|  | //===--- RDFLiveness.cpp --------------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Computation of the liveness information from the data-flow graph. | 
|  | // | 
|  | // The main functionality of this code is to compute block live-in | 
|  | // information. With the live-in information in place, the placement | 
|  | // of kill flags can also be recalculated. | 
|  | // | 
|  | // The block live-in calculation is based on the ideas from the following | 
|  | // publication: | 
|  | // | 
|  | // Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin. | 
|  | // "Efficient Liveness Computation Using Merge Sets and DJ-Graphs." | 
|  | // ACM Transactions on Architecture and Code Optimization, Association for | 
|  | // Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance | 
|  | // and Embedded Architectures and Compilers", 8 (4), | 
|  | // <10.1145/2086696.2086706>. <hal-00647369> | 
|  | // | 
|  | #include "RDFGraph.h" | 
|  | #include "RDFLiveness.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineDominanceFrontier.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace rdf; | 
|  |  | 
|  | static cl::opt<unsigned> MaxRecNest("rdf-liveness-max-rec", cl::init(25), | 
|  | cl::Hidden, cl::desc("Maximum recursion level")); | 
|  |  | 
|  | namespace llvm { | 
|  | namespace rdf { | 
|  | template<> | 
|  | raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) { | 
|  | OS << '{'; | 
|  | for (auto &I : P.Obj) { | 
|  | OS << ' ' << PrintReg(I.first, &P.G.getTRI()) << '{'; | 
|  | for (auto J = I.second.begin(), E = I.second.end(); J != E; ) { | 
|  | OS << Print<NodeId>(J->first, P.G) << PrintLaneMaskOpt(J->second); | 
|  | if (++J != E) | 
|  | OS << ','; | 
|  | } | 
|  | OS << '}'; | 
|  | } | 
|  | OS << " }"; | 
|  | return OS; | 
|  | } | 
|  | } // namespace rdf | 
|  | } // namespace llvm | 
|  |  | 
|  | // The order in the returned sequence is the order of reaching defs in the | 
|  | // upward traversal: the first def is the closest to the given reference RefA, | 
|  | // the next one is further up, and so on. | 
|  | // The list ends at a reaching phi def, or when the reference from RefA is | 
|  | // covered by the defs in the list (see FullChain). | 
|  | // This function provides two modes of operation: | 
|  | // (1) Returning the sequence of reaching defs for a particular reference | 
|  | // node. This sequence will terminate at the first phi node [1]. | 
|  | // (2) Returning a partial sequence of reaching defs, where the final goal | 
|  | // is to traverse past phi nodes to the actual defs arising from the code | 
|  | // itself. | 
|  | // In mode (2), the register reference for which the search was started | 
|  | // may be different from the reference node RefA, for which this call was | 
|  | // made, hence the argument RefRR, which holds the original register. | 
|  | // Also, some definitions may have already been encountered in a previous | 
|  | // call that will influence register covering. The register references | 
|  | // already defined are passed in through DefRRs. | 
|  | // In mode (1), the "continuation" considerations do not apply, and the | 
|  | // RefRR is the same as the register in RefA, and the set DefRRs is empty. | 
|  | // | 
|  | // [1] It is possible for multiple phi nodes to be included in the returned | 
|  | // sequence: | 
|  | //   SubA = phi ... | 
|  | //   SubB = phi ... | 
|  | //   ...  = SuperAB(rdef:SubA), SuperAB"(rdef:SubB) | 
|  | // However, these phi nodes are independent from one another in terms of | 
|  | // the data-flow. | 
|  |  | 
|  | NodeList Liveness::getAllReachingDefs(RegisterRef RefRR, | 
|  | NodeAddr<RefNode*> RefA, bool TopShadows, bool FullChain, | 
|  | const RegisterAggr &DefRRs) { | 
|  | NodeList RDefs; // Return value. | 
|  | SetVector<NodeId> DefQ; | 
|  | SetVector<NodeId> Owners; | 
|  |  | 
|  | // Dead defs will be treated as if they were live, since they are actually | 
|  | // on the data-flow path. They cannot be ignored because even though they | 
|  | // do not generate meaningful values, they still modify registers. | 
|  |  | 
|  | // If the reference is undefined, there is nothing to do. | 
|  | if (RefA.Addr->getFlags() & NodeAttrs::Undef) | 
|  | return RDefs; | 
|  |  | 
|  | // The initial queue should not have reaching defs for shadows. The | 
|  | // whole point of a shadow is that it will have a reaching def that | 
|  | // is not aliased to the reaching defs of the related shadows. | 
|  | NodeId Start = RefA.Id; | 
|  | auto SNA = DFG.addr<RefNode*>(Start); | 
|  | if (NodeId RD = SNA.Addr->getReachingDef()) | 
|  | DefQ.insert(RD); | 
|  | if (TopShadows) { | 
|  | for (auto S : DFG.getRelatedRefs(RefA.Addr->getOwner(DFG), RefA)) | 
|  | if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef()) | 
|  | DefQ.insert(RD); | 
|  | } | 
|  |  | 
|  | // Collect all the reaching defs, going up until a phi node is encountered, | 
|  | // or there are no more reaching defs. From this set, the actual set of | 
|  | // reaching defs will be selected. | 
|  | // The traversal upwards must go on until a covering def is encountered. | 
|  | // It is possible that a collection of non-covering (individually) defs | 
|  | // will be sufficient, but keep going until a covering one is found. | 
|  | for (unsigned i = 0; i < DefQ.size(); ++i) { | 
|  | auto TA = DFG.addr<DefNode*>(DefQ[i]); | 
|  | if (TA.Addr->getFlags() & NodeAttrs::PhiRef) | 
|  | continue; | 
|  | // Stop at the covering/overwriting def of the initial register reference. | 
|  | RegisterRef RR = TA.Addr->getRegRef(DFG); | 
|  | if (!DFG.IsPreservingDef(TA)) | 
|  | if (RegisterAggr::isCoverOf(RR, RefRR, PRI)) | 
|  | continue; | 
|  | // Get the next level of reaching defs. This will include multiple | 
|  | // reaching defs for shadows. | 
|  | for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA)) | 
|  | if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef()) | 
|  | DefQ.insert(RD); | 
|  | } | 
|  |  | 
|  | // Remove all non-phi defs that are not aliased to RefRR, and collect | 
|  | // the owners of the remaining defs. | 
|  | SetVector<NodeId> Defs; | 
|  | for (NodeId N : DefQ) { | 
|  | auto TA = DFG.addr<DefNode*>(N); | 
|  | bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef; | 
|  | if (!IsPhi && !PRI.alias(RefRR, TA.Addr->getRegRef(DFG))) | 
|  | continue; | 
|  | Defs.insert(TA.Id); | 
|  | Owners.insert(TA.Addr->getOwner(DFG).Id); | 
|  | } | 
|  |  | 
|  | // Return the MachineBasicBlock containing a given instruction. | 
|  | auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* { | 
|  | if (IA.Addr->getKind() == NodeAttrs::Stmt) | 
|  | return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent(); | 
|  | assert(IA.Addr->getKind() == NodeAttrs::Phi); | 
|  | NodeAddr<PhiNode*> PA = IA; | 
|  | NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG); | 
|  | return BA.Addr->getCode(); | 
|  | }; | 
|  | // Less(A,B) iff instruction A is further down in the dominator tree than B. | 
|  | auto Less = [&Block,this] (NodeId A, NodeId B) -> bool { | 
|  | if (A == B) | 
|  | return false; | 
|  | auto OA = DFG.addr<InstrNode*>(A), OB = DFG.addr<InstrNode*>(B); | 
|  | MachineBasicBlock *BA = Block(OA), *BB = Block(OB); | 
|  | if (BA != BB) | 
|  | return MDT.dominates(BB, BA); | 
|  | // They are in the same block. | 
|  | bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt; | 
|  | bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt; | 
|  | if (StmtA) { | 
|  | if (!StmtB)   // OB is a phi and phis dominate statements. | 
|  | return true; | 
|  | MachineInstr *CA = NodeAddr<StmtNode*>(OA).Addr->getCode(); | 
|  | MachineInstr *CB = NodeAddr<StmtNode*>(OB).Addr->getCode(); | 
|  | // The order must be linear, so tie-break such equalities. | 
|  | if (CA == CB) | 
|  | return A < B; | 
|  | return MDT.dominates(CB, CA); | 
|  | } else { | 
|  | // OA is a phi. | 
|  | if (StmtB) | 
|  | return false; | 
|  | // Both are phis. There is no ordering between phis (in terms of | 
|  | // the data-flow), so tie-break this via node id comparison. | 
|  | return A < B; | 
|  | } | 
|  | }; | 
|  |  | 
|  | std::vector<NodeId> Tmp(Owners.begin(), Owners.end()); | 
|  | std::sort(Tmp.begin(), Tmp.end(), Less); | 
|  |  | 
|  | // The vector is a list of instructions, so that defs coming from | 
|  | // the same instruction don't need to be artificially ordered. | 
|  | // Then, when computing the initial segment, and iterating over an | 
|  | // instruction, pick the defs that contribute to the covering (i.e. is | 
|  | // not covered by previously added defs). Check the defs individually, | 
|  | // i.e. first check each def if is covered or not (without adding them | 
|  | // to the tracking set), and then add all the selected ones. | 
|  |  | 
|  | // The reason for this is this example: | 
|  | // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes). | 
|  | // *d3<C>              If A \incl BuC, and B \incl AuC, then *d2 would be | 
|  | //                     covered if we added A first, and A would be covered | 
|  | //                     if we added B first. | 
|  |  | 
|  | RegisterAggr RRs(DefRRs); | 
|  |  | 
|  | auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool { | 
|  | return TA.Addr->getKind() == NodeAttrs::Def && | 
|  | Defs.count(TA.Id); | 
|  | }; | 
|  | for (NodeId T : Tmp) { | 
|  | if (!FullChain && RRs.hasCoverOf(RefRR)) | 
|  | break; | 
|  | auto TA = DFG.addr<InstrNode*>(T); | 
|  | bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA); | 
|  | NodeList Ds; | 
|  | for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) { | 
|  | RegisterRef QR = DA.Addr->getRegRef(DFG); | 
|  | // Add phi defs even if they are covered by subsequent defs. This is | 
|  | // for cases where the reached use is not covered by any of the defs | 
|  | // encountered so far: the phi def is needed to expose the liveness | 
|  | // of that use to the entry of the block. | 
|  | // Example: | 
|  | //   phi d1<R3>(,d2,), ...  Phi def d1 is covered by d2. | 
|  | //   d2<R3>(d1,,u3), ... | 
|  | //   ..., u3<D1>(d2)        This use needs to be live on entry. | 
|  | if (FullChain || IsPhi || !RRs.hasCoverOf(QR)) | 
|  | Ds.push_back(DA); | 
|  | } | 
|  | RDefs.insert(RDefs.end(), Ds.begin(), Ds.end()); | 
|  | for (NodeAddr<DefNode*> DA : Ds) { | 
|  | // When collecting a full chain of definitions, do not consider phi | 
|  | // defs to actually define a register. | 
|  | uint16_t Flags = DA.Addr->getFlags(); | 
|  | if (!FullChain || !(Flags & NodeAttrs::PhiRef)) | 
|  | if (!(Flags & NodeAttrs::Preserving)) // Don't care about Undef here. | 
|  | RRs.insert(DA.Addr->getRegRef(DFG)); | 
|  | } | 
|  | } | 
|  |  | 
|  | auto DeadP = [](const NodeAddr<DefNode*> DA) -> bool { | 
|  | return DA.Addr->getFlags() & NodeAttrs::Dead; | 
|  | }; | 
|  | RDefs.resize(std::distance(RDefs.begin(), remove_if(RDefs, DeadP))); | 
|  |  | 
|  | return RDefs; | 
|  | } | 
|  |  | 
|  |  | 
|  | std::pair<NodeSet,bool> | 
|  | Liveness::getAllReachingDefsRec(RegisterRef RefRR, NodeAddr<RefNode*> RefA, | 
|  | NodeSet &Visited, const NodeSet &Defs) { | 
|  | return getAllReachingDefsRecImpl(RefRR, RefA, Visited, Defs, 0, MaxRecNest); | 
|  | } | 
|  |  | 
|  |  | 
|  | std::pair<NodeSet,bool> | 
|  | Liveness::getAllReachingDefsRecImpl(RegisterRef RefRR, NodeAddr<RefNode*> RefA, | 
|  | NodeSet &Visited, const NodeSet &Defs, unsigned Nest, unsigned MaxNest) { | 
|  | if (Nest > MaxNest) | 
|  | return { NodeSet(), false }; | 
|  | // Collect all defined registers. Do not consider phis to be defining | 
|  | // anything, only collect "real" definitions. | 
|  | RegisterAggr DefRRs(PRI); | 
|  | for (NodeId D : Defs) { | 
|  | const auto DA = DFG.addr<const DefNode*>(D); | 
|  | if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef)) | 
|  | DefRRs.insert(DA.Addr->getRegRef(DFG)); | 
|  | } | 
|  |  | 
|  | NodeList RDs = getAllReachingDefs(RefRR, RefA, false, true, DefRRs); | 
|  | if (RDs.empty()) | 
|  | return { Defs, true }; | 
|  |  | 
|  | // Make a copy of the preexisting definitions and add the newly found ones. | 
|  | NodeSet TmpDefs = Defs; | 
|  | for (NodeAddr<NodeBase*> R : RDs) | 
|  | TmpDefs.insert(R.Id); | 
|  |  | 
|  | NodeSet Result = Defs; | 
|  |  | 
|  | for (NodeAddr<DefNode*> DA : RDs) { | 
|  | Result.insert(DA.Id); | 
|  | if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef)) | 
|  | continue; | 
|  | NodeAddr<PhiNode*> PA = DA.Addr->getOwner(DFG); | 
|  | if (Visited.count(PA.Id)) | 
|  | continue; | 
|  | Visited.insert(PA.Id); | 
|  | // Go over all phi uses and get the reaching defs for each use. | 
|  | for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) { | 
|  | const auto &T = getAllReachingDefsRecImpl(RefRR, U, Visited, TmpDefs, | 
|  | Nest+1, MaxNest); | 
|  | if (!T.second) | 
|  | return { T.first, false }; | 
|  | Result.insert(T.first.begin(), T.first.end()); | 
|  | } | 
|  | } | 
|  |  | 
|  | return { Result, true }; | 
|  | } | 
|  |  | 
|  | /// Find the nearest ref node aliased to RefRR, going upwards in the data | 
|  | /// flow, starting from the instruction immediately preceding Inst. | 
|  | NodeAddr<RefNode*> Liveness::getNearestAliasedRef(RegisterRef RefRR, | 
|  | NodeAddr<InstrNode*> IA) { | 
|  | NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG); | 
|  | NodeList Ins = BA.Addr->members(DFG); | 
|  | NodeId FindId = IA.Id; | 
|  | auto E = Ins.rend(); | 
|  | auto B = std::find_if(Ins.rbegin(), E, | 
|  | [FindId] (const NodeAddr<InstrNode*> T) { | 
|  | return T.Id == FindId; | 
|  | }); | 
|  | // Do not scan IA (which is what B would point to). | 
|  | if (B != E) | 
|  | ++B; | 
|  |  | 
|  | do { | 
|  | // Process the range of instructions from B to E. | 
|  | for (NodeAddr<InstrNode*> I : make_range(B, E)) { | 
|  | NodeList Refs = I.Addr->members(DFG); | 
|  | NodeAddr<RefNode*> Clob, Use; | 
|  | // Scan all the refs in I aliased to RefRR, and return the one that | 
|  | // is the closest to the output of I, i.e. def > clobber > use. | 
|  | for (NodeAddr<RefNode*> R : Refs) { | 
|  | if (!PRI.alias(R.Addr->getRegRef(DFG), RefRR)) | 
|  | continue; | 
|  | if (DFG.IsDef(R)) { | 
|  | // If it's a non-clobbering def, just return it. | 
|  | if (!(R.Addr->getFlags() & NodeAttrs::Clobbering)) | 
|  | return R; | 
|  | Clob = R; | 
|  | } else { | 
|  | Use = R; | 
|  | } | 
|  | } | 
|  | if (Clob.Id != 0) | 
|  | return Clob; | 
|  | if (Use.Id != 0) | 
|  | return Use; | 
|  | } | 
|  |  | 
|  | // Go up to the immediate dominator, if any. | 
|  | MachineBasicBlock *BB = BA.Addr->getCode(); | 
|  | BA = NodeAddr<BlockNode*>(); | 
|  | if (MachineDomTreeNode *N = MDT.getNode(BB)) { | 
|  | if ((N = N->getIDom())) | 
|  | BA = DFG.findBlock(N->getBlock()); | 
|  | } | 
|  | if (!BA.Id) | 
|  | break; | 
|  |  | 
|  | Ins = BA.Addr->members(DFG); | 
|  | B = Ins.rbegin(); | 
|  | E = Ins.rend(); | 
|  | } while (true); | 
|  |  | 
|  | return NodeAddr<RefNode*>(); | 
|  | } | 
|  |  | 
|  |  | 
|  | NodeSet Liveness::getAllReachedUses(RegisterRef RefRR, | 
|  | NodeAddr<DefNode*> DefA, const RegisterAggr &DefRRs) { | 
|  | NodeSet Uses; | 
|  |  | 
|  | // If the original register is already covered by all the intervening | 
|  | // defs, no more uses can be reached. | 
|  | if (DefRRs.hasCoverOf(RefRR)) | 
|  | return Uses; | 
|  |  | 
|  | // Add all directly reached uses. | 
|  | // If the def is dead, it does not provide a value for any use. | 
|  | bool IsDead = DefA.Addr->getFlags() & NodeAttrs::Dead; | 
|  | NodeId U = !IsDead ? DefA.Addr->getReachedUse() : 0; | 
|  | while (U != 0) { | 
|  | auto UA = DFG.addr<UseNode*>(U); | 
|  | if (!(UA.Addr->getFlags() & NodeAttrs::Undef)) { | 
|  | RegisterRef UR = UA.Addr->getRegRef(DFG); | 
|  | if (PRI.alias(RefRR, UR) && !DefRRs.hasCoverOf(UR)) | 
|  | Uses.insert(U); | 
|  | } | 
|  | U = UA.Addr->getSibling(); | 
|  | } | 
|  |  | 
|  | // Traverse all reached defs. This time dead defs cannot be ignored. | 
|  | for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) { | 
|  | auto DA = DFG.addr<DefNode*>(D); | 
|  | NextD = DA.Addr->getSibling(); | 
|  | RegisterRef DR = DA.Addr->getRegRef(DFG); | 
|  | // If this def is already covered, it cannot reach anything new. | 
|  | // Similarly, skip it if it is not aliased to the interesting register. | 
|  | if (DefRRs.hasCoverOf(DR) || !PRI.alias(RefRR, DR)) | 
|  | continue; | 
|  | NodeSet T; | 
|  | if (DFG.IsPreservingDef(DA)) { | 
|  | // If it is a preserving def, do not update the set of intervening defs. | 
|  | T = getAllReachedUses(RefRR, DA, DefRRs); | 
|  | } else { | 
|  | RegisterAggr NewDefRRs = DefRRs; | 
|  | NewDefRRs.insert(DR); | 
|  | T = getAllReachedUses(RefRR, DA, NewDefRRs); | 
|  | } | 
|  | Uses.insert(T.begin(), T.end()); | 
|  | } | 
|  | return Uses; | 
|  | } | 
|  |  | 
|  |  | 
|  | void Liveness::computePhiInfo() { | 
|  | RealUseMap.clear(); | 
|  |  | 
|  | NodeList Phis; | 
|  | NodeAddr<FuncNode*> FA = DFG.getFunc(); | 
|  | NodeList Blocks = FA.Addr->members(DFG); | 
|  | for (NodeAddr<BlockNode*> BA : Blocks) { | 
|  | auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG); | 
|  | Phis.insert(Phis.end(), Ps.begin(), Ps.end()); | 
|  | } | 
|  |  | 
|  | // phi use -> (map: reaching phi -> set of registers defined in between) | 
|  | std::map<NodeId,std::map<NodeId,RegisterAggr>> PhiUp; | 
|  | std::vector<NodeId> PhiUQ;  // Work list of phis for upward propagation. | 
|  |  | 
|  | // Go over all phis. | 
|  | for (NodeAddr<PhiNode*> PhiA : Phis) { | 
|  | // Go over all defs and collect the reached uses that are non-phi uses | 
|  | // (i.e. the "real uses"). | 
|  | RefMap &RealUses = RealUseMap[PhiA.Id]; | 
|  | NodeList PhiRefs = PhiA.Addr->members(DFG); | 
|  |  | 
|  | // Have a work queue of defs whose reached uses need to be found. | 
|  | // For each def, add to the queue all reached (non-phi) defs. | 
|  | SetVector<NodeId> DefQ; | 
|  | NodeSet PhiDefs; | 
|  | for (NodeAddr<RefNode*> R : PhiRefs) { | 
|  | if (!DFG.IsRef<NodeAttrs::Def>(R)) | 
|  | continue; | 
|  | DefQ.insert(R.Id); | 
|  | PhiDefs.insert(R.Id); | 
|  | } | 
|  |  | 
|  | // Collect the super-set of all possible reached uses. This set will | 
|  | // contain all uses reached from this phi, either directly from the | 
|  | // phi defs, or (recursively) via non-phi defs reached by the phi defs. | 
|  | // This set of uses will later be trimmed to only contain these uses that | 
|  | // are actually reached by the phi defs. | 
|  | for (unsigned i = 0; i < DefQ.size(); ++i) { | 
|  | NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]); | 
|  | // Visit all reached uses. Phi defs should not really have the "dead" | 
|  | // flag set, but check it anyway for consistency. | 
|  | bool IsDead = DA.Addr->getFlags() & NodeAttrs::Dead; | 
|  | NodeId UN = !IsDead ? DA.Addr->getReachedUse() : 0; | 
|  | while (UN != 0) { | 
|  | NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN); | 
|  | uint16_t F = A.Addr->getFlags(); | 
|  | if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) { | 
|  | RegisterRef R = PRI.normalize(A.Addr->getRegRef(DFG)); | 
|  | RealUses[R.Reg].insert({A.Id,R.Mask}); | 
|  | } | 
|  | UN = A.Addr->getSibling(); | 
|  | } | 
|  | // Visit all reached defs, and add them to the queue. These defs may | 
|  | // override some of the uses collected here, but that will be handled | 
|  | // later. | 
|  | NodeId DN = DA.Addr->getReachedDef(); | 
|  | while (DN != 0) { | 
|  | NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN); | 
|  | for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) { | 
|  | uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags(); | 
|  | // Must traverse the reached-def chain. Consider: | 
|  | //   def(D0) -> def(R0) -> def(R0) -> use(D0) | 
|  | // The reachable use of D0 passes through a def of R0. | 
|  | if (!(Flags & NodeAttrs::PhiRef)) | 
|  | DefQ.insert(T.Id); | 
|  | } | 
|  | DN = A.Addr->getSibling(); | 
|  | } | 
|  | } | 
|  | // Filter out these uses that appear to be reachable, but really | 
|  | // are not. For example: | 
|  | // | 
|  | // R1:0 =          d1 | 
|  | //      = R1:0     u2     Reached by d1. | 
|  | //   R0 =          d3 | 
|  | //      = R1:0     u4     Still reached by d1: indirectly through | 
|  | //                        the def d3. | 
|  | //   R1 =          d5 | 
|  | //      = R1:0     u6     Not reached by d1 (covered collectively | 
|  | //                        by d3 and d5), but following reached | 
|  | //                        defs and uses from d1 will lead here. | 
|  | auto InPhiDefs = [&PhiDefs] (NodeAddr<DefNode*> DA) -> bool { | 
|  | return PhiDefs.count(DA.Id); | 
|  | }; | 
|  | for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) { | 
|  | // For each reached register UI->first, there is a set UI->second, of | 
|  | // uses of it. For each such use, check if it is reached by this phi, | 
|  | // i.e. check if the set of its reaching uses intersects the set of | 
|  | // this phi's defs. | 
|  | NodeRefSet &Uses = UI->second; | 
|  | for (auto I = Uses.begin(), E = Uses.end(); I != E; ) { | 
|  | auto UA = DFG.addr<UseNode*>(I->first); | 
|  | // Undef flag is checked above. | 
|  | assert((UA.Addr->getFlags() & NodeAttrs::Undef) == 0); | 
|  | RegisterRef R(UI->first, I->second); | 
|  | NodeList RDs = getAllReachingDefs(R, UA); | 
|  | // If none of the reaching defs of R are from this phi, remove this | 
|  | // use of R. | 
|  | I = any_of(RDs, InPhiDefs) ? std::next(I) : Uses.erase(I); | 
|  | } | 
|  | UI = Uses.empty() ? RealUses.erase(UI) : std::next(UI); | 
|  | } | 
|  |  | 
|  | // If this phi reaches some "real" uses, add it to the queue for upward | 
|  | // propagation. | 
|  | if (!RealUses.empty()) | 
|  | PhiUQ.push_back(PhiA.Id); | 
|  |  | 
|  | // Go over all phi uses and check if the reaching def is another phi. | 
|  | // Collect the phis that are among the reaching defs of these uses. | 
|  | // While traversing the list of reaching defs for each phi use, accumulate | 
|  | // the set of registers defined between this phi (PhiA) and the owner phi | 
|  | // of the reaching def. | 
|  | NodeSet SeenUses; | 
|  |  | 
|  | for (auto I : PhiRefs) { | 
|  | if (!DFG.IsRef<NodeAttrs::Use>(I) || SeenUses.count(I.Id)) | 
|  | continue; | 
|  | NodeAddr<PhiUseNode*> PUA = I; | 
|  | if (PUA.Addr->getReachingDef() == 0) | 
|  | continue; | 
|  |  | 
|  | RegisterRef UR = PUA.Addr->getRegRef(DFG); | 
|  | NodeList Ds = getAllReachingDefs(UR, PUA, true, false, NoRegs); | 
|  | RegisterAggr DefRRs(PRI); | 
|  |  | 
|  | for (NodeAddr<DefNode*> D : Ds) { | 
|  | if (D.Addr->getFlags() & NodeAttrs::PhiRef) { | 
|  | NodeId RP = D.Addr->getOwner(DFG).Id; | 
|  | std::map<NodeId,RegisterAggr> &M = PhiUp[PUA.Id]; | 
|  | auto F = M.find(RP); | 
|  | if (F == M.end()) | 
|  | M.insert(std::make_pair(RP, DefRRs)); | 
|  | else | 
|  | F->second.insert(DefRRs); | 
|  | } | 
|  | DefRRs.insert(D.Addr->getRegRef(DFG)); | 
|  | } | 
|  |  | 
|  | for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PhiA, PUA)) | 
|  | SeenUses.insert(T.Id); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Trace) { | 
|  | dbgs() << "Phi-up-to-phi map with intervening defs:\n"; | 
|  | for (auto I : PhiUp) { | 
|  | dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {"; | 
|  | for (auto R : I.second) | 
|  | dbgs() << ' ' << Print<NodeId>(R.first, DFG) | 
|  | << Print<RegisterAggr>(R.second, DFG); | 
|  | dbgs() << " }\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Propagate the reached registers up in the phi chain. | 
|  | // | 
|  | // The following type of situation needs careful handling: | 
|  | // | 
|  | //   phi d1<R1:0>  (1) | 
|  | //        | | 
|  | //   ... d2<R1> | 
|  | //        | | 
|  | //   phi u3<R1:0>  (2) | 
|  | //        | | 
|  | //   ... u4<R1> | 
|  | // | 
|  | // The phi node (2) defines a register pair R1:0, and reaches a "real" | 
|  | // use u4 of just R1. The same phi node is also known to reach (upwards) | 
|  | // the phi node (1). However, the use u4 is not reached by phi (1), | 
|  | // because of the intervening definition d2 of R1. The data flow between | 
|  | // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0. | 
|  | // | 
|  | // When propagating uses up the phi chains, get the all reaching defs | 
|  | // for a given phi use, and traverse the list until the propagated ref | 
|  | // is covered, or until reaching the final phi. Only assume that the | 
|  | // reference reaches the phi in the latter case. | 
|  |  | 
|  | for (unsigned i = 0; i < PhiUQ.size(); ++i) { | 
|  | auto PA = DFG.addr<PhiNode*>(PhiUQ[i]); | 
|  | NodeList PUs = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG); | 
|  | RefMap &RUM = RealUseMap[PA.Id]; | 
|  |  | 
|  | for (NodeAddr<UseNode*> UA : PUs) { | 
|  | std::map<NodeId,RegisterAggr> &PUM = PhiUp[UA.Id]; | 
|  | RegisterRef UR = PRI.normalize(UA.Addr->getRegRef(DFG)); | 
|  | for (const std::pair<NodeId,RegisterAggr> &P : PUM) { | 
|  | bool Changed = false; | 
|  | const RegisterAggr &MidDefs = P.second; | 
|  |  | 
|  | // Collect the set PropUp of uses that are reached by the current | 
|  | // phi PA, and are not covered by any intervening def between the | 
|  | // currently visited use UA and the the upward phi P. | 
|  |  | 
|  | if (MidDefs.hasCoverOf(UR)) | 
|  | continue; | 
|  |  | 
|  | // General algorithm: | 
|  | //   for each (R,U) : U is use node of R, U is reached by PA | 
|  | //     if MidDefs does not cover (R,U) | 
|  | //       then add (R-MidDefs,U) to RealUseMap[P] | 
|  | // | 
|  | for (const std::pair<RegisterId,NodeRefSet> &T : RUM) { | 
|  | RegisterRef R = DFG.restrictRef(RegisterRef(T.first), UR); | 
|  | if (!R) | 
|  | continue; | 
|  | for (std::pair<NodeId,LaneBitmask> V : T.second) { | 
|  | RegisterRef S = DFG.restrictRef(RegisterRef(R.Reg, V.second), R); | 
|  | if (!S) | 
|  | continue; | 
|  | if (RegisterRef SS = MidDefs.clearIn(S)) { | 
|  | NodeRefSet &RS = RealUseMap[P.first][SS.Reg]; | 
|  | Changed |= RS.insert({V.first,SS.Mask}).second; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Changed) | 
|  | PhiUQ.push_back(P.first); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Trace) { | 
|  | dbgs() << "Real use map:\n"; | 
|  | for (auto I : RealUseMap) { | 
|  | dbgs() << "phi " << Print<NodeId>(I.first, DFG); | 
|  | NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first); | 
|  | NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG); | 
|  | if (!Ds.empty()) { | 
|  | RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef(DFG); | 
|  | dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>'; | 
|  | } else { | 
|  | dbgs() << "<noreg>"; | 
|  | } | 
|  | dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n'; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void Liveness::computeLiveIns() { | 
|  | // Populate the node-to-block map. This speeds up the calculations | 
|  | // significantly. | 
|  | NBMap.clear(); | 
|  | for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) { | 
|  | MachineBasicBlock *BB = BA.Addr->getCode(); | 
|  | for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) { | 
|  | for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG)) | 
|  | NBMap.insert(std::make_pair(RA.Id, BB)); | 
|  | NBMap.insert(std::make_pair(IA.Id, BB)); | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineFunction &MF = DFG.getMF(); | 
|  |  | 
|  | // Compute IDF first, then the inverse. | 
|  | decltype(IIDF) IDF; | 
|  | for (MachineBasicBlock &B : MF) { | 
|  | auto F1 = MDF.find(&B); | 
|  | if (F1 == MDF.end()) | 
|  | continue; | 
|  | SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end()); | 
|  | for (unsigned i = 0; i < IDFB.size(); ++i) { | 
|  | auto F2 = MDF.find(IDFB[i]); | 
|  | if (F2 != MDF.end()) | 
|  | IDFB.insert(F2->second.begin(), F2->second.end()); | 
|  | } | 
|  | // Add B to the IDF(B). This will put B in the IIDF(B). | 
|  | IDFB.insert(&B); | 
|  | IDF[&B].insert(IDFB.begin(), IDFB.end()); | 
|  | } | 
|  |  | 
|  | for (auto I : IDF) | 
|  | for (auto S : I.second) | 
|  | IIDF[S].insert(I.first); | 
|  |  | 
|  | computePhiInfo(); | 
|  |  | 
|  | NodeAddr<FuncNode*> FA = DFG.getFunc(); | 
|  | NodeList Blocks = FA.Addr->members(DFG); | 
|  |  | 
|  | // Build the phi live-on-entry map. | 
|  | for (NodeAddr<BlockNode*> BA : Blocks) { | 
|  | MachineBasicBlock *MB = BA.Addr->getCode(); | 
|  | RefMap &LON = PhiLON[MB]; | 
|  | for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG)) | 
|  | for (const RefMap::value_type &S : RealUseMap[P.Id]) | 
|  | LON[S.first].insert(S.second.begin(), S.second.end()); | 
|  | } | 
|  |  | 
|  | if (Trace) { | 
|  | dbgs() << "Phi live-on-entry map:\n"; | 
|  | for (auto &I : PhiLON) | 
|  | dbgs() << "block #" << I.first->getNumber() << " -> " | 
|  | << Print<RefMap>(I.second, DFG) << '\n'; | 
|  | } | 
|  |  | 
|  | // Build the phi live-on-exit map. Each phi node has some set of reached | 
|  | // "real" uses. Propagate this set backwards into the block predecessors | 
|  | // through the reaching defs of the corresponding phi uses. | 
|  | for (NodeAddr<BlockNode*> BA : Blocks) { | 
|  | NodeList Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG); | 
|  | for (NodeAddr<PhiNode*> PA : Phis) { | 
|  | RefMap &RUs = RealUseMap[PA.Id]; | 
|  | if (RUs.empty()) | 
|  | continue; | 
|  |  | 
|  | NodeSet SeenUses; | 
|  | for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) { | 
|  | if (!SeenUses.insert(U.Id).second) | 
|  | continue; | 
|  | NodeAddr<PhiUseNode*> PUA = U; | 
|  | if (PUA.Addr->getReachingDef() == 0) | 
|  | continue; | 
|  |  | 
|  | // Each phi has some set (possibly empty) of reached "real" uses, | 
|  | // that is, uses that are part of the compiled program. Such a use | 
|  | // may be located in some farther block, but following a chain of | 
|  | // reaching defs will eventually lead to this phi. | 
|  | // Any chain of reaching defs may fork at a phi node, but there | 
|  | // will be a path upwards that will lead to this phi. Now, this | 
|  | // chain will need to fork at this phi, since some of the reached | 
|  | // uses may have definitions joining in from multiple predecessors. | 
|  | // For each reached "real" use, identify the set of reaching defs | 
|  | // coming from each predecessor P, and add them to PhiLOX[P]. | 
|  | // | 
|  | auto PrA = DFG.addr<BlockNode*>(PUA.Addr->getPredecessor()); | 
|  | RefMap &LOX = PhiLOX[PrA.Addr->getCode()]; | 
|  |  | 
|  | for (const std::pair<RegisterId,NodeRefSet> &RS : RUs) { | 
|  | // We need to visit each individual use. | 
|  | for (std::pair<NodeId,LaneBitmask> P : RS.second) { | 
|  | // Create a register ref corresponding to the use, and find | 
|  | // all reaching defs starting from the phi use, and treating | 
|  | // all related shadows as a single use cluster. | 
|  | RegisterRef S(RS.first, P.second); | 
|  | NodeList Ds = getAllReachingDefs(S, PUA, true, false, NoRegs); | 
|  | for (NodeAddr<DefNode*> D : Ds) | 
|  | LOX[S.Reg].insert({D.Id, S.Mask}); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PA, PUA)) | 
|  | SeenUses.insert(T.Id); | 
|  | }  // for U : phi uses | 
|  | }  // for P : Phis | 
|  | }  // for B : Blocks | 
|  |  | 
|  | if (Trace) { | 
|  | dbgs() << "Phi live-on-exit map:\n"; | 
|  | for (auto &I : PhiLOX) | 
|  | dbgs() << "block #" << I.first->getNumber() << " -> " | 
|  | << Print<RefMap>(I.second, DFG) << '\n'; | 
|  | } | 
|  |  | 
|  | RefMap LiveIn; | 
|  | traverse(&MF.front(), LiveIn); | 
|  |  | 
|  | // Add function live-ins to the live-in set of the function entry block. | 
|  | LiveMap[&MF.front()].insert(DFG.getLiveIns()); | 
|  |  | 
|  | if (Trace) { | 
|  | // Dump the liveness map | 
|  | for (MachineBasicBlock &B : MF) { | 
|  | std::vector<RegisterRef> LV; | 
|  | for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I) | 
|  | LV.push_back(RegisterRef(I->PhysReg, I->LaneMask)); | 
|  | std::sort(LV.begin(), LV.end()); | 
|  | dbgs() << "BB#" << B.getNumber() << "\t rec = {"; | 
|  | for (auto I : LV) | 
|  | dbgs() << ' ' << Print<RegisterRef>(I, DFG); | 
|  | dbgs() << " }\n"; | 
|  | //dbgs() << "\tcomp = " << Print<RegisterAggr>(LiveMap[&B], DFG) << '\n'; | 
|  |  | 
|  | LV.clear(); | 
|  | for (std::pair<RegisterId,LaneBitmask> P : LiveMap[&B]) { | 
|  | MCSubRegIndexIterator S(P.first, &TRI); | 
|  | if (!S.isValid()) { | 
|  | LV.push_back(RegisterRef(P.first)); | 
|  | continue; | 
|  | } | 
|  | do { | 
|  | LaneBitmask M = TRI.getSubRegIndexLaneMask(S.getSubRegIndex()); | 
|  | if ((M & P.second).any()) | 
|  | LV.push_back(RegisterRef(S.getSubReg())); | 
|  | ++S; | 
|  | } while (S.isValid()); | 
|  | } | 
|  | std::sort(LV.begin(), LV.end()); | 
|  | dbgs() << "\tcomp = {"; | 
|  | for (auto I : LV) | 
|  | dbgs() << ' ' << Print<RegisterRef>(I, DFG); | 
|  | dbgs() << " }\n"; | 
|  |  | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void Liveness::resetLiveIns() { | 
|  | for (auto &B : DFG.getMF()) { | 
|  | // Remove all live-ins. | 
|  | std::vector<unsigned> T; | 
|  | for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I) | 
|  | T.push_back(I->PhysReg); | 
|  | for (auto I : T) | 
|  | B.removeLiveIn(I); | 
|  | // Add the newly computed live-ins. | 
|  | auto &LiveIns = LiveMap[&B]; | 
|  | for (auto I : LiveIns) { | 
|  | B.addLiveIn({MCPhysReg(I.first), I.second}); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void Liveness::resetKills() { | 
|  | for (auto &B : DFG.getMF()) | 
|  | resetKills(&B); | 
|  | } | 
|  |  | 
|  |  | 
|  | void Liveness::resetKills(MachineBasicBlock *B) { | 
|  | auto CopyLiveIns = [this] (MachineBasicBlock *B, BitVector &LV) -> void { | 
|  | for (auto I : B->liveins()) { | 
|  | MCSubRegIndexIterator S(I.PhysReg, &TRI); | 
|  | if (!S.isValid()) { | 
|  | LV.set(I.PhysReg); | 
|  | continue; | 
|  | } | 
|  | do { | 
|  | LaneBitmask M = TRI.getSubRegIndexLaneMask(S.getSubRegIndex()); | 
|  | if ((M & I.LaneMask).any()) | 
|  | LV.set(S.getSubReg()); | 
|  | ++S; | 
|  | } while (S.isValid()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs()); | 
|  | CopyLiveIns(B, LiveIn); | 
|  | for (auto SI : B->successors()) | 
|  | CopyLiveIns(SI, Live); | 
|  |  | 
|  | for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) { | 
|  | MachineInstr *MI = &*I; | 
|  | if (MI->isDebugValue()) | 
|  | continue; | 
|  |  | 
|  | MI->clearKillInfo(); | 
|  | for (auto &Op : MI->operands()) { | 
|  | // An implicit def of a super-register may not necessarily start a | 
|  | // live range of it, since an implicit use could be used to keep parts | 
|  | // of it live. Instead of analyzing the implicit operands, ignore | 
|  | // implicit defs. | 
|  | if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) | 
|  | continue; | 
|  | unsigned R = Op.getReg(); | 
|  | if (!TargetRegisterInfo::isPhysicalRegister(R)) | 
|  | continue; | 
|  | for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) | 
|  | Live.reset(*SR); | 
|  | } | 
|  | for (auto &Op : MI->operands()) { | 
|  | if (!Op.isReg() || !Op.isUse() || Op.isUndef()) | 
|  | continue; | 
|  | unsigned R = Op.getReg(); | 
|  | if (!TargetRegisterInfo::isPhysicalRegister(R)) | 
|  | continue; | 
|  | bool IsLive = false; | 
|  | for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) { | 
|  | if (!Live[*AR]) | 
|  | continue; | 
|  | IsLive = true; | 
|  | break; | 
|  | } | 
|  | if (!IsLive) | 
|  | Op.setIsKill(true); | 
|  | for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) | 
|  | Live.set(*SR); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Helper function to obtain the basic block containing the reaching def | 
|  | // of the given use. | 
|  | MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const { | 
|  | auto F = NBMap.find(RN); | 
|  | if (F != NBMap.end()) | 
|  | return F->second; | 
|  | llvm_unreachable("Node id not in map"); | 
|  | } | 
|  |  | 
|  |  | 
|  | void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) { | 
|  | // The LiveIn map, for each (physical) register, contains the set of live | 
|  | // reaching defs of that register that are live on entry to the associated | 
|  | // block. | 
|  |  | 
|  | // The summary of the traversal algorithm: | 
|  | // | 
|  | // R is live-in in B, if there exists a U(R), such that rdef(R) dom B | 
|  | // and (U \in IDF(B) or B dom U). | 
|  | // | 
|  | // for (C : children) { | 
|  | //   LU = {} | 
|  | //   traverse(C, LU) | 
|  | //   LiveUses += LU | 
|  | // } | 
|  | // | 
|  | // LiveUses -= Defs(B); | 
|  | // LiveUses += UpwardExposedUses(B); | 
|  | // for (C : IIDF[B]) | 
|  | //   for (U : LiveUses) | 
|  | //     if (Rdef(U) dom C) | 
|  | //       C.addLiveIn(U) | 
|  | // | 
|  |  | 
|  | // Go up the dominator tree (depth-first). | 
|  | MachineDomTreeNode *N = MDT.getNode(B); | 
|  | for (auto I : *N) { | 
|  | RefMap L; | 
|  | MachineBasicBlock *SB = I->getBlock(); | 
|  | traverse(SB, L); | 
|  |  | 
|  | for (auto S : L) | 
|  | LiveIn[S.first].insert(S.second.begin(), S.second.end()); | 
|  | } | 
|  |  | 
|  | if (Trace) { | 
|  | dbgs() << "\n-- BB#" << B->getNumber() << ": " << __func__ | 
|  | << " after recursion into: {"; | 
|  | for (auto I : *N) | 
|  | dbgs() << ' ' << I->getBlock()->getNumber(); | 
|  | dbgs() << " }\n"; | 
|  | dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; | 
|  | dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n'; | 
|  | } | 
|  |  | 
|  | // Add reaching defs of phi uses that are live on exit from this block. | 
|  | RefMap &PUs = PhiLOX[B]; | 
|  | for (auto &S : PUs) | 
|  | LiveIn[S.first].insert(S.second.begin(), S.second.end()); | 
|  |  | 
|  | if (Trace) { | 
|  | dbgs() << "after LOX\n"; | 
|  | dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; | 
|  | dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n'; | 
|  | } | 
|  |  | 
|  | // The LiveIn map at this point has all defs that are live-on-exit from B, | 
|  | // as if they were live-on-entry to B. First, we need to filter out all | 
|  | // defs that are present in this block. Then we will add reaching defs of | 
|  | // all upward-exposed uses. | 
|  |  | 
|  | // To filter out the defs, first make a copy of LiveIn, and then re-populate | 
|  | // LiveIn with the defs that should remain. | 
|  | RefMap LiveInCopy = LiveIn; | 
|  | LiveIn.clear(); | 
|  |  | 
|  | for (const std::pair<RegisterId,NodeRefSet> &LE : LiveInCopy) { | 
|  | RegisterRef LRef(LE.first); | 
|  | NodeRefSet &NewDefs = LiveIn[LRef.Reg]; // To be filled. | 
|  | const NodeRefSet &OldDefs = LE.second; | 
|  | for (NodeRef OR : OldDefs) { | 
|  | // R is a def node that was live-on-exit | 
|  | auto DA = DFG.addr<DefNode*>(OR.first); | 
|  | NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG); | 
|  | NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG); | 
|  | if (B != BA.Addr->getCode()) { | 
|  | // Defs from a different block need to be preserved. Defs from this | 
|  | // block will need to be processed further, except for phi defs, the | 
|  | // liveness of which is handled through the PhiLON/PhiLOX maps. | 
|  | NewDefs.insert(OR); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Defs from this block need to stop the liveness from being | 
|  | // propagated upwards. This only applies to non-preserving defs, | 
|  | // and to the parts of the register actually covered by those defs. | 
|  | // (Note that phi defs should always be preserving.) | 
|  | RegisterAggr RRs(PRI); | 
|  | LRef.Mask = OR.second; | 
|  |  | 
|  | if (!DFG.IsPreservingDef(DA)) { | 
|  | assert(!(IA.Addr->getFlags() & NodeAttrs::Phi)); | 
|  | // DA is a non-phi def that is live-on-exit from this block, and | 
|  | // that is also located in this block. LRef is a register ref | 
|  | // whose use this def reaches. If DA covers LRef, then no part | 
|  | // of LRef is exposed upwards.A | 
|  | if (RRs.insert(DA.Addr->getRegRef(DFG)).hasCoverOf(LRef)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // DA itself was not sufficient to cover LRef. In general, it is | 
|  | // the last in a chain of aliased defs before the exit from this block. | 
|  | // There could be other defs in this block that are a part of that | 
|  | // chain. Check that now: accumulate the registers from these defs, | 
|  | // and if they all together cover LRef, it is not live-on-entry. | 
|  | for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) { | 
|  | // DefNode -> InstrNode -> BlockNode. | 
|  | NodeAddr<InstrNode*> ITA = TA.Addr->getOwner(DFG); | 
|  | NodeAddr<BlockNode*> BTA = ITA.Addr->getOwner(DFG); | 
|  | // Reaching defs are ordered in the upward direction. | 
|  | if (BTA.Addr->getCode() != B) { | 
|  | // We have reached past the beginning of B, and the accumulated | 
|  | // registers are not covering LRef. The first def from the | 
|  | // upward chain will be live. | 
|  | // Subtract all accumulated defs (RRs) from LRef. | 
|  | RegisterAggr L(PRI); | 
|  | L.insert(LRef).clear(RRs); | 
|  | assert(!L.empty()); | 
|  | NewDefs.insert({TA.Id,L.begin()->second}); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // TA is in B. Only add this def to the accumulated cover if it is | 
|  | // not preserving. | 
|  | if (!(TA.Addr->getFlags() & NodeAttrs::Preserving)) | 
|  | RRs.insert(TA.Addr->getRegRef(DFG)); | 
|  | // If this is enough to cover LRef, then stop. | 
|  | if (RRs.hasCoverOf(LRef)) | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | emptify(LiveIn); | 
|  |  | 
|  | if (Trace) { | 
|  | dbgs() << "after defs in block\n"; | 
|  | dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; | 
|  | dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n'; | 
|  | } | 
|  |  | 
|  | // Scan the block for upward-exposed uses and add them to the tracking set. | 
|  | for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) { | 
|  | NodeAddr<InstrNode*> IA = I; | 
|  | if (IA.Addr->getKind() != NodeAttrs::Stmt) | 
|  | continue; | 
|  | for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) { | 
|  | if (UA.Addr->getFlags() & NodeAttrs::Undef) | 
|  | continue; | 
|  | RegisterRef RR = PRI.normalize(UA.Addr->getRegRef(DFG)); | 
|  | for (NodeAddr<DefNode*> D : getAllReachingDefs(UA)) | 
|  | if (getBlockWithRef(D.Id) != B) | 
|  | LiveIn[RR.Reg].insert({D.Id,RR.Mask}); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Trace) { | 
|  | dbgs() << "after uses in block\n"; | 
|  | dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; | 
|  | dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n'; | 
|  | } | 
|  |  | 
|  | // Phi uses should not be propagated up the dominator tree, since they | 
|  | // are not dominated by their corresponding reaching defs. | 
|  | RegisterAggr &Local = LiveMap[B]; | 
|  | RefMap &LON = PhiLON[B]; | 
|  | for (auto &R : LON) { | 
|  | LaneBitmask M; | 
|  | for (auto P : R.second) | 
|  | M |= P.second; | 
|  | Local.insert(RegisterRef(R.first,M)); | 
|  | } | 
|  |  | 
|  | if (Trace) { | 
|  | dbgs() << "after phi uses in block\n"; | 
|  | dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; | 
|  | dbgs() << "  Local:  " << Print<RegisterAggr>(Local, DFG) << '\n'; | 
|  | } | 
|  |  | 
|  | for (auto C : IIDF[B]) { | 
|  | RegisterAggr &LiveC = LiveMap[C]; | 
|  | for (const std::pair<RegisterId,NodeRefSet> &S : LiveIn) | 
|  | for (auto R : S.second) | 
|  | if (MDT.properlyDominates(getBlockWithRef(R.first), C)) | 
|  | LiveC.insert(RegisterRef(S.first, R.second)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void Liveness::emptify(RefMap &M) { | 
|  | for (auto I = M.begin(), E = M.end(); I != E; ) | 
|  | I = I->second.empty() ? M.erase(I) : std::next(I); | 
|  | } | 
|  |  |