|  | //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "MCTargetDesc/SystemZMCTargetDesc.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/MC/MCContext.h" | 
|  | #include "llvm/MC/MCExpr.h" | 
|  | #include "llvm/MC/MCInst.h" | 
|  | #include "llvm/MC/MCInstBuilder.h" | 
|  | #include "llvm/MC/MCParser/MCParsedAsmOperand.h" | 
|  | #include "llvm/MC/MCParser/MCTargetAsmParser.h" | 
|  | #include "llvm/MC/MCStreamer.h" | 
|  | #include "llvm/MC/MCSubtargetInfo.h" | 
|  | #include "llvm/Support/TargetRegistry.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | // Return true if Expr is in the range [MinValue, MaxValue]. | 
|  | static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) { | 
|  | if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { | 
|  | int64_t Value = CE->getValue(); | 
|  | return Value >= MinValue && Value <= MaxValue; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | enum RegisterKind { | 
|  | GR32Reg, | 
|  | GRH32Reg, | 
|  | GR64Reg, | 
|  | GR128Reg, | 
|  | ADDR32Reg, | 
|  | ADDR64Reg, | 
|  | FP32Reg, | 
|  | FP64Reg, | 
|  | FP128Reg, | 
|  | VR32Reg, | 
|  | VR64Reg, | 
|  | VR128Reg | 
|  | }; | 
|  |  | 
|  | enum MemoryKind { | 
|  | BDMem, | 
|  | BDXMem, | 
|  | BDLMem, | 
|  | BDRMem, | 
|  | BDVMem | 
|  | }; | 
|  |  | 
|  | class SystemZOperand : public MCParsedAsmOperand { | 
|  | public: | 
|  | private: | 
|  | enum OperandKind { | 
|  | KindInvalid, | 
|  | KindToken, | 
|  | KindReg, | 
|  | KindAccessReg, | 
|  | KindImm, | 
|  | KindImmTLS, | 
|  | KindMem | 
|  | }; | 
|  |  | 
|  | OperandKind Kind; | 
|  | SMLoc StartLoc, EndLoc; | 
|  |  | 
|  | // A string of length Length, starting at Data. | 
|  | struct TokenOp { | 
|  | const char *Data; | 
|  | unsigned Length; | 
|  | }; | 
|  |  | 
|  | // LLVM register Num, which has kind Kind.  In some ways it might be | 
|  | // easier for this class to have a register bank (general, floating-point | 
|  | // or access) and a raw register number (0-15).  This would postpone the | 
|  | // interpretation of the operand to the add*() methods and avoid the need | 
|  | // for context-dependent parsing.  However, we do things the current way | 
|  | // because of the virtual getReg() method, which needs to distinguish | 
|  | // between (say) %r0 used as a single register and %r0 used as a pair. | 
|  | // Context-dependent parsing can also give us slightly better error | 
|  | // messages when invalid pairs like %r1 are used. | 
|  | struct RegOp { | 
|  | RegisterKind Kind; | 
|  | unsigned Num; | 
|  | }; | 
|  |  | 
|  | // Base + Disp + Index, where Base and Index are LLVM registers or 0. | 
|  | // MemKind says what type of memory this is and RegKind says what type | 
|  | // the base register has (ADDR32Reg or ADDR64Reg).  Length is the operand | 
|  | // length for D(L,B)-style operands, otherwise it is null. | 
|  | struct MemOp { | 
|  | unsigned Base : 12; | 
|  | unsigned Index : 12; | 
|  | unsigned MemKind : 4; | 
|  | unsigned RegKind : 4; | 
|  | const MCExpr *Disp; | 
|  | union { | 
|  | const MCExpr *Imm; | 
|  | unsigned Reg; | 
|  | } Length; | 
|  | }; | 
|  |  | 
|  | // Imm is an immediate operand, and Sym is an optional TLS symbol | 
|  | // for use with a __tls_get_offset marker relocation. | 
|  | struct ImmTLSOp { | 
|  | const MCExpr *Imm; | 
|  | const MCExpr *Sym; | 
|  | }; | 
|  |  | 
|  | union { | 
|  | TokenOp Token; | 
|  | RegOp Reg; | 
|  | unsigned AccessReg; | 
|  | const MCExpr *Imm; | 
|  | ImmTLSOp ImmTLS; | 
|  | MemOp Mem; | 
|  | }; | 
|  |  | 
|  | void addExpr(MCInst &Inst, const MCExpr *Expr) const { | 
|  | // Add as immediates when possible.  Null MCExpr = 0. | 
|  | if (!Expr) | 
|  | Inst.addOperand(MCOperand::createImm(0)); | 
|  | else if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) | 
|  | Inst.addOperand(MCOperand::createImm(CE->getValue())); | 
|  | else | 
|  | Inst.addOperand(MCOperand::createExpr(Expr)); | 
|  | } | 
|  |  | 
|  | public: | 
|  | SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc) | 
|  | : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {} | 
|  |  | 
|  | // Create particular kinds of operand. | 
|  | static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc, | 
|  | SMLoc EndLoc) { | 
|  | return make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc); | 
|  | } | 
|  | static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) { | 
|  | auto Op = make_unique<SystemZOperand>(KindToken, Loc, Loc); | 
|  | Op->Token.Data = Str.data(); | 
|  | Op->Token.Length = Str.size(); | 
|  | return Op; | 
|  | } | 
|  | static std::unique_ptr<SystemZOperand> | 
|  | createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { | 
|  | auto Op = make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc); | 
|  | Op->Reg.Kind = Kind; | 
|  | Op->Reg.Num = Num; | 
|  | return Op; | 
|  | } | 
|  | static std::unique_ptr<SystemZOperand> | 
|  | createAccessReg(unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { | 
|  | auto Op = make_unique<SystemZOperand>(KindAccessReg, StartLoc, EndLoc); | 
|  | Op->AccessReg = Num; | 
|  | return Op; | 
|  | } | 
|  | static std::unique_ptr<SystemZOperand> | 
|  | createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { | 
|  | auto Op = make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc); | 
|  | Op->Imm = Expr; | 
|  | return Op; | 
|  | } | 
|  | static std::unique_ptr<SystemZOperand> | 
|  | createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base, | 
|  | const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm, | 
|  | unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) { | 
|  | auto Op = make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc); | 
|  | Op->Mem.MemKind = MemKind; | 
|  | Op->Mem.RegKind = RegKind; | 
|  | Op->Mem.Base = Base; | 
|  | Op->Mem.Index = Index; | 
|  | Op->Mem.Disp = Disp; | 
|  | if (MemKind == BDLMem) | 
|  | Op->Mem.Length.Imm = LengthImm; | 
|  | if (MemKind == BDRMem) | 
|  | Op->Mem.Length.Reg = LengthReg; | 
|  | return Op; | 
|  | } | 
|  | static std::unique_ptr<SystemZOperand> | 
|  | createImmTLS(const MCExpr *Imm, const MCExpr *Sym, | 
|  | SMLoc StartLoc, SMLoc EndLoc) { | 
|  | auto Op = make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc); | 
|  | Op->ImmTLS.Imm = Imm; | 
|  | Op->ImmTLS.Sym = Sym; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | // Token operands | 
|  | bool isToken() const override { | 
|  | return Kind == KindToken; | 
|  | } | 
|  | StringRef getToken() const { | 
|  | assert(Kind == KindToken && "Not a token"); | 
|  | return StringRef(Token.Data, Token.Length); | 
|  | } | 
|  |  | 
|  | // Register operands. | 
|  | bool isReg() const override { | 
|  | return Kind == KindReg; | 
|  | } | 
|  | bool isReg(RegisterKind RegKind) const { | 
|  | return Kind == KindReg && Reg.Kind == RegKind; | 
|  | } | 
|  | unsigned getReg() const override { | 
|  | assert(Kind == KindReg && "Not a register"); | 
|  | return Reg.Num; | 
|  | } | 
|  |  | 
|  | // Access register operands.  Access registers aren't exposed to LLVM | 
|  | // as registers. | 
|  | bool isAccessReg() const { | 
|  | return Kind == KindAccessReg; | 
|  | } | 
|  |  | 
|  | // Immediate operands. | 
|  | bool isImm() const override { | 
|  | return Kind == KindImm; | 
|  | } | 
|  | bool isImm(int64_t MinValue, int64_t MaxValue) const { | 
|  | return Kind == KindImm && inRange(Imm, MinValue, MaxValue); | 
|  | } | 
|  | const MCExpr *getImm() const { | 
|  | assert(Kind == KindImm && "Not an immediate"); | 
|  | return Imm; | 
|  | } | 
|  |  | 
|  | // Immediate operands with optional TLS symbol. | 
|  | bool isImmTLS() const { | 
|  | return Kind == KindImmTLS; | 
|  | } | 
|  |  | 
|  | // Memory operands. | 
|  | bool isMem() const override { | 
|  | return Kind == KindMem; | 
|  | } | 
|  | bool isMem(MemoryKind MemKind) const { | 
|  | return (Kind == KindMem && | 
|  | (Mem.MemKind == MemKind || | 
|  | // A BDMem can be treated as a BDXMem in which the index | 
|  | // register field is 0. | 
|  | (Mem.MemKind == BDMem && MemKind == BDXMem))); | 
|  | } | 
|  | bool isMem(MemoryKind MemKind, RegisterKind RegKind) const { | 
|  | return isMem(MemKind) && Mem.RegKind == RegKind; | 
|  | } | 
|  | bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const { | 
|  | return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff); | 
|  | } | 
|  | bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const { | 
|  | return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287); | 
|  | } | 
|  | bool isMemDisp12Len8(RegisterKind RegKind) const { | 
|  | return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100); | 
|  | } | 
|  |  | 
|  | // Override MCParsedAsmOperand. | 
|  | SMLoc getStartLoc() const override { return StartLoc; } | 
|  | SMLoc getEndLoc() const override { return EndLoc; } | 
|  | void print(raw_ostream &OS) const override; | 
|  |  | 
|  | // Used by the TableGen code to add particular types of operand | 
|  | // to an instruction. | 
|  | void addRegOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands"); | 
|  | Inst.addOperand(MCOperand::createReg(getReg())); | 
|  | } | 
|  | void addAccessRegOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands"); | 
|  | assert(Kind == KindAccessReg && "Invalid operand type"); | 
|  | Inst.addOperand(MCOperand::createImm(AccessReg)); | 
|  | } | 
|  | void addImmOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 1 && "Invalid number of operands"); | 
|  | addExpr(Inst, getImm()); | 
|  | } | 
|  | void addBDAddrOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 2 && "Invalid number of operands"); | 
|  | assert(isMem(BDMem) && "Invalid operand type"); | 
|  | Inst.addOperand(MCOperand::createReg(Mem.Base)); | 
|  | addExpr(Inst, Mem.Disp); | 
|  | } | 
|  | void addBDXAddrOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 3 && "Invalid number of operands"); | 
|  | assert(isMem(BDXMem) && "Invalid operand type"); | 
|  | Inst.addOperand(MCOperand::createReg(Mem.Base)); | 
|  | addExpr(Inst, Mem.Disp); | 
|  | Inst.addOperand(MCOperand::createReg(Mem.Index)); | 
|  | } | 
|  | void addBDLAddrOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 3 && "Invalid number of operands"); | 
|  | assert(isMem(BDLMem) && "Invalid operand type"); | 
|  | Inst.addOperand(MCOperand::createReg(Mem.Base)); | 
|  | addExpr(Inst, Mem.Disp); | 
|  | addExpr(Inst, Mem.Length.Imm); | 
|  | } | 
|  | void addBDRAddrOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 3 && "Invalid number of operands"); | 
|  | assert(isMem(BDRMem) && "Invalid operand type"); | 
|  | Inst.addOperand(MCOperand::createReg(Mem.Base)); | 
|  | addExpr(Inst, Mem.Disp); | 
|  | Inst.addOperand(MCOperand::createReg(Mem.Length.Reg)); | 
|  | } | 
|  | void addBDVAddrOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 3 && "Invalid number of operands"); | 
|  | assert(isMem(BDVMem) && "Invalid operand type"); | 
|  | Inst.addOperand(MCOperand::createReg(Mem.Base)); | 
|  | addExpr(Inst, Mem.Disp); | 
|  | Inst.addOperand(MCOperand::createReg(Mem.Index)); | 
|  | } | 
|  | void addImmTLSOperands(MCInst &Inst, unsigned N) const { | 
|  | assert(N == 2 && "Invalid number of operands"); | 
|  | assert(Kind == KindImmTLS && "Invalid operand type"); | 
|  | addExpr(Inst, ImmTLS.Imm); | 
|  | if (ImmTLS.Sym) | 
|  | addExpr(Inst, ImmTLS.Sym); | 
|  | } | 
|  |  | 
|  | // Used by the TableGen code to check for particular operand types. | 
|  | bool isGR32() const { return isReg(GR32Reg); } | 
|  | bool isGRH32() const { return isReg(GRH32Reg); } | 
|  | bool isGRX32() const { return false; } | 
|  | bool isGR64() const { return isReg(GR64Reg); } | 
|  | bool isGR128() const { return isReg(GR128Reg); } | 
|  | bool isADDR32() const { return isReg(ADDR32Reg); } | 
|  | bool isADDR64() const { return isReg(ADDR64Reg); } | 
|  | bool isADDR128() const { return false; } | 
|  | bool isFP32() const { return isReg(FP32Reg); } | 
|  | bool isFP64() const { return isReg(FP64Reg); } | 
|  | bool isFP128() const { return isReg(FP128Reg); } | 
|  | bool isVR32() const { return isReg(VR32Reg); } | 
|  | bool isVR64() const { return isReg(VR64Reg); } | 
|  | bool isVF128() const { return false; } | 
|  | bool isVR128() const { return isReg(VR128Reg); } | 
|  | bool isAnyReg() const { return (isReg() || isImm(0, 15)); } | 
|  | bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, ADDR32Reg); } | 
|  | bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, ADDR32Reg); } | 
|  | bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, ADDR64Reg); } | 
|  | bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, ADDR64Reg); } | 
|  | bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, ADDR64Reg); } | 
|  | bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, ADDR64Reg); } | 
|  | bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(ADDR64Reg); } | 
|  | bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, ADDR64Reg); } | 
|  | bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, ADDR64Reg); } | 
|  | bool isU1Imm() const { return isImm(0, 1); } | 
|  | bool isU2Imm() const { return isImm(0, 3); } | 
|  | bool isU3Imm() const { return isImm(0, 7); } | 
|  | bool isU4Imm() const { return isImm(0, 15); } | 
|  | bool isU6Imm() const { return isImm(0, 63); } | 
|  | bool isU8Imm() const { return isImm(0, 255); } | 
|  | bool isS8Imm() const { return isImm(-128, 127); } | 
|  | bool isU12Imm() const { return isImm(0, 4095); } | 
|  | bool isU16Imm() const { return isImm(0, 65535); } | 
|  | bool isS16Imm() const { return isImm(-32768, 32767); } | 
|  | bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); } | 
|  | bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); } | 
|  | bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); } | 
|  | }; | 
|  |  | 
|  | class SystemZAsmParser : public MCTargetAsmParser { | 
|  | #define GET_ASSEMBLER_HEADER | 
|  | #include "SystemZGenAsmMatcher.inc" | 
|  |  | 
|  | private: | 
|  | MCAsmParser &Parser; | 
|  | enum RegisterGroup { | 
|  | RegGR, | 
|  | RegFP, | 
|  | RegV, | 
|  | RegAccess | 
|  | }; | 
|  | struct Register { | 
|  | RegisterGroup Group; | 
|  | unsigned Num; | 
|  | SMLoc StartLoc, EndLoc; | 
|  | }; | 
|  |  | 
|  | bool parseRegister(Register &Reg); | 
|  |  | 
|  | bool parseRegister(Register &Reg, RegisterGroup Group, const unsigned *Regs, | 
|  | bool IsAddress = false); | 
|  |  | 
|  | OperandMatchResultTy parseRegister(OperandVector &Operands, | 
|  | RegisterGroup Group, const unsigned *Regs, | 
|  | RegisterKind Kind); | 
|  |  | 
|  | OperandMatchResultTy parseAnyRegister(OperandVector &Operands); | 
|  |  | 
|  | bool parseAddress(bool &HaveReg1, Register &Reg1, | 
|  | bool &HaveReg2, Register &Reg2, | 
|  | const MCExpr *&Disp, const MCExpr *&Length); | 
|  | bool parseAddressRegister(Register &Reg); | 
|  |  | 
|  | bool ParseDirectiveInsn(SMLoc L); | 
|  |  | 
|  | OperandMatchResultTy parseAddress(OperandVector &Operands, | 
|  | MemoryKind MemKind, const unsigned *Regs, | 
|  | RegisterKind RegKind); | 
|  |  | 
|  | OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal, | 
|  | int64_t MaxVal, bool AllowTLS); | 
|  |  | 
|  | bool parseOperand(OperandVector &Operands, StringRef Mnemonic); | 
|  |  | 
|  | public: | 
|  | SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, | 
|  | const MCInstrInfo &MII, | 
|  | const MCTargetOptions &Options) | 
|  | : MCTargetAsmParser(Options, sti), Parser(parser) { | 
|  | MCAsmParserExtension::Initialize(Parser); | 
|  |  | 
|  | // Alias the .word directive to .short. | 
|  | parser.addAliasForDirective(".word", ".short"); | 
|  |  | 
|  | // Initialize the set of available features. | 
|  | setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); | 
|  | } | 
|  |  | 
|  | // Override MCTargetAsmParser. | 
|  | bool ParseDirective(AsmToken DirectiveID) override; | 
|  | bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; | 
|  | bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, | 
|  | SMLoc NameLoc, OperandVector &Operands) override; | 
|  | bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, | 
|  | OperandVector &Operands, MCStreamer &Out, | 
|  | uint64_t &ErrorInfo, | 
|  | bool MatchingInlineAsm) override; | 
|  |  | 
|  | // Used by the TableGen code to parse particular operand types. | 
|  | OperandMatchResultTy parseGR32(OperandVector &Operands) { | 
|  | return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, GR32Reg); | 
|  | } | 
|  | OperandMatchResultTy parseGRH32(OperandVector &Operands) { | 
|  | return parseRegister(Operands, RegGR, SystemZMC::GRH32Regs, GRH32Reg); | 
|  | } | 
|  | OperandMatchResultTy parseGRX32(OperandVector &Operands) { | 
|  | llvm_unreachable("GRX32 should only be used for pseudo instructions"); | 
|  | } | 
|  | OperandMatchResultTy parseGR64(OperandVector &Operands) { | 
|  | return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, GR64Reg); | 
|  | } | 
|  | OperandMatchResultTy parseGR128(OperandVector &Operands) { | 
|  | return parseRegister(Operands, RegGR, SystemZMC::GR128Regs, GR128Reg); | 
|  | } | 
|  | OperandMatchResultTy parseADDR32(OperandVector &Operands) { | 
|  | return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, ADDR32Reg); | 
|  | } | 
|  | OperandMatchResultTy parseADDR64(OperandVector &Operands) { | 
|  | return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, ADDR64Reg); | 
|  | } | 
|  | OperandMatchResultTy parseADDR128(OperandVector &Operands) { | 
|  | llvm_unreachable("Shouldn't be used as an operand"); | 
|  | } | 
|  | OperandMatchResultTy parseFP32(OperandVector &Operands) { | 
|  | return parseRegister(Operands, RegFP, SystemZMC::FP32Regs, FP32Reg); | 
|  | } | 
|  | OperandMatchResultTy parseFP64(OperandVector &Operands) { | 
|  | return parseRegister(Operands, RegFP, SystemZMC::FP64Regs, FP64Reg); | 
|  | } | 
|  | OperandMatchResultTy parseFP128(OperandVector &Operands) { | 
|  | return parseRegister(Operands, RegFP, SystemZMC::FP128Regs, FP128Reg); | 
|  | } | 
|  | OperandMatchResultTy parseVR32(OperandVector &Operands) { | 
|  | return parseRegister(Operands, RegV, SystemZMC::VR32Regs, VR32Reg); | 
|  | } | 
|  | OperandMatchResultTy parseVR64(OperandVector &Operands) { | 
|  | return parseRegister(Operands, RegV, SystemZMC::VR64Regs, VR64Reg); | 
|  | } | 
|  | OperandMatchResultTy parseVF128(OperandVector &Operands) { | 
|  | llvm_unreachable("Shouldn't be used as an operand"); | 
|  | } | 
|  | OperandMatchResultTy parseVR128(OperandVector &Operands) { | 
|  | return parseRegister(Operands, RegV, SystemZMC::VR128Regs, VR128Reg); | 
|  | } | 
|  | OperandMatchResultTy parseAnyReg(OperandVector &Operands) { | 
|  | return parseAnyRegister(Operands); | 
|  | } | 
|  | OperandMatchResultTy parseBDAddr32(OperandVector &Operands) { | 
|  | return parseAddress(Operands, BDMem, SystemZMC::GR32Regs, ADDR32Reg); | 
|  | } | 
|  | OperandMatchResultTy parseBDAddr64(OperandVector &Operands) { | 
|  | return parseAddress(Operands, BDMem, SystemZMC::GR64Regs, ADDR64Reg); | 
|  | } | 
|  | OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) { | 
|  | return parseAddress(Operands, BDXMem, SystemZMC::GR64Regs, ADDR64Reg); | 
|  | } | 
|  | OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) { | 
|  | return parseAddress(Operands, BDLMem, SystemZMC::GR64Regs, ADDR64Reg); | 
|  | } | 
|  | OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) { | 
|  | return parseAddress(Operands, BDRMem, SystemZMC::GR64Regs, ADDR64Reg); | 
|  | } | 
|  | OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) { | 
|  | return parseAddress(Operands, BDVMem, SystemZMC::GR64Regs, ADDR64Reg); | 
|  | } | 
|  | OperandMatchResultTy parseAccessReg(OperandVector &Operands); | 
|  | OperandMatchResultTy parsePCRel16(OperandVector &Operands) { | 
|  | return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false); | 
|  | } | 
|  | OperandMatchResultTy parsePCRel32(OperandVector &Operands) { | 
|  | return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false); | 
|  | } | 
|  | OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) { | 
|  | return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true); | 
|  | } | 
|  | OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) { | 
|  | return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true); | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | #define GET_REGISTER_MATCHER | 
|  | #define GET_SUBTARGET_FEATURE_NAME | 
|  | #define GET_MATCHER_IMPLEMENTATION | 
|  | #include "SystemZGenAsmMatcher.inc" | 
|  |  | 
|  | // Used for the .insn directives; contains information needed to parse the | 
|  | // operands in the directive. | 
|  | struct InsnMatchEntry { | 
|  | StringRef Format; | 
|  | uint64_t Opcode; | 
|  | int32_t NumOperands; | 
|  | MatchClassKind OperandKinds[5]; | 
|  | }; | 
|  |  | 
|  | // For equal_range comparison. | 
|  | struct CompareInsn { | 
|  | bool operator() (const InsnMatchEntry &LHS, StringRef RHS) { | 
|  | return LHS.Format < RHS; | 
|  | } | 
|  | bool operator() (StringRef LHS, const InsnMatchEntry &RHS) { | 
|  | return LHS < RHS.Format; | 
|  | } | 
|  | bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) { | 
|  | return LHS.Format < RHS.Format; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Table initializing information for parsing the .insn directive. | 
|  | static struct InsnMatchEntry InsnMatchTable[] = { | 
|  | /* Format, Opcode, NumOperands, OperandKinds */ | 
|  | { "e", SystemZ::InsnE, 1, | 
|  | { MCK_U16Imm } }, | 
|  | { "ri", SystemZ::InsnRI, 3, | 
|  | { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } }, | 
|  | { "rie", SystemZ::InsnRIE, 4, | 
|  | { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, | 
|  | { "ril", SystemZ::InsnRIL, 3, | 
|  | { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } }, | 
|  | { "rilu", SystemZ::InsnRILU, 3, | 
|  | { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } }, | 
|  | { "ris", SystemZ::InsnRIS, 5, | 
|  | { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } }, | 
|  | { "rr", SystemZ::InsnRR, 3, | 
|  | { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } }, | 
|  | { "rre", SystemZ::InsnRRE, 3, | 
|  | { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } }, | 
|  | { "rrf", SystemZ::InsnRRF, 5, | 
|  | { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } }, | 
|  | { "rrs", SystemZ::InsnRRS, 5, | 
|  | { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } }, | 
|  | { "rs", SystemZ::InsnRS, 4, | 
|  | { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, | 
|  | { "rse", SystemZ::InsnRSE, 4, | 
|  | { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, | 
|  | { "rsi", SystemZ::InsnRSI, 4, | 
|  | { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, | 
|  | { "rsy", SystemZ::InsnRSY, 4, | 
|  | { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } }, | 
|  | { "rx", SystemZ::InsnRX, 3, | 
|  | { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, | 
|  | { "rxe", SystemZ::InsnRXE, 3, | 
|  | { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, | 
|  | { "rxf", SystemZ::InsnRXF, 4, | 
|  | { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, | 
|  | { "rxy", SystemZ::InsnRXY, 3, | 
|  | { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } }, | 
|  | { "s", SystemZ::InsnS, 2, | 
|  | { MCK_U32Imm, MCK_BDAddr64Disp12 } }, | 
|  | { "si", SystemZ::InsnSI, 3, | 
|  | { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } }, | 
|  | { "sil", SystemZ::InsnSIL, 3, | 
|  | { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } }, | 
|  | { "siy", SystemZ::InsnSIY, 3, | 
|  | { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } }, | 
|  | { "ss", SystemZ::InsnSS, 4, | 
|  | { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, | 
|  | { "sse", SystemZ::InsnSSE, 3, | 
|  | { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } }, | 
|  | { "ssf", SystemZ::InsnSSF, 4, | 
|  | { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } } | 
|  | }; | 
|  |  | 
|  | void SystemZOperand::print(raw_ostream &OS) const { | 
|  | llvm_unreachable("Not implemented"); | 
|  | } | 
|  |  | 
|  | // Parse one register of the form %<prefix><number>. | 
|  | bool SystemZAsmParser::parseRegister(Register &Reg) { | 
|  | Reg.StartLoc = Parser.getTok().getLoc(); | 
|  |  | 
|  | // Eat the % prefix. | 
|  | if (Parser.getTok().isNot(AsmToken::Percent)) | 
|  | return Error(Parser.getTok().getLoc(), "register expected"); | 
|  | Parser.Lex(); | 
|  |  | 
|  | // Expect a register name. | 
|  | if (Parser.getTok().isNot(AsmToken::Identifier)) | 
|  | return Error(Reg.StartLoc, "invalid register"); | 
|  |  | 
|  | // Check that there's a prefix. | 
|  | StringRef Name = Parser.getTok().getString(); | 
|  | if (Name.size() < 2) | 
|  | return Error(Reg.StartLoc, "invalid register"); | 
|  | char Prefix = Name[0]; | 
|  |  | 
|  | // Treat the rest of the register name as a register number. | 
|  | if (Name.substr(1).getAsInteger(10, Reg.Num)) | 
|  | return Error(Reg.StartLoc, "invalid register"); | 
|  |  | 
|  | // Look for valid combinations of prefix and number. | 
|  | if (Prefix == 'r' && Reg.Num < 16) | 
|  | Reg.Group = RegGR; | 
|  | else if (Prefix == 'f' && Reg.Num < 16) | 
|  | Reg.Group = RegFP; | 
|  | else if (Prefix == 'v' && Reg.Num < 32) | 
|  | Reg.Group = RegV; | 
|  | else if (Prefix == 'a' && Reg.Num < 16) | 
|  | Reg.Group = RegAccess; | 
|  | else | 
|  | return Error(Reg.StartLoc, "invalid register"); | 
|  |  | 
|  | Reg.EndLoc = Parser.getTok().getLoc(); | 
|  | Parser.Lex(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Parse a register of group Group.  If Regs is nonnull, use it to map | 
|  | // the raw register number to LLVM numbering, with zero entries | 
|  | // indicating an invalid register.  IsAddress says whether the | 
|  | // register appears in an address context. Allow FP Group if expecting | 
|  | // RegV Group, since the f-prefix yields the FP group even while used | 
|  | // with vector instructions. | 
|  | bool SystemZAsmParser::parseRegister(Register &Reg, RegisterGroup Group, | 
|  | const unsigned *Regs, bool IsAddress) { | 
|  | if (parseRegister(Reg)) | 
|  | return true; | 
|  | if (Reg.Group != Group && !(Reg.Group == RegFP && Group == RegV)) | 
|  | return Error(Reg.StartLoc, "invalid operand for instruction"); | 
|  | if (Regs && Regs[Reg.Num] == 0) | 
|  | return Error(Reg.StartLoc, "invalid register pair"); | 
|  | if (Reg.Num == 0 && IsAddress) | 
|  | return Error(Reg.StartLoc, "%r0 used in an address"); | 
|  | if (Regs) | 
|  | Reg.Num = Regs[Reg.Num]; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Parse a register and add it to Operands.  The other arguments are as above. | 
|  | OperandMatchResultTy | 
|  | SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterGroup Group, | 
|  | const unsigned *Regs, RegisterKind Kind) { | 
|  | if (Parser.getTok().isNot(AsmToken::Percent)) | 
|  | return MatchOperand_NoMatch; | 
|  |  | 
|  | Register Reg; | 
|  | bool IsAddress = (Kind == ADDR32Reg || Kind == ADDR64Reg); | 
|  | if (parseRegister(Reg, Group, Regs, IsAddress)) | 
|  | return MatchOperand_ParseFail; | 
|  |  | 
|  | Operands.push_back(SystemZOperand::createReg(Kind, Reg.Num, | 
|  | Reg.StartLoc, Reg.EndLoc)); | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | // Parse any type of register (including integers) and add it to Operands. | 
|  | OperandMatchResultTy | 
|  | SystemZAsmParser::parseAnyRegister(OperandVector &Operands) { | 
|  | // Handle integer values. | 
|  | if (Parser.getTok().is(AsmToken::Integer)) { | 
|  | const MCExpr *Register; | 
|  | SMLoc StartLoc = Parser.getTok().getLoc(); | 
|  | if (Parser.parseExpression(Register)) | 
|  | return MatchOperand_ParseFail; | 
|  |  | 
|  | if (auto *CE = dyn_cast<MCConstantExpr>(Register)) { | 
|  | int64_t Value = CE->getValue(); | 
|  | if (Value < 0 || Value > 15) { | 
|  | Error(StartLoc, "invalid register"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | } | 
|  |  | 
|  | SMLoc EndLoc = | 
|  | SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); | 
|  |  | 
|  | Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc)); | 
|  | } | 
|  | else { | 
|  | Register Reg; | 
|  | if (parseRegister(Reg)) | 
|  | return MatchOperand_ParseFail; | 
|  |  | 
|  | // Map to the correct register kind. | 
|  | RegisterKind Kind; | 
|  | unsigned RegNo; | 
|  | if (Reg.Group == RegGR) { | 
|  | Kind = GR64Reg; | 
|  | RegNo = SystemZMC::GR64Regs[Reg.Num]; | 
|  | } | 
|  | else if (Reg.Group == RegFP) { | 
|  | Kind = FP64Reg; | 
|  | RegNo = SystemZMC::FP64Regs[Reg.Num]; | 
|  | } | 
|  | else if (Reg.Group == RegV) { | 
|  | Kind = VR128Reg; | 
|  | RegNo = SystemZMC::VR128Regs[Reg.Num]; | 
|  | } | 
|  | else { | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | Operands.push_back(SystemZOperand::createReg(Kind, RegNo, | 
|  | Reg.StartLoc, Reg.EndLoc)); | 
|  | } | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | // Parse a memory operand into Reg1, Reg2, Disp, and Length. | 
|  | bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1, | 
|  | bool &HaveReg2, Register &Reg2, | 
|  | const MCExpr *&Disp, | 
|  | const MCExpr *&Length) { | 
|  | // Parse the displacement, which must always be present. | 
|  | if (getParser().parseExpression(Disp)) | 
|  | return true; | 
|  |  | 
|  | // Parse the optional base and index. | 
|  | HaveReg1 = false; | 
|  | HaveReg2 = false; | 
|  | Length = nullptr; | 
|  | if (getLexer().is(AsmToken::LParen)) { | 
|  | Parser.Lex(); | 
|  |  | 
|  | if (getLexer().is(AsmToken::Percent)) { | 
|  | // Parse the first register. | 
|  | HaveReg1 = true; | 
|  | if (parseRegister(Reg1)) | 
|  | return true; | 
|  | } else { | 
|  | // Parse the length. | 
|  | if (getParser().parseExpression(Length)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check whether there's a second register. | 
|  | if (getLexer().is(AsmToken::Comma)) { | 
|  | Parser.Lex(); | 
|  | HaveReg2 = true; | 
|  | if (parseRegister(Reg2)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Consume the closing bracket. | 
|  | if (getLexer().isNot(AsmToken::RParen)) | 
|  | return Error(Parser.getTok().getLoc(), "unexpected token in address"); | 
|  | Parser.Lex(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Verify that Reg is a valid address register (base or index). | 
|  | bool | 
|  | SystemZAsmParser::parseAddressRegister(Register &Reg) { | 
|  | if (Reg.Group == RegV) { | 
|  | Error(Reg.StartLoc, "invalid use of vector addressing"); | 
|  | return true; | 
|  | } else if (Reg.Group != RegGR) { | 
|  | Error(Reg.StartLoc, "invalid address register"); | 
|  | return true; | 
|  | } else if (Reg.Num == 0) { | 
|  | Error(Reg.StartLoc, "%r0 used in an address"); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Parse a memory operand and add it to Operands.  The other arguments | 
|  | // are as above. | 
|  | OperandMatchResultTy | 
|  | SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind, | 
|  | const unsigned *Regs, RegisterKind RegKind) { | 
|  | SMLoc StartLoc = Parser.getTok().getLoc(); | 
|  | unsigned Base = 0, Index = 0, LengthReg = 0; | 
|  | Register Reg1, Reg2; | 
|  | bool HaveReg1, HaveReg2; | 
|  | const MCExpr *Disp; | 
|  | const MCExpr *Length; | 
|  | if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length)) | 
|  | return MatchOperand_ParseFail; | 
|  |  | 
|  | switch (MemKind) { | 
|  | case BDMem: | 
|  | // If we have Reg1, it must be an address register. | 
|  | if (HaveReg1) { | 
|  | if (parseAddressRegister(Reg1)) | 
|  | return MatchOperand_ParseFail; | 
|  | Base = Regs[Reg1.Num]; | 
|  | } | 
|  | // There must be no Reg2 or length. | 
|  | if (Length) { | 
|  | Error(StartLoc, "invalid use of length addressing"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | if (HaveReg2) { | 
|  | Error(StartLoc, "invalid use of indexed addressing"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | break; | 
|  | case BDXMem: | 
|  | // If we have Reg1, it must be an address register. | 
|  | if (HaveReg1) { | 
|  | if (parseAddressRegister(Reg1)) | 
|  | return MatchOperand_ParseFail; | 
|  | // If the are two registers, the first one is the index and the | 
|  | // second is the base. | 
|  | if (HaveReg2) | 
|  | Index = Regs[Reg1.Num]; | 
|  | else | 
|  | Base = Regs[Reg1.Num]; | 
|  | } | 
|  | // If we have Reg2, it must be an address register. | 
|  | if (HaveReg2) { | 
|  | if (parseAddressRegister(Reg2)) | 
|  | return MatchOperand_ParseFail; | 
|  | Base = Regs[Reg2.Num]; | 
|  | } | 
|  | // There must be no length. | 
|  | if (Length) { | 
|  | Error(StartLoc, "invalid use of length addressing"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | break; | 
|  | case BDLMem: | 
|  | // If we have Reg2, it must be an address register. | 
|  | if (HaveReg2) { | 
|  | if (parseAddressRegister(Reg2)) | 
|  | return MatchOperand_ParseFail; | 
|  | Base = Regs[Reg2.Num]; | 
|  | } | 
|  | // We cannot support base+index addressing. | 
|  | if (HaveReg1 && HaveReg2) { | 
|  | Error(StartLoc, "invalid use of indexed addressing"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | // We must have a length. | 
|  | if (!Length) { | 
|  | Error(StartLoc, "missing length in address"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | break; | 
|  | case BDRMem: | 
|  | // We must have Reg1, and it must be a GPR. | 
|  | if (!HaveReg1 || Reg1.Group != RegGR) { | 
|  | Error(StartLoc, "invalid operand for instruction"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | LengthReg = SystemZMC::GR64Regs[Reg1.Num]; | 
|  | // If we have Reg2, it must be an address register. | 
|  | if (HaveReg2) { | 
|  | if (parseAddressRegister(Reg2)) | 
|  | return MatchOperand_ParseFail; | 
|  | Base = Regs[Reg2.Num]; | 
|  | } | 
|  | // There must be no length. | 
|  | if (Length) { | 
|  | Error(StartLoc, "invalid use of length addressing"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | break; | 
|  | case BDVMem: | 
|  | // We must have Reg1, and it must be a vector register. | 
|  | if (!HaveReg1 || Reg1.Group != RegV) { | 
|  | Error(StartLoc, "vector index required in address"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | Index = SystemZMC::VR128Regs[Reg1.Num]; | 
|  | // If we have Reg2, it must be an address register. | 
|  | if (HaveReg2) { | 
|  | if (parseAddressRegister(Reg2)) | 
|  | return MatchOperand_ParseFail; | 
|  | Base = Regs[Reg2.Num]; | 
|  | } | 
|  | // There must be no length. | 
|  | if (Length) { | 
|  | Error(StartLoc, "invalid use of length addressing"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | SMLoc EndLoc = | 
|  | SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); | 
|  | Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp, | 
|  | Index, Length, LengthReg, | 
|  | StartLoc, EndLoc)); | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) { | 
|  | StringRef IDVal = DirectiveID.getIdentifier(); | 
|  |  | 
|  | if (IDVal == ".insn") | 
|  | return ParseDirectiveInsn(DirectiveID.getLoc()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// ParseDirectiveInsn | 
|  | /// ::= .insn [ format, encoding, (operands (, operands)*) ] | 
|  | bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) { | 
|  | MCAsmParser &Parser = getParser(); | 
|  |  | 
|  | // Expect instruction format as identifier. | 
|  | StringRef Format; | 
|  | SMLoc ErrorLoc = Parser.getTok().getLoc(); | 
|  | if (Parser.parseIdentifier(Format)) | 
|  | return Error(ErrorLoc, "expected instruction format"); | 
|  |  | 
|  | SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands; | 
|  |  | 
|  | // Find entry for this format in InsnMatchTable. | 
|  | auto EntryRange = | 
|  | std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable), | 
|  | Format, CompareInsn()); | 
|  |  | 
|  | // If first == second, couldn't find a match in the table. | 
|  | if (EntryRange.first == EntryRange.second) | 
|  | return Error(ErrorLoc, "unrecognized format"); | 
|  |  | 
|  | struct InsnMatchEntry *Entry = EntryRange.first; | 
|  |  | 
|  | // Format should match from equal_range. | 
|  | assert(Entry->Format == Format); | 
|  |  | 
|  | // Parse the following operands using the table's information. | 
|  | for (int i = 0; i < Entry->NumOperands; i++) { | 
|  | MatchClassKind Kind = Entry->OperandKinds[i]; | 
|  |  | 
|  | SMLoc StartLoc = Parser.getTok().getLoc(); | 
|  |  | 
|  | // Always expect commas as separators for operands. | 
|  | if (getLexer().isNot(AsmToken::Comma)) | 
|  | return Error(StartLoc, "unexpected token in directive"); | 
|  | Lex(); | 
|  |  | 
|  | // Parse operands. | 
|  | OperandMatchResultTy ResTy; | 
|  | if (Kind == MCK_AnyReg) | 
|  | ResTy = parseAnyReg(Operands); | 
|  | else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20) | 
|  | ResTy = parseBDXAddr64(Operands); | 
|  | else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20) | 
|  | ResTy = parseBDAddr64(Operands); | 
|  | else if (Kind == MCK_PCRel32) | 
|  | ResTy = parsePCRel32(Operands); | 
|  | else if (Kind == MCK_PCRel16) | 
|  | ResTy = parsePCRel16(Operands); | 
|  | else { | 
|  | // Only remaining operand kind is an immediate. | 
|  | const MCExpr *Expr; | 
|  | SMLoc StartLoc = Parser.getTok().getLoc(); | 
|  |  | 
|  | // Expect immediate expression. | 
|  | if (Parser.parseExpression(Expr)) | 
|  | return Error(StartLoc, "unexpected token in directive"); | 
|  |  | 
|  | SMLoc EndLoc = | 
|  | SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); | 
|  |  | 
|  | Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); | 
|  | ResTy = MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | if (ResTy != MatchOperand_Success) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Build the instruction with the parsed operands. | 
|  | MCInst Inst = MCInstBuilder(Entry->Opcode); | 
|  |  | 
|  | for (size_t i = 0; i < Operands.size(); i++) { | 
|  | MCParsedAsmOperand &Operand = *Operands[i]; | 
|  | MatchClassKind Kind = Entry->OperandKinds[i]; | 
|  |  | 
|  | // Verify operand. | 
|  | unsigned Res = validateOperandClass(Operand, Kind); | 
|  | if (Res != Match_Success) | 
|  | return Error(Operand.getStartLoc(), "unexpected operand type"); | 
|  |  | 
|  | // Add operands to instruction. | 
|  | SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand); | 
|  | if (ZOperand.isReg()) | 
|  | ZOperand.addRegOperands(Inst, 1); | 
|  | else if (ZOperand.isMem(BDMem)) | 
|  | ZOperand.addBDAddrOperands(Inst, 2); | 
|  | else if (ZOperand.isMem(BDXMem)) | 
|  | ZOperand.addBDXAddrOperands(Inst, 3); | 
|  | else if (ZOperand.isImm()) | 
|  | ZOperand.addImmOperands(Inst, 1); | 
|  | else | 
|  | llvm_unreachable("unexpected operand type"); | 
|  | } | 
|  |  | 
|  | // Emit as a regular instruction. | 
|  | Parser.getStreamer().EmitInstruction(Inst, getSTI()); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, | 
|  | SMLoc &EndLoc) { | 
|  | Register Reg; | 
|  | if (parseRegister(Reg)) | 
|  | return true; | 
|  | if (Reg.Group == RegGR) | 
|  | RegNo = SystemZMC::GR64Regs[Reg.Num]; | 
|  | else if (Reg.Group == RegFP) | 
|  | RegNo = SystemZMC::FP64Regs[Reg.Num]; | 
|  | else if (Reg.Group == RegV) | 
|  | RegNo = SystemZMC::VR128Regs[Reg.Num]; | 
|  | else | 
|  | // FIXME: Access registers aren't modelled as LLVM registers yet. | 
|  | return Error(Reg.StartLoc, "invalid operand for instruction"); | 
|  | StartLoc = Reg.StartLoc; | 
|  | EndLoc = Reg.EndLoc; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info, | 
|  | StringRef Name, SMLoc NameLoc, | 
|  | OperandVector &Operands) { | 
|  | Operands.push_back(SystemZOperand::createToken(Name, NameLoc)); | 
|  |  | 
|  | // Read the remaining operands. | 
|  | if (getLexer().isNot(AsmToken::EndOfStatement)) { | 
|  | // Read the first operand. | 
|  | if (parseOperand(Operands, Name)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Read any subsequent operands. | 
|  | while (getLexer().is(AsmToken::Comma)) { | 
|  | Parser.Lex(); | 
|  | if (parseOperand(Operands, Name)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | if (getLexer().isNot(AsmToken::EndOfStatement)) { | 
|  | SMLoc Loc = getLexer().getLoc(); | 
|  | return Error(Loc, "unexpected token in argument list"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Consume the EndOfStatement. | 
|  | Parser.Lex(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SystemZAsmParser::parseOperand(OperandVector &Operands, | 
|  | StringRef Mnemonic) { | 
|  | // Check if the current operand has a custom associated parser, if so, try to | 
|  | // custom parse the operand, or fallback to the general approach.  Force all | 
|  | // features to be available during the operand check, or else we will fail to | 
|  | // find the custom parser, and then we will later get an InvalidOperand error | 
|  | // instead of a MissingFeature errror. | 
|  | uint64_t AvailableFeatures = getAvailableFeatures(); | 
|  | setAvailableFeatures(~(uint64_t)0); | 
|  | OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); | 
|  | setAvailableFeatures(AvailableFeatures); | 
|  | if (ResTy == MatchOperand_Success) | 
|  | return false; | 
|  |  | 
|  | // If there wasn't a custom match, try the generic matcher below. Otherwise, | 
|  | // there was a match, but an error occurred, in which case, just return that | 
|  | // the operand parsing failed. | 
|  | if (ResTy == MatchOperand_ParseFail) | 
|  | return true; | 
|  |  | 
|  | // Check for a register.  All real register operands should have used | 
|  | // a context-dependent parse routine, which gives the required register | 
|  | // class.  The code is here to mop up other cases, like those where | 
|  | // the instruction isn't recognized. | 
|  | if (Parser.getTok().is(AsmToken::Percent)) { | 
|  | Register Reg; | 
|  | if (parseRegister(Reg)) | 
|  | return true; | 
|  | Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The only other type of operand is an immediate or address.  As above, | 
|  | // real address operands should have used a context-dependent parse routine, | 
|  | // so we treat any plain expression as an immediate. | 
|  | SMLoc StartLoc = Parser.getTok().getLoc(); | 
|  | Register Reg1, Reg2; | 
|  | bool HaveReg1, HaveReg2; | 
|  | const MCExpr *Expr; | 
|  | const MCExpr *Length; | 
|  | if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length)) | 
|  | return MatchOperand_ParseFail; | 
|  | // If the register combination is not valid for any instruction, reject it. | 
|  | // Otherwise, fall back to reporting an unrecognized instruction. | 
|  | if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV | 
|  | && parseAddressRegister(Reg1)) | 
|  | return MatchOperand_ParseFail; | 
|  | if (HaveReg2 && parseAddressRegister(Reg2)) | 
|  | return MatchOperand_ParseFail; | 
|  |  | 
|  | SMLoc EndLoc = | 
|  | SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); | 
|  | if (HaveReg1 || HaveReg2 || Length) | 
|  | Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc)); | 
|  | else | 
|  | Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, | 
|  | OperandVector &Operands, | 
|  | MCStreamer &Out, | 
|  | uint64_t &ErrorInfo, | 
|  | bool MatchingInlineAsm) { | 
|  | MCInst Inst; | 
|  | unsigned MatchResult; | 
|  |  | 
|  | MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, | 
|  | MatchingInlineAsm); | 
|  | switch (MatchResult) { | 
|  | case Match_Success: | 
|  | Inst.setLoc(IDLoc); | 
|  | Out.EmitInstruction(Inst, getSTI()); | 
|  | return false; | 
|  |  | 
|  | case Match_MissingFeature: { | 
|  | assert(ErrorInfo && "Unknown missing feature!"); | 
|  | // Special case the error message for the very common case where only | 
|  | // a single subtarget feature is missing | 
|  | std::string Msg = "instruction requires:"; | 
|  | uint64_t Mask = 1; | 
|  | for (unsigned I = 0; I < sizeof(ErrorInfo) * 8 - 1; ++I) { | 
|  | if (ErrorInfo & Mask) { | 
|  | Msg += " "; | 
|  | Msg += getSubtargetFeatureName(ErrorInfo & Mask); | 
|  | } | 
|  | Mask <<= 1; | 
|  | } | 
|  | return Error(IDLoc, Msg); | 
|  | } | 
|  |  | 
|  | case Match_InvalidOperand: { | 
|  | SMLoc ErrorLoc = IDLoc; | 
|  | if (ErrorInfo != ~0ULL) { | 
|  | if (ErrorInfo >= Operands.size()) | 
|  | return Error(IDLoc, "too few operands for instruction"); | 
|  |  | 
|  | ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); | 
|  | if (ErrorLoc == SMLoc()) | 
|  | ErrorLoc = IDLoc; | 
|  | } | 
|  | return Error(ErrorLoc, "invalid operand for instruction"); | 
|  | } | 
|  |  | 
|  | case Match_MnemonicFail: | 
|  | return Error(IDLoc, "invalid instruction"); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unexpected match type"); | 
|  | } | 
|  |  | 
|  | OperandMatchResultTy | 
|  | SystemZAsmParser::parseAccessReg(OperandVector &Operands) { | 
|  | if (Parser.getTok().isNot(AsmToken::Percent)) | 
|  | return MatchOperand_NoMatch; | 
|  |  | 
|  | Register Reg; | 
|  | if (parseRegister(Reg, RegAccess, nullptr)) | 
|  | return MatchOperand_ParseFail; | 
|  |  | 
|  | Operands.push_back(SystemZOperand::createAccessReg(Reg.Num, | 
|  | Reg.StartLoc, | 
|  | Reg.EndLoc)); | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | OperandMatchResultTy | 
|  | SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal, | 
|  | int64_t MaxVal, bool AllowTLS) { | 
|  | MCContext &Ctx = getContext(); | 
|  | MCStreamer &Out = getStreamer(); | 
|  | const MCExpr *Expr; | 
|  | SMLoc StartLoc = Parser.getTok().getLoc(); | 
|  | if (getParser().parseExpression(Expr)) | 
|  | return MatchOperand_NoMatch; | 
|  |  | 
|  | // For consistency with the GNU assembler, treat immediates as offsets | 
|  | // from ".". | 
|  | if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { | 
|  | int64_t Value = CE->getValue(); | 
|  | if ((Value & 1) || Value < MinVal || Value > MaxVal) { | 
|  | Error(StartLoc, "offset out of range"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | MCSymbol *Sym = Ctx.createTempSymbol(); | 
|  | Out.EmitLabel(Sym); | 
|  | const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, | 
|  | Ctx); | 
|  | Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx); | 
|  | } | 
|  |  | 
|  | // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol. | 
|  | const MCExpr *Sym = nullptr; | 
|  | if (AllowTLS && getLexer().is(AsmToken::Colon)) { | 
|  | Parser.Lex(); | 
|  |  | 
|  | if (Parser.getTok().isNot(AsmToken::Identifier)) { | 
|  | Error(Parser.getTok().getLoc(), "unexpected token"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; | 
|  | StringRef Name = Parser.getTok().getString(); | 
|  | if (Name == "tls_gdcall") | 
|  | Kind = MCSymbolRefExpr::VK_TLSGD; | 
|  | else if (Name == "tls_ldcall") | 
|  | Kind = MCSymbolRefExpr::VK_TLSLDM; | 
|  | else { | 
|  | Error(Parser.getTok().getLoc(), "unknown TLS tag"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | Parser.Lex(); | 
|  |  | 
|  | if (Parser.getTok().isNot(AsmToken::Colon)) { | 
|  | Error(Parser.getTok().getLoc(), "unexpected token"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  | Parser.Lex(); | 
|  |  | 
|  | if (Parser.getTok().isNot(AsmToken::Identifier)) { | 
|  | Error(Parser.getTok().getLoc(), "unexpected token"); | 
|  | return MatchOperand_ParseFail; | 
|  | } | 
|  |  | 
|  | StringRef Identifier = Parser.getTok().getString(); | 
|  | Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier), | 
|  | Kind, Ctx); | 
|  | Parser.Lex(); | 
|  | } | 
|  |  | 
|  | SMLoc EndLoc = | 
|  | SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); | 
|  |  | 
|  | if (AllowTLS) | 
|  | Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym, | 
|  | StartLoc, EndLoc)); | 
|  | else | 
|  | Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); | 
|  |  | 
|  | return MatchOperand_Success; | 
|  | } | 
|  |  | 
|  | // Force static initialization. | 
|  | extern "C" void LLVMInitializeSystemZAsmParser() { | 
|  | RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget()); | 
|  | } |