|  | //===- OutputSections.cpp -------------------------------------------------===// | 
|  | // | 
|  | //                             The LLVM Linker | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "OutputSections.h" | 
|  | #include "Config.h" | 
|  | #include "EhFrame.h" | 
|  | #include "LinkerScript.h" | 
|  | #include "SymbolTable.h" | 
|  | #include "Target.h" | 
|  | #include "lld/Core/Parallel.h" | 
|  | #include "llvm/Support/Dwarf.h" | 
|  | #include "llvm/Support/MD5.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/SHA1.h" | 
|  | #include <map> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::dwarf; | 
|  | using namespace llvm::object; | 
|  | using namespace llvm::support::endian; | 
|  | using namespace llvm::ELF; | 
|  |  | 
|  | using namespace lld; | 
|  | using namespace lld::elf; | 
|  |  | 
|  | static bool isAlpha(char C) { | 
|  | return ('a' <= C && C <= 'z') || ('A' <= C && C <= 'Z') || C == '_'; | 
|  | } | 
|  |  | 
|  | static bool isAlnum(char C) { return isAlpha(C) || ('0' <= C && C <= '9'); } | 
|  |  | 
|  | // Returns true if S is valid as a C language identifier. | 
|  | bool elf::isValidCIdentifier(StringRef S) { | 
|  | return !S.empty() && isAlpha(S[0]) && | 
|  | std::all_of(S.begin() + 1, S.end(), isAlnum); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | OutputSectionBase<ELFT>::OutputSectionBase(StringRef Name, uint32_t Type, | 
|  | uintX_t Flags) | 
|  | : Name(Name) { | 
|  | memset(&Header, 0, sizeof(Elf_Shdr)); | 
|  | Header.sh_type = Type; | 
|  | Header.sh_flags = Flags; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void OutputSectionBase<ELFT>::writeHeaderTo(Elf_Shdr *Shdr) { | 
|  | *Shdr = Header; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | GotPltSection<ELFT>::GotPltSection() | 
|  | : OutputSectionBase<ELFT>(".got.plt", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) { | 
|  | this->Header.sh_addralign = sizeof(uintX_t); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void GotPltSection<ELFT>::addEntry(SymbolBody &Sym) { | 
|  | Sym.GotPltIndex = Target->GotPltHeaderEntriesNum + Entries.size(); | 
|  | Entries.push_back(&Sym); | 
|  | } | 
|  |  | 
|  | template <class ELFT> bool GotPltSection<ELFT>::empty() const { | 
|  | return Entries.empty(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void GotPltSection<ELFT>::finalize() { | 
|  | this->Header.sh_size = | 
|  | (Target->GotPltHeaderEntriesNum + Entries.size()) * sizeof(uintX_t); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void GotPltSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | Target->writeGotPltHeader(Buf); | 
|  | Buf += Target->GotPltHeaderEntriesNum * sizeof(uintX_t); | 
|  | for (const SymbolBody *B : Entries) { | 
|  | Target->writeGotPlt(Buf, B->getPltVA<ELFT>()); | 
|  | Buf += sizeof(uintX_t); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | GotSection<ELFT>::GotSection() | 
|  | : OutputSectionBase<ELFT>(".got", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) { | 
|  | if (Config->EMachine == EM_MIPS) | 
|  | this->Header.sh_flags |= SHF_MIPS_GPREL; | 
|  | this->Header.sh_addralign = sizeof(uintX_t); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void GotSection<ELFT>::addEntry(SymbolBody &Sym) { | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | // For "true" local symbols which can be referenced from the same module | 
|  | // only compiler creates two instructions for address loading: | 
|  | // | 
|  | // lw   $8, 0($gp) # R_MIPS_GOT16 | 
|  | // addi $8, $8, 0  # R_MIPS_LO16 | 
|  | // | 
|  | // The first instruction loads high 16 bits of the symbol address while | 
|  | // the second adds an offset. That allows to reduce number of required | 
|  | // GOT entries because only one global offset table entry is necessary | 
|  | // for every 64 KBytes of local data. So for local symbols we need to | 
|  | // allocate number of GOT entries to hold all required "page" addresses. | 
|  | // | 
|  | // All global symbols (hidden and regular) considered by compiler uniformly. | 
|  | // It always generates a single `lw` instruction and R_MIPS_GOT16 relocation | 
|  | // to load address of the symbol. So for each such symbol we need to | 
|  | // allocate dedicated GOT entry to store its address. | 
|  | // | 
|  | // If a symbol is preemptible we need help of dynamic linker to get its | 
|  | // final address. The corresponding GOT entries are allocated in the | 
|  | // "global" part of GOT. Entries for non preemptible global symbol allocated | 
|  | // in the "local" part of GOT. | 
|  | // | 
|  | // See "Global Offset Table" in Chapter 5: | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | if (Sym.isLocal()) { | 
|  | // At this point we do not know final symbol value so to reduce number | 
|  | // of allocated GOT entries do the following trick. Save all output | 
|  | // sections referenced by GOT relocations. Then later in the `finalize` | 
|  | // method calculate number of "pages" required to cover all saved output | 
|  | // section and allocate appropriate number of GOT entries. | 
|  | auto *OutSec = cast<DefinedRegular<ELFT>>(&Sym)->Section->OutSec; | 
|  | MipsOutSections.insert(OutSec); | 
|  | return; | 
|  | } | 
|  | if (!Sym.isPreemptible()) { | 
|  | // In case of non-local symbols require an entry in the local part | 
|  | // of MIPS GOT, we set GotIndex to 1 just to accent that this symbol | 
|  | // has the GOT entry and escape creation more redundant GOT entries. | 
|  | // FIXME (simon): We can try to store such symbols in the `Entries` | 
|  | // container. But in that case we have to sort out that container | 
|  | // and update GotIndex assigned to symbols. | 
|  | Sym.GotIndex = 1; | 
|  | ++MipsLocalEntries; | 
|  | return; | 
|  | } | 
|  | } | 
|  | Sym.GotIndex = Entries.size(); | 
|  | Entries.push_back(&Sym); | 
|  | } | 
|  |  | 
|  | template <class ELFT> bool GotSection<ELFT>::addDynTlsEntry(SymbolBody &Sym) { | 
|  | if (Sym.GlobalDynIndex != -1U) | 
|  | return false; | 
|  | Sym.GlobalDynIndex = Entries.size(); | 
|  | // Global Dynamic TLS entries take two GOT slots. | 
|  | Entries.push_back(&Sym); | 
|  | Entries.push_back(nullptr); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Reserves TLS entries for a TLS module ID and a TLS block offset. | 
|  | // In total it takes two GOT slots. | 
|  | template <class ELFT> bool GotSection<ELFT>::addTlsIndex() { | 
|  | if (TlsIndexOff != uint32_t(-1)) | 
|  | return false; | 
|  | TlsIndexOff = Entries.size() * sizeof(uintX_t); | 
|  | Entries.push_back(nullptr); | 
|  | Entries.push_back(nullptr); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | typename GotSection<ELFT>::uintX_t | 
|  | GotSection<ELFT>::getMipsLocalPageOffset(uintX_t EntryValue) { | 
|  | // Initialize the entry by the %hi(EntryValue) expression | 
|  | // but without right-shifting. | 
|  | return getMipsLocalEntryOffset((EntryValue + 0x8000) & ~0xffff); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | typename GotSection<ELFT>::uintX_t | 
|  | GotSection<ELFT>::getMipsLocalEntryOffset(uintX_t EntryValue) { | 
|  | // Take into account MIPS GOT header. | 
|  | // See comment in the GotSection::writeTo. | 
|  | size_t NewIndex = MipsLocalGotPos.size() + 2; | 
|  | auto P = MipsLocalGotPos.insert(std::make_pair(EntryValue, NewIndex)); | 
|  | assert(!P.second || MipsLocalGotPos.size() <= MipsLocalEntries); | 
|  | return (uintX_t)P.first->second * sizeof(uintX_t) - MipsGPOffset; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | typename GotSection<ELFT>::uintX_t | 
|  | GotSection<ELFT>::getGlobalDynAddr(const SymbolBody &B) const { | 
|  | return this->getVA() + B.GlobalDynIndex * sizeof(uintX_t); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | typename GotSection<ELFT>::uintX_t | 
|  | GotSection<ELFT>::getGlobalDynOffset(const SymbolBody &B) const { | 
|  | return B.GlobalDynIndex * sizeof(uintX_t); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | const SymbolBody *GotSection<ELFT>::getMipsFirstGlobalEntry() const { | 
|  | return Entries.empty() ? nullptr : Entries.front(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | unsigned GotSection<ELFT>::getMipsLocalEntriesNum() const { | 
|  | return MipsLocalEntries; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void GotSection<ELFT>::finalize() { | 
|  | if (Config->EMachine == EM_MIPS) | 
|  | // Take into account MIPS GOT header. | 
|  | // See comment in the GotSection::writeTo. | 
|  | MipsLocalEntries += 2; | 
|  | for (const OutputSectionBase<ELFT> *OutSec : MipsOutSections) { | 
|  | // Calculate an upper bound of MIPS GOT entries required to store page | 
|  | // addresses of local symbols. We assume the worst case - each 64kb | 
|  | // page of the output section has at least one GOT relocation against it. | 
|  | // Add 0x8000 to the section's size because the page address stored | 
|  | // in the GOT entry is calculated as (value + 0x8000) & ~0xffff. | 
|  | MipsLocalEntries += (OutSec->getSize() + 0x8000 + 0xfffe) / 0xffff; | 
|  | } | 
|  | this->Header.sh_size = (MipsLocalEntries + Entries.size()) * sizeof(uintX_t); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void GotSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | // Set the MSB of the second GOT slot. This is not required by any | 
|  | // MIPS ABI documentation, though. | 
|  | // | 
|  | // There is a comment in glibc saying that "The MSB of got[1] of a | 
|  | // gnu object is set to identify gnu objects," and in GNU gold it | 
|  | // says "the second entry will be used by some runtime loaders". | 
|  | // But how this field is being used is unclear. | 
|  | // | 
|  | // We are not really willing to mimic other linkers behaviors | 
|  | // without understanding why they do that, but because all files | 
|  | // generated by GNU tools have this special GOT value, and because | 
|  | // we've been doing this for years, it is probably a safe bet to | 
|  | // keep doing this for now. We really need to revisit this to see | 
|  | // if we had to do this. | 
|  | auto *P = reinterpret_cast<typename ELFT::Off *>(Buf); | 
|  | P[1] = uintX_t(1) << (ELFT::Is64Bits ? 63 : 31); | 
|  | } | 
|  | for (std::pair<uintX_t, size_t> &L : MipsLocalGotPos) { | 
|  | uint8_t *Entry = Buf + L.second * sizeof(uintX_t); | 
|  | write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Entry, L.first); | 
|  | } | 
|  | Buf += MipsLocalEntries * sizeof(uintX_t); | 
|  | for (const SymbolBody *B : Entries) { | 
|  | uint8_t *Entry = Buf; | 
|  | Buf += sizeof(uintX_t); | 
|  | if (!B) | 
|  | continue; | 
|  | // MIPS has special rules to fill up GOT entries. | 
|  | // See "Global Offset Table" in Chapter 5 in the following document | 
|  | // for detailed description: | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | // As the first approach, we can just store addresses for all symbols. | 
|  | if (Config->EMachine != EM_MIPS && B->isPreemptible()) | 
|  | continue; // The dynamic linker will take care of it. | 
|  | uintX_t VA = B->getVA<ELFT>(); | 
|  | write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Entry, VA); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | PltSection<ELFT>::PltSection() | 
|  | : OutputSectionBase<ELFT>(".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR) { | 
|  | this->Header.sh_addralign = 16; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void PltSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | // At beginning of PLT, we have code to call the dynamic linker | 
|  | // to resolve dynsyms at runtime. Write such code. | 
|  | Target->writePltZero(Buf); | 
|  | size_t Off = Target->PltZeroSize; | 
|  |  | 
|  | for (auto &I : Entries) { | 
|  | const SymbolBody *B = I.first; | 
|  | unsigned RelOff = I.second; | 
|  | uint64_t Got = B->getGotPltVA<ELFT>(); | 
|  | uint64_t Plt = this->getVA() + Off; | 
|  | Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff); | 
|  | Off += Target->PltEntrySize; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> void PltSection<ELFT>::addEntry(SymbolBody &Sym) { | 
|  | Sym.PltIndex = Entries.size(); | 
|  | unsigned RelOff = Out<ELFT>::RelaPlt->getRelocOffset(); | 
|  | Entries.push_back(std::make_pair(&Sym, RelOff)); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void PltSection<ELFT>::finalize() { | 
|  | this->Header.sh_size = | 
|  | Target->PltZeroSize + Entries.size() * Target->PltEntrySize; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | RelocationSection<ELFT>::RelocationSection(StringRef Name, bool Sort) | 
|  | : OutputSectionBase<ELFT>(Name, Config->Rela ? SHT_RELA : SHT_REL, | 
|  | SHF_ALLOC), | 
|  | Sort(Sort) { | 
|  | this->Header.sh_entsize = Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); | 
|  | this->Header.sh_addralign = sizeof(uintX_t); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void RelocationSection<ELFT>::addReloc(const DynamicReloc<ELFT> &Reloc) { | 
|  | Relocs.push_back(Reloc); | 
|  | } | 
|  |  | 
|  | template <class ELFT, class RelTy> | 
|  | static bool compRelocations(const RelTy &A, const RelTy &B) { | 
|  | return A.getSymbol(Config->Mips64EL) < B.getSymbol(Config->Mips64EL); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | uint8_t *BufBegin = Buf; | 
|  | for (const DynamicReloc<ELFT> &Rel : Relocs) { | 
|  | auto *P = reinterpret_cast<Elf_Rela *>(Buf); | 
|  | Buf += Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); | 
|  | SymbolBody *Sym = Rel.Sym; | 
|  |  | 
|  | if (Config->Rela) | 
|  | P->r_addend = Rel.UseSymVA ? Sym->getVA<ELFT>(Rel.Addend) : Rel.Addend; | 
|  | P->r_offset = Rel.OffsetInSec + Rel.OffsetSec->getVA(); | 
|  | uint32_t SymIdx = (!Rel.UseSymVA && Sym) ? Sym->DynsymIndex : 0; | 
|  | P->setSymbolAndType(SymIdx, Rel.Type, Config->Mips64EL); | 
|  | } | 
|  |  | 
|  | if (Sort) { | 
|  | if (Config->Rela) | 
|  | std::stable_sort((Elf_Rela *)BufBegin, | 
|  | (Elf_Rela *)BufBegin + Relocs.size(), | 
|  | compRelocations<ELFT, Elf_Rela>); | 
|  | else | 
|  | std::stable_sort((Elf_Rel *)BufBegin, (Elf_Rel *)BufBegin + Relocs.size(), | 
|  | compRelocations<ELFT, Elf_Rel>); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> unsigned RelocationSection<ELFT>::getRelocOffset() { | 
|  | return this->Header.sh_entsize * Relocs.size(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void RelocationSection<ELFT>::finalize() { | 
|  | this->Header.sh_link = Static ? Out<ELFT>::SymTab->SectionIndex | 
|  | : Out<ELFT>::DynSymTab->SectionIndex; | 
|  | this->Header.sh_size = Relocs.size() * this->Header.sh_entsize; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | InterpSection<ELFT>::InterpSection() | 
|  | : OutputSectionBase<ELFT>(".interp", SHT_PROGBITS, SHF_ALLOC) { | 
|  | this->Header.sh_size = Config->DynamicLinker.size() + 1; | 
|  | this->Header.sh_addralign = 1; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void InterpSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | StringRef S = Config->DynamicLinker; | 
|  | memcpy(Buf, S.data(), S.size()); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | HashTableSection<ELFT>::HashTableSection() | 
|  | : OutputSectionBase<ELFT>(".hash", SHT_HASH, SHF_ALLOC) { | 
|  | this->Header.sh_entsize = sizeof(Elf_Word); | 
|  | this->Header.sh_addralign = sizeof(Elf_Word); | 
|  | } | 
|  |  | 
|  | static uint32_t hashSysv(StringRef Name) { | 
|  | uint32_t H = 0; | 
|  | for (char C : Name) { | 
|  | H = (H << 4) + C; | 
|  | uint32_t G = H & 0xf0000000; | 
|  | if (G) | 
|  | H ^= G >> 24; | 
|  | H &= ~G; | 
|  | } | 
|  | return H; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void HashTableSection<ELFT>::finalize() { | 
|  | this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex; | 
|  |  | 
|  | unsigned NumEntries = 2;                             // nbucket and nchain. | 
|  | NumEntries += Out<ELFT>::DynSymTab->getNumSymbols(); // The chain entries. | 
|  |  | 
|  | // Create as many buckets as there are symbols. | 
|  | // FIXME: This is simplistic. We can try to optimize it, but implementing | 
|  | // support for SHT_GNU_HASH is probably even more profitable. | 
|  | NumEntries += Out<ELFT>::DynSymTab->getNumSymbols(); | 
|  | this->Header.sh_size = NumEntries * sizeof(Elf_Word); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void HashTableSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | unsigned NumSymbols = Out<ELFT>::DynSymTab->getNumSymbols(); | 
|  | auto *P = reinterpret_cast<Elf_Word *>(Buf); | 
|  | *P++ = NumSymbols; // nbucket | 
|  | *P++ = NumSymbols; // nchain | 
|  |  | 
|  | Elf_Word *Buckets = P; | 
|  | Elf_Word *Chains = P + NumSymbols; | 
|  |  | 
|  | for (const std::pair<SymbolBody *, unsigned> &P : | 
|  | Out<ELFT>::DynSymTab->getSymbols()) { | 
|  | SymbolBody *Body = P.first; | 
|  | StringRef Name = Body->getName(); | 
|  | unsigned I = Body->DynsymIndex; | 
|  | uint32_t Hash = hashSysv(Name) % NumSymbols; | 
|  | Chains[I] = Buckets[Hash]; | 
|  | Buckets[Hash] = I; | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint32_t hashGnu(StringRef Name) { | 
|  | uint32_t H = 5381; | 
|  | for (uint8_t C : Name) | 
|  | H = (H << 5) + H + C; | 
|  | return H; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | GnuHashTableSection<ELFT>::GnuHashTableSection() | 
|  | : OutputSectionBase<ELFT>(".gnu.hash", SHT_GNU_HASH, SHF_ALLOC) { | 
|  | this->Header.sh_entsize = ELFT::Is64Bits ? 0 : 4; | 
|  | this->Header.sh_addralign = sizeof(uintX_t); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | unsigned GnuHashTableSection<ELFT>::calcNBuckets(unsigned NumHashed) { | 
|  | if (!NumHashed) | 
|  | return 0; | 
|  |  | 
|  | // These values are prime numbers which are not greater than 2^(N-1) + 1. | 
|  | // In result, for any particular NumHashed we return a prime number | 
|  | // which is not greater than NumHashed. | 
|  | static const unsigned Primes[] = { | 
|  | 1,   1,    3,    3,    7,    13,    31,    61,    127,   251, | 
|  | 509, 1021, 2039, 4093, 8191, 16381, 32749, 65521, 131071}; | 
|  |  | 
|  | return Primes[std::min<unsigned>(Log2_32_Ceil(NumHashed), | 
|  | array_lengthof(Primes) - 1)]; | 
|  | } | 
|  |  | 
|  | // Bloom filter estimation: at least 8 bits for each hashed symbol. | 
|  | // GNU Hash table requirement: it should be a power of 2, | 
|  | //   the minimum value is 1, even for an empty table. | 
|  | // Expected results for a 32-bit target: | 
|  | //   calcMaskWords(0..4)   = 1 | 
|  | //   calcMaskWords(5..8)   = 2 | 
|  | //   calcMaskWords(9..16)  = 4 | 
|  | // For a 64-bit target: | 
|  | //   calcMaskWords(0..8)   = 1 | 
|  | //   calcMaskWords(9..16)  = 2 | 
|  | //   calcMaskWords(17..32) = 4 | 
|  | template <class ELFT> | 
|  | unsigned GnuHashTableSection<ELFT>::calcMaskWords(unsigned NumHashed) { | 
|  | if (!NumHashed) | 
|  | return 1; | 
|  | return NextPowerOf2((NumHashed - 1) / sizeof(Elf_Off)); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void GnuHashTableSection<ELFT>::finalize() { | 
|  | unsigned NumHashed = Symbols.size(); | 
|  | NBuckets = calcNBuckets(NumHashed); | 
|  | MaskWords = calcMaskWords(NumHashed); | 
|  | // Second hash shift estimation: just predefined values. | 
|  | Shift2 = ELFT::Is64Bits ? 6 : 5; | 
|  |  | 
|  | this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex; | 
|  | this->Header.sh_size = sizeof(Elf_Word) * 4            // Header | 
|  | + sizeof(Elf_Off) * MaskWords   // Bloom Filter | 
|  | + sizeof(Elf_Word) * NBuckets   // Hash Buckets | 
|  | + sizeof(Elf_Word) * NumHashed; // Hash Values | 
|  | } | 
|  |  | 
|  | template <class ELFT> void GnuHashTableSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | writeHeader(Buf); | 
|  | if (Symbols.empty()) | 
|  | return; | 
|  | writeBloomFilter(Buf); | 
|  | writeHashTable(Buf); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void GnuHashTableSection<ELFT>::writeHeader(uint8_t *&Buf) { | 
|  | auto *P = reinterpret_cast<Elf_Word *>(Buf); | 
|  | *P++ = NBuckets; | 
|  | *P++ = Out<ELFT>::DynSymTab->getNumSymbols() - Symbols.size(); | 
|  | *P++ = MaskWords; | 
|  | *P++ = Shift2; | 
|  | Buf = reinterpret_cast<uint8_t *>(P); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void GnuHashTableSection<ELFT>::writeBloomFilter(uint8_t *&Buf) { | 
|  | unsigned C = sizeof(Elf_Off) * 8; | 
|  |  | 
|  | auto *Masks = reinterpret_cast<Elf_Off *>(Buf); | 
|  | for (const SymbolData &Sym : Symbols) { | 
|  | size_t Pos = (Sym.Hash / C) & (MaskWords - 1); | 
|  | uintX_t V = (uintX_t(1) << (Sym.Hash % C)) | | 
|  | (uintX_t(1) << ((Sym.Hash >> Shift2) % C)); | 
|  | Masks[Pos] |= V; | 
|  | } | 
|  | Buf += sizeof(Elf_Off) * MaskWords; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void GnuHashTableSection<ELFT>::writeHashTable(uint8_t *Buf) { | 
|  | Elf_Word *Buckets = reinterpret_cast<Elf_Word *>(Buf); | 
|  | Elf_Word *Values = Buckets + NBuckets; | 
|  |  | 
|  | int PrevBucket = -1; | 
|  | int I = 0; | 
|  | for (const SymbolData &Sym : Symbols) { | 
|  | int Bucket = Sym.Hash % NBuckets; | 
|  | assert(PrevBucket <= Bucket); | 
|  | if (Bucket != PrevBucket) { | 
|  | Buckets[Bucket] = Sym.Body->DynsymIndex; | 
|  | PrevBucket = Bucket; | 
|  | if (I > 0) | 
|  | Values[I - 1] |= 1; | 
|  | } | 
|  | Values[I] = Sym.Hash & ~1; | 
|  | ++I; | 
|  | } | 
|  | if (I > 0) | 
|  | Values[I - 1] |= 1; | 
|  | } | 
|  |  | 
|  | static bool includeInGnuHashTable(SymbolBody *B) { | 
|  | // Assume that includeInDynsym() is already checked. | 
|  | return !B->isUndefined(); | 
|  | } | 
|  |  | 
|  | // Add symbols to this symbol hash table. Note that this function | 
|  | // destructively sort a given vector -- which is needed because | 
|  | // GNU-style hash table places some sorting requirements. | 
|  | template <class ELFT> | 
|  | void GnuHashTableSection<ELFT>::addSymbols( | 
|  | std::vector<std::pair<SymbolBody *, size_t>> &V) { | 
|  | auto Mid = std::stable_partition(V.begin(), V.end(), | 
|  | [](std::pair<SymbolBody *, size_t> &P) { | 
|  | return !includeInGnuHashTable(P.first); | 
|  | }); | 
|  | if (Mid == V.end()) | 
|  | return; | 
|  | for (auto I = Mid, E = V.end(); I != E; ++I) { | 
|  | SymbolBody *B = I->first; | 
|  | size_t StrOff = I->second; | 
|  | Symbols.push_back({B, StrOff, hashGnu(B->getName())}); | 
|  | } | 
|  |  | 
|  | unsigned NBuckets = calcNBuckets(Symbols.size()); | 
|  | std::stable_sort(Symbols.begin(), Symbols.end(), | 
|  | [&](const SymbolData &L, const SymbolData &R) { | 
|  | return L.Hash % NBuckets < R.Hash % NBuckets; | 
|  | }); | 
|  |  | 
|  | V.erase(Mid, V.end()); | 
|  | for (const SymbolData &Sym : Symbols) | 
|  | V.push_back({Sym.Body, Sym.STName}); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | DynamicSection<ELFT>::DynamicSection() | 
|  | : OutputSectionBase<ELFT>(".dynamic", SHT_DYNAMIC, SHF_ALLOC | SHF_WRITE) { | 
|  | Elf_Shdr &Header = this->Header; | 
|  | Header.sh_addralign = sizeof(uintX_t); | 
|  | Header.sh_entsize = ELFT::Is64Bits ? 16 : 8; | 
|  |  | 
|  | // .dynamic section is not writable on MIPS. | 
|  | // See "Special Section" in Chapter 4 in the following document: | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | if (Config->EMachine == EM_MIPS) | 
|  | Header.sh_flags = SHF_ALLOC; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void DynamicSection<ELFT>::finalize() { | 
|  | if (this->Header.sh_size) | 
|  | return; // Already finalized. | 
|  |  | 
|  | Elf_Shdr &Header = this->Header; | 
|  | Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex; | 
|  |  | 
|  | auto Add = [=](Entry E) { Entries.push_back(E); }; | 
|  |  | 
|  | // Add strings. We know that these are the last strings to be added to | 
|  | // DynStrTab and doing this here allows this function to set DT_STRSZ. | 
|  | if (!Config->RPath.empty()) | 
|  | Add({Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH, | 
|  | Out<ELFT>::DynStrTab->addString(Config->RPath)}); | 
|  | for (const std::unique_ptr<SharedFile<ELFT>> &F : | 
|  | Symtab<ELFT>::X->getSharedFiles()) | 
|  | if (F->isNeeded()) | 
|  | Add({DT_NEEDED, Out<ELFT>::DynStrTab->addString(F->getSoName())}); | 
|  | if (!Config->SoName.empty()) | 
|  | Add({DT_SONAME, Out<ELFT>::DynStrTab->addString(Config->SoName)}); | 
|  |  | 
|  | Out<ELFT>::DynStrTab->finalize(); | 
|  |  | 
|  | if (Out<ELFT>::RelaDyn->hasRelocs()) { | 
|  | bool IsRela = Config->Rela; | 
|  | Add({IsRela ? DT_RELA : DT_REL, Out<ELFT>::RelaDyn}); | 
|  | Add({IsRela ? DT_RELASZ : DT_RELSZ, Out<ELFT>::RelaDyn->getSize()}); | 
|  | Add({IsRela ? DT_RELAENT : DT_RELENT, | 
|  | uintX_t(IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel))}); | 
|  | } | 
|  | if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) { | 
|  | Add({DT_JMPREL, Out<ELFT>::RelaPlt}); | 
|  | Add({DT_PLTRELSZ, Out<ELFT>::RelaPlt->getSize()}); | 
|  | Add({Config->EMachine == EM_MIPS ? DT_MIPS_PLTGOT : DT_PLTGOT, | 
|  | Out<ELFT>::GotPlt}); | 
|  | Add({DT_PLTREL, uint64_t(Config->Rela ? DT_RELA : DT_REL)}); | 
|  | } | 
|  |  | 
|  | Add({DT_SYMTAB, Out<ELFT>::DynSymTab}); | 
|  | Add({DT_SYMENT, sizeof(Elf_Sym)}); | 
|  | Add({DT_STRTAB, Out<ELFT>::DynStrTab}); | 
|  | Add({DT_STRSZ, Out<ELFT>::DynStrTab->getSize()}); | 
|  | if (Out<ELFT>::GnuHashTab) | 
|  | Add({DT_GNU_HASH, Out<ELFT>::GnuHashTab}); | 
|  | if (Out<ELFT>::HashTab) | 
|  | Add({DT_HASH, Out<ELFT>::HashTab}); | 
|  |  | 
|  | if (PreInitArraySec) { | 
|  | Add({DT_PREINIT_ARRAY, PreInitArraySec}); | 
|  | Add({DT_PREINIT_ARRAYSZ, PreInitArraySec->getSize()}); | 
|  | } | 
|  | if (InitArraySec) { | 
|  | Add({DT_INIT_ARRAY, InitArraySec}); | 
|  | Add({DT_INIT_ARRAYSZ, (uintX_t)InitArraySec->getSize()}); | 
|  | } | 
|  | if (FiniArraySec) { | 
|  | Add({DT_FINI_ARRAY, FiniArraySec}); | 
|  | Add({DT_FINI_ARRAYSZ, (uintX_t)FiniArraySec->getSize()}); | 
|  | } | 
|  |  | 
|  | if (SymbolBody *B = Symtab<ELFT>::X->find(Config->Init)) | 
|  | Add({DT_INIT, B}); | 
|  | if (SymbolBody *B = Symtab<ELFT>::X->find(Config->Fini)) | 
|  | Add({DT_FINI, B}); | 
|  |  | 
|  | uint32_t DtFlags = 0; | 
|  | uint32_t DtFlags1 = 0; | 
|  | if (Config->Bsymbolic) | 
|  | DtFlags |= DF_SYMBOLIC; | 
|  | if (Config->ZNodelete) | 
|  | DtFlags1 |= DF_1_NODELETE; | 
|  | if (Config->ZNow) { | 
|  | DtFlags |= DF_BIND_NOW; | 
|  | DtFlags1 |= DF_1_NOW; | 
|  | } | 
|  | if (Config->ZOrigin) { | 
|  | DtFlags |= DF_ORIGIN; | 
|  | DtFlags1 |= DF_1_ORIGIN; | 
|  | } | 
|  |  | 
|  | if (DtFlags) | 
|  | Add({DT_FLAGS, DtFlags}); | 
|  | if (DtFlags1) | 
|  | Add({DT_FLAGS_1, DtFlags1}); | 
|  |  | 
|  | if (!Config->Entry.empty()) | 
|  | Add({DT_DEBUG, (uint64_t)0}); | 
|  |  | 
|  | if (size_t NeedNum = Out<ELFT>::VerNeed->getNeedNum()) { | 
|  | Add({DT_VERSYM, Out<ELFT>::VerSym}); | 
|  | Add({DT_VERNEED, Out<ELFT>::VerNeed}); | 
|  | Add({DT_VERNEEDNUM, NeedNum}); | 
|  | } | 
|  |  | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | Add({DT_MIPS_RLD_VERSION, 1}); | 
|  | Add({DT_MIPS_FLAGS, RHF_NOTPOT}); | 
|  | Add({DT_MIPS_BASE_ADDRESS, (uintX_t)Target->getVAStart()}); | 
|  | Add({DT_MIPS_SYMTABNO, Out<ELFT>::DynSymTab->getNumSymbols()}); | 
|  | Add({DT_MIPS_LOCAL_GOTNO, Out<ELFT>::Got->getMipsLocalEntriesNum()}); | 
|  | if (const SymbolBody *B = Out<ELFT>::Got->getMipsFirstGlobalEntry()) | 
|  | Add({DT_MIPS_GOTSYM, B->DynsymIndex}); | 
|  | else | 
|  | Add({DT_MIPS_GOTSYM, Out<ELFT>::DynSymTab->getNumSymbols()}); | 
|  | Add({DT_PLTGOT, Out<ELFT>::Got}); | 
|  | if (Out<ELFT>::MipsRldMap) | 
|  | Add({DT_MIPS_RLD_MAP, Out<ELFT>::MipsRldMap}); | 
|  | } | 
|  |  | 
|  | // +1 for DT_NULL | 
|  | Header.sh_size = (Entries.size() + 1) * Header.sh_entsize; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | auto *P = reinterpret_cast<Elf_Dyn *>(Buf); | 
|  |  | 
|  | for (const Entry &E : Entries) { | 
|  | P->d_tag = E.Tag; | 
|  | switch (E.Kind) { | 
|  | case Entry::SecAddr: | 
|  | P->d_un.d_ptr = E.OutSec->getVA(); | 
|  | break; | 
|  | case Entry::SymAddr: | 
|  | P->d_un.d_ptr = E.Sym->template getVA<ELFT>(); | 
|  | break; | 
|  | case Entry::PlainInt: | 
|  | P->d_un.d_val = E.Val; | 
|  | break; | 
|  | } | 
|  | ++P; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | EhFrameHeader<ELFT>::EhFrameHeader() | 
|  | : OutputSectionBase<ELFT>(".eh_frame_hdr", SHT_PROGBITS, SHF_ALLOC) {} | 
|  |  | 
|  | // .eh_frame_hdr contains a binary search table of pointers to FDEs. | 
|  | // Each entry of the search table consists of two values, | 
|  | // the starting PC from where FDEs covers, and the FDE's address. | 
|  | // It is sorted by PC. | 
|  | template <class ELFT> void EhFrameHeader<ELFT>::writeTo(uint8_t *Buf) { | 
|  | const endianness E = ELFT::TargetEndianness; | 
|  |  | 
|  | // Sort the FDE list by their PC and uniqueify. Usually there is only | 
|  | // one FDE for a PC (i.e. function), but if ICF merges two functions | 
|  | // into one, there can be more than one FDEs pointing to the address. | 
|  | auto Less = [](const FdeData &A, const FdeData &B) { return A.Pc < B.Pc; }; | 
|  | std::stable_sort(Fdes.begin(), Fdes.end(), Less); | 
|  | auto Eq = [](const FdeData &A, const FdeData &B) { return A.Pc == B.Pc; }; | 
|  | Fdes.erase(std::unique(Fdes.begin(), Fdes.end(), Eq), Fdes.end()); | 
|  |  | 
|  | Buf[0] = 1; | 
|  | Buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; | 
|  | Buf[2] = DW_EH_PE_udata4; | 
|  | Buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; | 
|  | write32<E>(Buf + 4, Out<ELFT>::EhFrame->getVA() - this->getVA() - 4); | 
|  | write32<E>(Buf + 8, Fdes.size()); | 
|  | Buf += 12; | 
|  |  | 
|  | uintX_t VA = this->getVA(); | 
|  | for (FdeData &Fde : Fdes) { | 
|  | write32<E>(Buf, Fde.Pc - VA); | 
|  | write32<E>(Buf + 4, Fde.FdeVA - VA); | 
|  | Buf += 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> void EhFrameHeader<ELFT>::finalize() { | 
|  | // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. | 
|  | this->Header.sh_size = 12 + Out<ELFT>::EhFrame->NumFdes * 8; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void EhFrameHeader<ELFT>::addFde(uint32_t Pc, uint32_t FdeVA) { | 
|  | Fdes.push_back({Pc, FdeVA}); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | OutputSection<ELFT>::OutputSection(StringRef Name, uint32_t Type, uintX_t Flags) | 
|  | : OutputSectionBase<ELFT>(Name, Type, Flags) { | 
|  | if (Type == SHT_RELA) | 
|  | this->Header.sh_entsize = sizeof(Elf_Rela); | 
|  | else if (Type == SHT_REL) | 
|  | this->Header.sh_entsize = sizeof(Elf_Rel); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void OutputSection<ELFT>::finalize() { | 
|  | uint32_t Type = this->Header.sh_type; | 
|  | if (Type != SHT_RELA && Type != SHT_REL) | 
|  | return; | 
|  | this->Header.sh_link = Out<ELFT>::SymTab->SectionIndex; | 
|  | // sh_info for SHT_REL[A] sections should contain the section header index of | 
|  | // the section to which the relocation applies. | 
|  | InputSectionBase<ELFT> *S = Sections[0]->getRelocatedSection(); | 
|  | this->Header.sh_info = S->OutSec->SectionIndex; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void OutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { | 
|  | assert(C->Live); | 
|  | auto *S = cast<InputSection<ELFT>>(C); | 
|  | Sections.push_back(S); | 
|  | S->OutSec = this; | 
|  | this->updateAlign(S->Align); | 
|  | } | 
|  |  | 
|  | // If an input string is in the form of "foo.N" where N is a number, | 
|  | // return N. Otherwise, returns 65536, which is one greater than the | 
|  | // lowest priority. | 
|  | static int getPriority(StringRef S) { | 
|  | size_t Pos = S.rfind('.'); | 
|  | if (Pos == StringRef::npos) | 
|  | return 65536; | 
|  | int V; | 
|  | if (S.substr(Pos + 1).getAsInteger(10, V)) | 
|  | return 65536; | 
|  | return V; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void OutputSection<ELFT>::forEachInputSection( | 
|  | std::function<void(InputSectionBase<ELFT> *)> F) { | 
|  | for (InputSection<ELFT> *S : Sections) | 
|  | F(S); | 
|  | } | 
|  |  | 
|  | // Sorts input sections by section name suffixes, so that .foo.N comes | 
|  | // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections. | 
|  | // We want to keep the original order if the priorities are the same | 
|  | // because the compiler keeps the original initialization order in a | 
|  | // translation unit and we need to respect that. | 
|  | // For more detail, read the section of the GCC's manual about init_priority. | 
|  | template <class ELFT> void OutputSection<ELFT>::sortInitFini() { | 
|  | // Sort sections by priority. | 
|  | typedef std::pair<int, InputSection<ELFT> *> Pair; | 
|  | auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; }; | 
|  |  | 
|  | std::vector<Pair> V; | 
|  | for (InputSection<ELFT> *S : Sections) | 
|  | V.push_back({getPriority(S->getSectionName()), S}); | 
|  | std::stable_sort(V.begin(), V.end(), Comp); | 
|  | Sections.clear(); | 
|  | for (Pair &P : V) | 
|  | Sections.push_back(P.second); | 
|  | } | 
|  |  | 
|  | // Returns true if S matches /Filename.?\.o$/. | 
|  | static bool isCrtBeginEnd(StringRef S, StringRef Filename) { | 
|  | if (!S.endswith(".o")) | 
|  | return false; | 
|  | S = S.drop_back(2); | 
|  | if (S.endswith(Filename)) | 
|  | return true; | 
|  | return !S.empty() && S.drop_back().endswith(Filename); | 
|  | } | 
|  |  | 
|  | static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); } | 
|  | static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); } | 
|  |  | 
|  | // .ctors and .dtors are sorted by this priority from highest to lowest. | 
|  | // | 
|  | //  1. The section was contained in crtbegin (crtbegin contains | 
|  | //     some sentinel value in its .ctors and .dtors so that the runtime | 
|  | //     can find the beginning of the sections.) | 
|  | // | 
|  | //  2. The section has an optional priority value in the form of ".ctors.N" | 
|  | //     or ".dtors.N" where N is a number. Unlike .{init,fini}_array, | 
|  | //     they are compared as string rather than number. | 
|  | // | 
|  | //  3. The section is just ".ctors" or ".dtors". | 
|  | // | 
|  | //  4. The section was contained in crtend, which contains an end marker. | 
|  | // | 
|  | // In an ideal world, we don't need this function because .init_array and | 
|  | // .ctors are duplicate features (and .init_array is newer.) However, there | 
|  | // are too many real-world use cases of .ctors, so we had no choice to | 
|  | // support that with this rather ad-hoc semantics. | 
|  | template <class ELFT> | 
|  | static bool compCtors(const InputSection<ELFT> *A, | 
|  | const InputSection<ELFT> *B) { | 
|  | bool BeginA = isCrtbegin(A->getFile()->getName()); | 
|  | bool BeginB = isCrtbegin(B->getFile()->getName()); | 
|  | if (BeginA != BeginB) | 
|  | return BeginA; | 
|  | bool EndA = isCrtend(A->getFile()->getName()); | 
|  | bool EndB = isCrtend(B->getFile()->getName()); | 
|  | if (EndA != EndB) | 
|  | return EndB; | 
|  | StringRef X = A->getSectionName(); | 
|  | StringRef Y = B->getSectionName(); | 
|  | assert(X.startswith(".ctors") || X.startswith(".dtors")); | 
|  | assert(Y.startswith(".ctors") || Y.startswith(".dtors")); | 
|  | X = X.substr(6); | 
|  | Y = Y.substr(6); | 
|  | if (X.empty() && Y.empty()) | 
|  | return false; | 
|  | return X < Y; | 
|  | } | 
|  |  | 
|  | // Sorts input sections by the special rules for .ctors and .dtors. | 
|  | // Unfortunately, the rules are different from the one for .{init,fini}_array. | 
|  | // Read the comment above. | 
|  | template <class ELFT> void OutputSection<ELFT>::sortCtorsDtors() { | 
|  | std::stable_sort(Sections.begin(), Sections.end(), compCtors<ELFT>); | 
|  | } | 
|  |  | 
|  | static void fill(uint8_t *Buf, size_t Size, ArrayRef<uint8_t> A) { | 
|  | size_t I = 0; | 
|  | for (; I + A.size() < Size; I += A.size()) | 
|  | memcpy(Buf + I, A.data(), A.size()); | 
|  | memcpy(Buf + I, A.data(), Size - I); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void OutputSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | ArrayRef<uint8_t> Filler = Script<ELFT>::X->getFiller(this->Name); | 
|  | if (!Filler.empty()) | 
|  | fill(Buf, this->getSize(), Filler); | 
|  | if (Config->Threads) { | 
|  | parallel_for_each(Sections.begin(), Sections.end(), | 
|  | [=](InputSection<ELFT> *C) { C->writeTo(Buf); }); | 
|  | } else { | 
|  | for (InputSection<ELFT> *C : Sections) | 
|  | C->writeTo(Buf); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | EhOutputSection<ELFT>::EhOutputSection() | 
|  | : OutputSectionBase<ELFT>(".eh_frame", SHT_PROGBITS, SHF_ALLOC) {} | 
|  |  | 
|  | template <class ELFT> | 
|  | void EhOutputSection<ELFT>::forEachInputSection( | 
|  | std::function<void(InputSectionBase<ELFT> *)> F) { | 
|  | for (EhInputSection<ELFT> *S : Sections) | 
|  | F(S); | 
|  | } | 
|  |  | 
|  | // Returns the first relocation that points to a region | 
|  | // between Begin and Begin+Size. | 
|  | template <class IntTy, class RelTy> | 
|  | static const RelTy *getReloc(IntTy Begin, IntTy Size, ArrayRef<RelTy> &Rels) { | 
|  | for (auto I = Rels.begin(), E = Rels.end(); I != E; ++I) { | 
|  | if (I->r_offset < Begin) | 
|  | continue; | 
|  |  | 
|  | // Truncate Rels for fast access. That means we expect that the | 
|  | // relocations are sorted and we are looking up symbols in | 
|  | // sequential order. It is naturally satisfied for .eh_frame. | 
|  | Rels = Rels.slice(I - Rels.begin()); | 
|  | if (I->r_offset < Begin + Size) | 
|  | return I; | 
|  | return nullptr; | 
|  | } | 
|  | Rels = ArrayRef<RelTy>(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Search for an existing CIE record or create a new one. | 
|  | // CIE records from input object files are uniquified by their contents | 
|  | // and where their relocations point to. | 
|  | template <class ELFT> | 
|  | template <class RelTy> | 
|  | CieRecord *EhOutputSection<ELFT>::addCie(SectionPiece &Piece, | 
|  | EhInputSection<ELFT> *Sec, | 
|  | ArrayRef<RelTy> &Rels) { | 
|  | const endianness E = ELFT::TargetEndianness; | 
|  | if (read32<E>(Piece.data().data() + 4) != 0) | 
|  | fatal("CIE expected at beginning of .eh_frame: " + Sec->getSectionName()); | 
|  |  | 
|  | SymbolBody *Personality = nullptr; | 
|  | if (const RelTy *Rel = getReloc(Piece.InputOff, Piece.size(), Rels)) | 
|  | Personality = &Sec->getFile()->getRelocTargetSym(*Rel); | 
|  |  | 
|  | // Search for an existing CIE by CIE contents/relocation target pair. | 
|  | CieRecord *Cie = &CieMap[{Piece.data(), Personality}]; | 
|  |  | 
|  | // If not found, create a new one. | 
|  | if (Cie->Piece == nullptr) { | 
|  | Cie->Piece = &Piece; | 
|  | Cies.push_back(Cie); | 
|  | } | 
|  | return Cie; | 
|  | } | 
|  |  | 
|  | // There is one FDE per function. Returns true if a given FDE | 
|  | // points to a live function. | 
|  | template <class ELFT> | 
|  | template <class RelTy> | 
|  | bool EhOutputSection<ELFT>::isFdeLive(SectionPiece &Piece, | 
|  | EhInputSection<ELFT> *Sec, | 
|  | ArrayRef<RelTy> &Rels) { | 
|  | const RelTy *Rel = getReloc(Piece.InputOff, Piece.size(), Rels); | 
|  | if (!Rel) | 
|  | fatal("FDE doesn't reference another section"); | 
|  | SymbolBody &B = Sec->getFile()->getRelocTargetSym(*Rel); | 
|  | auto *D = dyn_cast<DefinedRegular<ELFT>>(&B); | 
|  | if (!D || !D->Section) | 
|  | return false; | 
|  | InputSectionBase<ELFT> *Target = D->Section->Repl; | 
|  | return Target && Target->Live; | 
|  | } | 
|  |  | 
|  | // .eh_frame is a sequence of CIE or FDE records. In general, there | 
|  | // is one CIE record per input object file which is followed by | 
|  | // a list of FDEs. This function searches an existing CIE or create a new | 
|  | // one and associates FDEs to the CIE. | 
|  | template <class ELFT> | 
|  | template <class RelTy> | 
|  | void EhOutputSection<ELFT>::addSectionAux(EhInputSection<ELFT> *Sec, | 
|  | ArrayRef<RelTy> Rels) { | 
|  | const endianness E = ELFT::TargetEndianness; | 
|  |  | 
|  | DenseMap<size_t, CieRecord *> OffsetToCie; | 
|  | for (SectionPiece &Piece : Sec->Pieces) { | 
|  | // The empty record is the end marker. | 
|  | if (Piece.size() == 4) | 
|  | return; | 
|  |  | 
|  | size_t Offset = Piece.InputOff; | 
|  | uint32_t ID = read32<E>(Piece.data().data() + 4); | 
|  | if (ID == 0) { | 
|  | OffsetToCie[Offset] = addCie(Piece, Sec, Rels); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | uint32_t CieOffset = Offset + 4 - ID; | 
|  | CieRecord *Cie = OffsetToCie[CieOffset]; | 
|  | if (!Cie) | 
|  | fatal("invalid CIE reference"); | 
|  |  | 
|  | if (!isFdeLive(Piece, Sec, Rels)) | 
|  | continue; | 
|  | Cie->FdePieces.push_back(&Piece); | 
|  | NumFdes++; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void EhOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { | 
|  | auto *Sec = cast<EhInputSection<ELFT>>(C); | 
|  | Sec->OutSec = this; | 
|  | this->updateAlign(Sec->Align); | 
|  | Sections.push_back(Sec); | 
|  |  | 
|  | // .eh_frame is a sequence of CIE or FDE records. This function | 
|  | // splits it into pieces so that we can call | 
|  | // SplitInputSection::getSectionPiece on the section. | 
|  | Sec->split(); | 
|  | if (Sec->Pieces.empty()) | 
|  | return; | 
|  |  | 
|  | if (const Elf_Shdr *RelSec = Sec->RelocSection) { | 
|  | ELFFile<ELFT> &Obj = Sec->getFile()->getObj(); | 
|  | if (RelSec->sh_type == SHT_RELA) | 
|  | addSectionAux(Sec, Obj.relas(RelSec)); | 
|  | else | 
|  | addSectionAux(Sec, Obj.rels(RelSec)); | 
|  | return; | 
|  | } | 
|  | addSectionAux(Sec, makeArrayRef<Elf_Rela>(nullptr, nullptr)); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static void writeCieFde(uint8_t *Buf, ArrayRef<uint8_t> D) { | 
|  | memcpy(Buf, D.data(), D.size()); | 
|  |  | 
|  | // Fix the size field. -4 since size does not include the size field itself. | 
|  | const endianness E = ELFT::TargetEndianness; | 
|  | write32<E>(Buf, alignTo(D.size(), sizeof(typename ELFT::uint)) - 4); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void EhOutputSection<ELFT>::finalize() { | 
|  | if (Finalized) | 
|  | return; | 
|  | Finalized = true; | 
|  |  | 
|  | size_t Off = 0; | 
|  | for (CieRecord *Cie : Cies) { | 
|  | Cie->Piece->OutputOff = Off; | 
|  | Off += alignTo(Cie->Piece->size(), sizeof(uintX_t)); | 
|  |  | 
|  | for (SectionPiece *Fde : Cie->FdePieces) { | 
|  | Fde->OutputOff = Off; | 
|  | Off += alignTo(Fde->size(), sizeof(uintX_t)); | 
|  | } | 
|  | } | 
|  | this->Header.sh_size = Off; | 
|  | } | 
|  |  | 
|  | template <class ELFT> static uint64_t readFdeAddr(uint8_t *Buf, int Size) { | 
|  | const endianness E = ELFT::TargetEndianness; | 
|  | switch (Size) { | 
|  | case DW_EH_PE_udata2: | 
|  | return read16<E>(Buf); | 
|  | case DW_EH_PE_udata4: | 
|  | return read32<E>(Buf); | 
|  | case DW_EH_PE_udata8: | 
|  | return read64<E>(Buf); | 
|  | case DW_EH_PE_absptr: | 
|  | if (ELFT::Is64Bits) | 
|  | return read64<E>(Buf); | 
|  | return read32<E>(Buf); | 
|  | } | 
|  | fatal("unknown FDE size encoding"); | 
|  | } | 
|  |  | 
|  | // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. | 
|  | // We need it to create .eh_frame_hdr section. | 
|  | template <class ELFT> | 
|  | typename ELFT::uint EhOutputSection<ELFT>::getFdePc(uint8_t *Buf, size_t FdeOff, | 
|  | uint8_t Enc) { | 
|  | // The starting address to which this FDE applies is | 
|  | // stored at FDE + 8 byte. | 
|  | size_t Off = FdeOff + 8; | 
|  | uint64_t Addr = readFdeAddr<ELFT>(Buf + Off, Enc & 0x7); | 
|  | if ((Enc & 0x70) == DW_EH_PE_absptr) | 
|  | return Addr; | 
|  | if ((Enc & 0x70) == DW_EH_PE_pcrel) | 
|  | return Addr + this->getVA() + Off; | 
|  | fatal("unknown FDE size relative encoding"); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void EhOutputSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | const endianness E = ELFT::TargetEndianness; | 
|  | for (CieRecord *Cie : Cies) { | 
|  | size_t CieOffset = Cie->Piece->OutputOff; | 
|  | writeCieFde<ELFT>(Buf + CieOffset, Cie->Piece->data()); | 
|  |  | 
|  | for (SectionPiece *Fde : Cie->FdePieces) { | 
|  | size_t Off = Fde->OutputOff; | 
|  | writeCieFde<ELFT>(Buf + Off, Fde->data()); | 
|  |  | 
|  | // FDE's second word should have the offset to an associated CIE. | 
|  | // Write it. | 
|  | write32<E>(Buf + Off + 4, Off + 4 - CieOffset); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (EhInputSection<ELFT> *S : Sections) | 
|  | S->relocate(Buf, nullptr); | 
|  |  | 
|  | // Construct .eh_frame_hdr. .eh_frame_hdr is a binary search table | 
|  | // to get a FDE from an address to which FDE is applied. So here | 
|  | // we obtain two addresses and pass them to EhFrameHdr object. | 
|  | if (Out<ELFT>::EhFrameHdr) { | 
|  | for (CieRecord *Cie : Cies) { | 
|  | uint8_t Enc = getFdeEncoding<ELFT>(Cie->Piece->data()); | 
|  | for (SectionPiece *Fde : Cie->FdePieces) { | 
|  | uintX_t Pc = getFdePc(Buf, Fde->OutputOff, Enc); | 
|  | uintX_t FdeVA = this->getVA() + Fde->OutputOff; | 
|  | Out<ELFT>::EhFrameHdr->addFde(Pc, FdeVA); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | MergeOutputSection<ELFT>::MergeOutputSection(StringRef Name, uint32_t Type, | 
|  | uintX_t Flags, uintX_t Alignment) | 
|  | : OutputSectionBase<ELFT>(Name, Type, Flags), | 
|  | Builder(llvm::StringTableBuilder::RAW, Alignment) {} | 
|  |  | 
|  | template <class ELFT> void MergeOutputSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | if (shouldTailMerge()) { | 
|  | StringRef Data = Builder.data(); | 
|  | memcpy(Buf, Data.data(), Data.size()); | 
|  | return; | 
|  | } | 
|  | for (const std::pair<CachedHash<StringRef>, size_t> &P : Builder.getMap()) { | 
|  | StringRef Data = P.first.Val; | 
|  | memcpy(Buf + P.second, Data.data(), Data.size()); | 
|  | } | 
|  | } | 
|  |  | 
|  | static StringRef toStringRef(ArrayRef<uint8_t> A) { | 
|  | return {(const char *)A.data(), A.size()}; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void MergeOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { | 
|  | auto *Sec = cast<MergeInputSection<ELFT>>(C); | 
|  | Sec->OutSec = this; | 
|  | this->updateAlign(Sec->Align); | 
|  | this->Header.sh_entsize = Sec->getSectionHdr()->sh_entsize; | 
|  | Sections.push_back(Sec); | 
|  |  | 
|  | bool IsString = this->Header.sh_flags & SHF_STRINGS; | 
|  |  | 
|  | for (SectionPiece &Piece : Sec->Pieces) { | 
|  | if (!Piece.Live) | 
|  | continue; | 
|  | uintX_t OutputOffset = Builder.add(toStringRef(Piece.data())); | 
|  | if (!IsString || !shouldTailMerge()) | 
|  | Piece.OutputOff = OutputOffset; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | unsigned MergeOutputSection<ELFT>::getOffset(StringRef Val) { | 
|  | return Builder.getOffset(Val); | 
|  | } | 
|  |  | 
|  | template <class ELFT> bool MergeOutputSection<ELFT>::shouldTailMerge() const { | 
|  | return Config->Optimize >= 2 && this->Header.sh_flags & SHF_STRINGS; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void MergeOutputSection<ELFT>::finalize() { | 
|  | if (shouldTailMerge()) | 
|  | Builder.finalize(); | 
|  | this->Header.sh_size = Builder.getSize(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void MergeOutputSection<ELFT>::finalizePieces() { | 
|  | for (MergeInputSection<ELFT> *Sec : Sections) | 
|  | Sec->finalizePieces(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | StringTableSection<ELFT>::StringTableSection(StringRef Name, bool Dynamic) | 
|  | : OutputSectionBase<ELFT>(Name, SHT_STRTAB, | 
|  | Dynamic ? (uintX_t)SHF_ALLOC : 0), | 
|  | Dynamic(Dynamic) { | 
|  | this->Header.sh_addralign = 1; | 
|  | } | 
|  |  | 
|  | // Adds a string to the string table. If HashIt is true we hash and check for | 
|  | // duplicates. It is optional because the name of global symbols are already | 
|  | // uniqued and hashing them again has a big cost for a small value: uniquing | 
|  | // them with some other string that happens to be the same. | 
|  | template <class ELFT> | 
|  | unsigned StringTableSection<ELFT>::addString(StringRef S, bool HashIt) { | 
|  | if (HashIt) { | 
|  | auto R = StringMap.insert(std::make_pair(S, Size)); | 
|  | if (!R.second) | 
|  | return R.first->second; | 
|  | } | 
|  | unsigned Ret = Size; | 
|  | Size += S.size() + 1; | 
|  | Strings.push_back(S); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void StringTableSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | // ELF string tables start with NUL byte, so advance the pointer by one. | 
|  | ++Buf; | 
|  | for (StringRef S : Strings) { | 
|  | memcpy(Buf, S.data(), S.size()); | 
|  | Buf += S.size() + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | SymbolTableSection<ELFT>::SymbolTableSection( | 
|  | StringTableSection<ELFT> &StrTabSec) | 
|  | : OutputSectionBase<ELFT>(StrTabSec.isDynamic() ? ".dynsym" : ".symtab", | 
|  | StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, | 
|  | StrTabSec.isDynamic() ? (uintX_t)SHF_ALLOC : 0), | 
|  | StrTabSec(StrTabSec) { | 
|  | this->Header.sh_entsize = sizeof(Elf_Sym); | 
|  | this->Header.sh_addralign = sizeof(uintX_t); | 
|  | } | 
|  |  | 
|  | // Orders symbols according to their positions in the GOT, | 
|  | // in compliance with MIPS ABI rules. | 
|  | // See "Global Offset Table" in Chapter 5 in the following document | 
|  | // for detailed description: | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | static bool sortMipsSymbols(const std::pair<SymbolBody *, unsigned> &L, | 
|  | const std::pair<SymbolBody *, unsigned> &R) { | 
|  | // Sort entries related to non-local preemptible symbols by GOT indexes. | 
|  | // All other entries go to the first part of GOT in arbitrary order. | 
|  | bool LIsInLocalGot = !L.first->isInGot() || !L.first->isPreemptible(); | 
|  | bool RIsInLocalGot = !R.first->isInGot() || !R.first->isPreemptible(); | 
|  | if (LIsInLocalGot || RIsInLocalGot) | 
|  | return !RIsInLocalGot; | 
|  | return L.first->GotIndex < R.first->GotIndex; | 
|  | } | 
|  |  | 
|  | static uint8_t getSymbolBinding(SymbolBody *Body) { | 
|  | Symbol *S = Body->symbol(); | 
|  | uint8_t Visibility = S->Visibility; | 
|  | if (Visibility != STV_DEFAULT && Visibility != STV_PROTECTED) | 
|  | return STB_LOCAL; | 
|  | if (Config->NoGnuUnique && S->Binding == STB_GNU_UNIQUE) | 
|  | return STB_GLOBAL; | 
|  | return S->Binding; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void SymbolTableSection<ELFT>::finalize() { | 
|  | if (this->Header.sh_size) | 
|  | return; // Already finalized. | 
|  |  | 
|  | this->Header.sh_size = getNumSymbols() * sizeof(Elf_Sym); | 
|  | this->Header.sh_link = StrTabSec.SectionIndex; | 
|  | this->Header.sh_info = NumLocals + 1; | 
|  |  | 
|  | if (Config->Relocatable) { | 
|  | size_t I = NumLocals; | 
|  | for (const std::pair<SymbolBody *, size_t> &P : Symbols) | 
|  | P.first->DynsymIndex = ++I; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!StrTabSec.isDynamic()) { | 
|  | std::stable_sort(Symbols.begin(), Symbols.end(), | 
|  | [](const std::pair<SymbolBody *, unsigned> &L, | 
|  | const std::pair<SymbolBody *, unsigned> &R) { | 
|  | return getSymbolBinding(L.first) == STB_LOCAL && | 
|  | getSymbolBinding(R.first) != STB_LOCAL; | 
|  | }); | 
|  | return; | 
|  | } | 
|  | if (Out<ELFT>::GnuHashTab) | 
|  | // NB: It also sorts Symbols to meet the GNU hash table requirements. | 
|  | Out<ELFT>::GnuHashTab->addSymbols(Symbols); | 
|  | else if (Config->EMachine == EM_MIPS) | 
|  | std::stable_sort(Symbols.begin(), Symbols.end(), sortMipsSymbols); | 
|  | size_t I = 0; | 
|  | for (const std::pair<SymbolBody *, size_t> &P : Symbols) | 
|  | P.first->DynsymIndex = ++I; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void SymbolTableSection<ELFT>::addSymbol(SymbolBody *B) { | 
|  | Symbols.push_back({B, StrTabSec.addString(B->getName(), false)}); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | Buf += sizeof(Elf_Sym); | 
|  |  | 
|  | // All symbols with STB_LOCAL binding precede the weak and global symbols. | 
|  | // .dynsym only contains global symbols. | 
|  | if (!Config->DiscardAll && !StrTabSec.isDynamic()) | 
|  | writeLocalSymbols(Buf); | 
|  |  | 
|  | writeGlobalSymbols(Buf); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void SymbolTableSection<ELFT>::writeLocalSymbols(uint8_t *&Buf) { | 
|  | // Iterate over all input object files to copy their local symbols | 
|  | // to the output symbol table pointed by Buf. | 
|  | for (const std::unique_ptr<ObjectFile<ELFT>> &File : | 
|  | Symtab<ELFT>::X->getObjectFiles()) { | 
|  | for (const std::pair<const DefinedRegular<ELFT> *, size_t> &P : | 
|  | File->KeptLocalSyms) { | 
|  | const DefinedRegular<ELFT> &Body = *P.first; | 
|  | InputSectionBase<ELFT> *Section = Body.Section; | 
|  | auto *ESym = reinterpret_cast<Elf_Sym *>(Buf); | 
|  |  | 
|  | if (!Section) { | 
|  | ESym->st_shndx = SHN_ABS; | 
|  | ESym->st_value = Body.Value; | 
|  | } else { | 
|  | const OutputSectionBase<ELFT> *OutSec = Section->OutSec; | 
|  | ESym->st_shndx = OutSec->SectionIndex; | 
|  | ESym->st_value = OutSec->getVA() + Section->getOffset(Body); | 
|  | } | 
|  | ESym->st_name = P.second; | 
|  | ESym->st_size = Body.template getSize<ELFT>(); | 
|  | ESym->setBindingAndType(STB_LOCAL, Body.Type); | 
|  | Buf += sizeof(*ESym); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void SymbolTableSection<ELFT>::writeGlobalSymbols(uint8_t *Buf) { | 
|  | // Write the internal symbol table contents to the output symbol table | 
|  | // pointed by Buf. | 
|  | auto *ESym = reinterpret_cast<Elf_Sym *>(Buf); | 
|  | for (const std::pair<SymbolBody *, size_t> &P : Symbols) { | 
|  | SymbolBody *Body = P.first; | 
|  | size_t StrOff = P.second; | 
|  |  | 
|  | uint8_t Type = Body->Type; | 
|  | uintX_t Size = Body->getSize<ELFT>(); | 
|  |  | 
|  | ESym->setBindingAndType(getSymbolBinding(Body), Type); | 
|  | ESym->st_size = Size; | 
|  | ESym->st_name = StrOff; | 
|  | ESym->setVisibility(Body->symbol()->Visibility); | 
|  | ESym->st_value = Body->getVA<ELFT>(); | 
|  |  | 
|  | if (const OutputSectionBase<ELFT> *OutSec = getOutputSection(Body)) | 
|  | ESym->st_shndx = OutSec->SectionIndex; | 
|  | else if (isa<DefinedRegular<ELFT>>(Body)) | 
|  | ESym->st_shndx = SHN_ABS; | 
|  |  | 
|  | // On MIPS we need to mark symbol which has a PLT entry and requires pointer | 
|  | // equality by STO_MIPS_PLT flag. That is necessary to help dynamic linker | 
|  | // distinguish such symbols and MIPS lazy-binding stubs. | 
|  | // https://sourceware.org/ml/binutils/2008-07/txt00000.txt | 
|  | if (Config->EMachine == EM_MIPS && Body->isInPlt() && | 
|  | Body->NeedsCopyOrPltAddr) | 
|  | ESym->st_other |= STO_MIPS_PLT; | 
|  | ++ESym; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | const OutputSectionBase<ELFT> * | 
|  | SymbolTableSection<ELFT>::getOutputSection(SymbolBody *Sym) { | 
|  | switch (Sym->kind()) { | 
|  | case SymbolBody::DefinedSyntheticKind: | 
|  | return cast<DefinedSynthetic<ELFT>>(Sym)->Section; | 
|  | case SymbolBody::DefinedRegularKind: { | 
|  | auto &D = cast<DefinedRegular<ELFT>>(*Sym); | 
|  | if (D.Section) | 
|  | return D.Section->OutSec; | 
|  | break; | 
|  | } | 
|  | case SymbolBody::DefinedCommonKind: | 
|  | return Out<ELFT>::Bss; | 
|  | case SymbolBody::SharedKind: | 
|  | if (cast<SharedSymbol<ELFT>>(Sym)->needsCopy()) | 
|  | return Out<ELFT>::Bss; | 
|  | break; | 
|  | case SymbolBody::UndefinedKind: | 
|  | case SymbolBody::LazyArchiveKind: | 
|  | case SymbolBody::LazyObjectKind: | 
|  | break; | 
|  | case SymbolBody::DefinedBitcodeKind: | 
|  | llvm_unreachable("should have been replaced"); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | VersionTableSection<ELFT>::VersionTableSection() | 
|  | : OutputSectionBase<ELFT>(".gnu.version", SHT_GNU_versym, SHF_ALLOC) { | 
|  | this->Header.sh_addralign = sizeof(uint16_t); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void VersionTableSection<ELFT>::finalize() { | 
|  | this->Header.sh_size = | 
|  | sizeof(Elf_Versym) * (Out<ELFT>::DynSymTab->getSymbols().size() + 1); | 
|  | this->Header.sh_entsize = sizeof(Elf_Versym); | 
|  | // At the moment of june 2016 GNU docs does not mention that sh_link field | 
|  | // should be set, but Sun docs do. Also readelf relies on this field. | 
|  | this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void VersionTableSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | auto *OutVersym = reinterpret_cast<Elf_Versym *>(Buf) + 1; | 
|  | for (const std::pair<SymbolBody *, size_t> &P : | 
|  | Out<ELFT>::DynSymTab->getSymbols()) { | 
|  | if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(P.first)) | 
|  | OutVersym->vs_index = SS->VersionId; | 
|  | else | 
|  | OutVersym->vs_index = VER_NDX_GLOBAL; | 
|  | ++OutVersym; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | VersionNeedSection<ELFT>::VersionNeedSection() | 
|  | : OutputSectionBase<ELFT>(".gnu.version_r", SHT_GNU_verneed, SHF_ALLOC) { | 
|  | this->Header.sh_addralign = sizeof(uint32_t); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void VersionNeedSection<ELFT>::addSymbol(SharedSymbol<ELFT> *SS) { | 
|  | if (!SS->Verdef) { | 
|  | SS->VersionId = VER_NDX_GLOBAL; | 
|  | return; | 
|  | } | 
|  | SharedFile<ELFT> *F = SS->File; | 
|  | // If we don't already know that we need an Elf_Verneed for this DSO, prepare | 
|  | // to create one by adding it to our needed list and creating a dynstr entry | 
|  | // for the soname. | 
|  | if (F->VerdefMap.empty()) | 
|  | Needed.push_back({F, Out<ELFT>::DynStrTab->addString(F->getSoName())}); | 
|  | typename SharedFile<ELFT>::NeededVer &NV = F->VerdefMap[SS->Verdef]; | 
|  | // If we don't already know that we need an Elf_Vernaux for this Elf_Verdef, | 
|  | // prepare to create one by allocating a version identifier and creating a | 
|  | // dynstr entry for the version name. | 
|  | if (NV.Index == 0) { | 
|  | NV.StrTab = Out<ELFT>::DynStrTab->addString( | 
|  | SS->File->getStringTable().data() + SS->Verdef->getAux()->vda_name); | 
|  | NV.Index = NextIndex++; | 
|  | } | 
|  | SS->VersionId = NV.Index; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. | 
|  | auto *Verneed = reinterpret_cast<Elf_Verneed *>(Buf); | 
|  | auto *Vernaux = reinterpret_cast<Elf_Vernaux *>(Verneed + Needed.size()); | 
|  |  | 
|  | for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed) { | 
|  | // Create an Elf_Verneed for this DSO. | 
|  | Verneed->vn_version = 1; | 
|  | Verneed->vn_cnt = P.first->VerdefMap.size(); | 
|  | Verneed->vn_file = P.second; | 
|  | Verneed->vn_aux = | 
|  | reinterpret_cast<char *>(Vernaux) - reinterpret_cast<char *>(Verneed); | 
|  | Verneed->vn_next = sizeof(Elf_Verneed); | 
|  | ++Verneed; | 
|  |  | 
|  | // Create the Elf_Vernauxs for this Elf_Verneed. The loop iterates over | 
|  | // VerdefMap, which will only contain references to needed version | 
|  | // definitions. Each Elf_Vernaux is based on the information contained in | 
|  | // the Elf_Verdef in the source DSO. This loop iterates over a std::map of | 
|  | // pointers, but is deterministic because the pointers refer to Elf_Verdef | 
|  | // data structures within a single input file. | 
|  | for (auto &NV : P.first->VerdefMap) { | 
|  | Vernaux->vna_hash = NV.first->vd_hash; | 
|  | Vernaux->vna_flags = 0; | 
|  | Vernaux->vna_other = NV.second.Index; | 
|  | Vernaux->vna_name = NV.second.StrTab; | 
|  | Vernaux->vna_next = sizeof(Elf_Vernaux); | 
|  | ++Vernaux; | 
|  | } | 
|  |  | 
|  | Vernaux[-1].vna_next = 0; | 
|  | } | 
|  | Verneed[-1].vn_next = 0; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void VersionNeedSection<ELFT>::finalize() { | 
|  | this->Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex; | 
|  | this->Header.sh_info = Needed.size(); | 
|  | unsigned Size = Needed.size() * sizeof(Elf_Verneed); | 
|  | for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed) | 
|  | Size += P.first->VerdefMap.size() * sizeof(Elf_Vernaux); | 
|  | this->Header.sh_size = Size; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | BuildIdSection<ELFT>::BuildIdSection(size_t HashSize) | 
|  | : OutputSectionBase<ELFT>(".note.gnu.build-id", SHT_NOTE, SHF_ALLOC), | 
|  | HashSize(HashSize) { | 
|  | // 16 bytes for the note section header. | 
|  | this->Header.sh_size = 16 + HashSize; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void BuildIdSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | const endianness E = ELFT::TargetEndianness; | 
|  | write32<E>(Buf, 4);                   // Name size | 
|  | write32<E>(Buf + 4, HashSize);        // Content size | 
|  | write32<E>(Buf + 8, NT_GNU_BUILD_ID); // Type | 
|  | memcpy(Buf + 12, "GNU", 4);           // Name string | 
|  | HashBuf = Buf + 16; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void BuildIdFnv1<ELFT>::writeBuildId(ArrayRef<ArrayRef<uint8_t>> Bufs) { | 
|  | const endianness E = ELFT::TargetEndianness; | 
|  |  | 
|  | // 64-bit FNV-1 hash | 
|  | uint64_t Hash = 0xcbf29ce484222325; | 
|  | for (ArrayRef<uint8_t> Buf : Bufs) { | 
|  | for (uint8_t B : Buf) { | 
|  | Hash *= 0x100000001b3; | 
|  | Hash ^= B; | 
|  | } | 
|  | } | 
|  | write64<E>(this->HashBuf, Hash); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void BuildIdMd5<ELFT>::writeBuildId(ArrayRef<ArrayRef<uint8_t>> Bufs) { | 
|  | llvm::MD5 Hash; | 
|  | for (ArrayRef<uint8_t> Buf : Bufs) | 
|  | Hash.update(Buf); | 
|  | MD5::MD5Result Res; | 
|  | Hash.final(Res); | 
|  | memcpy(this->HashBuf, Res, 16); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void BuildIdSha1<ELFT>::writeBuildId(ArrayRef<ArrayRef<uint8_t>> Bufs) { | 
|  | llvm::SHA1 Hash; | 
|  | for (ArrayRef<uint8_t> Buf : Bufs) | 
|  | Hash.update(Buf); | 
|  | memcpy(this->HashBuf, Hash.final().data(), 20); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | BuildIdHexstring<ELFT>::BuildIdHexstring() | 
|  | : BuildIdSection<ELFT>(Config->BuildIdVector.size()) {} | 
|  |  | 
|  | template <class ELFT> | 
|  | void BuildIdHexstring<ELFT>::writeBuildId(ArrayRef<ArrayRef<uint8_t>> Bufs) { | 
|  | memcpy(this->HashBuf, Config->BuildIdVector.data(), | 
|  | Config->BuildIdVector.size()); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | MipsReginfoOutputSection<ELFT>::MipsReginfoOutputSection() | 
|  | : OutputSectionBase<ELFT>(".reginfo", SHT_MIPS_REGINFO, SHF_ALLOC) { | 
|  | this->Header.sh_addralign = 4; | 
|  | this->Header.sh_entsize = sizeof(Elf_Mips_RegInfo); | 
|  | this->Header.sh_size = sizeof(Elf_Mips_RegInfo); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void MipsReginfoOutputSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | auto *R = reinterpret_cast<Elf_Mips_RegInfo *>(Buf); | 
|  | R->ri_gp_value = Out<ELFT>::Got->getVA() + MipsGPOffset; | 
|  | R->ri_gprmask = GprMask; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void MipsReginfoOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { | 
|  | // Copy input object file's .reginfo gprmask to output. | 
|  | auto *S = cast<MipsReginfoInputSection<ELFT>>(C); | 
|  | GprMask |= S->Reginfo->ri_gprmask; | 
|  | S->OutSec = this; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | MipsOptionsOutputSection<ELFT>::MipsOptionsOutputSection() | 
|  | : OutputSectionBase<ELFT>(".MIPS.options", SHT_MIPS_OPTIONS, | 
|  | SHF_ALLOC | SHF_MIPS_NOSTRIP) { | 
|  | this->Header.sh_addralign = 8; | 
|  | this->Header.sh_entsize = 1; | 
|  | this->Header.sh_size = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void MipsOptionsOutputSection<ELFT>::writeTo(uint8_t *Buf) { | 
|  | auto *Opt = reinterpret_cast<Elf_Mips_Options *>(Buf); | 
|  | Opt->kind = ODK_REGINFO; | 
|  | Opt->size = this->Header.sh_size; | 
|  | Opt->section = 0; | 
|  | Opt->info = 0; | 
|  | auto *Reg = reinterpret_cast<Elf_Mips_RegInfo *>(Buf + sizeof(*Opt)); | 
|  | Reg->ri_gp_value = Out<ELFT>::Got->getVA() + MipsGPOffset; | 
|  | Reg->ri_gprmask = GprMask; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void MipsOptionsOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { | 
|  | auto *S = cast<MipsOptionsInputSection<ELFT>>(C); | 
|  | if (S->Reginfo) | 
|  | GprMask |= S->Reginfo->ri_gprmask; | 
|  | S->OutSec = this; | 
|  | } | 
|  |  | 
|  | namespace lld { | 
|  | namespace elf { | 
|  | template class OutputSectionBase<ELF32LE>; | 
|  | template class OutputSectionBase<ELF32BE>; | 
|  | template class OutputSectionBase<ELF64LE>; | 
|  | template class OutputSectionBase<ELF64BE>; | 
|  |  | 
|  | template class EhFrameHeader<ELF32LE>; | 
|  | template class EhFrameHeader<ELF32BE>; | 
|  | template class EhFrameHeader<ELF64LE>; | 
|  | template class EhFrameHeader<ELF64BE>; | 
|  |  | 
|  | template class GotPltSection<ELF32LE>; | 
|  | template class GotPltSection<ELF32BE>; | 
|  | template class GotPltSection<ELF64LE>; | 
|  | template class GotPltSection<ELF64BE>; | 
|  |  | 
|  | template class GotSection<ELF32LE>; | 
|  | template class GotSection<ELF32BE>; | 
|  | template class GotSection<ELF64LE>; | 
|  | template class GotSection<ELF64BE>; | 
|  |  | 
|  | template class PltSection<ELF32LE>; | 
|  | template class PltSection<ELF32BE>; | 
|  | template class PltSection<ELF64LE>; | 
|  | template class PltSection<ELF64BE>; | 
|  |  | 
|  | template class RelocationSection<ELF32LE>; | 
|  | template class RelocationSection<ELF32BE>; | 
|  | template class RelocationSection<ELF64LE>; | 
|  | template class RelocationSection<ELF64BE>; | 
|  |  | 
|  | template class InterpSection<ELF32LE>; | 
|  | template class InterpSection<ELF32BE>; | 
|  | template class InterpSection<ELF64LE>; | 
|  | template class InterpSection<ELF64BE>; | 
|  |  | 
|  | template class GnuHashTableSection<ELF32LE>; | 
|  | template class GnuHashTableSection<ELF32BE>; | 
|  | template class GnuHashTableSection<ELF64LE>; | 
|  | template class GnuHashTableSection<ELF64BE>; | 
|  |  | 
|  | template class HashTableSection<ELF32LE>; | 
|  | template class HashTableSection<ELF32BE>; | 
|  | template class HashTableSection<ELF64LE>; | 
|  | template class HashTableSection<ELF64BE>; | 
|  |  | 
|  | template class DynamicSection<ELF32LE>; | 
|  | template class DynamicSection<ELF32BE>; | 
|  | template class DynamicSection<ELF64LE>; | 
|  | template class DynamicSection<ELF64BE>; | 
|  |  | 
|  | template class OutputSection<ELF32LE>; | 
|  | template class OutputSection<ELF32BE>; | 
|  | template class OutputSection<ELF64LE>; | 
|  | template class OutputSection<ELF64BE>; | 
|  |  | 
|  | template class EhOutputSection<ELF32LE>; | 
|  | template class EhOutputSection<ELF32BE>; | 
|  | template class EhOutputSection<ELF64LE>; | 
|  | template class EhOutputSection<ELF64BE>; | 
|  |  | 
|  | template class MipsReginfoOutputSection<ELF32LE>; | 
|  | template class MipsReginfoOutputSection<ELF32BE>; | 
|  | template class MipsReginfoOutputSection<ELF64LE>; | 
|  | template class MipsReginfoOutputSection<ELF64BE>; | 
|  |  | 
|  | template class MipsOptionsOutputSection<ELF32LE>; | 
|  | template class MipsOptionsOutputSection<ELF32BE>; | 
|  | template class MipsOptionsOutputSection<ELF64LE>; | 
|  | template class MipsOptionsOutputSection<ELF64BE>; | 
|  |  | 
|  | template class MergeOutputSection<ELF32LE>; | 
|  | template class MergeOutputSection<ELF32BE>; | 
|  | template class MergeOutputSection<ELF64LE>; | 
|  | template class MergeOutputSection<ELF64BE>; | 
|  |  | 
|  | template class StringTableSection<ELF32LE>; | 
|  | template class StringTableSection<ELF32BE>; | 
|  | template class StringTableSection<ELF64LE>; | 
|  | template class StringTableSection<ELF64BE>; | 
|  |  | 
|  | template class SymbolTableSection<ELF32LE>; | 
|  | template class SymbolTableSection<ELF32BE>; | 
|  | template class SymbolTableSection<ELF64LE>; | 
|  | template class SymbolTableSection<ELF64BE>; | 
|  |  | 
|  | template class VersionTableSection<ELF32LE>; | 
|  | template class VersionTableSection<ELF32BE>; | 
|  | template class VersionTableSection<ELF64LE>; | 
|  | template class VersionTableSection<ELF64BE>; | 
|  |  | 
|  | template class VersionNeedSection<ELF32LE>; | 
|  | template class VersionNeedSection<ELF32BE>; | 
|  | template class VersionNeedSection<ELF64LE>; | 
|  | template class VersionNeedSection<ELF64BE>; | 
|  |  | 
|  | template class BuildIdSection<ELF32LE>; | 
|  | template class BuildIdSection<ELF32BE>; | 
|  | template class BuildIdSection<ELF64LE>; | 
|  | template class BuildIdSection<ELF64BE>; | 
|  |  | 
|  | template class BuildIdFnv1<ELF32LE>; | 
|  | template class BuildIdFnv1<ELF32BE>; | 
|  | template class BuildIdFnv1<ELF64LE>; | 
|  | template class BuildIdFnv1<ELF64BE>; | 
|  |  | 
|  | template class BuildIdMd5<ELF32LE>; | 
|  | template class BuildIdMd5<ELF32BE>; | 
|  | template class BuildIdMd5<ELF64LE>; | 
|  | template class BuildIdMd5<ELF64BE>; | 
|  |  | 
|  | template class BuildIdSha1<ELF32LE>; | 
|  | template class BuildIdSha1<ELF32BE>; | 
|  | template class BuildIdSha1<ELF64LE>; | 
|  | template class BuildIdSha1<ELF64BE>; | 
|  |  | 
|  | template class BuildIdHexstring<ELF32LE>; | 
|  | template class BuildIdHexstring<ELF32BE>; | 
|  | template class BuildIdHexstring<ELF64LE>; | 
|  | template class BuildIdHexstring<ELF64BE>; | 
|  | } | 
|  | } |