| //===--------------- LLVMContextImpl.cpp - Implementation ------*- C++ -*--===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements LLVMContextImpl, the opaque implementation |
| // of LLVMContext. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "LLVMContextImpl.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/MDNode.h" |
| using namespace llvm; |
| |
| static char getValType(ConstantAggregateZero *CPZ) { return 0; } |
| |
| static std::vector<Constant*> getValType(ConstantArray *CA) { |
| std::vector<Constant*> Elements; |
| Elements.reserve(CA->getNumOperands()); |
| for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) |
| Elements.push_back(cast<Constant>(CA->getOperand(i))); |
| return Elements; |
| } |
| |
| namespace llvm { |
| template<typename T, typename Alloc> |
| struct VISIBILITY_HIDDEN ConstantTraits< std::vector<T, Alloc> > { |
| static unsigned uses(const std::vector<T, Alloc>& v) { |
| return v.size(); |
| } |
| }; |
| |
| template<class ConstantClass, class TypeClass, class ValType> |
| struct VISIBILITY_HIDDEN ConstantCreator { |
| static ConstantClass *create(const TypeClass *Ty, const ValType &V) { |
| return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V); |
| } |
| }; |
| |
| template<class ConstantClass, class TypeClass> |
| struct VISIBILITY_HIDDEN ConvertConstantType { |
| static void convert(ConstantClass *OldC, const TypeClass *NewTy) { |
| llvm_unreachable("This type cannot be converted!"); |
| } |
| }; |
| |
| // ConstantAggregateZero does not take extra "value" argument... |
| template<class ValType> |
| struct ConstantCreator<ConstantAggregateZero, Type, ValType> { |
| static ConstantAggregateZero *create(const Type *Ty, const ValType &V){ |
| return new ConstantAggregateZero(Ty); |
| } |
| }; |
| |
| template<> |
| struct ConvertConstantType<ConstantAggregateZero, Type> { |
| static void convert(ConstantAggregateZero *OldC, const Type *NewTy) { |
| // Make everyone now use a constant of the new type... |
| Constant *New = NewTy->getContext().getConstantAggregateZero(NewTy); |
| assert(New != OldC && "Didn't replace constant??"); |
| OldC->uncheckedReplaceAllUsesWith(New); |
| OldC->destroyConstant(); // This constant is now dead, destroy it. |
| } |
| }; |
| |
| template<> |
| struct ConvertConstantType<ConstantArray, ArrayType> { |
| static void convert(ConstantArray *OldC, const ArrayType *NewTy) { |
| // Make everyone now use a constant of the new type... |
| std::vector<Constant*> C; |
| for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) |
| C.push_back(cast<Constant>(OldC->getOperand(i))); |
| Constant *New = NewTy->getContext().getConstantArray(NewTy, C); |
| assert(New != OldC && "Didn't replace constant??"); |
| OldC->uncheckedReplaceAllUsesWith(New); |
| OldC->destroyConstant(); // This constant is now dead, destroy it. |
| } |
| }; |
| } |
| |
| template<class ValType, class TypeClass, class ConstantClass, |
| bool HasLargeKey /*true for arrays and structs*/ > |
| class VISIBILITY_HIDDEN ValueMap : public AbstractTypeUser { |
| public: |
| typedef std::pair<const Type*, ValType> MapKey; |
| typedef std::map<MapKey, Constant *> MapTy; |
| typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy; |
| typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy; |
| private: |
| /// Map - This is the main map from the element descriptor to the Constants. |
| /// This is the primary way we avoid creating two of the same shape |
| /// constant. |
| MapTy Map; |
| |
| /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping |
| /// from the constants to their element in Map. This is important for |
| /// removal of constants from the array, which would otherwise have to scan |
| /// through the map with very large keys. |
| InverseMapTy InverseMap; |
| |
| /// AbstractTypeMap - Map for abstract type constants. |
| /// |
| AbstractTypeMapTy AbstractTypeMap; |
| |
| /// ValueMapLock - Mutex for this map. |
| sys::SmartMutex<true> ValueMapLock; |
| |
| public: |
| // NOTE: This function is not locked. It is the caller's responsibility |
| // to enforce proper synchronization. |
| typename MapTy::iterator map_end() { return Map.end(); } |
| |
| /// InsertOrGetItem - Return an iterator for the specified element. |
| /// If the element exists in the map, the returned iterator points to the |
| /// entry and Exists=true. If not, the iterator points to the newly |
| /// inserted entry and returns Exists=false. Newly inserted entries have |
| /// I->second == 0, and should be filled in. |
| /// NOTE: This function is not locked. It is the caller's responsibility |
| // to enforce proper synchronization. |
| typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *> |
| &InsertVal, |
| bool &Exists) { |
| std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal); |
| Exists = !IP.second; |
| return IP.first; |
| } |
| |
| private: |
| typename MapTy::iterator FindExistingElement(ConstantClass *CP) { |
| if (HasLargeKey) { |
| typename InverseMapTy::iterator IMI = InverseMap.find(CP); |
| assert(IMI != InverseMap.end() && IMI->second != Map.end() && |
| IMI->second->second == CP && |
| "InverseMap corrupt!"); |
| return IMI->second; |
| } |
| |
| typename MapTy::iterator I = |
| Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()), |
| getValType(CP))); |
| if (I == Map.end() || I->second != CP) { |
| // FIXME: This should not use a linear scan. If this gets to be a |
| // performance problem, someone should look at this. |
| for (I = Map.begin(); I != Map.end() && I->second != CP; ++I) |
| /* empty */; |
| } |
| return I; |
| } |
| |
| ConstantClass* Create(const TypeClass *Ty, const ValType &V, |
| typename MapTy::iterator I) { |
| ConstantClass* Result = |
| ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V); |
| |
| assert(Result->getType() == Ty && "Type specified is not correct!"); |
| I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result)); |
| |
| if (HasLargeKey) // Remember the reverse mapping if needed. |
| InverseMap.insert(std::make_pair(Result, I)); |
| |
| // If the type of the constant is abstract, make sure that an entry |
| // exists for it in the AbstractTypeMap. |
| if (Ty->isAbstract()) { |
| typename AbstractTypeMapTy::iterator TI = |
| AbstractTypeMap.find(Ty); |
| |
| if (TI == AbstractTypeMap.end()) { |
| // Add ourselves to the ATU list of the type. |
| cast<DerivedType>(Ty)->addAbstractTypeUser(this); |
| |
| AbstractTypeMap.insert(TI, std::make_pair(Ty, I)); |
| } |
| } |
| |
| return Result; |
| } |
| public: |
| |
| /// getOrCreate - Return the specified constant from the map, creating it if |
| /// necessary. |
| ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) { |
| sys::SmartScopedLock<true> Lock(ValueMapLock); |
| MapKey Lookup(Ty, V); |
| ConstantClass* Result = 0; |
| |
| typename MapTy::iterator I = Map.find(Lookup); |
| // Is it in the map? |
| if (I != Map.end()) |
| Result = static_cast<ConstantClass *>(I->second); |
| |
| if (!Result) { |
| // If no preexisting value, create one now... |
| Result = Create(Ty, V, I); |
| } |
| |
| return Result; |
| } |
| |
| void remove(ConstantClass *CP) { |
| sys::SmartScopedLock<true> Lock(ValueMapLock); |
| typename MapTy::iterator I = FindExistingElement(CP); |
| assert(I != Map.end() && "Constant not found in constant table!"); |
| assert(I->second == CP && "Didn't find correct element?"); |
| |
| if (HasLargeKey) // Remember the reverse mapping if needed. |
| InverseMap.erase(CP); |
| |
| // Now that we found the entry, make sure this isn't the entry that |
| // the AbstractTypeMap points to. |
| const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first); |
| if (Ty->isAbstract()) { |
| assert(AbstractTypeMap.count(Ty) && |
| "Abstract type not in AbstractTypeMap?"); |
| typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty]; |
| if (ATMEntryIt == I) { |
| // Yes, we are removing the representative entry for this type. |
| // See if there are any other entries of the same type. |
| typename MapTy::iterator TmpIt = ATMEntryIt; |
| |
| // First check the entry before this one... |
| if (TmpIt != Map.begin()) { |
| --TmpIt; |
| if (TmpIt->first.first != Ty) // Not the same type, move back... |
| ++TmpIt; |
| } |
| |
| // If we didn't find the same type, try to move forward... |
| if (TmpIt == ATMEntryIt) { |
| ++TmpIt; |
| if (TmpIt == Map.end() || TmpIt->first.first != Ty) |
| --TmpIt; // No entry afterwards with the same type |
| } |
| |
| // If there is another entry in the map of the same abstract type, |
| // update the AbstractTypeMap entry now. |
| if (TmpIt != ATMEntryIt) { |
| ATMEntryIt = TmpIt; |
| } else { |
| // Otherwise, we are removing the last instance of this type |
| // from the table. Remove from the ATM, and from user list. |
| cast<DerivedType>(Ty)->removeAbstractTypeUser(this); |
| AbstractTypeMap.erase(Ty); |
| } |
| } |
| } |
| |
| Map.erase(I); |
| } |
| |
| |
| /// MoveConstantToNewSlot - If we are about to change C to be the element |
| /// specified by I, update our internal data structures to reflect this |
| /// fact. |
| /// NOTE: This function is not locked. It is the responsibility of the |
| /// caller to enforce proper synchronization if using this method. |
| void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) { |
| // First, remove the old location of the specified constant in the map. |
| typename MapTy::iterator OldI = FindExistingElement(C); |
| assert(OldI != Map.end() && "Constant not found in constant table!"); |
| assert(OldI->second == C && "Didn't find correct element?"); |
| |
| // If this constant is the representative element for its abstract type, |
| // update the AbstractTypeMap so that the representative element is I. |
| if (C->getType()->isAbstract()) { |
| typename AbstractTypeMapTy::iterator ATI = |
| AbstractTypeMap.find(C->getType()); |
| assert(ATI != AbstractTypeMap.end() && |
| "Abstract type not in AbstractTypeMap?"); |
| if (ATI->second == OldI) |
| ATI->second = I; |
| } |
| |
| // Remove the old entry from the map. |
| Map.erase(OldI); |
| |
| // Update the inverse map so that we know that this constant is now |
| // located at descriptor I. |
| if (HasLargeKey) { |
| assert(I->second == C && "Bad inversemap entry!"); |
| InverseMap[C] = I; |
| } |
| } |
| |
| void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { |
| sys::SmartScopedLock<true> Lock(ValueMapLock); |
| typename AbstractTypeMapTy::iterator I = |
| AbstractTypeMap.find(cast<Type>(OldTy)); |
| |
| assert(I != AbstractTypeMap.end() && |
| "Abstract type not in AbstractTypeMap?"); |
| |
| // Convert a constant at a time until the last one is gone. The last one |
| // leaving will remove() itself, causing the AbstractTypeMapEntry to be |
| // eliminated eventually. |
| do { |
| ConvertConstantType<ConstantClass, |
| TypeClass>::convert( |
| static_cast<ConstantClass *>(I->second->second), |
| cast<TypeClass>(NewTy)); |
| |
| I = AbstractTypeMap.find(cast<Type>(OldTy)); |
| } while (I != AbstractTypeMap.end()); |
| } |
| |
| // If the type became concrete without being refined to any other existing |
| // type, we just remove ourselves from the ATU list. |
| void typeBecameConcrete(const DerivedType *AbsTy) { |
| AbsTy->removeAbstractTypeUser(this); |
| } |
| |
| void dump() const { |
| DOUT << "Constant.cpp: ValueMap\n"; |
| } |
| }; |
| |
| LLVMContextImpl::LLVMContextImpl(LLVMContext &C) : |
| Context(C), TheTrueVal(0), TheFalseVal(0) { |
| AggZeroConstants = new ValueMap<char, Type, ConstantAggregateZero>(); |
| ArrayConstants = new ArrayConstantsTy(); |
| } |
| |
| LLVMContextImpl::~LLVMContextImpl() { |
| delete AggZeroConstants; |
| delete ArrayConstants; |
| } |
| |
| // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap |
| // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the |
| // operator== and operator!= to ensure that the DenseMap doesn't attempt to |
| // compare APInt's of different widths, which would violate an APInt class |
| // invariant which generates an assertion. |
| ConstantInt *LLVMContextImpl::getConstantInt(const APInt& V) { |
| // Get the corresponding integer type for the bit width of the value. |
| const IntegerType *ITy = Context.getIntegerType(V.getBitWidth()); |
| // get an existing value or the insertion position |
| DenseMapAPIntKeyInfo::KeyTy Key(V, ITy); |
| |
| ConstantsLock.reader_acquire(); |
| ConstantInt *&Slot = IntConstants[Key]; |
| ConstantsLock.reader_release(); |
| |
| if (!Slot) { |
| sys::SmartScopedWriter<true> Writer(ConstantsLock); |
| ConstantInt *&NewSlot = IntConstants[Key]; |
| if (!Slot) { |
| NewSlot = new ConstantInt(ITy, V); |
| } |
| |
| return NewSlot; |
| } else { |
| return Slot; |
| } |
| } |
| |
| ConstantFP *LLVMContextImpl::getConstantFP(const APFloat &V) { |
| DenseMapAPFloatKeyInfo::KeyTy Key(V); |
| |
| ConstantsLock.reader_acquire(); |
| ConstantFP *&Slot = FPConstants[Key]; |
| ConstantsLock.reader_release(); |
| |
| if (!Slot) { |
| sys::SmartScopedWriter<true> Writer(ConstantsLock); |
| ConstantFP *&NewSlot = FPConstants[Key]; |
| if (!NewSlot) { |
| const Type *Ty; |
| if (&V.getSemantics() == &APFloat::IEEEsingle) |
| Ty = Type::FloatTy; |
| else if (&V.getSemantics() == &APFloat::IEEEdouble) |
| Ty = Type::DoubleTy; |
| else if (&V.getSemantics() == &APFloat::x87DoubleExtended) |
| Ty = Type::X86_FP80Ty; |
| else if (&V.getSemantics() == &APFloat::IEEEquad) |
| Ty = Type::FP128Ty; |
| else { |
| assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && |
| "Unknown FP format"); |
| Ty = Type::PPC_FP128Ty; |
| } |
| NewSlot = new ConstantFP(Ty, V); |
| } |
| |
| return NewSlot; |
| } |
| |
| return Slot; |
| } |
| |
| MDString *LLVMContextImpl::getMDString(const char *StrBegin, |
| unsigned StrLength) { |
| sys::SmartScopedWriter<true> Writer(ConstantsLock); |
| StringMapEntry<MDString *> &Entry = |
| MDStringCache.GetOrCreateValue(StringRef(StrBegin, StrLength)); |
| MDString *&S = Entry.getValue(); |
| if (!S) S = new MDString(Entry.getKeyData(), |
| Entry.getKeyLength()); |
| |
| return S; |
| } |
| |
| MDNode *LLVMContextImpl::getMDNode(Value*const* Vals, unsigned NumVals) { |
| FoldingSetNodeID ID; |
| for (unsigned i = 0; i != NumVals; ++i) |
| ID.AddPointer(Vals[i]); |
| |
| ConstantsLock.reader_acquire(); |
| void *InsertPoint; |
| MDNode *N = MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint); |
| ConstantsLock.reader_release(); |
| |
| if (!N) { |
| sys::SmartScopedWriter<true> Writer(ConstantsLock); |
| N = MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint); |
| if (!N) { |
| // InsertPoint will have been set by the FindNodeOrInsertPos call. |
| N = new MDNode(Vals, NumVals); |
| MDNodeSet.InsertNode(N, InsertPoint); |
| } |
| } |
| |
| return N; |
| } |
| |
| ConstantAggregateZero* |
| LLVMContextImpl::getConstantAggregateZero(const Type *Ty) { |
| assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) && |
| "Cannot create an aggregate zero of non-aggregate type!"); |
| |
| // Implicitly locked. |
| return AggZeroConstants->getOrCreate(Ty, 0); |
| } |
| |
| Constant *LLVMContextImpl::getConstantArray(const ArrayType *Ty, |
| const std::vector<Constant*> &V) { |
| // If this is an all-zero array, return a ConstantAggregateZero object |
| if (!V.empty()) { |
| Constant *C = V[0]; |
| if (!C->isNullValue()) { |
| // Implicitly locked. |
| return ArrayConstants->getOrCreate(Ty, V); |
| } |
| for (unsigned i = 1, e = V.size(); i != e; ++i) |
| if (V[i] != C) { |
| // Implicitly locked. |
| return ArrayConstants->getOrCreate(Ty, V); |
| } |
| } |
| |
| return Context.getConstantAggregateZero(Ty); |
| } |
| |
| // *** erase methods *** |
| |
| void LLVMContextImpl::erase(MDString *M) { |
| sys::SmartScopedWriter<true> Writer(ConstantsLock); |
| MDStringCache.erase(MDStringCache.find(StringRef(M->StrBegin, |
| M->length()))); |
| } |
| |
| void LLVMContextImpl::erase(MDNode *M) { |
| sys::SmartScopedWriter<true> Writer(ConstantsLock); |
| MDNodeSet.RemoveNode(M); |
| } |
| |
| void LLVMContextImpl::erase(ConstantAggregateZero *Z) { |
| AggZeroConstants->remove(Z); |
| } |
| |
| void LLVMContextImpl::erase(ConstantArray *C) { |
| ArrayConstants->remove(C); |
| } |
| |
| // *** RAUW helpers *** |
| Constant *LLVMContextImpl::replaceUsesOfWithOnConstant(ConstantArray *CA, |
| Value *From, Value *To, Use *U) { |
| assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); |
| Constant *ToC = cast<Constant>(To); |
| |
| std::pair<ArrayConstantsTy::MapKey, Constant*> Lookup; |
| Lookup.first.first = CA->getType(); |
| Lookup.second = CA; |
| |
| std::vector<Constant*> &Values = Lookup.first.second; |
| Values.reserve(CA->getNumOperands()); // Build replacement array. |
| |
| // Fill values with the modified operands of the constant array. Also, |
| // compute whether this turns into an all-zeros array. |
| bool isAllZeros = false; |
| unsigned NumUpdated = 0; |
| if (!ToC->isNullValue()) { |
| for (Use *O = CA->OperandList, *E = CA->OperandList + CA->getNumOperands(); |
| O != E; ++O) { |
| Constant *Val = cast<Constant>(O->get()); |
| if (Val == From) { |
| Val = ToC; |
| ++NumUpdated; |
| } |
| Values.push_back(Val); |
| } |
| } else { |
| isAllZeros = true; |
| for (Use *O = CA->OperandList, *E = CA->OperandList + CA->getNumOperands(); |
| O != E; ++O) { |
| Constant *Val = cast<Constant>(O->get()); |
| if (Val == From) { |
| Val = ToC; |
| ++NumUpdated; |
| } |
| Values.push_back(Val); |
| if (isAllZeros) isAllZeros = Val->isNullValue(); |
| } |
| } |
| |
| Constant *Replacement = 0; |
| if (isAllZeros) { |
| Replacement = Context.getConstantAggregateZero(CA->getType()); |
| } else { |
| // Check to see if we have this array type already. |
| sys::SmartScopedWriter<true> Writer(ConstantsLock); |
| bool Exists; |
| ArrayConstantsTy::MapTy::iterator I = |
| ArrayConstants->InsertOrGetItem(Lookup, Exists); |
| |
| if (Exists) { |
| Replacement = I->second; |
| } else { |
| // Okay, the new shape doesn't exist in the system yet. Instead of |
| // creating a new constant array, inserting it, replaceallusesof'ing the |
| // old with the new, then deleting the old... just update the current one |
| // in place! |
| ArrayConstants->MoveConstantToNewSlot(CA, I); |
| |
| // Update to the new value. Optimize for the case when we have a single |
| // operand that we're changing, but handle bulk updates efficiently. |
| if (NumUpdated == 1) { |
| unsigned OperandToUpdate = U - CA->OperandList; |
| assert(CA->getOperand(OperandToUpdate) == From && |
| "ReplaceAllUsesWith broken!"); |
| CA->setOperand(OperandToUpdate, ToC); |
| } else { |
| for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) |
| if (CA->getOperand(i) == From) |
| CA->setOperand(i, ToC); |
| } |
| return 0; |
| } |
| } |
| |
| return Replacement; |
| } |
| |