|  | //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements semantic analysis for C++ declarations. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Sema.h" | 
|  | #include "SemaInit.h" | 
|  | #include "Lookup.h" | 
|  | #include "clang/AST/ASTConsumer.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/RecordLayout.h" | 
|  | #include "clang/AST/CXXInheritance.h" | 
|  | #include "clang/AST/DeclVisitor.h" | 
|  | #include "clang/AST/TypeLoc.h" | 
|  | #include "clang/AST/TypeOrdering.h" | 
|  | #include "clang/AST/StmtVisitor.h" | 
|  | #include "clang/Parse/DeclSpec.h" | 
|  | #include "clang/Parse/Template.h" | 
|  | #include "clang/Basic/PartialDiagnostic.h" | 
|  | #include "clang/Lex/Preprocessor.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include <map> | 
|  | #include <set> | 
|  |  | 
|  | using namespace clang; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // CheckDefaultArgumentVisitor | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses | 
|  | /// the default argument of a parameter to determine whether it | 
|  | /// contains any ill-formed subexpressions. For example, this will | 
|  | /// diagnose the use of local variables or parameters within the | 
|  | /// default argument expression. | 
|  | class CheckDefaultArgumentVisitor | 
|  | : public StmtVisitor<CheckDefaultArgumentVisitor, bool> { | 
|  | Expr *DefaultArg; | 
|  | Sema *S; | 
|  |  | 
|  | public: | 
|  | CheckDefaultArgumentVisitor(Expr *defarg, Sema *s) | 
|  | : DefaultArg(defarg), S(s) {} | 
|  |  | 
|  | bool VisitExpr(Expr *Node); | 
|  | bool VisitDeclRefExpr(DeclRefExpr *DRE); | 
|  | bool VisitCXXThisExpr(CXXThisExpr *ThisE); | 
|  | }; | 
|  |  | 
|  | /// VisitExpr - Visit all of the children of this expression. | 
|  | bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) { | 
|  | bool IsInvalid = false; | 
|  | for (Stmt::child_iterator I = Node->child_begin(), | 
|  | E = Node->child_end(); I != E; ++I) | 
|  | IsInvalid |= Visit(*I); | 
|  | return IsInvalid; | 
|  | } | 
|  |  | 
|  | /// VisitDeclRefExpr - Visit a reference to a declaration, to | 
|  | /// determine whether this declaration can be used in the default | 
|  | /// argument expression. | 
|  | bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) { | 
|  | NamedDecl *Decl = DRE->getDecl(); | 
|  | if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) { | 
|  | // C++ [dcl.fct.default]p9 | 
|  | //   Default arguments are evaluated each time the function is | 
|  | //   called. The order of evaluation of function arguments is | 
|  | //   unspecified. Consequently, parameters of a function shall not | 
|  | //   be used in default argument expressions, even if they are not | 
|  | //   evaluated. Parameters of a function declared before a default | 
|  | //   argument expression are in scope and can hide namespace and | 
|  | //   class member names. | 
|  | return S->Diag(DRE->getSourceRange().getBegin(), | 
|  | diag::err_param_default_argument_references_param) | 
|  | << Param->getDeclName() << DefaultArg->getSourceRange(); | 
|  | } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) { | 
|  | // C++ [dcl.fct.default]p7 | 
|  | //   Local variables shall not be used in default argument | 
|  | //   expressions. | 
|  | if (VDecl->isBlockVarDecl()) | 
|  | return S->Diag(DRE->getSourceRange().getBegin(), | 
|  | diag::err_param_default_argument_references_local) | 
|  | << VDecl->getDeclName() << DefaultArg->getSourceRange(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// VisitCXXThisExpr - Visit a C++ "this" expression. | 
|  | bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) { | 
|  | // C++ [dcl.fct.default]p8: | 
|  | //   The keyword this shall not be used in a default argument of a | 
|  | //   member function. | 
|  | return S->Diag(ThisE->getSourceRange().getBegin(), | 
|  | diag::err_param_default_argument_references_this) | 
|  | << ThisE->getSourceRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool | 
|  | Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg, | 
|  | SourceLocation EqualLoc) { | 
|  | if (RequireCompleteType(Param->getLocation(), Param->getType(), | 
|  | diag::err_typecheck_decl_incomplete_type)) { | 
|  | Param->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Expr *Arg = (Expr *)DefaultArg.get(); | 
|  |  | 
|  | // C++ [dcl.fct.default]p5 | 
|  | //   A default argument expression is implicitly converted (clause | 
|  | //   4) to the parameter type. The default argument expression has | 
|  | //   the same semantic constraints as the initializer expression in | 
|  | //   a declaration of a variable of the parameter type, using the | 
|  | //   copy-initialization semantics (8.5). | 
|  | InitializedEntity Entity = InitializedEntity::InitializeParameter(Param); | 
|  | InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), | 
|  | EqualLoc); | 
|  | InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1); | 
|  | OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, | 
|  | MultiExprArg(*this, (void**)&Arg, 1)); | 
|  | if (Result.isInvalid()) | 
|  | return true; | 
|  | Arg = Result.takeAs<Expr>(); | 
|  |  | 
|  | Arg = MaybeCreateCXXExprWithTemporaries(Arg); | 
|  |  | 
|  | // Okay: add the default argument to the parameter | 
|  | Param->setDefaultArg(Arg); | 
|  |  | 
|  | DefaultArg.release(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ActOnParamDefaultArgument - Check whether the default argument | 
|  | /// provided for a function parameter is well-formed. If so, attach it | 
|  | /// to the parameter declaration. | 
|  | void | 
|  | Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc, | 
|  | ExprArg defarg) { | 
|  | if (!param || !defarg.get()) | 
|  | return; | 
|  |  | 
|  | ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>()); | 
|  | UnparsedDefaultArgLocs.erase(Param); | 
|  |  | 
|  | ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>()); | 
|  |  | 
|  | // Default arguments are only permitted in C++ | 
|  | if (!getLangOptions().CPlusPlus) { | 
|  | Diag(EqualLoc, diag::err_param_default_argument) | 
|  | << DefaultArg->getSourceRange(); | 
|  | Param->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check that the default argument is well-formed | 
|  | CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this); | 
|  | if (DefaultArgChecker.Visit(DefaultArg.get())) { | 
|  | Param->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc); | 
|  | } | 
|  |  | 
|  | /// ActOnParamUnparsedDefaultArgument - We've seen a default | 
|  | /// argument for a function parameter, but we can't parse it yet | 
|  | /// because we're inside a class definition. Note that this default | 
|  | /// argument will be parsed later. | 
|  | void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param, | 
|  | SourceLocation EqualLoc, | 
|  | SourceLocation ArgLoc) { | 
|  | if (!param) | 
|  | return; | 
|  |  | 
|  | ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>()); | 
|  | if (Param) | 
|  | Param->setUnparsedDefaultArg(); | 
|  |  | 
|  | UnparsedDefaultArgLocs[Param] = ArgLoc; | 
|  | } | 
|  |  | 
|  | /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of | 
|  | /// the default argument for the parameter param failed. | 
|  | void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) { | 
|  | if (!param) | 
|  | return; | 
|  |  | 
|  | ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>()); | 
|  |  | 
|  | Param->setInvalidDecl(); | 
|  |  | 
|  | UnparsedDefaultArgLocs.erase(Param); | 
|  | } | 
|  |  | 
|  | /// CheckExtraCXXDefaultArguments - Check for any extra default | 
|  | /// arguments in the declarator, which is not a function declaration | 
|  | /// or definition and therefore is not permitted to have default | 
|  | /// arguments. This routine should be invoked for every declarator | 
|  | /// that is not a function declaration or definition. | 
|  | void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { | 
|  | // C++ [dcl.fct.default]p3 | 
|  | //   A default argument expression shall be specified only in the | 
|  | //   parameter-declaration-clause of a function declaration or in a | 
|  | //   template-parameter (14.1). It shall not be specified for a | 
|  | //   parameter pack. If it is specified in a | 
|  | //   parameter-declaration-clause, it shall not occur within a | 
|  | //   declarator or abstract-declarator of a parameter-declaration. | 
|  | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { | 
|  | DeclaratorChunk &chunk = D.getTypeObject(i); | 
|  | if (chunk.Kind == DeclaratorChunk::Function) { | 
|  | for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) { | 
|  | ParmVarDecl *Param = | 
|  | cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>()); | 
|  | if (Param->hasUnparsedDefaultArg()) { | 
|  | CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens; | 
|  | Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) | 
|  | << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation()); | 
|  | delete Toks; | 
|  | chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0; | 
|  | } else if (Param->getDefaultArg()) { | 
|  | Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) | 
|  | << Param->getDefaultArg()->getSourceRange(); | 
|  | Param->setDefaultArg(0); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // MergeCXXFunctionDecl - Merge two declarations of the same C++ | 
|  | // function, once we already know that they have the same | 
|  | // type. Subroutine of MergeFunctionDecl. Returns true if there was an | 
|  | // error, false otherwise. | 
|  | bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) { | 
|  | bool Invalid = false; | 
|  |  | 
|  | // C++ [dcl.fct.default]p4: | 
|  | //   For non-template functions, default arguments can be added in | 
|  | //   later declarations of a function in the same | 
|  | //   scope. Declarations in different scopes have completely | 
|  | //   distinct sets of default arguments. That is, declarations in | 
|  | //   inner scopes do not acquire default arguments from | 
|  | //   declarations in outer scopes, and vice versa. In a given | 
|  | //   function declaration, all parameters subsequent to a | 
|  | //   parameter with a default argument shall have default | 
|  | //   arguments supplied in this or previous declarations. A | 
|  | //   default argument shall not be redefined by a later | 
|  | //   declaration (not even to the same value). | 
|  | // | 
|  | // C++ [dcl.fct.default]p6: | 
|  | //   Except for member functions of class templates, the default arguments | 
|  | //   in a member function definition that appears outside of the class | 
|  | //   definition are added to the set of default arguments provided by the | 
|  | //   member function declaration in the class definition. | 
|  | for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) { | 
|  | ParmVarDecl *OldParam = Old->getParamDecl(p); | 
|  | ParmVarDecl *NewParam = New->getParamDecl(p); | 
|  |  | 
|  | if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) { | 
|  | // FIXME: If the parameter doesn't have an identifier then the location | 
|  | // points to the '=' which means that the fixit hint won't remove any | 
|  | // extra spaces between the type and the '='. | 
|  | SourceLocation Begin = NewParam->getLocation(); | 
|  | if (NewParam->getIdentifier()) | 
|  | Begin = PP.getLocForEndOfToken(Begin); | 
|  |  | 
|  | Diag(NewParam->getLocation(), | 
|  | diag::err_param_default_argument_redefinition) | 
|  | << NewParam->getDefaultArgRange() | 
|  | << CodeModificationHint::CreateRemoval(SourceRange(Begin, | 
|  | NewParam->getLocEnd())); | 
|  |  | 
|  | // Look for the function declaration where the default argument was | 
|  | // actually written, which may be a declaration prior to Old. | 
|  | for (FunctionDecl *Older = Old->getPreviousDeclaration(); | 
|  | Older; Older = Older->getPreviousDeclaration()) { | 
|  | if (!Older->getParamDecl(p)->hasDefaultArg()) | 
|  | break; | 
|  |  | 
|  | OldParam = Older->getParamDecl(p); | 
|  | } | 
|  |  | 
|  | Diag(OldParam->getLocation(), diag::note_previous_definition) | 
|  | << OldParam->getDefaultArgRange(); | 
|  | Invalid = true; | 
|  | } else if (OldParam->hasDefaultArg()) { | 
|  | // Merge the old default argument into the new parameter | 
|  | if (OldParam->hasUninstantiatedDefaultArg()) | 
|  | NewParam->setUninstantiatedDefaultArg( | 
|  | OldParam->getUninstantiatedDefaultArg()); | 
|  | else | 
|  | NewParam->setDefaultArg(OldParam->getDefaultArg()); | 
|  | } else if (NewParam->hasDefaultArg()) { | 
|  | if (New->getDescribedFunctionTemplate()) { | 
|  | // Paragraph 4, quoted above, only applies to non-template functions. | 
|  | Diag(NewParam->getLocation(), | 
|  | diag::err_param_default_argument_template_redecl) | 
|  | << NewParam->getDefaultArgRange(); | 
|  | Diag(Old->getLocation(), diag::note_template_prev_declaration) | 
|  | << false; | 
|  | } else if (New->getTemplateSpecializationKind() | 
|  | != TSK_ImplicitInstantiation && | 
|  | New->getTemplateSpecializationKind() != TSK_Undeclared) { | 
|  | // C++ [temp.expr.spec]p21: | 
|  | //   Default function arguments shall not be specified in a declaration | 
|  | //   or a definition for one of the following explicit specializations: | 
|  | //     - the explicit specialization of a function template; | 
|  | //     - the explicit specialization of a member function template; | 
|  | //     - the explicit specialization of a member function of a class | 
|  | //       template where the class template specialization to which the | 
|  | //       member function specialization belongs is implicitly | 
|  | //       instantiated. | 
|  | Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) | 
|  | << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) | 
|  | << New->getDeclName() | 
|  | << NewParam->getDefaultArgRange(); | 
|  | } else if (New->getDeclContext()->isDependentContext()) { | 
|  | // C++ [dcl.fct.default]p6 (DR217): | 
|  | //   Default arguments for a member function of a class template shall | 
|  | //   be specified on the initial declaration of the member function | 
|  | //   within the class template. | 
|  | // | 
|  | // Reading the tea leaves a bit in DR217 and its reference to DR205 | 
|  | // leads me to the conclusion that one cannot add default function | 
|  | // arguments for an out-of-line definition of a member function of a | 
|  | // dependent type. | 
|  | int WhichKind = 2; | 
|  | if (CXXRecordDecl *Record | 
|  | = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { | 
|  | if (Record->getDescribedClassTemplate()) | 
|  | WhichKind = 0; | 
|  | else if (isa<ClassTemplatePartialSpecializationDecl>(Record)) | 
|  | WhichKind = 1; | 
|  | else | 
|  | WhichKind = 2; | 
|  | } | 
|  |  | 
|  | Diag(NewParam->getLocation(), | 
|  | diag::err_param_default_argument_member_template_redecl) | 
|  | << WhichKind | 
|  | << NewParam->getDefaultArgRange(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CheckEquivalentExceptionSpec( | 
|  | Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(), | 
|  | New->getType()->getAs<FunctionProtoType>(), New->getLocation())) | 
|  | Invalid = true; | 
|  |  | 
|  | return Invalid; | 
|  | } | 
|  |  | 
|  | /// CheckCXXDefaultArguments - Verify that the default arguments for a | 
|  | /// function declaration are well-formed according to C++ | 
|  | /// [dcl.fct.default]. | 
|  | void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { | 
|  | unsigned NumParams = FD->getNumParams(); | 
|  | unsigned p; | 
|  |  | 
|  | // Find first parameter with a default argument | 
|  | for (p = 0; p < NumParams; ++p) { | 
|  | ParmVarDecl *Param = FD->getParamDecl(p); | 
|  | if (Param->hasDefaultArg()) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // C++ [dcl.fct.default]p4: | 
|  | //   In a given function declaration, all parameters | 
|  | //   subsequent to a parameter with a default argument shall | 
|  | //   have default arguments supplied in this or previous | 
|  | //   declarations. A default argument shall not be redefined | 
|  | //   by a later declaration (not even to the same value). | 
|  | unsigned LastMissingDefaultArg = 0; | 
|  | for (; p < NumParams; ++p) { | 
|  | ParmVarDecl *Param = FD->getParamDecl(p); | 
|  | if (!Param->hasDefaultArg()) { | 
|  | if (Param->isInvalidDecl()) | 
|  | /* We already complained about this parameter. */; | 
|  | else if (Param->getIdentifier()) | 
|  | Diag(Param->getLocation(), | 
|  | diag::err_param_default_argument_missing_name) | 
|  | << Param->getIdentifier(); | 
|  | else | 
|  | Diag(Param->getLocation(), | 
|  | diag::err_param_default_argument_missing); | 
|  |  | 
|  | LastMissingDefaultArg = p; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LastMissingDefaultArg > 0) { | 
|  | // Some default arguments were missing. Clear out all of the | 
|  | // default arguments up to (and including) the last missing | 
|  | // default argument, so that we leave the function parameters | 
|  | // in a semantically valid state. | 
|  | for (p = 0; p <= LastMissingDefaultArg; ++p) { | 
|  | ParmVarDecl *Param = FD->getParamDecl(p); | 
|  | if (Param->hasDefaultArg()) { | 
|  | if (!Param->hasUnparsedDefaultArg()) | 
|  | Param->getDefaultArg()->Destroy(Context); | 
|  | Param->setDefaultArg(0); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isCurrentClassName - Determine whether the identifier II is the | 
|  | /// name of the class type currently being defined. In the case of | 
|  | /// nested classes, this will only return true if II is the name of | 
|  | /// the innermost class. | 
|  | bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *, | 
|  | const CXXScopeSpec *SS) { | 
|  | CXXRecordDecl *CurDecl; | 
|  | if (SS && SS->isSet() && !SS->isInvalid()) { | 
|  | DeclContext *DC = computeDeclContext(*SS, true); | 
|  | CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); | 
|  | } else | 
|  | CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); | 
|  |  | 
|  | if (CurDecl) | 
|  | return &II == CurDecl->getIdentifier(); | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Check the validity of a C++ base class specifier. | 
|  | /// | 
|  | /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics | 
|  | /// and returns NULL otherwise. | 
|  | CXXBaseSpecifier * | 
|  | Sema::CheckBaseSpecifier(CXXRecordDecl *Class, | 
|  | SourceRange SpecifierRange, | 
|  | bool Virtual, AccessSpecifier Access, | 
|  | QualType BaseType, | 
|  | SourceLocation BaseLoc) { | 
|  | // C++ [class.union]p1: | 
|  | //   A union shall not have base classes. | 
|  | if (Class->isUnion()) { | 
|  | Diag(Class->getLocation(), diag::err_base_clause_on_union) | 
|  | << SpecifierRange; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (BaseType->isDependentType()) | 
|  | return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, | 
|  | Class->getTagKind() == RecordDecl::TK_class, | 
|  | Access, BaseType); | 
|  |  | 
|  | // Base specifiers must be record types. | 
|  | if (!BaseType->isRecordType()) { | 
|  | Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // C++ [class.union]p1: | 
|  | //   A union shall not be used as a base class. | 
|  | if (BaseType->isUnionType()) { | 
|  | Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // C++ [class.derived]p2: | 
|  | //   The class-name in a base-specifier shall not be an incompletely | 
|  | //   defined class. | 
|  | if (RequireCompleteType(BaseLoc, BaseType, | 
|  | PDiag(diag::err_incomplete_base_class) | 
|  | << SpecifierRange)) | 
|  | return 0; | 
|  |  | 
|  | // If the base class is polymorphic or isn't empty, the new one is/isn't, too. | 
|  | RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl(); | 
|  | assert(BaseDecl && "Record type has no declaration"); | 
|  | BaseDecl = BaseDecl->getDefinition(Context); | 
|  | assert(BaseDecl && "Base type is not incomplete, but has no definition"); | 
|  | CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl); | 
|  | assert(CXXBaseDecl && "Base type is not a C++ type"); | 
|  |  | 
|  | // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases. | 
|  | if (CXXBaseDecl->hasAttr<FinalAttr>()) { | 
|  | Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString(); | 
|  | Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl) | 
|  | << BaseType; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual); | 
|  |  | 
|  | // Create the base specifier. | 
|  | // FIXME: Allocate via ASTContext? | 
|  | return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, | 
|  | Class->getTagKind() == RecordDecl::TK_class, | 
|  | Access, BaseType); | 
|  | } | 
|  |  | 
|  | void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class, | 
|  | const CXXRecordDecl *BaseClass, | 
|  | bool BaseIsVirtual) { | 
|  | // A class with a non-empty base class is not empty. | 
|  | // FIXME: Standard ref? | 
|  | if (!BaseClass->isEmpty()) | 
|  | Class->setEmpty(false); | 
|  |  | 
|  | // C++ [class.virtual]p1: | 
|  | //   A class that [...] inherits a virtual function is called a polymorphic | 
|  | //   class. | 
|  | if (BaseClass->isPolymorphic()) | 
|  | Class->setPolymorphic(true); | 
|  |  | 
|  | // C++ [dcl.init.aggr]p1: | 
|  | //   An aggregate is [...] a class with [...] no base classes [...]. | 
|  | Class->setAggregate(false); | 
|  |  | 
|  | // C++ [class]p4: | 
|  | //   A POD-struct is an aggregate class... | 
|  | Class->setPOD(false); | 
|  |  | 
|  | if (BaseIsVirtual) { | 
|  | // C++ [class.ctor]p5: | 
|  | //   A constructor is trivial if its class has no virtual base classes. | 
|  | Class->setHasTrivialConstructor(false); | 
|  |  | 
|  | // C++ [class.copy]p6: | 
|  | //   A copy constructor is trivial if its class has no virtual base classes. | 
|  | Class->setHasTrivialCopyConstructor(false); | 
|  |  | 
|  | // C++ [class.copy]p11: | 
|  | //   A copy assignment operator is trivial if its class has no virtual | 
|  | //   base classes. | 
|  | Class->setHasTrivialCopyAssignment(false); | 
|  |  | 
|  | // C++0x [meta.unary.prop] is_empty: | 
|  | //    T is a class type, but not a union type, with ... no virtual base | 
|  | //    classes | 
|  | Class->setEmpty(false); | 
|  | } else { | 
|  | // C++ [class.ctor]p5: | 
|  | //   A constructor is trivial if all the direct base classes of its | 
|  | //   class have trivial constructors. | 
|  | if (!BaseClass->hasTrivialConstructor()) | 
|  | Class->setHasTrivialConstructor(false); | 
|  |  | 
|  | // C++ [class.copy]p6: | 
|  | //   A copy constructor is trivial if all the direct base classes of its | 
|  | //   class have trivial copy constructors. | 
|  | if (!BaseClass->hasTrivialCopyConstructor()) | 
|  | Class->setHasTrivialCopyConstructor(false); | 
|  |  | 
|  | // C++ [class.copy]p11: | 
|  | //   A copy assignment operator is trivial if all the direct base classes | 
|  | //   of its class have trivial copy assignment operators. | 
|  | if (!BaseClass->hasTrivialCopyAssignment()) | 
|  | Class->setHasTrivialCopyAssignment(false); | 
|  | } | 
|  |  | 
|  | // C++ [class.ctor]p3: | 
|  | //   A destructor is trivial if all the direct base classes of its class | 
|  | //   have trivial destructors. | 
|  | if (!BaseClass->hasTrivialDestructor()) | 
|  | Class->setHasTrivialDestructor(false); | 
|  | } | 
|  |  | 
|  | /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is | 
|  | /// one entry in the base class list of a class specifier, for | 
|  | /// example: | 
|  | ///    class foo : public bar, virtual private baz { | 
|  | /// 'public bar' and 'virtual private baz' are each base-specifiers. | 
|  | Sema::BaseResult | 
|  | Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange, | 
|  | bool Virtual, AccessSpecifier Access, | 
|  | TypeTy *basetype, SourceLocation BaseLoc) { | 
|  | if (!classdecl) | 
|  | return true; | 
|  |  | 
|  | AdjustDeclIfTemplate(classdecl); | 
|  | CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>()); | 
|  | QualType BaseType = GetTypeFromParser(basetype); | 
|  | if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, | 
|  | Virtual, Access, | 
|  | BaseType, BaseLoc)) | 
|  | return BaseSpec; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Performs the actual work of attaching the given base class | 
|  | /// specifiers to a C++ class. | 
|  | bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases, | 
|  | unsigned NumBases) { | 
|  | if (NumBases == 0) | 
|  | return false; | 
|  |  | 
|  | // Used to keep track of which base types we have already seen, so | 
|  | // that we can properly diagnose redundant direct base types. Note | 
|  | // that the key is always the unqualified canonical type of the base | 
|  | // class. | 
|  | std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; | 
|  |  | 
|  | // Copy non-redundant base specifiers into permanent storage. | 
|  | unsigned NumGoodBases = 0; | 
|  | bool Invalid = false; | 
|  | for (unsigned idx = 0; idx < NumBases; ++idx) { | 
|  | QualType NewBaseType | 
|  | = Context.getCanonicalType(Bases[idx]->getType()); | 
|  | NewBaseType = NewBaseType.getLocalUnqualifiedType(); | 
|  |  | 
|  | if (KnownBaseTypes[NewBaseType]) { | 
|  | // C++ [class.mi]p3: | 
|  | //   A class shall not be specified as a direct base class of a | 
|  | //   derived class more than once. | 
|  | Diag(Bases[idx]->getSourceRange().getBegin(), | 
|  | diag::err_duplicate_base_class) | 
|  | << KnownBaseTypes[NewBaseType]->getType() | 
|  | << Bases[idx]->getSourceRange(); | 
|  |  | 
|  | // Delete the duplicate base class specifier; we're going to | 
|  | // overwrite its pointer later. | 
|  | Context.Deallocate(Bases[idx]); | 
|  |  | 
|  | Invalid = true; | 
|  | } else { | 
|  | // Okay, add this new base class. | 
|  | KnownBaseTypes[NewBaseType] = Bases[idx]; | 
|  | Bases[NumGoodBases++] = Bases[idx]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Attach the remaining base class specifiers to the derived class. | 
|  | Class->setBases(Context, Bases, NumGoodBases); | 
|  |  | 
|  | // Delete the remaining (good) base class specifiers, since their | 
|  | // data has been copied into the CXXRecordDecl. | 
|  | for (unsigned idx = 0; idx < NumGoodBases; ++idx) | 
|  | Context.Deallocate(Bases[idx]); | 
|  |  | 
|  | return Invalid; | 
|  | } | 
|  |  | 
|  | /// ActOnBaseSpecifiers - Attach the given base specifiers to the | 
|  | /// class, after checking whether there are any duplicate base | 
|  | /// classes. | 
|  | void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases, | 
|  | unsigned NumBases) { | 
|  | if (!ClassDecl || !Bases || !NumBases) | 
|  | return; | 
|  |  | 
|  | AdjustDeclIfTemplate(ClassDecl); | 
|  | AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()), | 
|  | (CXXBaseSpecifier**)(Bases), NumBases); | 
|  | } | 
|  |  | 
|  | /// \brief Determine whether the type \p Derived is a C++ class that is | 
|  | /// derived from the type \p Base. | 
|  | bool Sema::IsDerivedFrom(QualType Derived, QualType Base) { | 
|  | if (!getLangOptions().CPlusPlus) | 
|  | return false; | 
|  |  | 
|  | const RecordType *DerivedRT = Derived->getAs<RecordType>(); | 
|  | if (!DerivedRT) | 
|  | return false; | 
|  |  | 
|  | const RecordType *BaseRT = Base->getAs<RecordType>(); | 
|  | if (!BaseRT) | 
|  | return false; | 
|  |  | 
|  | CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl()); | 
|  | CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); | 
|  | return DerivedRD->isDerivedFrom(BaseRD); | 
|  | } | 
|  |  | 
|  | /// \brief Determine whether the type \p Derived is a C++ class that is | 
|  | /// derived from the type \p Base. | 
|  | bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) { | 
|  | if (!getLangOptions().CPlusPlus) | 
|  | return false; | 
|  |  | 
|  | const RecordType *DerivedRT = Derived->getAs<RecordType>(); | 
|  | if (!DerivedRT) | 
|  | return false; | 
|  |  | 
|  | const RecordType *BaseRT = Base->getAs<RecordType>(); | 
|  | if (!BaseRT) | 
|  | return false; | 
|  |  | 
|  | CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl()); | 
|  | CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); | 
|  | return DerivedRD->isDerivedFrom(BaseRD, Paths); | 
|  | } | 
|  |  | 
|  | /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base | 
|  | /// conversion (where Derived and Base are class types) is | 
|  | /// well-formed, meaning that the conversion is unambiguous (and | 
|  | /// that all of the base classes are accessible). Returns true | 
|  | /// and emits a diagnostic if the code is ill-formed, returns false | 
|  | /// otherwise. Loc is the location where this routine should point to | 
|  | /// if there is an error, and Range is the source range to highlight | 
|  | /// if there is an error. | 
|  | bool | 
|  | Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, | 
|  | unsigned InaccessibleBaseID, | 
|  | unsigned AmbigiousBaseConvID, | 
|  | SourceLocation Loc, SourceRange Range, | 
|  | DeclarationName Name) { | 
|  | // First, determine whether the path from Derived to Base is | 
|  | // ambiguous. This is slightly more expensive than checking whether | 
|  | // the Derived to Base conversion exists, because here we need to | 
|  | // explore multiple paths to determine if there is an ambiguity. | 
|  | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | 
|  | /*DetectVirtual=*/false); | 
|  | bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths); | 
|  | assert(DerivationOkay && | 
|  | "Can only be used with a derived-to-base conversion"); | 
|  | (void)DerivationOkay; | 
|  |  | 
|  | if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) { | 
|  | if (InaccessibleBaseID == 0) | 
|  | return false; | 
|  | // Check that the base class can be accessed. | 
|  | return CheckBaseClassAccess(Derived, Base, InaccessibleBaseID, Paths, Loc, | 
|  | Name); | 
|  | } | 
|  |  | 
|  | // We know that the derived-to-base conversion is ambiguous, and | 
|  | // we're going to produce a diagnostic. Perform the derived-to-base | 
|  | // search just one more time to compute all of the possible paths so | 
|  | // that we can print them out. This is more expensive than any of | 
|  | // the previous derived-to-base checks we've done, but at this point | 
|  | // performance isn't as much of an issue. | 
|  | Paths.clear(); | 
|  | Paths.setRecordingPaths(true); | 
|  | bool StillOkay = IsDerivedFrom(Derived, Base, Paths); | 
|  | assert(StillOkay && "Can only be used with a derived-to-base conversion"); | 
|  | (void)StillOkay; | 
|  |  | 
|  | // Build up a textual representation of the ambiguous paths, e.g., | 
|  | // D -> B -> A, that will be used to illustrate the ambiguous | 
|  | // conversions in the diagnostic. We only print one of the paths | 
|  | // to each base class subobject. | 
|  | std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); | 
|  |  | 
|  | Diag(Loc, AmbigiousBaseConvID) | 
|  | << Derived << Base << PathDisplayStr << Range << Name; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool | 
|  | Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, | 
|  | SourceLocation Loc, SourceRange Range, | 
|  | bool IgnoreAccess) { | 
|  | return CheckDerivedToBaseConversion(Derived, Base, | 
|  | IgnoreAccess ? 0 : | 
|  | diag::err_conv_to_inaccessible_base, | 
|  | diag::err_ambiguous_derived_to_base_conv, | 
|  | Loc, Range, DeclarationName()); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// @brief Builds a string representing ambiguous paths from a | 
|  | /// specific derived class to different subobjects of the same base | 
|  | /// class. | 
|  | /// | 
|  | /// This function builds a string that can be used in error messages | 
|  | /// to show the different paths that one can take through the | 
|  | /// inheritance hierarchy to go from the derived class to different | 
|  | /// subobjects of a base class. The result looks something like this: | 
|  | /// @code | 
|  | /// struct D -> struct B -> struct A | 
|  | /// struct D -> struct C -> struct A | 
|  | /// @endcode | 
|  | std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { | 
|  | std::string PathDisplayStr; | 
|  | std::set<unsigned> DisplayedPaths; | 
|  | for (CXXBasePaths::paths_iterator Path = Paths.begin(); | 
|  | Path != Paths.end(); ++Path) { | 
|  | if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { | 
|  | // We haven't displayed a path to this particular base | 
|  | // class subobject yet. | 
|  | PathDisplayStr += "\n    "; | 
|  | PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); | 
|  | for (CXXBasePath::const_iterator Element = Path->begin(); | 
|  | Element != Path->end(); ++Element) | 
|  | PathDisplayStr += " -> " + Element->Base->getType().getAsString(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return PathDisplayStr; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // C++ class member Handling | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member | 
|  | /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the | 
|  | /// bitfield width if there is one and 'InitExpr' specifies the initializer if | 
|  | /// any. | 
|  | Sema::DeclPtrTy | 
|  | Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, | 
|  | MultiTemplateParamsArg TemplateParameterLists, | 
|  | ExprTy *BW, ExprTy *InitExpr, bool IsDefinition, | 
|  | bool Deleted) { | 
|  | const DeclSpec &DS = D.getDeclSpec(); | 
|  | DeclarationName Name = GetNameForDeclarator(D); | 
|  | Expr *BitWidth = static_cast<Expr*>(BW); | 
|  | Expr *Init = static_cast<Expr*>(InitExpr); | 
|  | SourceLocation Loc = D.getIdentifierLoc(); | 
|  |  | 
|  | bool isFunc = D.isFunctionDeclarator(); | 
|  |  | 
|  | assert(!DS.isFriendSpecified()); | 
|  |  | 
|  | // C++ 9.2p6: A member shall not be declared to have automatic storage | 
|  | // duration (auto, register) or with the extern storage-class-specifier. | 
|  | // C++ 7.1.1p8: The mutable specifier can be applied only to names of class | 
|  | // data members and cannot be applied to names declared const or static, | 
|  | // and cannot be applied to reference members. | 
|  | switch (DS.getStorageClassSpec()) { | 
|  | case DeclSpec::SCS_unspecified: | 
|  | case DeclSpec::SCS_typedef: | 
|  | case DeclSpec::SCS_static: | 
|  | // FALL THROUGH. | 
|  | break; | 
|  | case DeclSpec::SCS_mutable: | 
|  | if (isFunc) { | 
|  | if (DS.getStorageClassSpecLoc().isValid()) | 
|  | Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); | 
|  | else | 
|  | Diag(DS.getThreadSpecLoc(), diag::err_mutable_function); | 
|  |  | 
|  | // FIXME: It would be nicer if the keyword was ignored only for this | 
|  | // declarator. Otherwise we could get follow-up errors. | 
|  | D.getMutableDeclSpec().ClearStorageClassSpecs(); | 
|  | } else { | 
|  | QualType T = GetTypeForDeclarator(D, S); | 
|  | diag::kind err = static_cast<diag::kind>(0); | 
|  | if (T->isReferenceType()) | 
|  | err = diag::err_mutable_reference; | 
|  | else if (T.isConstQualified()) | 
|  | err = diag::err_mutable_const; | 
|  | if (err != 0) { | 
|  | if (DS.getStorageClassSpecLoc().isValid()) | 
|  | Diag(DS.getStorageClassSpecLoc(), err); | 
|  | else | 
|  | Diag(DS.getThreadSpecLoc(), err); | 
|  | // FIXME: It would be nicer if the keyword was ignored only for this | 
|  | // declarator. Otherwise we could get follow-up errors. | 
|  | D.getMutableDeclSpec().ClearStorageClassSpecs(); | 
|  | } | 
|  | } | 
|  | break; | 
|  | default: | 
|  | if (DS.getStorageClassSpecLoc().isValid()) | 
|  | Diag(DS.getStorageClassSpecLoc(), | 
|  | diag::err_storageclass_invalid_for_member); | 
|  | else | 
|  | Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member); | 
|  | D.getMutableDeclSpec().ClearStorageClassSpecs(); | 
|  | } | 
|  |  | 
|  | if (!isFunc && | 
|  | D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename && | 
|  | D.getNumTypeObjects() == 0) { | 
|  | // Check also for this case: | 
|  | // | 
|  | // typedef int f(); | 
|  | // f a; | 
|  | // | 
|  | QualType TDType = GetTypeFromParser(DS.getTypeRep()); | 
|  | isFunc = TDType->isFunctionType(); | 
|  | } | 
|  |  | 
|  | bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || | 
|  | DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && | 
|  | !isFunc); | 
|  |  | 
|  | Decl *Member; | 
|  | if (isInstField) { | 
|  | // FIXME: Check for template parameters! | 
|  | Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth, | 
|  | AS); | 
|  | assert(Member && "HandleField never returns null"); | 
|  | } else { | 
|  | Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition) | 
|  | .getAs<Decl>(); | 
|  | if (!Member) { | 
|  | if (BitWidth) DeleteExpr(BitWidth); | 
|  | return DeclPtrTy(); | 
|  | } | 
|  |  | 
|  | // Non-instance-fields can't have a bitfield. | 
|  | if (BitWidth) { | 
|  | if (Member->isInvalidDecl()) { | 
|  | // don't emit another diagnostic. | 
|  | } else if (isa<VarDecl>(Member)) { | 
|  | // C++ 9.6p3: A bit-field shall not be a static member. | 
|  | // "static member 'A' cannot be a bit-field" | 
|  | Diag(Loc, diag::err_static_not_bitfield) | 
|  | << Name << BitWidth->getSourceRange(); | 
|  | } else if (isa<TypedefDecl>(Member)) { | 
|  | // "typedef member 'x' cannot be a bit-field" | 
|  | Diag(Loc, diag::err_typedef_not_bitfield) | 
|  | << Name << BitWidth->getSourceRange(); | 
|  | } else { | 
|  | // A function typedef ("typedef int f(); f a;"). | 
|  | // C++ 9.6p3: A bit-field shall have integral or enumeration type. | 
|  | Diag(Loc, diag::err_not_integral_type_bitfield) | 
|  | << Name << cast<ValueDecl>(Member)->getType() | 
|  | << BitWidth->getSourceRange(); | 
|  | } | 
|  |  | 
|  | DeleteExpr(BitWidth); | 
|  | BitWidth = 0; | 
|  | Member->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | Member->setAccess(AS); | 
|  |  | 
|  | // If we have declared a member function template, set the access of the | 
|  | // templated declaration as well. | 
|  | if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member)) | 
|  | FunTmpl->getTemplatedDecl()->setAccess(AS); | 
|  | } | 
|  |  | 
|  | assert((Name || isInstField) && "No identifier for non-field ?"); | 
|  |  | 
|  | if (Init) | 
|  | AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false); | 
|  | if (Deleted) // FIXME: Source location is not very good. | 
|  | SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin()); | 
|  |  | 
|  | if (isInstField) { | 
|  | FieldCollector->Add(cast<FieldDecl>(Member)); | 
|  | return DeclPtrTy(); | 
|  | } | 
|  | return DeclPtrTy::make(Member); | 
|  | } | 
|  |  | 
|  | /// \brief Find the direct and/or virtual base specifiers that | 
|  | /// correspond to the given base type, for use in base initialization | 
|  | /// within a constructor. | 
|  | static bool FindBaseInitializer(Sema &SemaRef, | 
|  | CXXRecordDecl *ClassDecl, | 
|  | QualType BaseType, | 
|  | const CXXBaseSpecifier *&DirectBaseSpec, | 
|  | const CXXBaseSpecifier *&VirtualBaseSpec) { | 
|  | // First, check for a direct base class. | 
|  | DirectBaseSpec = 0; | 
|  | for (CXXRecordDecl::base_class_const_iterator Base | 
|  | = ClassDecl->bases_begin(); | 
|  | Base != ClassDecl->bases_end(); ++Base) { | 
|  | if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) { | 
|  | // We found a direct base of this type. That's what we're | 
|  | // initializing. | 
|  | DirectBaseSpec = &*Base; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for a virtual base class. | 
|  | // FIXME: We might be able to short-circuit this if we know in advance that | 
|  | // there are no virtual bases. | 
|  | VirtualBaseSpec = 0; | 
|  | if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { | 
|  | // We haven't found a base yet; search the class hierarchy for a | 
|  | // virtual base class. | 
|  | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | 
|  | /*DetectVirtual=*/false); | 
|  | if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl), | 
|  | BaseType, Paths)) { | 
|  | for (CXXBasePaths::paths_iterator Path = Paths.begin(); | 
|  | Path != Paths.end(); ++Path) { | 
|  | if (Path->back().Base->isVirtual()) { | 
|  | VirtualBaseSpec = Path->back().Base; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return DirectBaseSpec || VirtualBaseSpec; | 
|  | } | 
|  |  | 
|  | /// ActOnMemInitializer - Handle a C++ member initializer. | 
|  | Sema::MemInitResult | 
|  | Sema::ActOnMemInitializer(DeclPtrTy ConstructorD, | 
|  | Scope *S, | 
|  | const CXXScopeSpec &SS, | 
|  | IdentifierInfo *MemberOrBase, | 
|  | TypeTy *TemplateTypeTy, | 
|  | SourceLocation IdLoc, | 
|  | SourceLocation LParenLoc, | 
|  | ExprTy **Args, unsigned NumArgs, | 
|  | SourceLocation *CommaLocs, | 
|  | SourceLocation RParenLoc) { | 
|  | if (!ConstructorD) | 
|  | return true; | 
|  |  | 
|  | AdjustDeclIfTemplate(ConstructorD); | 
|  |  | 
|  | CXXConstructorDecl *Constructor | 
|  | = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>()); | 
|  | if (!Constructor) { | 
|  | // The user wrote a constructor initializer on a function that is | 
|  | // not a C++ constructor. Ignore the error for now, because we may | 
|  | // have more member initializers coming; we'll diagnose it just | 
|  | // once in ActOnMemInitializers. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | CXXRecordDecl *ClassDecl = Constructor->getParent(); | 
|  |  | 
|  | // C++ [class.base.init]p2: | 
|  | //   Names in a mem-initializer-id are looked up in the scope of the | 
|  | //   constructor’s class and, if not found in that scope, are looked | 
|  | //   up in the scope containing the constructor’s | 
|  | //   definition. [Note: if the constructor’s class contains a member | 
|  | //   with the same name as a direct or virtual base class of the | 
|  | //   class, a mem-initializer-id naming the member or base class and | 
|  | //   composed of a single identifier refers to the class member. A | 
|  | //   mem-initializer-id for the hidden base class may be specified | 
|  | //   using a qualified name. ] | 
|  | if (!SS.getScopeRep() && !TemplateTypeTy) { | 
|  | // Look for a member, first. | 
|  | FieldDecl *Member = 0; | 
|  | DeclContext::lookup_result Result | 
|  | = ClassDecl->lookup(MemberOrBase); | 
|  | if (Result.first != Result.second) | 
|  | Member = dyn_cast<FieldDecl>(*Result.first); | 
|  |  | 
|  | // FIXME: Handle members of an anonymous union. | 
|  |  | 
|  | if (Member) | 
|  | return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc, | 
|  | LParenLoc, RParenLoc); | 
|  | } | 
|  | // It didn't name a member, so see if it names a class. | 
|  | QualType BaseType; | 
|  | TypeSourceInfo *TInfo = 0; | 
|  |  | 
|  | if (TemplateTypeTy) { | 
|  | BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); | 
|  | } else { | 
|  | LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); | 
|  | LookupParsedName(R, S, &SS); | 
|  |  | 
|  | TypeDecl *TyD = R.getAsSingle<TypeDecl>(); | 
|  | if (!TyD) { | 
|  | if (R.isAmbiguous()) return true; | 
|  |  | 
|  | // If no results were found, try to correct typos. | 
|  | if (R.empty() && | 
|  | CorrectTypo(R, S, &SS, ClassDecl) && R.isSingleResult()) { | 
|  | if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) { | 
|  | if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) { | 
|  | // We have found a non-static data member with a similar | 
|  | // name to what was typed; complain and initialize that | 
|  | // member. | 
|  | Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest) | 
|  | << MemberOrBase << true << R.getLookupName() | 
|  | << CodeModificationHint::CreateReplacement(R.getNameLoc(), | 
|  | R.getLookupName().getAsString()); | 
|  | Diag(Member->getLocation(), diag::note_previous_decl) | 
|  | << Member->getDeclName(); | 
|  |  | 
|  | return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc, | 
|  | LParenLoc, RParenLoc); | 
|  | } | 
|  | } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) { | 
|  | const CXXBaseSpecifier *DirectBaseSpec; | 
|  | const CXXBaseSpecifier *VirtualBaseSpec; | 
|  | if (FindBaseInitializer(*this, ClassDecl, | 
|  | Context.getTypeDeclType(Type), | 
|  | DirectBaseSpec, VirtualBaseSpec)) { | 
|  | // We have found a direct or virtual base class with a | 
|  | // similar name to what was typed; complain and initialize | 
|  | // that base class. | 
|  | Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest) | 
|  | << MemberOrBase << false << R.getLookupName() | 
|  | << CodeModificationHint::CreateReplacement(R.getNameLoc(), | 
|  | R.getLookupName().getAsString()); | 
|  |  | 
|  | const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec | 
|  | : VirtualBaseSpec; | 
|  | Diag(BaseSpec->getSourceRange().getBegin(), | 
|  | diag::note_base_class_specified_here) | 
|  | << BaseSpec->getType() | 
|  | << BaseSpec->getSourceRange(); | 
|  |  | 
|  | TyD = Type; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!TyD) { | 
|  | Diag(IdLoc, diag::err_mem_init_not_member_or_class) | 
|  | << MemberOrBase << SourceRange(IdLoc, RParenLoc); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | BaseType = Context.getTypeDeclType(TyD); | 
|  | if (SS.isSet()) { | 
|  | NestedNameSpecifier *Qualifier = | 
|  | static_cast<NestedNameSpecifier*>(SS.getScopeRep()); | 
|  |  | 
|  | // FIXME: preserve source range information | 
|  | BaseType = Context.getQualifiedNameType(Qualifier, BaseType); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!TInfo) | 
|  | TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); | 
|  |  | 
|  | return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs, | 
|  | LParenLoc, RParenLoc, ClassDecl); | 
|  | } | 
|  |  | 
|  | /// Checks an initializer expression for use of uninitialized fields, such as | 
|  | /// containing the field that is being initialized. Returns true if there is an | 
|  | /// uninitialized field was used an updates the SourceLocation parameter; false | 
|  | /// otherwise. | 
|  | static bool InitExprContainsUninitializedFields(const Stmt* S, | 
|  | const FieldDecl* LhsField, | 
|  | SourceLocation* L) { | 
|  | const MemberExpr* ME = dyn_cast<MemberExpr>(S); | 
|  | if (ME) { | 
|  | const NamedDecl* RhsField = ME->getMemberDecl(); | 
|  | if (RhsField == LhsField) { | 
|  | // Initializing a field with itself. Throw a warning. | 
|  | // But wait; there are exceptions! | 
|  | // Exception #1:  The field may not belong to this record. | 
|  | // e.g. Foo(const Foo& rhs) : A(rhs.A) {} | 
|  | const Expr* base = ME->getBase(); | 
|  | if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) { | 
|  | // Even though the field matches, it does not belong to this record. | 
|  | return false; | 
|  | } | 
|  | // None of the exceptions triggered; return true to indicate an | 
|  | // uninitialized field was used. | 
|  | *L = ME->getMemberLoc(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | bool found = false; | 
|  | for (Stmt::const_child_iterator it = S->child_begin(); | 
|  | it != S->child_end() && found == false; | 
|  | ++it) { | 
|  | if (isa<CallExpr>(S)) { | 
|  | // Do not descend into function calls or constructors, as the use | 
|  | // of an uninitialized field may be valid. One would have to inspect | 
|  | // the contents of the function/ctor to determine if it is safe or not. | 
|  | // i.e. Pass-by-value is never safe, but pass-by-reference and pointers | 
|  | // may be safe, depending on what the function/ctor does. | 
|  | continue; | 
|  | } | 
|  | found = InitExprContainsUninitializedFields(*it, LhsField, L); | 
|  | } | 
|  | return found; | 
|  | } | 
|  |  | 
|  | Sema::MemInitResult | 
|  | Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args, | 
|  | unsigned NumArgs, SourceLocation IdLoc, | 
|  | SourceLocation LParenLoc, | 
|  | SourceLocation RParenLoc) { | 
|  | // FIXME: CXXBaseOrMemberInitializer should only contain a single | 
|  | // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary. | 
|  | ExprTemporaries.clear(); | 
|  |  | 
|  | // Diagnose value-uses of fields to initialize themselves, e.g. | 
|  | //   foo(foo) | 
|  | // where foo is not also a parameter to the constructor. | 
|  | // TODO: implement -Wuninitialized and fold this into that framework. | 
|  | for (unsigned i = 0; i < NumArgs; ++i) { | 
|  | SourceLocation L; | 
|  | if (InitExprContainsUninitializedFields(Args[i], Member, &L)) { | 
|  | // FIXME: Return true in the case when other fields are used before being | 
|  | // uninitialized. For example, let this field be the i'th field. When | 
|  | // initializing the i'th field, throw a warning if any of the >= i'th | 
|  | // fields are used, as they are not yet initialized. | 
|  | // Right now we are only handling the case where the i'th field uses | 
|  | // itself in its initializer. | 
|  | Diag(L, diag::warn_field_is_uninit); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HasDependentArg = false; | 
|  | for (unsigned i = 0; i < NumArgs; i++) | 
|  | HasDependentArg |= Args[i]->isTypeDependent(); | 
|  |  | 
|  | CXXConstructorDecl *C = 0; | 
|  | QualType FieldType = Member->getType(); | 
|  | if (const ArrayType *Array = Context.getAsArrayType(FieldType)) | 
|  | FieldType = Array->getElementType(); | 
|  | ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this); | 
|  | if (FieldType->isDependentType()) { | 
|  | // Can't check init for dependent type. | 
|  | } else if (FieldType->isRecordType()) { | 
|  | // Member is a record (struct/union/class), so pass the initializer | 
|  | // arguments down to the record's constructor. | 
|  | if (!HasDependentArg) { | 
|  | C = PerformInitializationByConstructor(FieldType, | 
|  | MultiExprArg(*this, | 
|  | (void**)Args, | 
|  | NumArgs), | 
|  | IdLoc, | 
|  | SourceRange(IdLoc, RParenLoc), | 
|  | Member->getDeclName(), | 
|  | InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc), | 
|  | ConstructorArgs); | 
|  |  | 
|  | if (C) { | 
|  | // Take over the constructor arguments as our own. | 
|  | NumArgs = ConstructorArgs.size(); | 
|  | Args = (Expr **)ConstructorArgs.take(); | 
|  | } | 
|  | } | 
|  | } else if (NumArgs != 1 && NumArgs != 0) { | 
|  | // The member type is not a record type (or an array of record | 
|  | // types), so it can be only be default- or copy-initialized. | 
|  | return Diag(IdLoc, diag::err_mem_initializer_mismatch) | 
|  | << Member->getDeclName() << SourceRange(IdLoc, RParenLoc); | 
|  | } else if (!HasDependentArg) { | 
|  | Expr *NewExp; | 
|  | if (NumArgs == 0) { | 
|  | if (FieldType->isReferenceType()) { | 
|  | Diag(IdLoc, diag::err_null_intialized_reference_member) | 
|  | << Member->getDeclName(); | 
|  | return Diag(Member->getLocation(), diag::note_declared_at); | 
|  | } | 
|  | NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc); | 
|  | NumArgs = 1; | 
|  | } | 
|  | else | 
|  | NewExp = (Expr*)Args[0]; | 
|  | if (!Member->isInvalidDecl() && | 
|  | PerformCopyInitialization(NewExp, FieldType, AA_Passing)) | 
|  | return true; | 
|  | Args[0] = NewExp; | 
|  | } | 
|  |  | 
|  | // FIXME: CXXBaseOrMemberInitializer should only contain a single | 
|  | // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary. | 
|  | ExprTemporaries.clear(); | 
|  |  | 
|  | // FIXME: Perform direct initialization of the member. | 
|  | return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc, | 
|  | C, LParenLoc, (Expr **)Args, | 
|  | NumArgs, RParenLoc); | 
|  | } | 
|  |  | 
|  | Sema::MemInitResult | 
|  | Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, | 
|  | Expr **Args, unsigned NumArgs, | 
|  | SourceLocation LParenLoc, SourceLocation RParenLoc, | 
|  | CXXRecordDecl *ClassDecl) { | 
|  | bool HasDependentArg = false; | 
|  | for (unsigned i = 0; i < NumArgs; i++) | 
|  | HasDependentArg |= Args[i]->isTypeDependent(); | 
|  |  | 
|  | SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin(); | 
|  | if (!BaseType->isDependentType()) { | 
|  | if (!BaseType->isRecordType()) | 
|  | return Diag(BaseLoc, diag::err_base_init_does_not_name_class) | 
|  | << BaseType << BaseTInfo->getTypeLoc().getSourceRange(); | 
|  |  | 
|  | // C++ [class.base.init]p2: | 
|  | //   [...] Unless the mem-initializer-id names a nonstatic data | 
|  | //   member of the constructor’s class or a direct or virtual base | 
|  | //   of that class, the mem-initializer is ill-formed. A | 
|  | //   mem-initializer-list can initialize a base class using any | 
|  | //   name that denotes that base class type. | 
|  |  | 
|  | // Check for direct and virtual base classes. | 
|  | const CXXBaseSpecifier *DirectBaseSpec = 0; | 
|  | const CXXBaseSpecifier *VirtualBaseSpec = 0; | 
|  | FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, | 
|  | VirtualBaseSpec); | 
|  |  | 
|  | // C++ [base.class.init]p2: | 
|  | //   If a mem-initializer-id is ambiguous because it designates both | 
|  | //   a direct non-virtual base class and an inherited virtual base | 
|  | //   class, the mem-initializer is ill-formed. | 
|  | if (DirectBaseSpec && VirtualBaseSpec) | 
|  | return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) | 
|  | << BaseType << BaseTInfo->getTypeLoc().getSourceRange(); | 
|  | // C++ [base.class.init]p2: | 
|  | // Unless the mem-initializer-id names a nonstatic data membeer of the | 
|  | // constructor's class ot a direst or virtual base of that class, the | 
|  | // mem-initializer is ill-formed. | 
|  | if (!DirectBaseSpec && !VirtualBaseSpec) | 
|  | return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) | 
|  | << BaseType << ClassDecl->getNameAsCString() | 
|  | << BaseTInfo->getTypeLoc().getSourceRange(); | 
|  | } | 
|  |  | 
|  | CXXConstructorDecl *C = 0; | 
|  | ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this); | 
|  | if (!BaseType->isDependentType() && !HasDependentArg) { | 
|  | DeclarationName Name = Context.DeclarationNames.getCXXConstructorName( | 
|  | Context.getCanonicalType(BaseType).getUnqualifiedType()); | 
|  |  | 
|  | C = PerformInitializationByConstructor(BaseType, | 
|  | MultiExprArg(*this, | 
|  | (void**)Args, NumArgs), | 
|  | BaseLoc, | 
|  | SourceRange(BaseLoc, RParenLoc), | 
|  | Name, | 
|  | InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc), | 
|  | ConstructorArgs); | 
|  | if (C) { | 
|  | // Take over the constructor arguments as our own. | 
|  | NumArgs = ConstructorArgs.size(); | 
|  | Args = (Expr **)ConstructorArgs.take(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: CXXBaseOrMemberInitializer should only contain a single | 
|  | // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary. | 
|  | ExprTemporaries.clear(); | 
|  |  | 
|  | return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo, C, | 
|  | LParenLoc, (Expr **)Args, | 
|  | NumArgs, RParenLoc); | 
|  | } | 
|  |  | 
|  | bool | 
|  | Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor, | 
|  | CXXBaseOrMemberInitializer **Initializers, | 
|  | unsigned NumInitializers, | 
|  | bool IsImplicitConstructor) { | 
|  | // We need to build the initializer AST according to order of construction | 
|  | // and not what user specified in the Initializers list. | 
|  | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext()); | 
|  | llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit; | 
|  | llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields; | 
|  | bool HasDependentBaseInit = false; | 
|  | bool HadError = false; | 
|  |  | 
|  | for (unsigned i = 0; i < NumInitializers; i++) { | 
|  | CXXBaseOrMemberInitializer *Member = Initializers[i]; | 
|  | if (Member->isBaseInitializer()) { | 
|  | if (Member->getBaseClass()->isDependentType()) | 
|  | HasDependentBaseInit = true; | 
|  | AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; | 
|  | } else { | 
|  | AllBaseFields[Member->getMember()] = Member; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (HasDependentBaseInit) { | 
|  | // FIXME. This does not preserve the ordering of the initializers. | 
|  | // Try (with -Wreorder) | 
|  | // template<class X> struct A {}; | 
|  | // template<class X> struct B : A<X> { | 
|  | //   B() : x1(10), A<X>() {} | 
|  | //   int x1; | 
|  | // }; | 
|  | // B<int> x; | 
|  | // On seeing one dependent type, we should essentially exit this routine | 
|  | // while preserving user-declared initializer list. When this routine is | 
|  | // called during instantiatiation process, this routine will rebuild the | 
|  | // ordered initializer list correctly. | 
|  |  | 
|  | // If we have a dependent base initialization, we can't determine the | 
|  | // association between initializers and bases; just dump the known | 
|  | // initializers into the list, and don't try to deal with other bases. | 
|  | for (unsigned i = 0; i < NumInitializers; i++) { | 
|  | CXXBaseOrMemberInitializer *Member = Initializers[i]; | 
|  | if (Member->isBaseInitializer()) | 
|  | AllToInit.push_back(Member); | 
|  | } | 
|  | } else { | 
|  | // Push virtual bases before others. | 
|  | for (CXXRecordDecl::base_class_iterator VBase = | 
|  | ClassDecl->vbases_begin(), | 
|  | E = ClassDecl->vbases_end(); VBase != E; ++VBase) { | 
|  | if (VBase->getType()->isDependentType()) | 
|  | continue; | 
|  | if (CXXBaseOrMemberInitializer *Value | 
|  | = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) { | 
|  | AllToInit.push_back(Value); | 
|  | } | 
|  | else { | 
|  | CXXRecordDecl *VBaseDecl = | 
|  | cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl()); | 
|  | assert(VBaseDecl && "SetBaseOrMemberInitializers - VBaseDecl null"); | 
|  | CXXConstructorDecl *Ctor = VBaseDecl->getDefaultConstructor(Context); | 
|  | if (!Ctor) { | 
|  | Diag(Constructor->getLocation(), diag::err_missing_default_ctor) | 
|  | << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl) | 
|  | << 0 << VBase->getType(); | 
|  | Diag(VBaseDecl->getLocation(), diag::note_previous_decl) | 
|  | << Context.getTagDeclType(VBaseDecl); | 
|  | HadError = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this); | 
|  | if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0), | 
|  | Constructor->getLocation(), CtorArgs)) | 
|  | continue; | 
|  |  | 
|  | MarkDeclarationReferenced(Constructor->getLocation(), Ctor); | 
|  |  | 
|  | // FIXME: CXXBaseOrMemberInitializer should only contain a single | 
|  | // subexpression so we can wrap it in a CXXExprWithTemporaries if | 
|  | // necessary. | 
|  | // FIXME: Is there any better source-location information we can give? | 
|  | ExprTemporaries.clear(); | 
|  | CXXBaseOrMemberInitializer *Member = | 
|  | new (Context) CXXBaseOrMemberInitializer(Context, | 
|  | Context.getTrivialTypeSourceInfo(VBase->getType(), | 
|  | SourceLocation()), | 
|  | Ctor, | 
|  | SourceLocation(), | 
|  | CtorArgs.takeAs<Expr>(), | 
|  | CtorArgs.size(), | 
|  | SourceLocation()); | 
|  | AllToInit.push_back(Member); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (CXXRecordDecl::base_class_iterator Base = | 
|  | ClassDecl->bases_begin(), | 
|  | E = ClassDecl->bases_end(); Base != E; ++Base) { | 
|  | // Virtuals are in the virtual base list and already constructed. | 
|  | if (Base->isVirtual()) | 
|  | continue; | 
|  | // Skip dependent types. | 
|  | if (Base->getType()->isDependentType()) | 
|  | continue; | 
|  | if (CXXBaseOrMemberInitializer *Value | 
|  | = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) { | 
|  | AllToInit.push_back(Value); | 
|  | } | 
|  | else { | 
|  | CXXRecordDecl *BaseDecl = | 
|  | cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
|  | assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null"); | 
|  | CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context); | 
|  | if (!Ctor) { | 
|  | Diag(Constructor->getLocation(), diag::err_missing_default_ctor) | 
|  | << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl) | 
|  | << 0 << Base->getType(); | 
|  | Diag(BaseDecl->getLocation(), diag::note_previous_decl) | 
|  | << Context.getTagDeclType(BaseDecl); | 
|  | HadError = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this); | 
|  | if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0), | 
|  | Constructor->getLocation(), CtorArgs)) | 
|  | continue; | 
|  |  | 
|  | MarkDeclarationReferenced(Constructor->getLocation(), Ctor); | 
|  |  | 
|  | // FIXME: CXXBaseOrMemberInitializer should only contain a single | 
|  | // subexpression so we can wrap it in a CXXExprWithTemporaries if | 
|  | // necessary. | 
|  | // FIXME: Is there any better source-location information we can give? | 
|  | ExprTemporaries.clear(); | 
|  | CXXBaseOrMemberInitializer *Member = | 
|  | new (Context) CXXBaseOrMemberInitializer(Context, | 
|  | Context.getTrivialTypeSourceInfo(Base->getType(), | 
|  | SourceLocation()), | 
|  | Ctor, | 
|  | SourceLocation(), | 
|  | CtorArgs.takeAs<Expr>(), | 
|  | CtorArgs.size(), | 
|  | SourceLocation()); | 
|  | AllToInit.push_back(Member); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // non-static data members. | 
|  | for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), | 
|  | E = ClassDecl->field_end(); Field != E; ++Field) { | 
|  | if ((*Field)->isAnonymousStructOrUnion()) { | 
|  | if (const RecordType *FieldClassType = | 
|  | Field->getType()->getAs<RecordType>()) { | 
|  | CXXRecordDecl *FieldClassDecl | 
|  | = cast<CXXRecordDecl>(FieldClassType->getDecl()); | 
|  | for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(), | 
|  | EA = FieldClassDecl->field_end(); FA != EA; FA++) { | 
|  | if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) { | 
|  | // 'Member' is the anonymous union field and 'AnonUnionMember' is | 
|  | // set to the anonymous union data member used in the initializer | 
|  | // list. | 
|  | Value->setMember(*Field); | 
|  | Value->setAnonUnionMember(*FA); | 
|  | AllToInit.push_back(Value); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | continue; | 
|  | } | 
|  | if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) { | 
|  | AllToInit.push_back(Value); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if ((*Field)->getType()->isDependentType()) | 
|  | continue; | 
|  |  | 
|  | QualType FT = Context.getBaseElementType((*Field)->getType()); | 
|  | if (const RecordType* RT = FT->getAs<RecordType>()) { | 
|  | CXXConstructorDecl *Ctor = | 
|  | cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context); | 
|  | if (!Ctor) { | 
|  | Diag(Constructor->getLocation(), diag::err_missing_default_ctor) | 
|  | << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl) | 
|  | << 1 << (*Field)->getDeclName(); | 
|  | Diag(Field->getLocation(), diag::note_field_decl); | 
|  | Diag(RT->getDecl()->getLocation(), diag::note_previous_decl) | 
|  | << Context.getTagDeclType(RT->getDecl()); | 
|  | HadError = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (FT.isConstQualified() && Ctor->isTrivial()) { | 
|  | Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor) | 
|  | << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl) | 
|  | << 1 << (*Field)->getDeclName(); | 
|  | Diag((*Field)->getLocation(), diag::note_declared_at); | 
|  | HadError = true; | 
|  | } | 
|  |  | 
|  | // Don't create initializers for trivial constructors, since they don't | 
|  | // actually need to be run. | 
|  | if (Ctor->isTrivial()) | 
|  | continue; | 
|  |  | 
|  | ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this); | 
|  | if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0), | 
|  | Constructor->getLocation(), CtorArgs)) | 
|  | continue; | 
|  |  | 
|  | // FIXME: CXXBaseOrMemberInitializer should only contain a single | 
|  | // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary. | 
|  | ExprTemporaries.clear(); | 
|  | CXXBaseOrMemberInitializer *Member = | 
|  | new (Context) CXXBaseOrMemberInitializer(Context, | 
|  | *Field, SourceLocation(), | 
|  | Ctor, | 
|  | SourceLocation(), | 
|  | CtorArgs.takeAs<Expr>(), | 
|  | CtorArgs.size(), | 
|  | SourceLocation()); | 
|  |  | 
|  | AllToInit.push_back(Member); | 
|  | MarkDeclarationReferenced(Constructor->getLocation(), Ctor); | 
|  | } | 
|  | else if (FT->isReferenceType()) { | 
|  | Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor) | 
|  | << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl) | 
|  | << 0 << (*Field)->getDeclName(); | 
|  | Diag((*Field)->getLocation(), diag::note_declared_at); | 
|  | HadError = true; | 
|  | } | 
|  | else if (FT.isConstQualified()) { | 
|  | Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor) | 
|  | << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl) | 
|  | << 1 << (*Field)->getDeclName(); | 
|  | Diag((*Field)->getLocation(), diag::note_declared_at); | 
|  | HadError = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | NumInitializers = AllToInit.size(); | 
|  | if (NumInitializers > 0) { | 
|  | Constructor->setNumBaseOrMemberInitializers(NumInitializers); | 
|  | CXXBaseOrMemberInitializer **baseOrMemberInitializers = | 
|  | new (Context) CXXBaseOrMemberInitializer*[NumInitializers]; | 
|  |  | 
|  | Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers); | 
|  | for (unsigned Idx = 0; Idx < NumInitializers; ++Idx) | 
|  | baseOrMemberInitializers[Idx] = AllToInit[Idx]; | 
|  | } | 
|  |  | 
|  | return HadError; | 
|  | } | 
|  |  | 
|  | static void *GetKeyForTopLevelField(FieldDecl *Field) { | 
|  | // For anonymous unions, use the class declaration as the key. | 
|  | if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { | 
|  | if (RT->getDecl()->isAnonymousStructOrUnion()) | 
|  | return static_cast<void *>(RT->getDecl()); | 
|  | } | 
|  | return static_cast<void *>(Field); | 
|  | } | 
|  |  | 
|  | static void *GetKeyForBase(QualType BaseType) { | 
|  | if (const RecordType *RT = BaseType->getAs<RecordType>()) | 
|  | return (void *)RT; | 
|  |  | 
|  | assert(0 && "Unexpected base type!"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member, | 
|  | bool MemberMaybeAnon = false) { | 
|  | // For fields injected into the class via declaration of an anonymous union, | 
|  | // use its anonymous union class declaration as the unique key. | 
|  | if (Member->isMemberInitializer()) { | 
|  | FieldDecl *Field = Member->getMember(); | 
|  |  | 
|  | // After SetBaseOrMemberInitializers call, Field is the anonymous union | 
|  | // data member of the class. Data member used in the initializer list is | 
|  | // in AnonUnionMember field. | 
|  | if (MemberMaybeAnon && Field->isAnonymousStructOrUnion()) | 
|  | Field = Member->getAnonUnionMember(); | 
|  | if (Field->getDeclContext()->isRecord()) { | 
|  | RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext()); | 
|  | if (RD->isAnonymousStructOrUnion()) | 
|  | return static_cast<void *>(RD); | 
|  | } | 
|  | return static_cast<void *>(Field); | 
|  | } | 
|  |  | 
|  | return GetKeyForBase(QualType(Member->getBaseClass(), 0)); | 
|  | } | 
|  |  | 
|  | /// ActOnMemInitializers - Handle the member initializers for a constructor. | 
|  | void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl, | 
|  | SourceLocation ColonLoc, | 
|  | MemInitTy **MemInits, unsigned NumMemInits) { | 
|  | if (!ConstructorDecl) | 
|  | return; | 
|  |  | 
|  | AdjustDeclIfTemplate(ConstructorDecl); | 
|  |  | 
|  | CXXConstructorDecl *Constructor | 
|  | = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>()); | 
|  |  | 
|  | if (!Constructor) { | 
|  | Diag(ColonLoc, diag::err_only_constructors_take_base_inits); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!Constructor->isDependentContext()) { | 
|  | llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members; | 
|  | bool err = false; | 
|  | for (unsigned i = 0; i < NumMemInits; i++) { | 
|  | CXXBaseOrMemberInitializer *Member = | 
|  | static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]); | 
|  | void *KeyToMember = GetKeyForMember(Member); | 
|  | CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember]; | 
|  | if (!PrevMember) { | 
|  | PrevMember = Member; | 
|  | continue; | 
|  | } | 
|  | if (FieldDecl *Field = Member->getMember()) | 
|  | Diag(Member->getSourceLocation(), | 
|  | diag::error_multiple_mem_initialization) | 
|  | << Field->getNameAsString() | 
|  | << Member->getSourceRange(); | 
|  | else { | 
|  | Type *BaseClass = Member->getBaseClass(); | 
|  | assert(BaseClass && "ActOnMemInitializers - neither field or base"); | 
|  | Diag(Member->getSourceLocation(), | 
|  | diag::error_multiple_base_initialization) | 
|  | << QualType(BaseClass, 0) | 
|  | << Member->getSourceRange(); | 
|  | } | 
|  | Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer) | 
|  | << 0; | 
|  | err = true; | 
|  | } | 
|  |  | 
|  | if (err) | 
|  | return; | 
|  | } | 
|  |  | 
|  | SetBaseOrMemberInitializers(Constructor, | 
|  | reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits), | 
|  | NumMemInits, false); | 
|  |  | 
|  | if (Constructor->isDependentContext()) | 
|  | return; | 
|  |  | 
|  | if (Diags.getDiagnosticLevel(diag::warn_base_initialized) == | 
|  | Diagnostic::Ignored && | 
|  | Diags.getDiagnosticLevel(diag::warn_field_initialized) == | 
|  | Diagnostic::Ignored) | 
|  | return; | 
|  |  | 
|  | // Also issue warning if order of ctor-initializer list does not match order | 
|  | // of 1) base class declarations and 2) order of non-static data members. | 
|  | llvm::SmallVector<const void*, 32> AllBaseOrMembers; | 
|  |  | 
|  | CXXRecordDecl *ClassDecl | 
|  | = cast<CXXRecordDecl>(Constructor->getDeclContext()); | 
|  | // Push virtual bases before others. | 
|  | for (CXXRecordDecl::base_class_iterator VBase = | 
|  | ClassDecl->vbases_begin(), | 
|  | E = ClassDecl->vbases_end(); VBase != E; ++VBase) | 
|  | AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType())); | 
|  |  | 
|  | for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), | 
|  | E = ClassDecl->bases_end(); Base != E; ++Base) { | 
|  | // Virtuals are alread in the virtual base list and are constructed | 
|  | // first. | 
|  | if (Base->isVirtual()) | 
|  | continue; | 
|  | AllBaseOrMembers.push_back(GetKeyForBase(Base->getType())); | 
|  | } | 
|  |  | 
|  | for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), | 
|  | E = ClassDecl->field_end(); Field != E; ++Field) | 
|  | AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field)); | 
|  |  | 
|  | int Last = AllBaseOrMembers.size(); | 
|  | int curIndex = 0; | 
|  | CXXBaseOrMemberInitializer *PrevMember = 0; | 
|  | for (unsigned i = 0; i < NumMemInits; i++) { | 
|  | CXXBaseOrMemberInitializer *Member = | 
|  | static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]); | 
|  | void *MemberInCtorList = GetKeyForMember(Member, true); | 
|  |  | 
|  | for (; curIndex < Last; curIndex++) | 
|  | if (MemberInCtorList == AllBaseOrMembers[curIndex]) | 
|  | break; | 
|  | if (curIndex == Last) { | 
|  | assert(PrevMember && "Member not in member list?!"); | 
|  | // Initializer as specified in ctor-initializer list is out of order. | 
|  | // Issue a warning diagnostic. | 
|  | if (PrevMember->isBaseInitializer()) { | 
|  | // Diagnostics is for an initialized base class. | 
|  | Type *BaseClass = PrevMember->getBaseClass(); | 
|  | Diag(PrevMember->getSourceLocation(), | 
|  | diag::warn_base_initialized) | 
|  | << QualType(BaseClass, 0); | 
|  | } else { | 
|  | FieldDecl *Field = PrevMember->getMember(); | 
|  | Diag(PrevMember->getSourceLocation(), | 
|  | diag::warn_field_initialized) | 
|  | << Field->getNameAsString(); | 
|  | } | 
|  | // Also the note! | 
|  | if (FieldDecl *Field = Member->getMember()) | 
|  | Diag(Member->getSourceLocation(), | 
|  | diag::note_fieldorbase_initialized_here) << 0 | 
|  | << Field->getNameAsString(); | 
|  | else { | 
|  | Type *BaseClass = Member->getBaseClass(); | 
|  | Diag(Member->getSourceLocation(), | 
|  | diag::note_fieldorbase_initialized_here) << 1 | 
|  | << QualType(BaseClass, 0); | 
|  | } | 
|  | for (curIndex = 0; curIndex < Last; curIndex++) | 
|  | if (MemberInCtorList == AllBaseOrMembers[curIndex]) | 
|  | break; | 
|  | } | 
|  | PrevMember = Member; | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | Sema::MarkBaseAndMemberDestructorsReferenced(CXXDestructorDecl *Destructor) { | 
|  | // Ignore dependent destructors. | 
|  | if (Destructor->isDependentContext()) | 
|  | return; | 
|  |  | 
|  | CXXRecordDecl *ClassDecl = Destructor->getParent(); | 
|  |  | 
|  | // Non-static data members. | 
|  | for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(), | 
|  | E = ClassDecl->field_end(); I != E; ++I) { | 
|  | FieldDecl *Field = *I; | 
|  |  | 
|  | QualType FieldType = Context.getBaseElementType(Field->getType()); | 
|  |  | 
|  | const RecordType* RT = FieldType->getAs<RecordType>(); | 
|  | if (!RT) | 
|  | continue; | 
|  |  | 
|  | CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | if (FieldClassDecl->hasTrivialDestructor()) | 
|  | continue; | 
|  |  | 
|  | const CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context); | 
|  | MarkDeclarationReferenced(Destructor->getLocation(), | 
|  | const_cast<CXXDestructorDecl*>(Dtor)); | 
|  | } | 
|  |  | 
|  | // Bases. | 
|  | for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), | 
|  | E = ClassDecl->bases_end(); Base != E; ++Base) { | 
|  | // Ignore virtual bases. | 
|  | if (Base->isVirtual()) | 
|  | continue; | 
|  |  | 
|  | // Ignore trivial destructors. | 
|  | CXXRecordDecl *BaseClassDecl | 
|  | = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
|  | if (BaseClassDecl->hasTrivialDestructor()) | 
|  | continue; | 
|  |  | 
|  | const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context); | 
|  | MarkDeclarationReferenced(Destructor->getLocation(), | 
|  | const_cast<CXXDestructorDecl*>(Dtor)); | 
|  | } | 
|  |  | 
|  | // Virtual bases. | 
|  | for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(), | 
|  | E = ClassDecl->vbases_end(); VBase != E; ++VBase) { | 
|  | // Ignore trivial destructors. | 
|  | CXXRecordDecl *BaseClassDecl | 
|  | = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl()); | 
|  | if (BaseClassDecl->hasTrivialDestructor()) | 
|  | continue; | 
|  |  | 
|  | const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context); | 
|  | MarkDeclarationReferenced(Destructor->getLocation(), | 
|  | const_cast<CXXDestructorDecl*>(Dtor)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) { | 
|  | if (!CDtorDecl) | 
|  | return; | 
|  |  | 
|  | AdjustDeclIfTemplate(CDtorDecl); | 
|  |  | 
|  | if (CXXConstructorDecl *Constructor | 
|  | = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>())) | 
|  | SetBaseOrMemberInitializers(Constructor, 0, 0, false); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// PureVirtualMethodCollector - traverses a class and its superclasses | 
|  | /// and determines if it has any pure virtual methods. | 
|  | class PureVirtualMethodCollector { | 
|  | ASTContext &Context; | 
|  |  | 
|  | public: | 
|  | typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList; | 
|  |  | 
|  | private: | 
|  | MethodList Methods; | 
|  |  | 
|  | void Collect(const CXXRecordDecl* RD, MethodList& Methods); | 
|  |  | 
|  | public: | 
|  | PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD) | 
|  | : Context(Ctx) { | 
|  |  | 
|  | MethodList List; | 
|  | Collect(RD, List); | 
|  |  | 
|  | // Copy the temporary list to methods, and make sure to ignore any | 
|  | // null entries. | 
|  | for (size_t i = 0, e = List.size(); i != e; ++i) { | 
|  | if (List[i]) | 
|  | Methods.push_back(List[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool empty() const { return Methods.empty(); } | 
|  |  | 
|  | MethodList::const_iterator methods_begin() { return Methods.begin(); } | 
|  | MethodList::const_iterator methods_end() { return Methods.end(); } | 
|  | }; | 
|  |  | 
|  | void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD, | 
|  | MethodList& Methods) { | 
|  | // First, collect the pure virtual methods for the base classes. | 
|  | for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(), | 
|  | BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) { | 
|  | if (const RecordType *RT = Base->getType()->getAs<RecordType>()) { | 
|  | const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | if (BaseDecl && BaseDecl->isAbstract()) | 
|  | Collect(BaseDecl, Methods); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Next, zero out any pure virtual methods that this class overrides. | 
|  | typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy; | 
|  |  | 
|  | MethodSetTy OverriddenMethods; | 
|  | size_t MethodsSize = Methods.size(); | 
|  |  | 
|  | for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end(); | 
|  | i != e; ++i) { | 
|  | // Traverse the record, looking for methods. | 
|  | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) { | 
|  | // If the method is pure virtual, add it to the methods vector. | 
|  | if (MD->isPure()) | 
|  | Methods.push_back(MD); | 
|  |  | 
|  | // Record all the overridden methods in our set. | 
|  | for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(), | 
|  | E = MD->end_overridden_methods(); I != E; ++I) { | 
|  | // Keep track of the overridden methods. | 
|  | OverriddenMethods.insert(*I); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now go through the methods and zero out all the ones we know are | 
|  | // overridden. | 
|  | for (size_t i = 0, e = MethodsSize; i != e; ++i) { | 
|  | if (OverriddenMethods.count(Methods[i])) | 
|  | Methods[i] = 0; | 
|  | } | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, | 
|  | unsigned DiagID, AbstractDiagSelID SelID, | 
|  | const CXXRecordDecl *CurrentRD) { | 
|  | if (SelID == -1) | 
|  | return RequireNonAbstractType(Loc, T, | 
|  | PDiag(DiagID), CurrentRD); | 
|  | else | 
|  | return RequireNonAbstractType(Loc, T, | 
|  | PDiag(DiagID) << SelID, CurrentRD); | 
|  | } | 
|  |  | 
|  | bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, | 
|  | const PartialDiagnostic &PD, | 
|  | const CXXRecordDecl *CurrentRD) { | 
|  | if (!getLangOptions().CPlusPlus) | 
|  | return false; | 
|  |  | 
|  | if (const ArrayType *AT = Context.getAsArrayType(T)) | 
|  | return RequireNonAbstractType(Loc, AT->getElementType(), PD, | 
|  | CurrentRD); | 
|  |  | 
|  | if (const PointerType *PT = T->getAs<PointerType>()) { | 
|  | // Find the innermost pointer type. | 
|  | while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>()) | 
|  | PT = T; | 
|  |  | 
|  | if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType())) | 
|  | return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD); | 
|  | } | 
|  |  | 
|  | const RecordType *RT = T->getAs<RecordType>(); | 
|  | if (!RT) | 
|  | return false; | 
|  |  | 
|  | const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); | 
|  | if (!RD) | 
|  | return false; | 
|  |  | 
|  | if (CurrentRD && CurrentRD != RD) | 
|  | return false; | 
|  |  | 
|  | if (!RD->isAbstract()) | 
|  | return false; | 
|  |  | 
|  | Diag(Loc, PD) << RD->getDeclName(); | 
|  |  | 
|  | // Check if we've already emitted the list of pure virtual functions for this | 
|  | // class. | 
|  | if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) | 
|  | return true; | 
|  |  | 
|  | PureVirtualMethodCollector Collector(Context, RD); | 
|  |  | 
|  | for (PureVirtualMethodCollector::MethodList::const_iterator I = | 
|  | Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) { | 
|  | const CXXMethodDecl *MD = *I; | 
|  |  | 
|  | Diag(MD->getLocation(), diag::note_pure_virtual_function) << | 
|  | MD->getDeclName(); | 
|  | } | 
|  |  | 
|  | if (!PureVirtualClassDiagSet) | 
|  | PureVirtualClassDiagSet.reset(new RecordDeclSetTy); | 
|  | PureVirtualClassDiagSet->insert(RD); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class AbstractClassUsageDiagnoser | 
|  | : public DeclVisitor<AbstractClassUsageDiagnoser, bool> { | 
|  | Sema &SemaRef; | 
|  | CXXRecordDecl *AbstractClass; | 
|  |  | 
|  | bool VisitDeclContext(const DeclContext *DC) { | 
|  | bool Invalid = false; | 
|  |  | 
|  | for (CXXRecordDecl::decl_iterator I = DC->decls_begin(), | 
|  | E = DC->decls_end(); I != E; ++I) | 
|  | Invalid |= Visit(*I); | 
|  |  | 
|  | return Invalid; | 
|  | } | 
|  |  | 
|  | public: | 
|  | AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac) | 
|  | : SemaRef(SemaRef), AbstractClass(ac) { | 
|  | Visit(SemaRef.Context.getTranslationUnitDecl()); | 
|  | } | 
|  |  | 
|  | bool VisitFunctionDecl(const FunctionDecl *FD) { | 
|  | if (FD->isThisDeclarationADefinition()) { | 
|  | // No need to do the check if we're in a definition, because it requires | 
|  | // that the return/param types are complete. | 
|  | // because that requires | 
|  | return VisitDeclContext(FD); | 
|  | } | 
|  |  | 
|  | // Check the return type. | 
|  | QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType(); | 
|  | bool Invalid = | 
|  | SemaRef.RequireNonAbstractType(FD->getLocation(), RTy, | 
|  | diag::err_abstract_type_in_decl, | 
|  | Sema::AbstractReturnType, | 
|  | AbstractClass); | 
|  |  | 
|  | for (FunctionDecl::param_const_iterator I = FD->param_begin(), | 
|  | E = FD->param_end(); I != E; ++I) { | 
|  | const ParmVarDecl *VD = *I; | 
|  | Invalid |= | 
|  | SemaRef.RequireNonAbstractType(VD->getLocation(), | 
|  | VD->getOriginalType(), | 
|  | diag::err_abstract_type_in_decl, | 
|  | Sema::AbstractParamType, | 
|  | AbstractClass); | 
|  | } | 
|  |  | 
|  | return Invalid; | 
|  | } | 
|  |  | 
|  | bool VisitDecl(const Decl* D) { | 
|  | if (const DeclContext *DC = dyn_cast<DeclContext>(D)) | 
|  | return VisitDeclContext(DC); | 
|  |  | 
|  | return false; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// \brief Perform semantic checks on a class definition that has been | 
|  | /// completing, introducing implicitly-declared members, checking for | 
|  | /// abstract types, etc. | 
|  | void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) { | 
|  | if (!Record || Record->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | if (!Record->isDependentType()) | 
|  | AddImplicitlyDeclaredMembersToClass(Record); | 
|  |  | 
|  | if (Record->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | if (!Record->isAbstract()) { | 
|  | // Collect all the pure virtual methods and see if this is an abstract | 
|  | // class after all. | 
|  | PureVirtualMethodCollector Collector(Context, Record); | 
|  | if (!Collector.empty()) | 
|  | Record->setAbstract(true); | 
|  | } | 
|  |  | 
|  | if (Record->isAbstract()) | 
|  | (void)AbstractClassUsageDiagnoser(*this, Record); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc, | 
|  | DeclPtrTy TagDecl, | 
|  | SourceLocation LBrac, | 
|  | SourceLocation RBrac) { | 
|  | if (!TagDecl) | 
|  | return; | 
|  |  | 
|  | AdjustDeclIfTemplate(TagDecl); | 
|  |  | 
|  | ActOnFields(S, RLoc, TagDecl, | 
|  | (DeclPtrTy*)FieldCollector->getCurFields(), | 
|  | FieldCollector->getCurNumFields(), LBrac, RBrac, 0); | 
|  |  | 
|  | CheckCompletedCXXClass( | 
|  | dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>())); | 
|  | } | 
|  |  | 
|  | /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared | 
|  | /// special functions, such as the default constructor, copy | 
|  | /// constructor, or destructor, to the given C++ class (C++ | 
|  | /// [special]p1).  This routine can only be executed just before the | 
|  | /// definition of the class is complete. | 
|  | void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { | 
|  | CanQualType ClassType | 
|  | = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); | 
|  |  | 
|  | // FIXME: Implicit declarations have exception specifications, which are | 
|  | // the union of the specifications of the implicitly called functions. | 
|  |  | 
|  | if (!ClassDecl->hasUserDeclaredConstructor()) { | 
|  | // C++ [class.ctor]p5: | 
|  | //   A default constructor for a class X is a constructor of class X | 
|  | //   that can be called without an argument. If there is no | 
|  | //   user-declared constructor for class X, a default constructor is | 
|  | //   implicitly declared. An implicitly-declared default constructor | 
|  | //   is an inline public member of its class. | 
|  | DeclarationName Name | 
|  | = Context.DeclarationNames.getCXXConstructorName(ClassType); | 
|  | CXXConstructorDecl *DefaultCon = | 
|  | CXXConstructorDecl::Create(Context, ClassDecl, | 
|  | ClassDecl->getLocation(), Name, | 
|  | Context.getFunctionType(Context.VoidTy, | 
|  | 0, 0, false, 0), | 
|  | /*TInfo=*/0, | 
|  | /*isExplicit=*/false, | 
|  | /*isInline=*/true, | 
|  | /*isImplicitlyDeclared=*/true); | 
|  | DefaultCon->setAccess(AS_public); | 
|  | DefaultCon->setImplicit(); | 
|  | DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor()); | 
|  | ClassDecl->addDecl(DefaultCon); | 
|  | } | 
|  |  | 
|  | if (!ClassDecl->hasUserDeclaredCopyConstructor()) { | 
|  | // C++ [class.copy]p4: | 
|  | //   If the class definition does not explicitly declare a copy | 
|  | //   constructor, one is declared implicitly. | 
|  |  | 
|  | // C++ [class.copy]p5: | 
|  | //   The implicitly-declared copy constructor for a class X will | 
|  | //   have the form | 
|  | // | 
|  | //       X::X(const X&) | 
|  | // | 
|  | //   if | 
|  | bool HasConstCopyConstructor = true; | 
|  |  | 
|  | //     -- each direct or virtual base class B of X has a copy | 
|  | //        constructor whose first parameter is of type const B& or | 
|  | //        const volatile B&, and | 
|  | for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); | 
|  | HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) { | 
|  | const CXXRecordDecl *BaseClassDecl | 
|  | = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
|  | HasConstCopyConstructor | 
|  | = BaseClassDecl->hasConstCopyConstructor(Context); | 
|  | } | 
|  |  | 
|  | //     -- for all the nonstatic data members of X that are of a | 
|  | //        class type M (or array thereof), each such class type | 
|  | //        has a copy constructor whose first parameter is of type | 
|  | //        const M& or const volatile M&. | 
|  | for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(); | 
|  | HasConstCopyConstructor && Field != ClassDecl->field_end(); | 
|  | ++Field) { | 
|  | QualType FieldType = (*Field)->getType(); | 
|  | if (const ArrayType *Array = Context.getAsArrayType(FieldType)) | 
|  | FieldType = Array->getElementType(); | 
|  | if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { | 
|  | const CXXRecordDecl *FieldClassDecl | 
|  | = cast<CXXRecordDecl>(FieldClassType->getDecl()); | 
|  | HasConstCopyConstructor | 
|  | = FieldClassDecl->hasConstCopyConstructor(Context); | 
|  | } | 
|  | } | 
|  |  | 
|  | //   Otherwise, the implicitly declared copy constructor will have | 
|  | //   the form | 
|  | // | 
|  | //       X::X(X&) | 
|  | QualType ArgType = ClassType; | 
|  | if (HasConstCopyConstructor) | 
|  | ArgType = ArgType.withConst(); | 
|  | ArgType = Context.getLValueReferenceType(ArgType); | 
|  |  | 
|  | //   An implicitly-declared copy constructor is an inline public | 
|  | //   member of its class. | 
|  | DeclarationName Name | 
|  | = Context.DeclarationNames.getCXXConstructorName(ClassType); | 
|  | CXXConstructorDecl *CopyConstructor | 
|  | = CXXConstructorDecl::Create(Context, ClassDecl, | 
|  | ClassDecl->getLocation(), Name, | 
|  | Context.getFunctionType(Context.VoidTy, | 
|  | &ArgType, 1, | 
|  | false, 0), | 
|  | /*TInfo=*/0, | 
|  | /*isExplicit=*/false, | 
|  | /*isInline=*/true, | 
|  | /*isImplicitlyDeclared=*/true); | 
|  | CopyConstructor->setAccess(AS_public); | 
|  | CopyConstructor->setImplicit(); | 
|  | CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor()); | 
|  |  | 
|  | // Add the parameter to the constructor. | 
|  | ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor, | 
|  | ClassDecl->getLocation(), | 
|  | /*IdentifierInfo=*/0, | 
|  | ArgType, /*TInfo=*/0, | 
|  | VarDecl::None, 0); | 
|  | CopyConstructor->setParams(Context, &FromParam, 1); | 
|  | ClassDecl->addDecl(CopyConstructor); | 
|  | } | 
|  |  | 
|  | if (!ClassDecl->hasUserDeclaredCopyAssignment()) { | 
|  | // Note: The following rules are largely analoguous to the copy | 
|  | // constructor rules. Note that virtual bases are not taken into account | 
|  | // for determining the argument type of the operator. Note also that | 
|  | // operators taking an object instead of a reference are allowed. | 
|  | // | 
|  | // C++ [class.copy]p10: | 
|  | //   If the class definition does not explicitly declare a copy | 
|  | //   assignment operator, one is declared implicitly. | 
|  | //   The implicitly-defined copy assignment operator for a class X | 
|  | //   will have the form | 
|  | // | 
|  | //       X& X::operator=(const X&) | 
|  | // | 
|  | //   if | 
|  | bool HasConstCopyAssignment = true; | 
|  |  | 
|  | //       -- each direct base class B of X has a copy assignment operator | 
|  | //          whose parameter is of type const B&, const volatile B& or B, | 
|  | //          and | 
|  | for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); | 
|  | HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) { | 
|  | assert(!Base->getType()->isDependentType() && | 
|  | "Cannot generate implicit members for class with dependent bases."); | 
|  | const CXXRecordDecl *BaseClassDecl | 
|  | = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
|  | const CXXMethodDecl *MD = 0; | 
|  | HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context, | 
|  | MD); | 
|  | } | 
|  |  | 
|  | //       -- for all the nonstatic data members of X that are of a class | 
|  | //          type M (or array thereof), each such class type has a copy | 
|  | //          assignment operator whose parameter is of type const M&, | 
|  | //          const volatile M& or M. | 
|  | for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(); | 
|  | HasConstCopyAssignment && Field != ClassDecl->field_end(); | 
|  | ++Field) { | 
|  | QualType FieldType = (*Field)->getType(); | 
|  | if (const ArrayType *Array = Context.getAsArrayType(FieldType)) | 
|  | FieldType = Array->getElementType(); | 
|  | if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { | 
|  | const CXXRecordDecl *FieldClassDecl | 
|  | = cast<CXXRecordDecl>(FieldClassType->getDecl()); | 
|  | const CXXMethodDecl *MD = 0; | 
|  | HasConstCopyAssignment | 
|  | = FieldClassDecl->hasConstCopyAssignment(Context, MD); | 
|  | } | 
|  | } | 
|  |  | 
|  | //   Otherwise, the implicitly declared copy assignment operator will | 
|  | //   have the form | 
|  | // | 
|  | //       X& X::operator=(X&) | 
|  | QualType ArgType = ClassType; | 
|  | QualType RetType = Context.getLValueReferenceType(ArgType); | 
|  | if (HasConstCopyAssignment) | 
|  | ArgType = ArgType.withConst(); | 
|  | ArgType = Context.getLValueReferenceType(ArgType); | 
|  |  | 
|  | //   An implicitly-declared copy assignment operator is an inline public | 
|  | //   member of its class. | 
|  | DeclarationName Name = | 
|  | Context.DeclarationNames.getCXXOperatorName(OO_Equal); | 
|  | CXXMethodDecl *CopyAssignment = | 
|  | CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name, | 
|  | Context.getFunctionType(RetType, &ArgType, 1, | 
|  | false, 0), | 
|  | /*TInfo=*/0, /*isStatic=*/false, /*isInline=*/true); | 
|  | CopyAssignment->setAccess(AS_public); | 
|  | CopyAssignment->setImplicit(); | 
|  | CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment()); | 
|  | CopyAssignment->setCopyAssignment(true); | 
|  |  | 
|  | // Add the parameter to the operator. | 
|  | ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, | 
|  | ClassDecl->getLocation(), | 
|  | /*IdentifierInfo=*/0, | 
|  | ArgType, /*TInfo=*/0, | 
|  | VarDecl::None, 0); | 
|  | CopyAssignment->setParams(Context, &FromParam, 1); | 
|  |  | 
|  | // Don't call addedAssignmentOperator. There is no way to distinguish an | 
|  | // implicit from an explicit assignment operator. | 
|  | ClassDecl->addDecl(CopyAssignment); | 
|  | AddOverriddenMethods(ClassDecl, CopyAssignment); | 
|  | } | 
|  |  | 
|  | if (!ClassDecl->hasUserDeclaredDestructor()) { | 
|  | // C++ [class.dtor]p2: | 
|  | //   If a class has no user-declared destructor, a destructor is | 
|  | //   declared implicitly. An implicitly-declared destructor is an | 
|  | //   inline public member of its class. | 
|  | DeclarationName Name | 
|  | = Context.DeclarationNames.getCXXDestructorName(ClassType); | 
|  | CXXDestructorDecl *Destructor | 
|  | = CXXDestructorDecl::Create(Context, ClassDecl, | 
|  | ClassDecl->getLocation(), Name, | 
|  | Context.getFunctionType(Context.VoidTy, | 
|  | 0, 0, false, 0), | 
|  | /*isInline=*/true, | 
|  | /*isImplicitlyDeclared=*/true); | 
|  | Destructor->setAccess(AS_public); | 
|  | Destructor->setImplicit(); | 
|  | Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); | 
|  | ClassDecl->addDecl(Destructor); | 
|  |  | 
|  | AddOverriddenMethods(ClassDecl, Destructor); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) { | 
|  | Decl *D = TemplateD.getAs<Decl>(); | 
|  | if (!D) | 
|  | return; | 
|  |  | 
|  | TemplateParameterList *Params = 0; | 
|  | if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) | 
|  | Params = Template->getTemplateParameters(); | 
|  | else if (ClassTemplatePartialSpecializationDecl *PartialSpec | 
|  | = dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) | 
|  | Params = PartialSpec->getTemplateParameters(); | 
|  | else | 
|  | return; | 
|  |  | 
|  | for (TemplateParameterList::iterator Param = Params->begin(), | 
|  | ParamEnd = Params->end(); | 
|  | Param != ParamEnd; ++Param) { | 
|  | NamedDecl *Named = cast<NamedDecl>(*Param); | 
|  | if (Named->getDeclName()) { | 
|  | S->AddDecl(DeclPtrTy::make(Named)); | 
|  | IdResolver.AddDecl(Named); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) { | 
|  | if (!RecordD) return; | 
|  | AdjustDeclIfTemplate(RecordD); | 
|  | CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>()); | 
|  | PushDeclContext(S, Record); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) { | 
|  | if (!RecordD) return; | 
|  | PopDeclContext(); | 
|  | } | 
|  |  | 
|  | /// ActOnStartDelayedCXXMethodDeclaration - We have completed | 
|  | /// parsing a top-level (non-nested) C++ class, and we are now | 
|  | /// parsing those parts of the given Method declaration that could | 
|  | /// not be parsed earlier (C++ [class.mem]p2), such as default | 
|  | /// arguments. This action should enter the scope of the given | 
|  | /// Method declaration as if we had just parsed the qualified method | 
|  | /// name. However, it should not bring the parameters into scope; | 
|  | /// that will be performed by ActOnDelayedCXXMethodParameter. | 
|  | void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) { | 
|  | } | 
|  |  | 
|  | /// ActOnDelayedCXXMethodParameter - We've already started a delayed | 
|  | /// C++ method declaration. We're (re-)introducing the given | 
|  | /// function parameter into scope for use in parsing later parts of | 
|  | /// the method declaration. For example, we could see an | 
|  | /// ActOnParamDefaultArgument event for this parameter. | 
|  | void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) { | 
|  | if (!ParamD) | 
|  | return; | 
|  |  | 
|  | ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>()); | 
|  |  | 
|  | // If this parameter has an unparsed default argument, clear it out | 
|  | // to make way for the parsed default argument. | 
|  | if (Param->hasUnparsedDefaultArg()) | 
|  | Param->setDefaultArg(0); | 
|  |  | 
|  | S->AddDecl(DeclPtrTy::make(Param)); | 
|  | if (Param->getDeclName()) | 
|  | IdResolver.AddDecl(Param); | 
|  | } | 
|  |  | 
|  | /// ActOnFinishDelayedCXXMethodDeclaration - We have finished | 
|  | /// processing the delayed method declaration for Method. The method | 
|  | /// declaration is now considered finished. There may be a separate | 
|  | /// ActOnStartOfFunctionDef action later (not necessarily | 
|  | /// immediately!) for this method, if it was also defined inside the | 
|  | /// class body. | 
|  | void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) { | 
|  | if (!MethodD) | 
|  | return; | 
|  |  | 
|  | AdjustDeclIfTemplate(MethodD); | 
|  |  | 
|  | FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>()); | 
|  |  | 
|  | // Now that we have our default arguments, check the constructor | 
|  | // again. It could produce additional diagnostics or affect whether | 
|  | // the class has implicitly-declared destructors, among other | 
|  | // things. | 
|  | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) | 
|  | CheckConstructor(Constructor); | 
|  |  | 
|  | // Check the default arguments, which we may have added. | 
|  | if (!Method->isInvalidDecl()) | 
|  | CheckCXXDefaultArguments(Method); | 
|  | } | 
|  |  | 
|  | /// CheckConstructorDeclarator - Called by ActOnDeclarator to check | 
|  | /// the well-formedness of the constructor declarator @p D with type @p | 
|  | /// R. If there are any errors in the declarator, this routine will | 
|  | /// emit diagnostics and set the invalid bit to true.  In any case, the type | 
|  | /// will be updated to reflect a well-formed type for the constructor and | 
|  | /// returned. | 
|  | QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, | 
|  | FunctionDecl::StorageClass &SC) { | 
|  | bool isVirtual = D.getDeclSpec().isVirtualSpecified(); | 
|  |  | 
|  | // C++ [class.ctor]p3: | 
|  | //   A constructor shall not be virtual (10.3) or static (9.4). A | 
|  | //   constructor can be invoked for a const, volatile or const | 
|  | //   volatile object. A constructor shall not be declared const, | 
|  | //   volatile, or const volatile (9.3.2). | 
|  | if (isVirtual) { | 
|  | if (!D.isInvalidType()) | 
|  | Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) | 
|  | << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()); | 
|  | D.setInvalidType(); | 
|  | } | 
|  | if (SC == FunctionDecl::Static) { | 
|  | if (!D.isInvalidType()) | 
|  | Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) | 
|  | << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()); | 
|  | D.setInvalidType(); | 
|  | SC = FunctionDecl::None; | 
|  | } | 
|  |  | 
|  | DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; | 
|  | if (FTI.TypeQuals != 0) { | 
|  | if (FTI.TypeQuals & Qualifiers::Const) | 
|  | Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) | 
|  | << "const" << SourceRange(D.getIdentifierLoc()); | 
|  | if (FTI.TypeQuals & Qualifiers::Volatile) | 
|  | Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) | 
|  | << "volatile" << SourceRange(D.getIdentifierLoc()); | 
|  | if (FTI.TypeQuals & Qualifiers::Restrict) | 
|  | Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) | 
|  | << "restrict" << SourceRange(D.getIdentifierLoc()); | 
|  | } | 
|  |  | 
|  | // Rebuild the function type "R" without any type qualifiers (in | 
|  | // case any of the errors above fired) and with "void" as the | 
|  | // return type, since constructors don't have return types. We | 
|  | // *always* have to do this, because GetTypeForDeclarator will | 
|  | // put in a result type of "int" when none was specified. | 
|  | const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); | 
|  | return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(), | 
|  | Proto->getNumArgs(), | 
|  | Proto->isVariadic(), 0); | 
|  | } | 
|  |  | 
|  | /// CheckConstructor - Checks a fully-formed constructor for | 
|  | /// well-formedness, issuing any diagnostics required. Returns true if | 
|  | /// the constructor declarator is invalid. | 
|  | void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { | 
|  | CXXRecordDecl *ClassDecl | 
|  | = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); | 
|  | if (!ClassDecl) | 
|  | return Constructor->setInvalidDecl(); | 
|  |  | 
|  | // C++ [class.copy]p3: | 
|  | //   A declaration of a constructor for a class X is ill-formed if | 
|  | //   its first parameter is of type (optionally cv-qualified) X and | 
|  | //   either there are no other parameters or else all other | 
|  | //   parameters have default arguments. | 
|  | if (!Constructor->isInvalidDecl() && | 
|  | ((Constructor->getNumParams() == 1) || | 
|  | (Constructor->getNumParams() > 1 && | 
|  | Constructor->getParamDecl(1)->hasDefaultArg())) && | 
|  | Constructor->getTemplateSpecializationKind() | 
|  | != TSK_ImplicitInstantiation) { | 
|  | QualType ParamType = Constructor->getParamDecl(0)->getType(); | 
|  | QualType ClassTy = Context.getTagDeclType(ClassDecl); | 
|  | if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { | 
|  | SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); | 
|  | Diag(ParamLoc, diag::err_constructor_byvalue_arg) | 
|  | << CodeModificationHint::CreateInsertion(ParamLoc, " const &"); | 
|  |  | 
|  | // FIXME: Rather that making the constructor invalid, we should endeavor | 
|  | // to fix the type. | 
|  | Constructor->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Notify the class that we've added a constructor. | 
|  | ClassDecl->addedConstructor(Context, Constructor); | 
|  | } | 
|  |  | 
|  | /// CheckDestructor - Checks a fully-formed destructor for well-formedness, | 
|  | /// issuing any diagnostics required. Returns true on error. | 
|  | bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { | 
|  | CXXRecordDecl *RD = Destructor->getParent(); | 
|  |  | 
|  | if (Destructor->isVirtual()) { | 
|  | SourceLocation Loc; | 
|  |  | 
|  | if (!Destructor->isImplicit()) | 
|  | Loc = Destructor->getLocation(); | 
|  | else | 
|  | Loc = RD->getLocation(); | 
|  |  | 
|  | // If we have a virtual destructor, look up the deallocation function | 
|  | FunctionDecl *OperatorDelete = 0; | 
|  | DeclarationName Name = | 
|  | Context.DeclarationNames.getCXXOperatorName(OO_Delete); | 
|  | if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) | 
|  | return true; | 
|  |  | 
|  | Destructor->setOperatorDelete(OperatorDelete); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) { | 
|  | return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && | 
|  | FTI.ArgInfo[0].Param && | 
|  | FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()); | 
|  | } | 
|  |  | 
|  | /// CheckDestructorDeclarator - Called by ActOnDeclarator to check | 
|  | /// the well-formednes of the destructor declarator @p D with type @p | 
|  | /// R. If there are any errors in the declarator, this routine will | 
|  | /// emit diagnostics and set the declarator to invalid.  Even if this happens, | 
|  | /// will be updated to reflect a well-formed type for the destructor and | 
|  | /// returned. | 
|  | QualType Sema::CheckDestructorDeclarator(Declarator &D, | 
|  | FunctionDecl::StorageClass& SC) { | 
|  | // C++ [class.dtor]p1: | 
|  | //   [...] A typedef-name that names a class is a class-name | 
|  | //   (7.1.3); however, a typedef-name that names a class shall not | 
|  | //   be used as the identifier in the declarator for a destructor | 
|  | //   declaration. | 
|  | QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName); | 
|  | if (isa<TypedefType>(DeclaratorType)) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name) | 
|  | << DeclaratorType; | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // C++ [class.dtor]p2: | 
|  | //   A destructor is used to destroy objects of its class type. A | 
|  | //   destructor takes no parameters, and no return type can be | 
|  | //   specified for it (not even void). The address of a destructor | 
|  | //   shall not be taken. A destructor shall not be static. A | 
|  | //   destructor can be invoked for a const, volatile or const | 
|  | //   volatile object. A destructor shall not be declared const, | 
|  | //   volatile or const volatile (9.3.2). | 
|  | if (SC == FunctionDecl::Static) { | 
|  | if (!D.isInvalidType()) | 
|  | Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) | 
|  | << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()); | 
|  | SC = FunctionDecl::None; | 
|  | D.setInvalidType(); | 
|  | } | 
|  | if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) { | 
|  | // Destructors don't have return types, but the parser will | 
|  | // happily parse something like: | 
|  | // | 
|  | //   class X { | 
|  | //     float ~X(); | 
|  | //   }; | 
|  | // | 
|  | // The return type will be eliminated later. | 
|  | Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) | 
|  | << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()); | 
|  | } | 
|  |  | 
|  | DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; | 
|  | if (FTI.TypeQuals != 0 && !D.isInvalidType()) { | 
|  | if (FTI.TypeQuals & Qualifiers::Const) | 
|  | Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) | 
|  | << "const" << SourceRange(D.getIdentifierLoc()); | 
|  | if (FTI.TypeQuals & Qualifiers::Volatile) | 
|  | Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) | 
|  | << "volatile" << SourceRange(D.getIdentifierLoc()); | 
|  | if (FTI.TypeQuals & Qualifiers::Restrict) | 
|  | Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) | 
|  | << "restrict" << SourceRange(D.getIdentifierLoc()); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // Make sure we don't have any parameters. | 
|  | if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); | 
|  |  | 
|  | // Delete the parameters. | 
|  | FTI.freeArgs(); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // Make sure the destructor isn't variadic. | 
|  | if (FTI.isVariadic) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // Rebuild the function type "R" without any type qualifiers or | 
|  | // parameters (in case any of the errors above fired) and with | 
|  | // "void" as the return type, since destructors don't have return | 
|  | // types. We *always* have to do this, because GetTypeForDeclarator | 
|  | // will put in a result type of "int" when none was specified. | 
|  | return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0); | 
|  | } | 
|  |  | 
|  | /// CheckConversionDeclarator - Called by ActOnDeclarator to check the | 
|  | /// well-formednes of the conversion function declarator @p D with | 
|  | /// type @p R. If there are any errors in the declarator, this routine | 
|  | /// will emit diagnostics and return true. Otherwise, it will return | 
|  | /// false. Either way, the type @p R will be updated to reflect a | 
|  | /// well-formed type for the conversion operator. | 
|  | void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, | 
|  | FunctionDecl::StorageClass& SC) { | 
|  | // C++ [class.conv.fct]p1: | 
|  | //   Neither parameter types nor return type can be specified. The | 
|  | //   type of a conversion function (8.3.5) is "function taking no | 
|  | //   parameter returning conversion-type-id." | 
|  | if (SC == FunctionDecl::Static) { | 
|  | if (!D.isInvalidType()) | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) | 
|  | << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()); | 
|  | D.setInvalidType(); | 
|  | SC = FunctionDecl::None; | 
|  | } | 
|  | if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) { | 
|  | // Conversion functions don't have return types, but the parser will | 
|  | // happily parse something like: | 
|  | // | 
|  | //   class X { | 
|  | //     float operator bool(); | 
|  | //   }; | 
|  | // | 
|  | // The return type will be changed later anyway. | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) | 
|  | << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()); | 
|  | } | 
|  |  | 
|  | // Make sure we don't have any parameters. | 
|  | if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); | 
|  |  | 
|  | // Delete the parameters. | 
|  | D.getTypeObject(0).Fun.freeArgs(); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // Make sure the conversion function isn't variadic. | 
|  | if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // C++ [class.conv.fct]p4: | 
|  | //   The conversion-type-id shall not represent a function type nor | 
|  | //   an array type. | 
|  | QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId); | 
|  | if (ConvType->isArrayType()) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); | 
|  | ConvType = Context.getPointerType(ConvType); | 
|  | D.setInvalidType(); | 
|  | } else if (ConvType->isFunctionType()) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); | 
|  | ConvType = Context.getPointerType(ConvType); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // Rebuild the function type "R" without any parameters (in case any | 
|  | // of the errors above fired) and with the conversion type as the | 
|  | // return type. | 
|  | R = Context.getFunctionType(ConvType, 0, 0, false, | 
|  | R->getAs<FunctionProtoType>()->getTypeQuals()); | 
|  |  | 
|  | // C++0x explicit conversion operators. | 
|  | if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x) | 
|  | Diag(D.getDeclSpec().getExplicitSpecLoc(), | 
|  | diag::warn_explicit_conversion_functions) | 
|  | << SourceRange(D.getDeclSpec().getExplicitSpecLoc()); | 
|  | } | 
|  |  | 
|  | /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete | 
|  | /// the declaration of the given C++ conversion function. This routine | 
|  | /// is responsible for recording the conversion function in the C++ | 
|  | /// class, if possible. | 
|  | Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { | 
|  | assert(Conversion && "Expected to receive a conversion function declaration"); | 
|  |  | 
|  | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); | 
|  |  | 
|  | // Make sure we aren't redeclaring the conversion function. | 
|  | QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); | 
|  |  | 
|  | // C++ [class.conv.fct]p1: | 
|  | //   [...] A conversion function is never used to convert a | 
|  | //   (possibly cv-qualified) object to the (possibly cv-qualified) | 
|  | //   same object type (or a reference to it), to a (possibly | 
|  | //   cv-qualified) base class of that type (or a reference to it), | 
|  | //   or to (possibly cv-qualified) void. | 
|  | // FIXME: Suppress this warning if the conversion function ends up being a | 
|  | // virtual function that overrides a virtual function in a base class. | 
|  | QualType ClassType | 
|  | = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); | 
|  | if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>()) | 
|  | ConvType = ConvTypeRef->getPointeeType(); | 
|  | if (ConvType->isRecordType()) { | 
|  | ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); | 
|  | if (ConvType == ClassType) | 
|  | Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) | 
|  | << ClassType; | 
|  | else if (IsDerivedFrom(ClassType, ConvType)) | 
|  | Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) | 
|  | <<  ClassType << ConvType; | 
|  | } else if (ConvType->isVoidType()) { | 
|  | Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) | 
|  | << ClassType << ConvType; | 
|  | } | 
|  |  | 
|  | if (Conversion->getPreviousDeclaration()) { | 
|  | const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration(); | 
|  | if (FunctionTemplateDecl *ConversionTemplate | 
|  | = Conversion->getDescribedFunctionTemplate()) | 
|  | ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration(); | 
|  | if (ClassDecl->replaceConversion(ExpectedPrevDecl, Conversion)) | 
|  | return DeclPtrTy::make(Conversion); | 
|  | assert(Conversion->isInvalidDecl() && "Conversion should not get here."); | 
|  | } else if (FunctionTemplateDecl *ConversionTemplate | 
|  | = Conversion->getDescribedFunctionTemplate()) | 
|  | ClassDecl->addConversionFunction(ConversionTemplate); | 
|  | else if (!Conversion->getPrimaryTemplate()) // ignore specializations | 
|  | ClassDecl->addConversionFunction(Conversion); | 
|  |  | 
|  | return DeclPtrTy::make(Conversion); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Namespace Handling | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ActOnStartNamespaceDef - This is called at the start of a namespace | 
|  | /// definition. | 
|  | Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope, | 
|  | SourceLocation IdentLoc, | 
|  | IdentifierInfo *II, | 
|  | SourceLocation LBrace) { | 
|  | NamespaceDecl *Namespc = | 
|  | NamespaceDecl::Create(Context, CurContext, IdentLoc, II); | 
|  | Namespc->setLBracLoc(LBrace); | 
|  |  | 
|  | Scope *DeclRegionScope = NamespcScope->getParent(); | 
|  |  | 
|  | if (II) { | 
|  | // C++ [namespace.def]p2: | 
|  | // The identifier in an original-namespace-definition shall not have been | 
|  | // previously defined in the declarative region in which the | 
|  | // original-namespace-definition appears. The identifier in an | 
|  | // original-namespace-definition is the name of the namespace. Subsequently | 
|  | // in that declarative region, it is treated as an original-namespace-name. | 
|  |  | 
|  | NamedDecl *PrevDecl | 
|  | = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName, | 
|  | ForRedeclaration); | 
|  |  | 
|  | if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) { | 
|  | // This is an extended namespace definition. | 
|  | // Attach this namespace decl to the chain of extended namespace | 
|  | // definitions. | 
|  | OrigNS->setNextNamespace(Namespc); | 
|  | Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace()); | 
|  |  | 
|  | // Remove the previous declaration from the scope. | 
|  | if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) { | 
|  | IdResolver.RemoveDecl(OrigNS); | 
|  | DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS)); | 
|  | } | 
|  | } else if (PrevDecl) { | 
|  | // This is an invalid name redefinition. | 
|  | Diag(Namespc->getLocation(), diag::err_redefinition_different_kind) | 
|  | << Namespc->getDeclName(); | 
|  | Diag(PrevDecl->getLocation(), diag::note_previous_definition); | 
|  | Namespc->setInvalidDecl(); | 
|  | // Continue on to push Namespc as current DeclContext and return it. | 
|  | } else if (II->isStr("std") && | 
|  | CurContext->getLookupContext()->isTranslationUnit()) { | 
|  | // This is the first "real" definition of the namespace "std", so update | 
|  | // our cache of the "std" namespace to point at this definition. | 
|  | if (StdNamespace) { | 
|  | // We had already defined a dummy namespace "std". Link this new | 
|  | // namespace definition to the dummy namespace "std". | 
|  | StdNamespace->setNextNamespace(Namespc); | 
|  | StdNamespace->setLocation(IdentLoc); | 
|  | Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace()); | 
|  | } | 
|  |  | 
|  | // Make our StdNamespace cache point at the first real definition of the | 
|  | // "std" namespace. | 
|  | StdNamespace = Namespc; | 
|  | } | 
|  |  | 
|  | PushOnScopeChains(Namespc, DeclRegionScope); | 
|  | } else { | 
|  | // Anonymous namespaces. | 
|  | assert(Namespc->isAnonymousNamespace()); | 
|  | CurContext->addDecl(Namespc); | 
|  |  | 
|  | // Link the anonymous namespace into its parent. | 
|  | NamespaceDecl *PrevDecl; | 
|  | DeclContext *Parent = CurContext->getLookupContext(); | 
|  | if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { | 
|  | PrevDecl = TU->getAnonymousNamespace(); | 
|  | TU->setAnonymousNamespace(Namespc); | 
|  | } else { | 
|  | NamespaceDecl *ND = cast<NamespaceDecl>(Parent); | 
|  | PrevDecl = ND->getAnonymousNamespace(); | 
|  | ND->setAnonymousNamespace(Namespc); | 
|  | } | 
|  |  | 
|  | // Link the anonymous namespace with its previous declaration. | 
|  | if (PrevDecl) { | 
|  | assert(PrevDecl->isAnonymousNamespace()); | 
|  | assert(!PrevDecl->getNextNamespace()); | 
|  | Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace()); | 
|  | PrevDecl->setNextNamespace(Namespc); | 
|  | } | 
|  |  | 
|  | // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition | 
|  | //   behaves as if it were replaced by | 
|  | //     namespace unique { /* empty body */ } | 
|  | //     using namespace unique; | 
|  | //     namespace unique { namespace-body } | 
|  | //   where all occurrences of 'unique' in a translation unit are | 
|  | //   replaced by the same identifier and this identifier differs | 
|  | //   from all other identifiers in the entire program. | 
|  |  | 
|  | // We just create the namespace with an empty name and then add an | 
|  | // implicit using declaration, just like the standard suggests. | 
|  | // | 
|  | // CodeGen enforces the "universally unique" aspect by giving all | 
|  | // declarations semantically contained within an anonymous | 
|  | // namespace internal linkage. | 
|  |  | 
|  | if (!PrevDecl) { | 
|  | UsingDirectiveDecl* UD | 
|  | = UsingDirectiveDecl::Create(Context, CurContext, | 
|  | /* 'using' */ LBrace, | 
|  | /* 'namespace' */ SourceLocation(), | 
|  | /* qualifier */ SourceRange(), | 
|  | /* NNS */ NULL, | 
|  | /* identifier */ SourceLocation(), | 
|  | Namespc, | 
|  | /* Ancestor */ CurContext); | 
|  | UD->setImplicit(); | 
|  | CurContext->addDecl(UD); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Although we could have an invalid decl (i.e. the namespace name is a | 
|  | // redefinition), push it as current DeclContext and try to continue parsing. | 
|  | // FIXME: We should be able to push Namespc here, so that the each DeclContext | 
|  | // for the namespace has the declarations that showed up in that particular | 
|  | // namespace definition. | 
|  | PushDeclContext(NamespcScope, Namespc); | 
|  | return DeclPtrTy::make(Namespc); | 
|  | } | 
|  |  | 
|  | /// getNamespaceDecl - Returns the namespace a decl represents. If the decl | 
|  | /// is a namespace alias, returns the namespace it points to. | 
|  | static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { | 
|  | if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D)) | 
|  | return AD->getNamespace(); | 
|  | return dyn_cast_or_null<NamespaceDecl>(D); | 
|  | } | 
|  |  | 
|  | /// ActOnFinishNamespaceDef - This callback is called after a namespace is | 
|  | /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. | 
|  | void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) { | 
|  | Decl *Dcl = D.getAs<Decl>(); | 
|  | NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl); | 
|  | assert(Namespc && "Invalid parameter, expected NamespaceDecl"); | 
|  | Namespc->setRBracLoc(RBrace); | 
|  | PopDeclContext(); | 
|  | } | 
|  |  | 
|  | Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S, | 
|  | SourceLocation UsingLoc, | 
|  | SourceLocation NamespcLoc, | 
|  | const CXXScopeSpec &SS, | 
|  | SourceLocation IdentLoc, | 
|  | IdentifierInfo *NamespcName, | 
|  | AttributeList *AttrList) { | 
|  | assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); | 
|  | assert(NamespcName && "Invalid NamespcName."); | 
|  | assert(IdentLoc.isValid() && "Invalid NamespceName location."); | 
|  | assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); | 
|  |  | 
|  | UsingDirectiveDecl *UDir = 0; | 
|  |  | 
|  | // Lookup namespace name. | 
|  | LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); | 
|  | LookupParsedName(R, S, &SS); | 
|  | if (R.isAmbiguous()) | 
|  | return DeclPtrTy(); | 
|  |  | 
|  | if (!R.empty()) { | 
|  | NamedDecl *Named = R.getFoundDecl(); | 
|  | assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named)) | 
|  | && "expected namespace decl"); | 
|  | // C++ [namespace.udir]p1: | 
|  | //   A using-directive specifies that the names in the nominated | 
|  | //   namespace can be used in the scope in which the | 
|  | //   using-directive appears after the using-directive. During | 
|  | //   unqualified name lookup (3.4.1), the names appear as if they | 
|  | //   were declared in the nearest enclosing namespace which | 
|  | //   contains both the using-directive and the nominated | 
|  | //   namespace. [Note: in this context, "contains" means "contains | 
|  | //   directly or indirectly". ] | 
|  |  | 
|  | // Find enclosing context containing both using-directive and | 
|  | // nominated namespace. | 
|  | NamespaceDecl *NS = getNamespaceDecl(Named); | 
|  | DeclContext *CommonAncestor = cast<DeclContext>(NS); | 
|  | while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) | 
|  | CommonAncestor = CommonAncestor->getParent(); | 
|  |  | 
|  | UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc, | 
|  | SS.getRange(), | 
|  | (NestedNameSpecifier *)SS.getScopeRep(), | 
|  | IdentLoc, Named, CommonAncestor); | 
|  | PushUsingDirective(S, UDir); | 
|  | } else { | 
|  | Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); | 
|  | } | 
|  |  | 
|  | // FIXME: We ignore attributes for now. | 
|  | delete AttrList; | 
|  | return DeclPtrTy::make(UDir); | 
|  | } | 
|  |  | 
|  | void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { | 
|  | // If scope has associated entity, then using directive is at namespace | 
|  | // or translation unit scope. We add UsingDirectiveDecls, into | 
|  | // it's lookup structure. | 
|  | if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) | 
|  | Ctx->addDecl(UDir); | 
|  | else | 
|  | // Otherwise it is block-sope. using-directives will affect lookup | 
|  | // only to the end of scope. | 
|  | S->PushUsingDirective(DeclPtrTy::make(UDir)); | 
|  | } | 
|  |  | 
|  |  | 
|  | Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S, | 
|  | AccessSpecifier AS, | 
|  | bool HasUsingKeyword, | 
|  | SourceLocation UsingLoc, | 
|  | const CXXScopeSpec &SS, | 
|  | UnqualifiedId &Name, | 
|  | AttributeList *AttrList, | 
|  | bool IsTypeName, | 
|  | SourceLocation TypenameLoc) { | 
|  | assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); | 
|  |  | 
|  | switch (Name.getKind()) { | 
|  | case UnqualifiedId::IK_Identifier: | 
|  | case UnqualifiedId::IK_OperatorFunctionId: | 
|  | case UnqualifiedId::IK_LiteralOperatorId: | 
|  | case UnqualifiedId::IK_ConversionFunctionId: | 
|  | break; | 
|  |  | 
|  | case UnqualifiedId::IK_ConstructorName: | 
|  | // C++0x inherited constructors. | 
|  | if (getLangOptions().CPlusPlus0x) break; | 
|  |  | 
|  | Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor) | 
|  | << SS.getRange(); | 
|  | return DeclPtrTy(); | 
|  |  | 
|  | case UnqualifiedId::IK_DestructorName: | 
|  | Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor) | 
|  | << SS.getRange(); | 
|  | return DeclPtrTy(); | 
|  |  | 
|  | case UnqualifiedId::IK_TemplateId: | 
|  | Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id) | 
|  | << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); | 
|  | return DeclPtrTy(); | 
|  | } | 
|  |  | 
|  | DeclarationName TargetName = GetNameFromUnqualifiedId(Name); | 
|  | if (!TargetName) | 
|  | return DeclPtrTy(); | 
|  |  | 
|  | // Warn about using declarations. | 
|  | // TODO: store that the declaration was written without 'using' and | 
|  | // talk about access decls instead of using decls in the | 
|  | // diagnostics. | 
|  | if (!HasUsingKeyword) { | 
|  | UsingLoc = Name.getSourceRange().getBegin(); | 
|  |  | 
|  | Diag(UsingLoc, diag::warn_access_decl_deprecated) | 
|  | << CodeModificationHint::CreateInsertion(SS.getRange().getBegin(), | 
|  | "using "); | 
|  | } | 
|  |  | 
|  | NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS, | 
|  | Name.getSourceRange().getBegin(), | 
|  | TargetName, AttrList, | 
|  | /* IsInstantiation */ false, | 
|  | IsTypeName, TypenameLoc); | 
|  | if (UD) | 
|  | PushOnScopeChains(UD, S, /*AddToContext*/ false); | 
|  |  | 
|  | return DeclPtrTy::make(UD); | 
|  | } | 
|  |  | 
|  | /// Determines whether to create a using shadow decl for a particular | 
|  | /// decl, given the set of decls existing prior to this using lookup. | 
|  | bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig, | 
|  | const LookupResult &Previous) { | 
|  | // Diagnose finding a decl which is not from a base class of the | 
|  | // current class.  We do this now because there are cases where this | 
|  | // function will silently decide not to build a shadow decl, which | 
|  | // will pre-empt further diagnostics. | 
|  | // | 
|  | // We don't need to do this in C++0x because we do the check once on | 
|  | // the qualifier. | 
|  | // | 
|  | // FIXME: diagnose the following if we care enough: | 
|  | //   struct A { int foo; }; | 
|  | //   struct B : A { using A::foo; }; | 
|  | //   template <class T> struct C : A {}; | 
|  | //   template <class T> struct D : C<T> { using B::foo; } // <--- | 
|  | // This is invalid (during instantiation) in C++03 because B::foo | 
|  | // resolves to the using decl in B, which is not a base class of D<T>. | 
|  | // We can't diagnose it immediately because C<T> is an unknown | 
|  | // specialization.  The UsingShadowDecl in D<T> then points directly | 
|  | // to A::foo, which will look well-formed when we instantiate. | 
|  | // The right solution is to not collapse the shadow-decl chain. | 
|  | if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) { | 
|  | DeclContext *OrigDC = Orig->getDeclContext(); | 
|  |  | 
|  | // Handle enums and anonymous structs. | 
|  | if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent(); | 
|  | CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC); | 
|  | while (OrigRec->isAnonymousStructOrUnion()) | 
|  | OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext()); | 
|  |  | 
|  | if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) { | 
|  | if (OrigDC == CurContext) { | 
|  | Diag(Using->getLocation(), | 
|  | diag::err_using_decl_nested_name_specifier_is_current_class) | 
|  | << Using->getNestedNameRange(); | 
|  | Diag(Orig->getLocation(), diag::note_using_decl_target); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Diag(Using->getNestedNameRange().getBegin(), | 
|  | diag::err_using_decl_nested_name_specifier_is_not_base_class) | 
|  | << Using->getTargetNestedNameDecl() | 
|  | << cast<CXXRecordDecl>(CurContext) | 
|  | << Using->getNestedNameRange(); | 
|  | Diag(Orig->getLocation(), diag::note_using_decl_target); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Previous.empty()) return false; | 
|  |  | 
|  | NamedDecl *Target = Orig; | 
|  | if (isa<UsingShadowDecl>(Target)) | 
|  | Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); | 
|  |  | 
|  | // If the target happens to be one of the previous declarations, we | 
|  | // don't have a conflict. | 
|  | // | 
|  | // FIXME: but we might be increasing its access, in which case we | 
|  | // should redeclare it. | 
|  | NamedDecl *NonTag = 0, *Tag = 0; | 
|  | for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); | 
|  | I != E; ++I) { | 
|  | NamedDecl *D = (*I)->getUnderlyingDecl(); | 
|  | if (D->getCanonicalDecl() == Target->getCanonicalDecl()) | 
|  | return false; | 
|  |  | 
|  | (isa<TagDecl>(D) ? Tag : NonTag) = D; | 
|  | } | 
|  |  | 
|  | if (Target->isFunctionOrFunctionTemplate()) { | 
|  | FunctionDecl *FD; | 
|  | if (isa<FunctionTemplateDecl>(Target)) | 
|  | FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl(); | 
|  | else | 
|  | FD = cast<FunctionDecl>(Target); | 
|  |  | 
|  | NamedDecl *OldDecl = 0; | 
|  | switch (CheckOverload(FD, Previous, OldDecl)) { | 
|  | case Ovl_Overload: | 
|  | return false; | 
|  |  | 
|  | case Ovl_NonFunction: | 
|  | Diag(Using->getLocation(), diag::err_using_decl_conflict); | 
|  | break; | 
|  |  | 
|  | // We found a decl with the exact signature. | 
|  | case Ovl_Match: | 
|  | if (isa<UsingShadowDecl>(OldDecl)) { | 
|  | // Silently ignore the possible conflict. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we're in a record, we want to hide the target, so we | 
|  | // return true (without a diagnostic) to tell the caller not to | 
|  | // build a shadow decl. | 
|  | if (CurContext->isRecord()) | 
|  | return true; | 
|  |  | 
|  | // If we're not in a record, this is an error. | 
|  | Diag(Using->getLocation(), diag::err_using_decl_conflict); | 
|  | break; | 
|  | } | 
|  |  | 
|  | Diag(Target->getLocation(), diag::note_using_decl_target); | 
|  | Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Target is not a function. | 
|  |  | 
|  | if (isa<TagDecl>(Target)) { | 
|  | // No conflict between a tag and a non-tag. | 
|  | if (!Tag) return false; | 
|  |  | 
|  | Diag(Using->getLocation(), diag::err_using_decl_conflict); | 
|  | Diag(Target->getLocation(), diag::note_using_decl_target); | 
|  | Diag(Tag->getLocation(), diag::note_using_decl_conflict); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // No conflict between a tag and a non-tag. | 
|  | if (!NonTag) return false; | 
|  |  | 
|  | Diag(Using->getLocation(), diag::err_using_decl_conflict); | 
|  | Diag(Target->getLocation(), diag::note_using_decl_target); | 
|  | Diag(NonTag->getLocation(), diag::note_using_decl_conflict); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Builds a shadow declaration corresponding to a 'using' declaration. | 
|  | UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, | 
|  | UsingDecl *UD, | 
|  | NamedDecl *Orig) { | 
|  |  | 
|  | // If we resolved to another shadow declaration, just coalesce them. | 
|  | NamedDecl *Target = Orig; | 
|  | if (isa<UsingShadowDecl>(Target)) { | 
|  | Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); | 
|  | assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration"); | 
|  | } | 
|  |  | 
|  | UsingShadowDecl *Shadow | 
|  | = UsingShadowDecl::Create(Context, CurContext, | 
|  | UD->getLocation(), UD, Target); | 
|  | UD->addShadowDecl(Shadow); | 
|  |  | 
|  | if (S) | 
|  | PushOnScopeChains(Shadow, S); | 
|  | else | 
|  | CurContext->addDecl(Shadow); | 
|  | Shadow->setAccess(UD->getAccess()); | 
|  |  | 
|  | if (Orig->isInvalidDecl() || UD->isInvalidDecl()) | 
|  | Shadow->setInvalidDecl(); | 
|  |  | 
|  | return Shadow; | 
|  | } | 
|  |  | 
|  | /// Hides a using shadow declaration.  This is required by the current | 
|  | /// using-decl implementation when a resolvable using declaration in a | 
|  | /// class is followed by a declaration which would hide or override | 
|  | /// one or more of the using decl's targets; for example: | 
|  | /// | 
|  | ///   struct Base { void foo(int); }; | 
|  | ///   struct Derived : Base { | 
|  | ///     using Base::foo; | 
|  | ///     void foo(int); | 
|  | ///   }; | 
|  | /// | 
|  | /// The governing language is C++03 [namespace.udecl]p12: | 
|  | /// | 
|  | ///   When a using-declaration brings names from a base class into a | 
|  | ///   derived class scope, member functions in the derived class | 
|  | ///   override and/or hide member functions with the same name and | 
|  | ///   parameter types in a base class (rather than conflicting). | 
|  | /// | 
|  | /// There are two ways to implement this: | 
|  | ///   (1) optimistically create shadow decls when they're not hidden | 
|  | ///       by existing declarations, or | 
|  | ///   (2) don't create any shadow decls (or at least don't make them | 
|  | ///       visible) until we've fully parsed/instantiated the class. | 
|  | /// The problem with (1) is that we might have to retroactively remove | 
|  | /// a shadow decl, which requires several O(n) operations because the | 
|  | /// decl structures are (very reasonably) not designed for removal. | 
|  | /// (2) avoids this but is very fiddly and phase-dependent. | 
|  | void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { | 
|  | // Remove it from the DeclContext... | 
|  | Shadow->getDeclContext()->removeDecl(Shadow); | 
|  |  | 
|  | // ...and the scope, if applicable... | 
|  | if (S) { | 
|  | S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow))); | 
|  | IdResolver.RemoveDecl(Shadow); | 
|  | } | 
|  |  | 
|  | // ...and the using decl. | 
|  | Shadow->getUsingDecl()->removeShadowDecl(Shadow); | 
|  |  | 
|  | // TODO: complain somehow if Shadow was used.  It shouldn't | 
|  | // be possible for this to happen, because | 
|  | } | 
|  |  | 
|  | /// Builds a using declaration. | 
|  | /// | 
|  | /// \param IsInstantiation - Whether this call arises from an | 
|  | ///   instantiation of an unresolved using declaration.  We treat | 
|  | ///   the lookup differently for these declarations. | 
|  | NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS, | 
|  | SourceLocation UsingLoc, | 
|  | const CXXScopeSpec &SS, | 
|  | SourceLocation IdentLoc, | 
|  | DeclarationName Name, | 
|  | AttributeList *AttrList, | 
|  | bool IsInstantiation, | 
|  | bool IsTypeName, | 
|  | SourceLocation TypenameLoc) { | 
|  | assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); | 
|  | assert(IdentLoc.isValid() && "Invalid TargetName location."); | 
|  |  | 
|  | // FIXME: We ignore attributes for now. | 
|  | delete AttrList; | 
|  |  | 
|  | if (SS.isEmpty()) { | 
|  | Diag(IdentLoc, diag::err_using_requires_qualname); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Do the redeclaration lookup in the current scope. | 
|  | LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName, | 
|  | ForRedeclaration); | 
|  | Previous.setHideTags(false); | 
|  | if (S) { | 
|  | LookupName(Previous, S); | 
|  |  | 
|  | // It is really dumb that we have to do this. | 
|  | LookupResult::Filter F = Previous.makeFilter(); | 
|  | while (F.hasNext()) { | 
|  | NamedDecl *D = F.next(); | 
|  | if (!isDeclInScope(D, CurContext, S)) | 
|  | F.erase(); | 
|  | } | 
|  | F.done(); | 
|  | } else { | 
|  | assert(IsInstantiation && "no scope in non-instantiation"); | 
|  | assert(CurContext->isRecord() && "scope not record in instantiation"); | 
|  | LookupQualifiedName(Previous, CurContext); | 
|  | } | 
|  |  | 
|  | NestedNameSpecifier *NNS = | 
|  | static_cast<NestedNameSpecifier *>(SS.getScopeRep()); | 
|  |  | 
|  | // Check for invalid redeclarations. | 
|  | if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous)) | 
|  | return 0; | 
|  |  | 
|  | // Check for bad qualifiers. | 
|  | if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc)) | 
|  | return 0; | 
|  |  | 
|  | DeclContext *LookupContext = computeDeclContext(SS); | 
|  | NamedDecl *D; | 
|  | if (!LookupContext) { | 
|  | if (IsTypeName) { | 
|  | // FIXME: not all declaration name kinds are legal here | 
|  | D = UnresolvedUsingTypenameDecl::Create(Context, CurContext, | 
|  | UsingLoc, TypenameLoc, | 
|  | SS.getRange(), NNS, | 
|  | IdentLoc, Name); | 
|  | } else { | 
|  | D = UnresolvedUsingValueDecl::Create(Context, CurContext, | 
|  | UsingLoc, SS.getRange(), NNS, | 
|  | IdentLoc, Name); | 
|  | } | 
|  | } else { | 
|  | D = UsingDecl::Create(Context, CurContext, IdentLoc, | 
|  | SS.getRange(), UsingLoc, NNS, Name, | 
|  | IsTypeName); | 
|  | } | 
|  | D->setAccess(AS); | 
|  | CurContext->addDecl(D); | 
|  |  | 
|  | if (!LookupContext) return D; | 
|  | UsingDecl *UD = cast<UsingDecl>(D); | 
|  |  | 
|  | if (RequireCompleteDeclContext(SS)) { | 
|  | UD->setInvalidDecl(); | 
|  | return UD; | 
|  | } | 
|  |  | 
|  | // Look up the target name. | 
|  |  | 
|  | LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName); | 
|  |  | 
|  | // Unlike most lookups, we don't always want to hide tag | 
|  | // declarations: tag names are visible through the using declaration | 
|  | // even if hidden by ordinary names, *except* in a dependent context | 
|  | // where it's important for the sanity of two-phase lookup. | 
|  | if (!IsInstantiation) | 
|  | R.setHideTags(false); | 
|  |  | 
|  | LookupQualifiedName(R, LookupContext); | 
|  |  | 
|  | if (R.empty()) { | 
|  | Diag(IdentLoc, diag::err_no_member) | 
|  | << Name << LookupContext << SS.getRange(); | 
|  | UD->setInvalidDecl(); | 
|  | return UD; | 
|  | } | 
|  |  | 
|  | if (R.isAmbiguous()) { | 
|  | UD->setInvalidDecl(); | 
|  | return UD; | 
|  | } | 
|  |  | 
|  | if (IsTypeName) { | 
|  | // If we asked for a typename and got a non-type decl, error out. | 
|  | if (!R.getAsSingle<TypeDecl>()) { | 
|  | Diag(IdentLoc, diag::err_using_typename_non_type); | 
|  | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) | 
|  | Diag((*I)->getUnderlyingDecl()->getLocation(), | 
|  | diag::note_using_decl_target); | 
|  | UD->setInvalidDecl(); | 
|  | return UD; | 
|  | } | 
|  | } else { | 
|  | // If we asked for a non-typename and we got a type, error out, | 
|  | // but only if this is an instantiation of an unresolved using | 
|  | // decl.  Otherwise just silently find the type name. | 
|  | if (IsInstantiation && R.getAsSingle<TypeDecl>()) { | 
|  | Diag(IdentLoc, diag::err_using_dependent_value_is_type); | 
|  | Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); | 
|  | UD->setInvalidDecl(); | 
|  | return UD; | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++0x N2914 [namespace.udecl]p6: | 
|  | // A using-declaration shall not name a namespace. | 
|  | if (R.getAsSingle<NamespaceDecl>()) { | 
|  | Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) | 
|  | << SS.getRange(); | 
|  | UD->setInvalidDecl(); | 
|  | return UD; | 
|  | } | 
|  |  | 
|  | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { | 
|  | if (!CheckUsingShadowDecl(UD, *I, Previous)) | 
|  | BuildUsingShadowDecl(S, UD, *I); | 
|  | } | 
|  |  | 
|  | return UD; | 
|  | } | 
|  |  | 
|  | /// Checks that the given using declaration is not an invalid | 
|  | /// redeclaration.  Note that this is checking only for the using decl | 
|  | /// itself, not for any ill-formedness among the UsingShadowDecls. | 
|  | bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, | 
|  | bool isTypeName, | 
|  | const CXXScopeSpec &SS, | 
|  | SourceLocation NameLoc, | 
|  | const LookupResult &Prev) { | 
|  | // C++03 [namespace.udecl]p8: | 
|  | // C++0x [namespace.udecl]p10: | 
|  | //   A using-declaration is a declaration and can therefore be used | 
|  | //   repeatedly where (and only where) multiple declarations are | 
|  | //   allowed. | 
|  | // That's only in file contexts. | 
|  | if (CurContext->getLookupContext()->isFileContext()) | 
|  | return false; | 
|  |  | 
|  | NestedNameSpecifier *Qual | 
|  | = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); | 
|  |  | 
|  | for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { | 
|  | NamedDecl *D = *I; | 
|  |  | 
|  | bool DTypename; | 
|  | NestedNameSpecifier *DQual; | 
|  | if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) { | 
|  | DTypename = UD->isTypeName(); | 
|  | DQual = UD->getTargetNestedNameDecl(); | 
|  | } else if (UnresolvedUsingValueDecl *UD | 
|  | = dyn_cast<UnresolvedUsingValueDecl>(D)) { | 
|  | DTypename = false; | 
|  | DQual = UD->getTargetNestedNameSpecifier(); | 
|  | } else if (UnresolvedUsingTypenameDecl *UD | 
|  | = dyn_cast<UnresolvedUsingTypenameDecl>(D)) { | 
|  | DTypename = true; | 
|  | DQual = UD->getTargetNestedNameSpecifier(); | 
|  | } else continue; | 
|  |  | 
|  | // using decls differ if one says 'typename' and the other doesn't. | 
|  | // FIXME: non-dependent using decls? | 
|  | if (isTypeName != DTypename) continue; | 
|  |  | 
|  | // using decls differ if they name different scopes (but note that | 
|  | // template instantiation can cause this check to trigger when it | 
|  | // didn't before instantiation). | 
|  | if (Context.getCanonicalNestedNameSpecifier(Qual) != | 
|  | Context.getCanonicalNestedNameSpecifier(DQual)) | 
|  | continue; | 
|  |  | 
|  | Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); | 
|  | Diag(D->getLocation(), diag::note_using_decl) << 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Checks that the given nested-name qualifier used in a using decl | 
|  | /// in the current context is appropriately related to the current | 
|  | /// scope.  If an error is found, diagnoses it and returns true. | 
|  | bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, | 
|  | const CXXScopeSpec &SS, | 
|  | SourceLocation NameLoc) { | 
|  | DeclContext *NamedContext = computeDeclContext(SS); | 
|  |  | 
|  | if (!CurContext->isRecord()) { | 
|  | // C++03 [namespace.udecl]p3: | 
|  | // C++0x [namespace.udecl]p8: | 
|  | //   A using-declaration for a class member shall be a member-declaration. | 
|  |  | 
|  | // If we weren't able to compute a valid scope, it must be a | 
|  | // dependent class scope. | 
|  | if (!NamedContext || NamedContext->isRecord()) { | 
|  | Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member) | 
|  | << SS.getRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, everything is known to be fine. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The current scope is a record. | 
|  |  | 
|  | // If the named context is dependent, we can't decide much. | 
|  | if (!NamedContext) { | 
|  | // FIXME: in C++0x, we can diagnose if we can prove that the | 
|  | // nested-name-specifier does not refer to a base class, which is | 
|  | // still possible in some cases. | 
|  |  | 
|  | // Otherwise we have to conservatively report that things might be | 
|  | // okay. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!NamedContext->isRecord()) { | 
|  | // Ideally this would point at the last name in the specifier, | 
|  | // but we don't have that level of source info. | 
|  | Diag(SS.getRange().getBegin(), | 
|  | diag::err_using_decl_nested_name_specifier_is_not_class) | 
|  | << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (getLangOptions().CPlusPlus0x) { | 
|  | // C++0x [namespace.udecl]p3: | 
|  | //   In a using-declaration used as a member-declaration, the | 
|  | //   nested-name-specifier shall name a base class of the class | 
|  | //   being defined. | 
|  |  | 
|  | if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom( | 
|  | cast<CXXRecordDecl>(NamedContext))) { | 
|  | if (CurContext == NamedContext) { | 
|  | Diag(NameLoc, | 
|  | diag::err_using_decl_nested_name_specifier_is_current_class) | 
|  | << SS.getRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Diag(SS.getRange().getBegin(), | 
|  | diag::err_using_decl_nested_name_specifier_is_not_base_class) | 
|  | << (NestedNameSpecifier*) SS.getScopeRep() | 
|  | << cast<CXXRecordDecl>(CurContext) | 
|  | << SS.getRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // C++03 [namespace.udecl]p4: | 
|  | //   A using-declaration used as a member-declaration shall refer | 
|  | //   to a member of a base class of the class being defined [etc.]. | 
|  |  | 
|  | // Salient point: SS doesn't have to name a base class as long as | 
|  | // lookup only finds members from base classes.  Therefore we can | 
|  | // diagnose here only if we can prove that that can't happen, | 
|  | // i.e. if the class hierarchies provably don't intersect. | 
|  |  | 
|  | // TODO: it would be nice if "definitely valid" results were cached | 
|  | // in the UsingDecl and UsingShadowDecl so that these checks didn't | 
|  | // need to be repeated. | 
|  |  | 
|  | struct UserData { | 
|  | llvm::DenseSet<const CXXRecordDecl*> Bases; | 
|  |  | 
|  | static bool collect(const CXXRecordDecl *Base, void *OpaqueData) { | 
|  | UserData *Data = reinterpret_cast<UserData*>(OpaqueData); | 
|  | Data->Bases.insert(Base); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool hasDependentBases(const CXXRecordDecl *Class) { | 
|  | return !Class->forallBases(collect, this); | 
|  | } | 
|  |  | 
|  | /// Returns true if the base is dependent or is one of the | 
|  | /// accumulated base classes. | 
|  | static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) { | 
|  | UserData *Data = reinterpret_cast<UserData*>(OpaqueData); | 
|  | return !Data->Bases.count(Base); | 
|  | } | 
|  |  | 
|  | bool mightShareBases(const CXXRecordDecl *Class) { | 
|  | return Bases.count(Class) || !Class->forallBases(doesNotContain, this); | 
|  | } | 
|  | }; | 
|  |  | 
|  | UserData Data; | 
|  |  | 
|  | // Returns false if we find a dependent base. | 
|  | if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext))) | 
|  | return false; | 
|  |  | 
|  | // Returns false if the class has a dependent base or if it or one | 
|  | // of its bases is present in the base set of the current context. | 
|  | if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext))) | 
|  | return false; | 
|  |  | 
|  | Diag(SS.getRange().getBegin(), | 
|  | diag::err_using_decl_nested_name_specifier_is_not_base_class) | 
|  | << (NestedNameSpecifier*) SS.getScopeRep() | 
|  | << cast<CXXRecordDecl>(CurContext) | 
|  | << SS.getRange(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S, | 
|  | SourceLocation NamespaceLoc, | 
|  | SourceLocation AliasLoc, | 
|  | IdentifierInfo *Alias, | 
|  | const CXXScopeSpec &SS, | 
|  | SourceLocation IdentLoc, | 
|  | IdentifierInfo *Ident) { | 
|  |  | 
|  | // Lookup the namespace name. | 
|  | LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); | 
|  | LookupParsedName(R, S, &SS); | 
|  |  | 
|  | // Check if we have a previous declaration with the same name. | 
|  | if (NamedDecl *PrevDecl | 
|  | = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) { | 
|  | if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) { | 
|  | // We already have an alias with the same name that points to the same | 
|  | // namespace, so don't create a new one. | 
|  | if (!R.isAmbiguous() && !R.empty() && | 
|  | AD->getNamespace() == getNamespaceDecl(R.getFoundDecl())) | 
|  | return DeclPtrTy(); | 
|  | } | 
|  |  | 
|  | unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition : | 
|  | diag::err_redefinition_different_kind; | 
|  | Diag(AliasLoc, DiagID) << Alias; | 
|  | Diag(PrevDecl->getLocation(), diag::note_previous_definition); | 
|  | return DeclPtrTy(); | 
|  | } | 
|  |  | 
|  | if (R.isAmbiguous()) | 
|  | return DeclPtrTy(); | 
|  |  | 
|  | if (R.empty()) { | 
|  | Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange(); | 
|  | return DeclPtrTy(); | 
|  | } | 
|  |  | 
|  | NamespaceAliasDecl *AliasDecl = | 
|  | NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, | 
|  | Alias, SS.getRange(), | 
|  | (NestedNameSpecifier *)SS.getScopeRep(), | 
|  | IdentLoc, R.getFoundDecl()); | 
|  |  | 
|  | CurContext->addDecl(AliasDecl); | 
|  | return DeclPtrTy::make(AliasDecl); | 
|  | } | 
|  |  | 
|  | void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, | 
|  | CXXConstructorDecl *Constructor) { | 
|  | assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() && | 
|  | !Constructor->isUsed()) && | 
|  | "DefineImplicitDefaultConstructor - call it for implicit default ctor"); | 
|  |  | 
|  | CXXRecordDecl *ClassDecl | 
|  | = cast<CXXRecordDecl>(Constructor->getDeclContext()); | 
|  | assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"); | 
|  |  | 
|  | if (SetBaseOrMemberInitializers(Constructor, 0, 0, true)) { | 
|  | Diag(CurrentLocation, diag::note_member_synthesized_at) | 
|  | << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl); | 
|  | Constructor->setInvalidDecl(); | 
|  | } else { | 
|  | Constructor->setUsed(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, | 
|  | CXXDestructorDecl *Destructor) { | 
|  | assert((Destructor->isImplicit() && !Destructor->isUsed()) && | 
|  | "DefineImplicitDestructor - call it for implicit default dtor"); | 
|  | CXXRecordDecl *ClassDecl = Destructor->getParent(); | 
|  | assert(ClassDecl && "DefineImplicitDestructor - invalid destructor"); | 
|  | // C++ [class.dtor] p5 | 
|  | // Before the implicitly-declared default destructor for a class is | 
|  | // implicitly defined, all the implicitly-declared default destructors | 
|  | // for its base class and its non-static data members shall have been | 
|  | // implicitly defined. | 
|  | for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), | 
|  | E = ClassDecl->bases_end(); Base != E; ++Base) { | 
|  | CXXRecordDecl *BaseClassDecl | 
|  | = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
|  | if (!BaseClassDecl->hasTrivialDestructor()) { | 
|  | if (CXXDestructorDecl *BaseDtor = | 
|  | const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context))) | 
|  | MarkDeclarationReferenced(CurrentLocation, BaseDtor); | 
|  | else | 
|  | assert(false && | 
|  | "DefineImplicitDestructor - missing dtor in a base class"); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), | 
|  | E = ClassDecl->field_end(); Field != E; ++Field) { | 
|  | QualType FieldType = Context.getCanonicalType((*Field)->getType()); | 
|  | if (const ArrayType *Array = Context.getAsArrayType(FieldType)) | 
|  | FieldType = Array->getElementType(); | 
|  | if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { | 
|  | CXXRecordDecl *FieldClassDecl | 
|  | = cast<CXXRecordDecl>(FieldClassType->getDecl()); | 
|  | if (!FieldClassDecl->hasTrivialDestructor()) { | 
|  | if (CXXDestructorDecl *FieldDtor = | 
|  | const_cast<CXXDestructorDecl*>( | 
|  | FieldClassDecl->getDestructor(Context))) | 
|  | MarkDeclarationReferenced(CurrentLocation, FieldDtor); | 
|  | else | 
|  | assert(false && | 
|  | "DefineImplicitDestructor - missing dtor in class of a data member"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: If CheckDestructor fails, we should emit a note about where the | 
|  | // implicit destructor was needed. | 
|  | if (CheckDestructor(Destructor)) { | 
|  | Diag(CurrentLocation, diag::note_member_synthesized_at) | 
|  | << CXXDestructor << Context.getTagDeclType(ClassDecl); | 
|  |  | 
|  | Destructor->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Destructor->setUsed(); | 
|  | } | 
|  |  | 
|  | void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation, | 
|  | CXXMethodDecl *MethodDecl) { | 
|  | assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() && | 
|  | MethodDecl->getOverloadedOperator() == OO_Equal && | 
|  | !MethodDecl->isUsed()) && | 
|  | "DefineImplicitOverloadedAssign - call it for implicit assignment op"); | 
|  |  | 
|  | CXXRecordDecl *ClassDecl | 
|  | = cast<CXXRecordDecl>(MethodDecl->getDeclContext()); | 
|  |  | 
|  | // C++[class.copy] p12 | 
|  | // Before the implicitly-declared copy assignment operator for a class is | 
|  | // implicitly defined, all implicitly-declared copy assignment operators | 
|  | // for its direct base classes and its nonstatic data members shall have | 
|  | // been implicitly defined. | 
|  | bool err = false; | 
|  | for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), | 
|  | E = ClassDecl->bases_end(); Base != E; ++Base) { | 
|  | CXXRecordDecl *BaseClassDecl | 
|  | = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
|  | if (CXXMethodDecl *BaseAssignOpMethod = | 
|  | getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0), | 
|  | BaseClassDecl)) | 
|  | MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod); | 
|  | } | 
|  | for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), | 
|  | E = ClassDecl->field_end(); Field != E; ++Field) { | 
|  | QualType FieldType = Context.getCanonicalType((*Field)->getType()); | 
|  | if (const ArrayType *Array = Context.getAsArrayType(FieldType)) | 
|  | FieldType = Array->getElementType(); | 
|  | if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { | 
|  | CXXRecordDecl *FieldClassDecl | 
|  | = cast<CXXRecordDecl>(FieldClassType->getDecl()); | 
|  | if (CXXMethodDecl *FieldAssignOpMethod = | 
|  | getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0), | 
|  | FieldClassDecl)) | 
|  | MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod); | 
|  | } else if (FieldType->isReferenceType()) { | 
|  | Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) | 
|  | << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); | 
|  | Diag(Field->getLocation(), diag::note_declared_at); | 
|  | Diag(CurrentLocation, diag::note_first_required_here); | 
|  | err = true; | 
|  | } else if (FieldType.isConstQualified()) { | 
|  | Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) | 
|  | << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); | 
|  | Diag(Field->getLocation(), diag::note_declared_at); | 
|  | Diag(CurrentLocation, diag::note_first_required_here); | 
|  | err = true; | 
|  | } | 
|  | } | 
|  | if (!err) | 
|  | MethodDecl->setUsed(); | 
|  | } | 
|  |  | 
|  | CXXMethodDecl * | 
|  | Sema::getAssignOperatorMethod(SourceLocation CurrentLocation, | 
|  | ParmVarDecl *ParmDecl, | 
|  | CXXRecordDecl *ClassDecl) { | 
|  | QualType LHSType = Context.getTypeDeclType(ClassDecl); | 
|  | QualType RHSType(LHSType); | 
|  | // If class's assignment operator argument is const/volatile qualified, | 
|  | // look for operator = (const/volatile B&). Otherwise, look for | 
|  | // operator = (B&). | 
|  | RHSType = Context.getCVRQualifiedType(RHSType, | 
|  | ParmDecl->getType().getCVRQualifiers()); | 
|  | ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl, | 
|  | LHSType, | 
|  | SourceLocation())); | 
|  | ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl, | 
|  | RHSType, | 
|  | CurrentLocation)); | 
|  | Expr *Args[2] = { &*LHS, &*RHS }; | 
|  | OverloadCandidateSet CandidateSet; | 
|  | AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2, | 
|  | CandidateSet); | 
|  | OverloadCandidateSet::iterator Best; | 
|  | if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success) | 
|  | return cast<CXXMethodDecl>(Best->Function); | 
|  | assert(false && | 
|  | "getAssignOperatorMethod - copy assignment operator method not found"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, | 
|  | CXXConstructorDecl *CopyConstructor, | 
|  | unsigned TypeQuals) { | 
|  | assert((CopyConstructor->isImplicit() && | 
|  | CopyConstructor->isCopyConstructor(TypeQuals) && | 
|  | !CopyConstructor->isUsed()) && | 
|  | "DefineImplicitCopyConstructor - call it for implicit copy ctor"); | 
|  |  | 
|  | CXXRecordDecl *ClassDecl | 
|  | = cast<CXXRecordDecl>(CopyConstructor->getDeclContext()); | 
|  | assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"); | 
|  | // C++ [class.copy] p209 | 
|  | // Before the implicitly-declared copy constructor for a class is | 
|  | // implicitly defined, all the implicitly-declared copy constructors | 
|  | // for its base class and its non-static data members shall have been | 
|  | // implicitly defined. | 
|  | for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); | 
|  | Base != ClassDecl->bases_end(); ++Base) { | 
|  | CXXRecordDecl *BaseClassDecl | 
|  | = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
|  | if (CXXConstructorDecl *BaseCopyCtor = | 
|  | BaseClassDecl->getCopyConstructor(Context, TypeQuals)) | 
|  | MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor); | 
|  | } | 
|  | for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), | 
|  | FieldEnd = ClassDecl->field_end(); | 
|  | Field != FieldEnd; ++Field) { | 
|  | QualType FieldType = Context.getCanonicalType((*Field)->getType()); | 
|  | if (const ArrayType *Array = Context.getAsArrayType(FieldType)) | 
|  | FieldType = Array->getElementType(); | 
|  | if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { | 
|  | CXXRecordDecl *FieldClassDecl | 
|  | = cast<CXXRecordDecl>(FieldClassType->getDecl()); | 
|  | if (CXXConstructorDecl *FieldCopyCtor = | 
|  | FieldClassDecl->getCopyConstructor(Context, TypeQuals)) | 
|  | MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor); | 
|  | } | 
|  | } | 
|  | CopyConstructor->setUsed(); | 
|  | } | 
|  |  | 
|  | Sema::OwningExprResult | 
|  | Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, | 
|  | CXXConstructorDecl *Constructor, | 
|  | MultiExprArg ExprArgs, | 
|  | bool RequiresZeroInit) { | 
|  | bool Elidable = false; | 
|  |  | 
|  | // C++ [class.copy]p15: | 
|  | //   Whenever a temporary class object is copied using a copy constructor, and | 
|  | //   this object and the copy have the same cv-unqualified type, an | 
|  | //   implementation is permitted to treat the original and the copy as two | 
|  | //   different ways of referring to the same object and not perform a copy at | 
|  | //   all, even if the class copy constructor or destructor have side effects. | 
|  |  | 
|  | // FIXME: Is this enough? | 
|  | if (Constructor->isCopyConstructor()) { | 
|  | Expr *E = ((Expr **)ExprArgs.get())[0]; | 
|  | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) | 
|  | if (ICE->getCastKind() == CastExpr::CK_NoOp) | 
|  | E = ICE->getSubExpr(); | 
|  | if (CXXFunctionalCastExpr *FCE = dyn_cast<CXXFunctionalCastExpr>(E)) | 
|  | E = FCE->getSubExpr(); | 
|  | while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) | 
|  | E = BE->getSubExpr(); | 
|  | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) | 
|  | if (ICE->getCastKind() == CastExpr::CK_NoOp) | 
|  | E = ICE->getSubExpr(); | 
|  |  | 
|  | if (CallExpr *CE = dyn_cast<CallExpr>(E)) | 
|  | Elidable = !CE->getCallReturnType()->isReferenceType(); | 
|  | else if (isa<CXXTemporaryObjectExpr>(E)) | 
|  | Elidable = true; | 
|  | else if (isa<CXXConstructExpr>(E)) | 
|  | Elidable = true; | 
|  | } | 
|  |  | 
|  | return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor, | 
|  | Elidable, move(ExprArgs), RequiresZeroInit); | 
|  | } | 
|  |  | 
|  | /// BuildCXXConstructExpr - Creates a complete call to a constructor, | 
|  | /// including handling of its default argument expressions. | 
|  | Sema::OwningExprResult | 
|  | Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, | 
|  | CXXConstructorDecl *Constructor, bool Elidable, | 
|  | MultiExprArg ExprArgs, | 
|  | bool RequiresZeroInit) { | 
|  | unsigned NumExprs = ExprArgs.size(); | 
|  | Expr **Exprs = (Expr **)ExprArgs.release(); | 
|  |  | 
|  | MarkDeclarationReferenced(ConstructLoc, Constructor); | 
|  | return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc, | 
|  | Constructor, Elidable, Exprs, NumExprs, | 
|  | RequiresZeroInit)); | 
|  | } | 
|  |  | 
|  | Sema::OwningExprResult | 
|  | Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor, | 
|  | QualType Ty, | 
|  | SourceLocation TyBeginLoc, | 
|  | MultiExprArg Args, | 
|  | SourceLocation RParenLoc) { | 
|  | unsigned NumExprs = Args.size(); | 
|  | Expr **Exprs = (Expr **)Args.release(); | 
|  |  | 
|  | MarkDeclarationReferenced(TyBeginLoc, Constructor); | 
|  | return Owned(new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty, | 
|  | TyBeginLoc, Exprs, | 
|  | NumExprs, RParenLoc)); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool Sema::InitializeVarWithConstructor(VarDecl *VD, | 
|  | CXXConstructorDecl *Constructor, | 
|  | MultiExprArg Exprs) { | 
|  | OwningExprResult TempResult = | 
|  | BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor, | 
|  | move(Exprs)); | 
|  | if (TempResult.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | Expr *Temp = TempResult.takeAs<Expr>(); | 
|  | MarkDeclarationReferenced(VD->getLocation(), Constructor); | 
|  | Temp = MaybeCreateCXXExprWithTemporaries(Temp); | 
|  | VD->setInit(Context, Temp); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType) { | 
|  | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>( | 
|  | DeclInitType->getAs<RecordType>()->getDecl()); | 
|  | if (!ClassDecl->hasTrivialDestructor()) | 
|  | if (CXXDestructorDecl *Destructor = | 
|  | const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context))) | 
|  | MarkDeclarationReferenced(VD->getLocation(), Destructor); | 
|  | } | 
|  |  | 
|  | /// AddCXXDirectInitializerToDecl - This action is called immediately after | 
|  | /// ActOnDeclarator, when a C++ direct initializer is present. | 
|  | /// e.g: "int x(1);" | 
|  | void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl, | 
|  | SourceLocation LParenLoc, | 
|  | MultiExprArg Exprs, | 
|  | SourceLocation *CommaLocs, | 
|  | SourceLocation RParenLoc) { | 
|  | assert(Exprs.size() != 0 && Exprs.get() && "missing expressions"); | 
|  | Decl *RealDecl = Dcl.getAs<Decl>(); | 
|  |  | 
|  | // If there is no declaration, there was an error parsing it.  Just ignore | 
|  | // the initializer. | 
|  | if (RealDecl == 0) | 
|  | return; | 
|  |  | 
|  | VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); | 
|  | if (!VDecl) { | 
|  | Diag(RealDecl->getLocation(), diag::err_illegal_initializer); | 
|  | RealDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // We will represent direct-initialization similarly to copy-initialization: | 
|  | //    int x(1);  -as-> int x = 1; | 
|  | //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); | 
|  | // | 
|  | // Clients that want to distinguish between the two forms, can check for | 
|  | // direct initializer using VarDecl::hasCXXDirectInitializer(). | 
|  | // A major benefit is that clients that don't particularly care about which | 
|  | // exactly form was it (like the CodeGen) can handle both cases without | 
|  | // special case code. | 
|  |  | 
|  | // If either the declaration has a dependent type or if any of the expressions | 
|  | // is type-dependent, we represent the initialization via a ParenListExpr for | 
|  | // later use during template instantiation. | 
|  | if (VDecl->getType()->isDependentType() || | 
|  | Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) { | 
|  | // Let clients know that initialization was done with a direct initializer. | 
|  | VDecl->setCXXDirectInitializer(true); | 
|  |  | 
|  | // Store the initialization expressions as a ParenListExpr. | 
|  | unsigned NumExprs = Exprs.size(); | 
|  | VDecl->setInit(Context, | 
|  | new (Context) ParenListExpr(Context, LParenLoc, | 
|  | (Expr **)Exprs.release(), | 
|  | NumExprs, RParenLoc)); | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | // C++ 8.5p11: | 
|  | // The form of initialization (using parentheses or '=') is generally | 
|  | // insignificant, but does matter when the entity being initialized has a | 
|  | // class type. | 
|  | QualType DeclInitType = VDecl->getType(); | 
|  | if (const ArrayType *Array = Context.getAsArrayType(DeclInitType)) | 
|  | DeclInitType = Context.getBaseElementType(Array); | 
|  |  | 
|  | if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(), | 
|  | diag::err_typecheck_decl_incomplete_type)) { | 
|  | VDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The variable can not have an abstract class type. | 
|  | if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), | 
|  | diag::err_abstract_type_in_decl, | 
|  | AbstractVariableType)) | 
|  | VDecl->setInvalidDecl(); | 
|  |  | 
|  | const VarDecl *Def = 0; | 
|  | if (VDecl->getDefinition(Def)) { | 
|  | Diag(VDecl->getLocation(), diag::err_redefinition) | 
|  | << VDecl->getDeclName(); | 
|  | Diag(Def->getLocation(), diag::note_previous_definition); | 
|  | VDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Capture the variable that is being initialized and the style of | 
|  | // initialization. | 
|  | InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); | 
|  |  | 
|  | // FIXME: Poor source location information. | 
|  | InitializationKind Kind | 
|  | = InitializationKind::CreateDirect(VDecl->getLocation(), | 
|  | LParenLoc, RParenLoc); | 
|  |  | 
|  | InitializationSequence InitSeq(*this, Entity, Kind, | 
|  | (Expr**)Exprs.get(), Exprs.size()); | 
|  | OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs)); | 
|  | if (Result.isInvalid()) { | 
|  | VDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Result = MaybeCreateCXXExprWithTemporaries(move(Result)); | 
|  | VDecl->setInit(Context, Result.takeAs<Expr>()); | 
|  | VDecl->setCXXDirectInitializer(true); | 
|  |  | 
|  | if (VDecl->getType()->getAs<RecordType>()) | 
|  | FinalizeVarWithDestructor(VDecl, DeclInitType); | 
|  | } | 
|  |  | 
|  | /// \brief Add the applicable constructor candidates for an initialization | 
|  | /// by constructor. | 
|  | static void AddConstructorInitializationCandidates(Sema &SemaRef, | 
|  | QualType ClassType, | 
|  | Expr **Args, | 
|  | unsigned NumArgs, | 
|  | InitializationKind Kind, | 
|  | OverloadCandidateSet &CandidateSet) { | 
|  | // C++ [dcl.init]p14: | 
|  | //   If the initialization is direct-initialization, or if it is | 
|  | //   copy-initialization where the cv-unqualified version of the | 
|  | //   source type is the same class as, or a derived class of, the | 
|  | //   class of the destination, constructors are considered. The | 
|  | //   applicable constructors are enumerated (13.3.1.3), and the | 
|  | //   best one is chosen through overload resolution (13.3). The | 
|  | //   constructor so selected is called to initialize the object, | 
|  | //   with the initializer expression(s) as its argument(s). If no | 
|  | //   constructor applies, or the overload resolution is ambiguous, | 
|  | //   the initialization is ill-formed. | 
|  | const RecordType *ClassRec = ClassType->getAs<RecordType>(); | 
|  | assert(ClassRec && "Can only initialize a class type here"); | 
|  |  | 
|  | // FIXME: When we decide not to synthesize the implicitly-declared | 
|  | // constructors, we'll need to make them appear here. | 
|  |  | 
|  | const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl()); | 
|  | DeclarationName ConstructorName | 
|  | = SemaRef.Context.DeclarationNames.getCXXConstructorName( | 
|  | SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType()); | 
|  | DeclContext::lookup_const_iterator Con, ConEnd; | 
|  | for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName); | 
|  | Con != ConEnd; ++Con) { | 
|  | // Find the constructor (which may be a template). | 
|  | CXXConstructorDecl *Constructor = 0; | 
|  | FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con); | 
|  | if (ConstructorTmpl) | 
|  | Constructor | 
|  | = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); | 
|  | else | 
|  | Constructor = cast<CXXConstructorDecl>(*Con); | 
|  |  | 
|  | if ((Kind.getKind() == InitializationKind::IK_Direct) || | 
|  | (Kind.getKind() == InitializationKind::IK_Value) || | 
|  | (Kind.getKind() == InitializationKind::IK_Copy && | 
|  | Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) || | 
|  | ((Kind.getKind() == InitializationKind::IK_Default) && | 
|  | Constructor->isDefaultConstructor())) { | 
|  | if (ConstructorTmpl) | 
|  | SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl, | 
|  | /*ExplicitArgs*/ 0, | 
|  | Args, NumArgs, CandidateSet); | 
|  | else | 
|  | SemaRef.AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Attempt to perform initialization by constructor | 
|  | /// (C++ [dcl.init]p14), which may occur as part of direct-initialization or | 
|  | /// copy-initialization. | 
|  | /// | 
|  | /// This routine determines whether initialization by constructor is possible, | 
|  | /// but it does not emit any diagnostics in the case where the initialization | 
|  | /// is ill-formed. | 
|  | /// | 
|  | /// \param ClassType the type of the object being initialized, which must have | 
|  | /// class type. | 
|  | /// | 
|  | /// \param Args the arguments provided to initialize the object | 
|  | /// | 
|  | /// \param NumArgs the number of arguments provided to initialize the object | 
|  | /// | 
|  | /// \param Kind the type of initialization being performed | 
|  | /// | 
|  | /// \returns the constructor used to initialize the object, if successful. | 
|  | /// Otherwise, emits a diagnostic and returns NULL. | 
|  | CXXConstructorDecl * | 
|  | Sema::TryInitializationByConstructor(QualType ClassType, | 
|  | Expr **Args, unsigned NumArgs, | 
|  | SourceLocation Loc, | 
|  | InitializationKind Kind) { | 
|  | // Build the overload candidate set | 
|  | OverloadCandidateSet CandidateSet; | 
|  | AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind, | 
|  | CandidateSet); | 
|  |  | 
|  | // Determine whether we found a constructor we can use. | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (BestViableFunction(CandidateSet, Loc, Best)) { | 
|  | case OR_Success: | 
|  | case OR_Deleted: | 
|  | // We found a constructor. Return it. | 
|  | return cast<CXXConstructorDecl>(Best->Function); | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  | case OR_Ambiguous: | 
|  | // Overload resolution failed. Return nothing. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Silence GCC warning | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// \brief Perform initialization by constructor (C++ [dcl.init]p14), which | 
|  | /// may occur as part of direct-initialization or copy-initialization. | 
|  | /// | 
|  | /// \param ClassType the type of the object being initialized, which must have | 
|  | /// class type. | 
|  | /// | 
|  | /// \param ArgsPtr the arguments provided to initialize the object | 
|  | /// | 
|  | /// \param Loc the source location where the initialization occurs | 
|  | /// | 
|  | /// \param Range the source range that covers the entire initialization | 
|  | /// | 
|  | /// \param InitEntity the name of the entity being initialized, if known | 
|  | /// | 
|  | /// \param Kind the type of initialization being performed | 
|  | /// | 
|  | /// \param ConvertedArgs a vector that will be filled in with the | 
|  | /// appropriately-converted arguments to the constructor (if initialization | 
|  | /// succeeded). | 
|  | /// | 
|  | /// \returns the constructor used to initialize the object, if successful. | 
|  | /// Otherwise, emits a diagnostic and returns NULL. | 
|  | CXXConstructorDecl * | 
|  | Sema::PerformInitializationByConstructor(QualType ClassType, | 
|  | MultiExprArg ArgsPtr, | 
|  | SourceLocation Loc, SourceRange Range, | 
|  | DeclarationName InitEntity, | 
|  | InitializationKind Kind, | 
|  | ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) { | 
|  |  | 
|  | // Build the overload candidate set | 
|  | Expr **Args = (Expr **)ArgsPtr.get(); | 
|  | unsigned NumArgs = ArgsPtr.size(); | 
|  | OverloadCandidateSet CandidateSet; | 
|  | AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind, | 
|  | CandidateSet); | 
|  |  | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (BestViableFunction(CandidateSet, Loc, Best)) { | 
|  | case OR_Success: | 
|  | // We found a constructor. Break out so that we can convert the arguments | 
|  | // appropriately. | 
|  | break; | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  | if (InitEntity) | 
|  | Diag(Loc, diag::err_ovl_no_viable_function_in_init) | 
|  | << InitEntity << Range; | 
|  | else | 
|  | Diag(Loc, diag::err_ovl_no_viable_function_in_init) | 
|  | << ClassType << Range; | 
|  | PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); | 
|  | return 0; | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | if (InitEntity) | 
|  | Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range; | 
|  | else | 
|  | Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range; | 
|  | PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); | 
|  | return 0; | 
|  |  | 
|  | case OR_Deleted: | 
|  | if (InitEntity) | 
|  | Diag(Loc, diag::err_ovl_deleted_init) | 
|  | << Best->Function->isDeleted() | 
|  | << InitEntity << Range; | 
|  | else { | 
|  | const CXXRecordDecl *RD = | 
|  | cast<CXXRecordDecl>(ClassType->getAs<RecordType>()->getDecl()); | 
|  | Diag(Loc, diag::err_ovl_deleted_init) | 
|  | << Best->Function->isDeleted() | 
|  | << RD->getDeclName() << Range; | 
|  | } | 
|  | PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Convert the arguments, fill in default arguments, etc. | 
|  | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); | 
|  | if (CompleteConstructorCall(Constructor, move(ArgsPtr), Loc, ConvertedArgs)) | 
|  | return 0; | 
|  |  | 
|  | return Constructor; | 
|  | } | 
|  |  | 
|  | /// \brief Given a constructor and the set of arguments provided for the | 
|  | /// constructor, convert the arguments and add any required default arguments | 
|  | /// to form a proper call to this constructor. | 
|  | /// | 
|  | /// \returns true if an error occurred, false otherwise. | 
|  | bool | 
|  | Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, | 
|  | MultiExprArg ArgsPtr, | 
|  | SourceLocation Loc, | 
|  | ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) { | 
|  | // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. | 
|  | unsigned NumArgs = ArgsPtr.size(); | 
|  | Expr **Args = (Expr **)ArgsPtr.get(); | 
|  |  | 
|  | const FunctionProtoType *Proto | 
|  | = Constructor->getType()->getAs<FunctionProtoType>(); | 
|  | assert(Proto && "Constructor without a prototype?"); | 
|  | unsigned NumArgsInProto = Proto->getNumArgs(); | 
|  |  | 
|  | // If too few arguments are available, we'll fill in the rest with defaults. | 
|  | if (NumArgs < NumArgsInProto) | 
|  | ConvertedArgs.reserve(NumArgsInProto); | 
|  | else | 
|  | ConvertedArgs.reserve(NumArgs); | 
|  |  | 
|  | VariadicCallType CallType = | 
|  | Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; | 
|  | llvm::SmallVector<Expr *, 8> AllArgs; | 
|  | bool Invalid = GatherArgumentsForCall(Loc, Constructor, | 
|  | Proto, 0, Args, NumArgs, AllArgs, | 
|  | CallType); | 
|  | for (unsigned i =0, size = AllArgs.size(); i < size; i++) | 
|  | ConvertedArgs.push_back(AllArgs[i]); | 
|  | return Invalid; | 
|  | } | 
|  |  | 
|  | /// CompareReferenceRelationship - Compare the two types T1 and T2 to | 
|  | /// determine whether they are reference-related, | 
|  | /// reference-compatible, reference-compatible with added | 
|  | /// qualification, or incompatible, for use in C++ initialization by | 
|  | /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference | 
|  | /// type, and the first type (T1) is the pointee type of the reference | 
|  | /// type being initialized. | 
|  | Sema::ReferenceCompareResult | 
|  | Sema::CompareReferenceRelationship(SourceLocation Loc, | 
|  | QualType OrigT1, QualType OrigT2, | 
|  | bool& DerivedToBase) { | 
|  | assert(!OrigT1->isReferenceType() && | 
|  | "T1 must be the pointee type of the reference type"); | 
|  | assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); | 
|  |  | 
|  | QualType T1 = Context.getCanonicalType(OrigT1); | 
|  | QualType T2 = Context.getCanonicalType(OrigT2); | 
|  | Qualifiers T1Quals, T2Quals; | 
|  | QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); | 
|  | QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); | 
|  |  | 
|  | // C++ [dcl.init.ref]p4: | 
|  | //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is | 
|  | //   reference-related to "cv2 T2" if T1 is the same type as T2, or | 
|  | //   T1 is a base class of T2. | 
|  | if (UnqualT1 == UnqualT2) | 
|  | DerivedToBase = false; | 
|  | else if (!RequireCompleteType(Loc, OrigT1, PDiag()) && | 
|  | !RequireCompleteType(Loc, OrigT2, PDiag()) && | 
|  | IsDerivedFrom(UnqualT2, UnqualT1)) | 
|  | DerivedToBase = true; | 
|  | else | 
|  | return Ref_Incompatible; | 
|  |  | 
|  | // At this point, we know that T1 and T2 are reference-related (at | 
|  | // least). | 
|  |  | 
|  | // If the type is an array type, promote the element qualifiers to the type | 
|  | // for comparison. | 
|  | if (isa<ArrayType>(T1) && T1Quals) | 
|  | T1 = Context.getQualifiedType(UnqualT1, T1Quals); | 
|  | if (isa<ArrayType>(T2) && T2Quals) | 
|  | T2 = Context.getQualifiedType(UnqualT2, T2Quals); | 
|  |  | 
|  | // C++ [dcl.init.ref]p4: | 
|  | //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is | 
|  | //   reference-related to T2 and cv1 is the same cv-qualification | 
|  | //   as, or greater cv-qualification than, cv2. For purposes of | 
|  | //   overload resolution, cases for which cv1 is greater | 
|  | //   cv-qualification than cv2 are identified as | 
|  | //   reference-compatible with added qualification (see 13.3.3.2). | 
|  | if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers()) | 
|  | return Ref_Compatible; | 
|  | else if (T1.isMoreQualifiedThan(T2)) | 
|  | return Ref_Compatible_With_Added_Qualification; | 
|  | else | 
|  | return Ref_Related; | 
|  | } | 
|  |  | 
|  | /// CheckReferenceInit - Check the initialization of a reference | 
|  | /// variable with the given initializer (C++ [dcl.init.ref]). Init is | 
|  | /// the initializer (either a simple initializer or an initializer | 
|  | /// list), and DeclType is the type of the declaration. When ICS is | 
|  | /// non-null, this routine will compute the implicit conversion | 
|  | /// sequence according to C++ [over.ics.ref] and will not produce any | 
|  | /// diagnostics; when ICS is null, it will emit diagnostics when any | 
|  | /// errors are found. Either way, a return value of true indicates | 
|  | /// that there was a failure, a return value of false indicates that | 
|  | /// the reference initialization succeeded. | 
|  | /// | 
|  | /// When @p SuppressUserConversions, user-defined conversions are | 
|  | /// suppressed. | 
|  | /// When @p AllowExplicit, we also permit explicit user-defined | 
|  | /// conversion functions. | 
|  | /// When @p ForceRValue, we unconditionally treat the initializer as an rvalue. | 
|  | /// When @p IgnoreBaseAccess, we don't do access control on to-base conversion. | 
|  | /// This is used when this is called from a C-style cast. | 
|  | bool | 
|  | Sema::CheckReferenceInit(Expr *&Init, QualType DeclType, | 
|  | SourceLocation DeclLoc, | 
|  | bool SuppressUserConversions, | 
|  | bool AllowExplicit, bool ForceRValue, | 
|  | ImplicitConversionSequence *ICS, | 
|  | bool IgnoreBaseAccess) { | 
|  | assert(DeclType->isReferenceType() && "Reference init needs a reference"); | 
|  |  | 
|  | QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType(); | 
|  | QualType T2 = Init->getType(); | 
|  |  | 
|  | // If the initializer is the address of an overloaded function, try | 
|  | // to resolve the overloaded function. If all goes well, T2 is the | 
|  | // type of the resulting function. | 
|  | if (Context.getCanonicalType(T2) == Context.OverloadTy) { | 
|  | FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType, | 
|  | ICS != 0); | 
|  | if (Fn) { | 
|  | // Since we're performing this reference-initialization for | 
|  | // real, update the initializer with the resulting function. | 
|  | if (!ICS) { | 
|  | if (DiagnoseUseOfDecl(Fn, DeclLoc)) | 
|  | return true; | 
|  |  | 
|  | Init = FixOverloadedFunctionReference(Init, Fn); | 
|  | } | 
|  |  | 
|  | T2 = Fn->getType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute some basic properties of the types and the initializer. | 
|  | bool isRValRef = DeclType->isRValueReferenceType(); | 
|  | bool DerivedToBase = false; | 
|  | Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression : | 
|  | Init->isLvalue(Context); | 
|  | ReferenceCompareResult RefRelationship | 
|  | = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase); | 
|  |  | 
|  | // Most paths end in a failed conversion. | 
|  | if (ICS) | 
|  | ICS->ConversionKind = ImplicitConversionSequence::BadConversion; | 
|  |  | 
|  | // C++ [dcl.init.ref]p5: | 
|  | //   A reference to type "cv1 T1" is initialized by an expression | 
|  | //   of type "cv2 T2" as follows: | 
|  |  | 
|  | //     -- If the initializer expression | 
|  |  | 
|  | // Rvalue references cannot bind to lvalues (N2812). | 
|  | // There is absolutely no situation where they can. In particular, note that | 
|  | // this is ill-formed, even if B has a user-defined conversion to A&&: | 
|  | //   B b; | 
|  | //   A&& r = b; | 
|  | if (isRValRef && InitLvalue == Expr::LV_Valid) { | 
|  | if (!ICS) | 
|  | Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref) | 
|  | << Init->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool BindsDirectly = false; | 
|  | //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is | 
|  | //          reference-compatible with "cv2 T2," or | 
|  | // | 
|  | // Note that the bit-field check is skipped if we are just computing | 
|  | // the implicit conversion sequence (C++ [over.best.ics]p2). | 
|  | if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) && | 
|  | RefRelationship >= Ref_Compatible_With_Added_Qualification) { | 
|  | BindsDirectly = true; | 
|  |  | 
|  | if (ICS) { | 
|  | // C++ [over.ics.ref]p1: | 
|  | //   When a parameter of reference type binds directly (8.5.3) | 
|  | //   to an argument expression, the implicit conversion sequence | 
|  | //   is the identity conversion, unless the argument expression | 
|  | //   has a type that is a derived class of the parameter type, | 
|  | //   in which case the implicit conversion sequence is a | 
|  | //   derived-to-base Conversion (13.3.3.1). | 
|  | ICS->ConversionKind = ImplicitConversionSequence::StandardConversion; | 
|  | ICS->Standard.First = ICK_Identity; | 
|  | ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; | 
|  | ICS->Standard.Third = ICK_Identity; | 
|  | ICS->Standard.FromTypePtr = T2.getAsOpaquePtr(); | 
|  | ICS->Standard.ToTypePtr = T1.getAsOpaquePtr(); | 
|  | ICS->Standard.ReferenceBinding = true; | 
|  | ICS->Standard.DirectBinding = true; | 
|  | ICS->Standard.RRefBinding = false; | 
|  | ICS->Standard.CopyConstructor = 0; | 
|  |  | 
|  | // Nothing more to do: the inaccessibility/ambiguity check for | 
|  | // derived-to-base conversions is suppressed when we're | 
|  | // computing the implicit conversion sequence (C++ | 
|  | // [over.best.ics]p2). | 
|  | return false; | 
|  | } else { | 
|  | // Perform the conversion. | 
|  | CastExpr::CastKind CK = CastExpr::CK_NoOp; | 
|  | if (DerivedToBase) | 
|  | CK = CastExpr::CK_DerivedToBase; | 
|  | else if(CheckExceptionSpecCompatibility(Init, T1)) | 
|  | return true; | 
|  | ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true); | 
|  | } | 
|  | } | 
|  |  | 
|  | //       -- has a class type (i.e., T2 is a class type) and can be | 
|  | //          implicitly converted to an lvalue of type "cv3 T3," | 
|  | //          where "cv1 T1" is reference-compatible with "cv3 T3" | 
|  | //          92) (this conversion is selected by enumerating the | 
|  | //          applicable conversion functions (13.3.1.6) and choosing | 
|  | //          the best one through overload resolution (13.3)), | 
|  | if (!isRValRef && !SuppressUserConversions && T2->isRecordType() && | 
|  | !RequireCompleteType(DeclLoc, T2, 0)) { | 
|  | CXXRecordDecl *T2RecordDecl | 
|  | = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl()); | 
|  |  | 
|  | OverloadCandidateSet CandidateSet; | 
|  | const UnresolvedSet *Conversions | 
|  | = T2RecordDecl->getVisibleConversionFunctions(); | 
|  | for (UnresolvedSet::iterator I = Conversions->begin(), | 
|  | E = Conversions->end(); I != E; ++I) { | 
|  | NamedDecl *D = *I; | 
|  | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); | 
|  | if (isa<UsingShadowDecl>(D)) | 
|  | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | 
|  |  | 
|  | FunctionTemplateDecl *ConvTemplate | 
|  | = dyn_cast<FunctionTemplateDecl>(D); | 
|  | CXXConversionDecl *Conv; | 
|  | if (ConvTemplate) | 
|  | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); | 
|  | else | 
|  | Conv = cast<CXXConversionDecl>(D); | 
|  |  | 
|  | // If the conversion function doesn't return a reference type, | 
|  | // it can't be considered for this conversion. | 
|  | if (Conv->getConversionType()->isLValueReferenceType() && | 
|  | (AllowExplicit || !Conv->isExplicit())) { | 
|  | if (ConvTemplate) | 
|  | AddTemplateConversionCandidate(ConvTemplate, ActingDC, | 
|  | Init, DeclType, CandidateSet); | 
|  | else | 
|  | AddConversionCandidate(Conv, ActingDC, Init, DeclType, CandidateSet); | 
|  | } | 
|  | } | 
|  |  | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (BestViableFunction(CandidateSet, DeclLoc, Best)) { | 
|  | case OR_Success: | 
|  | // This is a direct binding. | 
|  | BindsDirectly = true; | 
|  |  | 
|  | if (ICS) { | 
|  | // C++ [over.ics.ref]p1: | 
|  | // | 
|  | //   [...] If the parameter binds directly to the result of | 
|  | //   applying a conversion function to the argument | 
|  | //   expression, the implicit conversion sequence is a | 
|  | //   user-defined conversion sequence (13.3.3.1.2), with the | 
|  | //   second standard conversion sequence either an identity | 
|  | //   conversion or, if the conversion function returns an | 
|  | //   entity of a type that is a derived class of the parameter | 
|  | //   type, a derived-to-base Conversion. | 
|  | ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion; | 
|  | ICS->UserDefined.Before = Best->Conversions[0].Standard; | 
|  | ICS->UserDefined.After = Best->FinalConversion; | 
|  | ICS->UserDefined.ConversionFunction = Best->Function; | 
|  | ICS->UserDefined.EllipsisConversion = false; | 
|  | assert(ICS->UserDefined.After.ReferenceBinding && | 
|  | ICS->UserDefined.After.DirectBinding && | 
|  | "Expected a direct reference binding!"); | 
|  | return false; | 
|  | } else { | 
|  | OwningExprResult InitConversion = | 
|  | BuildCXXCastArgument(DeclLoc, QualType(), | 
|  | CastExpr::CK_UserDefinedConversion, | 
|  | cast<CXXMethodDecl>(Best->Function), | 
|  | Owned(Init)); | 
|  | Init = InitConversion.takeAs<Expr>(); | 
|  |  | 
|  | if (CheckExceptionSpecCompatibility(Init, T1)) | 
|  | return true; | 
|  | ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion, | 
|  | /*isLvalue=*/true); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | if (ICS) { | 
|  | for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); | 
|  | Cand != CandidateSet.end(); ++Cand) | 
|  | if (Cand->Viable) | 
|  | ICS->ConversionFunctionSet.push_back(Cand->Function); | 
|  | break; | 
|  | } | 
|  | Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType() | 
|  | << Init->getSourceRange(); | 
|  | PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); | 
|  | return true; | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  | case OR_Deleted: | 
|  | // There was no suitable conversion, or we found a deleted | 
|  | // conversion; continue with other checks. | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BindsDirectly) { | 
|  | // C++ [dcl.init.ref]p4: | 
|  | //   [...] In all cases where the reference-related or | 
|  | //   reference-compatible relationship of two types is used to | 
|  | //   establish the validity of a reference binding, and T1 is a | 
|  | //   base class of T2, a program that necessitates such a binding | 
|  | //   is ill-formed if T1 is an inaccessible (clause 11) or | 
|  | //   ambiguous (10.2) base class of T2. | 
|  | // | 
|  | // Note that we only check this condition when we're allowed to | 
|  | // complain about errors, because we should not be checking for | 
|  | // ambiguity (or inaccessibility) unless the reference binding | 
|  | // actually happens. | 
|  | if (DerivedToBase) | 
|  | return CheckDerivedToBaseConversion(T2, T1, DeclLoc, | 
|  | Init->getSourceRange(), | 
|  | IgnoreBaseAccess); | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //     -- Otherwise, the reference shall be to a non-volatile const | 
|  | //        type (i.e., cv1 shall be const), or the reference shall be an | 
|  | //        rvalue reference and the initializer expression shall be an rvalue. | 
|  | if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) { | 
|  | if (!ICS) | 
|  | Diag(DeclLoc, diag::err_not_reference_to_const_init) | 
|  | << T1 << int(InitLvalue != Expr::LV_Valid) | 
|  | << T2 << Init->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //       -- If the initializer expression is an rvalue, with T2 a | 
|  | //          class type, and "cv1 T1" is reference-compatible with | 
|  | //          "cv2 T2," the reference is bound in one of the | 
|  | //          following ways (the choice is implementation-defined): | 
|  | // | 
|  | //          -- The reference is bound to the object represented by | 
|  | //             the rvalue (see 3.10) or to a sub-object within that | 
|  | //             object. | 
|  | // | 
|  | //          -- A temporary of type "cv1 T2" [sic] is created, and | 
|  | //             a constructor is called to copy the entire rvalue | 
|  | //             object into the temporary. The reference is bound to | 
|  | //             the temporary or to a sub-object within the | 
|  | //             temporary. | 
|  | // | 
|  | //          The constructor that would be used to make the copy | 
|  | //          shall be callable whether or not the copy is actually | 
|  | //          done. | 
|  | // | 
|  | // Note that C++0x [dcl.init.ref]p5 takes away this implementation | 
|  | // freedom, so we will always take the first option and never build | 
|  | // a temporary in this case. FIXME: We will, however, have to check | 
|  | // for the presence of a copy constructor in C++98/03 mode. | 
|  | if (InitLvalue != Expr::LV_Valid && T2->isRecordType() && | 
|  | RefRelationship >= Ref_Compatible_With_Added_Qualification) { | 
|  | if (ICS) { | 
|  | ICS->ConversionKind = ImplicitConversionSequence::StandardConversion; | 
|  | ICS->Standard.First = ICK_Identity; | 
|  | ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; | 
|  | ICS->Standard.Third = ICK_Identity; | 
|  | ICS->Standard.FromTypePtr = T2.getAsOpaquePtr(); | 
|  | ICS->Standard.ToTypePtr = T1.getAsOpaquePtr(); | 
|  | ICS->Standard.ReferenceBinding = true; | 
|  | ICS->Standard.DirectBinding = false; | 
|  | ICS->Standard.RRefBinding = isRValRef; | 
|  | ICS->Standard.CopyConstructor = 0; | 
|  | } else { | 
|  | CastExpr::CastKind CK = CastExpr::CK_NoOp; | 
|  | if (DerivedToBase) | 
|  | CK = CastExpr::CK_DerivedToBase; | 
|  | else if(CheckExceptionSpecCompatibility(Init, T1)) | 
|  | return true; | 
|  | ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //       -- Otherwise, a temporary of type "cv1 T1" is created and | 
|  | //          initialized from the initializer expression using the | 
|  | //          rules for a non-reference copy initialization (8.5). The | 
|  | //          reference is then bound to the temporary. If T1 is | 
|  | //          reference-related to T2, cv1 must be the same | 
|  | //          cv-qualification as, or greater cv-qualification than, | 
|  | //          cv2; otherwise, the program is ill-formed. | 
|  | if (RefRelationship == Ref_Related) { | 
|  | // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then | 
|  | // we would be reference-compatible or reference-compatible with | 
|  | // added qualification. But that wasn't the case, so the reference | 
|  | // initialization fails. | 
|  | if (!ICS) | 
|  | Diag(DeclLoc, diag::err_reference_init_drops_quals) | 
|  | << T1 << int(InitLvalue != Expr::LV_Valid) | 
|  | << T2 << Init->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If at least one of the types is a class type, the types are not | 
|  | // related, and we aren't allowed any user conversions, the | 
|  | // reference binding fails. This case is important for breaking | 
|  | // recursion, since TryImplicitConversion below will attempt to | 
|  | // create a temporary through the use of a copy constructor. | 
|  | if (SuppressUserConversions && RefRelationship == Ref_Incompatible && | 
|  | (T1->isRecordType() || T2->isRecordType())) { | 
|  | if (!ICS) | 
|  | Diag(DeclLoc, diag::err_typecheck_convert_incompatible) | 
|  | << DeclType << Init->getType() << AA_Initializing << Init->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Actually try to convert the initializer to T1. | 
|  | if (ICS) { | 
|  | // C++ [over.ics.ref]p2: | 
|  | // | 
|  | //   When a parameter of reference type is not bound directly to | 
|  | //   an argument expression, the conversion sequence is the one | 
|  | //   required to convert the argument expression to the | 
|  | //   underlying type of the reference according to | 
|  | //   13.3.3.1. Conceptually, this conversion sequence corresponds | 
|  | //   to copy-initializing a temporary of the underlying type with | 
|  | //   the argument expression. Any difference in top-level | 
|  | //   cv-qualification is subsumed by the initialization itself | 
|  | //   and does not constitute a conversion. | 
|  | *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions, | 
|  | /*AllowExplicit=*/false, | 
|  | /*ForceRValue=*/false, | 
|  | /*InOverloadResolution=*/false); | 
|  |  | 
|  | // Of course, that's still a reference binding. | 
|  | if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) { | 
|  | ICS->Standard.ReferenceBinding = true; | 
|  | ICS->Standard.RRefBinding = isRValRef; | 
|  | } else if (ICS->ConversionKind == | 
|  | ImplicitConversionSequence::UserDefinedConversion) { | 
|  | ICS->UserDefined.After.ReferenceBinding = true; | 
|  | ICS->UserDefined.After.RRefBinding = isRValRef; | 
|  | } | 
|  | return ICS->ConversionKind == ImplicitConversionSequence::BadConversion; | 
|  | } else { | 
|  | ImplicitConversionSequence Conversions; | 
|  | bool badConversion = PerformImplicitConversion(Init, T1, AA_Initializing, | 
|  | false, false, | 
|  | Conversions); | 
|  | if (badConversion) { | 
|  | if ((Conversions.ConversionKind  == | 
|  | ImplicitConversionSequence::BadConversion) | 
|  | && !Conversions.ConversionFunctionSet.empty()) { | 
|  | Diag(DeclLoc, | 
|  | diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange(); | 
|  | for (int j = Conversions.ConversionFunctionSet.size()-1; | 
|  | j >= 0; j--) { | 
|  | FunctionDecl *Func = Conversions.ConversionFunctionSet[j]; | 
|  | NoteOverloadCandidate(Func); | 
|  | } | 
|  | } | 
|  | else { | 
|  | if (isRValRef) | 
|  | Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref) | 
|  | << Init->getSourceRange(); | 
|  | else | 
|  | Diag(DeclLoc, diag::err_invalid_initialization) | 
|  | << DeclType << Init->getType() << Init->getSourceRange(); | 
|  | } | 
|  | } | 
|  | return badConversion; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, | 
|  | const FunctionDecl *FnDecl) { | 
|  | const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext(); | 
|  | if (isa<NamespaceDecl>(DC)) { | 
|  | return SemaRef.Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_new_delete_declared_in_namespace) | 
|  | << FnDecl->getDeclName(); | 
|  | } | 
|  |  | 
|  | if (isa<TranslationUnitDecl>(DC) && | 
|  | FnDecl->getStorageClass() == FunctionDecl::Static) { | 
|  | return SemaRef.Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_new_delete_declared_static) | 
|  | << FnDecl->getDeclName(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl, | 
|  | CanQualType ExpectedResultType, | 
|  | CanQualType ExpectedFirstParamType, | 
|  | unsigned DependentParamTypeDiag, | 
|  | unsigned InvalidParamTypeDiag) { | 
|  | QualType ResultType = | 
|  | FnDecl->getType()->getAs<FunctionType>()->getResultType(); | 
|  |  | 
|  | // Check that the result type is not dependent. | 
|  | if (ResultType->isDependentType()) | 
|  | return SemaRef.Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_new_delete_dependent_result_type) | 
|  | << FnDecl->getDeclName() << ExpectedResultType; | 
|  |  | 
|  | // Check that the result type is what we expect. | 
|  | if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) | 
|  | return SemaRef.Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_new_delete_invalid_result_type) | 
|  | << FnDecl->getDeclName() << ExpectedResultType; | 
|  |  | 
|  | // A function template must have at least 2 parameters. | 
|  | if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2) | 
|  | return SemaRef.Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_new_delete_template_too_few_parameters) | 
|  | << FnDecl->getDeclName(); | 
|  |  | 
|  | // The function decl must have at least 1 parameter. | 
|  | if (FnDecl->getNumParams() == 0) | 
|  | return SemaRef.Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_new_delete_too_few_parameters) | 
|  | << FnDecl->getDeclName(); | 
|  |  | 
|  | // Check the the first parameter type is not dependent. | 
|  | QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); | 
|  | if (FirstParamType->isDependentType()) | 
|  | return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag) | 
|  | << FnDecl->getDeclName() << ExpectedFirstParamType; | 
|  |  | 
|  | // Check that the first parameter type is what we expect. | 
|  | if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != | 
|  | ExpectedFirstParamType) | 
|  | return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag) | 
|  | << FnDecl->getDeclName() << ExpectedFirstParamType; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { | 
|  | // C++ [basic.stc.dynamic.allocation]p1: | 
|  | //   A program is ill-formed if an allocation function is declared in a | 
|  | //   namespace scope other than global scope or declared static in global | 
|  | //   scope. | 
|  | if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) | 
|  | return true; | 
|  |  | 
|  | CanQualType SizeTy = | 
|  | SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType()); | 
|  |  | 
|  | // C++ [basic.stc.dynamic.allocation]p1: | 
|  | //  The return type shall be void*. The first parameter shall have type | 
|  | //  std::size_t. | 
|  | if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, | 
|  | SizeTy, | 
|  | diag::err_operator_new_dependent_param_type, | 
|  | diag::err_operator_new_param_type)) | 
|  | return true; | 
|  |  | 
|  | // C++ [basic.stc.dynamic.allocation]p1: | 
|  | //  The first parameter shall not have an associated default argument. | 
|  | if (FnDecl->getParamDecl(0)->hasDefaultArg()) | 
|  | return SemaRef.Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_new_default_arg) | 
|  | << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { | 
|  | // C++ [basic.stc.dynamic.deallocation]p1: | 
|  | //   A program is ill-formed if deallocation functions are declared in a | 
|  | //   namespace scope other than global scope or declared static in global | 
|  | //   scope. | 
|  | if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) | 
|  | return true; | 
|  |  | 
|  | // C++ [basic.stc.dynamic.deallocation]p2: | 
|  | //   Each deallocation function shall return void and its first parameter | 
|  | //   shall be void*. | 
|  | if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy, | 
|  | SemaRef.Context.VoidPtrTy, | 
|  | diag::err_operator_delete_dependent_param_type, | 
|  | diag::err_operator_delete_param_type)) | 
|  | return true; | 
|  |  | 
|  | QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); | 
|  | if (FirstParamType->isDependentType()) | 
|  | return SemaRef.Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_delete_dependent_param_type) | 
|  | << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy; | 
|  |  | 
|  | if (SemaRef.Context.getCanonicalType(FirstParamType) != | 
|  | SemaRef.Context.VoidPtrTy) | 
|  | return SemaRef.Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_delete_param_type) | 
|  | << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// CheckOverloadedOperatorDeclaration - Check whether the declaration | 
|  | /// of this overloaded operator is well-formed. If so, returns false; | 
|  | /// otherwise, emits appropriate diagnostics and returns true. | 
|  | bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { | 
|  | assert(FnDecl && FnDecl->isOverloadedOperator() && | 
|  | "Expected an overloaded operator declaration"); | 
|  |  | 
|  | OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); | 
|  |  | 
|  | // C++ [over.oper]p5: | 
|  | //   The allocation and deallocation functions, operator new, | 
|  | //   operator new[], operator delete and operator delete[], are | 
|  | //   described completely in 3.7.3. The attributes and restrictions | 
|  | //   found in the rest of this subclause do not apply to them unless | 
|  | //   explicitly stated in 3.7.3. | 
|  | if (Op == OO_Delete || Op == OO_Array_Delete) | 
|  | return CheckOperatorDeleteDeclaration(*this, FnDecl); | 
|  |  | 
|  | if (Op == OO_New || Op == OO_Array_New) | 
|  | return CheckOperatorNewDeclaration(*this, FnDecl); | 
|  |  | 
|  | // C++ [over.oper]p6: | 
|  | //   An operator function shall either be a non-static member | 
|  | //   function or be a non-member function and have at least one | 
|  | //   parameter whose type is a class, a reference to a class, an | 
|  | //   enumeration, or a reference to an enumeration. | 
|  | if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) { | 
|  | if (MethodDecl->isStatic()) | 
|  | return Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_overload_static) << FnDecl->getDeclName(); | 
|  | } else { | 
|  | bool ClassOrEnumParam = false; | 
|  | for (FunctionDecl::param_iterator Param = FnDecl->param_begin(), | 
|  | ParamEnd = FnDecl->param_end(); | 
|  | Param != ParamEnd; ++Param) { | 
|  | QualType ParamType = (*Param)->getType().getNonReferenceType(); | 
|  | if (ParamType->isDependentType() || ParamType->isRecordType() || | 
|  | ParamType->isEnumeralType()) { | 
|  | ClassOrEnumParam = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ClassOrEnumParam) | 
|  | return Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_overload_needs_class_or_enum) | 
|  | << FnDecl->getDeclName(); | 
|  | } | 
|  |  | 
|  | // C++ [over.oper]p8: | 
|  | //   An operator function cannot have default arguments (8.3.6), | 
|  | //   except where explicitly stated below. | 
|  | // | 
|  | // Only the function-call operator allows default arguments | 
|  | // (C++ [over.call]p1). | 
|  | if (Op != OO_Call) { | 
|  | for (FunctionDecl::param_iterator Param = FnDecl->param_begin(); | 
|  | Param != FnDecl->param_end(); ++Param) { | 
|  | if ((*Param)->hasDefaultArg()) | 
|  | return Diag((*Param)->getLocation(), | 
|  | diag::err_operator_overload_default_arg) | 
|  | << FnDecl->getDeclName() << (*Param)->getDefaultArgRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { | 
|  | { false, false, false } | 
|  | #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ | 
|  | , { Unary, Binary, MemberOnly } | 
|  | #include "clang/Basic/OperatorKinds.def" | 
|  | }; | 
|  |  | 
|  | bool CanBeUnaryOperator = OperatorUses[Op][0]; | 
|  | bool CanBeBinaryOperator = OperatorUses[Op][1]; | 
|  | bool MustBeMemberOperator = OperatorUses[Op][2]; | 
|  |  | 
|  | // C++ [over.oper]p8: | 
|  | //   [...] Operator functions cannot have more or fewer parameters | 
|  | //   than the number required for the corresponding operator, as | 
|  | //   described in the rest of this subclause. | 
|  | unsigned NumParams = FnDecl->getNumParams() | 
|  | + (isa<CXXMethodDecl>(FnDecl)? 1 : 0); | 
|  | if (Op != OO_Call && | 
|  | ((NumParams == 1 && !CanBeUnaryOperator) || | 
|  | (NumParams == 2 && !CanBeBinaryOperator) || | 
|  | (NumParams < 1) || (NumParams > 2))) { | 
|  | // We have the wrong number of parameters. | 
|  | unsigned ErrorKind; | 
|  | if (CanBeUnaryOperator && CanBeBinaryOperator) { | 
|  | ErrorKind = 2;  // 2 -> unary or binary. | 
|  | } else if (CanBeUnaryOperator) { | 
|  | ErrorKind = 0;  // 0 -> unary | 
|  | } else { | 
|  | assert(CanBeBinaryOperator && | 
|  | "All non-call overloaded operators are unary or binary!"); | 
|  | ErrorKind = 1;  // 1 -> binary | 
|  | } | 
|  |  | 
|  | return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) | 
|  | << FnDecl->getDeclName() << NumParams << ErrorKind; | 
|  | } | 
|  |  | 
|  | // Overloaded operators other than operator() cannot be variadic. | 
|  | if (Op != OO_Call && | 
|  | FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) { | 
|  | return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) | 
|  | << FnDecl->getDeclName(); | 
|  | } | 
|  |  | 
|  | // Some operators must be non-static member functions. | 
|  | if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) { | 
|  | return Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_overload_must_be_member) | 
|  | << FnDecl->getDeclName(); | 
|  | } | 
|  |  | 
|  | // C++ [over.inc]p1: | 
|  | //   The user-defined function called operator++ implements the | 
|  | //   prefix and postfix ++ operator. If this function is a member | 
|  | //   function with no parameters, or a non-member function with one | 
|  | //   parameter of class or enumeration type, it defines the prefix | 
|  | //   increment operator ++ for objects of that type. If the function | 
|  | //   is a member function with one parameter (which shall be of type | 
|  | //   int) or a non-member function with two parameters (the second | 
|  | //   of which shall be of type int), it defines the postfix | 
|  | //   increment operator ++ for objects of that type. | 
|  | if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { | 
|  | ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); | 
|  | bool ParamIsInt = false; | 
|  | if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>()) | 
|  | ParamIsInt = BT->getKind() == BuiltinType::Int; | 
|  |  | 
|  | if (!ParamIsInt) | 
|  | return Diag(LastParam->getLocation(), | 
|  | diag::err_operator_overload_post_incdec_must_be_int) | 
|  | << LastParam->getType() << (Op == OO_MinusMinus); | 
|  | } | 
|  |  | 
|  | // Notify the class if it got an assignment operator. | 
|  | if (Op == OO_Equal) { | 
|  | // Would have returned earlier otherwise. | 
|  | assert(isa<CXXMethodDecl>(FnDecl) && | 
|  | "Overloaded = not member, but not filtered."); | 
|  | CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); | 
|  | Method->getParent()->addedAssignmentOperator(Context, Method); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ActOnStartLinkageSpecification - Parsed the beginning of a C++ | 
|  | /// linkage specification, including the language and (if present) | 
|  | /// the '{'. ExternLoc is the location of the 'extern', LangLoc is | 
|  | /// the location of the language string literal, which is provided | 
|  | /// by Lang/StrSize. LBraceLoc, if valid, provides the location of | 
|  | /// the '{' brace. Otherwise, this linkage specification does not | 
|  | /// have any braces. | 
|  | Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S, | 
|  | SourceLocation ExternLoc, | 
|  | SourceLocation LangLoc, | 
|  | const char *Lang, | 
|  | unsigned StrSize, | 
|  | SourceLocation LBraceLoc) { | 
|  | LinkageSpecDecl::LanguageIDs Language; | 
|  | if (strncmp(Lang, "\"C\"", StrSize) == 0) | 
|  | Language = LinkageSpecDecl::lang_c; | 
|  | else if (strncmp(Lang, "\"C++\"", StrSize) == 0) | 
|  | Language = LinkageSpecDecl::lang_cxx; | 
|  | else { | 
|  | Diag(LangLoc, diag::err_bad_language); | 
|  | return DeclPtrTy(); | 
|  | } | 
|  |  | 
|  | // FIXME: Add all the various semantics of linkage specifications | 
|  |  | 
|  | LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, | 
|  | LangLoc, Language, | 
|  | LBraceLoc.isValid()); | 
|  | CurContext->addDecl(D); | 
|  | PushDeclContext(S, D); | 
|  | return DeclPtrTy::make(D); | 
|  | } | 
|  |  | 
|  | /// ActOnFinishLinkageSpecification - Completely the definition of | 
|  | /// the C++ linkage specification LinkageSpec. If RBraceLoc is | 
|  | /// valid, it's the position of the closing '}' brace in a linkage | 
|  | /// specification that uses braces. | 
|  | Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S, | 
|  | DeclPtrTy LinkageSpec, | 
|  | SourceLocation RBraceLoc) { | 
|  | if (LinkageSpec) | 
|  | PopDeclContext(); | 
|  | return LinkageSpec; | 
|  | } | 
|  |  | 
|  | /// \brief Perform semantic analysis for the variable declaration that | 
|  | /// occurs within a C++ catch clause, returning the newly-created | 
|  | /// variable. | 
|  | VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType, | 
|  | TypeSourceInfo *TInfo, | 
|  | IdentifierInfo *Name, | 
|  | SourceLocation Loc, | 
|  | SourceRange Range) { | 
|  | bool Invalid = false; | 
|  |  | 
|  | // Arrays and functions decay. | 
|  | if (ExDeclType->isArrayType()) | 
|  | ExDeclType = Context.getArrayDecayedType(ExDeclType); | 
|  | else if (ExDeclType->isFunctionType()) | 
|  | ExDeclType = Context.getPointerType(ExDeclType); | 
|  |  | 
|  | // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. | 
|  | // The exception-declaration shall not denote a pointer or reference to an | 
|  | // incomplete type, other than [cv] void*. | 
|  | // N2844 forbids rvalue references. | 
|  | if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { | 
|  | Diag(Loc, diag::err_catch_rvalue_ref) << Range; | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | QualType BaseType = ExDeclType; | 
|  | int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference | 
|  | unsigned DK = diag::err_catch_incomplete; | 
|  | if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { | 
|  | BaseType = Ptr->getPointeeType(); | 
|  | Mode = 1; | 
|  | DK = diag::err_catch_incomplete_ptr; | 
|  | } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) { | 
|  | // For the purpose of error recovery, we treat rvalue refs like lvalue refs. | 
|  | BaseType = Ref->getPointeeType(); | 
|  | Mode = 2; | 
|  | DK = diag::err_catch_incomplete_ref; | 
|  | } | 
|  | if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && | 
|  | !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK)) | 
|  | Invalid = true; | 
|  |  | 
|  | if (!Invalid && !ExDeclType->isDependentType() && | 
|  | RequireNonAbstractType(Loc, ExDeclType, | 
|  | diag::err_abstract_type_in_decl, | 
|  | AbstractVariableType)) | 
|  | Invalid = true; | 
|  |  | 
|  | // FIXME: Need to test for ability to copy-construct and destroy the | 
|  | // exception variable. | 
|  |  | 
|  | // FIXME: Need to check for abstract classes. | 
|  |  | 
|  | VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc, | 
|  | Name, ExDeclType, TInfo, VarDecl::None); | 
|  |  | 
|  | if (Invalid) | 
|  | ExDecl->setInvalidDecl(); | 
|  |  | 
|  | return ExDecl; | 
|  | } | 
|  |  | 
|  | /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch | 
|  | /// handler. | 
|  | Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { | 
|  | TypeSourceInfo *TInfo = 0; | 
|  | QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo); | 
|  |  | 
|  | bool Invalid = D.isInvalidType(); | 
|  | IdentifierInfo *II = D.getIdentifier(); | 
|  | if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) { | 
|  | // The scope should be freshly made just for us. There is just no way | 
|  | // it contains any previous declaration. | 
|  | assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl))); | 
|  | if (PrevDecl->isTemplateParameter()) { | 
|  | // Maybe we will complain about the shadowed template parameter. | 
|  | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (D.getCXXScopeSpec().isSet() && !Invalid) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) | 
|  | << D.getCXXScopeSpec().getRange(); | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo, | 
|  | D.getIdentifier(), | 
|  | D.getIdentifierLoc(), | 
|  | D.getDeclSpec().getSourceRange()); | 
|  |  | 
|  | if (Invalid) | 
|  | ExDecl->setInvalidDecl(); | 
|  |  | 
|  | // Add the exception declaration into this scope. | 
|  | if (II) | 
|  | PushOnScopeChains(ExDecl, S); | 
|  | else | 
|  | CurContext->addDecl(ExDecl); | 
|  |  | 
|  | ProcessDeclAttributes(S, ExDecl, D); | 
|  | return DeclPtrTy::make(ExDecl); | 
|  | } | 
|  |  | 
|  | Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc, | 
|  | ExprArg assertexpr, | 
|  | ExprArg assertmessageexpr) { | 
|  | Expr *AssertExpr = (Expr *)assertexpr.get(); | 
|  | StringLiteral *AssertMessage = | 
|  | cast<StringLiteral>((Expr *)assertmessageexpr.get()); | 
|  |  | 
|  | if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) { | 
|  | llvm::APSInt Value(32); | 
|  | if (!AssertExpr->isIntegerConstantExpr(Value, Context)) { | 
|  | Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) << | 
|  | AssertExpr->getSourceRange(); | 
|  | return DeclPtrTy(); | 
|  | } | 
|  |  | 
|  | if (Value == 0) { | 
|  | Diag(AssertLoc, diag::err_static_assert_failed) | 
|  | << AssertMessage->getString() << AssertExpr->getSourceRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  | assertexpr.release(); | 
|  | assertmessageexpr.release(); | 
|  | Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc, | 
|  | AssertExpr, AssertMessage); | 
|  |  | 
|  | CurContext->addDecl(Decl); | 
|  | return DeclPtrTy::make(Decl); | 
|  | } | 
|  |  | 
|  | /// Handle a friend type declaration.  This works in tandem with | 
|  | /// ActOnTag. | 
|  | /// | 
|  | /// Notes on friend class templates: | 
|  | /// | 
|  | /// We generally treat friend class declarations as if they were | 
|  | /// declaring a class.  So, for example, the elaborated type specifier | 
|  | /// in a friend declaration is required to obey the restrictions of a | 
|  | /// class-head (i.e. no typedefs in the scope chain), template | 
|  | /// parameters are required to match up with simple template-ids, &c. | 
|  | /// However, unlike when declaring a template specialization, it's | 
|  | /// okay to refer to a template specialization without an empty | 
|  | /// template parameter declaration, e.g. | 
|  | ///   friend class A<T>::B<unsigned>; | 
|  | /// We permit this as a special case; if there are any template | 
|  | /// parameters present at all, require proper matching, i.e. | 
|  | ///   template <> template <class T> friend class A<int>::B; | 
|  | Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, | 
|  | MultiTemplateParamsArg TempParams) { | 
|  | SourceLocation Loc = DS.getSourceRange().getBegin(); | 
|  |  | 
|  | assert(DS.isFriendSpecified()); | 
|  | assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); | 
|  |  | 
|  | // Try to convert the decl specifier to a type.  This works for | 
|  | // friend templates because ActOnTag never produces a ClassTemplateDecl | 
|  | // for a TUK_Friend. | 
|  | Declarator TheDeclarator(DS, Declarator::MemberContext); | 
|  | QualType T = GetTypeForDeclarator(TheDeclarator, S); | 
|  | if (TheDeclarator.isInvalidType()) | 
|  | return DeclPtrTy(); | 
|  |  | 
|  | // This is definitely an error in C++98.  It's probably meant to | 
|  | // be forbidden in C++0x, too, but the specification is just | 
|  | // poorly written. | 
|  | // | 
|  | // The problem is with declarations like the following: | 
|  | //   template <T> friend A<T>::foo; | 
|  | // where deciding whether a class C is a friend or not now hinges | 
|  | // on whether there exists an instantiation of A that causes | 
|  | // 'foo' to equal C.  There are restrictions on class-heads | 
|  | // (which we declare (by fiat) elaborated friend declarations to | 
|  | // be) that makes this tractable. | 
|  | // | 
|  | // FIXME: handle "template <> friend class A<T>;", which | 
|  | // is possibly well-formed?  Who even knows? | 
|  | if (TempParams.size() && !isa<ElaboratedType>(T)) { | 
|  | Diag(Loc, diag::err_tagless_friend_type_template) | 
|  | << DS.getSourceRange(); | 
|  | return DeclPtrTy(); | 
|  | } | 
|  |  | 
|  | // C++ [class.friend]p2: | 
|  | //   An elaborated-type-specifier shall be used in a friend declaration | 
|  | //   for a class.* | 
|  | //   * The class-key of the elaborated-type-specifier is required. | 
|  | // This is one of the rare places in Clang where it's legitimate to | 
|  | // ask about the "spelling" of the type. | 
|  | if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) { | 
|  | // If we evaluated the type to a record type, suggest putting | 
|  | // a tag in front. | 
|  | if (const RecordType *RT = T->getAs<RecordType>()) { | 
|  | RecordDecl *RD = RT->getDecl(); | 
|  |  | 
|  | std::string InsertionText = std::string(" ") + RD->getKindName(); | 
|  |  | 
|  | Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type) | 
|  | << (unsigned) RD->getTagKind() | 
|  | << T | 
|  | << SourceRange(DS.getFriendSpecLoc()) | 
|  | << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(), | 
|  | InsertionText); | 
|  | return DeclPtrTy(); | 
|  | }else { | 
|  | Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend) | 
|  | << DS.getSourceRange(); | 
|  | return DeclPtrTy(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Enum types cannot be friends. | 
|  | if (T->getAs<EnumType>()) { | 
|  | Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend) | 
|  | << SourceRange(DS.getFriendSpecLoc()); | 
|  | return DeclPtrTy(); | 
|  | } | 
|  |  | 
|  | // C++98 [class.friend]p1: A friend of a class is a function | 
|  | //   or class that is not a member of the class . . . | 
|  | // This is fixed in DR77, which just barely didn't make the C++03 | 
|  | // deadline.  It's also a very silly restriction that seriously | 
|  | // affects inner classes and which nobody else seems to implement; | 
|  | // thus we never diagnose it, not even in -pedantic. | 
|  |  | 
|  | Decl *D; | 
|  | if (TempParams.size()) | 
|  | D = FriendTemplateDecl::Create(Context, CurContext, Loc, | 
|  | TempParams.size(), | 
|  | (TemplateParameterList**) TempParams.release(), | 
|  | T.getTypePtr(), | 
|  | DS.getFriendSpecLoc()); | 
|  | else | 
|  | D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(), | 
|  | DS.getFriendSpecLoc()); | 
|  | D->setAccess(AS_public); | 
|  | CurContext->addDecl(D); | 
|  |  | 
|  | return DeclPtrTy::make(D); | 
|  | } | 
|  |  | 
|  | Sema::DeclPtrTy | 
|  | Sema::ActOnFriendFunctionDecl(Scope *S, | 
|  | Declarator &D, | 
|  | bool IsDefinition, | 
|  | MultiTemplateParamsArg TemplateParams) { | 
|  | const DeclSpec &DS = D.getDeclSpec(); | 
|  |  | 
|  | assert(DS.isFriendSpecified()); | 
|  | assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); | 
|  |  | 
|  | SourceLocation Loc = D.getIdentifierLoc(); | 
|  | TypeSourceInfo *TInfo = 0; | 
|  | QualType T = GetTypeForDeclarator(D, S, &TInfo); | 
|  |  | 
|  | // C++ [class.friend]p1 | 
|  | //   A friend of a class is a function or class.... | 
|  | // Note that this sees through typedefs, which is intended. | 
|  | // It *doesn't* see through dependent types, which is correct | 
|  | // according to [temp.arg.type]p3: | 
|  | //   If a declaration acquires a function type through a | 
|  | //   type dependent on a template-parameter and this causes | 
|  | //   a declaration that does not use the syntactic form of a | 
|  | //   function declarator to have a function type, the program | 
|  | //   is ill-formed. | 
|  | if (!T->isFunctionType()) { | 
|  | Diag(Loc, diag::err_unexpected_friend); | 
|  |  | 
|  | // It might be worthwhile to try to recover by creating an | 
|  | // appropriate declaration. | 
|  | return DeclPtrTy(); | 
|  | } | 
|  |  | 
|  | // C++ [namespace.memdef]p3 | 
|  | //  - If a friend declaration in a non-local class first declares a | 
|  | //    class or function, the friend class or function is a member | 
|  | //    of the innermost enclosing namespace. | 
|  | //  - The name of the friend is not found by simple name lookup | 
|  | //    until a matching declaration is provided in that namespace | 
|  | //    scope (either before or after the class declaration granting | 
|  | //    friendship). | 
|  | //  - If a friend function is called, its name may be found by the | 
|  | //    name lookup that considers functions from namespaces and | 
|  | //    classes associated with the types of the function arguments. | 
|  | //  - When looking for a prior declaration of a class or a function | 
|  | //    declared as a friend, scopes outside the innermost enclosing | 
|  | //    namespace scope are not considered. | 
|  |  | 
|  | CXXScopeSpec &ScopeQual = D.getCXXScopeSpec(); | 
|  | DeclarationName Name = GetNameForDeclarator(D); | 
|  | assert(Name); | 
|  |  | 
|  | // The context we found the declaration in, or in which we should | 
|  | // create the declaration. | 
|  | DeclContext *DC; | 
|  |  | 
|  | // FIXME: handle local classes | 
|  |  | 
|  | // Recover from invalid scope qualifiers as if they just weren't there. | 
|  | LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName, | 
|  | ForRedeclaration); | 
|  | if (!ScopeQual.isInvalid() && ScopeQual.isSet()) { | 
|  | // FIXME: RequireCompleteDeclContext | 
|  | DC = computeDeclContext(ScopeQual); | 
|  |  | 
|  | // FIXME: handle dependent contexts | 
|  | if (!DC) return DeclPtrTy(); | 
|  |  | 
|  | LookupQualifiedName(Previous, DC); | 
|  |  | 
|  | // If searching in that context implicitly found a declaration in | 
|  | // a different context, treat it like it wasn't found at all. | 
|  | // TODO: better diagnostics for this case.  Suggesting the right | 
|  | // qualified scope would be nice... | 
|  | // FIXME: getRepresentativeDecl() is not right here at all | 
|  | if (Previous.empty() || | 
|  | !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) { | 
|  | D.setInvalidType(); | 
|  | Diag(Loc, diag::err_qualified_friend_not_found) << Name << T; | 
|  | return DeclPtrTy(); | 
|  | } | 
|  |  | 
|  | // C++ [class.friend]p1: A friend of a class is a function or | 
|  | //   class that is not a member of the class . . . | 
|  | if (DC->Equals(CurContext)) | 
|  | Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member); | 
|  |  | 
|  | // Otherwise walk out to the nearest namespace scope looking for matches. | 
|  | } else { | 
|  | // TODO: handle local class contexts. | 
|  |  | 
|  | DC = CurContext; | 
|  | while (true) { | 
|  | // Skip class contexts.  If someone can cite chapter and verse | 
|  | // for this behavior, that would be nice --- it's what GCC and | 
|  | // EDG do, and it seems like a reasonable intent, but the spec | 
|  | // really only says that checks for unqualified existing | 
|  | // declarations should stop at the nearest enclosing namespace, | 
|  | // not that they should only consider the nearest enclosing | 
|  | // namespace. | 
|  | while (DC->isRecord()) | 
|  | DC = DC->getParent(); | 
|  |  | 
|  | LookupQualifiedName(Previous, DC); | 
|  |  | 
|  | // TODO: decide what we think about using declarations. | 
|  | if (!Previous.empty()) | 
|  | break; | 
|  |  | 
|  | if (DC->isFileContext()) break; | 
|  | DC = DC->getParent(); | 
|  | } | 
|  |  | 
|  | // C++ [class.friend]p1: A friend of a class is a function or | 
|  | //   class that is not a member of the class . . . | 
|  | // C++0x changes this for both friend types and functions. | 
|  | // Most C++ 98 compilers do seem to give an error here, so | 
|  | // we do, too. | 
|  | if (!Previous.empty() && DC->Equals(CurContext) | 
|  | && !getLangOptions().CPlusPlus0x) | 
|  | Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member); | 
|  | } | 
|  |  | 
|  | if (DC->isFileContext()) { | 
|  | // This implies that it has to be an operator or function. | 
|  | if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName || | 
|  | D.getName().getKind() == UnqualifiedId::IK_DestructorName || | 
|  | D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) { | 
|  | Diag(Loc, diag::err_introducing_special_friend) << | 
|  | (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 : | 
|  | D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2); | 
|  | return DeclPtrTy(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Redeclaration = false; | 
|  | NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous, | 
|  | move(TemplateParams), | 
|  | IsDefinition, | 
|  | Redeclaration); | 
|  | if (!ND) return DeclPtrTy(); | 
|  |  | 
|  | assert(ND->getDeclContext() == DC); | 
|  | assert(ND->getLexicalDeclContext() == CurContext); | 
|  |  | 
|  | // Add the function declaration to the appropriate lookup tables, | 
|  | // adjusting the redeclarations list as necessary.  We don't | 
|  | // want to do this yet if the friending class is dependent. | 
|  | // | 
|  | // Also update the scope-based lookup if the target context's | 
|  | // lookup context is in lexical scope. | 
|  | if (!CurContext->isDependentContext()) { | 
|  | DC = DC->getLookupContext(); | 
|  | DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false); | 
|  | if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) | 
|  | PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false); | 
|  | } | 
|  |  | 
|  | FriendDecl *FrD = FriendDecl::Create(Context, CurContext, | 
|  | D.getIdentifierLoc(), ND, | 
|  | DS.getFriendSpecLoc()); | 
|  | FrD->setAccess(AS_public); | 
|  | CurContext->addDecl(FrD); | 
|  |  | 
|  | if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) | 
|  | FrD->setSpecialization(true); | 
|  |  | 
|  | return DeclPtrTy::make(ND); | 
|  | } | 
|  |  | 
|  | void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) { | 
|  | AdjustDeclIfTemplate(dcl); | 
|  |  | 
|  | Decl *Dcl = dcl.getAs<Decl>(); | 
|  | FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl); | 
|  | if (!Fn) { | 
|  | Diag(DelLoc, diag::err_deleted_non_function); | 
|  | return; | 
|  | } | 
|  | if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) { | 
|  | Diag(DelLoc, diag::err_deleted_decl_not_first); | 
|  | Diag(Prev->getLocation(), diag::note_previous_declaration); | 
|  | // If the declaration wasn't the first, we delete the function anyway for | 
|  | // recovery. | 
|  | } | 
|  | Fn->setDeleted(); | 
|  | } | 
|  |  | 
|  | static void SearchForReturnInStmt(Sema &Self, Stmt *S) { | 
|  | for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E; | 
|  | ++CI) { | 
|  | Stmt *SubStmt = *CI; | 
|  | if (!SubStmt) | 
|  | continue; | 
|  | if (isa<ReturnStmt>(SubStmt)) | 
|  | Self.Diag(SubStmt->getSourceRange().getBegin(), | 
|  | diag::err_return_in_constructor_handler); | 
|  | if (!isa<Expr>(SubStmt)) | 
|  | SearchForReturnInStmt(Self, SubStmt); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { | 
|  | for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { | 
|  | CXXCatchStmt *Handler = TryBlock->getHandler(I); | 
|  | SearchForReturnInStmt(*this, Handler); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, | 
|  | const CXXMethodDecl *Old) { | 
|  | QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType(); | 
|  | QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType(); | 
|  |  | 
|  | QualType CNewTy = Context.getCanonicalType(NewTy); | 
|  | QualType COldTy = Context.getCanonicalType(OldTy); | 
|  |  | 
|  | if (CNewTy == COldTy && | 
|  | CNewTy.getLocalCVRQualifiers() == COldTy.getLocalCVRQualifiers()) | 
|  | return false; | 
|  |  | 
|  | // Check if the return types are covariant | 
|  | QualType NewClassTy, OldClassTy; | 
|  |  | 
|  | /// Both types must be pointers or references to classes. | 
|  | if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) { | 
|  | if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) { | 
|  | NewClassTy = NewPT->getPointeeType(); | 
|  | OldClassTy = OldPT->getPointeeType(); | 
|  | } | 
|  | } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) { | 
|  | if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) { | 
|  | NewClassTy = NewRT->getPointeeType(); | 
|  | OldClassTy = OldRT->getPointeeType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The return types aren't either both pointers or references to a class type. | 
|  | if (NewClassTy.isNull()) { | 
|  | Diag(New->getLocation(), | 
|  | diag::err_different_return_type_for_overriding_virtual_function) | 
|  | << New->getDeclName() << NewTy << OldTy; | 
|  | Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // C++ [class.virtual]p6: | 
|  | //   If the return type of D::f differs from the return type of B::f, the | 
|  | //   class type in the return type of D::f shall be complete at the point of | 
|  | //   declaration of D::f or shall be the class type D. | 
|  | if (const RecordType *RT = NewClassTy->getAs<RecordType>()) { | 
|  | if (!RT->isBeingDefined() && | 
|  | RequireCompleteType(New->getLocation(), NewClassTy, | 
|  | PDiag(diag::err_covariant_return_incomplete) | 
|  | << New->getDeclName())) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) { | 
|  | // Check if the new class derives from the old class. | 
|  | if (!IsDerivedFrom(NewClassTy, OldClassTy)) { | 
|  | Diag(New->getLocation(), | 
|  | diag::err_covariant_return_not_derived) | 
|  | << New->getDeclName() << NewTy << OldTy; | 
|  | Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check if we the conversion from derived to base is valid. | 
|  | if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy, | 
|  | diag::err_covariant_return_inaccessible_base, | 
|  | diag::err_covariant_return_ambiguous_derived_to_base_conv, | 
|  | // FIXME: Should this point to the return type? | 
|  | New->getLocation(), SourceRange(), New->getDeclName())) { | 
|  | Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The qualifiers of the return types must be the same. | 
|  | if (CNewTy.getLocalCVRQualifiers() != COldTy.getLocalCVRQualifiers()) { | 
|  | Diag(New->getLocation(), | 
|  | diag::err_covariant_return_type_different_qualifications) | 
|  | << New->getDeclName() << NewTy << OldTy; | 
|  | Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  |  | 
|  | // The new class type must have the same or less qualifiers as the old type. | 
|  | if (NewClassTy.isMoreQualifiedThan(OldClassTy)) { | 
|  | Diag(New->getLocation(), | 
|  | diag::err_covariant_return_type_class_type_more_qualified) | 
|  | << New->getDeclName() << NewTy << OldTy; | 
|  | Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New, | 
|  | const CXXMethodDecl *Old) | 
|  | { | 
|  | if (Old->hasAttr<FinalAttr>()) { | 
|  | Diag(New->getLocation(), diag::err_final_function_overridden) | 
|  | << New->getDeclName(); | 
|  | Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Mark the given method pure. | 
|  | /// | 
|  | /// \param Method the method to be marked pure. | 
|  | /// | 
|  | /// \param InitRange the source range that covers the "0" initializer. | 
|  | bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { | 
|  | if (Method->isVirtual() || Method->getParent()->isDependentContext()) { | 
|  | Method->setPure(); | 
|  |  | 
|  | // A class is abstract if at least one function is pure virtual. | 
|  | Method->getParent()->setAbstract(true); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!Method->isInvalidDecl()) | 
|  | Diag(Method->getLocation(), diag::err_non_virtual_pure) | 
|  | << Method->getDeclName() << InitRange; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse | 
|  | /// an initializer for the out-of-line declaration 'Dcl'.  The scope | 
|  | /// is a fresh scope pushed for just this purpose. | 
|  | /// | 
|  | /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a | 
|  | /// static data member of class X, names should be looked up in the scope of | 
|  | /// class X. | 
|  | void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) { | 
|  | // If there is no declaration, there was an error parsing it. | 
|  | Decl *D = Dcl.getAs<Decl>(); | 
|  | if (D == 0) return; | 
|  |  | 
|  | // We should only get called for declarations with scope specifiers, like: | 
|  | //   int foo::bar; | 
|  | assert(D->isOutOfLine()); | 
|  | EnterDeclaratorContext(S, D->getDeclContext()); | 
|  | } | 
|  |  | 
|  | /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an | 
|  | /// initializer for the out-of-line declaration 'Dcl'. | 
|  | void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) { | 
|  | // If there is no declaration, there was an error parsing it. | 
|  | Decl *D = Dcl.getAs<Decl>(); | 
|  | if (D == 0) return; | 
|  |  | 
|  | assert(D->isOutOfLine()); | 
|  | ExitDeclaratorContext(S); | 
|  | } | 
|  |  | 
|  | /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a | 
|  | /// C++ if/switch/while/for statement. | 
|  | /// e.g: "if (int x = f()) {...}" | 
|  | Action::DeclResult | 
|  | Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { | 
|  | // C++ 6.4p2: | 
|  | // The declarator shall not specify a function or an array. | 
|  | // The type-specifier-seq shall not contain typedef and shall not declare a | 
|  | // new class or enumeration. | 
|  | assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && | 
|  | "Parser allowed 'typedef' as storage class of condition decl."); | 
|  |  | 
|  | TypeSourceInfo *TInfo = 0; | 
|  | TagDecl *OwnedTag = 0; | 
|  | QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag); | 
|  |  | 
|  | if (Ty->isFunctionType()) { // The declarator shall not specify a function... | 
|  | // We exit without creating a CXXConditionDeclExpr because a FunctionDecl | 
|  | // would be created and CXXConditionDeclExpr wants a VarDecl. | 
|  | Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type) | 
|  | << D.getSourceRange(); | 
|  | return DeclResult(); | 
|  | } else if (OwnedTag && OwnedTag->isDefinition()) { | 
|  | // The type-specifier-seq shall not declare a new class or enumeration. | 
|  | Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition); | 
|  | } | 
|  |  | 
|  | DeclPtrTy Dcl = ActOnDeclarator(S, D); | 
|  | if (!Dcl) | 
|  | return DeclResult(); | 
|  |  | 
|  | VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>()); | 
|  | VD->setDeclaredInCondition(true); | 
|  | return Dcl; | 
|  | } | 
|  |  | 
|  | void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc, | 
|  | CXXMethodDecl *MD) { | 
|  | // Ignore dependent types. | 
|  | if (MD->isDependentContext()) | 
|  | return; | 
|  |  | 
|  | CXXRecordDecl *RD = MD->getParent(); | 
|  |  | 
|  | // Ignore classes without a vtable. | 
|  | if (!RD->isDynamicClass()) | 
|  | return; | 
|  |  | 
|  | // Ignore declarations that are not definitions. | 
|  | if (!MD->isThisDeclarationADefinition()) | 
|  | return; | 
|  |  | 
|  | if (isa<CXXConstructorDecl>(MD)) { | 
|  | switch (MD->getParent()->getTemplateSpecializationKind()) { | 
|  | case TSK_Undeclared: | 
|  | case TSK_ExplicitSpecialization: | 
|  | // Classes that aren't instantiations of templates don't need their | 
|  | // virtual methods marked until we see the definition of the key | 
|  | // function. | 
|  | return; | 
|  |  | 
|  | case TSK_ImplicitInstantiation: | 
|  | case TSK_ExplicitInstantiationDeclaration: | 
|  | case TSK_ExplicitInstantiationDefinition: | 
|  | // This is a constructor of a class template; mark all of the virtual | 
|  | // members as referenced to ensure that they get instantiatied. | 
|  | break; | 
|  | } | 
|  | } else if (!MD->isOutOfLine()) { | 
|  | // Consider only out-of-line definitions of member functions. When we see | 
|  | // an inline definition, it's too early to compute the key function. | 
|  | return; | 
|  | } else if (const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD)) { | 
|  | // If this is not the key function, we don't need to mark virtual members. | 
|  | if (KeyFunction->getCanonicalDecl() != MD->getCanonicalDecl()) | 
|  | return; | 
|  | } else { | 
|  | // The class has no key function, so we've already noted that we need to | 
|  | // mark the virtual members of this class. | 
|  | return; | 
|  | } | 
|  |  | 
|  | // We will need to mark all of the virtual members as referenced to build the | 
|  | // vtable. | 
|  | ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(RD, Loc)); | 
|  | } | 
|  |  | 
|  | bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() { | 
|  | if (ClassesWithUnmarkedVirtualMembers.empty()) | 
|  | return false; | 
|  |  | 
|  | while (!ClassesWithUnmarkedVirtualMembers.empty()) { | 
|  | CXXRecordDecl *RD = ClassesWithUnmarkedVirtualMembers.back().first; | 
|  | SourceLocation Loc = ClassesWithUnmarkedVirtualMembers.back().second; | 
|  | ClassesWithUnmarkedVirtualMembers.pop_back(); | 
|  | MarkVirtualMembersReferenced(Loc, RD); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, CXXRecordDecl *RD) { | 
|  | for (CXXRecordDecl::method_iterator i = RD->method_begin(), | 
|  | e = RD->method_end(); i != e; ++i) { | 
|  | CXXMethodDecl *MD = *i; | 
|  |  | 
|  | // C++ [basic.def.odr]p2: | 
|  | //   [...] A virtual member function is used if it is not pure. [...] | 
|  | if (MD->isVirtual() && !MD->isPure()) | 
|  | MarkDeclarationReferenced(Loc, MD); | 
|  | } | 
|  | } | 
|  |  |