 0. | 
|  | NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) { | 
|  | NodeAddr<NodeBase*> NA = newNode(0); | 
|  | memcpy(NA.Addr, B.Addr, sizeof(NodeBase)); | 
|  | // Ref nodes need to have the data-flow links reset. | 
|  | if (NA.Addr->getType() == NodeAttrs::Ref) { | 
|  | NodeAddr<RefNode*> RA = NA; | 
|  | RA.Addr->setReachingDef(0); | 
|  | RA.Addr->setSibling(0); | 
|  | if (NA.Addr->getKind() == NodeAttrs::Def) { | 
|  | NodeAddr<DefNode*> DA = NA; | 
|  | DA.Addr->setReachedDef(0); | 
|  | DA.Addr->setReachedUse(0); | 
|  | } | 
|  | } | 
|  | return NA; | 
|  | } | 
|  |  | 
|  | // Allocation routines for specific node types/kinds. | 
|  |  | 
|  | NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner, | 
|  | MachineOperand &Op, uint16_t Flags) { | 
|  | NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); | 
|  | UA.Addr->setRegRef(&Op, *this); | 
|  | return UA; | 
|  | } | 
|  |  | 
|  | NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner, | 
|  | RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) { | 
|  | NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); | 
|  | assert(Flags & NodeAttrs::PhiRef); | 
|  | PUA.Addr->setRegRef(RR, *this); | 
|  | PUA.Addr->setPredecessor(PredB.Id); | 
|  | return PUA; | 
|  | } | 
|  |  | 
|  | NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner, | 
|  | MachineOperand &Op, uint16_t Flags) { | 
|  | NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); | 
|  | DA.Addr->setRegRef(&Op, *this); | 
|  | return DA; | 
|  | } | 
|  |  | 
|  | NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner, | 
|  | RegisterRef RR, uint16_t Flags) { | 
|  | NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); | 
|  | assert(Flags & NodeAttrs::PhiRef); | 
|  | DA.Addr->setRegRef(RR, *this); | 
|  | return DA; | 
|  | } | 
|  |  | 
|  | NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) { | 
|  | NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi); | 
|  | Owner.Addr->addPhi(PA, *this); | 
|  | return PA; | 
|  | } | 
|  |  | 
|  | NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner, | 
|  | MachineInstr *MI) { | 
|  | NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt); | 
|  | SA.Addr->setCode(MI); | 
|  | Owner.Addr->addMember(SA, *this); | 
|  | return SA; | 
|  | } | 
|  |  | 
|  | NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner, | 
|  | MachineBasicBlock *BB) { | 
|  | NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block); | 
|  | BA.Addr->setCode(BB); | 
|  | Owner.Addr->addMember(BA, *this); | 
|  | return BA; | 
|  | } | 
|  |  | 
|  | NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) { | 
|  | NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func); | 
|  | FA.Addr->setCode(MF); | 
|  | return FA; | 
|  | } | 
|  |  | 
|  | // Build the data flow graph. | 
|  | void DataFlowGraph::build(unsigned Options) { | 
|  | reset(); | 
|  | Func = newFunc(&MF); | 
|  |  | 
|  | if (MF.empty()) | 
|  | return; | 
|  |  | 
|  | for (MachineBasicBlock &B : MF) { | 
|  | NodeAddr<BlockNode*> BA = newBlock(Func, &B); | 
|  | BlockNodes.insert(std::make_pair(&B, BA)); | 
|  | for (MachineInstr &I : B) { | 
|  | if (I.isDebugValue()) | 
|  | continue; | 
|  | buildStmt(BA, I); | 
|  | } | 
|  | } | 
|  |  | 
|  | NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this); | 
|  | NodeList Blocks = Func.Addr->members(*this); | 
|  |  | 
|  | // Collect information about block references. | 
|  | RegisterSet AllRefs; | 
|  | for (NodeAddr<BlockNode*> BA : Blocks) | 
|  | for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) | 
|  | for (NodeAddr<RefNode*> RA : IA.Addr->members(*this)) | 
|  | AllRefs.insert(RA.Addr->getRegRef(*this)); | 
|  |  | 
|  | // Collect function live-ins and entry block live-ins. | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | MachineBasicBlock &EntryB = *EA.Addr->getCode(); | 
|  | assert(EntryB.pred_empty() && "Function entry block has predecessors"); | 
|  | for (std::pair<unsigned,unsigned> P : MRI.liveins()) | 
|  | LiveIns.insert(RegisterRef(P.first)); | 
|  | if (MRI.tracksLiveness()) { | 
|  | for (auto I : EntryB.liveins()) | 
|  | LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask)); | 
|  | } | 
|  |  | 
|  | // Add function-entry phi nodes for the live-in registers. | 
|  | //for (std::pair<RegisterId,LaneBitmask> P : LiveIns) { | 
|  | for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) { | 
|  | RegisterRef RR = *I; | 
|  | NodeAddr<PhiNode*> PA = newPhi(EA); | 
|  | uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; | 
|  | NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); | 
|  | PA.Addr->addMember(DA, *this); | 
|  | } | 
|  |  | 
|  | // Add phis for landing pads. | 
|  | // Landing pads, unlike usual backs blocks, are not entered through | 
|  | // branches in the program, or fall-throughs from other blocks. They | 
|  | // are entered from the exception handling runtime and target's ABI | 
|  | // may define certain registers as defined on entry to such a block. | 
|  | RegisterSet EHRegs = getLandingPadLiveIns(); | 
|  | if (!EHRegs.empty()) { | 
|  | for (NodeAddr<BlockNode*> BA : Blocks) { | 
|  | const MachineBasicBlock &B = *BA.Addr->getCode(); | 
|  | if (!B.isEHPad()) | 
|  | continue; | 
|  |  | 
|  | // Prepare a list of NodeIds of the block's predecessors. | 
|  | NodeList Preds; | 
|  | for (MachineBasicBlock *PB : B.predecessors()) | 
|  | Preds.push_back(findBlock(PB)); | 
|  |  | 
|  | // Build phi nodes for each live-in. | 
|  | for (RegisterRef RR : EHRegs) { | 
|  | NodeAddr<PhiNode*> PA = newPhi(BA); | 
|  | uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; | 
|  | // Add def: | 
|  | NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); | 
|  | PA.Addr->addMember(DA, *this); | 
|  | // Add uses (no reaching defs for phi uses): | 
|  | for (NodeAddr<BlockNode*> PBA : Preds) { | 
|  | NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA); | 
|  | PA.Addr->addMember(PUA, *this); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Build a map "PhiM" which will contain, for each block, the set | 
|  | // of references that will require phi definitions in that block. | 
|  | BlockRefsMap PhiM; | 
|  | for (NodeAddr<BlockNode*> BA : Blocks) | 
|  | recordDefsForDF(PhiM, BA); | 
|  | for (NodeAddr<BlockNode*> BA : Blocks) | 
|  | buildPhis(PhiM, AllRefs, BA); | 
|  |  | 
|  | // Link all the refs. This will recursively traverse the dominator tree. | 
|  | DefStackMap DM; | 
|  | linkBlockRefs(DM, EA); | 
|  |  | 
|  | // Finally, remove all unused phi nodes. | 
|  | if (!(Options & BuildOptions::KeepDeadPhis)) | 
|  | removeUnusedPhis(); | 
|  | } | 
|  |  | 
|  | RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const { | 
|  | assert(PhysicalRegisterInfo::isRegMaskId(Reg) || | 
|  | TargetRegisterInfo::isPhysicalRegister(Reg)); | 
|  | assert(Reg != 0); | 
|  | if (Sub != 0) | 
|  | Reg = TRI.getSubReg(Reg, Sub); | 
|  | return RegisterRef(Reg); | 
|  | } | 
|  |  | 
|  | RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const { | 
|  | assert(Op.isReg() || Op.isRegMask()); | 
|  | if (Op.isReg()) | 
|  | return makeRegRef(Op.getReg(), Op.getSubReg()); | 
|  | return RegisterRef(PRI.getRegMaskId(Op.getRegMask()), LaneBitmask::getAll()); | 
|  | } | 
|  |  | 
|  | RegisterRef DataFlowGraph::restrictRef(RegisterRef AR, RegisterRef BR) const { | 
|  | if (AR.Reg == BR.Reg) { | 
|  | LaneBitmask M = AR.Mask & BR.Mask; | 
|  | return M.any() ? RegisterRef(AR.Reg, M) : RegisterRef(); | 
|  | } | 
|  | #ifndef NDEBUG | 
|  | //  RegisterRef NAR = PRI.normalize(AR); | 
|  | //  RegisterRef NBR = PRI.normalize(BR); | 
|  | //  assert(NAR.Reg != NBR.Reg); | 
|  | #endif | 
|  | // This isn't strictly correct, because the overlap may happen in the | 
|  | // part masked out. | 
|  | if (PRI.alias(AR, BR)) | 
|  | return AR; | 
|  | return RegisterRef(); | 
|  | } | 
|  |  | 
|  | // For each stack in the map DefM, push the delimiter for block B on it. | 
|  | void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) { | 
|  | // Push block delimiters. | 
|  | for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I) | 
|  | I->second.start_block(B); | 
|  | } | 
|  |  | 
|  | // Remove all definitions coming from block B from each stack in DefM. | 
|  | void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) { | 
|  | // Pop all defs from this block from the definition stack. Defs that were | 
|  | // added to the map during the traversal of instructions will not have a | 
|  | // delimiter, but for those, the whole stack will be emptied. | 
|  | for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I) | 
|  | I->second.clear_block(B); | 
|  |  | 
|  | // Finally, remove empty stacks from the map. | 
|  | for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) { | 
|  | NextI = std::next(I); | 
|  | // This preserves the validity of iterators other than I. | 
|  | if (I->second.empty()) | 
|  | DefM.erase(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Push all definitions from the instruction node IA to an appropriate | 
|  | // stack in DefM. | 
|  | void DataFlowGraph::pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) { | 
|  | pushClobbers(IA, DefM); | 
|  | pushDefs(IA, DefM); | 
|  | } | 
|  |  | 
|  | // Push all definitions from the instruction node IA to an appropriate | 
|  | // stack in DefM. | 
|  | void DataFlowGraph::pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DefM) { | 
|  | NodeSet Visited; | 
|  | std::set<RegisterId> Defined; | 
|  |  | 
|  | // The important objectives of this function are: | 
|  | // - to be able to handle instructions both while the graph is being | 
|  | //   constructed, and after the graph has been constructed, and | 
|  | // - maintain proper ordering of definitions on the stack for each | 
|  | //   register reference: | 
|  | //   - if there are two or more related defs in IA (i.e. coming from | 
|  | //     the same machine operand), then only push one def on the stack, | 
|  | //   - if there are multiple unrelated defs of non-overlapping | 
|  | //     subregisters of S, then the stack for S will have both (in an | 
|  | //     unspecified order), but the order does not matter from the data- | 
|  | //     -flow perspective. | 
|  |  | 
|  | for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) { | 
|  | if (Visited.count(DA.Id)) | 
|  | continue; | 
|  | if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering)) | 
|  | continue; | 
|  |  | 
|  | NodeList Rel = getRelatedRefs(IA, DA); | 
|  | NodeAddr<DefNode*> PDA = Rel.front(); | 
|  | RegisterRef RR = PDA.Addr->getRegRef(*this); | 
|  |  | 
|  | // Push the definition on the stack for the register and all aliases. | 
|  | // The def stack traversal in linkNodeUp will check the exact aliasing. | 
|  | DefM[RR.Reg].push(DA); | 
|  | Defined.insert(RR.Reg); | 
|  | for (RegisterId A : PRI.getAliasSet(RR.Reg)) { | 
|  | // Check that we don't push the same def twice. | 
|  | assert(A != RR.Reg); | 
|  | if (!Defined.count(A)) | 
|  | DefM[A].push(DA); | 
|  | } | 
|  | // Mark all the related defs as visited. | 
|  | for (NodeAddr<NodeBase*> T : Rel) | 
|  | Visited.insert(T.Id); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Push all definitions from the instruction node IA to an appropriate | 
|  | // stack in DefM. | 
|  | void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) { | 
|  | NodeSet Visited; | 
|  | #ifndef NDEBUG | 
|  | std::set<RegisterId> Defined; | 
|  | #endif | 
|  |  | 
|  | // The important objectives of this function are: | 
|  | // - to be able to handle instructions both while the graph is being | 
|  | //   constructed, and after the graph has been constructed, and | 
|  | // - maintain proper ordering of definitions on the stack for each | 
|  | //   register reference: | 
|  | //   - if there are two or more related defs in IA (i.e. coming from | 
|  | //     the same machine operand), then only push one def on the stack, | 
|  | //   - if there are multiple unrelated defs of non-overlapping | 
|  | //     subregisters of S, then the stack for S will have both (in an | 
|  | //     unspecified order), but the order does not matter from the data- | 
|  | //     -flow perspective. | 
|  |  | 
|  | for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) { | 
|  | if (Visited.count(DA.Id)) | 
|  | continue; | 
|  | if (DA.Addr->getFlags() & NodeAttrs::Clobbering) | 
|  | continue; | 
|  |  | 
|  | NodeList Rel = getRelatedRefs(IA, DA); | 
|  | NodeAddr<DefNode*> PDA = Rel.front(); | 
|  | RegisterRef RR = PDA.Addr->getRegRef(*this); | 
|  | #ifndef NDEBUG | 
|  | // Assert if the register is defined in two or more unrelated defs. | 
|  | // This could happen if there are two or more def operands defining it. | 
|  | if (!Defined.insert(RR.Reg).second) { | 
|  | MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode(); | 
|  | dbgs() << "Multiple definitions of register: " | 
|  | << Print<RegisterRef>(RR, *this) << " in\n  " << *MI | 
|  | << "in BB#" << MI->getParent()->getNumber() << '\n'; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | #endif | 
|  | // Push the definition on the stack for the register and all aliases. | 
|  | // The def stack traversal in linkNodeUp will check the exact aliasing. | 
|  | DefM[RR.Reg].push(DA); | 
|  | for (RegisterId A : PRI.getAliasSet(RR.Reg)) { | 
|  | // Check that we don't push the same def twice. | 
|  | assert(A != RR.Reg); | 
|  | DefM[A].push(DA); | 
|  | } | 
|  | // Mark all the related defs as visited. | 
|  | for (NodeAddr<NodeBase*> T : Rel) | 
|  | Visited.insert(T.Id); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return the list of all reference nodes related to RA, including RA itself. | 
|  | // See "getNextRelated" for the meaning of a "related reference". | 
|  | NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA, | 
|  | NodeAddr<RefNode*> RA) const { | 
|  | assert(IA.Id != 0 && RA.Id != 0); | 
|  |  | 
|  | NodeList Refs; | 
|  | NodeId Start = RA.Id; | 
|  | do { | 
|  | Refs.push_back(RA); | 
|  | RA = getNextRelated(IA, RA); | 
|  | } while (RA.Id != 0 && RA.Id != Start); | 
|  | return Refs; | 
|  | } | 
|  |  | 
|  | // Clear all information in the graph. | 
|  | void DataFlowGraph::reset() { | 
|  | Memory.clear(); | 
|  | BlockNodes.clear(); | 
|  | Func = NodeAddr<FuncNode*>(); | 
|  | } | 
|  |  | 
|  | // Return the next reference node in the instruction node IA that is related | 
|  | // to RA. Conceptually, two reference nodes are related if they refer to the | 
|  | // same instance of a register access, but differ in flags or other minor | 
|  | // characteristics. Specific examples of related nodes are shadow reference | 
|  | // nodes. | 
|  | // Return the equivalent of nullptr if there are no more related references. | 
|  | NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA, | 
|  | NodeAddr<RefNode*> RA) const { | 
|  | assert(IA.Id != 0 && RA.Id != 0); | 
|  |  | 
|  | auto Related = [this,RA](NodeAddr<RefNode*> TA) -> bool { | 
|  | if (TA.Addr->getKind() != RA.Addr->getKind()) | 
|  | return false; | 
|  | if (TA.Addr->getRegRef(*this) != RA.Addr->getRegRef(*this)) | 
|  | return false; | 
|  | return true; | 
|  | }; | 
|  | auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool { | 
|  | return Related(TA) && | 
|  | &RA.Addr->getOp() == &TA.Addr->getOp(); | 
|  | }; | 
|  | auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool { | 
|  | if (!Related(TA)) | 
|  | return false; | 
|  | if (TA.Addr->getKind() != NodeAttrs::Use) | 
|  | return true; | 
|  | // For phi uses, compare predecessor blocks. | 
|  | const NodeAddr<const PhiUseNode*> TUA = TA; | 
|  | const NodeAddr<const PhiUseNode*> RUA = RA; | 
|  | return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor(); | 
|  | }; | 
|  |  | 
|  | RegisterRef RR = RA.Addr->getRegRef(*this); | 
|  | if (IA.Addr->getKind() == NodeAttrs::Stmt) | 
|  | return RA.Addr->getNextRef(RR, RelatedStmt, true, *this); | 
|  | return RA.Addr->getNextRef(RR, RelatedPhi, true, *this); | 
|  | } | 
|  |  | 
|  | // Find the next node related to RA in IA that satisfies condition P. | 
|  | // If such a node was found, return a pair where the second element is the | 
|  | // located node. If such a node does not exist, return a pair where the | 
|  | // first element is the element after which such a node should be inserted, | 
|  | // and the second element is a null-address. | 
|  | template <typename Predicate> | 
|  | std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>> | 
|  | DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA, | 
|  | Predicate P) const { | 
|  | assert(IA.Id != 0 && RA.Id != 0); | 
|  |  | 
|  | NodeAddr<RefNode*> NA; | 
|  | NodeId Start = RA.Id; | 
|  | while (true) { | 
|  | NA = getNextRelated(IA, RA); | 
|  | if (NA.Id == 0 || NA.Id == Start) | 
|  | break; | 
|  | if (P(NA)) | 
|  | break; | 
|  | RA = NA; | 
|  | } | 
|  |  | 
|  | if (NA.Id != 0 && NA.Id != Start) | 
|  | return std::make_pair(RA, NA); | 
|  | return std::make_pair(RA, NodeAddr<RefNode*>()); | 
|  | } | 
|  |  | 
|  | // Get the next shadow node in IA corresponding to RA, and optionally create | 
|  | // such a node if it does not exist. | 
|  | NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA, | 
|  | NodeAddr<RefNode*> RA, bool Create) { | 
|  | assert(IA.Id != 0 && RA.Id != 0); | 
|  |  | 
|  | uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow; | 
|  | auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool { | 
|  | return TA.Addr->getFlags() == Flags; | 
|  | }; | 
|  | auto Loc = locateNextRef(IA, RA, IsShadow); | 
|  | if (Loc.second.Id != 0 || !Create) | 
|  | return Loc.second; | 
|  |  | 
|  | // Create a copy of RA and mark is as shadow. | 
|  | NodeAddr<RefNode*> NA = cloneNode(RA); | 
|  | NA.Addr->setFlags(Flags | NodeAttrs::Shadow); | 
|  | IA.Addr->addMemberAfter(Loc.first, NA, *this); | 
|  | return NA; | 
|  | } | 
|  |  | 
|  | // Get the next shadow node in IA corresponding to RA. Return null-address | 
|  | // if such a node does not exist. | 
|  | NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA, | 
|  | NodeAddr<RefNode*> RA) const { | 
|  | assert(IA.Id != 0 && RA.Id != 0); | 
|  | uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow; | 
|  | auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool { | 
|  | return TA.Addr->getFlags() == Flags; | 
|  | }; | 
|  | return locateNextRef(IA, RA, IsShadow).second; | 
|  | } | 
|  |  | 
|  | // Create a new statement node in the block node BA that corresponds to | 
|  | // the machine instruction MI. | 
|  | void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) { | 
|  | NodeAddr<StmtNode*> SA = newStmt(BA, &In); | 
|  |  | 
|  | auto isCall = [] (const MachineInstr &In) -> bool { | 
|  | if (In.isCall()) | 
|  | return true; | 
|  | // Is tail call? | 
|  | if (In.isBranch()) { | 
|  | for (const MachineOperand &Op : In.operands()) | 
|  | if (Op.isGlobal() || Op.isSymbol()) | 
|  | return true; | 
|  | // Assume indirect branches are calls. This is for the purpose of | 
|  | // keeping implicit operands, and so it won't hurt on intra-function | 
|  | // indirect branches. | 
|  | if (In.isIndirectBranch()) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool { | 
|  | // This instruction defines DR. Check if there is a use operand that | 
|  | // would make DR live on entry to the instruction. | 
|  | for (const MachineOperand &Op : In.operands()) { | 
|  | if (!Op.isReg() || Op.getReg() == 0 || !Op.isUse() || Op.isUndef()) | 
|  | continue; | 
|  | RegisterRef UR = makeRegRef(Op); | 
|  | if (PRI.alias(DR, UR)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | bool IsCall = isCall(In); | 
|  | unsigned NumOps = In.getNumOperands(); | 
|  |  | 
|  | // Avoid duplicate implicit defs. This will not detect cases of implicit | 
|  | // defs that define registers that overlap, but it is not clear how to | 
|  | // interpret that in the absence of explicit defs. Overlapping explicit | 
|  | // defs are likely illegal already. | 
|  | BitVector DoneDefs(TRI.getNumRegs()); | 
|  | // Process explicit defs first. | 
|  | for (unsigned OpN = 0; OpN < NumOps; ++OpN) { | 
|  | MachineOperand &Op = In.getOperand(OpN); | 
|  | if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) | 
|  | continue; | 
|  | unsigned R = Op.getReg(); | 
|  | if (!R || !TargetRegisterInfo::isPhysicalRegister(R)) | 
|  | continue; | 
|  | uint16_t Flags = NodeAttrs::None; | 
|  | if (TOI.isPreserving(In, OpN)) { | 
|  | Flags |= NodeAttrs::Preserving; | 
|  | // If the def is preserving, check if it is also undefined. | 
|  | if (isDefUndef(In, makeRegRef(Op))) | 
|  | Flags |= NodeAttrs::Undef; | 
|  | } | 
|  | if (TOI.isClobbering(In, OpN)) | 
|  | Flags |= NodeAttrs::Clobbering; | 
|  | if (TOI.isFixedReg(In, OpN)) | 
|  | Flags |= NodeAttrs::Fixed; | 
|  | if (IsCall && Op.isDead()) | 
|  | Flags |= NodeAttrs::Dead; | 
|  | NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); | 
|  | SA.Addr->addMember(DA, *this); | 
|  | assert(!DoneDefs.test(R)); | 
|  | DoneDefs.set(R); | 
|  | } | 
|  |  | 
|  | // Process reg-masks (as clobbers). | 
|  | BitVector DoneClobbers(TRI.getNumRegs()); | 
|  | for (unsigned OpN = 0; OpN < NumOps; ++OpN) { | 
|  | MachineOperand &Op = In.getOperand(OpN); | 
|  | if (!Op.isRegMask()) | 
|  | continue; | 
|  | uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed | | 
|  | NodeAttrs::Dead; | 
|  | NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); | 
|  | SA.Addr->addMember(DA, *this); | 
|  | // Record all clobbered registers in DoneDefs. | 
|  | const uint32_t *RM = Op.getRegMask(); | 
|  | for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i) | 
|  | if (!(RM[i/32] & (1u << (i%32)))) | 
|  | DoneClobbers.set(i); | 
|  | } | 
|  |  | 
|  | // Process implicit defs, skipping those that have already been added | 
|  | // as explicit. | 
|  | for (unsigned OpN = 0; OpN < NumOps; ++OpN) { | 
|  | MachineOperand &Op = In.getOperand(OpN); | 
|  | if (!Op.isReg() || !Op.isDef() || !Op.isImplicit()) | 
|  | continue; | 
|  | unsigned R = Op.getReg(); | 
|  | if (!R || !TargetRegisterInfo::isPhysicalRegister(R) || DoneDefs.test(R)) | 
|  | continue; | 
|  | RegisterRef RR = makeRegRef(Op); | 
|  | uint16_t Flags = NodeAttrs::None; | 
|  | if (TOI.isPreserving(In, OpN)) { | 
|  | Flags |= NodeAttrs::Preserving; | 
|  | // If the def is preserving, check if it is also undefined. | 
|  | if (isDefUndef(In, RR)) | 
|  | Flags |= NodeAttrs::Undef; | 
|  | } | 
|  | if (TOI.isClobbering(In, OpN)) | 
|  | Flags |= NodeAttrs::Clobbering; | 
|  | if (TOI.isFixedReg(In, OpN)) | 
|  | Flags |= NodeAttrs::Fixed; | 
|  | if (IsCall && Op.isDead()) { | 
|  | if (DoneClobbers.test(R)) | 
|  | continue; | 
|  | Flags |= NodeAttrs::Dead; | 
|  | } | 
|  | NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); | 
|  | SA.Addr->addMember(DA, *this); | 
|  | DoneDefs.set(R); | 
|  | } | 
|  |  | 
|  | for (unsigned OpN = 0; OpN < NumOps; ++OpN) { | 
|  | MachineOperand &Op = In.getOperand(OpN); | 
|  | if (!Op.isReg() || !Op.isUse()) | 
|  | continue; | 
|  | unsigned R = Op.getReg(); | 
|  | if (!R || !TargetRegisterInfo::isPhysicalRegister(R)) | 
|  | continue; | 
|  | uint16_t Flags = NodeAttrs::None; | 
|  | if (Op.isUndef()) | 
|  | Flags |= NodeAttrs::Undef; | 
|  | if (TOI.isFixedReg(In, OpN)) | 
|  | Flags |= NodeAttrs::Fixed; | 
|  | NodeAddr<UseNode*> UA = newUse(SA, Op, Flags); | 
|  | SA.Addr->addMember(UA, *this); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Scan all defs in the block node BA and record in PhiM the locations of | 
|  | // phi nodes corresponding to these defs. | 
|  | void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, | 
|  | NodeAddr<BlockNode*> BA) { | 
|  | // Check all defs from block BA and record them in each block in BA's | 
|  | // iterated dominance frontier. This information will later be used to | 
|  | // create phi nodes. | 
|  | MachineBasicBlock *BB = BA.Addr->getCode(); | 
|  | assert(BB); | 
|  | auto DFLoc = MDF.find(BB); | 
|  | if (DFLoc == MDF.end() || DFLoc->second.empty()) | 
|  | return; | 
|  |  | 
|  | // Traverse all instructions in the block and collect the set of all | 
|  | // defined references. For each reference there will be a phi created | 
|  | // in the block's iterated dominance frontier. | 
|  | // This is done to make sure that each defined reference gets only one | 
|  | // phi node, even if it is defined multiple times. | 
|  | RegisterSet Defs; | 
|  | for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) | 
|  | for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this)) | 
|  | Defs.insert(RA.Addr->getRegRef(*this)); | 
|  |  | 
|  | // Calculate the iterated dominance frontier of BB. | 
|  | const MachineDominanceFrontier::DomSetType &DF = DFLoc->second; | 
|  | SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end()); | 
|  | for (unsigned i = 0; i < IDF.size(); ++i) { | 
|  | auto F = MDF.find(IDF[i]); | 
|  | if (F != MDF.end()) | 
|  | IDF.insert(F->second.begin(), F->second.end()); | 
|  | } | 
|  |  | 
|  | // Finally, add the set of defs to each block in the iterated dominance | 
|  | // frontier. | 
|  | for (auto DB : IDF) { | 
|  | NodeAddr<BlockNode*> DBA = findBlock(DB); | 
|  | PhiM[DBA.Id].insert(Defs.begin(), Defs.end()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Given the locations of phi nodes in the map PhiM, create the phi nodes | 
|  | // that are located in the block node BA. | 
|  | void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs, | 
|  | NodeAddr<BlockNode*> BA) { | 
|  | // Check if this blocks has any DF defs, i.e. if there are any defs | 
|  | // that this block is in the iterated dominance frontier of. | 
|  | auto HasDF = PhiM.find(BA.Id); | 
|  | if (HasDF == PhiM.end() || HasDF->second.empty()) | 
|  | return; | 
|  |  | 
|  | // First, remove all R in Refs in such that there exists T in Refs | 
|  | // such that T covers R. In other words, only leave those refs that | 
|  | // are not covered by another ref (i.e. maximal with respect to covering). | 
|  |  | 
|  | auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef { | 
|  | for (RegisterRef I : RRs) | 
|  | if (I != RR && RegisterAggr::isCoverOf(I, RR, PRI)) | 
|  | RR = I; | 
|  | return RR; | 
|  | }; | 
|  |  | 
|  | RegisterSet MaxDF; | 
|  | for (RegisterRef I : HasDF->second) | 
|  | MaxDF.insert(MaxCoverIn(I, HasDF->second)); | 
|  |  | 
|  | std::vector<RegisterRef> MaxRefs; | 
|  | for (RegisterRef I : MaxDF) | 
|  | MaxRefs.push_back(MaxCoverIn(I, AllRefs)); | 
|  |  | 
|  | // Now, for each R in MaxRefs, get the alias closure of R. If the closure | 
|  | // only has R in it, create a phi a def for R. Otherwise, create a phi, | 
|  | // and add a def for each S in the closure. | 
|  |  | 
|  | // Sort the refs so that the phis will be created in a deterministic order. | 
|  | std::sort(MaxRefs.begin(), MaxRefs.end()); | 
|  | // Remove duplicates. | 
|  | auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end()); | 
|  | MaxRefs.erase(NewEnd, MaxRefs.end()); | 
|  |  | 
|  | auto Aliased = [this,&MaxRefs](RegisterRef RR, | 
|  | std::vector<unsigned> &Closure) -> bool { | 
|  | for (unsigned I : Closure) | 
|  | if (PRI.alias(RR, MaxRefs[I])) | 
|  | return true; | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | // Prepare a list of NodeIds of the block's predecessors. | 
|  | NodeList Preds; | 
|  | const MachineBasicBlock *MBB = BA.Addr->getCode(); | 
|  | for (MachineBasicBlock *PB : MBB->predecessors()) | 
|  | Preds.push_back(findBlock(PB)); | 
|  |  | 
|  | while (!MaxRefs.empty()) { | 
|  | // Put the first element in the closure, and then add all subsequent | 
|  | // elements from MaxRefs to it, if they alias at least one element | 
|  | // already in the closure. | 
|  | // ClosureIdx: vector of indices in MaxRefs of members of the closure. | 
|  | std::vector<unsigned> ClosureIdx = { 0 }; | 
|  | for (unsigned i = 1; i != MaxRefs.size(); ++i) | 
|  | if (Aliased(MaxRefs[i], ClosureIdx)) | 
|  | ClosureIdx.push_back(i); | 
|  |  | 
|  | // Build a phi for the closure. | 
|  | unsigned CS = ClosureIdx.size(); | 
|  | NodeAddr<PhiNode*> PA = newPhi(BA); | 
|  |  | 
|  | // Add defs. | 
|  | for (unsigned X = 0; X != CS; ++X) { | 
|  | RegisterRef RR = MaxRefs[ClosureIdx[X]]; | 
|  | uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; | 
|  | NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); | 
|  | PA.Addr->addMember(DA, *this); | 
|  | } | 
|  | // Add phi uses. | 
|  | for (NodeAddr<BlockNode*> PBA : Preds) { | 
|  | for (unsigned X = 0; X != CS; ++X) { | 
|  | RegisterRef RR = MaxRefs[ClosureIdx[X]]; | 
|  | NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA); | 
|  | PA.Addr->addMember(PUA, *this); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Erase from MaxRefs all elements in the closure. | 
|  | auto Begin = MaxRefs.begin(); | 
|  | for (unsigned i = ClosureIdx.size(); i != 0; --i) | 
|  | MaxRefs.erase(Begin + ClosureIdx[i-1]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remove any unneeded phi nodes that were created during the build process. | 
|  | void DataFlowGraph::removeUnusedPhis() { | 
|  | // This will remove unused phis, i.e. phis where each def does not reach | 
|  | // any uses or other defs. This will not detect or remove circular phi | 
|  | // chains that are otherwise dead. Unused/dead phis are created during | 
|  | // the build process and this function is intended to remove these cases | 
|  | // that are easily determinable to be unnecessary. | 
|  |  | 
|  | SetVector<NodeId> PhiQ; | 
|  | for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) { | 
|  | for (auto P : BA.Addr->members_if(IsPhi, *this)) | 
|  | PhiQ.insert(P.Id); | 
|  | } | 
|  |  | 
|  | static auto HasUsedDef = [](NodeList &Ms) -> bool { | 
|  | for (NodeAddr<NodeBase*> M : Ms) { | 
|  | if (M.Addr->getKind() != NodeAttrs::Def) | 
|  | continue; | 
|  | NodeAddr<DefNode*> DA = M; | 
|  | if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | // Any phi, if it is removed, may affect other phis (make them dead). | 
|  | // For each removed phi, collect the potentially affected phis and add | 
|  | // them back to the queue. | 
|  | while (!PhiQ.empty()) { | 
|  | auto PA = addr<PhiNode*>(PhiQ[0]); | 
|  | PhiQ.remove(PA.Id); | 
|  | NodeList Refs = PA.Addr->members(*this); | 
|  | if (HasUsedDef(Refs)) | 
|  | continue; | 
|  | for (NodeAddr<RefNode*> RA : Refs) { | 
|  | if (NodeId RD = RA.Addr->getReachingDef()) { | 
|  | auto RDA = addr<DefNode*>(RD); | 
|  | NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this); | 
|  | if (IsPhi(OA)) | 
|  | PhiQ.insert(OA.Id); | 
|  | } | 
|  | if (RA.Addr->isDef()) | 
|  | unlinkDef(RA, true); | 
|  | else | 
|  | unlinkUse(RA, true); | 
|  | } | 
|  | NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this); | 
|  | BA.Addr->removeMember(PA, *this); | 
|  | } | 
|  | } | 
|  |  | 
|  | // For a given reference node TA in an instruction node IA, connect the | 
|  | // reaching def of TA to the appropriate def node. Create any shadow nodes | 
|  | // as appropriate. | 
|  | template <typename T> | 
|  | void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA, | 
|  | DefStack &DS) { | 
|  | if (DS.empty()) | 
|  | return; | 
|  | RegisterRef RR = TA.Addr->getRegRef(*this); | 
|  | NodeAddr<T> TAP; | 
|  |  | 
|  | // References from the def stack that have been examined so far. | 
|  | RegisterAggr Defs(PRI); | 
|  |  | 
|  | for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) { | 
|  | RegisterRef QR = I->Addr->getRegRef(*this); | 
|  |  | 
|  | // Skip all defs that are aliased to any of the defs that we have already | 
|  | // seen. If this completes a cover of RR, stop the stack traversal. | 
|  | bool Alias = Defs.hasAliasOf(QR); | 
|  | bool Cover = Defs.insert(QR).hasCoverOf(RR); | 
|  | if (Alias) { | 
|  | if (Cover) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // The reaching def. | 
|  | NodeAddr<DefNode*> RDA = *I; | 
|  |  | 
|  | // Pick the reached node. | 
|  | if (TAP.Id == 0) { | 
|  | TAP = TA; | 
|  | } else { | 
|  | // Mark the existing ref as "shadow" and create a new shadow. | 
|  | TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow); | 
|  | TAP = getNextShadow(IA, TAP, true); | 
|  | } | 
|  |  | 
|  | // Create the link. | 
|  | TAP.Addr->linkToDef(TAP.Id, RDA); | 
|  |  | 
|  | if (Cover) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create data-flow links for all reference nodes in the statement node SA. | 
|  | template <typename Predicate> | 
|  | void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA, | 
|  | Predicate P) { | 
|  | #ifndef NDEBUG | 
|  | RegisterSet Defs; | 
|  | #endif | 
|  |  | 
|  | // Link all nodes (upwards in the data-flow) with their reaching defs. | 
|  | for (NodeAddr<RefNode*> RA : SA.Addr->members_if(P, *this)) { | 
|  | uint16_t Kind = RA.Addr->getKind(); | 
|  | assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use); | 
|  | RegisterRef RR = RA.Addr->getRegRef(*this); | 
|  | #ifndef NDEBUG | 
|  | // Do not expect multiple defs of the same reference. | 
|  | assert(Kind != NodeAttrs::Def || !Defs.count(RR)); | 
|  | Defs.insert(RR); | 
|  | #endif | 
|  |  | 
|  | auto F = DefM.find(RR.Reg); | 
|  | if (F == DefM.end()) | 
|  | continue; | 
|  | DefStack &DS = F->second; | 
|  | if (Kind == NodeAttrs::Use) | 
|  | linkRefUp<UseNode*>(SA, RA, DS); | 
|  | else if (Kind == NodeAttrs::Def) | 
|  | linkRefUp<DefNode*>(SA, RA, DS); | 
|  | else | 
|  | llvm_unreachable("Unexpected node in instruction"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create data-flow links for all instructions in the block node BA. This | 
|  | // will include updating any phi nodes in BA. | 
|  | void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) { | 
|  | // Push block delimiters. | 
|  | markBlock(BA.Id, DefM); | 
|  |  | 
|  | auto IsClobber = [] (NodeAddr<RefNode*> RA) -> bool { | 
|  | return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering); | 
|  | }; | 
|  | auto IsNoClobber = [] (NodeAddr<RefNode*> RA) -> bool { | 
|  | return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering); | 
|  | }; | 
|  |  | 
|  | assert(BA.Addr && "block node address is needed to create a data-flow link"); | 
|  | // For each non-phi instruction in the block, link all the defs and uses | 
|  | // to their reaching defs. For any member of the block (including phis), | 
|  | // push the defs on the corresponding stacks. | 
|  | for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) { | 
|  | // Ignore phi nodes here. They will be linked part by part from the | 
|  | // predecessors. | 
|  | if (IA.Addr->getKind() == NodeAttrs::Stmt) { | 
|  | linkStmtRefs(DefM, IA, IsUse); | 
|  | linkStmtRefs(DefM, IA, IsClobber); | 
|  | } | 
|  |  | 
|  | // Push the definitions on the stack. | 
|  | pushClobbers(IA, DefM); | 
|  |  | 
|  | if (IA.Addr->getKind() == NodeAttrs::Stmt) | 
|  | linkStmtRefs(DefM, IA, IsNoClobber); | 
|  |  | 
|  | pushDefs(IA, DefM); | 
|  | } | 
|  |  | 
|  | // Recursively process all children in the dominator tree. | 
|  | MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode()); | 
|  | for (auto I : *N) { | 
|  | MachineBasicBlock *SB = I->getBlock(); | 
|  | NodeAddr<BlockNode*> SBA = findBlock(SB); | 
|  | linkBlockRefs(DefM, SBA); | 
|  | } | 
|  |  | 
|  | // Link the phi uses from the successor blocks. | 
|  | auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool { | 
|  | if (NA.Addr->getKind() != NodeAttrs::Use) | 
|  | return false; | 
|  | assert(NA.Addr->getFlags() & NodeAttrs::PhiRef); | 
|  | NodeAddr<PhiUseNode*> PUA = NA; | 
|  | return PUA.Addr->getPredecessor() == BA.Id; | 
|  | }; | 
|  |  | 
|  | RegisterSet EHLiveIns = getLandingPadLiveIns(); | 
|  | MachineBasicBlock *MBB = BA.Addr->getCode(); | 
|  |  | 
|  | for (MachineBasicBlock *SB : MBB->successors()) { | 
|  | bool IsEHPad = SB->isEHPad(); | 
|  | NodeAddr<BlockNode*> SBA = findBlock(SB); | 
|  | for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) { | 
|  | // Do not link phi uses for landing pad live-ins. | 
|  | if (IsEHPad) { | 
|  | // Find what register this phi is for. | 
|  | NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this); | 
|  | assert(RA.Id != 0); | 
|  | if (EHLiveIns.count(RA.Addr->getRegRef(*this))) | 
|  | continue; | 
|  | } | 
|  | // Go over each phi use associated with MBB, and link it. | 
|  | for (auto U : IA.Addr->members_if(IsUseForBA, *this)) { | 
|  | NodeAddr<PhiUseNode*> PUA = U; | 
|  | RegisterRef RR = PUA.Addr->getRegRef(*this); | 
|  | linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Pop all defs from this block from the definition stacks. | 
|  | releaseBlock(BA.Id, DefM); | 
|  | } | 
|  |  | 
|  | // Remove the use node UA from any data-flow and structural links. | 
|  | void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) { | 
|  | NodeId RD = UA.Addr->getReachingDef(); | 
|  | NodeId Sib = UA.Addr->getSibling(); | 
|  |  | 
|  | if (RD == 0) { | 
|  | assert(Sib == 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | auto RDA = addr<DefNode*>(RD); | 
|  | auto TA = addr<UseNode*>(RDA.Addr->getReachedUse()); | 
|  | if (TA.Id == UA.Id) { | 
|  | RDA.Addr->setReachedUse(Sib); | 
|  | return; | 
|  | } | 
|  |  | 
|  | while (TA.Id != 0) { | 
|  | NodeId S = TA.Addr->getSibling(); | 
|  | if (S == UA.Id) { | 
|  | TA.Addr->setSibling(UA.Addr->getSibling()); | 
|  | return; | 
|  | } | 
|  | TA = addr<UseNode*>(S); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remove the def node DA from any data-flow and structural links. | 
|  | void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) { | 
|  | // | 
|  | //         RD | 
|  | //         | reached | 
|  | //         | def | 
|  | //         : | 
|  | //         . | 
|  | //        +----+ | 
|  | // ... -- | DA | -- ... -- 0  : sibling chain of DA | 
|  | //        +----+ | 
|  | //         |  | reached | 
|  | //         |  : def | 
|  | //         |  . | 
|  | //         | ...  : Siblings (defs) | 
|  | //         | | 
|  | //         : reached | 
|  | //         . use | 
|  | //        ... : sibling chain of reached uses | 
|  |  | 
|  | NodeId RD = DA.Addr->getReachingDef(); | 
|  |  | 
|  | // Visit all siblings of the reached def and reset their reaching defs. | 
|  | // Also, defs reached by DA are now "promoted" to being reached by RD, | 
|  | // so all of them will need to be spliced into the sibling chain where | 
|  | // DA belongs. | 
|  | auto getAllNodes = [this] (NodeId N) -> NodeList { | 
|  | NodeList Res; | 
|  | while (N) { | 
|  | auto RA = addr<RefNode*>(N); | 
|  | // Keep the nodes in the exact sibling order. | 
|  | Res.push_back(RA); | 
|  | N = RA.Addr->getSibling(); | 
|  | } | 
|  | return Res; | 
|  | }; | 
|  | NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef()); | 
|  | NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse()); | 
|  |  | 
|  | if (RD == 0) { | 
|  | for (NodeAddr<RefNode*> I : ReachedDefs) | 
|  | I.Addr->setSibling(0); | 
|  | for (NodeAddr<RefNode*> I : ReachedUses) | 
|  | I.Addr->setSibling(0); | 
|  | } | 
|  | for (NodeAddr<DefNode*> I : ReachedDefs) | 
|  | I.Addr->setReachingDef(RD); | 
|  | for (NodeAddr<UseNode*> I : ReachedUses) | 
|  | I.Addr->setReachingDef(RD); | 
|  |  | 
|  | NodeId Sib = DA.Addr->getSibling(); | 
|  | if (RD == 0) { | 
|  | assert(Sib == 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Update the reaching def node and remove DA from the sibling list. | 
|  | auto RDA = addr<DefNode*>(RD); | 
|  | auto TA = addr<DefNode*>(RDA.Addr->getReachedDef()); | 
|  | if (TA.Id == DA.Id) { | 
|  | // If DA is the first reached def, just update the RD's reached def | 
|  | // to the DA's sibling. | 
|  | RDA.Addr->setReachedDef(Sib); | 
|  | } else { | 
|  | // Otherwise, traverse the sibling list of the reached defs and remove | 
|  | // DA from it. | 
|  | while (TA.Id != 0) { | 
|  | NodeId S = TA.Addr->getSibling(); | 
|  | if (S == DA.Id) { | 
|  | TA.Addr->setSibling(Sib); | 
|  | break; | 
|  | } | 
|  | TA = addr<DefNode*>(S); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Splice the DA's reached defs into the RDA's reached def chain. | 
|  | if (!ReachedDefs.empty()) { | 
|  | auto Last = NodeAddr<DefNode*>(ReachedDefs.back()); | 
|  | Last.Addr->setSibling(RDA.Addr->getReachedDef()); | 
|  | RDA.Addr->setReachedDef(ReachedDefs.front().Id); | 
|  | } | 
|  | // Splice the DA's reached uses into the RDA's reached use chain. | 
|  | if (!ReachedUses.empty()) { | 
|  | auto Last = NodeAddr<UseNode*>(ReachedUses.back()); | 
|  | Last.Addr->setSibling(RDA.Addr->getReachedUse()); | 
|  | RDA.Addr->setReachedUse(ReachedUses.front().Id); | 
|  | } | 
|  | } |