|  | //===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements a trivial dead store elimination that only considers | 
|  | // basic-block local redundant stores. | 
|  | // | 
|  | // FIXME: This should eventually be extended to be a post-dominator tree | 
|  | // traversal.  Doing so would be pretty trivial. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Scalar/DeadStoreElimination.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/CaptureTracking.h" | 
|  | #include "llvm/Analysis/GlobalsModRef.h" | 
|  | #include "llvm/Analysis/MemoryBuiltins.h" | 
|  | #include "llvm/Analysis/MemoryDependenceAnalysis.h" | 
|  | #include "llvm/Analysis/MemoryLocation.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/Utils/Local.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/Argument.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/PassManager.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <map> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "dse" | 
|  |  | 
|  | STATISTIC(NumRedundantStores, "Number of redundant stores deleted"); | 
|  | STATISTIC(NumFastStores, "Number of stores deleted"); | 
|  | STATISTIC(NumFastOther , "Number of other instrs removed"); | 
|  | STATISTIC(NumCompletePartials, "Number of stores dead by later partials"); | 
|  | STATISTIC(NumModifiedStores, "Number of stores modified"); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking", | 
|  | cl::init(true), cl::Hidden, | 
|  | cl::desc("Enable partial-overwrite tracking in DSE")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | EnablePartialStoreMerging("enable-dse-partial-store-merging", | 
|  | cl::init(true), cl::Hidden, | 
|  | cl::desc("Enable partial store merging in DSE")); | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Helper functions | 
|  | //===----------------------------------------------------------------------===// | 
|  | using OverlapIntervalsTy = std::map<int64_t, int64_t>; | 
|  | using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>; | 
|  |  | 
|  | /// Delete this instruction.  Before we do, go through and zero out all the | 
|  | /// operands of this instruction.  If any of them become dead, delete them and | 
|  | /// the computation tree that feeds them. | 
|  | /// If ValueSet is non-null, remove any deleted instructions from it as well. | 
|  | static void | 
|  | deleteDeadInstruction(Instruction *I, BasicBlock::iterator *BBI, | 
|  | MemoryDependenceResults &MD, const TargetLibraryInfo &TLI, | 
|  | InstOverlapIntervalsTy &IOL, | 
|  | DenseMap<Instruction*, size_t> *InstrOrdering, | 
|  | SmallSetVector<Value *, 16> *ValueSet = nullptr) { | 
|  | SmallVector<Instruction*, 32> NowDeadInsts; | 
|  |  | 
|  | NowDeadInsts.push_back(I); | 
|  | --NumFastOther; | 
|  |  | 
|  | // Keeping the iterator straight is a pain, so we let this routine tell the | 
|  | // caller what the next instruction is after we're done mucking about. | 
|  | BasicBlock::iterator NewIter = *BBI; | 
|  |  | 
|  | // Before we touch this instruction, remove it from memdep! | 
|  | do { | 
|  | Instruction *DeadInst = NowDeadInsts.pop_back_val(); | 
|  | ++NumFastOther; | 
|  |  | 
|  | // Try to preserve debug information attached to the dead instruction. | 
|  | salvageDebugInfo(*DeadInst); | 
|  |  | 
|  | // This instruction is dead, zap it, in stages.  Start by removing it from | 
|  | // MemDep, which needs to know the operands and needs it to be in the | 
|  | // function. | 
|  | MD.removeInstruction(DeadInst); | 
|  |  | 
|  | for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) { | 
|  | Value *Op = DeadInst->getOperand(op); | 
|  | DeadInst->setOperand(op, nullptr); | 
|  |  | 
|  | // If this operand just became dead, add it to the NowDeadInsts list. | 
|  | if (!Op->use_empty()) continue; | 
|  |  | 
|  | if (Instruction *OpI = dyn_cast<Instruction>(Op)) | 
|  | if (isInstructionTriviallyDead(OpI, &TLI)) | 
|  | NowDeadInsts.push_back(OpI); | 
|  | } | 
|  |  | 
|  | if (ValueSet) ValueSet->remove(DeadInst); | 
|  | InstrOrdering->erase(DeadInst); | 
|  | IOL.erase(DeadInst); | 
|  |  | 
|  | if (NewIter == DeadInst->getIterator()) | 
|  | NewIter = DeadInst->eraseFromParent(); | 
|  | else | 
|  | DeadInst->eraseFromParent(); | 
|  | } while (!NowDeadInsts.empty()); | 
|  | *BBI = NewIter; | 
|  | } | 
|  |  | 
|  | /// Does this instruction write some memory?  This only returns true for things | 
|  | /// that we can analyze with other helpers below. | 
|  | static bool hasAnalyzableMemoryWrite(Instruction *I, | 
|  | const TargetLibraryInfo &TLI) { | 
|  | if (isa<StoreInst>(I)) | 
|  | return true; | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: | 
|  | return false; | 
|  | case Intrinsic::memset: | 
|  | case Intrinsic::memmove: | 
|  | case Intrinsic::memcpy: | 
|  | case Intrinsic::init_trampoline: | 
|  | case Intrinsic::lifetime_end: | 
|  | return true; | 
|  | } | 
|  | } | 
|  | if (auto CS = CallSite(I)) { | 
|  | if (Function *F = CS.getCalledFunction()) { | 
|  | StringRef FnName = F->getName(); | 
|  | if (TLI.has(LibFunc_strcpy) && FnName == TLI.getName(LibFunc_strcpy)) | 
|  | return true; | 
|  | if (TLI.has(LibFunc_strncpy) && FnName == TLI.getName(LibFunc_strncpy)) | 
|  | return true; | 
|  | if (TLI.has(LibFunc_strcat) && FnName == TLI.getName(LibFunc_strcat)) | 
|  | return true; | 
|  | if (TLI.has(LibFunc_strncat) && FnName == TLI.getName(LibFunc_strncat)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return a Location stored to by the specified instruction. If isRemovable | 
|  | /// returns true, this function and getLocForRead completely describe the memory | 
|  | /// operations for this instruction. | 
|  | static MemoryLocation getLocForWrite(Instruction *Inst) { | 
|  |  | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) | 
|  | return MemoryLocation::get(SI); | 
|  |  | 
|  | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) { | 
|  | // memcpy/memmove/memset. | 
|  | MemoryLocation Loc = MemoryLocation::getForDest(MI); | 
|  | return Loc; | 
|  | } | 
|  |  | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: | 
|  | return MemoryLocation(); // Unhandled intrinsic. | 
|  | case Intrinsic::init_trampoline: | 
|  | return MemoryLocation(II->getArgOperand(0)); | 
|  | case Intrinsic::lifetime_end: { | 
|  | uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); | 
|  | return MemoryLocation(II->getArgOperand(1), Len); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (auto CS = CallSite(Inst)) | 
|  | // All the supported TLI functions so far happen to have dest as their | 
|  | // first argument. | 
|  | return MemoryLocation(CS.getArgument(0)); | 
|  | return MemoryLocation(); | 
|  | } | 
|  |  | 
|  | /// Return the location read by the specified "hasAnalyzableMemoryWrite" | 
|  | /// instruction if any. | 
|  | static MemoryLocation getLocForRead(Instruction *Inst, | 
|  | const TargetLibraryInfo &TLI) { | 
|  | assert(hasAnalyzableMemoryWrite(Inst, TLI) && "Unknown instruction case"); | 
|  |  | 
|  | // The only instructions that both read and write are the mem transfer | 
|  | // instructions (memcpy/memmove). | 
|  | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst)) | 
|  | return MemoryLocation::getForSource(MTI); | 
|  | return MemoryLocation(); | 
|  | } | 
|  |  | 
|  | /// If the value of this instruction and the memory it writes to is unused, may | 
|  | /// we delete this instruction? | 
|  | static bool isRemovable(Instruction *I) { | 
|  | // Don't remove volatile/atomic stores. | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(I)) | 
|  | return SI->isUnordered(); | 
|  |  | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: llvm_unreachable("doesn't pass 'hasAnalyzableMemoryWrite' predicate"); | 
|  | case Intrinsic::lifetime_end: | 
|  | // Never remove dead lifetime_end's, e.g. because it is followed by a | 
|  | // free. | 
|  | return false; | 
|  | case Intrinsic::init_trampoline: | 
|  | // Always safe to remove init_trampoline. | 
|  | return true; | 
|  | case Intrinsic::memset: | 
|  | case Intrinsic::memmove: | 
|  | case Intrinsic::memcpy: | 
|  | // Don't remove volatile memory intrinsics. | 
|  | return !cast<MemIntrinsic>(II)->isVolatile(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // note: only get here for calls with analyzable writes - i.e. libcalls | 
|  | if (auto CS = CallSite(I)) | 
|  | return CS.getInstruction()->use_empty(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Returns true if the end of this instruction can be safely shortened in | 
|  | /// length. | 
|  | static bool isShortenableAtTheEnd(Instruction *I) { | 
|  | // Don't shorten stores for now | 
|  | if (isa<StoreInst>(I)) | 
|  | return false; | 
|  |  | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: return false; | 
|  | case Intrinsic::memset: | 
|  | case Intrinsic::memcpy: | 
|  | // Do shorten memory intrinsics. | 
|  | // FIXME: Add memmove if it's also safe to transform. | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Don't shorten libcalls calls for now. | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Returns true if the beginning of this instruction can be safely shortened | 
|  | /// in length. | 
|  | static bool isShortenableAtTheBeginning(Instruction *I) { | 
|  | // FIXME: Handle only memset for now. Supporting memcpy/memmove should be | 
|  | // easily done by offsetting the source address. | 
|  | IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); | 
|  | return II && II->getIntrinsicID() == Intrinsic::memset; | 
|  | } | 
|  |  | 
|  | /// Return the pointer that is being written to. | 
|  | static Value *getStoredPointerOperand(Instruction *I) { | 
|  | //TODO: factor this to reuse getLocForWrite | 
|  | MemoryLocation Loc = getLocForWrite(I); | 
|  | assert(Loc.Ptr && | 
|  | "unable to find pointer writen for analyzable instruction?"); | 
|  | // TODO: most APIs don't expect const Value * | 
|  | return const_cast<Value*>(Loc.Ptr); | 
|  | } | 
|  |  | 
|  | static uint64_t getPointerSize(const Value *V, const DataLayout &DL, | 
|  | const TargetLibraryInfo &TLI) { | 
|  | uint64_t Size; | 
|  | if (getObjectSize(V, Size, DL, &TLI)) | 
|  | return Size; | 
|  | return MemoryLocation::UnknownSize; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | enum OverwriteResult { | 
|  | OW_Begin, | 
|  | OW_Complete, | 
|  | OW_End, | 
|  | OW_PartialEarlierWithFullLater, | 
|  | OW_Unknown | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Return 'OW_Complete' if a store to the 'Later' location completely | 
|  | /// overwrites a store to the 'Earlier' location, 'OW_End' if the end of the | 
|  | /// 'Earlier' location is completely overwritten by 'Later', 'OW_Begin' if the | 
|  | /// beginning of the 'Earlier' location is overwritten by 'Later'. | 
|  | /// 'OW_PartialEarlierWithFullLater' means that an earlier (big) store was | 
|  | /// overwritten by a latter (smaller) store which doesn't write outside the big | 
|  | /// store's memory locations. Returns 'OW_Unknown' if nothing can be determined. | 
|  | static OverwriteResult isOverwrite(const MemoryLocation &Later, | 
|  | const MemoryLocation &Earlier, | 
|  | const DataLayout &DL, | 
|  | const TargetLibraryInfo &TLI, | 
|  | int64_t &EarlierOff, int64_t &LaterOff, | 
|  | Instruction *DepWrite, | 
|  | InstOverlapIntervalsTy &IOL) { | 
|  | // If we don't know the sizes of either access, then we can't do a comparison. | 
|  | if (Later.Size == MemoryLocation::UnknownSize || | 
|  | Earlier.Size == MemoryLocation::UnknownSize) | 
|  | return OW_Unknown; | 
|  |  | 
|  | const Value *P1 = Earlier.Ptr->stripPointerCasts(); | 
|  | const Value *P2 = Later.Ptr->stripPointerCasts(); | 
|  |  | 
|  | // If the start pointers are the same, we just have to compare sizes to see if | 
|  | // the later store was larger than the earlier store. | 
|  | if (P1 == P2) { | 
|  | // Make sure that the Later size is >= the Earlier size. | 
|  | if (Later.Size >= Earlier.Size) | 
|  | return OW_Complete; | 
|  | } | 
|  |  | 
|  | // Check to see if the later store is to the entire object (either a global, | 
|  | // an alloca, or a byval/inalloca argument).  If so, then it clearly | 
|  | // overwrites any other store to the same object. | 
|  | const Value *UO1 = GetUnderlyingObject(P1, DL), | 
|  | *UO2 = GetUnderlyingObject(P2, DL); | 
|  |  | 
|  | // If we can't resolve the same pointers to the same object, then we can't | 
|  | // analyze them at all. | 
|  | if (UO1 != UO2) | 
|  | return OW_Unknown; | 
|  |  | 
|  | // If the "Later" store is to a recognizable object, get its size. | 
|  | uint64_t ObjectSize = getPointerSize(UO2, DL, TLI); | 
|  | if (ObjectSize != MemoryLocation::UnknownSize) | 
|  | if (ObjectSize == Later.Size && ObjectSize >= Earlier.Size) | 
|  | return OW_Complete; | 
|  |  | 
|  | // Okay, we have stores to two completely different pointers.  Try to | 
|  | // decompose the pointer into a "base + constant_offset" form.  If the base | 
|  | // pointers are equal, then we can reason about the two stores. | 
|  | EarlierOff = 0; | 
|  | LaterOff = 0; | 
|  | const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, DL); | 
|  | const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, DL); | 
|  |  | 
|  | // If the base pointers still differ, we have two completely different stores. | 
|  | if (BP1 != BP2) | 
|  | return OW_Unknown; | 
|  |  | 
|  | // The later store completely overlaps the earlier store if: | 
|  | // | 
|  | // 1. Both start at the same offset and the later one's size is greater than | 
|  | //    or equal to the earlier one's, or | 
|  | // | 
|  | //      |--earlier--| | 
|  | //      |--   later   --| | 
|  | // | 
|  | // 2. The earlier store has an offset greater than the later offset, but which | 
|  | //    still lies completely within the later store. | 
|  | // | 
|  | //        |--earlier--| | 
|  | //    |-----  later  ------| | 
|  | // | 
|  | // We have to be careful here as *Off is signed while *.Size is unsigned. | 
|  | if (EarlierOff >= LaterOff && | 
|  | Later.Size >= Earlier.Size && | 
|  | uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size) | 
|  | return OW_Complete; | 
|  |  | 
|  | // We may now overlap, although the overlap is not complete. There might also | 
|  | // be other incomplete overlaps, and together, they might cover the complete | 
|  | // earlier write. | 
|  | // Note: The correctness of this logic depends on the fact that this function | 
|  | // is not even called providing DepWrite when there are any intervening reads. | 
|  | if (EnablePartialOverwriteTracking && | 
|  | LaterOff < int64_t(EarlierOff + Earlier.Size) && | 
|  | int64_t(LaterOff + Later.Size) >= EarlierOff) { | 
|  |  | 
|  | // Insert our part of the overlap into the map. | 
|  | auto &IM = IOL[DepWrite]; | 
|  | DEBUG(dbgs() << "DSE: Partial overwrite: Earlier [" << EarlierOff << ", " << | 
|  | int64_t(EarlierOff + Earlier.Size) << ") Later [" << | 
|  | LaterOff << ", " << int64_t(LaterOff + Later.Size) << ")\n"); | 
|  |  | 
|  | // Make sure that we only insert non-overlapping intervals and combine | 
|  | // adjacent intervals. The intervals are stored in the map with the ending | 
|  | // offset as the key (in the half-open sense) and the starting offset as | 
|  | // the value. | 
|  | int64_t LaterIntStart = LaterOff, LaterIntEnd = LaterOff + Later.Size; | 
|  |  | 
|  | // Find any intervals ending at, or after, LaterIntStart which start | 
|  | // before LaterIntEnd. | 
|  | auto ILI = IM.lower_bound(LaterIntStart); | 
|  | if (ILI != IM.end() && ILI->second <= LaterIntEnd) { | 
|  | // This existing interval is overlapped with the current store somewhere | 
|  | // in [LaterIntStart, LaterIntEnd]. Merge them by erasing the existing | 
|  | // intervals and adjusting our start and end. | 
|  | LaterIntStart = std::min(LaterIntStart, ILI->second); | 
|  | LaterIntEnd = std::max(LaterIntEnd, ILI->first); | 
|  | ILI = IM.erase(ILI); | 
|  |  | 
|  | // Continue erasing and adjusting our end in case other previous | 
|  | // intervals are also overlapped with the current store. | 
|  | // | 
|  | // |--- ealier 1 ---|  |--- ealier 2 ---| | 
|  | //     |------- later---------| | 
|  | // | 
|  | while (ILI != IM.end() && ILI->second <= LaterIntEnd) { | 
|  | assert(ILI->second > LaterIntStart && "Unexpected interval"); | 
|  | LaterIntEnd = std::max(LaterIntEnd, ILI->first); | 
|  | ILI = IM.erase(ILI); | 
|  | } | 
|  | } | 
|  |  | 
|  | IM[LaterIntEnd] = LaterIntStart; | 
|  |  | 
|  | ILI = IM.begin(); | 
|  | if (ILI->second <= EarlierOff && | 
|  | ILI->first >= int64_t(EarlierOff + Earlier.Size)) { | 
|  | DEBUG(dbgs() << "DSE: Full overwrite from partials: Earlier [" << | 
|  | EarlierOff << ", " << | 
|  | int64_t(EarlierOff + Earlier.Size) << | 
|  | ") Composite Later [" << | 
|  | ILI->second << ", " << ILI->first << ")\n"); | 
|  | ++NumCompletePartials; | 
|  | return OW_Complete; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for an earlier store which writes to all the memory locations that | 
|  | // the later store writes to. | 
|  | if (EnablePartialStoreMerging && LaterOff >= EarlierOff && | 
|  | int64_t(EarlierOff + Earlier.Size) > LaterOff && | 
|  | uint64_t(LaterOff - EarlierOff) + Later.Size <= Earlier.Size) { | 
|  | DEBUG(dbgs() << "DSE: Partial overwrite an earlier load [" << EarlierOff | 
|  | << ", " << int64_t(EarlierOff + Earlier.Size) | 
|  | << ") by a later store [" << LaterOff << ", " | 
|  | << int64_t(LaterOff + Later.Size) << ")\n"); | 
|  | // TODO: Maybe come up with a better name? | 
|  | return OW_PartialEarlierWithFullLater; | 
|  | } | 
|  |  | 
|  | // Another interesting case is if the later store overwrites the end of the | 
|  | // earlier store. | 
|  | // | 
|  | //      |--earlier--| | 
|  | //                |--   later   --| | 
|  | // | 
|  | // In this case we may want to trim the size of earlier to avoid generating | 
|  | // writes to addresses which will definitely be overwritten later | 
|  | if (!EnablePartialOverwriteTracking && | 
|  | (LaterOff > EarlierOff && LaterOff < int64_t(EarlierOff + Earlier.Size) && | 
|  | int64_t(LaterOff + Later.Size) >= int64_t(EarlierOff + Earlier.Size))) | 
|  | return OW_End; | 
|  |  | 
|  | // Finally, we also need to check if the later store overwrites the beginning | 
|  | // of the earlier store. | 
|  | // | 
|  | //                |--earlier--| | 
|  | //      |--   later   --| | 
|  | // | 
|  | // In this case we may want to move the destination address and trim the size | 
|  | // of earlier to avoid generating writes to addresses which will definitely | 
|  | // be overwritten later. | 
|  | if (!EnablePartialOverwriteTracking && | 
|  | (LaterOff <= EarlierOff && int64_t(LaterOff + Later.Size) > EarlierOff)) { | 
|  | assert(int64_t(LaterOff + Later.Size) < | 
|  | int64_t(EarlierOff + Earlier.Size) && | 
|  | "Expect to be handled as OW_Complete"); | 
|  | return OW_Begin; | 
|  | } | 
|  | // Otherwise, they don't completely overlap. | 
|  | return OW_Unknown; | 
|  | } | 
|  |  | 
|  | /// If 'Inst' might be a self read (i.e. a noop copy of a | 
|  | /// memory region into an identical pointer) then it doesn't actually make its | 
|  | /// input dead in the traditional sense.  Consider this case: | 
|  | /// | 
|  | ///   memmove(A <- B) | 
|  | ///   memmove(A <- A) | 
|  | /// | 
|  | /// In this case, the second store to A does not make the first store to A dead. | 
|  | /// The usual situation isn't an explicit A<-A store like this (which can be | 
|  | /// trivially removed) but a case where two pointers may alias. | 
|  | /// | 
|  | /// This function detects when it is unsafe to remove a dependent instruction | 
|  | /// because the DSE inducing instruction may be a self-read. | 
|  | static bool isPossibleSelfRead(Instruction *Inst, | 
|  | const MemoryLocation &InstStoreLoc, | 
|  | Instruction *DepWrite, | 
|  | const TargetLibraryInfo &TLI, | 
|  | AliasAnalysis &AA) { | 
|  | // Self reads can only happen for instructions that read memory.  Get the | 
|  | // location read. | 
|  | MemoryLocation InstReadLoc = getLocForRead(Inst, TLI); | 
|  | if (!InstReadLoc.Ptr) | 
|  | return false; // Not a reading instruction. | 
|  |  | 
|  | // If the read and written loc obviously don't alias, it isn't a read. | 
|  | if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) | 
|  | return false; | 
|  |  | 
|  | if (isa<MemCpyInst>(Inst)) { | 
|  | // LLVM's memcpy overlap semantics are not fully fleshed out (see PR11763) | 
|  | // but in practice memcpy(A <- B) either means that A and B are disjoint or | 
|  | // are equal (i.e. there are not partial overlaps).  Given that, if we have: | 
|  | // | 
|  | //   memcpy/memmove(A <- B)  // DepWrite | 
|  | //   memcpy(A <- B)  // Inst | 
|  | // | 
|  | // with Inst reading/writing a >= size than DepWrite, we can reason as | 
|  | // follows: | 
|  | // | 
|  | //   - If A == B then both the copies are no-ops, so the DepWrite can be | 
|  | //     removed. | 
|  | //   - If A != B then A and B are disjoint locations in Inst.  Since | 
|  | //     Inst.size >= DepWrite.size A and B are disjoint in DepWrite too. | 
|  | //     Therefore DepWrite can be removed. | 
|  | MemoryLocation DepReadLoc = getLocForRead(DepWrite, TLI); | 
|  |  | 
|  | if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If DepWrite doesn't read memory or if we can't prove it is a must alias, | 
|  | // then it can't be considered dead. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Returns true if the memory which is accessed by the second instruction is not | 
|  | /// modified between the first and the second instruction. | 
|  | /// Precondition: Second instruction must be dominated by the first | 
|  | /// instruction. | 
|  | static bool memoryIsNotModifiedBetween(Instruction *FirstI, | 
|  | Instruction *SecondI, | 
|  | AliasAnalysis *AA) { | 
|  | SmallVector<BasicBlock *, 16> WorkList; | 
|  | SmallPtrSet<BasicBlock *, 8> Visited; | 
|  | BasicBlock::iterator FirstBBI(FirstI); | 
|  | ++FirstBBI; | 
|  | BasicBlock::iterator SecondBBI(SecondI); | 
|  | BasicBlock *FirstBB = FirstI->getParent(); | 
|  | BasicBlock *SecondBB = SecondI->getParent(); | 
|  | MemoryLocation MemLoc = MemoryLocation::get(SecondI); | 
|  |  | 
|  | // Start checking the store-block. | 
|  | WorkList.push_back(SecondBB); | 
|  | bool isFirstBlock = true; | 
|  |  | 
|  | // Check all blocks going backward until we reach the load-block. | 
|  | while (!WorkList.empty()) { | 
|  | BasicBlock *B = WorkList.pop_back_val(); | 
|  |  | 
|  | // Ignore instructions before LI if this is the FirstBB. | 
|  | BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin()); | 
|  |  | 
|  | BasicBlock::iterator EI; | 
|  | if (isFirstBlock) { | 
|  | // Ignore instructions after SI if this is the first visit of SecondBB. | 
|  | assert(B == SecondBB && "first block is not the store block"); | 
|  | EI = SecondBBI; | 
|  | isFirstBlock = false; | 
|  | } else { | 
|  | // It's not SecondBB or (in case of a loop) the second visit of SecondBB. | 
|  | // In this case we also have to look at instructions after SI. | 
|  | EI = B->end(); | 
|  | } | 
|  | for (; BI != EI; ++BI) { | 
|  | Instruction *I = &*BI; | 
|  | if (I->mayWriteToMemory() && I != SecondI) | 
|  | if (isModSet(AA->getModRefInfo(I, MemLoc))) | 
|  | return false; | 
|  | } | 
|  | if (B != FirstBB) { | 
|  | assert(B != &FirstBB->getParent()->getEntryBlock() && | 
|  | "Should not hit the entry block because SI must be dominated by LI"); | 
|  | for (auto PredI = pred_begin(B), PE = pred_end(B); PredI != PE; ++PredI) { | 
|  | if (!Visited.insert(*PredI).second) | 
|  | continue; | 
|  | WorkList.push_back(*PredI); | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Find all blocks that will unconditionally lead to the block BB and append | 
|  | /// them to F. | 
|  | static void findUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks, | 
|  | BasicBlock *BB, DominatorTree *DT) { | 
|  | for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { | 
|  | BasicBlock *Pred = *I; | 
|  | if (Pred == BB) continue; | 
|  | TerminatorInst *PredTI = Pred->getTerminator(); | 
|  | if (PredTI->getNumSuccessors() != 1) | 
|  | continue; | 
|  |  | 
|  | if (DT->isReachableFromEntry(Pred)) | 
|  | Blocks.push_back(Pred); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Handle frees of entire structures whose dependency is a store | 
|  | /// to a field of that structure. | 
|  | static bool handleFree(CallInst *F, AliasAnalysis *AA, | 
|  | MemoryDependenceResults *MD, DominatorTree *DT, | 
|  | const TargetLibraryInfo *TLI, | 
|  | InstOverlapIntervalsTy &IOL, | 
|  | DenseMap<Instruction*, size_t> *InstrOrdering) { | 
|  | bool MadeChange = false; | 
|  |  | 
|  | MemoryLocation Loc = MemoryLocation(F->getOperand(0)); | 
|  | SmallVector<BasicBlock *, 16> Blocks; | 
|  | Blocks.push_back(F->getParent()); | 
|  | const DataLayout &DL = F->getModule()->getDataLayout(); | 
|  |  | 
|  | while (!Blocks.empty()) { | 
|  | BasicBlock *BB = Blocks.pop_back_val(); | 
|  | Instruction *InstPt = BB->getTerminator(); | 
|  | if (BB == F->getParent()) InstPt = F; | 
|  |  | 
|  | MemDepResult Dep = | 
|  | MD->getPointerDependencyFrom(Loc, false, InstPt->getIterator(), BB); | 
|  | while (Dep.isDef() || Dep.isClobber()) { | 
|  | Instruction *Dependency = Dep.getInst(); | 
|  | if (!hasAnalyzableMemoryWrite(Dependency, *TLI) || | 
|  | !isRemovable(Dependency)) | 
|  | break; | 
|  |  | 
|  | Value *DepPointer = | 
|  | GetUnderlyingObject(getStoredPointerOperand(Dependency), DL); | 
|  |  | 
|  | // Check for aliasing. | 
|  | if (!AA->isMustAlias(F->getArgOperand(0), DepPointer)) | 
|  | break; | 
|  |  | 
|  | DEBUG(dbgs() << "DSE: Dead Store to soon to be freed memory:\n  DEAD: " | 
|  | << *Dependency << '\n'); | 
|  |  | 
|  | // DCE instructions only used to calculate that store. | 
|  | BasicBlock::iterator BBI(Dependency); | 
|  | deleteDeadInstruction(Dependency, &BBI, *MD, *TLI, IOL, InstrOrdering); | 
|  | ++NumFastStores; | 
|  | MadeChange = true; | 
|  |  | 
|  | // Inst's old Dependency is now deleted. Compute the next dependency, | 
|  | // which may also be dead, as in | 
|  | //    s[0] = 0; | 
|  | //    s[1] = 0; // This has just been deleted. | 
|  | //    free(s); | 
|  | Dep = MD->getPointerDependencyFrom(Loc, false, BBI, BB); | 
|  | } | 
|  |  | 
|  | if (Dep.isNonLocal()) | 
|  | findUnconditionalPreds(Blocks, BB, DT); | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// Check to see if the specified location may alias any of the stack objects in | 
|  | /// the DeadStackObjects set. If so, they become live because the location is | 
|  | /// being loaded. | 
|  | static void removeAccessedObjects(const MemoryLocation &LoadedLoc, | 
|  | SmallSetVector<Value *, 16> &DeadStackObjects, | 
|  | const DataLayout &DL, AliasAnalysis *AA, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr, DL); | 
|  |  | 
|  | // A constant can't be in the dead pointer set. | 
|  | if (isa<Constant>(UnderlyingPointer)) | 
|  | return; | 
|  |  | 
|  | // If the kill pointer can be easily reduced to an alloca, don't bother doing | 
|  | // extraneous AA queries. | 
|  | if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) { | 
|  | DeadStackObjects.remove(const_cast<Value*>(UnderlyingPointer)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Remove objects that could alias LoadedLoc. | 
|  | DeadStackObjects.remove_if([&](Value *I) { | 
|  | // See if the loaded location could alias the stack location. | 
|  | MemoryLocation StackLoc(I, getPointerSize(I, DL, *TLI)); | 
|  | return !AA->isNoAlias(StackLoc, LoadedLoc); | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// Remove dead stores to stack-allocated locations in the function end block. | 
|  | /// Ex: | 
|  | /// %A = alloca i32 | 
|  | /// ... | 
|  | /// store i32 1, i32* %A | 
|  | /// ret void | 
|  | static bool handleEndBlock(BasicBlock &BB, AliasAnalysis *AA, | 
|  | MemoryDependenceResults *MD, | 
|  | const TargetLibraryInfo *TLI, | 
|  | InstOverlapIntervalsTy &IOL, | 
|  | DenseMap<Instruction*, size_t> *InstrOrdering) { | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // Keep track of all of the stack objects that are dead at the end of the | 
|  | // function. | 
|  | SmallSetVector<Value*, 16> DeadStackObjects; | 
|  |  | 
|  | // Find all of the alloca'd pointers in the entry block. | 
|  | BasicBlock &Entry = BB.getParent()->front(); | 
|  | for (Instruction &I : Entry) { | 
|  | if (isa<AllocaInst>(&I)) | 
|  | DeadStackObjects.insert(&I); | 
|  |  | 
|  | // Okay, so these are dead heap objects, but if the pointer never escapes | 
|  | // then it's leaked by this function anyways. | 
|  | else if (isAllocLikeFn(&I, TLI) && !PointerMayBeCaptured(&I, true, true)) | 
|  | DeadStackObjects.insert(&I); | 
|  | } | 
|  |  | 
|  | // Treat byval or inalloca arguments the same, stores to them are dead at the | 
|  | // end of the function. | 
|  | for (Argument &AI : BB.getParent()->args()) | 
|  | if (AI.hasByValOrInAllocaAttr()) | 
|  | DeadStackObjects.insert(&AI); | 
|  |  | 
|  | const DataLayout &DL = BB.getModule()->getDataLayout(); | 
|  |  | 
|  | // Scan the basic block backwards | 
|  | for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){ | 
|  | --BBI; | 
|  |  | 
|  | // If we find a store, check to see if it points into a dead stack value. | 
|  | if (hasAnalyzableMemoryWrite(&*BBI, *TLI) && isRemovable(&*BBI)) { | 
|  | // See through pointer-to-pointer bitcasts | 
|  | SmallVector<Value *, 4> Pointers; | 
|  | GetUnderlyingObjects(getStoredPointerOperand(&*BBI), Pointers, DL); | 
|  |  | 
|  | // Stores to stack values are valid candidates for removal. | 
|  | bool AllDead = true; | 
|  | for (Value *Pointer : Pointers) | 
|  | if (!DeadStackObjects.count(Pointer)) { | 
|  | AllDead = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (AllDead) { | 
|  | Instruction *Dead = &*BBI; | 
|  |  | 
|  | DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n  DEAD: " | 
|  | << *Dead << "\n  Objects: "; | 
|  | for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(), | 
|  | E = Pointers.end(); I != E; ++I) { | 
|  | dbgs() << **I; | 
|  | if (std::next(I) != E) | 
|  | dbgs() << ", "; | 
|  | } | 
|  | dbgs() << '\n'); | 
|  |  | 
|  | // DCE instructions only used to calculate that store. | 
|  | deleteDeadInstruction(Dead, &BBI, *MD, *TLI, IOL, InstrOrdering, &DeadStackObjects); | 
|  | ++NumFastStores; | 
|  | MadeChange = true; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remove any dead non-memory-mutating instructions. | 
|  | if (isInstructionTriviallyDead(&*BBI, TLI)) { | 
|  | DEBUG(dbgs() << "DSE: Removing trivially dead instruction:\n  DEAD: " | 
|  | << *&*BBI << '\n'); | 
|  | deleteDeadInstruction(&*BBI, &BBI, *MD, *TLI, IOL, InstrOrdering, &DeadStackObjects); | 
|  | ++NumFastOther; | 
|  | MadeChange = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (isa<AllocaInst>(BBI)) { | 
|  | // Remove allocas from the list of dead stack objects; there can't be | 
|  | // any references before the definition. | 
|  | DeadStackObjects.remove(&*BBI); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (auto CS = CallSite(&*BBI)) { | 
|  | // Remove allocation function calls from the list of dead stack objects; | 
|  | // there can't be any references before the definition. | 
|  | if (isAllocLikeFn(&*BBI, TLI)) | 
|  | DeadStackObjects.remove(&*BBI); | 
|  |  | 
|  | // If this call does not access memory, it can't be loading any of our | 
|  | // pointers. | 
|  | if (AA->doesNotAccessMemory(CS)) | 
|  | continue; | 
|  |  | 
|  | // If the call might load from any of our allocas, then any store above | 
|  | // the call is live. | 
|  | DeadStackObjects.remove_if([&](Value *I) { | 
|  | // See if the call site touches the value. | 
|  | return isRefSet(AA->getModRefInfo(CS, I, getPointerSize(I, DL, *TLI))); | 
|  | }); | 
|  |  | 
|  | // If all of the allocas were clobbered by the call then we're not going | 
|  | // to find anything else to process. | 
|  | if (DeadStackObjects.empty()) | 
|  | break; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We can remove the dead stores, irrespective of the fence and its ordering | 
|  | // (release/acquire/seq_cst). Fences only constraints the ordering of | 
|  | // already visible stores, it does not make a store visible to other | 
|  | // threads. So, skipping over a fence does not change a store from being | 
|  | // dead. | 
|  | if (isa<FenceInst>(*BBI)) | 
|  | continue; | 
|  |  | 
|  | MemoryLocation LoadedLoc; | 
|  |  | 
|  | // If we encounter a use of the pointer, it is no longer considered dead | 
|  | if (LoadInst *L = dyn_cast<LoadInst>(BBI)) { | 
|  | if (!L->isUnordered()) // Be conservative with atomic/volatile load | 
|  | break; | 
|  | LoadedLoc = MemoryLocation::get(L); | 
|  | } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) { | 
|  | LoadedLoc = MemoryLocation::get(V); | 
|  | } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) { | 
|  | LoadedLoc = MemoryLocation::getForSource(MTI); | 
|  | } else if (!BBI->mayReadFromMemory()) { | 
|  | // Instruction doesn't read memory.  Note that stores that weren't removed | 
|  | // above will hit this case. | 
|  | continue; | 
|  | } else { | 
|  | // Unknown inst; assume it clobbers everything. | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Remove any allocas from the DeadPointer set that are loaded, as this | 
|  | // makes any stores above the access live. | 
|  | removeAccessedObjects(LoadedLoc, DeadStackObjects, DL, AA, TLI); | 
|  |  | 
|  | // If all of the allocas were clobbered by the access then we're not going | 
|  | // to find anything else to process. | 
|  | if (DeadStackObjects.empty()) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | static bool tryToShorten(Instruction *EarlierWrite, int64_t &EarlierOffset, | 
|  | int64_t &EarlierSize, int64_t LaterOffset, | 
|  | int64_t LaterSize, bool IsOverwriteEnd) { | 
|  | // TODO: base this on the target vector size so that if the earlier | 
|  | // store was too small to get vector writes anyway then its likely | 
|  | // a good idea to shorten it | 
|  | // Power of 2 vector writes are probably always a bad idea to optimize | 
|  | // as any store/memset/memcpy is likely using vector instructions so | 
|  | // shortening it to not vector size is likely to be slower | 
|  | MemIntrinsic *EarlierIntrinsic = cast<MemIntrinsic>(EarlierWrite); | 
|  | unsigned EarlierWriteAlign = EarlierIntrinsic->getDestAlignment(); | 
|  | if (!IsOverwriteEnd) | 
|  | LaterOffset = int64_t(LaterOffset + LaterSize); | 
|  |  | 
|  | if (!(isPowerOf2_64(LaterOffset) && EarlierWriteAlign <= LaterOffset) && | 
|  | !((EarlierWriteAlign != 0) && LaterOffset % EarlierWriteAlign == 0)) | 
|  | return false; | 
|  |  | 
|  | DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW " | 
|  | << (IsOverwriteEnd ? "END" : "BEGIN") << ": " << *EarlierWrite | 
|  | << "\n  KILLER (offset " << LaterOffset << ", " << EarlierSize | 
|  | << ")\n"); | 
|  |  | 
|  | int64_t NewLength = IsOverwriteEnd | 
|  | ? LaterOffset - EarlierOffset | 
|  | : EarlierSize - (LaterOffset - EarlierOffset); | 
|  |  | 
|  | Value *EarlierWriteLength = EarlierIntrinsic->getLength(); | 
|  | Value *TrimmedLength = | 
|  | ConstantInt::get(EarlierWriteLength->getType(), NewLength); | 
|  | EarlierIntrinsic->setLength(TrimmedLength); | 
|  |  | 
|  | EarlierSize = NewLength; | 
|  | if (!IsOverwriteEnd) { | 
|  | int64_t OffsetMoved = (LaterOffset - EarlierOffset); | 
|  | Value *Indices[1] = { | 
|  | ConstantInt::get(EarlierWriteLength->getType(), OffsetMoved)}; | 
|  | GetElementPtrInst *NewDestGEP = GetElementPtrInst::CreateInBounds( | 
|  | EarlierIntrinsic->getRawDest(), Indices, "", EarlierWrite); | 
|  | EarlierIntrinsic->setDest(NewDestGEP); | 
|  | EarlierOffset = EarlierOffset + OffsetMoved; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool tryToShortenEnd(Instruction *EarlierWrite, | 
|  | OverlapIntervalsTy &IntervalMap, | 
|  | int64_t &EarlierStart, int64_t &EarlierSize) { | 
|  | if (IntervalMap.empty() || !isShortenableAtTheEnd(EarlierWrite)) | 
|  | return false; | 
|  |  | 
|  | OverlapIntervalsTy::iterator OII = --IntervalMap.end(); | 
|  | int64_t LaterStart = OII->second; | 
|  | int64_t LaterSize = OII->first - LaterStart; | 
|  |  | 
|  | if (LaterStart > EarlierStart && LaterStart < EarlierStart + EarlierSize && | 
|  | LaterStart + LaterSize >= EarlierStart + EarlierSize) { | 
|  | if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart, | 
|  | LaterSize, true)) { | 
|  | IntervalMap.erase(OII); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool tryToShortenBegin(Instruction *EarlierWrite, | 
|  | OverlapIntervalsTy &IntervalMap, | 
|  | int64_t &EarlierStart, int64_t &EarlierSize) { | 
|  | if (IntervalMap.empty() || !isShortenableAtTheBeginning(EarlierWrite)) | 
|  | return false; | 
|  |  | 
|  | OverlapIntervalsTy::iterator OII = IntervalMap.begin(); | 
|  | int64_t LaterStart = OII->second; | 
|  | int64_t LaterSize = OII->first - LaterStart; | 
|  |  | 
|  | if (LaterStart <= EarlierStart && LaterStart + LaterSize > EarlierStart) { | 
|  | assert(LaterStart + LaterSize < EarlierStart + EarlierSize && | 
|  | "Should have been handled as OW_Complete"); | 
|  | if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart, | 
|  | LaterSize, false)) { | 
|  | IntervalMap.erase(OII); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool removePartiallyOverlappedStores(AliasAnalysis *AA, | 
|  | const DataLayout &DL, | 
|  | InstOverlapIntervalsTy &IOL) { | 
|  | bool Changed = false; | 
|  | for (auto OI : IOL) { | 
|  | Instruction *EarlierWrite = OI.first; | 
|  | MemoryLocation Loc = getLocForWrite(EarlierWrite); | 
|  | assert(isRemovable(EarlierWrite) && "Expect only removable instruction"); | 
|  | assert(Loc.Size != MemoryLocation::UnknownSize && "Unexpected mem loc"); | 
|  |  | 
|  | const Value *Ptr = Loc.Ptr->stripPointerCasts(); | 
|  | int64_t EarlierStart = 0; | 
|  | int64_t EarlierSize = int64_t(Loc.Size); | 
|  | GetPointerBaseWithConstantOffset(Ptr, EarlierStart, DL); | 
|  | OverlapIntervalsTy &IntervalMap = OI.second; | 
|  | Changed |= | 
|  | tryToShortenEnd(EarlierWrite, IntervalMap, EarlierStart, EarlierSize); | 
|  | if (IntervalMap.empty()) | 
|  | continue; | 
|  | Changed |= | 
|  | tryToShortenBegin(EarlierWrite, IntervalMap, EarlierStart, EarlierSize); | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | static bool eliminateNoopStore(Instruction *Inst, BasicBlock::iterator &BBI, | 
|  | AliasAnalysis *AA, MemoryDependenceResults *MD, | 
|  | const DataLayout &DL, | 
|  | const TargetLibraryInfo *TLI, | 
|  | InstOverlapIntervalsTy &IOL, | 
|  | DenseMap<Instruction*, size_t> *InstrOrdering) { | 
|  | // Must be a store instruction. | 
|  | StoreInst *SI = dyn_cast<StoreInst>(Inst); | 
|  | if (!SI) | 
|  | return false; | 
|  |  | 
|  | // If we're storing the same value back to a pointer that we just loaded from, | 
|  | // then the store can be removed. | 
|  | if (LoadInst *DepLoad = dyn_cast<LoadInst>(SI->getValueOperand())) { | 
|  | if (SI->getPointerOperand() == DepLoad->getPointerOperand() && | 
|  | isRemovable(SI) && memoryIsNotModifiedBetween(DepLoad, SI, AA)) { | 
|  |  | 
|  | DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n  LOAD: " | 
|  | << *DepLoad << "\n  STORE: " << *SI << '\n'); | 
|  |  | 
|  | deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, InstrOrdering); | 
|  | ++NumRedundantStores; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remove null stores into the calloc'ed objects | 
|  | Constant *StoredConstant = dyn_cast<Constant>(SI->getValueOperand()); | 
|  | if (StoredConstant && StoredConstant->isNullValue() && isRemovable(SI)) { | 
|  | Instruction *UnderlyingPointer = | 
|  | dyn_cast<Instruction>(GetUnderlyingObject(SI->getPointerOperand(), DL)); | 
|  |  | 
|  | if (UnderlyingPointer && isCallocLikeFn(UnderlyingPointer, TLI) && | 
|  | memoryIsNotModifiedBetween(UnderlyingPointer, SI, AA)) { | 
|  | DEBUG( | 
|  | dbgs() << "DSE: Remove null store to the calloc'ed object:\n  DEAD: " | 
|  | << *Inst << "\n  OBJECT: " << *UnderlyingPointer << '\n'); | 
|  |  | 
|  | deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, InstrOrdering); | 
|  | ++NumRedundantStores; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool eliminateDeadStores(BasicBlock &BB, AliasAnalysis *AA, | 
|  | MemoryDependenceResults *MD, DominatorTree *DT, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | const DataLayout &DL = BB.getModule()->getDataLayout(); | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // FIXME: Maybe change this to use some abstraction like OrderedBasicBlock? | 
|  | // The current OrderedBasicBlock can't deal with mutation at the moment. | 
|  | size_t LastThrowingInstIndex = 0; | 
|  | DenseMap<Instruction*, size_t> InstrOrdering; | 
|  | size_t InstrIndex = 1; | 
|  |  | 
|  | // A map of interval maps representing partially-overwritten value parts. | 
|  | InstOverlapIntervalsTy IOL; | 
|  |  | 
|  | // Do a top-down walk on the BB. | 
|  | for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) { | 
|  | // Handle 'free' calls specially. | 
|  | if (CallInst *F = isFreeCall(&*BBI, TLI)) { | 
|  | MadeChange |= handleFree(F, AA, MD, DT, TLI, IOL, &InstrOrdering); | 
|  | // Increment BBI after handleFree has potentially deleted instructions. | 
|  | // This ensures we maintain a valid iterator. | 
|  | ++BBI; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Instruction *Inst = &*BBI++; | 
|  |  | 
|  | size_t CurInstNumber = InstrIndex++; | 
|  | InstrOrdering.insert(std::make_pair(Inst, CurInstNumber)); | 
|  | if (Inst->mayThrow()) { | 
|  | LastThrowingInstIndex = CurInstNumber; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check to see if Inst writes to memory.  If not, continue. | 
|  | if (!hasAnalyzableMemoryWrite(Inst, *TLI)) | 
|  | continue; | 
|  |  | 
|  | // eliminateNoopStore will update in iterator, if necessary. | 
|  | if (eliminateNoopStore(Inst, BBI, AA, MD, DL, TLI, IOL, &InstrOrdering)) { | 
|  | MadeChange = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we find something that writes memory, get its memory dependence. | 
|  | MemDepResult InstDep = MD->getDependency(Inst); | 
|  |  | 
|  | // Ignore any store where we can't find a local dependence. | 
|  | // FIXME: cross-block DSE would be fun. :) | 
|  | if (!InstDep.isDef() && !InstDep.isClobber()) | 
|  | continue; | 
|  |  | 
|  | // Figure out what location is being stored to. | 
|  | MemoryLocation Loc = getLocForWrite(Inst); | 
|  |  | 
|  | // If we didn't get a useful location, fail. | 
|  | if (!Loc.Ptr) | 
|  | continue; | 
|  |  | 
|  | // Loop until we find a store we can eliminate or a load that | 
|  | // invalidates the analysis. Without an upper bound on the number of | 
|  | // instructions examined, this analysis can become very time-consuming. | 
|  | // However, the potential gain diminishes as we process more instructions | 
|  | // without eliminating any of them. Therefore, we limit the number of | 
|  | // instructions we look at. | 
|  | auto Limit = MD->getDefaultBlockScanLimit(); | 
|  | while (InstDep.isDef() || InstDep.isClobber()) { | 
|  | // Get the memory clobbered by the instruction we depend on.  MemDep will | 
|  | // skip any instructions that 'Loc' clearly doesn't interact with.  If we | 
|  | // end up depending on a may- or must-aliased load, then we can't optimize | 
|  | // away the store and we bail out.  However, if we depend on something | 
|  | // that overwrites the memory location we *can* potentially optimize it. | 
|  | // | 
|  | // Find out what memory location the dependent instruction stores. | 
|  | Instruction *DepWrite = InstDep.getInst(); | 
|  | if (!hasAnalyzableMemoryWrite(DepWrite, *TLI)) | 
|  | break; | 
|  | MemoryLocation DepLoc = getLocForWrite(DepWrite); | 
|  | // If we didn't get a useful location, or if it isn't a size, bail out. | 
|  | if (!DepLoc.Ptr) | 
|  | break; | 
|  |  | 
|  | // Make sure we don't look past a call which might throw. This is an | 
|  | // issue because MemoryDependenceAnalysis works in the wrong direction: | 
|  | // it finds instructions which dominate the current instruction, rather than | 
|  | // instructions which are post-dominated by the current instruction. | 
|  | // | 
|  | // If the underlying object is a non-escaping memory allocation, any store | 
|  | // to it is dead along the unwind edge. Otherwise, we need to preserve | 
|  | // the store. | 
|  | size_t DepIndex = InstrOrdering.lookup(DepWrite); | 
|  | assert(DepIndex && "Unexpected instruction"); | 
|  | if (DepIndex <= LastThrowingInstIndex) { | 
|  | const Value* Underlying = GetUnderlyingObject(DepLoc.Ptr, DL); | 
|  | bool IsStoreDeadOnUnwind = isa<AllocaInst>(Underlying); | 
|  | if (!IsStoreDeadOnUnwind) { | 
|  | // We're looking for a call to an allocation function | 
|  | // where the allocation doesn't escape before the last | 
|  | // throwing instruction; PointerMayBeCaptured | 
|  | // reasonably fast approximation. | 
|  | IsStoreDeadOnUnwind = isAllocLikeFn(Underlying, TLI) && | 
|  | !PointerMayBeCaptured(Underlying, false, true); | 
|  | } | 
|  | if (!IsStoreDeadOnUnwind) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we find a write that is a) removable (i.e., non-volatile), b) is | 
|  | // completely obliterated by the store to 'Loc', and c) which we know that | 
|  | // 'Inst' doesn't load from, then we can remove it. | 
|  | // Also try to merge two stores if a later one only touches memory written | 
|  | // to by the earlier one. | 
|  | if (isRemovable(DepWrite) && | 
|  | !isPossibleSelfRead(Inst, Loc, DepWrite, *TLI, *AA)) { | 
|  | int64_t InstWriteOffset, DepWriteOffset; | 
|  | OverwriteResult OR = | 
|  | isOverwrite(Loc, DepLoc, DL, *TLI, DepWriteOffset, InstWriteOffset, | 
|  | DepWrite, IOL); | 
|  | if (OR == OW_Complete) { | 
|  | DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: " | 
|  | << *DepWrite << "\n  KILLER: " << *Inst << '\n'); | 
|  |  | 
|  | // Delete the store and now-dead instructions that feed it. | 
|  | deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, &InstrOrdering); | 
|  | ++NumFastStores; | 
|  | MadeChange = true; | 
|  |  | 
|  | // We erased DepWrite; start over. | 
|  | InstDep = MD->getDependency(Inst); | 
|  | continue; | 
|  | } else if ((OR == OW_End && isShortenableAtTheEnd(DepWrite)) || | 
|  | ((OR == OW_Begin && | 
|  | isShortenableAtTheBeginning(DepWrite)))) { | 
|  | assert(!EnablePartialOverwriteTracking && "Do not expect to perform " | 
|  | "when partial-overwrite " | 
|  | "tracking is enabled"); | 
|  | int64_t EarlierSize = DepLoc.Size; | 
|  | int64_t LaterSize = Loc.Size; | 
|  | bool IsOverwriteEnd = (OR == OW_End); | 
|  | MadeChange |= tryToShorten(DepWrite, DepWriteOffset, EarlierSize, | 
|  | InstWriteOffset, LaterSize, IsOverwriteEnd); | 
|  | } else if (EnablePartialStoreMerging && | 
|  | OR == OW_PartialEarlierWithFullLater) { | 
|  | auto *Earlier = dyn_cast<StoreInst>(DepWrite); | 
|  | auto *Later = dyn_cast<StoreInst>(Inst); | 
|  | if (Earlier && isa<ConstantInt>(Earlier->getValueOperand()) && | 
|  | Later && isa<ConstantInt>(Later->getValueOperand()) && | 
|  | memoryIsNotModifiedBetween(Earlier, Later, AA)) { | 
|  | // If the store we find is: | 
|  | //   a) partially overwritten by the store to 'Loc' | 
|  | //   b) the later store is fully contained in the earlier one and | 
|  | //   c) they both have a constant value | 
|  | // Merge the two stores, replacing the earlier store's value with a | 
|  | // merge of both values. | 
|  | // TODO: Deal with other constant types (vectors, etc), and probably | 
|  | // some mem intrinsics (if needed) | 
|  |  | 
|  | APInt EarlierValue = | 
|  | cast<ConstantInt>(Earlier->getValueOperand())->getValue(); | 
|  | APInt LaterValue = | 
|  | cast<ConstantInt>(Later->getValueOperand())->getValue(); | 
|  | unsigned LaterBits = LaterValue.getBitWidth(); | 
|  | assert(EarlierValue.getBitWidth() > LaterValue.getBitWidth()); | 
|  | LaterValue = LaterValue.zext(EarlierValue.getBitWidth()); | 
|  |  | 
|  | // Offset of the smaller store inside the larger store | 
|  | unsigned BitOffsetDiff = (InstWriteOffset - DepWriteOffset) * 8; | 
|  | unsigned LShiftAmount = | 
|  | DL.isBigEndian() | 
|  | ? EarlierValue.getBitWidth() - BitOffsetDiff - LaterBits | 
|  | : BitOffsetDiff; | 
|  | APInt Mask = | 
|  | APInt::getBitsSet(EarlierValue.getBitWidth(), LShiftAmount, | 
|  | LShiftAmount + LaterBits); | 
|  | // Clear the bits we'll be replacing, then OR with the smaller | 
|  | // store, shifted appropriately. | 
|  | APInt Merged = | 
|  | (EarlierValue & ~Mask) | (LaterValue << LShiftAmount); | 
|  | DEBUG(dbgs() << "DSE: Merge Stores:\n  Earlier: " << *DepWrite | 
|  | << "\n  Later: " << *Inst | 
|  | << "\n  Merged Value: " << Merged << '\n'); | 
|  |  | 
|  | auto *SI = new StoreInst( | 
|  | ConstantInt::get(Earlier->getValueOperand()->getType(), Merged), | 
|  | Earlier->getPointerOperand(), false, Earlier->getAlignment(), | 
|  | Earlier->getOrdering(), Earlier->getSyncScopeID(), DepWrite); | 
|  |  | 
|  | unsigned MDToKeep[] = {LLVMContext::MD_dbg, LLVMContext::MD_tbaa, | 
|  | LLVMContext::MD_alias_scope, | 
|  | LLVMContext::MD_noalias, | 
|  | LLVMContext::MD_nontemporal}; | 
|  | SI->copyMetadata(*DepWrite, MDToKeep); | 
|  | ++NumModifiedStores; | 
|  |  | 
|  | // Remove earlier, wider, store | 
|  | size_t Idx = InstrOrdering.lookup(DepWrite); | 
|  | InstrOrdering.erase(DepWrite); | 
|  | InstrOrdering.insert(std::make_pair(SI, Idx)); | 
|  |  | 
|  | // Delete the old stores and now-dead instructions that feed them. | 
|  | deleteDeadInstruction(Inst, &BBI, *MD, *TLI, IOL, &InstrOrdering); | 
|  | deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, | 
|  | &InstrOrdering); | 
|  | MadeChange = true; | 
|  |  | 
|  | // We erased DepWrite and Inst (Loc); start over. | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is a may-aliased store that is clobbering the store value, we | 
|  | // can keep searching past it for another must-aliased pointer that stores | 
|  | // to the same location.  For example, in: | 
|  | //   store -> P | 
|  | //   store -> Q | 
|  | //   store -> P | 
|  | // we can remove the first store to P even though we don't know if P and Q | 
|  | // alias. | 
|  | if (DepWrite == &BB.front()) break; | 
|  |  | 
|  | // Can't look past this instruction if it might read 'Loc'. | 
|  | if (isRefSet(AA->getModRefInfo(DepWrite, Loc))) | 
|  | break; | 
|  |  | 
|  | InstDep = MD->getPointerDependencyFrom(Loc, /*isLoad=*/ false, | 
|  | DepWrite->getIterator(), &BB, | 
|  | /*QueryInst=*/ nullptr, &Limit); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (EnablePartialOverwriteTracking) | 
|  | MadeChange |= removePartiallyOverlappedStores(AA, DL, IOL); | 
|  |  | 
|  | // If this block ends in a return, unwind, or unreachable, all allocas are | 
|  | // dead at its end, which means stores to them are also dead. | 
|  | if (BB.getTerminator()->getNumSuccessors() == 0) | 
|  | MadeChange |= handleEndBlock(BB, AA, MD, TLI, IOL, &InstrOrdering); | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | static bool eliminateDeadStores(Function &F, AliasAnalysis *AA, | 
|  | MemoryDependenceResults *MD, DominatorTree *DT, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | bool MadeChange = false; | 
|  | for (BasicBlock &BB : F) | 
|  | // Only check non-dead blocks.  Dead blocks may have strange pointer | 
|  | // cycles that will confuse alias analysis. | 
|  | if (DT->isReachableFromEntry(&BB)) | 
|  | MadeChange |= eliminateDeadStores(BB, AA, MD, DT, TLI); | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // DSE Pass | 
|  | //===----------------------------------------------------------------------===// | 
|  | PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) { | 
|  | AliasAnalysis *AA = &AM.getResult<AAManager>(F); | 
|  | DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); | 
|  | MemoryDependenceResults *MD = &AM.getResult<MemoryDependenceAnalysis>(F); | 
|  | const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); | 
|  |  | 
|  | if (!eliminateDeadStores(F, AA, MD, DT, TLI)) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | PreservedAnalyses PA; | 
|  | PA.preserveSet<CFGAnalyses>(); | 
|  | PA.preserve<GlobalsAA>(); | 
|  | PA.preserve<MemoryDependenceAnalysis>(); | 
|  | return PA; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// A legacy pass for the legacy pass manager that wraps \c DSEPass. | 
|  | class DSELegacyPass : public FunctionPass { | 
|  | public: | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  |  | 
|  | DSELegacyPass() : FunctionPass(ID) { | 
|  | initializeDSELegacyPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override { | 
|  | if (skipFunction(F)) | 
|  | return false; | 
|  |  | 
|  | DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  | AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); | 
|  | MemoryDependenceResults *MD = | 
|  | &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); | 
|  | const TargetLibraryInfo *TLI = | 
|  | &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); | 
|  |  | 
|  | return eliminateDeadStores(F, AA, MD, DT, TLI); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | AU.addRequired<AAResultsWrapperPass>(); | 
|  | AU.addRequired<MemoryDependenceWrapperPass>(); | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | AU.addPreserved<DominatorTreeWrapperPass>(); | 
|  | AU.addPreserved<GlobalsAAWrapperPass>(); | 
|  | AU.addPreserved<MemoryDependenceWrapperPass>(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char DSELegacyPass::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false, | 
|  | false) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false, | 
|  | false) | 
|  |  | 
|  | FunctionPass *llvm::createDeadStoreEliminationPass() { | 
|  | return new DSELegacyPass(); | 
|  | } |