|  | //===- Reassociate.cpp - Reassociate binary expressions -------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass reassociates commutative expressions in an order that is designed | 
|  | // to promote better constant propagation, GCSE, LICM, PRE, etc. | 
|  | // | 
|  | // For example: 4 + (x + 5) -> x + (4 + 5) | 
|  | // | 
|  | // In the implementation of this algorithm, constants are assigned rank = 0, | 
|  | // function arguments are rank = 1, and other values are assigned ranks | 
|  | // corresponding to the reverse post order traversal of current function | 
|  | // (starting at 2), which effectively gives values in deep loops higher rank | 
|  | // than values not in loops. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "reassociate" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/PostOrderIterator.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/CFG.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ValueHandle.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumChanged, "Number of insts reassociated"); | 
|  | STATISTIC(NumAnnihil, "Number of expr tree annihilated"); | 
|  | STATISTIC(NumFactor , "Number of multiplies factored"); | 
|  |  | 
|  | namespace { | 
|  | struct ValueEntry { | 
|  | unsigned Rank; | 
|  | Value *Op; | 
|  | ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {} | 
|  | }; | 
|  | inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) { | 
|  | return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start. | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | /// PrintOps - Print out the expression identified in the Ops list. | 
|  | /// | 
|  | static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { | 
|  | Module *M = I->getParent()->getParent()->getParent(); | 
|  | dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " | 
|  | << *Ops[0].Op->getType() << '\t'; | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) { | 
|  | dbgs() << "[ "; | 
|  | Ops[i].Op->printAsOperand(dbgs(), false, M); | 
|  | dbgs() << ", #" << Ops[i].Rank << "] "; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | namespace { | 
|  | /// \brief Utility class representing a base and exponent pair which form one | 
|  | /// factor of some product. | 
|  | struct Factor { | 
|  | Value *Base; | 
|  | unsigned Power; | 
|  |  | 
|  | Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {} | 
|  |  | 
|  | /// \brief Sort factors by their Base. | 
|  | struct BaseSorter { | 
|  | bool operator()(const Factor &LHS, const Factor &RHS) { | 
|  | return LHS.Base < RHS.Base; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// \brief Compare factors for equal bases. | 
|  | struct BaseEqual { | 
|  | bool operator()(const Factor &LHS, const Factor &RHS) { | 
|  | return LHS.Base == RHS.Base; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// \brief Sort factors in descending order by their power. | 
|  | struct PowerDescendingSorter { | 
|  | bool operator()(const Factor &LHS, const Factor &RHS) { | 
|  | return LHS.Power > RHS.Power; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// \brief Compare factors for equal powers. | 
|  | struct PowerEqual { | 
|  | bool operator()(const Factor &LHS, const Factor &RHS) { | 
|  | return LHS.Power == RHS.Power; | 
|  | } | 
|  | }; | 
|  | }; | 
|  |  | 
|  | /// Utility class representing a non-constant Xor-operand. We classify | 
|  | /// non-constant Xor-Operands into two categories: | 
|  | ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0 | 
|  | ///  C2) | 
|  | ///    C2.1) The operand is in the form of "X | C", where C is a non-zero | 
|  | ///          constant. | 
|  | ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this | 
|  | ///          operand as "E | 0" | 
|  | class XorOpnd { | 
|  | public: | 
|  | XorOpnd(Value *V); | 
|  |  | 
|  | bool isInvalid() const { return SymbolicPart == 0; } | 
|  | bool isOrExpr() const { return isOr; } | 
|  | Value *getValue() const { return OrigVal; } | 
|  | Value *getSymbolicPart() const { return SymbolicPart; } | 
|  | unsigned getSymbolicRank() const { return SymbolicRank; } | 
|  | const APInt &getConstPart() const { return ConstPart; } | 
|  |  | 
|  | void Invalidate() { SymbolicPart = OrigVal = 0; } | 
|  | void setSymbolicRank(unsigned R) { SymbolicRank = R; } | 
|  |  | 
|  | // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank. | 
|  | // The purpose is twofold: | 
|  | // 1) Cluster together the operands sharing the same symbolic-value. | 
|  | // 2) Operand having smaller symbolic-value-rank is permuted earlier, which | 
|  | //   could potentially shorten crital path, and expose more loop-invariants. | 
|  | //   Note that values' rank are basically defined in RPO order (FIXME). | 
|  | //   So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier | 
|  | //   than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", | 
|  | //   "z" in the order of X-Y-Z is better than any other orders. | 
|  | struct PtrSortFunctor { | 
|  | bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) { | 
|  | return LHS->getSymbolicRank() < RHS->getSymbolicRank(); | 
|  | } | 
|  | }; | 
|  | private: | 
|  | Value *OrigVal; | 
|  | Value *SymbolicPart; | 
|  | APInt ConstPart; | 
|  | unsigned SymbolicRank; | 
|  | bool isOr; | 
|  | }; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class Reassociate : public FunctionPass { | 
|  | DenseMap<BasicBlock*, unsigned> RankMap; | 
|  | DenseMap<AssertingVH<Value>, unsigned> ValueRankMap; | 
|  | SetVector<AssertingVH<Instruction> > RedoInsts; | 
|  | bool MadeChange; | 
|  | public: | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | Reassociate() : FunctionPass(ID) { | 
|  | initializeReassociatePass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F); | 
|  |  | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesCFG(); | 
|  | } | 
|  | private: | 
|  | void BuildRankMap(Function &F); | 
|  | unsigned getRank(Value *V); | 
|  | void ReassociateExpression(BinaryOperator *I); | 
|  | void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); | 
|  | Value *OptimizeExpression(BinaryOperator *I, | 
|  | SmallVectorImpl<ValueEntry> &Ops); | 
|  | Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops); | 
|  | Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops); | 
|  | bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd, | 
|  | Value *&Res); | 
|  | bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2, | 
|  | APInt &ConstOpnd, Value *&Res); | 
|  | bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, | 
|  | SmallVectorImpl<Factor> &Factors); | 
|  | Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder, | 
|  | SmallVectorImpl<Factor> &Factors); | 
|  | Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); | 
|  | Value *RemoveFactorFromExpression(Value *V, Value *Factor); | 
|  | void EraseInst(Instruction *I); | 
|  | void OptimizeInst(Instruction *I); | 
|  | }; | 
|  | } | 
|  |  | 
|  | XorOpnd::XorOpnd(Value *V) { | 
|  | assert(!isa<ConstantInt>(V) && "No ConstantInt"); | 
|  | OrigVal = V; | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | SymbolicRank = 0; | 
|  |  | 
|  | if (I && (I->getOpcode() == Instruction::Or || | 
|  | I->getOpcode() == Instruction::And)) { | 
|  | Value *V0 = I->getOperand(0); | 
|  | Value *V1 = I->getOperand(1); | 
|  | if (isa<ConstantInt>(V0)) | 
|  | std::swap(V0, V1); | 
|  |  | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) { | 
|  | ConstPart = C->getValue(); | 
|  | SymbolicPart = V0; | 
|  | isOr = (I->getOpcode() == Instruction::Or); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // view the operand as "V | 0" | 
|  | SymbolicPart = V; | 
|  | ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth()); | 
|  | isOr = true; | 
|  | } | 
|  |  | 
|  | char Reassociate::ID = 0; | 
|  | INITIALIZE_PASS(Reassociate, "reassociate", | 
|  | "Reassociate expressions", false, false) | 
|  |  | 
|  | // Public interface to the Reassociate pass | 
|  | FunctionPass *llvm::createReassociatePass() { return new Reassociate(); } | 
|  |  | 
|  | /// isReassociableOp - Return true if V is an instruction of the specified | 
|  | /// opcode and if it only has one use. | 
|  | static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { | 
|  | if (V->hasOneUse() && isa<Instruction>(V) && | 
|  | cast<Instruction>(V)->getOpcode() == Opcode) | 
|  | return cast<BinaryOperator>(V); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool isUnmovableInstruction(Instruction *I) { | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::PHI: | 
|  | case Instruction::LandingPad: | 
|  | case Instruction::Alloca: | 
|  | case Instruction::Load: | 
|  | case Instruction::Invoke: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SDiv: | 
|  | case Instruction::FDiv: | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | case Instruction::FRem: | 
|  | return true; | 
|  | case Instruction::Call: | 
|  | return !isa<DbgInfoIntrinsic>(I); | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Reassociate::BuildRankMap(Function &F) { | 
|  | unsigned i = 2; | 
|  |  | 
|  | // Assign distinct ranks to function arguments | 
|  | for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) | 
|  | ValueRankMap[&*I] = ++i; | 
|  |  | 
|  | ReversePostOrderTraversal<Function*> RPOT(&F); | 
|  | for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(), | 
|  | E = RPOT.end(); I != E; ++I) { | 
|  | BasicBlock *BB = *I; | 
|  | unsigned BBRank = RankMap[BB] = ++i << 16; | 
|  |  | 
|  | // Walk the basic block, adding precomputed ranks for any instructions that | 
|  | // we cannot move.  This ensures that the ranks for these instructions are | 
|  | // all different in the block. | 
|  | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) | 
|  | if (isUnmovableInstruction(I)) | 
|  | ValueRankMap[&*I] = ++BBRank; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned Reassociate::getRank(Value *V) { | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (I == 0) { | 
|  | if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument. | 
|  | return 0;  // Otherwise it's a global or constant, rank 0. | 
|  | } | 
|  |  | 
|  | if (unsigned Rank = ValueRankMap[I]) | 
|  | return Rank;    // Rank already known? | 
|  |  | 
|  | // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that | 
|  | // we can reassociate expressions for code motion!  Since we do not recurse | 
|  | // for PHI nodes, we cannot have infinite recursion here, because there | 
|  | // cannot be loops in the value graph that do not go through PHI nodes. | 
|  | unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; | 
|  | for (unsigned i = 0, e = I->getNumOperands(); | 
|  | i != e && Rank != MaxRank; ++i) | 
|  | Rank = std::max(Rank, getRank(I->getOperand(i))); | 
|  |  | 
|  | // If this is a not or neg instruction, do not count it for rank.  This | 
|  | // assures us that X and ~X will have the same rank. | 
|  | if (!I->getType()->isIntegerTy() || | 
|  | (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I))) | 
|  | ++Rank; | 
|  |  | 
|  | //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " | 
|  | //     << Rank << "\n"); | 
|  |  | 
|  | return ValueRankMap[I] = Rank; | 
|  | } | 
|  |  | 
|  | /// LowerNegateToMultiply - Replace 0-X with X*-1. | 
|  | /// | 
|  | static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { | 
|  | Constant *Cst = Constant::getAllOnesValue(Neg->getType()); | 
|  |  | 
|  | BinaryOperator *Res = | 
|  | BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg); | 
|  | Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op. | 
|  | Res->takeName(Neg); | 
|  | Neg->replaceAllUsesWith(Res); | 
|  | Res->setDebugLoc(Neg->getDebugLoc()); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda | 
|  | /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for | 
|  | /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. | 
|  | /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every | 
|  | /// even x in Bitwidth-bit arithmetic. | 
|  | static unsigned CarmichaelShift(unsigned Bitwidth) { | 
|  | if (Bitwidth < 3) | 
|  | return Bitwidth - 1; | 
|  | return Bitwidth - 2; | 
|  | } | 
|  |  | 
|  | /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS', | 
|  | /// reducing the combined weight using any special properties of the operation. | 
|  | /// The existing weight LHS represents the computation X op X op ... op X where | 
|  | /// X occurs LHS times.  The combined weight represents  X op X op ... op X with | 
|  | /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined | 
|  | /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; | 
|  | /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. | 
|  | static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { | 
|  | // If we were working with infinite precision arithmetic then the combined | 
|  | // weight would be LHS + RHS.  But we are using finite precision arithmetic, | 
|  | // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct | 
|  | // for nilpotent operations and addition, but not for idempotent operations | 
|  | // and multiplication), so it is important to correctly reduce the combined | 
|  | // weight back into range if wrapping would be wrong. | 
|  |  | 
|  | // If RHS is zero then the weight didn't change. | 
|  | if (RHS.isMinValue()) | 
|  | return; | 
|  | // If LHS is zero then the combined weight is RHS. | 
|  | if (LHS.isMinValue()) { | 
|  | LHS = RHS; | 
|  | return; | 
|  | } | 
|  | // From this point on we know that neither LHS nor RHS is zero. | 
|  |  | 
|  | if (Instruction::isIdempotent(Opcode)) { | 
|  | // Idempotent means X op X === X, so any non-zero weight is equivalent to a | 
|  | // weight of 1.  Keeping weights at zero or one also means that wrapping is | 
|  | // not a problem. | 
|  | assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); | 
|  | return; // Return a weight of 1. | 
|  | } | 
|  | if (Instruction::isNilpotent(Opcode)) { | 
|  | // Nilpotent means X op X === 0, so reduce weights modulo 2. | 
|  | assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); | 
|  | LHS = 0; // 1 + 1 === 0 modulo 2. | 
|  | return; | 
|  | } | 
|  | if (Opcode == Instruction::Add) { | 
|  | // TODO: Reduce the weight by exploiting nsw/nuw? | 
|  | LHS += RHS; | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(Opcode == Instruction::Mul && "Unknown associative operation!"); | 
|  | unsigned Bitwidth = LHS.getBitWidth(); | 
|  | // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth | 
|  | // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth | 
|  | // bit number x, since either x is odd in which case x^CM = 1, or x is even in | 
|  | // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples | 
|  | // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) | 
|  | // which by a happy accident means that they can always be represented using | 
|  | // Bitwidth bits. | 
|  | // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than | 
|  | // the Carmichael number). | 
|  | if (Bitwidth > 3) { | 
|  | /// CM - The value of Carmichael's lambda function. | 
|  | APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); | 
|  | // Any weight W >= Threshold can be replaced with W - CM. | 
|  | APInt Threshold = CM + Bitwidth; | 
|  | assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); | 
|  | // For Bitwidth 4 or more the following sum does not overflow. | 
|  | LHS += RHS; | 
|  | while (LHS.uge(Threshold)) | 
|  | LHS -= CM; | 
|  | } else { | 
|  | // To avoid problems with overflow do everything the same as above but using | 
|  | // a larger type. | 
|  | unsigned CM = 1U << CarmichaelShift(Bitwidth); | 
|  | unsigned Threshold = CM + Bitwidth; | 
|  | assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && | 
|  | "Weights not reduced!"); | 
|  | unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); | 
|  | while (Total >= Threshold) | 
|  | Total -= CM; | 
|  | LHS = Total; | 
|  | } | 
|  | } | 
|  |  | 
|  | typedef std::pair<Value*, APInt> RepeatedValue; | 
|  |  | 
|  | /// LinearizeExprTree - Given an associative binary expression, return the leaf | 
|  | /// nodes in Ops along with their weights (how many times the leaf occurs).  The | 
|  | /// original expression is the same as | 
|  | ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times | 
|  | /// op | 
|  | ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times | 
|  | /// op | 
|  | ///   ... | 
|  | /// op | 
|  | ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times | 
|  | /// | 
|  | /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. | 
|  | /// | 
|  | /// This routine may modify the function, in which case it returns 'true'.  The | 
|  | /// changes it makes may well be destructive, changing the value computed by 'I' | 
|  | /// to something completely different.  Thus if the routine returns 'true' then | 
|  | /// you MUST either replace I with a new expression computed from the Ops array, | 
|  | /// or use RewriteExprTree to put the values back in. | 
|  | /// | 
|  | /// A leaf node is either not a binary operation of the same kind as the root | 
|  | /// node 'I' (i.e. is not a binary operator at all, or is, but with a different | 
|  | /// opcode), or is the same kind of binary operator but has a use which either | 
|  | /// does not belong to the expression, or does belong to the expression but is | 
|  | /// a leaf node.  Every leaf node has at least one use that is a non-leaf node | 
|  | /// of the expression, while for non-leaf nodes (except for the root 'I') every | 
|  | /// use is a non-leaf node of the expression. | 
|  | /// | 
|  | /// For example: | 
|  | ///           expression graph        node names | 
|  | /// | 
|  | ///                     +        |        I | 
|  | ///                    / \       | | 
|  | ///                   +   +      |      A,  B | 
|  | ///                  / \ / \     | | 
|  | ///                 *   +   *    |    C,  D,  E | 
|  | ///                / \ / \ / \   | | 
|  | ///                   +   *      |      F,  G | 
|  | /// | 
|  | /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in | 
|  | /// that order) (C, 1), (E, 1), (F, 2), (G, 2). | 
|  | /// | 
|  | /// The expression is maximal: if some instruction is a binary operator of the | 
|  | /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, | 
|  | /// then the instruction also belongs to the expression, is not a leaf node of | 
|  | /// it, and its operands also belong to the expression (but may be leaf nodes). | 
|  | /// | 
|  | /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in | 
|  | /// order to ensure that every non-root node in the expression has *exactly one* | 
|  | /// use by a non-leaf node of the expression.  This destruction means that the | 
|  | /// caller MUST either replace 'I' with a new expression or use something like | 
|  | /// RewriteExprTree to put the values back in if the routine indicates that it | 
|  | /// made a change by returning 'true'. | 
|  | /// | 
|  | /// In the above example either the right operand of A or the left operand of B | 
|  | /// will be replaced by undef.  If it is B's operand then this gives: | 
|  | /// | 
|  | ///                     +        |        I | 
|  | ///                    / \       | | 
|  | ///                   +   +      |      A,  B - operand of B replaced with undef | 
|  | ///                  / \   \     | | 
|  | ///                 *   +   *    |    C,  D,  E | 
|  | ///                / \ / \ / \   | | 
|  | ///                   +   *      |      F,  G | 
|  | /// | 
|  | /// Note that such undef operands can only be reached by passing through 'I'. | 
|  | /// For example, if you visit operands recursively starting from a leaf node | 
|  | /// then you will never see such an undef operand unless you get back to 'I', | 
|  | /// which requires passing through a phi node. | 
|  | /// | 
|  | /// Note that this routine may also mutate binary operators of the wrong type | 
|  | /// that have all uses inside the expression (i.e. only used by non-leaf nodes | 
|  | /// of the expression) if it can turn them into binary operators of the right | 
|  | /// type and thus make the expression bigger. | 
|  |  | 
|  | static bool LinearizeExprTree(BinaryOperator *I, | 
|  | SmallVectorImpl<RepeatedValue> &Ops) { | 
|  | DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); | 
|  | unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); | 
|  | unsigned Opcode = I->getOpcode(); | 
|  | assert(Instruction::isAssociative(Opcode) && | 
|  | Instruction::isCommutative(Opcode) && | 
|  | "Expected an associative and commutative operation!"); | 
|  |  | 
|  | // Visit all operands of the expression, keeping track of their weight (the | 
|  | // number of paths from the expression root to the operand, or if you like | 
|  | // the number of times that operand occurs in the linearized expression). | 
|  | // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 | 
|  | // while A has weight two. | 
|  |  | 
|  | // Worklist of non-leaf nodes (their operands are in the expression too) along | 
|  | // with their weights, representing a certain number of paths to the operator. | 
|  | // If an operator occurs in the worklist multiple times then we found multiple | 
|  | // ways to get to it. | 
|  | SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight) | 
|  | Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // Leaves of the expression are values that either aren't the right kind of | 
|  | // operation (eg: a constant, or a multiply in an add tree), or are, but have | 
|  | // some uses that are not inside the expression.  For example, in I = X + X, | 
|  | // X = A + B, the value X has two uses (by I) that are in the expression.  If | 
|  | // X has any other uses, for example in a return instruction, then we consider | 
|  | // X to be a leaf, and won't analyze it further.  When we first visit a value, | 
|  | // if it has more than one use then at first we conservatively consider it to | 
|  | // be a leaf.  Later, as the expression is explored, we may discover some more | 
|  | // uses of the value from inside the expression.  If all uses turn out to be | 
|  | // from within the expression (and the value is a binary operator of the right | 
|  | // kind) then the value is no longer considered to be a leaf, and its operands | 
|  | // are explored. | 
|  |  | 
|  | // Leaves - Keeps track of the set of putative leaves as well as the number of | 
|  | // paths to each leaf seen so far. | 
|  | typedef DenseMap<Value*, APInt> LeafMap; | 
|  | LeafMap Leaves; // Leaf -> Total weight so far. | 
|  | SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order. | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme. | 
|  | #endif | 
|  | while (!Worklist.empty()) { | 
|  | std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val(); | 
|  | I = P.first; // We examine the operands of this binary operator. | 
|  |  | 
|  | for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. | 
|  | Value *Op = I->getOperand(OpIdx); | 
|  | APInt Weight = P.second; // Number of paths to this operand. | 
|  | DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); | 
|  | assert(!Op->use_empty() && "No uses, so how did we get to it?!"); | 
|  |  | 
|  | // If this is a binary operation of the right kind with only one use then | 
|  | // add its operands to the expression. | 
|  | if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { | 
|  | assert(Visited.insert(Op) && "Not first visit!"); | 
|  | DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); | 
|  | Worklist.push_back(std::make_pair(BO, Weight)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Appears to be a leaf.  Is the operand already in the set of leaves? | 
|  | LeafMap::iterator It = Leaves.find(Op); | 
|  | if (It == Leaves.end()) { | 
|  | // Not in the leaf map.  Must be the first time we saw this operand. | 
|  | assert(Visited.insert(Op) && "Not first visit!"); | 
|  | if (!Op->hasOneUse()) { | 
|  | // This value has uses not accounted for by the expression, so it is | 
|  | // not safe to modify.  Mark it as being a leaf. | 
|  | DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); | 
|  | LeafOrder.push_back(Op); | 
|  | Leaves[Op] = Weight; | 
|  | continue; | 
|  | } | 
|  | // No uses outside the expression, try morphing it. | 
|  | } else if (It != Leaves.end()) { | 
|  | // Already in the leaf map. | 
|  | assert(Visited.count(Op) && "In leaf map but not visited!"); | 
|  |  | 
|  | // Update the number of paths to the leaf. | 
|  | IncorporateWeight(It->second, Weight, Opcode); | 
|  |  | 
|  | #if 0   // TODO: Re-enable once PR13021 is fixed. | 
|  | // The leaf already has one use from inside the expression.  As we want | 
|  | // exactly one such use, drop this new use of the leaf. | 
|  | assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); | 
|  | I->setOperand(OpIdx, UndefValue::get(I->getType())); | 
|  | MadeChange = true; | 
|  |  | 
|  | // If the leaf is a binary operation of the right kind and we now see | 
|  | // that its multiple original uses were in fact all by nodes belonging | 
|  | // to the expression, then no longer consider it to be a leaf and add | 
|  | // its operands to the expression. | 
|  | if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { | 
|  | DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); | 
|  | Worklist.push_back(std::make_pair(BO, It->second)); | 
|  | Leaves.erase(It); | 
|  | continue; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // If we still have uses that are not accounted for by the expression | 
|  | // then it is not safe to modify the value. | 
|  | if (!Op->hasOneUse()) | 
|  | continue; | 
|  |  | 
|  | // No uses outside the expression, try morphing it. | 
|  | Weight = It->second; | 
|  | Leaves.erase(It); // Since the value may be morphed below. | 
|  | } | 
|  |  | 
|  | // At this point we have a value which, first of all, is not a binary | 
|  | // expression of the right kind, and secondly, is only used inside the | 
|  | // expression.  This means that it can safely be modified.  See if we | 
|  | // can usefully morph it into an expression of the right kind. | 
|  | assert((!isa<Instruction>(Op) || | 
|  | cast<Instruction>(Op)->getOpcode() != Opcode) && | 
|  | "Should have been handled above!"); | 
|  | assert(Op->hasOneUse() && "Has uses outside the expression tree!"); | 
|  |  | 
|  | // If this is a multiply expression, turn any internal negations into | 
|  | // multiplies by -1 so they can be reassociated. | 
|  | BinaryOperator *BO = dyn_cast<BinaryOperator>(Op); | 
|  | if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) { | 
|  | DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); | 
|  | BO = LowerNegateToMultiply(BO); | 
|  | DEBUG(dbgs() << *BO << 'n'); | 
|  | Worklist.push_back(std::make_pair(BO, Weight)); | 
|  | MadeChange = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Failed to morph into an expression of the right type.  This really is | 
|  | // a leaf. | 
|  | DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); | 
|  | assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); | 
|  | LeafOrder.push_back(Op); | 
|  | Leaves[Op] = Weight; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The leaves, repeated according to their weights, represent the linearized | 
|  | // form of the expression. | 
|  | for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { | 
|  | Value *V = LeafOrder[i]; | 
|  | LeafMap::iterator It = Leaves.find(V); | 
|  | if (It == Leaves.end()) | 
|  | // Node initially thought to be a leaf wasn't. | 
|  | continue; | 
|  | assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); | 
|  | APInt Weight = It->second; | 
|  | if (Weight.isMinValue()) | 
|  | // Leaf already output or weight reduction eliminated it. | 
|  | continue; | 
|  | // Ensure the leaf is only output once. | 
|  | It->second = 0; | 
|  | Ops.push_back(std::make_pair(V, Weight)); | 
|  | } | 
|  |  | 
|  | // For nilpotent operations or addition there may be no operands, for example | 
|  | // because the expression was "X xor X" or consisted of 2^Bitwidth additions: | 
|  | // in both cases the weight reduces to 0 causing the value to be skipped. | 
|  | if (Ops.empty()) { | 
|  | Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); | 
|  | assert(Identity && "Associative operation without identity!"); | 
|  | Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1))); | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | // RewriteExprTree - Now that the operands for this expression tree are | 
|  | // linearized and optimized, emit them in-order. | 
|  | void Reassociate::RewriteExprTree(BinaryOperator *I, | 
|  | SmallVectorImpl<ValueEntry> &Ops) { | 
|  | assert(Ops.size() > 1 && "Single values should be used directly!"); | 
|  |  | 
|  | // Since our optimizations should never increase the number of operations, the | 
|  | // new expression can usually be written reusing the existing binary operators | 
|  | // from the original expression tree, without creating any new instructions, | 
|  | // though the rewritten expression may have a completely different topology. | 
|  | // We take care to not change anything if the new expression will be the same | 
|  | // as the original.  If more than trivial changes (like commuting operands) | 
|  | // were made then we are obliged to clear out any optional subclass data like | 
|  | // nsw flags. | 
|  |  | 
|  | /// NodesToRewrite - Nodes from the original expression available for writing | 
|  | /// the new expression into. | 
|  | SmallVector<BinaryOperator*, 8> NodesToRewrite; | 
|  | unsigned Opcode = I->getOpcode(); | 
|  | BinaryOperator *Op = I; | 
|  |  | 
|  | /// NotRewritable - The operands being written will be the leaves of the new | 
|  | /// expression and must not be used as inner nodes (via NodesToRewrite) by | 
|  | /// mistake.  Inner nodes are always reassociable, and usually leaves are not | 
|  | /// (if they were they would have been incorporated into the expression and so | 
|  | /// would not be leaves), so most of the time there is no danger of this.  But | 
|  | /// in rare cases a leaf may become reassociable if an optimization kills uses | 
|  | /// of it, or it may momentarily become reassociable during rewriting (below) | 
|  | /// due it being removed as an operand of one of its uses.  Ensure that misuse | 
|  | /// of leaf nodes as inner nodes cannot occur by remembering all of the future | 
|  | /// leaves and refusing to reuse any of them as inner nodes. | 
|  | SmallPtrSet<Value*, 8> NotRewritable; | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
|  | NotRewritable.insert(Ops[i].Op); | 
|  |  | 
|  | // ExpressionChanged - Non-null if the rewritten expression differs from the | 
|  | // original in some non-trivial way, requiring the clearing of optional flags. | 
|  | // Flags are cleared from the operator in ExpressionChanged up to I inclusive. | 
|  | BinaryOperator *ExpressionChanged = 0; | 
|  | for (unsigned i = 0; ; ++i) { | 
|  | // The last operation (which comes earliest in the IR) is special as both | 
|  | // operands will come from Ops, rather than just one with the other being | 
|  | // a subexpression. | 
|  | if (i+2 == Ops.size()) { | 
|  | Value *NewLHS = Ops[i].Op; | 
|  | Value *NewRHS = Ops[i+1].Op; | 
|  | Value *OldLHS = Op->getOperand(0); | 
|  | Value *OldRHS = Op->getOperand(1); | 
|  |  | 
|  | if (NewLHS == OldLHS && NewRHS == OldRHS) | 
|  | // Nothing changed, leave it alone. | 
|  | break; | 
|  |  | 
|  | if (NewLHS == OldRHS && NewRHS == OldLHS) { | 
|  | // The order of the operands was reversed.  Swap them. | 
|  | DEBUG(dbgs() << "RA: " << *Op << '\n'); | 
|  | Op->swapOperands(); | 
|  | DEBUG(dbgs() << "TO: " << *Op << '\n'); | 
|  | MadeChange = true; | 
|  | ++NumChanged; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // The new operation differs non-trivially from the original. Overwrite | 
|  | // the old operands with the new ones. | 
|  | DEBUG(dbgs() << "RA: " << *Op << '\n'); | 
|  | if (NewLHS != OldLHS) { | 
|  | BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); | 
|  | if (BO && !NotRewritable.count(BO)) | 
|  | NodesToRewrite.push_back(BO); | 
|  | Op->setOperand(0, NewLHS); | 
|  | } | 
|  | if (NewRHS != OldRHS) { | 
|  | BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); | 
|  | if (BO && !NotRewritable.count(BO)) | 
|  | NodesToRewrite.push_back(BO); | 
|  | Op->setOperand(1, NewRHS); | 
|  | } | 
|  | DEBUG(dbgs() << "TO: " << *Op << '\n'); | 
|  |  | 
|  | ExpressionChanged = Op; | 
|  | MadeChange = true; | 
|  | ++NumChanged; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Not the last operation.  The left-hand side will be a sub-expression | 
|  | // while the right-hand side will be the current element of Ops. | 
|  | Value *NewRHS = Ops[i].Op; | 
|  | if (NewRHS != Op->getOperand(1)) { | 
|  | DEBUG(dbgs() << "RA: " << *Op << '\n'); | 
|  | if (NewRHS == Op->getOperand(0)) { | 
|  | // The new right-hand side was already present as the left operand.  If | 
|  | // we are lucky then swapping the operands will sort out both of them. | 
|  | Op->swapOperands(); | 
|  | } else { | 
|  | // Overwrite with the new right-hand side. | 
|  | BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); | 
|  | if (BO && !NotRewritable.count(BO)) | 
|  | NodesToRewrite.push_back(BO); | 
|  | Op->setOperand(1, NewRHS); | 
|  | ExpressionChanged = Op; | 
|  | } | 
|  | DEBUG(dbgs() << "TO: " << *Op << '\n'); | 
|  | MadeChange = true; | 
|  | ++NumChanged; | 
|  | } | 
|  |  | 
|  | // Now deal with the left-hand side.  If this is already an operation node | 
|  | // from the original expression then just rewrite the rest of the expression | 
|  | // into it. | 
|  | BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); | 
|  | if (BO && !NotRewritable.count(BO)) { | 
|  | Op = BO; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, grab a spare node from the original expression and use that as | 
|  | // the left-hand side.  If there are no nodes left then the optimizers made | 
|  | // an expression with more nodes than the original!  This usually means that | 
|  | // they did something stupid but it might mean that the problem was just too | 
|  | // hard (finding the mimimal number of multiplications needed to realize a | 
|  | // multiplication expression is NP-complete).  Whatever the reason, smart or | 
|  | // stupid, create a new node if there are none left. | 
|  | BinaryOperator *NewOp; | 
|  | if (NodesToRewrite.empty()) { | 
|  | Constant *Undef = UndefValue::get(I->getType()); | 
|  | NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), | 
|  | Undef, Undef, "", I); | 
|  | } else { | 
|  | NewOp = NodesToRewrite.pop_back_val(); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "RA: " << *Op << '\n'); | 
|  | Op->setOperand(0, NewOp); | 
|  | DEBUG(dbgs() << "TO: " << *Op << '\n'); | 
|  | ExpressionChanged = Op; | 
|  | MadeChange = true; | 
|  | ++NumChanged; | 
|  | Op = NewOp; | 
|  | } | 
|  |  | 
|  | // If the expression changed non-trivially then clear out all subclass data | 
|  | // starting from the operator specified in ExpressionChanged, and compactify | 
|  | // the operators to just before the expression root to guarantee that the | 
|  | // expression tree is dominated by all of Ops. | 
|  | if (ExpressionChanged) | 
|  | do { | 
|  | ExpressionChanged->clearSubclassOptionalData(); | 
|  | if (ExpressionChanged == I) | 
|  | break; | 
|  | ExpressionChanged->moveBefore(I); | 
|  | ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin()); | 
|  | } while (1); | 
|  |  | 
|  | // Throw away any left over nodes from the original expression. | 
|  | for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) | 
|  | RedoInsts.insert(NodesToRewrite[i]); | 
|  | } | 
|  |  | 
|  | /// NegateValue - Insert instructions before the instruction pointed to by BI, | 
|  | /// that computes the negative version of the value specified.  The negative | 
|  | /// version of the value is returned, and BI is left pointing at the instruction | 
|  | /// that should be processed next by the reassociation pass. | 
|  | static Value *NegateValue(Value *V, Instruction *BI) { | 
|  | if (Constant *C = dyn_cast<Constant>(V)) | 
|  | return ConstantExpr::getNeg(C); | 
|  |  | 
|  | // We are trying to expose opportunity for reassociation.  One of the things | 
|  | // that we want to do to achieve this is to push a negation as deep into an | 
|  | // expression chain as possible, to expose the add instructions.  In practice, | 
|  | // this means that we turn this: | 
|  | //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D | 
|  | // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate | 
|  | // the constants.  We assume that instcombine will clean up the mess later if | 
|  | // we introduce tons of unnecessary negation instructions. | 
|  | // | 
|  | if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) { | 
|  | // Push the negates through the add. | 
|  | I->setOperand(0, NegateValue(I->getOperand(0), BI)); | 
|  | I->setOperand(1, NegateValue(I->getOperand(1), BI)); | 
|  |  | 
|  | // We must move the add instruction here, because the neg instructions do | 
|  | // not dominate the old add instruction in general.  By moving it, we are | 
|  | // assured that the neg instructions we just inserted dominate the | 
|  | // instruction we are about to insert after them. | 
|  | // | 
|  | I->moveBefore(BI); | 
|  | I->setName(I->getName()+".neg"); | 
|  | return I; | 
|  | } | 
|  |  | 
|  | // Okay, we need to materialize a negated version of V with an instruction. | 
|  | // Scan the use lists of V to see if we have one already. | 
|  | for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ | 
|  | User *U = *UI; | 
|  | if (!BinaryOperator::isNeg(U)) continue; | 
|  |  | 
|  | // We found one!  Now we have to make sure that the definition dominates | 
|  | // this use.  We do this by moving it to the entry block (if it is a | 
|  | // non-instruction value) or right after the definition.  These negates will | 
|  | // be zapped by reassociate later, so we don't need much finesse here. | 
|  | BinaryOperator *TheNeg = cast<BinaryOperator>(U); | 
|  |  | 
|  | // Verify that the negate is in this function, V might be a constant expr. | 
|  | if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) | 
|  | continue; | 
|  |  | 
|  | BasicBlock::iterator InsertPt; | 
|  | if (Instruction *InstInput = dyn_cast<Instruction>(V)) { | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { | 
|  | InsertPt = II->getNormalDest()->begin(); | 
|  | } else { | 
|  | InsertPt = InstInput; | 
|  | ++InsertPt; | 
|  | } | 
|  | while (isa<PHINode>(InsertPt)) ++InsertPt; | 
|  | } else { | 
|  | InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); | 
|  | } | 
|  | TheNeg->moveBefore(InsertPt); | 
|  | return TheNeg; | 
|  | } | 
|  |  | 
|  | // Insert a 'neg' instruction that subtracts the value from zero to get the | 
|  | // negation. | 
|  | return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI); | 
|  | } | 
|  |  | 
|  | /// ShouldBreakUpSubtract - Return true if we should break up this subtract of | 
|  | /// X-Y into (X + -Y). | 
|  | static bool ShouldBreakUpSubtract(Instruction *Sub) { | 
|  | // If this is a negation, we can't split it up! | 
|  | if (BinaryOperator::isNeg(Sub)) | 
|  | return false; | 
|  |  | 
|  | // Don't bother to break this up unless either the LHS is an associable add or | 
|  | // subtract or if this is only used by one. | 
|  | if (isReassociableOp(Sub->getOperand(0), Instruction::Add) || | 
|  | isReassociableOp(Sub->getOperand(0), Instruction::Sub)) | 
|  | return true; | 
|  | if (isReassociableOp(Sub->getOperand(1), Instruction::Add) || | 
|  | isReassociableOp(Sub->getOperand(1), Instruction::Sub)) | 
|  | return true; | 
|  | if (Sub->hasOneUse() && | 
|  | (isReassociableOp(Sub->use_back(), Instruction::Add) || | 
|  | isReassociableOp(Sub->use_back(), Instruction::Sub))) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is | 
|  | /// only used by an add, transform this into (X+(0-Y)) to promote better | 
|  | /// reassociation. | 
|  | static BinaryOperator *BreakUpSubtract(Instruction *Sub) { | 
|  | // Convert a subtract into an add and a neg instruction. This allows sub | 
|  | // instructions to be commuted with other add instructions. | 
|  | // | 
|  | // Calculate the negative value of Operand 1 of the sub instruction, | 
|  | // and set it as the RHS of the add instruction we just made. | 
|  | // | 
|  | Value *NegVal = NegateValue(Sub->getOperand(1), Sub); | 
|  | BinaryOperator *New = | 
|  | BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub); | 
|  | Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. | 
|  | Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. | 
|  | New->takeName(Sub); | 
|  |  | 
|  | // Everyone now refers to the add instruction. | 
|  | Sub->replaceAllUsesWith(New); | 
|  | New->setDebugLoc(Sub->getDebugLoc()); | 
|  |  | 
|  | DEBUG(dbgs() << "Negated: " << *New << '\n'); | 
|  | return New; | 
|  | } | 
|  |  | 
|  | /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used | 
|  | /// by one, change this into a multiply by a constant to assist with further | 
|  | /// reassociation. | 
|  | static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { | 
|  | Constant *MulCst = ConstantInt::get(Shl->getType(), 1); | 
|  | MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); | 
|  |  | 
|  | BinaryOperator *Mul = | 
|  | BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); | 
|  | Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. | 
|  | Mul->takeName(Shl); | 
|  | Shl->replaceAllUsesWith(Mul); | 
|  | Mul->setDebugLoc(Shl->getDebugLoc()); | 
|  | return Mul; | 
|  | } | 
|  |  | 
|  | /// FindInOperandList - Scan backwards and forwards among values with the same | 
|  | /// rank as element i to see if X exists.  If X does not exist, return i.  This | 
|  | /// is useful when scanning for 'x' when we see '-x' because they both get the | 
|  | /// same rank. | 
|  | static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i, | 
|  | Value *X) { | 
|  | unsigned XRank = Ops[i].Rank; | 
|  | unsigned e = Ops.size(); | 
|  | for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) | 
|  | if (Ops[j].Op == X) | 
|  | return j; | 
|  | // Scan backwards. | 
|  | for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) | 
|  | if (Ops[j].Op == X) | 
|  | return j; | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together | 
|  | /// and returning the result.  Insert the tree before I. | 
|  | static Value *EmitAddTreeOfValues(Instruction *I, | 
|  | SmallVectorImpl<WeakVH> &Ops){ | 
|  | if (Ops.size() == 1) return Ops.back(); | 
|  |  | 
|  | Value *V1 = Ops.back(); | 
|  | Ops.pop_back(); | 
|  | Value *V2 = EmitAddTreeOfValues(I, Ops); | 
|  | return BinaryOperator::CreateAdd(V2, V1, "tmp", I); | 
|  | } | 
|  |  | 
|  | /// RemoveFactorFromExpression - If V is an expression tree that is a | 
|  | /// multiplication sequence, and if this sequence contains a multiply by Factor, | 
|  | /// remove Factor from the tree and return the new tree. | 
|  | Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) { | 
|  | BinaryOperator *BO = isReassociableOp(V, Instruction::Mul); | 
|  | if (!BO) return 0; | 
|  |  | 
|  | SmallVector<RepeatedValue, 8> Tree; | 
|  | MadeChange |= LinearizeExprTree(BO, Tree); | 
|  | SmallVector<ValueEntry, 8> Factors; | 
|  | Factors.reserve(Tree.size()); | 
|  | for (unsigned i = 0, e = Tree.size(); i != e; ++i) { | 
|  | RepeatedValue E = Tree[i]; | 
|  | Factors.append(E.second.getZExtValue(), | 
|  | ValueEntry(getRank(E.first), E.first)); | 
|  | } | 
|  |  | 
|  | bool FoundFactor = false; | 
|  | bool NeedsNegate = false; | 
|  | for (unsigned i = 0, e = Factors.size(); i != e; ++i) { | 
|  | if (Factors[i].Op == Factor) { | 
|  | FoundFactor = true; | 
|  | Factors.erase(Factors.begin()+i); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If this is a negative version of this factor, remove it. | 
|  | if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) | 
|  | if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) | 
|  | if (FC1->getValue() == -FC2->getValue()) { | 
|  | FoundFactor = NeedsNegate = true; | 
|  | Factors.erase(Factors.begin()+i); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!FoundFactor) { | 
|  | // Make sure to restore the operands to the expression tree. | 
|  | RewriteExprTree(BO, Factors); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BasicBlock::iterator InsertPt = BO; ++InsertPt; | 
|  |  | 
|  | // If this was just a single multiply, remove the multiply and return the only | 
|  | // remaining operand. | 
|  | if (Factors.size() == 1) { | 
|  | RedoInsts.insert(BO); | 
|  | V = Factors[0].Op; | 
|  | } else { | 
|  | RewriteExprTree(BO, Factors); | 
|  | V = BO; | 
|  | } | 
|  |  | 
|  | if (NeedsNegate) | 
|  | V = BinaryOperator::CreateNeg(V, "neg", InsertPt); | 
|  |  | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively | 
|  | /// add its operands as factors, otherwise add V to the list of factors. | 
|  | /// | 
|  | /// Ops is the top-level list of add operands we're trying to factor. | 
|  | static void FindSingleUseMultiplyFactors(Value *V, | 
|  | SmallVectorImpl<Value*> &Factors, | 
|  | const SmallVectorImpl<ValueEntry> &Ops) { | 
|  | BinaryOperator *BO = isReassociableOp(V, Instruction::Mul); | 
|  | if (!BO) { | 
|  | Factors.push_back(V); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, add the LHS and RHS to the list of factors. | 
|  | FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops); | 
|  | FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops); | 
|  | } | 
|  |  | 
|  | /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor' | 
|  | /// instruction.  This optimizes based on identities.  If it can be reduced to | 
|  | /// a single Value, it is returned, otherwise the Ops list is mutated as | 
|  | /// necessary. | 
|  | static Value *OptimizeAndOrXor(unsigned Opcode, | 
|  | SmallVectorImpl<ValueEntry> &Ops) { | 
|  | // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. | 
|  | // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) { | 
|  | // First, check for X and ~X in the operand list. | 
|  | assert(i < Ops.size()); | 
|  | if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^. | 
|  | Value *X = BinaryOperator::getNotArgument(Ops[i].Op); | 
|  | unsigned FoundX = FindInOperandList(Ops, i, X); | 
|  | if (FoundX != i) { | 
|  | if (Opcode == Instruction::And)   // ...&X&~X = 0 | 
|  | return Constant::getNullValue(X->getType()); | 
|  |  | 
|  | if (Opcode == Instruction::Or)    // ...|X|~X = -1 | 
|  | return Constant::getAllOnesValue(X->getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Next, check for duplicate pairs of values, which we assume are next to | 
|  | // each other, due to our sorting criteria. | 
|  | assert(i < Ops.size()); | 
|  | if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { | 
|  | if (Opcode == Instruction::And || Opcode == Instruction::Or) { | 
|  | // Drop duplicate values for And and Or. | 
|  | Ops.erase(Ops.begin()+i); | 
|  | --i; --e; | 
|  | ++NumAnnihil; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Drop pairs of values for Xor. | 
|  | assert(Opcode == Instruction::Xor); | 
|  | if (e == 2) | 
|  | return Constant::getNullValue(Ops[0].Op->getType()); | 
|  |  | 
|  | // Y ^ X^X -> Y | 
|  | Ops.erase(Ops.begin()+i, Ops.begin()+i+2); | 
|  | i -= 1; e -= 2; | 
|  | ++NumAnnihil; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// Helper funciton of CombineXorOpnd(). It creates a bitwise-and | 
|  | /// instruction with the given two operands, and return the resulting | 
|  | /// instruction. There are two special cases: 1) if the constant operand is 0, | 
|  | /// it will return NULL. 2) if the constant is ~0, the symbolic operand will | 
|  | /// be returned. | 
|  | static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, | 
|  | const APInt &ConstOpnd) { | 
|  | if (ConstOpnd != 0) { | 
|  | if (!ConstOpnd.isAllOnesValue()) { | 
|  | LLVMContext &Ctx = Opnd->getType()->getContext(); | 
|  | Instruction *I; | 
|  | I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd), | 
|  | "and.ra", InsertBefore); | 
|  | I->setDebugLoc(InsertBefore->getDebugLoc()); | 
|  | return I; | 
|  | } | 
|  | return Opnd; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" | 
|  | // into "R ^ C", where C would be 0, and R is a symbolic value. | 
|  | // | 
|  | // If it was successful, true is returned, and the "R" and "C" is returned | 
|  | // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, | 
|  | // and both "Res" and "ConstOpnd" remain unchanged. | 
|  | // | 
|  | bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, | 
|  | APInt &ConstOpnd, Value *&Res) { | 
|  | // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 | 
|  | //                       = ((x | c1) ^ c1) ^ (c1 ^ c2) | 
|  | //                       = (x & ~c1) ^ (c1 ^ c2) | 
|  | // It is useful only when c1 == c2. | 
|  | if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) { | 
|  | if (!Opnd1->getValue()->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | const APInt &C1 = Opnd1->getConstPart(); | 
|  | if (C1 != ConstOpnd) | 
|  | return false; | 
|  |  | 
|  | Value *X = Opnd1->getSymbolicPart(); | 
|  | Res = createAndInstr(I, X, ~C1); | 
|  | // ConstOpnd was C2, now C1 ^ C2. | 
|  | ConstOpnd ^= C1; | 
|  |  | 
|  | if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) | 
|  | RedoInsts.insert(T); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Helper function of OptimizeXor(). It tries to simplify | 
|  | // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a | 
|  | // symbolic value. | 
|  | // | 
|  | // If it was successful, true is returned, and the "R" and "C" is returned | 
|  | // via "Res" and "ConstOpnd", respectively (If the entire expression is | 
|  | // evaluated to a constant, the Res is set to NULL); otherwise, false is | 
|  | // returned, and both "Res" and "ConstOpnd" remain unchanged. | 
|  | bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2, | 
|  | APInt &ConstOpnd, Value *&Res) { | 
|  | Value *X = Opnd1->getSymbolicPart(); | 
|  | if (X != Opnd2->getSymbolicPart()) | 
|  | return false; | 
|  |  | 
|  | // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) | 
|  | int DeadInstNum = 1; | 
|  | if (Opnd1->getValue()->hasOneUse()) | 
|  | DeadInstNum++; | 
|  | if (Opnd2->getValue()->hasOneUse()) | 
|  | DeadInstNum++; | 
|  |  | 
|  | // Xor-Rule 2: | 
|  | //  (x | c1) ^ (x & c2) | 
|  | //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 | 
|  | //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1 | 
|  | //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3 | 
|  | // | 
|  | if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { | 
|  | if (Opnd2->isOrExpr()) | 
|  | std::swap(Opnd1, Opnd2); | 
|  |  | 
|  | const APInt &C1 = Opnd1->getConstPart(); | 
|  | const APInt &C2 = Opnd2->getConstPart(); | 
|  | APInt C3((~C1) ^ C2); | 
|  |  | 
|  | // Do not increase code size! | 
|  | if (C3 != 0 && !C3.isAllOnesValue()) { | 
|  | int NewInstNum = ConstOpnd != 0 ? 1 : 2; | 
|  | if (NewInstNum > DeadInstNum) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Res = createAndInstr(I, X, C3); | 
|  | ConstOpnd ^= C1; | 
|  |  | 
|  | } else if (Opnd1->isOrExpr()) { | 
|  | // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 | 
|  | // | 
|  | const APInt &C1 = Opnd1->getConstPart(); | 
|  | const APInt &C2 = Opnd2->getConstPart(); | 
|  | APInt C3 = C1 ^ C2; | 
|  |  | 
|  | // Do not increase code size | 
|  | if (C3 != 0 && !C3.isAllOnesValue()) { | 
|  | int NewInstNum = ConstOpnd != 0 ? 1 : 2; | 
|  | if (NewInstNum > DeadInstNum) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Res = createAndInstr(I, X, C3); | 
|  | ConstOpnd ^= C3; | 
|  | } else { | 
|  | // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) | 
|  | // | 
|  | const APInt &C1 = Opnd1->getConstPart(); | 
|  | const APInt &C2 = Opnd2->getConstPart(); | 
|  | APInt C3 = C1 ^ C2; | 
|  | Res = createAndInstr(I, X, C3); | 
|  | } | 
|  |  | 
|  | // Put the original operands in the Redo list; hope they will be deleted | 
|  | // as dead code. | 
|  | if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) | 
|  | RedoInsts.insert(T); | 
|  | if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) | 
|  | RedoInsts.insert(T); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Optimize a series of operands to an 'xor' instruction. If it can be reduced | 
|  | /// to a single Value, it is returned, otherwise the Ops list is mutated as | 
|  | /// necessary. | 
|  | Value *Reassociate::OptimizeXor(Instruction *I, | 
|  | SmallVectorImpl<ValueEntry> &Ops) { | 
|  | if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) | 
|  | return V; | 
|  |  | 
|  | if (Ops.size() == 1) | 
|  | return 0; | 
|  |  | 
|  | SmallVector<XorOpnd, 8> Opnds; | 
|  | SmallVector<XorOpnd*, 8> OpndPtrs; | 
|  | Type *Ty = Ops[0].Op->getType(); | 
|  | APInt ConstOpnd(Ty->getIntegerBitWidth(), 0); | 
|  |  | 
|  | // Step 1: Convert ValueEntry to XorOpnd | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) { | 
|  | Value *V = Ops[i].Op; | 
|  | if (!isa<ConstantInt>(V)) { | 
|  | XorOpnd O(V); | 
|  | O.setSymbolicRank(getRank(O.getSymbolicPart())); | 
|  | Opnds.push_back(O); | 
|  | } else | 
|  | ConstOpnd ^= cast<ConstantInt>(V)->getValue(); | 
|  | } | 
|  |  | 
|  | // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". | 
|  | //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate | 
|  | //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop | 
|  | //  with the previous loop --- the iterator of the "Opnds" may be invalidated | 
|  | //  when new elements are added to the vector. | 
|  | for (unsigned i = 0, e = Opnds.size(); i != e; ++i) | 
|  | OpndPtrs.push_back(&Opnds[i]); | 
|  |  | 
|  | // Step 2: Sort the Xor-Operands in a way such that the operands containing | 
|  | //  the same symbolic value cluster together. For instance, the input operand | 
|  | //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into: | 
|  | //  ("x | 123", "x & 789", "y & 456"). | 
|  | std::sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor()); | 
|  |  | 
|  | // Step 3: Combine adjacent operands | 
|  | XorOpnd *PrevOpnd = 0; | 
|  | bool Changed = false; | 
|  | for (unsigned i = 0, e = Opnds.size(); i < e; i++) { | 
|  | XorOpnd *CurrOpnd = OpndPtrs[i]; | 
|  | // The combined value | 
|  | Value *CV; | 
|  |  | 
|  | // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" | 
|  | if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { | 
|  | Changed = true; | 
|  | if (CV) | 
|  | *CurrOpnd = XorOpnd(CV); | 
|  | else { | 
|  | CurrOpnd->Invalidate(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { | 
|  | PrevOpnd = CurrOpnd; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // step 3.2: When previous and current operands share the same symbolic | 
|  | //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" | 
|  | // | 
|  | if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { | 
|  | // Remove previous operand | 
|  | PrevOpnd->Invalidate(); | 
|  | if (CV) { | 
|  | *CurrOpnd = XorOpnd(CV); | 
|  | PrevOpnd = CurrOpnd; | 
|  | } else { | 
|  | CurrOpnd->Invalidate(); | 
|  | PrevOpnd = 0; | 
|  | } | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Step 4: Reassemble the Ops | 
|  | if (Changed) { | 
|  | Ops.clear(); | 
|  | for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { | 
|  | XorOpnd &O = Opnds[i]; | 
|  | if (O.isInvalid()) | 
|  | continue; | 
|  | ValueEntry VE(getRank(O.getValue()), O.getValue()); | 
|  | Ops.push_back(VE); | 
|  | } | 
|  | if (ConstOpnd != 0) { | 
|  | Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd); | 
|  | ValueEntry VE(getRank(C), C); | 
|  | Ops.push_back(VE); | 
|  | } | 
|  | int Sz = Ops.size(); | 
|  | if (Sz == 1) | 
|  | return Ops.back().Op; | 
|  | else if (Sz == 0) { | 
|  | assert(ConstOpnd == 0); | 
|  | return ConstantInt::get(Ty->getContext(), ConstOpnd); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This | 
|  | /// optimizes based on identities.  If it can be reduced to a single Value, it | 
|  | /// is returned, otherwise the Ops list is mutated as necessary. | 
|  | Value *Reassociate::OptimizeAdd(Instruction *I, | 
|  | SmallVectorImpl<ValueEntry> &Ops) { | 
|  | // Scan the operand lists looking for X and -X pairs.  If we find any, we | 
|  | // can simplify the expression. X+-X == 0.  While we're at it, scan for any | 
|  | // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. | 
|  | // | 
|  | // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1". | 
|  | // | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) { | 
|  | Value *TheOp = Ops[i].Op; | 
|  | // Check to see if we've seen this operand before.  If so, we factor all | 
|  | // instances of the operand together.  Due to our sorting criteria, we know | 
|  | // that these need to be next to each other in the vector. | 
|  | if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { | 
|  | // Rescan the list, remove all instances of this operand from the expr. | 
|  | unsigned NumFound = 0; | 
|  | do { | 
|  | Ops.erase(Ops.begin()+i); | 
|  | ++NumFound; | 
|  | } while (i != Ops.size() && Ops[i].Op == TheOp); | 
|  |  | 
|  | DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n'); | 
|  | ++NumFactor; | 
|  |  | 
|  | // Insert a new multiply. | 
|  | Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound); | 
|  | Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I); | 
|  |  | 
|  | // Now that we have inserted a multiply, optimize it. This allows us to | 
|  | // handle cases that require multiple factoring steps, such as this: | 
|  | // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 | 
|  | RedoInsts.insert(cast<Instruction>(Mul)); | 
|  |  | 
|  | // If every add operand was a duplicate, return the multiply. | 
|  | if (Ops.empty()) | 
|  | return Mul; | 
|  |  | 
|  | // Otherwise, we had some input that didn't have the dupe, such as | 
|  | // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of | 
|  | // things being added by this operation. | 
|  | Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); | 
|  |  | 
|  | --i; | 
|  | e = Ops.size(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check for X and -X in the operand list. | 
|  | if (!BinaryOperator::isNeg(TheOp)) | 
|  | continue; | 
|  |  | 
|  | Value *X = BinaryOperator::getNegArgument(TheOp); | 
|  | unsigned FoundX = FindInOperandList(Ops, i, X); | 
|  | if (FoundX == i) | 
|  | continue; | 
|  |  | 
|  | // Remove X and -X from the operand list. | 
|  | if (Ops.size() == 2) | 
|  | return Constant::getNullValue(X->getType()); | 
|  |  | 
|  | Ops.erase(Ops.begin()+i); | 
|  | if (i < FoundX) | 
|  | --FoundX; | 
|  | else | 
|  | --i;   // Need to back up an extra one. | 
|  | Ops.erase(Ops.begin()+FoundX); | 
|  | ++NumAnnihil; | 
|  | --i;     // Revisit element. | 
|  | e -= 2;  // Removed two elements. | 
|  | } | 
|  |  | 
|  | // Scan the operand list, checking to see if there are any common factors | 
|  | // between operands.  Consider something like A*A+A*B*C+D.  We would like to | 
|  | // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. | 
|  | // To efficiently find this, we count the number of times a factor occurs | 
|  | // for any ADD operands that are MULs. | 
|  | DenseMap<Value*, unsigned> FactorOccurrences; | 
|  |  | 
|  | // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) | 
|  | // where they are actually the same multiply. | 
|  | unsigned MaxOcc = 0; | 
|  | Value *MaxOccVal = 0; | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) { | 
|  | BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul); | 
|  | if (!BOp) | 
|  | continue; | 
|  |  | 
|  | // Compute all of the factors of this added value. | 
|  | SmallVector<Value*, 8> Factors; | 
|  | FindSingleUseMultiplyFactors(BOp, Factors, Ops); | 
|  | assert(Factors.size() > 1 && "Bad linearize!"); | 
|  |  | 
|  | // Add one to FactorOccurrences for each unique factor in this op. | 
|  | SmallPtrSet<Value*, 8> Duplicates; | 
|  | for (unsigned i = 0, e = Factors.size(); i != e; ++i) { | 
|  | Value *Factor = Factors[i]; | 
|  | if (!Duplicates.insert(Factor)) continue; | 
|  |  | 
|  | unsigned Occ = ++FactorOccurrences[Factor]; | 
|  | if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; } | 
|  |  | 
|  | // If Factor is a negative constant, add the negated value as a factor | 
|  | // because we can percolate the negate out.  Watch for minint, which | 
|  | // cannot be positivified. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) | 
|  | if (CI->isNegative() && !CI->isMinValue(true)) { | 
|  | Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); | 
|  | assert(!Duplicates.count(Factor) && | 
|  | "Shouldn't have two constant factors, missed a canonicalize"); | 
|  |  | 
|  | unsigned Occ = ++FactorOccurrences[Factor]; | 
|  | if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If any factor occurred more than one time, we can pull it out. | 
|  | if (MaxOcc > 1) { | 
|  | DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n'); | 
|  | ++NumFactor; | 
|  |  | 
|  | // Create a new instruction that uses the MaxOccVal twice.  If we don't do | 
|  | // this, we could otherwise run into situations where removing a factor | 
|  | // from an expression will drop a use of maxocc, and this can cause | 
|  | // RemoveFactorFromExpression on successive values to behave differently. | 
|  | Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal); | 
|  | SmallVector<WeakVH, 4> NewMulOps; | 
|  | for (unsigned i = 0; i != Ops.size(); ++i) { | 
|  | // Only try to remove factors from expressions we're allowed to. | 
|  | BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul); | 
|  | if (!BOp) | 
|  | continue; | 
|  |  | 
|  | if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { | 
|  | // The factorized operand may occur several times.  Convert them all in | 
|  | // one fell swoop. | 
|  | for (unsigned j = Ops.size(); j != i;) { | 
|  | --j; | 
|  | if (Ops[j].Op == Ops[i].Op) { | 
|  | NewMulOps.push_back(V); | 
|  | Ops.erase(Ops.begin()+j); | 
|  | } | 
|  | } | 
|  | --i; | 
|  | } | 
|  | } | 
|  |  | 
|  | // No need for extra uses anymore. | 
|  | delete DummyInst; | 
|  |  | 
|  | unsigned NumAddedValues = NewMulOps.size(); | 
|  | Value *V = EmitAddTreeOfValues(I, NewMulOps); | 
|  |  | 
|  | // Now that we have inserted the add tree, optimize it. This allows us to | 
|  | // handle cases that require multiple factoring steps, such as this: | 
|  | // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C)) | 
|  | assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); | 
|  | (void)NumAddedValues; | 
|  | if (Instruction *VI = dyn_cast<Instruction>(V)) | 
|  | RedoInsts.insert(VI); | 
|  |  | 
|  | // Create the multiply. | 
|  | Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I); | 
|  |  | 
|  | // Rerun associate on the multiply in case the inner expression turned into | 
|  | // a multiply.  We want to make sure that we keep things in canonical form. | 
|  | RedoInsts.insert(V2); | 
|  |  | 
|  | // If every add operand included the factor (e.g. "A*B + A*C"), then the | 
|  | // entire result expression is just the multiply "A*(B+C)". | 
|  | if (Ops.empty()) | 
|  | return V2; | 
|  |  | 
|  | // Otherwise, we had some input that didn't have the factor, such as | 
|  | // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of | 
|  | // things being added by this operation. | 
|  | Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// \brief Predicate tests whether a ValueEntry's op is in a map. | 
|  | struct IsValueInMap { | 
|  | const DenseMap<Value *, unsigned> ⤅ | 
|  |  | 
|  | IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {} | 
|  |  | 
|  | bool operator()(const ValueEntry &Entry) { | 
|  | return Map.find(Entry.Op) != Map.end(); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// \brief Build up a vector of value/power pairs factoring a product. | 
|  | /// | 
|  | /// Given a series of multiplication operands, build a vector of factors and | 
|  | /// the powers each is raised to when forming the final product. Sort them in | 
|  | /// the order of descending power. | 
|  | /// | 
|  | ///      (x*x)          -> [(x, 2)] | 
|  | ///     ((x*x)*x)       -> [(x, 3)] | 
|  | ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] | 
|  | /// | 
|  | /// \returns Whether any factors have a power greater than one. | 
|  | bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, | 
|  | SmallVectorImpl<Factor> &Factors) { | 
|  | // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. | 
|  | // Compute the sum of powers of simplifiable factors. | 
|  | unsigned FactorPowerSum = 0; | 
|  | for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { | 
|  | Value *Op = Ops[Idx-1].Op; | 
|  |  | 
|  | // Count the number of occurrences of this value. | 
|  | unsigned Count = 1; | 
|  | for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) | 
|  | ++Count; | 
|  | // Track for simplification all factors which occur 2 or more times. | 
|  | if (Count > 1) | 
|  | FactorPowerSum += Count; | 
|  | } | 
|  |  | 
|  | // We can only simplify factors if the sum of the powers of our simplifiable | 
|  | // factors is 4 or higher. When that is the case, we will *always* have | 
|  | // a simplification. This is an important invariant to prevent cyclicly | 
|  | // trying to simplify already minimal formations. | 
|  | if (FactorPowerSum < 4) | 
|  | return false; | 
|  |  | 
|  | // Now gather the simplifiable factors, removing them from Ops. | 
|  | FactorPowerSum = 0; | 
|  | for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { | 
|  | Value *Op = Ops[Idx-1].Op; | 
|  |  | 
|  | // Count the number of occurrences of this value. | 
|  | unsigned Count = 1; | 
|  | for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) | 
|  | ++Count; | 
|  | if (Count == 1) | 
|  | continue; | 
|  | // Move an even number of occurrences to Factors. | 
|  | Count &= ~1U; | 
|  | Idx -= Count; | 
|  | FactorPowerSum += Count; | 
|  | Factors.push_back(Factor(Op, Count)); | 
|  | Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); | 
|  | } | 
|  |  | 
|  | // None of the adjustments above should have reduced the sum of factor powers | 
|  | // below our mininum of '4'. | 
|  | assert(FactorPowerSum >= 4); | 
|  |  | 
|  | std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Build a tree of multiplies, computing the product of Ops. | 
|  | static Value *buildMultiplyTree(IRBuilder<> &Builder, | 
|  | SmallVectorImpl<Value*> &Ops) { | 
|  | if (Ops.size() == 1) | 
|  | return Ops.back(); | 
|  |  | 
|  | Value *LHS = Ops.pop_back_val(); | 
|  | do { | 
|  | LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); | 
|  | } while (!Ops.empty()); | 
|  |  | 
|  | return LHS; | 
|  | } | 
|  |  | 
|  | /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... | 
|  | /// | 
|  | /// Given a vector of values raised to various powers, where no two values are | 
|  | /// equal and the powers are sorted in decreasing order, compute the minimal | 
|  | /// DAG of multiplies to compute the final product, and return that product | 
|  | /// value. | 
|  | Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder, | 
|  | SmallVectorImpl<Factor> &Factors) { | 
|  | assert(Factors[0].Power); | 
|  | SmallVector<Value *, 4> OuterProduct; | 
|  | for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); | 
|  | Idx < Size && Factors[Idx].Power > 0; ++Idx) { | 
|  | if (Factors[Idx].Power != Factors[LastIdx].Power) { | 
|  | LastIdx = Idx; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We want to multiply across all the factors with the same power so that | 
|  | // we can raise them to that power as a single entity. Build a mini tree | 
|  | // for that. | 
|  | SmallVector<Value *, 4> InnerProduct; | 
|  | InnerProduct.push_back(Factors[LastIdx].Base); | 
|  | do { | 
|  | InnerProduct.push_back(Factors[Idx].Base); | 
|  | ++Idx; | 
|  | } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); | 
|  |  | 
|  | // Reset the base value of the first factor to the new expression tree. | 
|  | // We'll remove all the factors with the same power in a second pass. | 
|  | Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); | 
|  | if (Instruction *MI = dyn_cast<Instruction>(M)) | 
|  | RedoInsts.insert(MI); | 
|  |  | 
|  | LastIdx = Idx; | 
|  | } | 
|  | // Unique factors with equal powers -- we've folded them into the first one's | 
|  | // base. | 
|  | Factors.erase(std::unique(Factors.begin(), Factors.end(), | 
|  | Factor::PowerEqual()), | 
|  | Factors.end()); | 
|  |  | 
|  | // Iteratively collect the base of each factor with an add power into the | 
|  | // outer product, and halve each power in preparation for squaring the | 
|  | // expression. | 
|  | for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { | 
|  | if (Factors[Idx].Power & 1) | 
|  | OuterProduct.push_back(Factors[Idx].Base); | 
|  | Factors[Idx].Power >>= 1; | 
|  | } | 
|  | if (Factors[0].Power) { | 
|  | Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); | 
|  | OuterProduct.push_back(SquareRoot); | 
|  | OuterProduct.push_back(SquareRoot); | 
|  | } | 
|  | if (OuterProduct.size() == 1) | 
|  | return OuterProduct.front(); | 
|  |  | 
|  | Value *V = buildMultiplyTree(Builder, OuterProduct); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | Value *Reassociate::OptimizeMul(BinaryOperator *I, | 
|  | SmallVectorImpl<ValueEntry> &Ops) { | 
|  | // We can only optimize the multiplies when there is a chain of more than | 
|  | // three, such that a balanced tree might require fewer total multiplies. | 
|  | if (Ops.size() < 4) | 
|  | return 0; | 
|  |  | 
|  | // Try to turn linear trees of multiplies without other uses of the | 
|  | // intermediate stages into minimal multiply DAGs with perfect sub-expression | 
|  | // re-use. | 
|  | SmallVector<Factor, 4> Factors; | 
|  | if (!collectMultiplyFactors(Ops, Factors)) | 
|  | return 0; // All distinct factors, so nothing left for us to do. | 
|  |  | 
|  | IRBuilder<> Builder(I); | 
|  | Value *V = buildMinimalMultiplyDAG(Builder, Factors); | 
|  | if (Ops.empty()) | 
|  | return V; | 
|  |  | 
|  | ValueEntry NewEntry = ValueEntry(getRank(V), V); | 
|  | Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Value *Reassociate::OptimizeExpression(BinaryOperator *I, | 
|  | SmallVectorImpl<ValueEntry> &Ops) { | 
|  | // Now that we have the linearized expression tree, try to optimize it. | 
|  | // Start by folding any constants that we found. | 
|  | Constant *Cst = 0; | 
|  | unsigned Opcode = I->getOpcode(); | 
|  | while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { | 
|  | Constant *C = cast<Constant>(Ops.pop_back_val().Op); | 
|  | Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; | 
|  | } | 
|  | // If there was nothing but constants then we are done. | 
|  | if (Ops.empty()) | 
|  | return Cst; | 
|  |  | 
|  | // Put the combined constant back at the end of the operand list, except if | 
|  | // there is no point.  For example, an add of 0 gets dropped here, while a | 
|  | // multiplication by zero turns the whole expression into zero. | 
|  | if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { | 
|  | if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) | 
|  | return Cst; | 
|  | Ops.push_back(ValueEntry(0, Cst)); | 
|  | } | 
|  |  | 
|  | if (Ops.size() == 1) return Ops[0].Op; | 
|  |  | 
|  | // Handle destructive annihilation due to identities between elements in the | 
|  | // argument list here. | 
|  | unsigned NumOps = Ops.size(); | 
|  | switch (Opcode) { | 
|  | default: break; | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) | 
|  | return Result; | 
|  | break; | 
|  |  | 
|  | case Instruction::Xor: | 
|  | if (Value *Result = OptimizeXor(I, Ops)) | 
|  | return Result; | 
|  | break; | 
|  |  | 
|  | case Instruction::Add: | 
|  | if (Value *Result = OptimizeAdd(I, Ops)) | 
|  | return Result; | 
|  | break; | 
|  |  | 
|  | case Instruction::Mul: | 
|  | if (Value *Result = OptimizeMul(I, Ops)) | 
|  | return Result; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (Ops.size() != NumOps) | 
|  | return OptimizeExpression(I, Ops); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// EraseInst - Zap the given instruction, adding interesting operands to the | 
|  | /// work list. | 
|  | void Reassociate::EraseInst(Instruction *I) { | 
|  | assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); | 
|  | SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); | 
|  | // Erase the dead instruction. | 
|  | ValueRankMap.erase(I); | 
|  | RedoInsts.remove(I); | 
|  | I->eraseFromParent(); | 
|  | // Optimize its operands. | 
|  | SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
|  | if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { | 
|  | // If this is a node in an expression tree, climb to the expression root | 
|  | // and add that since that's where optimization actually happens. | 
|  | unsigned Opcode = Op->getOpcode(); | 
|  | while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode && | 
|  | Visited.insert(Op)) | 
|  | Op = Op->use_back(); | 
|  | RedoInsts.insert(Op); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing | 
|  | /// instructions is not allowed. | 
|  | void Reassociate::OptimizeInst(Instruction *I) { | 
|  | // Only consider operations that we understand. | 
|  | if (!isa<BinaryOperator>(I)) | 
|  | return; | 
|  |  | 
|  | if (I->getOpcode() == Instruction::Shl && | 
|  | isa<ConstantInt>(I->getOperand(1))) | 
|  | // If an operand of this shift is a reassociable multiply, or if the shift | 
|  | // is used by a reassociable multiply or add, turn into a multiply. | 
|  | if (isReassociableOp(I->getOperand(0), Instruction::Mul) || | 
|  | (I->hasOneUse() && | 
|  | (isReassociableOp(I->use_back(), Instruction::Mul) || | 
|  | isReassociableOp(I->use_back(), Instruction::Add)))) { | 
|  | Instruction *NI = ConvertShiftToMul(I); | 
|  | RedoInsts.insert(I); | 
|  | MadeChange = true; | 
|  | I = NI; | 
|  | } | 
|  |  | 
|  | // Floating point binary operators are not associative, but we can still | 
|  | // commute (some) of them, to canonicalize the order of their operands. | 
|  | // This can potentially expose more CSE opportunities, and makes writing | 
|  | // other transformations simpler. | 
|  | if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) { | 
|  | // FAdd and FMul can be commuted. | 
|  | if (I->getOpcode() != Instruction::FMul && | 
|  | I->getOpcode() != Instruction::FAdd) | 
|  | return; | 
|  |  | 
|  | Value *LHS = I->getOperand(0); | 
|  | Value *RHS = I->getOperand(1); | 
|  | unsigned LHSRank = getRank(LHS); | 
|  | unsigned RHSRank = getRank(RHS); | 
|  |  | 
|  | // Sort the operands by rank. | 
|  | if (RHSRank < LHSRank) { | 
|  | I->setOperand(0, RHS); | 
|  | I->setOperand(1, LHS); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Do not reassociate boolean (i1) expressions.  We want to preserve the | 
|  | // original order of evaluation for short-circuited comparisons that | 
|  | // SimplifyCFG has folded to AND/OR expressions.  If the expression | 
|  | // is not further optimized, it is likely to be transformed back to a | 
|  | // short-circuited form for code gen, and the source order may have been | 
|  | // optimized for the most likely conditions. | 
|  | if (I->getType()->isIntegerTy(1)) | 
|  | return; | 
|  |  | 
|  | // If this is a subtract instruction which is not already in negate form, | 
|  | // see if we can convert it to X+-Y. | 
|  | if (I->getOpcode() == Instruction::Sub) { | 
|  | if (ShouldBreakUpSubtract(I)) { | 
|  | Instruction *NI = BreakUpSubtract(I); | 
|  | RedoInsts.insert(I); | 
|  | MadeChange = true; | 
|  | I = NI; | 
|  | } else if (BinaryOperator::isNeg(I)) { | 
|  | // Otherwise, this is a negation.  See if the operand is a multiply tree | 
|  | // and if this is not an inner node of a multiply tree. | 
|  | if (isReassociableOp(I->getOperand(1), Instruction::Mul) && | 
|  | (!I->hasOneUse() || | 
|  | !isReassociableOp(I->use_back(), Instruction::Mul))) { | 
|  | Instruction *NI = LowerNegateToMultiply(I); | 
|  | RedoInsts.insert(I); | 
|  | MadeChange = true; | 
|  | I = NI; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this instruction is an associative binary operator, process it. | 
|  | if (!I->isAssociative()) return; | 
|  | BinaryOperator *BO = cast<BinaryOperator>(I); | 
|  |  | 
|  | // If this is an interior node of a reassociable tree, ignore it until we | 
|  | // get to the root of the tree, to avoid N^2 analysis. | 
|  | unsigned Opcode = BO->getOpcode(); | 
|  | if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode) | 
|  | return; | 
|  |  | 
|  | // If this is an add tree that is used by a sub instruction, ignore it | 
|  | // until we process the subtract. | 
|  | if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && | 
|  | cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub) | 
|  | return; | 
|  |  | 
|  | ReassociateExpression(BO); | 
|  | } | 
|  |  | 
|  | void Reassociate::ReassociateExpression(BinaryOperator *I) { | 
|  |  | 
|  | // First, walk the expression tree, linearizing the tree, collecting the | 
|  | // operand information. | 
|  | SmallVector<RepeatedValue, 8> Tree; | 
|  | MadeChange |= LinearizeExprTree(I, Tree); | 
|  | SmallVector<ValueEntry, 8> Ops; | 
|  | Ops.reserve(Tree.size()); | 
|  | for (unsigned i = 0, e = Tree.size(); i != e; ++i) { | 
|  | RepeatedValue E = Tree[i]; | 
|  | Ops.append(E.second.getZExtValue(), | 
|  | ValueEntry(getRank(E.first), E.first)); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); | 
|  |  | 
|  | // Now that we have linearized the tree to a list and have gathered all of | 
|  | // the operands and their ranks, sort the operands by their rank.  Use a | 
|  | // stable_sort so that values with equal ranks will have their relative | 
|  | // positions maintained (and so the compiler is deterministic).  Note that | 
|  | // this sorts so that the highest ranking values end up at the beginning of | 
|  | // the vector. | 
|  | std::stable_sort(Ops.begin(), Ops.end()); | 
|  |  | 
|  | // OptimizeExpression - Now that we have the expression tree in a convenient | 
|  | // sorted form, optimize it globally if possible. | 
|  | if (Value *V = OptimizeExpression(I, Ops)) { | 
|  | if (V == I) | 
|  | // Self-referential expression in unreachable code. | 
|  | return; | 
|  | // This expression tree simplified to something that isn't a tree, | 
|  | // eliminate it. | 
|  | DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); | 
|  | I->replaceAllUsesWith(V); | 
|  | if (Instruction *VI = dyn_cast<Instruction>(V)) | 
|  | VI->setDebugLoc(I->getDebugLoc()); | 
|  | RedoInsts.insert(I); | 
|  | ++NumAnnihil; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // We want to sink immediates as deeply as possible except in the case where | 
|  | // this is a multiply tree used only by an add, and the immediate is a -1. | 
|  | // In this case we reassociate to put the negation on the outside so that we | 
|  | // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y | 
|  | if (I->getOpcode() == Instruction::Mul && I->hasOneUse() && | 
|  | cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add && | 
|  | isa<ConstantInt>(Ops.back().Op) && | 
|  | cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) { | 
|  | ValueEntry Tmp = Ops.pop_back_val(); | 
|  | Ops.insert(Ops.begin(), Tmp); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); | 
|  |  | 
|  | if (Ops.size() == 1) { | 
|  | if (Ops[0].Op == I) | 
|  | // Self-referential expression in unreachable code. | 
|  | return; | 
|  |  | 
|  | // This expression tree simplified to something that isn't a tree, | 
|  | // eliminate it. | 
|  | I->replaceAllUsesWith(Ops[0].Op); | 
|  | if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) | 
|  | OI->setDebugLoc(I->getDebugLoc()); | 
|  | RedoInsts.insert(I); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Now that we ordered and optimized the expressions, splat them back into | 
|  | // the expression tree, removing any unneeded nodes. | 
|  | RewriteExprTree(I, Ops); | 
|  | } | 
|  |  | 
|  | bool Reassociate::runOnFunction(Function &F) { | 
|  | // Calculate the rank map for F | 
|  | BuildRankMap(F); | 
|  |  | 
|  | MadeChange = false; | 
|  | for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { | 
|  | // Optimize every instruction in the basic block. | 
|  | for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; ) | 
|  | if (isInstructionTriviallyDead(II)) { | 
|  | EraseInst(II++); | 
|  | } else { | 
|  | OptimizeInst(II); | 
|  | assert(II->getParent() == BI && "Moved to a different block!"); | 
|  | ++II; | 
|  | } | 
|  |  | 
|  | // If this produced extra instructions to optimize, handle them now. | 
|  | while (!RedoInsts.empty()) { | 
|  | Instruction *I = RedoInsts.pop_back_val(); | 
|  | if (isInstructionTriviallyDead(I)) | 
|  | EraseInst(I); | 
|  | else | 
|  | OptimizeInst(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We are done with the rank map. | 
|  | RankMap.clear(); | 
|  | ValueRankMap.clear(); | 
|  |  | 
|  | return MadeChange; | 
|  | } |