//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===// | |
// | |
// The LLVM Compiler Infrastructure | |
// | |
// This file is distributed under the University of Illinois Open Source | |
// License. See LICENSE.TXT for details. | |
// | |
//===----------------------------------------------------------------------===// | |
// | |
// This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run | |
// both before and after the DAG is legalized. | |
// | |
// This pass is not a substitute for the LLVM IR instcombine pass. This pass is | |
// primarily intended to handle simplification opportunities that are implicit | |
// in the LLVM IR and exposed by the various codegen lowering phases. | |
// | |
//===----------------------------------------------------------------------===// | |
#include "llvm/ADT/SetVector.h" | |
#include "llvm/ADT/SmallBitVector.h" | |
#include "llvm/ADT/SmallPtrSet.h" | |
#include "llvm/ADT/SmallSet.h" | |
#include "llvm/ADT/Statistic.h" | |
#include "llvm/Analysis/AliasAnalysis.h" | |
#include "llvm/CodeGen/MachineFrameInfo.h" | |
#include "llvm/CodeGen/MachineFunction.h" | |
#include "llvm/CodeGen/SelectionDAG.h" | |
#include "llvm/CodeGen/SelectionDAGTargetInfo.h" | |
#include "llvm/IR/DataLayout.h" | |
#include "llvm/IR/DerivedTypes.h" | |
#include "llvm/IR/Function.h" | |
#include "llvm/IR/LLVMContext.h" | |
#include "llvm/Support/CommandLine.h" | |
#include "llvm/Support/Debug.h" | |
#include "llvm/Support/ErrorHandling.h" | |
#include "llvm/Support/MathExtras.h" | |
#include "llvm/Support/raw_ostream.h" | |
#include "llvm/Target/TargetLowering.h" | |
#include "llvm/Target/TargetOptions.h" | |
#include "llvm/Target/TargetRegisterInfo.h" | |
#include "llvm/Target/TargetSubtargetInfo.h" | |
#include <algorithm> | |
using namespace llvm; | |
#define DEBUG_TYPE "dagcombine" | |
STATISTIC(NodesCombined , "Number of dag nodes combined"); | |
STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); | |
STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); | |
STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); | |
STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); | |
STATISTIC(SlicedLoads, "Number of load sliced"); | |
namespace { | |
static cl::opt<bool> | |
CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, | |
cl::desc("Enable DAG combiner's use of IR alias analysis")); | |
static cl::opt<bool> | |
UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), | |
cl::desc("Enable DAG combiner's use of TBAA")); | |
#ifndef NDEBUG | |
static cl::opt<std::string> | |
CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, | |
cl::desc("Only use DAG-combiner alias analysis in this" | |
" function")); | |
#endif | |
/// Hidden option to stress test load slicing, i.e., when this option | |
/// is enabled, load slicing bypasses most of its profitability guards. | |
static cl::opt<bool> | |
StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, | |
cl::desc("Bypass the profitability model of load " | |
"slicing"), | |
cl::init(false)); | |
static cl::opt<bool> | |
MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), | |
cl::desc("DAG combiner may split indexing from loads")); | |
//------------------------------ DAGCombiner ---------------------------------// | |
class DAGCombiner { | |
SelectionDAG &DAG; | |
const TargetLowering &TLI; | |
CombineLevel Level; | |
CodeGenOpt::Level OptLevel; | |
bool LegalOperations; | |
bool LegalTypes; | |
bool ForCodeSize; | |
/// \brief Worklist of all of the nodes that need to be simplified. | |
/// | |
/// This must behave as a stack -- new nodes to process are pushed onto the | |
/// back and when processing we pop off of the back. | |
/// | |
/// The worklist will not contain duplicates but may contain null entries | |
/// due to nodes being deleted from the underlying DAG. | |
SmallVector<SDNode *, 64> Worklist; | |
/// \brief Mapping from an SDNode to its position on the worklist. | |
/// | |
/// This is used to find and remove nodes from the worklist (by nulling | |
/// them) when they are deleted from the underlying DAG. It relies on | |
/// stable indices of nodes within the worklist. | |
DenseMap<SDNode *, unsigned> WorklistMap; | |
/// \brief Set of nodes which have been combined (at least once). | |
/// | |
/// This is used to allow us to reliably add any operands of a DAG node | |
/// which have not yet been combined to the worklist. | |
SmallPtrSet<SDNode *, 32> CombinedNodes; | |
// AA - Used for DAG load/store alias analysis. | |
AliasAnalysis &AA; | |
/// When an instruction is simplified, add all users of the instruction to | |
/// the work lists because they might get more simplified now. | |
void AddUsersToWorklist(SDNode *N) { | |
for (SDNode *Node : N->uses()) | |
AddToWorklist(Node); | |
} | |
/// Call the node-specific routine that folds each particular type of node. | |
SDValue visit(SDNode *N); | |
public: | |
/// Add to the worklist making sure its instance is at the back (next to be | |
/// processed.) | |
void AddToWorklist(SDNode *N) { | |
assert(N->getOpcode() != ISD::DELETED_NODE && | |
"Deleted Node added to Worklist"); | |
// Skip handle nodes as they can't usefully be combined and confuse the | |
// zero-use deletion strategy. | |
if (N->getOpcode() == ISD::HANDLENODE) | |
return; | |
if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) | |
Worklist.push_back(N); | |
} | |
/// Remove all instances of N from the worklist. | |
void removeFromWorklist(SDNode *N) { | |
CombinedNodes.erase(N); | |
auto It = WorklistMap.find(N); | |
if (It == WorklistMap.end()) | |
return; // Not in the worklist. | |
// Null out the entry rather than erasing it to avoid a linear operation. | |
Worklist[It->second] = nullptr; | |
WorklistMap.erase(It); | |
} | |
void deleteAndRecombine(SDNode *N); | |
bool recursivelyDeleteUnusedNodes(SDNode *N); | |
/// Replaces all uses of the results of one DAG node with new values. | |
SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, | |
bool AddTo = true); | |
/// Replaces all uses of the results of one DAG node with new values. | |
SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { | |
return CombineTo(N, &Res, 1, AddTo); | |
} | |
/// Replaces all uses of the results of one DAG node with new values. | |
SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, | |
bool AddTo = true) { | |
SDValue To[] = { Res0, Res1 }; | |
return CombineTo(N, To, 2, AddTo); | |
} | |
void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); | |
private: | |
unsigned MaximumLegalStoreInBits; | |
/// Check the specified integer node value to see if it can be simplified or | |
/// if things it uses can be simplified by bit propagation. | |
/// If so, return true. | |
bool SimplifyDemandedBits(SDValue Op) { | |
unsigned BitWidth = Op.getScalarValueSizeInBits(); | |
APInt Demanded = APInt::getAllOnesValue(BitWidth); | |
return SimplifyDemandedBits(Op, Demanded); | |
} | |
bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded); | |
bool CombineToPreIndexedLoadStore(SDNode *N); | |
bool CombineToPostIndexedLoadStore(SDNode *N); | |
SDValue SplitIndexingFromLoad(LoadSDNode *LD); | |
bool SliceUpLoad(SDNode *N); | |
/// \brief Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed | |
/// load. | |
/// | |
/// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. | |
/// \param InVecVT type of the input vector to EVE with bitcasts resolved. | |
/// \param EltNo index of the vector element to load. | |
/// \param OriginalLoad load that EVE came from to be replaced. | |
/// \returns EVE on success SDValue() on failure. | |
SDValue ReplaceExtractVectorEltOfLoadWithNarrowedLoad( | |
SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad); | |
void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); | |
SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); | |
SDValue SExtPromoteOperand(SDValue Op, EVT PVT); | |
SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); | |
SDValue PromoteIntBinOp(SDValue Op); | |
SDValue PromoteIntShiftOp(SDValue Op); | |
SDValue PromoteExtend(SDValue Op); | |
bool PromoteLoad(SDValue Op); | |
void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, SDValue Trunc, | |
SDValue ExtLoad, const SDLoc &DL, | |
ISD::NodeType ExtType); | |
/// Call the node-specific routine that knows how to fold each | |
/// particular type of node. If that doesn't do anything, try the | |
/// target-specific DAG combines. | |
SDValue combine(SDNode *N); | |
// Visitation implementation - Implement dag node combining for different | |
// node types. The semantics are as follows: | |
// Return Value: | |
// SDValue.getNode() == 0 - No change was made | |
// SDValue.getNode() == N - N was replaced, is dead and has been handled. | |
// otherwise - N should be replaced by the returned Operand. | |
// | |
SDValue visitTokenFactor(SDNode *N); | |
SDValue visitMERGE_VALUES(SDNode *N); | |
SDValue visitADD(SDNode *N); | |
SDValue visitADDLike(SDValue N0, SDValue N1, SDNode *LocReference); | |
SDValue visitSUB(SDNode *N); | |
SDValue visitADDC(SDNode *N); | |
SDValue visitUADDO(SDNode *N); | |
SDValue visitSUBC(SDNode *N); | |
SDValue visitUSUBO(SDNode *N); | |
SDValue visitADDE(SDNode *N); | |
SDValue visitSUBE(SDNode *N); | |
SDValue visitMUL(SDNode *N); | |
SDValue useDivRem(SDNode *N); | |
SDValue visitSDIV(SDNode *N); | |
SDValue visitUDIV(SDNode *N); | |
SDValue visitREM(SDNode *N); | |
SDValue visitMULHU(SDNode *N); | |
SDValue visitMULHS(SDNode *N); | |
SDValue visitSMUL_LOHI(SDNode *N); | |
SDValue visitUMUL_LOHI(SDNode *N); | |
SDValue visitSMULO(SDNode *N); | |
SDValue visitUMULO(SDNode *N); | |
SDValue visitIMINMAX(SDNode *N); | |
SDValue visitAND(SDNode *N); | |
SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *LocReference); | |
SDValue visitOR(SDNode *N); | |
SDValue visitORLike(SDValue N0, SDValue N1, SDNode *LocReference); | |
SDValue visitXOR(SDNode *N); | |
SDValue SimplifyVBinOp(SDNode *N); | |
SDValue visitSHL(SDNode *N); | |
SDValue visitSRA(SDNode *N); | |
SDValue visitSRL(SDNode *N); | |
SDValue visitRotate(SDNode *N); | |
SDValue visitABS(SDNode *N); | |
SDValue visitBSWAP(SDNode *N); | |
SDValue visitBITREVERSE(SDNode *N); | |
SDValue visitCTLZ(SDNode *N); | |
SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); | |
SDValue visitCTTZ(SDNode *N); | |
SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); | |
SDValue visitCTPOP(SDNode *N); | |
SDValue visitSELECT(SDNode *N); | |
SDValue visitVSELECT(SDNode *N); | |
SDValue visitSELECT_CC(SDNode *N); | |
SDValue visitSETCC(SDNode *N); | |
SDValue visitSETCCE(SDNode *N); | |
SDValue visitSIGN_EXTEND(SDNode *N); | |
SDValue visitZERO_EXTEND(SDNode *N); | |
SDValue visitANY_EXTEND(SDNode *N); | |
SDValue visitAssertZext(SDNode *N); | |
SDValue visitSIGN_EXTEND_INREG(SDNode *N); | |
SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N); | |
SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N); | |
SDValue visitTRUNCATE(SDNode *N); | |
SDValue visitBITCAST(SDNode *N); | |
SDValue visitBUILD_PAIR(SDNode *N); | |
SDValue visitFADD(SDNode *N); | |
SDValue visitFSUB(SDNode *N); | |
SDValue visitFMUL(SDNode *N); | |
SDValue visitFMA(SDNode *N); | |
SDValue visitFDIV(SDNode *N); | |
SDValue visitFREM(SDNode *N); | |
SDValue visitFSQRT(SDNode *N); | |
SDValue visitFCOPYSIGN(SDNode *N); | |
SDValue visitSINT_TO_FP(SDNode *N); | |
SDValue visitUINT_TO_FP(SDNode *N); | |
SDValue visitFP_TO_SINT(SDNode *N); | |
SDValue visitFP_TO_UINT(SDNode *N); | |
SDValue visitFP_ROUND(SDNode *N); | |
SDValue visitFP_ROUND_INREG(SDNode *N); | |
SDValue visitFP_EXTEND(SDNode *N); | |
SDValue visitFNEG(SDNode *N); | |
SDValue visitFABS(SDNode *N); | |
SDValue visitFCEIL(SDNode *N); | |
SDValue visitFTRUNC(SDNode *N); | |
SDValue visitFFLOOR(SDNode *N); | |
SDValue visitFMINNUM(SDNode *N); | |
SDValue visitFMAXNUM(SDNode *N); | |
SDValue visitBRCOND(SDNode *N); | |
SDValue visitBR_CC(SDNode *N); | |
SDValue visitLOAD(SDNode *N); | |
SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); | |
SDValue replaceStoreOfFPConstant(StoreSDNode *ST); | |
SDValue visitSTORE(SDNode *N); | |
SDValue visitINSERT_VECTOR_ELT(SDNode *N); | |
SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); | |
SDValue visitBUILD_VECTOR(SDNode *N); | |
SDValue visitCONCAT_VECTORS(SDNode *N); | |
SDValue visitEXTRACT_SUBVECTOR(SDNode *N); | |
SDValue visitVECTOR_SHUFFLE(SDNode *N); | |
SDValue visitSCALAR_TO_VECTOR(SDNode *N); | |
SDValue visitINSERT_SUBVECTOR(SDNode *N); | |
SDValue visitMLOAD(SDNode *N); | |
SDValue visitMSTORE(SDNode *N); | |
SDValue visitMGATHER(SDNode *N); | |
SDValue visitMSCATTER(SDNode *N); | |
SDValue visitFP_TO_FP16(SDNode *N); | |
SDValue visitFP16_TO_FP(SDNode *N); | |
SDValue visitFADDForFMACombine(SDNode *N); | |
SDValue visitFSUBForFMACombine(SDNode *N); | |
SDValue visitFMULForFMADistributiveCombine(SDNode *N); | |
SDValue XformToShuffleWithZero(SDNode *N); | |
SDValue ReassociateOps(unsigned Opc, const SDLoc &DL, SDValue LHS, | |
SDValue RHS); | |
SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt); | |
SDValue foldSelectOfConstants(SDNode *N); | |
SDValue foldBinOpIntoSelect(SDNode *BO); | |
bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); | |
SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N); | |
SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2); | |
SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, | |
SDValue N2, SDValue N3, ISD::CondCode CC, | |
bool NotExtCompare = false); | |
SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1, | |
SDValue N2, SDValue N3, ISD::CondCode CC); | |
SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, | |
const SDLoc &DL); | |
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, | |
const SDLoc &DL, bool foldBooleans = true); | |
bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, | |
SDValue &CC) const; | |
bool isOneUseSetCC(SDValue N) const; | |
SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, | |
unsigned HiOp); | |
SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); | |
SDValue CombineExtLoad(SDNode *N); | |
SDValue combineRepeatedFPDivisors(SDNode *N); | |
SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); | |
SDValue BuildSDIV(SDNode *N); | |
SDValue BuildSDIVPow2(SDNode *N); | |
SDValue BuildUDIV(SDNode *N); | |
SDValue BuildLogBase2(SDValue Op, const SDLoc &DL); | |
SDValue BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags); | |
SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags); | |
SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags *Flags); | |
SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags *Flags, bool Recip); | |
SDValue buildSqrtNROneConst(SDValue Op, SDValue Est, unsigned Iterations, | |
SDNodeFlags *Flags, bool Reciprocal); | |
SDValue buildSqrtNRTwoConst(SDValue Op, SDValue Est, unsigned Iterations, | |
SDNodeFlags *Flags, bool Reciprocal); | |
SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, | |
bool DemandHighBits = true); | |
SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); | |
SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, | |
SDValue InnerPos, SDValue InnerNeg, | |
unsigned PosOpcode, unsigned NegOpcode, | |
const SDLoc &DL); | |
SDNode *MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL); | |
SDValue MatchLoadCombine(SDNode *N); | |
SDValue ReduceLoadWidth(SDNode *N); | |
SDValue ReduceLoadOpStoreWidth(SDNode *N); | |
SDValue splitMergedValStore(StoreSDNode *ST); | |
SDValue TransformFPLoadStorePair(SDNode *N); | |
SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); | |
SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N); | |
SDValue reduceBuildVecToShuffle(SDNode *N); | |
SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N, | |
ArrayRef<int> VectorMask, SDValue VecIn1, | |
SDValue VecIn2, unsigned LeftIdx); | |
SDValue GetDemandedBits(SDValue V, const APInt &Mask); | |
/// Walk up chain skipping non-aliasing memory nodes, | |
/// looking for aliasing nodes and adding them to the Aliases vector. | |
void GatherAllAliases(SDNode *N, SDValue OriginalChain, | |
SmallVectorImpl<SDValue> &Aliases); | |
/// Return true if there is any possibility that the two addresses overlap. | |
bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const; | |
/// Walk up chain skipping non-aliasing memory nodes, looking for a better | |
/// chain (aliasing node.) | |
SDValue FindBetterChain(SDNode *N, SDValue Chain); | |
/// Try to replace a store and any possibly adjacent stores on | |
/// consecutive chains with better chains. Return true only if St is | |
/// replaced. | |
/// | |
/// Notice that other chains may still be replaced even if the function | |
/// returns false. | |
bool findBetterNeighborChains(StoreSDNode *St); | |
/// Match "(X shl/srl V1) & V2" where V2 may not be present. | |
bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask); | |
/// Holds a pointer to an LSBaseSDNode as well as information on where it | |
/// is located in a sequence of memory operations connected by a chain. | |
struct MemOpLink { | |
MemOpLink(LSBaseSDNode *N, int64_t Offset) | |
: MemNode(N), OffsetFromBase(Offset) {} | |
// Ptr to the mem node. | |
LSBaseSDNode *MemNode; | |
// Offset from the base ptr. | |
int64_t OffsetFromBase; | |
}; | |
/// This is a helper function for visitMUL to check the profitability | |
/// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). | |
/// MulNode is the original multiply, AddNode is (add x, c1), | |
/// and ConstNode is c2. | |
bool isMulAddWithConstProfitable(SDNode *MulNode, | |
SDValue &AddNode, | |
SDValue &ConstNode); | |
/// This is a helper function for visitAND and visitZERO_EXTEND. Returns | |
/// true if the (and (load x) c) pattern matches an extload. ExtVT returns | |
/// the type of the loaded value to be extended. LoadedVT returns the type | |
/// of the original loaded value. NarrowLoad returns whether the load would | |
/// need to be narrowed in order to match. | |
bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, | |
EVT LoadResultTy, EVT &ExtVT, EVT &LoadedVT, | |
bool &NarrowLoad); | |
/// Helper function for MergeConsecutiveStores which merges the | |
/// component store chains. | |
SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, | |
unsigned NumStores); | |
/// This is a helper function for MergeConsecutiveStores. When the source | |
/// elements of the consecutive stores are all constants or all extracted | |
/// vector elements, try to merge them into one larger store. | |
/// \return True if a merged store was created. | |
bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, | |
EVT MemVT, unsigned NumStores, | |
bool IsConstantSrc, bool UseVector); | |
/// This is a helper function for MergeConsecutiveStores. | |
/// Stores that may be merged are placed in StoreNodes. | |
void getStoreMergeCandidates(StoreSDNode *St, | |
SmallVectorImpl<MemOpLink> &StoreNodes); | |
/// Helper function for MergeConsecutiveStores. Checks if | |
/// Candidate stores have indirect dependency through their | |
/// operands. \return True if safe to merge | |
bool checkMergeStoreCandidatesForDependencies( | |
SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores); | |
/// Merge consecutive store operations into a wide store. | |
/// This optimization uses wide integers or vectors when possible. | |
/// \return number of stores that were merged into a merged store (the | |
/// affected nodes are stored as a prefix in \p StoreNodes). | |
bool MergeConsecutiveStores(StoreSDNode *N); | |
/// \brief Try to transform a truncation where C is a constant: | |
/// (trunc (and X, C)) -> (and (trunc X), (trunc C)) | |
/// | |
/// \p N needs to be a truncation and its first operand an AND. Other | |
/// requirements are checked by the function (e.g. that trunc is | |
/// single-use) and if missed an empty SDValue is returned. | |
SDValue distributeTruncateThroughAnd(SDNode *N); | |
public: | |
DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL) | |
: DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes), | |
OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) { | |
ForCodeSize = DAG.getMachineFunction().getFunction()->optForSize(); | |
MaximumLegalStoreInBits = 0; | |
for (MVT VT : MVT::all_valuetypes()) | |
if (EVT(VT).isSimple() && VT != MVT::Other && | |
TLI.isTypeLegal(EVT(VT)) && | |
VT.getSizeInBits() >= MaximumLegalStoreInBits) | |
MaximumLegalStoreInBits = VT.getSizeInBits(); | |
} | |
/// Runs the dag combiner on all nodes in the work list | |
void Run(CombineLevel AtLevel); | |
SelectionDAG &getDAG() const { return DAG; } | |
/// Returns a type large enough to hold any valid shift amount - before type | |
/// legalization these can be huge. | |
EVT getShiftAmountTy(EVT LHSTy) { | |
assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); | |
if (LHSTy.isVector()) | |
return LHSTy; | |
auto &DL = DAG.getDataLayout(); | |
return LegalTypes ? TLI.getScalarShiftAmountTy(DL, LHSTy) | |
: TLI.getPointerTy(DL); | |
} | |
/// This method returns true if we are running before type legalization or | |
/// if the specified VT is legal. | |
bool isTypeLegal(const EVT &VT) { | |
if (!LegalTypes) return true; | |
return TLI.isTypeLegal(VT); | |
} | |
/// Convenience wrapper around TargetLowering::getSetCCResultType | |
EVT getSetCCResultType(EVT VT) const { | |
return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); | |
} | |
}; | |
} | |
namespace { | |
/// This class is a DAGUpdateListener that removes any deleted | |
/// nodes from the worklist. | |
class WorklistRemover : public SelectionDAG::DAGUpdateListener { | |
DAGCombiner &DC; | |
public: | |
explicit WorklistRemover(DAGCombiner &dc) | |
: SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} | |
void NodeDeleted(SDNode *N, SDNode *E) override { | |
DC.removeFromWorklist(N); | |
} | |
}; | |
} | |
//===----------------------------------------------------------------------===// | |
// TargetLowering::DAGCombinerInfo implementation | |
//===----------------------------------------------------------------------===// | |
void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { | |
((DAGCombiner*)DC)->AddToWorklist(N); | |
} | |
SDValue TargetLowering::DAGCombinerInfo:: | |
CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { | |
return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); | |
} | |
SDValue TargetLowering::DAGCombinerInfo:: | |
CombineTo(SDNode *N, SDValue Res, bool AddTo) { | |
return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); | |
} | |
SDValue TargetLowering::DAGCombinerInfo:: | |
CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { | |
return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); | |
} | |
void TargetLowering::DAGCombinerInfo:: | |
CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { | |
return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); | |
} | |
//===----------------------------------------------------------------------===// | |
// Helper Functions | |
//===----------------------------------------------------------------------===// | |
void DAGCombiner::deleteAndRecombine(SDNode *N) { | |
removeFromWorklist(N); | |
// If the operands of this node are only used by the node, they will now be | |
// dead. Make sure to re-visit them and recursively delete dead nodes. | |
for (const SDValue &Op : N->ops()) | |
// For an operand generating multiple values, one of the values may | |
// become dead allowing further simplification (e.g. split index | |
// arithmetic from an indexed load). | |
if (Op->hasOneUse() || Op->getNumValues() > 1) | |
AddToWorklist(Op.getNode()); | |
DAG.DeleteNode(N); | |
} | |
/// Return 1 if we can compute the negated form of the specified expression for | |
/// the same cost as the expression itself, or 2 if we can compute the negated | |
/// form more cheaply than the expression itself. | |
static char isNegatibleForFree(SDValue Op, bool LegalOperations, | |
const TargetLowering &TLI, | |
const TargetOptions *Options, | |
unsigned Depth = 0) { | |
// fneg is removable even if it has multiple uses. | |
if (Op.getOpcode() == ISD::FNEG) return 2; | |
// Don't allow anything with multiple uses. | |
if (!Op.hasOneUse()) return 0; | |
// Don't recurse exponentially. | |
if (Depth > 6) return 0; | |
switch (Op.getOpcode()) { | |
default: return false; | |
case ISD::ConstantFP: { | |
if (!LegalOperations) | |
return 1; | |
// Don't invert constant FP values after legalization unless the target says | |
// the negated constant is legal. | |
EVT VT = Op.getValueType(); | |
return TLI.isOperationLegal(ISD::ConstantFP, VT) || | |
TLI.isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT); | |
} | |
case ISD::FADD: | |
// FIXME: determine better conditions for this xform. | |
if (!Options->UnsafeFPMath) return 0; | |
// After operation legalization, it might not be legal to create new FSUBs. | |
if (LegalOperations && | |
!TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) | |
return 0; | |
// fold (fneg (fadd A, B)) -> (fsub (fneg A), B) | |
if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, | |
Options, Depth + 1)) | |
return V; | |
// fold (fneg (fadd A, B)) -> (fsub (fneg B), A) | |
return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, | |
Depth + 1); | |
case ISD::FSUB: | |
// We can't turn -(A-B) into B-A when we honor signed zeros. | |
if (!Options->NoSignedZerosFPMath && | |
!Op.getNode()->getFlags()->hasNoSignedZeros()) | |
return 0; | |
// fold (fneg (fsub A, B)) -> (fsub B, A) | |
return 1; | |
case ISD::FMUL: | |
case ISD::FDIV: | |
if (Options->HonorSignDependentRoundingFPMath()) return 0; | |
// fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) | |
if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, | |
Options, Depth + 1)) | |
return V; | |
return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, | |
Depth + 1); | |
case ISD::FP_EXTEND: | |
case ISD::FP_ROUND: | |
case ISD::FSIN: | |
return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options, | |
Depth + 1); | |
} | |
} | |
/// If isNegatibleForFree returns true, return the newly negated expression. | |
static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG, | |
bool LegalOperations, unsigned Depth = 0) { | |
const TargetOptions &Options = DAG.getTarget().Options; | |
// fneg is removable even if it has multiple uses. | |
if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0); | |
// Don't allow anything with multiple uses. | |
assert(Op.hasOneUse() && "Unknown reuse!"); | |
assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree"); | |
const SDNodeFlags *Flags = Op.getNode()->getFlags(); | |
switch (Op.getOpcode()) { | |
default: llvm_unreachable("Unknown code"); | |
case ISD::ConstantFP: { | |
APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); | |
V.changeSign(); | |
return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); | |
} | |
case ISD::FADD: | |
// FIXME: determine better conditions for this xform. | |
assert(Options.UnsafeFPMath); | |
// fold (fneg (fadd A, B)) -> (fsub (fneg A), B) | |
if (isNegatibleForFree(Op.getOperand(0), LegalOperations, | |
DAG.getTargetLoweringInfo(), &Options, Depth+1)) | |
return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), | |
GetNegatedExpression(Op.getOperand(0), DAG, | |
LegalOperations, Depth+1), | |
Op.getOperand(1), Flags); | |
// fold (fneg (fadd A, B)) -> (fsub (fneg B), A) | |
return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), | |
GetNegatedExpression(Op.getOperand(1), DAG, | |
LegalOperations, Depth+1), | |
Op.getOperand(0), Flags); | |
case ISD::FSUB: | |
// fold (fneg (fsub 0, B)) -> B | |
if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0))) | |
if (N0CFP->isZero()) | |
return Op.getOperand(1); | |
// fold (fneg (fsub A, B)) -> (fsub B, A) | |
return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), | |
Op.getOperand(1), Op.getOperand(0), Flags); | |
case ISD::FMUL: | |
case ISD::FDIV: | |
assert(!Options.HonorSignDependentRoundingFPMath()); | |
// fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) | |
if (isNegatibleForFree(Op.getOperand(0), LegalOperations, | |
DAG.getTargetLoweringInfo(), &Options, Depth+1)) | |
return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), | |
GetNegatedExpression(Op.getOperand(0), DAG, | |
LegalOperations, Depth+1), | |
Op.getOperand(1), Flags); | |
// fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) | |
return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), | |
Op.getOperand(0), | |
GetNegatedExpression(Op.getOperand(1), DAG, | |
LegalOperations, Depth+1), Flags); | |
case ISD::FP_EXTEND: | |
case ISD::FSIN: | |
return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), | |
GetNegatedExpression(Op.getOperand(0), DAG, | |
LegalOperations, Depth+1)); | |
case ISD::FP_ROUND: | |
return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), | |
GetNegatedExpression(Op.getOperand(0), DAG, | |
LegalOperations, Depth+1), | |
Op.getOperand(1)); | |
} | |
} | |
// APInts must be the same size for most operations, this helper | |
// function zero extends the shorter of the pair so that they match. | |
// We provide an Offset so that we can create bitwidths that won't overflow. | |
static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) { | |
unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth()); | |
LHS = LHS.zextOrSelf(Bits); | |
RHS = RHS.zextOrSelf(Bits); | |
} | |
// Return true if this node is a setcc, or is a select_cc | |
// that selects between the target values used for true and false, making it | |
// equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to | |
// the appropriate nodes based on the type of node we are checking. This | |
// simplifies life a bit for the callers. | |
bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, | |
SDValue &CC) const { | |
if (N.getOpcode() == ISD::SETCC) { | |
LHS = N.getOperand(0); | |
RHS = N.getOperand(1); | |
CC = N.getOperand(2); | |
return true; | |
} | |
if (N.getOpcode() != ISD::SELECT_CC || | |
!TLI.isConstTrueVal(N.getOperand(2).getNode()) || | |
!TLI.isConstFalseVal(N.getOperand(3).getNode())) | |
return false; | |
if (TLI.getBooleanContents(N.getValueType()) == | |
TargetLowering::UndefinedBooleanContent) | |
return false; | |
LHS = N.getOperand(0); | |
RHS = N.getOperand(1); | |
CC = N.getOperand(4); | |
return true; | |
} | |
/// Return true if this is a SetCC-equivalent operation with only one use. | |
/// If this is true, it allows the users to invert the operation for free when | |
/// it is profitable to do so. | |
bool DAGCombiner::isOneUseSetCC(SDValue N) const { | |
SDValue N0, N1, N2; | |
if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) | |
return true; | |
return false; | |
} | |
// \brief Returns the SDNode if it is a constant float BuildVector | |
// or constant float. | |
static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) { | |
if (isa<ConstantFPSDNode>(N)) | |
return N.getNode(); | |
if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) | |
return N.getNode(); | |
return nullptr; | |
} | |
// Determines if it is a constant integer or a build vector of constant | |
// integers (and undefs). | |
// Do not permit build vector implicit truncation. | |
static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) { | |
if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N)) | |
return !(Const->isOpaque() && NoOpaques); | |
if (N.getOpcode() != ISD::BUILD_VECTOR) | |
return false; | |
unsigned BitWidth = N.getScalarValueSizeInBits(); | |
for (const SDValue &Op : N->op_values()) { | |
if (Op.isUndef()) | |
continue; | |
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op); | |
if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth || | |
(Const->isOpaque() && NoOpaques)) | |
return false; | |
} | |
return true; | |
} | |
// Determines if it is a constant null integer or a splatted vector of a | |
// constant null integer (with no undefs). | |
// Build vector implicit truncation is not an issue for null values. | |
static bool isNullConstantOrNullSplatConstant(SDValue N) { | |
if (ConstantSDNode *Splat = isConstOrConstSplat(N)) | |
return Splat->isNullValue(); | |
return false; | |
} | |
// Determines if it is a constant integer of one or a splatted vector of a | |
// constant integer of one (with no undefs). | |
// Do not permit build vector implicit truncation. | |
static bool isOneConstantOrOneSplatConstant(SDValue N) { | |
unsigned BitWidth = N.getScalarValueSizeInBits(); | |
if (ConstantSDNode *Splat = isConstOrConstSplat(N)) | |
return Splat->isOne() && Splat->getAPIntValue().getBitWidth() == BitWidth; | |
return false; | |
} | |
// Determines if it is a constant integer of all ones or a splatted vector of a | |
// constant integer of all ones (with no undefs). | |
// Do not permit build vector implicit truncation. | |
static bool isAllOnesConstantOrAllOnesSplatConstant(SDValue N) { | |
unsigned BitWidth = N.getScalarValueSizeInBits(); | |
if (ConstantSDNode *Splat = isConstOrConstSplat(N)) | |
return Splat->isAllOnesValue() && | |
Splat->getAPIntValue().getBitWidth() == BitWidth; | |
return false; | |
} | |
// Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with | |
// undef's. | |
static bool isAnyConstantBuildVector(const SDNode *N) { | |
return ISD::isBuildVectorOfConstantSDNodes(N) || | |
ISD::isBuildVectorOfConstantFPSDNodes(N); | |
} | |
SDValue DAGCombiner::ReassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, | |
SDValue N1) { | |
EVT VT = N0.getValueType(); | |
if (N0.getOpcode() == Opc) { | |
if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) { | |
if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1)) { | |
// reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2)) | |
if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, L, R)) | |
return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); | |
return SDValue(); | |
} | |
if (N0.hasOneUse()) { | |
// reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one | |
// use | |
SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); | |
if (!OpNode.getNode()) | |
return SDValue(); | |
AddToWorklist(OpNode.getNode()); | |
return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); | |
} | |
} | |
} | |
if (N1.getOpcode() == Opc) { | |
if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1.getOperand(1))) { | |
if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0)) { | |
// reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2)) | |
if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, R, L)) | |
return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode); | |
return SDValue(); | |
} | |
if (N1.hasOneUse()) { | |
// reassoc. (op x, (op y, c1)) -> (op (op x, y), c1) iff x+c1 has one | |
// use | |
SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0, N1.getOperand(0)); | |
if (!OpNode.getNode()) | |
return SDValue(); | |
AddToWorklist(OpNode.getNode()); | |
return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1)); | |
} | |
} | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, | |
bool AddTo) { | |
assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); | |
++NodesCombined; | |
DEBUG(dbgs() << "\nReplacing.1 "; | |
N->dump(&DAG); | |
dbgs() << "\nWith: "; | |
To[0].getNode()->dump(&DAG); | |
dbgs() << " and " << NumTo-1 << " other values\n"); | |
for (unsigned i = 0, e = NumTo; i != e; ++i) | |
assert((!To[i].getNode() || | |
N->getValueType(i) == To[i].getValueType()) && | |
"Cannot combine value to value of different type!"); | |
WorklistRemover DeadNodes(*this); | |
DAG.ReplaceAllUsesWith(N, To); | |
if (AddTo) { | |
// Push the new nodes and any users onto the worklist | |
for (unsigned i = 0, e = NumTo; i != e; ++i) { | |
if (To[i].getNode()) { | |
AddToWorklist(To[i].getNode()); | |
AddUsersToWorklist(To[i].getNode()); | |
} | |
} | |
} | |
// Finally, if the node is now dead, remove it from the graph. The node | |
// may not be dead if the replacement process recursively simplified to | |
// something else needing this node. | |
if (N->use_empty()) | |
deleteAndRecombine(N); | |
return SDValue(N, 0); | |
} | |
void DAGCombiner:: | |
CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { | |
// Replace all uses. If any nodes become isomorphic to other nodes and | |
// are deleted, make sure to remove them from our worklist. | |
WorklistRemover DeadNodes(*this); | |
DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); | |
// Push the new node and any (possibly new) users onto the worklist. | |
AddToWorklist(TLO.New.getNode()); | |
AddUsersToWorklist(TLO.New.getNode()); | |
// Finally, if the node is now dead, remove it from the graph. The node | |
// may not be dead if the replacement process recursively simplified to | |
// something else needing this node. | |
if (TLO.Old.getNode()->use_empty()) | |
deleteAndRecombine(TLO.Old.getNode()); | |
} | |
/// Check the specified integer node value to see if it can be simplified or if | |
/// things it uses can be simplified by bit propagation. If so, return true. | |
bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) { | |
TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); | |
APInt KnownZero, KnownOne; | |
if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) | |
return false; | |
// Revisit the node. | |
AddToWorklist(Op.getNode()); | |
// Replace the old value with the new one. | |
++NodesCombined; | |
DEBUG(dbgs() << "\nReplacing.2 "; | |
TLO.Old.getNode()->dump(&DAG); | |
dbgs() << "\nWith: "; | |
TLO.New.getNode()->dump(&DAG); | |
dbgs() << '\n'); | |
CommitTargetLoweringOpt(TLO); | |
return true; | |
} | |
void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { | |
SDLoc DL(Load); | |
EVT VT = Load->getValueType(0); | |
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0)); | |
DEBUG(dbgs() << "\nReplacing.9 "; | |
Load->dump(&DAG); | |
dbgs() << "\nWith: "; | |
Trunc.getNode()->dump(&DAG); | |
dbgs() << '\n'); | |
WorklistRemover DeadNodes(*this); | |
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); | |
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); | |
deleteAndRecombine(Load); | |
AddToWorklist(Trunc.getNode()); | |
} | |
SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { | |
Replace = false; | |
SDLoc DL(Op); | |
if (ISD::isUNINDEXEDLoad(Op.getNode())) { | |
LoadSDNode *LD = cast<LoadSDNode>(Op); | |
EVT MemVT = LD->getMemoryVT(); | |
ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) | |
? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD | |
: ISD::EXTLOAD) | |
: LD->getExtensionType(); | |
Replace = true; | |
return DAG.getExtLoad(ExtType, DL, PVT, | |
LD->getChain(), LD->getBasePtr(), | |
MemVT, LD->getMemOperand()); | |
} | |
unsigned Opc = Op.getOpcode(); | |
switch (Opc) { | |
default: break; | |
case ISD::AssertSext: | |
return DAG.getNode(ISD::AssertSext, DL, PVT, | |
SExtPromoteOperand(Op.getOperand(0), PVT), | |
Op.getOperand(1)); | |
case ISD::AssertZext: | |
return DAG.getNode(ISD::AssertZext, DL, PVT, | |
ZExtPromoteOperand(Op.getOperand(0), PVT), | |
Op.getOperand(1)); | |
case ISD::Constant: { | |
unsigned ExtOpc = | |
Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | |
return DAG.getNode(ExtOpc, DL, PVT, Op); | |
} | |
} | |
if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) | |
return SDValue(); | |
return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op); | |
} | |
SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { | |
if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) | |
return SDValue(); | |
EVT OldVT = Op.getValueType(); | |
SDLoc DL(Op); | |
bool Replace = false; | |
SDValue NewOp = PromoteOperand(Op, PVT, Replace); | |
if (!NewOp.getNode()) | |
return SDValue(); | |
AddToWorklist(NewOp.getNode()); | |
if (Replace) | |
ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); | |
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp, | |
DAG.getValueType(OldVT)); | |
} | |
SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { | |
EVT OldVT = Op.getValueType(); | |
SDLoc DL(Op); | |
bool Replace = false; | |
SDValue NewOp = PromoteOperand(Op, PVT, Replace); | |
if (!NewOp.getNode()) | |
return SDValue(); | |
AddToWorklist(NewOp.getNode()); | |
if (Replace) | |
ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); | |
return DAG.getZeroExtendInReg(NewOp, DL, OldVT); | |
} | |
/// Promote the specified integer binary operation if the target indicates it is | |
/// beneficial. e.g. On x86, it's usually better to promote i16 operations to | |
/// i32 since i16 instructions are longer. | |
SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { | |
if (!LegalOperations) | |
return SDValue(); | |
EVT VT = Op.getValueType(); | |
if (VT.isVector() || !VT.isInteger()) | |
return SDValue(); | |
// If operation type is 'undesirable', e.g. i16 on x86, consider | |
// promoting it. | |
unsigned Opc = Op.getOpcode(); | |
if (TLI.isTypeDesirableForOp(Opc, VT)) | |
return SDValue(); | |
EVT PVT = VT; | |
// Consult target whether it is a good idea to promote this operation and | |
// what's the right type to promote it to. | |
if (TLI.IsDesirableToPromoteOp(Op, PVT)) { | |
assert(PVT != VT && "Don't know what type to promote to!"); | |
DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); | |
bool Replace0 = false; | |
SDValue N0 = Op.getOperand(0); | |
SDValue NN0 = PromoteOperand(N0, PVT, Replace0); | |
bool Replace1 = false; | |
SDValue N1 = Op.getOperand(1); | |
SDValue NN1 = PromoteOperand(N1, PVT, Replace1); | |
SDLoc DL(Op); | |
SDValue RV = | |
DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1)); | |
// New replace instances of N0 and N1 | |
if (Replace0 && N0 && N0.getOpcode() != ISD::DELETED_NODE && NN0 && | |
NN0.getOpcode() != ISD::DELETED_NODE) { | |
AddToWorklist(NN0.getNode()); | |
ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); | |
} | |
if (Replace1 && N1 && N1.getOpcode() != ISD::DELETED_NODE && NN1 && | |
NN1.getOpcode() != ISD::DELETED_NODE) { | |
AddToWorklist(NN1.getNode()); | |
ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); | |
} | |
// Deal with Op being deleted. | |
if (Op && Op.getOpcode() != ISD::DELETED_NODE) | |
return RV; | |
} | |
return SDValue(); | |
} | |
/// Promote the specified integer shift operation if the target indicates it is | |
/// beneficial. e.g. On x86, it's usually better to promote i16 operations to | |
/// i32 since i16 instructions are longer. | |
SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { | |
if (!LegalOperations) | |
return SDValue(); | |
EVT VT = Op.getValueType(); | |
if (VT.isVector() || !VT.isInteger()) | |
return SDValue(); | |
// If operation type is 'undesirable', e.g. i16 on x86, consider | |
// promoting it. | |
unsigned Opc = Op.getOpcode(); | |
if (TLI.isTypeDesirableForOp(Opc, VT)) | |
return SDValue(); | |
EVT PVT = VT; | |
// Consult target whether it is a good idea to promote this operation and | |
// what's the right type to promote it to. | |
if (TLI.IsDesirableToPromoteOp(Op, PVT)) { | |
assert(PVT != VT && "Don't know what type to promote to!"); | |
DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); | |
bool Replace = false; | |
SDValue N0 = Op.getOperand(0); | |
SDValue N1 = Op.getOperand(1); | |
if (Opc == ISD::SRA) | |
N0 = SExtPromoteOperand(N0, PVT); | |
else if (Opc == ISD::SRL) | |
N0 = ZExtPromoteOperand(N0, PVT); | |
else | |
N0 = PromoteOperand(N0, PVT, Replace); | |
if (!N0.getNode()) | |
return SDValue(); | |
SDLoc DL(Op); | |
SDValue RV = | |
DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1)); | |
AddToWorklist(N0.getNode()); | |
if (Replace) | |
ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); | |
// Deal with Op being deleted. | |
if (Op && Op.getOpcode() != ISD::DELETED_NODE) | |
return RV; | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::PromoteExtend(SDValue Op) { | |
if (!LegalOperations) | |
return SDValue(); | |
EVT VT = Op.getValueType(); | |
if (VT.isVector() || !VT.isInteger()) | |
return SDValue(); | |
// If operation type is 'undesirable', e.g. i16 on x86, consider | |
// promoting it. | |
unsigned Opc = Op.getOpcode(); | |
if (TLI.isTypeDesirableForOp(Opc, VT)) | |
return SDValue(); | |
EVT PVT = VT; | |
// Consult target whether it is a good idea to promote this operation and | |
// what's the right type to promote it to. | |
if (TLI.IsDesirableToPromoteOp(Op, PVT)) { | |
assert(PVT != VT && "Don't know what type to promote to!"); | |
// fold (aext (aext x)) -> (aext x) | |
// fold (aext (zext x)) -> (zext x) | |
// fold (aext (sext x)) -> (sext x) | |
DEBUG(dbgs() << "\nPromoting "; | |
Op.getNode()->dump(&DAG)); | |
return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); | |
} | |
return SDValue(); | |
} | |
bool DAGCombiner::PromoteLoad(SDValue Op) { | |
if (!LegalOperations) | |
return false; | |
if (!ISD::isUNINDEXEDLoad(Op.getNode())) | |
return false; | |
EVT VT = Op.getValueType(); | |
if (VT.isVector() || !VT.isInteger()) | |
return false; | |
// If operation type is 'undesirable', e.g. i16 on x86, consider | |
// promoting it. | |
unsigned Opc = Op.getOpcode(); | |
if (TLI.isTypeDesirableForOp(Opc, VT)) | |
return false; | |
EVT PVT = VT; | |
// Consult target whether it is a good idea to promote this operation and | |
// what's the right type to promote it to. | |
if (TLI.IsDesirableToPromoteOp(Op, PVT)) { | |
assert(PVT != VT && "Don't know what type to promote to!"); | |
SDLoc DL(Op); | |
SDNode *N = Op.getNode(); | |
LoadSDNode *LD = cast<LoadSDNode>(N); | |
EVT MemVT = LD->getMemoryVT(); | |
ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) | |
? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD | |
: ISD::EXTLOAD) | |
: LD->getExtensionType(); | |
SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT, | |
LD->getChain(), LD->getBasePtr(), | |
MemVT, LD->getMemOperand()); | |
SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD); | |
DEBUG(dbgs() << "\nPromoting "; | |
N->dump(&DAG); | |
dbgs() << "\nTo: "; | |
Result.getNode()->dump(&DAG); | |
dbgs() << '\n'); | |
WorklistRemover DeadNodes(*this); | |
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); | |
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); | |
deleteAndRecombine(N); | |
AddToWorklist(Result.getNode()); | |
return true; | |
} | |
return false; | |
} | |
/// \brief Recursively delete a node which has no uses and any operands for | |
/// which it is the only use. | |
/// | |
/// Note that this both deletes the nodes and removes them from the worklist. | |
/// It also adds any nodes who have had a user deleted to the worklist as they | |
/// may now have only one use and subject to other combines. | |
bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { | |
if (!N->use_empty()) | |
return false; | |
SmallSetVector<SDNode *, 16> Nodes; | |
Nodes.insert(N); | |
do { | |
N = Nodes.pop_back_val(); | |
if (!N) | |
continue; | |
if (N->use_empty()) { | |
for (const SDValue &ChildN : N->op_values()) | |
Nodes.insert(ChildN.getNode()); | |
removeFromWorklist(N); | |
DAG.DeleteNode(N); | |
} else { | |
AddToWorklist(N); | |
} | |
} while (!Nodes.empty()); | |
return true; | |
} | |
//===----------------------------------------------------------------------===// | |
// Main DAG Combiner implementation | |
//===----------------------------------------------------------------------===// | |
void DAGCombiner::Run(CombineLevel AtLevel) { | |
// set the instance variables, so that the various visit routines may use it. | |
Level = AtLevel; | |
LegalOperations = Level >= AfterLegalizeVectorOps; | |
LegalTypes = Level >= AfterLegalizeTypes; | |
// Add all the dag nodes to the worklist. | |
for (SDNode &Node : DAG.allnodes()) | |
AddToWorklist(&Node); | |
// Create a dummy node (which is not added to allnodes), that adds a reference | |
// to the root node, preventing it from being deleted, and tracking any | |
// changes of the root. | |
HandleSDNode Dummy(DAG.getRoot()); | |
// While the worklist isn't empty, find a node and try to combine it. | |
while (!WorklistMap.empty()) { | |
SDNode *N; | |
// The Worklist holds the SDNodes in order, but it may contain null entries. | |
do { | |
N = Worklist.pop_back_val(); | |
} while (!N); | |
bool GoodWorklistEntry = WorklistMap.erase(N); | |
(void)GoodWorklistEntry; | |
assert(GoodWorklistEntry && | |
"Found a worklist entry without a corresponding map entry!"); | |
// If N has no uses, it is dead. Make sure to revisit all N's operands once | |
// N is deleted from the DAG, since they too may now be dead or may have a | |
// reduced number of uses, allowing other xforms. | |
if (recursivelyDeleteUnusedNodes(N)) | |
continue; | |
WorklistRemover DeadNodes(*this); | |
// If this combine is running after legalizing the DAG, re-legalize any | |
// nodes pulled off the worklist. | |
if (Level == AfterLegalizeDAG) { | |
SmallSetVector<SDNode *, 16> UpdatedNodes; | |
bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); | |
for (SDNode *LN : UpdatedNodes) { | |
AddToWorklist(LN); | |
AddUsersToWorklist(LN); | |
} | |
if (!NIsValid) | |
continue; | |
} | |
DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); | |
// Add any operands of the new node which have not yet been combined to the | |
// worklist as well. Because the worklist uniques things already, this | |
// won't repeatedly process the same operand. | |
CombinedNodes.insert(N); | |
for (const SDValue &ChildN : N->op_values()) | |
if (!CombinedNodes.count(ChildN.getNode())) | |
AddToWorklist(ChildN.getNode()); | |
SDValue RV = combine(N); | |
if (!RV.getNode()) | |
continue; | |
++NodesCombined; | |
// If we get back the same node we passed in, rather than a new node or | |
// zero, we know that the node must have defined multiple values and | |
// CombineTo was used. Since CombineTo takes care of the worklist | |
// mechanics for us, we have no work to do in this case. | |
if (RV.getNode() == N) | |
continue; | |
assert(N->getOpcode() != ISD::DELETED_NODE && | |
RV.getOpcode() != ISD::DELETED_NODE && | |
"Node was deleted but visit returned new node!"); | |
DEBUG(dbgs() << " ... into: "; | |
RV.getNode()->dump(&DAG)); | |
if (N->getNumValues() == RV.getNode()->getNumValues()) | |
DAG.ReplaceAllUsesWith(N, RV.getNode()); | |
else { | |
assert(N->getValueType(0) == RV.getValueType() && | |
N->getNumValues() == 1 && "Type mismatch"); | |
DAG.ReplaceAllUsesWith(N, &RV); | |
} | |
// Push the new node and any users onto the worklist | |
AddToWorklist(RV.getNode()); | |
AddUsersToWorklist(RV.getNode()); | |
// Finally, if the node is now dead, remove it from the graph. The node | |
// may not be dead if the replacement process recursively simplified to | |
// something else needing this node. This will also take care of adding any | |
// operands which have lost a user to the worklist. | |
recursivelyDeleteUnusedNodes(N); | |
} | |
// If the root changed (e.g. it was a dead load, update the root). | |
DAG.setRoot(Dummy.getValue()); | |
DAG.RemoveDeadNodes(); | |
} | |
SDValue DAGCombiner::visit(SDNode *N) { | |
switch (N->getOpcode()) { | |
default: break; | |
case ISD::TokenFactor: return visitTokenFactor(N); | |
case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); | |
case ISD::ADD: return visitADD(N); | |
case ISD::SUB: return visitSUB(N); | |
case ISD::ADDC: return visitADDC(N); | |
case ISD::UADDO: return visitUADDO(N); | |
case ISD::SUBC: return visitSUBC(N); | |
case ISD::USUBO: return visitUSUBO(N); | |
case ISD::ADDE: return visitADDE(N); | |
case ISD::SUBE: return visitSUBE(N); | |
case ISD::MUL: return visitMUL(N); | |
case ISD::SDIV: return visitSDIV(N); | |
case ISD::UDIV: return visitUDIV(N); | |
case ISD::SREM: | |
case ISD::UREM: return visitREM(N); | |
case ISD::MULHU: return visitMULHU(N); | |
case ISD::MULHS: return visitMULHS(N); | |
case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); | |
case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); | |
case ISD::SMULO: return visitSMULO(N); | |
case ISD::UMULO: return visitUMULO(N); | |
case ISD::SMIN: | |
case ISD::SMAX: | |
case ISD::UMIN: | |
case ISD::UMAX: return visitIMINMAX(N); | |
case ISD::AND: return visitAND(N); | |
case ISD::OR: return visitOR(N); | |
case ISD::XOR: return visitXOR(N); | |
case ISD::SHL: return visitSHL(N); | |
case ISD::SRA: return visitSRA(N); | |
case ISD::SRL: return visitSRL(N); | |
case ISD::ROTR: | |
case ISD::ROTL: return visitRotate(N); | |
case ISD::ABS: return visitABS(N); | |
case ISD::BSWAP: return visitBSWAP(N); | |
case ISD::BITREVERSE: return visitBITREVERSE(N); | |
case ISD::CTLZ: return visitCTLZ(N); | |
case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); | |
case ISD::CTTZ: return visitCTTZ(N); | |
case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); | |
case ISD::CTPOP: return visitCTPOP(N); | |
case ISD::SELECT: return visitSELECT(N); | |
case ISD::VSELECT: return visitVSELECT(N); | |
case ISD::SELECT_CC: return visitSELECT_CC(N); | |
case ISD::SETCC: return visitSETCC(N); | |
case ISD::SETCCE: return visitSETCCE(N); | |
case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); | |
case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); | |
case ISD::ANY_EXTEND: return visitANY_EXTEND(N); | |
case ISD::AssertZext: return visitAssertZext(N); | |
case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); | |
case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N); | |
case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N); | |
case ISD::TRUNCATE: return visitTRUNCATE(N); | |
case ISD::BITCAST: return visitBITCAST(N); | |
case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); | |
case ISD::FADD: return visitFADD(N); | |
case ISD::FSUB: return visitFSUB(N); | |
case ISD::FMUL: return visitFMUL(N); | |
case ISD::FMA: return visitFMA(N); | |
case ISD::FDIV: return visitFDIV(N); | |
case ISD::FREM: return visitFREM(N); | |
case ISD::FSQRT: return visitFSQRT(N); | |
case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); | |
case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); | |
case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); | |
case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); | |
case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); | |
case ISD::FP_ROUND: return visitFP_ROUND(N); | |
case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N); | |
case ISD::FP_EXTEND: return visitFP_EXTEND(N); | |
case ISD::FNEG: return visitFNEG(N); | |
case ISD::FABS: return visitFABS(N); | |
case ISD::FFLOOR: return visitFFLOOR(N); | |
case ISD::FMINNUM: return visitFMINNUM(N); | |
case ISD::FMAXNUM: return visitFMAXNUM(N); | |
case ISD::FCEIL: return visitFCEIL(N); | |
case ISD::FTRUNC: return visitFTRUNC(N); | |
case ISD::BRCOND: return visitBRCOND(N); | |
case ISD::BR_CC: return visitBR_CC(N); | |
case ISD::LOAD: return visitLOAD(N); | |
case ISD::STORE: return visitSTORE(N); | |
case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); | |
case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); | |
case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); | |
case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); | |
case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); | |
case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); | |
case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); | |
case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); | |
case ISD::MGATHER: return visitMGATHER(N); | |
case ISD::MLOAD: return visitMLOAD(N); | |
case ISD::MSCATTER: return visitMSCATTER(N); | |
case ISD::MSTORE: return visitMSTORE(N); | |
case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); | |
case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::combine(SDNode *N) { | |
SDValue RV = visit(N); | |
// If nothing happened, try a target-specific DAG combine. | |
if (!RV.getNode()) { | |
assert(N->getOpcode() != ISD::DELETED_NODE && | |
"Node was deleted but visit returned NULL!"); | |
if (N->getOpcode() >= ISD::BUILTIN_OP_END || | |
TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { | |
// Expose the DAG combiner to the target combiner impls. | |
TargetLowering::DAGCombinerInfo | |
DagCombineInfo(DAG, Level, false, this); | |
RV = TLI.PerformDAGCombine(N, DagCombineInfo); | |
} | |
} | |
// If nothing happened still, try promoting the operation. | |
if (!RV.getNode()) { | |
switch (N->getOpcode()) { | |
default: break; | |
case ISD::ADD: | |
case ISD::SUB: | |
case ISD::MUL: | |
case ISD::AND: | |
case ISD::OR: | |
case ISD::XOR: | |
RV = PromoteIntBinOp(SDValue(N, 0)); | |
break; | |
case ISD::SHL: | |
case ISD::SRA: | |
case ISD::SRL: | |
RV = PromoteIntShiftOp(SDValue(N, 0)); | |
break; | |
case ISD::SIGN_EXTEND: | |
case ISD::ZERO_EXTEND: | |
case ISD::ANY_EXTEND: | |
RV = PromoteExtend(SDValue(N, 0)); | |
break; | |
case ISD::LOAD: | |
if (PromoteLoad(SDValue(N, 0))) | |
RV = SDValue(N, 0); | |
break; | |
} | |
} | |
// If N is a commutative binary node, try commuting it to enable more | |
// sdisel CSE. | |
if (!RV.getNode() && SelectionDAG::isCommutativeBinOp(N->getOpcode()) && | |
N->getNumValues() == 1) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
// Constant operands are canonicalized to RHS. | |
if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) { | |
SDValue Ops[] = {N1, N0}; | |
SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, | |
N->getFlags()); | |
if (CSENode) | |
return SDValue(CSENode, 0); | |
} | |
} | |
return RV; | |
} | |
/// Given a node, return its input chain if it has one, otherwise return a null | |
/// sd operand. | |
static SDValue getInputChainForNode(SDNode *N) { | |
if (unsigned NumOps = N->getNumOperands()) { | |
if (N->getOperand(0).getValueType() == MVT::Other) | |
return N->getOperand(0); | |
if (N->getOperand(NumOps-1).getValueType() == MVT::Other) | |
return N->getOperand(NumOps-1); | |
for (unsigned i = 1; i < NumOps-1; ++i) | |
if (N->getOperand(i).getValueType() == MVT::Other) | |
return N->getOperand(i); | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitTokenFactor(SDNode *N) { | |
// If N has two operands, where one has an input chain equal to the other, | |
// the 'other' chain is redundant. | |
if (N->getNumOperands() == 2) { | |
if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) | |
return N->getOperand(0); | |
if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) | |
return N->getOperand(1); | |
} | |
SmallVector<SDNode *, 8> TFs; // List of token factors to visit. | |
SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. | |
SmallPtrSet<SDNode*, 16> SeenOps; | |
bool Changed = false; // If we should replace this token factor. | |
// Start out with this token factor. | |
TFs.push_back(N); | |
// Iterate through token factors. The TFs grows when new token factors are | |
// encountered. | |
for (unsigned i = 0; i < TFs.size(); ++i) { | |
SDNode *TF = TFs[i]; | |
// Check each of the operands. | |
for (const SDValue &Op : TF->op_values()) { | |
switch (Op.getOpcode()) { | |
case ISD::EntryToken: | |
// Entry tokens don't need to be added to the list. They are | |
// redundant. | |
Changed = true; | |
break; | |
case ISD::TokenFactor: | |
if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) { | |
// Queue up for processing. | |
TFs.push_back(Op.getNode()); | |
// Clean up in case the token factor is removed. | |
AddToWorklist(Op.getNode()); | |
Changed = true; | |
break; | |
} | |
LLVM_FALLTHROUGH; | |
default: | |
// Only add if it isn't already in the list. | |
if (SeenOps.insert(Op.getNode()).second) | |
Ops.push_back(Op); | |
else | |
Changed = true; | |
break; | |
} | |
} | |
} | |
// Remove Nodes that are chained to another node in the list. Do so | |
// by walking up chains breath-first stopping when we've seen | |
// another operand. In general we must climb to the EntryNode, but we can exit | |
// early if we find all remaining work is associated with just one operand as | |
// no further pruning is possible. | |
// List of nodes to search through and original Ops from which they originate. | |
SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist; | |
SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op. | |
SmallPtrSet<SDNode *, 16> SeenChains; | |
bool DidPruneOps = false; | |
unsigned NumLeftToConsider = 0; | |
for (const SDValue &Op : Ops) { | |
Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++)); | |
OpWorkCount.push_back(1); | |
} | |
auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) { | |
// If this is an Op, we can remove the op from the list. Remark any | |
// search associated with it as from the current OpNumber. | |
if (SeenOps.count(Op) != 0) { | |
Changed = true; | |
DidPruneOps = true; | |
unsigned OrigOpNumber = 0; | |
while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op) | |
OrigOpNumber++; | |
assert((OrigOpNumber != Ops.size()) && | |
"expected to find TokenFactor Operand"); | |
// Re-mark worklist from OrigOpNumber to OpNumber | |
for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) { | |
if (Worklist[i].second == OrigOpNumber) { | |
Worklist[i].second = OpNumber; | |
} | |
} | |
OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber]; | |
OpWorkCount[OrigOpNumber] = 0; | |
NumLeftToConsider--; | |
} | |
// Add if it's a new chain | |
if (SeenChains.insert(Op).second) { | |
OpWorkCount[OpNumber]++; | |
Worklist.push_back(std::make_pair(Op, OpNumber)); | |
} | |
}; | |
for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) { | |
// We need at least be consider at least 2 Ops to prune. | |
if (NumLeftToConsider <= 1) | |
break; | |
auto CurNode = Worklist[i].first; | |
auto CurOpNumber = Worklist[i].second; | |
assert((OpWorkCount[CurOpNumber] > 0) && | |
"Node should not appear in worklist"); | |
switch (CurNode->getOpcode()) { | |
case ISD::EntryToken: | |
// Hitting EntryToken is the only way for the search to terminate without | |
// hitting | |
// another operand's search. Prevent us from marking this operand | |
// considered. | |
NumLeftToConsider++; | |
break; | |
case ISD::TokenFactor: | |
for (const SDValue &Op : CurNode->op_values()) | |
AddToWorklist(i, Op.getNode(), CurOpNumber); | |
break; | |
case ISD::CopyFromReg: | |
case ISD::CopyToReg: | |
AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber); | |
break; | |
default: | |
if (auto *MemNode = dyn_cast<MemSDNode>(CurNode)) | |
AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber); | |
break; | |
} | |
OpWorkCount[CurOpNumber]--; | |
if (OpWorkCount[CurOpNumber] == 0) | |
NumLeftToConsider--; | |
} | |
SDValue Result; | |
// If we've changed things around then replace token factor. | |
if (Changed) { | |
if (Ops.empty()) { | |
// The entry token is the only possible outcome. | |
Result = DAG.getEntryNode(); | |
} else { | |
if (DidPruneOps) { | |
SmallVector<SDValue, 8> PrunedOps; | |
// | |
for (const SDValue &Op : Ops) { | |
if (SeenChains.count(Op.getNode()) == 0) | |
PrunedOps.push_back(Op); | |
} | |
Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, PrunedOps); | |
} else { | |
Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Ops); | |
} | |
} | |
// Add users to worklist, since we may introduce a lot of new | |
// chained token factors while removing memory deps. | |
return CombineTo(N, Result, true /*add to worklist*/); | |
} | |
return Result; | |
} | |
/// MERGE_VALUES can always be eliminated. | |
SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { | |
WorklistRemover DeadNodes(*this); | |
// Replacing results may cause a different MERGE_VALUES to suddenly | |
// be CSE'd with N, and carry its uses with it. Iterate until no | |
// uses remain, to ensure that the node can be safely deleted. | |
// First add the users of this node to the work list so that they | |
// can be tried again once they have new operands. | |
AddUsersToWorklist(N); | |
do { | |
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) | |
DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i)); | |
} while (!N->use_empty()); | |
deleteAndRecombine(N); | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
/// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a | |
/// ConstantSDNode pointer else nullptr. | |
static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { | |
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); | |
return Const != nullptr && !Const->isOpaque() ? Const : nullptr; | |
} | |
SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) { | |
auto BinOpcode = BO->getOpcode(); | |
assert((BinOpcode == ISD::ADD || BinOpcode == ISD::SUB || | |
BinOpcode == ISD::MUL || BinOpcode == ISD::SDIV || | |
BinOpcode == ISD::UDIV || BinOpcode == ISD::SREM || | |
BinOpcode == ISD::UREM || BinOpcode == ISD::AND || | |
BinOpcode == ISD::OR || BinOpcode == ISD::XOR || | |
BinOpcode == ISD::SHL || BinOpcode == ISD::SRL || | |
BinOpcode == ISD::SRA || BinOpcode == ISD::FADD || | |
BinOpcode == ISD::FSUB || BinOpcode == ISD::FMUL || | |
BinOpcode == ISD::FDIV || BinOpcode == ISD::FREM) && | |
"Unexpected binary operator"); | |
// Bail out if any constants are opaque because we can't constant fold those. | |
SDValue C1 = BO->getOperand(1); | |
if (!isConstantOrConstantVector(C1, true) && | |
!isConstantFPBuildVectorOrConstantFP(C1)) | |
return SDValue(); | |
// Don't do this unless the old select is going away. We want to eliminate the | |
// binary operator, not replace a binop with a select. | |
// TODO: Handle ISD::SELECT_CC. | |
SDValue Sel = BO->getOperand(0); | |
if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) | |
return SDValue(); | |
SDValue CT = Sel.getOperand(1); | |
if (!isConstantOrConstantVector(CT, true) && | |
!isConstantFPBuildVectorOrConstantFP(CT)) | |
return SDValue(); | |
SDValue CF = Sel.getOperand(2); | |
if (!isConstantOrConstantVector(CF, true) && | |
!isConstantFPBuildVectorOrConstantFP(CF)) | |
return SDValue(); | |
// We have a select-of-constants followed by a binary operator with a | |
// constant. Eliminate the binop by pulling the constant math into the select. | |
// Example: add (select Cond, CT, CF), C1 --> select Cond, CT + C1, CF + C1 | |
EVT VT = Sel.getValueType(); | |
SDLoc DL(Sel); | |
SDValue NewCT = DAG.getNode(BinOpcode, DL, VT, CT, C1); | |
assert((NewCT.isUndef() || isConstantOrConstantVector(NewCT) || | |
isConstantFPBuildVectorOrConstantFP(NewCT)) && | |
"Failed to constant fold a binop with constant operands"); | |
SDValue NewCF = DAG.getNode(BinOpcode, DL, VT, CF, C1); | |
assert((NewCF.isUndef() || isConstantOrConstantVector(NewCF) || | |
isConstantFPBuildVectorOrConstantFP(NewCF)) && | |
"Failed to constant fold a binop with constant operands"); | |
return DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF); | |
} | |
SDValue DAGCombiner::visitADD(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N0.getValueType(); | |
SDLoc DL(N); | |
// fold vector ops | |
if (VT.isVector()) { | |
if (SDValue FoldedVOp = SimplifyVBinOp(N)) | |
return FoldedVOp; | |
// fold (add x, 0) -> x, vector edition | |
if (ISD::isBuildVectorAllZeros(N1.getNode())) | |
return N0; | |
if (ISD::isBuildVectorAllZeros(N0.getNode())) | |
return N1; | |
} | |
// fold (add x, undef) -> undef | |
if (N0.isUndef()) | |
return N0; | |
if (N1.isUndef()) | |
return N1; | |
if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { | |
// canonicalize constant to RHS | |
if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) | |
return DAG.getNode(ISD::ADD, DL, VT, N1, N0); | |
// fold (add c1, c2) -> c1+c2 | |
return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N0.getNode(), | |
N1.getNode()); | |
} | |
// fold (add x, 0) -> x | |
if (isNullConstant(N1)) | |
return N0; | |
// fold ((c1-A)+c2) -> (c1+c2)-A | |
if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) { | |
if (N0.getOpcode() == ISD::SUB) | |
if (isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) { | |
return DAG.getNode(ISD::SUB, DL, VT, | |
DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(0)), | |
N0.getOperand(1)); | |
} | |
} | |
if (SDValue NewSel = foldBinOpIntoSelect(N)) | |
return NewSel; | |
// reassociate add | |
if (SDValue RADD = ReassociateOps(ISD::ADD, DL, N0, N1)) | |
return RADD; | |
// fold ((0-A) + B) -> B-A | |
if (N0.getOpcode() == ISD::SUB && | |
isNullConstantOrNullSplatConstant(N0.getOperand(0))) | |
return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); | |
// fold (A + (0-B)) -> A-B | |
if (N1.getOpcode() == ISD::SUB && | |
isNullConstantOrNullSplatConstant(N1.getOperand(0))) | |
return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1)); | |
// fold (A+(B-A)) -> B | |
if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) | |
return N1.getOperand(0); | |
// fold ((B-A)+A) -> B | |
if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) | |
return N0.getOperand(0); | |
// fold (A+(B-(A+C))) to (B-C) | |
if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && | |
N0 == N1.getOperand(1).getOperand(0)) | |
return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), | |
N1.getOperand(1).getOperand(1)); | |
// fold (A+(B-(C+A))) to (B-C) | |
if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && | |
N0 == N1.getOperand(1).getOperand(1)) | |
return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), | |
N1.getOperand(1).getOperand(0)); | |
// fold (A+((B-A)+or-C)) to (B+or-C) | |
if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && | |
N1.getOperand(0).getOpcode() == ISD::SUB && | |
N0 == N1.getOperand(0).getOperand(1)) | |
return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0), | |
N1.getOperand(1)); | |
// fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant | |
if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { | |
SDValue N00 = N0.getOperand(0); | |
SDValue N01 = N0.getOperand(1); | |
SDValue N10 = N1.getOperand(0); | |
SDValue N11 = N1.getOperand(1); | |
if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10)) | |
return DAG.getNode(ISD::SUB, DL, VT, | |
DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), | |
DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); | |
} | |
if (SimplifyDemandedBits(SDValue(N, 0))) | |
return SDValue(N, 0); | |
// fold (a+b) -> (a|b) iff a and b share no bits. | |
if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && | |
VT.isInteger() && DAG.haveNoCommonBitsSet(N0, N1)) | |
return DAG.getNode(ISD::OR, DL, VT, N0, N1); | |
if (SDValue Combined = visitADDLike(N0, N1, N)) | |
return Combined; | |
if (SDValue Combined = visitADDLike(N1, N0, N)) | |
return Combined; | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitADDLike(SDValue N0, SDValue N1, SDNode *LocReference) { | |
EVT VT = N0.getValueType(); | |
SDLoc DL(LocReference); | |
// fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) | |
if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && | |
isNullConstantOrNullSplatConstant(N1.getOperand(0).getOperand(0))) | |
return DAG.getNode(ISD::SUB, DL, VT, N0, | |
DAG.getNode(ISD::SHL, DL, VT, | |
N1.getOperand(0).getOperand(1), | |
N1.getOperand(1))); | |
if (N1.getOpcode() == ISD::AND) { | |
SDValue AndOp0 = N1.getOperand(0); | |
unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0); | |
unsigned DestBits = VT.getScalarSizeInBits(); | |
// (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x)) | |
// and similar xforms where the inner op is either ~0 or 0. | |
if (NumSignBits == DestBits && | |
isOneConstantOrOneSplatConstant(N1->getOperand(1))) | |
return DAG.getNode(ISD::SUB, DL, VT, N0, AndOp0); | |
} | |
// add (sext i1), X -> sub X, (zext i1) | |
if (N0.getOpcode() == ISD::SIGN_EXTEND && | |
N0.getOperand(0).getValueType() == MVT::i1 && | |
!TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) { | |
SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); | |
return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); | |
} | |
// add X, (sextinreg Y i1) -> sub X, (and Y 1) | |
if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { | |
VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); | |
if (TN->getVT() == MVT::i1) { | |
SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), | |
DAG.getConstant(1, DL, VT)); | |
return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); | |
} | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitADDC(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N0.getValueType(); | |
SDLoc DL(N); | |
// If the flag result is dead, turn this into an ADD. | |
if (!N->hasAnyUseOfValue(1)) | |
return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), | |
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); | |
// canonicalize constant to RHS. | |
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | |
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | |
if (N0C && !N1C) | |
return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0); | |
// fold (addc x, 0) -> x + no carry out | |
if (isNullConstant(N1)) | |
return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, | |
DL, MVT::Glue)); | |
// If it cannot overflow, transform into an add. | |
if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) | |
return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), | |
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitUADDO(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N0.getValueType(); | |
if (VT.isVector()) | |
return SDValue(); | |
EVT CarryVT = N->getValueType(1); | |
SDLoc DL(N); | |
// If the flag result is dead, turn this into an ADD. | |
if (!N->hasAnyUseOfValue(1)) | |
return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), | |
DAG.getUNDEF(CarryVT)); | |
// canonicalize constant to RHS. | |
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | |
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | |
if (N0C && !N1C) | |
return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N1, N0); | |
// fold (uaddo x, 0) -> x + no carry out | |
if (isNullConstant(N1)) | |
return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); | |
// If it cannot overflow, transform into an add. | |
if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) | |
return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), | |
DAG.getConstant(0, DL, CarryVT)); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitADDE(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
SDValue CarryIn = N->getOperand(2); | |
// canonicalize constant to RHS | |
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | |
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | |
if (N0C && !N1C) | |
return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), | |
N1, N0, CarryIn); | |
// fold (adde x, y, false) -> (addc x, y) | |
if (CarryIn.getOpcode() == ISD::CARRY_FALSE) | |
return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); | |
return SDValue(); | |
} | |
// Since it may not be valid to emit a fold to zero for vector initializers | |
// check if we can before folding. | |
static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT, | |
SelectionDAG &DAG, bool LegalOperations, | |
bool LegalTypes) { | |
if (!VT.isVector()) | |
return DAG.getConstant(0, DL, VT); | |
if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) | |
return DAG.getConstant(0, DL, VT); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitSUB(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N0.getValueType(); | |
SDLoc DL(N); | |
// fold vector ops | |
if (VT.isVector()) { | |
if (SDValue FoldedVOp = SimplifyVBinOp(N)) | |
return FoldedVOp; | |
// fold (sub x, 0) -> x, vector edition | |
if (ISD::isBuildVectorAllZeros(N1.getNode())) | |
return N0; | |
} | |
// fold (sub x, x) -> 0 | |
// FIXME: Refactor this and xor and other similar operations together. | |
if (N0 == N1) | |
return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations, LegalTypes); | |
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | |
DAG.isConstantIntBuildVectorOrConstantInt(N1)) { | |
// fold (sub c1, c2) -> c1-c2 | |
return DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(), | |
N1.getNode()); | |
} | |
if (SDValue NewSel = foldBinOpIntoSelect(N)) | |
return NewSel; | |
ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); | |
// fold (sub x, c) -> (add x, -c) | |
if (N1C) { | |
return DAG.getNode(ISD::ADD, DL, VT, N0, | |
DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); | |
} | |
if (isNullConstantOrNullSplatConstant(N0)) { | |
unsigned BitWidth = VT.getScalarSizeInBits(); | |
// Right-shifting everything out but the sign bit followed by negation is | |
// the same as flipping arithmetic/logical shift type without the negation: | |
// -(X >>u 31) -> (X >>s 31) | |
// -(X >>s 31) -> (X >>u 31) | |
if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) { | |
ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1)); | |
if (ShiftAmt && ShiftAmt->getZExtValue() == BitWidth - 1) { | |
auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA; | |
if (!LegalOperations || TLI.isOperationLegal(NewSh, VT)) | |
return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1)); | |
} | |
} | |
// 0 - X --> 0 if the sub is NUW. | |
if (N->getFlags()->hasNoUnsignedWrap()) | |
return N0; | |
if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) { | |
// N1 is either 0 or the minimum signed value. If the sub is NSW, then | |
// N1 must be 0 because negating the minimum signed value is undefined. | |
if (N->getFlags()->hasNoSignedWrap()) | |
return N0; | |
// 0 - X --> X if X is 0 or the minimum signed value. | |
return N1; | |
} | |
} | |
// Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) | |
if (isAllOnesConstantOrAllOnesSplatConstant(N0)) | |
return DAG.getNode(ISD::XOR, DL, VT, N1, N0); | |
// fold A-(A-B) -> B | |
if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) | |
return N1.getOperand(1); | |
// fold (A+B)-A -> B | |
if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) | |
return N0.getOperand(1); | |
// fold (A+B)-B -> A | |
if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) | |
return N0.getOperand(0); | |
// fold C2-(A+C1) -> (C2-C1)-A | |
if (N1.getOpcode() == ISD::ADD) { | |
SDValue N11 = N1.getOperand(1); | |
if (isConstantOrConstantVector(N0, /* NoOpaques */ true) && | |
isConstantOrConstantVector(N11, /* NoOpaques */ true)) { | |
SDValue NewC = DAG.getNode(ISD::SUB, DL, VT, N0, N11); | |
return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0)); | |
} | |
} | |
// fold ((A+(B+or-C))-B) -> A+or-C | |
if (N0.getOpcode() == ISD::ADD && | |
(N0.getOperand(1).getOpcode() == ISD::SUB || | |
N0.getOperand(1).getOpcode() == ISD::ADD) && | |
N0.getOperand(1).getOperand(0) == N1) | |
return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0), | |
N0.getOperand(1).getOperand(1)); | |
// fold ((A+(C+B))-B) -> A+C | |
if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD && | |
N0.getOperand(1).getOperand(1) == N1) | |
return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), | |
N0.getOperand(1).getOperand(0)); | |
// fold ((A-(B-C))-C) -> A-B | |
if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB && | |
N0.getOperand(1).getOperand(1) == N1) | |
return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), | |
N0.getOperand(1).getOperand(0)); | |
// If either operand of a sub is undef, the result is undef | |
if (N0.isUndef()) | |
return N0; | |
if (N1.isUndef()) | |
return N1; | |
// If the relocation model supports it, consider symbol offsets. | |
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) | |
if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { | |
// fold (sub Sym, c) -> Sym-c | |
if (N1C && GA->getOpcode() == ISD::GlobalAddress) | |
return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, | |
GA->getOffset() - | |
(uint64_t)N1C->getSExtValue()); | |
// fold (sub Sym+c1, Sym+c2) -> c1-c2 | |
if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) | |
if (GA->getGlobal() == GB->getGlobal()) | |
return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), | |
DL, VT); | |
} | |
// sub X, (sextinreg Y i1) -> add X, (and Y 1) | |
if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { | |
VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); | |
if (TN->getVT() == MVT::i1) { | |
SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), | |
DAG.getConstant(1, DL, VT)); | |
return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); | |
} | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitSUBC(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N0.getValueType(); | |
SDLoc DL(N); | |
// If the flag result is dead, turn this into an SUB. | |
if (!N->hasAnyUseOfValue(1)) | |
return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), | |
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); | |
// fold (subc x, x) -> 0 + no borrow | |
if (N0 == N1) | |
return CombineTo(N, DAG.getConstant(0, DL, VT), | |
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); | |
// fold (subc x, 0) -> x + no borrow | |
if (isNullConstant(N1)) | |
return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); | |
// Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow | |
if (isAllOnesConstant(N0)) | |
return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), | |
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitUSUBO(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N0.getValueType(); | |
if (VT.isVector()) | |
return SDValue(); | |
EVT CarryVT = N->getValueType(1); | |
SDLoc DL(N); | |
// If the flag result is dead, turn this into an SUB. | |
if (!N->hasAnyUseOfValue(1)) | |
return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), | |
DAG.getUNDEF(CarryVT)); | |
// fold (usubo x, x) -> 0 + no borrow | |
if (N0 == N1) | |
return CombineTo(N, DAG.getConstant(0, DL, VT), | |
DAG.getConstant(0, DL, CarryVT)); | |
// fold (usubo x, 0) -> x + no borrow | |
if (isNullConstant(N1)) | |
return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); | |
// Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow | |
if (isAllOnesConstant(N0)) | |
return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), | |
DAG.getConstant(0, DL, CarryVT)); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitSUBE(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
SDValue CarryIn = N->getOperand(2); | |
// fold (sube x, y, false) -> (subc x, y) | |
if (CarryIn.getOpcode() == ISD::CARRY_FALSE) | |
return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitMUL(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N0.getValueType(); | |
// fold (mul x, undef) -> 0 | |
if (N0.isUndef() || N1.isUndef()) | |
return DAG.getConstant(0, SDLoc(N), VT); | |
bool N0IsConst = false; | |
bool N1IsConst = false; | |
bool N1IsOpaqueConst = false; | |
bool N0IsOpaqueConst = false; | |
APInt ConstValue0, ConstValue1; | |
// fold vector ops | |
if (VT.isVector()) { | |
if (SDValue FoldedVOp = SimplifyVBinOp(N)) | |
return FoldedVOp; | |
N0IsConst = ISD::isConstantSplatVector(N0.getNode(), ConstValue0); | |
N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1); | |
} else { | |
N0IsConst = isa<ConstantSDNode>(N0); | |
if (N0IsConst) { | |
ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue(); | |
N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque(); | |
} | |
N1IsConst = isa<ConstantSDNode>(N1); | |
if (N1IsConst) { | |
ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); | |
N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); | |
} | |
} | |
// fold (mul c1, c2) -> c1*c2 | |
if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst) | |
return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, | |
N0.getNode(), N1.getNode()); | |
// canonicalize constant to RHS (vector doesn't have to splat) | |
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | |
!DAG.isConstantIntBuildVectorOrConstantInt(N1)) | |
return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); | |
// fold (mul x, 0) -> 0 | |
if (N1IsConst && ConstValue1 == 0) | |
return N1; | |
// We require a splat of the entire scalar bit width for non-contiguous | |
// bit patterns. | |
bool IsFullSplat = | |
ConstValue1.getBitWidth() == VT.getScalarSizeInBits(); | |
// fold (mul x, 1) -> x | |
if (N1IsConst && ConstValue1 == 1 && IsFullSplat) | |
return N0; | |
if (SDValue NewSel = foldBinOpIntoSelect(N)) | |
return NewSel; | |
// fold (mul x, -1) -> 0-x | |
if (N1IsConst && ConstValue1.isAllOnesValue()) { | |
SDLoc DL(N); | |
return DAG.getNode(ISD::SUB, DL, VT, | |
DAG.getConstant(0, DL, VT), N0); | |
} | |
// fold (mul x, (1 << c)) -> x << c | |
if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isPowerOf2() && | |
IsFullSplat) { | |
SDLoc DL(N); | |
return DAG.getNode(ISD::SHL, DL, VT, N0, | |
DAG.getConstant(ConstValue1.logBase2(), DL, | |
getShiftAmountTy(N0.getValueType()))); | |
} | |
// fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c | |
if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2() && | |
IsFullSplat) { | |
unsigned Log2Val = (-ConstValue1).logBase2(); | |
SDLoc DL(N); | |
// FIXME: If the input is something that is easily negated (e.g. a | |
// single-use add), we should put the negate there. | |
return DAG.getNode(ISD::SUB, DL, VT, | |
DAG.getConstant(0, DL, VT), | |
DAG.getNode(ISD::SHL, DL, VT, N0, | |
DAG.getConstant(Log2Val, DL, | |
getShiftAmountTy(N0.getValueType())))); | |
} | |
// (mul (shl X, c1), c2) -> (mul X, c2 << c1) | |
if (N0.getOpcode() == ISD::SHL && | |
isConstantOrConstantVector(N1, /* NoOpaques */ true) && | |
isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { | |
SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1)); | |
if (isConstantOrConstantVector(C3)) | |
return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3); | |
} | |
// Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one | |
// use. | |
{ | |
SDValue Sh(nullptr, 0), Y(nullptr, 0); | |
// Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). | |
if (N0.getOpcode() == ISD::SHL && | |
isConstantOrConstantVector(N0.getOperand(1)) && | |
N0.getNode()->hasOneUse()) { | |
Sh = N0; Y = N1; | |
} else if (N1.getOpcode() == ISD::SHL && | |
isConstantOrConstantVector(N1.getOperand(1)) && | |
N1.getNode()->hasOneUse()) { | |
Sh = N1; Y = N0; | |
} | |
if (Sh.getNode()) { | |
SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y); | |
return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1)); | |
} | |
} | |
// fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) | |
if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && | |
N0.getOpcode() == ISD::ADD && | |
DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && | |
isMulAddWithConstProfitable(N, N0, N1)) | |
return DAG.getNode(ISD::ADD, SDLoc(N), VT, | |
DAG.getNode(ISD::MUL, SDLoc(N0), VT, | |
N0.getOperand(0), N1), | |
DAG.getNode(ISD::MUL, SDLoc(N1), VT, | |
N0.getOperand(1), N1)); | |
// reassociate mul | |
if (SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1)) | |
return RMUL; | |
return SDValue(); | |
} | |
/// Return true if divmod libcall is available. | |
static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, | |
const TargetLowering &TLI) { | |
RTLIB::Libcall LC; | |
EVT NodeType = Node->getValueType(0); | |
if (!NodeType.isSimple()) | |
return false; | |
switch (NodeType.getSimpleVT().SimpleTy) { | |
default: return false; // No libcall for vector types. | |
case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; | |
case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; | |
case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; | |
case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; | |
case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; | |
} | |
return TLI.getLibcallName(LC) != nullptr; | |
} | |
/// Issue divrem if both quotient and remainder are needed. | |
SDValue DAGCombiner::useDivRem(SDNode *Node) { | |
if (Node->use_empty()) | |
return SDValue(); // This is a dead node, leave it alone. | |
unsigned Opcode = Node->getOpcode(); | |
bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); | |
unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; | |
// DivMod lib calls can still work on non-legal types if using lib-calls. | |
EVT VT = Node->getValueType(0); | |
if (VT.isVector() || !VT.isInteger()) | |
return SDValue(); | |
if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT)) | |
return SDValue(); | |
// If DIVREM is going to get expanded into a libcall, | |
// but there is no libcall available, then don't combine. | |
if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && | |
!isDivRemLibcallAvailable(Node, isSigned, TLI)) | |
return SDValue(); | |
// If div is legal, it's better to do the normal expansion | |
unsigned OtherOpcode = 0; | |
if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { | |
OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; | |
if (TLI.isOperationLegalOrCustom(Opcode, VT)) | |
return SDValue(); | |
} else { | |
OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; | |
if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) | |
return SDValue(); | |
} | |
SDValue Op0 = Node->getOperand(0); | |
SDValue Op1 = Node->getOperand(1); | |
SDValue combined; | |
for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), | |
UE = Op0.getNode()->use_end(); UI != UE;) { | |
SDNode *User = *UI++; | |
if (User == Node || User->use_empty()) | |
continue; | |
// Convert the other matching node(s), too; | |
// otherwise, the DIVREM may get target-legalized into something | |
// target-specific that we won't be able to recognize. | |
unsigned UserOpc = User->getOpcode(); | |
if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && | |
User->getOperand(0) == Op0 && | |
User->getOperand(1) == Op1) { | |
if (!combined) { | |
if (UserOpc == OtherOpcode) { | |
SDVTList VTs = DAG.getVTList(VT, VT); | |
combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); | |
} else if (UserOpc == DivRemOpc) { | |
combined = SDValue(User, 0); | |
} else { | |
assert(UserOpc == Opcode); | |
continue; | |
} | |
} | |
if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) | |
CombineTo(User, combined); | |
else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) | |
CombineTo(User, combined.getValue(1)); | |
} | |
} | |
return combined; | |
} | |
static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N->getValueType(0); | |
SDLoc DL(N); | |
if (DAG.isUndef(N->getOpcode(), {N0, N1})) | |
return DAG.getUNDEF(VT); | |
// undef / X -> 0 | |
// undef % X -> 0 | |
if (N0.isUndef()) | |
return DAG.getConstant(0, DL, VT); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitSDIV(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N->getValueType(0); | |
// fold vector ops | |
if (VT.isVector()) | |
if (SDValue FoldedVOp = SimplifyVBinOp(N)) | |
return FoldedVOp; | |
SDLoc DL(N); | |
// fold (sdiv c1, c2) -> c1/c2 | |
ConstantSDNode *N0C = isConstOrConstSplat(N0); | |
ConstantSDNode *N1C = isConstOrConstSplat(N1); | |
if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque()) | |
return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C); | |
// fold (sdiv X, 1) -> X | |
if (N1C && N1C->isOne()) | |
return N0; | |
// fold (sdiv X, -1) -> 0-X | |
if (N1C && N1C->isAllOnesValue()) | |
return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0); | |
if (SDValue V = simplifyDivRem(N, DAG)) | |
return V; | |
if (SDValue NewSel = foldBinOpIntoSelect(N)) | |
return NewSel; | |
// If we know the sign bits of both operands are zero, strength reduce to a | |
// udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 | |
if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) | |
return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); | |
// fold (sdiv X, pow2) -> simple ops after legalize | |
// FIXME: We check for the exact bit here because the generic lowering gives | |
// better results in that case. The target-specific lowering should learn how | |
// to handle exact sdivs efficiently. | |
if (N1C && !N1C->isNullValue() && !N1C->isOpaque() && | |
!cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact() && | |
(N1C->getAPIntValue().isPowerOf2() || | |
(-N1C->getAPIntValue()).isPowerOf2())) { | |
// Target-specific implementation of sdiv x, pow2. | |
if (SDValue Res = BuildSDIVPow2(N)) | |
return Res; | |
unsigned lg2 = N1C->getAPIntValue().countTrailingZeros(); | |
// Splat the sign bit into the register | |
SDValue SGN = | |
DAG.getNode(ISD::SRA, DL, VT, N0, | |
DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, | |
getShiftAmountTy(N0.getValueType()))); | |
AddToWorklist(SGN.getNode()); | |
// Add (N0 < 0) ? abs2 - 1 : 0; | |
SDValue SRL = | |
DAG.getNode(ISD::SRL, DL, VT, SGN, | |
DAG.getConstant(VT.getScalarSizeInBits() - lg2, DL, | |
getShiftAmountTy(SGN.getValueType()))); | |
SDValue ADD = DAG.getNode(ISD::ADD, DL, VT, N0, SRL); | |
AddToWorklist(SRL.getNode()); | |
AddToWorklist(ADD.getNode()); // Divide by pow2 | |
SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, ADD, | |
DAG.getConstant(lg2, DL, | |
getShiftAmountTy(ADD.getValueType()))); | |
// If we're dividing by a positive value, we're done. Otherwise, we must | |
// negate the result. | |
if (N1C->getAPIntValue().isNonNegative()) | |
return SRA; | |
AddToWorklist(SRA.getNode()); | |
return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); | |
} | |
// If integer divide is expensive and we satisfy the requirements, emit an | |
// alternate sequence. Targets may check function attributes for size/speed | |
// trade-offs. | |
AttributeList Attr = DAG.getMachineFunction().getFunction()->getAttributes(); | |
if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr)) | |
if (SDValue Op = BuildSDIV(N)) | |
return Op; | |
// sdiv, srem -> sdivrem | |
// If the divisor is constant, then return DIVREM only if isIntDivCheap() is | |
// true. Otherwise, we break the simplification logic in visitREM(). | |
if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) | |
if (SDValue DivRem = useDivRem(N)) | |
return DivRem; | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitUDIV(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N->getValueType(0); | |
// fold vector ops | |
if (VT.isVector()) | |
if (SDValue FoldedVOp = SimplifyVBinOp(N)) | |
return FoldedVOp; | |
SDLoc DL(N); | |
// fold (udiv c1, c2) -> c1/c2 | |
ConstantSDNode *N0C = isConstOrConstSplat(N0); | |
ConstantSDNode *N1C = isConstOrConstSplat(N1); | |
if (N0C && N1C) | |
if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, | |
N0C, N1C)) | |
return Folded; | |
if (SDValue V = simplifyDivRem(N, DAG)) | |
return V; | |
if (SDValue NewSel = foldBinOpIntoSelect(N)) | |
return NewSel; | |
// fold (udiv x, (1 << c)) -> x >>u c | |
if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && | |
DAG.isKnownToBeAPowerOfTwo(N1)) { | |
SDValue LogBase2 = BuildLogBase2(N1, DL); | |
AddToWorklist(LogBase2.getNode()); | |
EVT ShiftVT = getShiftAmountTy(N0.getValueType()); | |
SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); | |
AddToWorklist(Trunc.getNode()); | |
return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); | |
} | |
// fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 | |
if (N1.getOpcode() == ISD::SHL) { | |
SDValue N10 = N1.getOperand(0); | |
if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) && | |
DAG.isKnownToBeAPowerOfTwo(N10)) { | |
SDValue LogBase2 = BuildLogBase2(N10, DL); | |
AddToWorklist(LogBase2.getNode()); | |
EVT ADDVT = N1.getOperand(1).getValueType(); | |
SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT); | |
AddToWorklist(Trunc.getNode()); | |
SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc); | |
AddToWorklist(Add.getNode()); | |
return DAG.getNode(ISD::SRL, DL, VT, N0, Add); | |
} | |
} | |
// fold (udiv x, c) -> alternate | |
AttributeList Attr = DAG.getMachineFunction().getFunction()->getAttributes(); | |
if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr)) | |
if (SDValue Op = BuildUDIV(N)) | |
return Op; | |
// sdiv, srem -> sdivrem | |
// If the divisor is constant, then return DIVREM only if isIntDivCheap() is | |
// true. Otherwise, we break the simplification logic in visitREM(). | |
if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) | |
if (SDValue DivRem = useDivRem(N)) | |
return DivRem; | |
return SDValue(); | |
} | |
// handles ISD::SREM and ISD::UREM | |
SDValue DAGCombiner::visitREM(SDNode *N) { | |
unsigned Opcode = N->getOpcode(); | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N->getValueType(0); | |
bool isSigned = (Opcode == ISD::SREM); | |
SDLoc DL(N); | |
// fold (rem c1, c2) -> c1%c2 | |
ConstantSDNode *N0C = isConstOrConstSplat(N0); | |
ConstantSDNode *N1C = isConstOrConstSplat(N1); | |
if (N0C && N1C) | |
if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C)) | |
return Folded; | |
if (SDValue V = simplifyDivRem(N, DAG)) | |
return V; | |
if (SDValue NewSel = foldBinOpIntoSelect(N)) | |
return NewSel; | |
if (isSigned) { | |
// If we know the sign bits of both operands are zero, strength reduce to a | |
// urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 | |
if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) | |
return DAG.getNode(ISD::UREM, DL, VT, N0, N1); | |
} else { | |
SDValue NegOne = DAG.getAllOnesConstant(DL, VT); | |
if (DAG.isKnownToBeAPowerOfTwo(N1)) { | |
// fold (urem x, pow2) -> (and x, pow2-1) | |
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); | |
AddToWorklist(Add.getNode()); | |
return DAG.getNode(ISD::AND, DL, VT, N0, Add); | |
} | |
if (N1.getOpcode() == ISD::SHL && | |
DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) { | |
// fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) | |
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); | |
AddToWorklist(Add.getNode()); | |
return DAG.getNode(ISD::AND, DL, VT, N0, Add); | |
} | |
} | |
AttributeList Attr = DAG.getMachineFunction().getFunction()->getAttributes(); | |
// If X/C can be simplified by the division-by-constant logic, lower | |
// X%C to the equivalent of X-X/C*C. | |
// To avoid mangling nodes, this simplification requires that the combine() | |
// call for the speculative DIV must not cause a DIVREM conversion. We guard | |
// against this by skipping the simplification if isIntDivCheap(). When | |
// div is not cheap, combine will not return a DIVREM. Regardless, | |
// checking cheapness here makes sense since the simplification results in | |
// fatter code. | |
if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap(VT, Attr)) { | |
unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; | |
SDValue Div = DAG.getNode(DivOpcode, DL, VT, N0, N1); | |
AddToWorklist(Div.getNode()); | |
SDValue OptimizedDiv = combine(Div.getNode()); | |
if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) { | |
assert((OptimizedDiv.getOpcode() != ISD::UDIVREM) && | |
(OptimizedDiv.getOpcode() != ISD::SDIVREM)); | |
SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); | |
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); | |
AddToWorklist(Mul.getNode()); | |
return Sub; | |
} | |
} | |
// sdiv, srem -> sdivrem | |
if (SDValue DivRem = useDivRem(N)) | |
return DivRem.getValue(1); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitMULHS(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N->getValueType(0); | |
SDLoc DL(N); | |
// fold (mulhs x, 0) -> 0 | |
if (isNullConstant(N1)) | |
return N1; | |
// fold (mulhs x, 1) -> (sra x, size(x)-1) | |
if (isOneConstant(N1)) { | |
SDLoc DL(N); | |
return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, | |
DAG.getConstant(N0.getValueSizeInBits() - 1, DL, | |
getShiftAmountTy(N0.getValueType()))); | |
} | |
// fold (mulhs x, undef) -> 0 | |
if (N0.isUndef() || N1.isUndef()) | |
return DAG.getConstant(0, SDLoc(N), VT); | |
// If the type twice as wide is legal, transform the mulhs to a wider multiply | |
// plus a shift. | |
if (VT.isSimple() && !VT.isVector()) { | |
MVT Simple = VT.getSimpleVT(); | |
unsigned SimpleSize = Simple.getSizeInBits(); | |
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); | |
if (TLI.isOperationLegal(ISD::MUL, NewVT)) { | |
N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); | |
N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); | |
N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); | |
N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, | |
DAG.getConstant(SimpleSize, DL, | |
getShiftAmountTy(N1.getValueType()))); | |
return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); | |
} | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitMULHU(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N->getValueType(0); | |
SDLoc DL(N); | |
// fold (mulhu x, 0) -> 0 | |
if (isNullConstant(N1)) | |
return N1; | |
// fold (mulhu x, 1) -> 0 | |
if (isOneConstant(N1)) | |
return DAG.getConstant(0, DL, N0.getValueType()); | |
// fold (mulhu x, undef) -> 0 | |
if (N0.isUndef() || N1.isUndef()) | |
return DAG.getConstant(0, DL, VT); | |
// If the type twice as wide is legal, transform the mulhu to a wider multiply | |
// plus a shift. | |
if (VT.isSimple() && !VT.isVector()) { | |
MVT Simple = VT.getSimpleVT(); | |
unsigned SimpleSize = Simple.getSizeInBits(); | |
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); | |
if (TLI.isOperationLegal(ISD::MUL, NewVT)) { | |
N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); | |
N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); | |
N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); | |
N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, | |
DAG.getConstant(SimpleSize, DL, | |
getShiftAmountTy(N1.getValueType()))); | |
return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); | |
} | |
} | |
return SDValue(); | |
} | |
/// Perform optimizations common to nodes that compute two values. LoOp and HiOp | |
/// give the opcodes for the two computations that are being performed. Return | |
/// true if a simplification was made. | |
SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, | |
unsigned HiOp) { | |
// If the high half is not needed, just compute the low half. | |
bool HiExists = N->hasAnyUseOfValue(1); | |
if (!HiExists && | |
(!LegalOperations || | |
TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { | |
SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); | |
return CombineTo(N, Res, Res); | |
} | |
// If the low half is not needed, just compute the high half. | |
bool LoExists = N->hasAnyUseOfValue(0); | |
if (!LoExists && | |
(!LegalOperations || | |
TLI.isOperationLegal(HiOp, N->getValueType(1)))) { | |
SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); | |
return CombineTo(N, Res, Res); | |
} | |
// If both halves are used, return as it is. | |
if (LoExists && HiExists) | |
return SDValue(); | |
// If the two computed results can be simplified separately, separate them. | |
if (LoExists) { | |
SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); | |
AddToWorklist(Lo.getNode()); | |
SDValue LoOpt = combine(Lo.getNode()); | |
if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && | |
(!LegalOperations || | |
TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))) | |
return CombineTo(N, LoOpt, LoOpt); | |
} | |
if (HiExists) { | |
SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); | |
AddToWorklist(Hi.getNode()); | |
SDValue HiOpt = combine(Hi.getNode()); | |
if (HiOpt.getNode() && HiOpt != Hi && | |
(!LegalOperations || | |
TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))) | |
return CombineTo(N, HiOpt, HiOpt); | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { | |
if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) | |
return Res; | |
EVT VT = N->getValueType(0); | |
SDLoc DL(N); | |
// If the type is twice as wide is legal, transform the mulhu to a wider | |
// multiply plus a shift. | |
if (VT.isSimple() && !VT.isVector()) { | |
MVT Simple = VT.getSimpleVT(); | |
unsigned SimpleSize = Simple.getSizeInBits(); | |
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); | |
if (TLI.isOperationLegal(ISD::MUL, NewVT)) { | |
SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); | |
SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); | |
Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); | |
// Compute the high part as N1. | |
Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, | |
DAG.getConstant(SimpleSize, DL, | |
getShiftAmountTy(Lo.getValueType()))); | |
Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); | |
// Compute the low part as N0. | |
Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); | |
return CombineTo(N, Lo, Hi); | |
} | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { | |
if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) | |
return Res; | |
EVT VT = N->getValueType(0); | |
SDLoc DL(N); | |
// If the type is twice as wide is legal, transform the mulhu to a wider | |
// multiply plus a shift. | |
if (VT.isSimple() && !VT.isVector()) { | |
MVT Simple = VT.getSimpleVT(); | |
unsigned SimpleSize = Simple.getSizeInBits(); | |
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); | |
if (TLI.isOperationLegal(ISD::MUL, NewVT)) { | |
SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); | |
SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); | |
Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); | |
// Compute the high part as N1. | |
Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, | |
DAG.getConstant(SimpleSize, DL, | |
getShiftAmountTy(Lo.getValueType()))); | |
Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); | |
// Compute the low part as N0. | |
Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); | |
return CombineTo(N, Lo, Hi); | |
} | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitSMULO(SDNode *N) { | |
// (smulo x, 2) -> (saddo x, x) | |
if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) | |
if (C2->getAPIntValue() == 2) | |
return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(), | |
N->getOperand(0), N->getOperand(0)); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitUMULO(SDNode *N) { | |
// (umulo x, 2) -> (uaddo x, x) | |
if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) | |
if (C2->getAPIntValue() == 2) | |
return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(), | |
N->getOperand(0), N->getOperand(0)); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitIMINMAX(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N0.getValueType(); | |
// fold vector ops | |
if (VT.isVector()) | |
if (SDValue FoldedVOp = SimplifyVBinOp(N)) | |
return FoldedVOp; | |
// fold (add c1, c2) -> c1+c2 | |
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); | |
ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); | |
if (N0C && N1C) | |
return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C); | |
// canonicalize constant to RHS | |
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | |
!DAG.isConstantIntBuildVectorOrConstantInt(N1)) | |
return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); | |
return SDValue(); | |
} | |
/// If this is a binary operator with two operands of the same opcode, try to | |
/// simplify it. | |
SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) { | |
SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); | |
EVT VT = N0.getValueType(); | |
assert(N0.getOpcode() == N1.getOpcode() && "Bad input!"); | |
// Bail early if none of these transforms apply. | |
if (N0.getNumOperands() == 0) return SDValue(); | |
// For each of OP in AND/OR/XOR: | |
// fold (OP (zext x), (zext y)) -> (zext (OP x, y)) | |
// fold (OP (sext x), (sext y)) -> (sext (OP x, y)) | |
// fold (OP (aext x), (aext y)) -> (aext (OP x, y)) | |
// fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y)) | |
// fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free) | |
// | |
// do not sink logical op inside of a vector extend, since it may combine | |
// into a vsetcc. | |
EVT Op0VT = N0.getOperand(0).getValueType(); | |
if ((N0.getOpcode() == ISD::ZERO_EXTEND || | |
N0.getOpcode() == ISD::SIGN_EXTEND || | |
N0.getOpcode() == ISD::BSWAP || | |
// Avoid infinite looping with PromoteIntBinOp. | |
(N0.getOpcode() == ISD::ANY_EXTEND && | |
(!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) || | |
(N0.getOpcode() == ISD::TRUNCATE && | |
(!TLI.isZExtFree(VT, Op0VT) || | |
!TLI.isTruncateFree(Op0VT, VT)) && | |
TLI.isTypeLegal(Op0VT))) && | |
!VT.isVector() && | |
Op0VT == N1.getOperand(0).getValueType() && | |
(!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) { | |
SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), | |
N0.getOperand(0).getValueType(), | |
N0.getOperand(0), N1.getOperand(0)); | |
AddToWorklist(ORNode.getNode()); | |
return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode); | |
} | |
// For each of OP in SHL/SRL/SRA/AND... | |
// fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z) | |
// fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z) | |
// fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z) | |
if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL || | |
N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) && | |
N0.getOperand(1) == N1.getOperand(1)) { | |
SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), | |
N0.getOperand(0).getValueType(), | |
N0.getOperand(0), N1.getOperand(0)); | |
AddToWorklist(ORNode.getNode()); | |
return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, | |
ORNode, N0.getOperand(1)); | |
} | |
// Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) | |
// Only perform this optimization up until type legalization, before | |
// LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by | |
// adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and | |
// we don't want to undo this promotion. | |
// We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper | |
// on scalars. | |
if ((N0.getOpcode() == ISD::BITCAST || | |
N0.getOpcode() == ISD::SCALAR_TO_VECTOR) && | |
Level <= AfterLegalizeTypes) { | |
SDValue In0 = N0.getOperand(0); | |
SDValue In1 = N1.getOperand(0); | |
EVT In0Ty = In0.getValueType(); | |
EVT In1Ty = In1.getValueType(); | |
SDLoc DL(N); | |
// If both incoming values are integers, and the original types are the | |
// same. | |
if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) { | |
SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1); | |
SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op); | |
AddToWorklist(Op.getNode()); | |
return BC; | |
} | |
} | |
// Xor/and/or are indifferent to the swizzle operation (shuffle of one value). | |
// Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) | |
// If both shuffles use the same mask, and both shuffle within a single | |
// vector, then it is worthwhile to move the swizzle after the operation. | |
// The type-legalizer generates this pattern when loading illegal | |
// vector types from memory. In many cases this allows additional shuffle | |
// optimizations. | |
// There are other cases where moving the shuffle after the xor/and/or | |
// is profitable even if shuffles don't perform a swizzle. | |
// If both shuffles use the same mask, and both shuffles have the same first | |
// or second operand, then it might still be profitable to move the shuffle | |
// after the xor/and/or operation. | |
if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { | |
ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0); | |
ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1); | |
assert(N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() && | |
"Inputs to shuffles are not the same type"); | |
// Check that both shuffles use the same mask. The masks are known to be of | |
// the same length because the result vector type is the same. | |
// Check also that shuffles have only one use to avoid introducing extra | |
// instructions. | |
if (SVN0->hasOneUse() && SVN1->hasOneUse() && | |
SVN0->getMask().equals(SVN1->getMask())) { | |
SDValue ShOp = N0->getOperand(1); | |
// Don't try to fold this node if it requires introducing a | |
// build vector of all zeros that might be illegal at this stage. | |
if (N->getOpcode() == ISD::XOR && !ShOp.isUndef()) { | |
if (!LegalTypes) | |
ShOp = DAG.getConstant(0, SDLoc(N), VT); | |
else | |
ShOp = SDValue(); | |
} | |
// (AND (shuf (A, C), shuf (B, C)) -> shuf (AND (A, B), C) | |
// (OR (shuf (A, C), shuf (B, C)) -> shuf (OR (A, B), C) | |
// (XOR (shuf (A, C), shuf (B, C)) -> shuf (XOR (A, B), V_0) | |
if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { | |
SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, | |
N0->getOperand(0), N1->getOperand(0)); | |
AddToWorklist(NewNode.getNode()); | |
return DAG.getVectorShuffle(VT, SDLoc(N), NewNode, ShOp, | |
SVN0->getMask()); | |
} | |
// Don't try to fold this node if it requires introducing a | |
// build vector of all zeros that might be illegal at this stage. | |
ShOp = N0->getOperand(0); | |
if (N->getOpcode() == ISD::XOR && !ShOp.isUndef()) { | |
if (!LegalTypes) | |
ShOp = DAG.getConstant(0, SDLoc(N), VT); | |
else | |
ShOp = SDValue(); | |
} | |
// (AND (shuf (C, A), shuf (C, B)) -> shuf (C, AND (A, B)) | |
// (OR (shuf (C, A), shuf (C, B)) -> shuf (C, OR (A, B)) | |
// (XOR (shuf (C, A), shuf (C, B)) -> shuf (V_0, XOR (A, B)) | |
if (N0->getOperand(0) == N1->getOperand(0) && ShOp.getNode()) { | |
SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, | |
N0->getOperand(1), N1->getOperand(1)); | |
AddToWorklist(NewNode.getNode()); | |
return DAG.getVectorShuffle(VT, SDLoc(N), ShOp, NewNode, | |
SVN0->getMask()); | |
} | |
} | |
} | |
return SDValue(); | |
} | |
/// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient. | |
SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, | |
const SDLoc &DL) { | |
SDValue LL, LR, RL, RR, N0CC, N1CC; | |
if (!isSetCCEquivalent(N0, LL, LR, N0CC) || | |
!isSetCCEquivalent(N1, RL, RR, N1CC)) | |
return SDValue(); | |
assert(N0.getValueType() == N1.getValueType() && | |
"Unexpected operand types for bitwise logic op"); | |
assert(LL.getValueType() == LR.getValueType() && | |
RL.getValueType() == RR.getValueType() && | |
"Unexpected operand types for setcc"); | |
// If we're here post-legalization or the logic op type is not i1, the logic | |
// op type must match a setcc result type. Also, all folds require new | |
// operations on the left and right operands, so those types must match. | |
EVT VT = N0.getValueType(); | |
EVT OpVT = LL.getValueType(); | |
if (LegalOperations || VT != MVT::i1) | |
if (VT != getSetCCResultType(OpVT)) | |
return SDValue(); | |
if (OpVT != RL.getValueType()) | |
return SDValue(); | |
ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get(); | |
ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get(); | |
bool IsInteger = OpVT.isInteger(); | |
if (LR == RR && CC0 == CC1 && IsInteger) { | |
bool IsZero = isNullConstantOrNullSplatConstant(LR); | |
bool IsNeg1 = isAllOnesConstantOrAllOnesSplatConstant(LR); | |
// All bits clear? | |
bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero; | |
// All sign bits clear? | |
bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1; | |
// Any bits set? | |
bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero; | |
// Any sign bits set? | |
bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero; | |
// (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0) | |
// (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1) | |
// (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0) | |
// (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0) | |
if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) { | |
SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL); | |
AddToWorklist(Or.getNode()); | |
return DAG.getSetCC(DL, VT, Or, LR, CC1); | |
} | |
// All bits set? | |
bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1; | |
// All sign bits set? | |
bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero; | |
// Any bits clear? | |
bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1; | |
// Any sign bits clear? | |
bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1; | |
// (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1) | |
// (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0) | |
// (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1) | |
// (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1) | |
if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) { | |
SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL); | |
AddToWorklist(And.getNode()); | |
return DAG.getSetCC(DL, VT, And, LR, CC1); | |
} | |
} | |
// TODO: What is the 'or' equivalent of this fold? | |
// (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2) | |
if (IsAnd && LL == RL && CC0 == CC1 && IsInteger && CC0 == ISD::SETNE && | |
((isNullConstant(LR) && isAllOnesConstant(RR)) || | |
(isAllOnesConstant(LR) && isNullConstant(RR)))) { | |
SDValue One = DAG.getConstant(1, DL, OpVT); | |
SDValue Two = DAG.getConstant(2, DL, OpVT); | |
SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One); | |
AddToWorklist(Add.getNode()); | |
return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE); | |
} | |
// Try more general transforms if the predicates match and the only user of | |
// the compares is the 'and' or 'or'. | |
if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 && | |
N0.hasOneUse() && N1.hasOneUse()) { | |
// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0 | |
// or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0 | |
if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) { | |
SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR); | |
SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR); | |
SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR); | |
SDValue Zero = DAG.getConstant(0, DL, OpVT); | |
return DAG.getSetCC(DL, VT, Or, Zero, CC1); | |
} | |
} | |
// Canonicalize equivalent operands to LL == RL. | |
if (LL == RR && LR == RL) { | |
CC1 = ISD::getSetCCSwappedOperands(CC1); | |
std::swap(RL, RR); | |
} | |
// (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) | |
// (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) | |
if (LL == RL && LR == RR) { | |
ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, IsInteger) | |
: ISD::getSetCCOrOperation(CC0, CC1, IsInteger); | |
if (NewCC != ISD::SETCC_INVALID && | |
(!LegalOperations || | |
(TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) && | |
TLI.isOperationLegal(ISD::SETCC, OpVT)))) | |
return DAG.getSetCC(DL, VT, LL, LR, NewCC); | |
} | |
return SDValue(); | |
} | |
/// This contains all DAGCombine rules which reduce two values combined by | |
/// an And operation to a single value. This makes them reusable in the context | |
/// of visitSELECT(). Rules involving constants are not included as | |
/// visitSELECT() already handles those cases. | |
SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) { | |
EVT VT = N1.getValueType(); | |
SDLoc DL(N); | |
// fold (and x, undef) -> 0 | |
if (N0.isUndef() || N1.isUndef()) | |
return DAG.getConstant(0, DL, VT); | |
if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL)) | |
return V; | |
if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && | |
VT.getSizeInBits() <= 64) { | |
if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | |
APInt ADDC = ADDI->getAPIntValue(); | |
if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) { | |
// Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal | |
// immediate for an add, but it is legal if its top c2 bits are set, | |
// transform the ADD so the immediate doesn't need to be materialized | |
// in a register. | |
if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { | |
APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), | |
SRLI->getZExtValue()); | |
if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { | |
ADDC |= Mask; | |
if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { | |
SDLoc DL0(N0); | |
SDValue NewAdd = | |
DAG.getNode(ISD::ADD, DL0, VT, | |
N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); | |
CombineTo(N0.getNode(), NewAdd); | |
// Return N so it doesn't get rechecked! | |
return SDValue(N, 0); | |
} | |
} | |
} | |
} | |
} | |
} | |
// Reduce bit extract of low half of an integer to the narrower type. | |
// (and (srl i64:x, K), KMask) -> | |
// (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask) | |
if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { | |
if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) { | |
if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | |
unsigned Size = VT.getSizeInBits(); | |
const APInt &AndMask = CAnd->getAPIntValue(); | |
unsigned ShiftBits = CShift->getZExtValue(); | |
// Bail out, this node will probably disappear anyway. | |
if (ShiftBits == 0) | |
return SDValue(); | |
unsigned MaskBits = AndMask.countTrailingOnes(); | |
EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2); | |
if (AndMask.isMask() && | |
// Required bits must not span the two halves of the integer and | |
// must fit in the half size type. | |
(ShiftBits + MaskBits <= Size / 2) && | |
TLI.isNarrowingProfitable(VT, HalfVT) && | |
TLI.isTypeDesirableForOp(ISD::AND, HalfVT) && | |
TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) && | |
TLI.isTruncateFree(VT, HalfVT) && | |
TLI.isZExtFree(HalfVT, VT)) { | |
// The isNarrowingProfitable is to avoid regressions on PPC and | |
// AArch64 which match a few 64-bit bit insert / bit extract patterns | |
// on downstream users of this. Those patterns could probably be | |
// extended to handle extensions mixed in. | |
SDValue SL(N0); | |
assert(MaskBits <= Size); | |
// Extracting the highest bit of the low half. | |
EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout()); | |
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT, | |
N0.getOperand(0)); | |
SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT); | |
SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT); | |
SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK); | |
SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask); | |
return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And); | |
} | |
} | |
} | |
} | |
return SDValue(); | |
} | |
bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, | |
EVT LoadResultTy, EVT &ExtVT, EVT &LoadedVT, | |
bool &NarrowLoad) { | |
uint32_t ActiveBits = AndC->getAPIntValue().getActiveBits(); | |
if (ActiveBits == 0 || !AndC->getAPIntValue().isMask(ActiveBits)) | |
return false; | |
ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); | |
LoadedVT = LoadN->getMemoryVT(); | |
if (ExtVT == LoadedVT && | |
(!LegalOperations || | |
TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { | |
// ZEXTLOAD will match without needing to change the size of the value being | |
// loaded. | |
NarrowLoad = false; | |
return true; | |
} | |
// Do not change the width of a volatile load. | |
if (LoadN->isVolatile()) | |
return false; | |
// Do not generate loads of non-round integer types since these can | |
// be expensive (and would be wrong if the type is not byte sized). | |
if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) | |
return false; | |
if (LegalOperations && | |
!TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) | |
return false; | |
if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) | |
return false; | |
NarrowLoad = true; | |
return true; | |
} | |
SDValue DAGCombiner::visitAND(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N1.getValueType(); | |
// x & x --> x | |
if (N0 == N1) | |
return N0; | |
// fold vector ops | |
if (VT.isVector()) { | |
if (SDValue FoldedVOp = SimplifyVBinOp(N)) | |
return FoldedVOp; | |
// fold (and x, 0) -> 0, vector edition | |
if (ISD::isBuildVectorAllZeros(N0.getNode())) | |
// do not return N0, because undef node may exist in N0 | |
return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()), | |
SDLoc(N), N0.getValueType()); | |
if (ISD::isBuildVectorAllZeros(N1.getNode())) | |
// do not return N1, because undef node may exist in N1 | |
return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()), | |
SDLoc(N), N1.getValueType()); | |
// fold (and x, -1) -> x, vector edition | |
if (ISD::isBuildVectorAllOnes(N0.getNode())) | |
return N1; | |
if (ISD::isBuildVectorAllOnes(N1.getNode())) | |
return N0; | |
} | |
// fold (and c1, c2) -> c1&c2 | |
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); | |
ConstantSDNode *N1C = isConstOrConstSplat(N1); | |
if (N0C && N1C && !N1C->isOpaque()) | |
return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C); | |
// canonicalize constant to RHS | |
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | |
!DAG.isConstantIntBuildVectorOrConstantInt(N1)) | |
return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); | |
// fold (and x, -1) -> x | |
if (isAllOnesConstant(N1)) | |
return N0; | |
// if (and x, c) is known to be zero, return 0 | |
unsigned BitWidth = VT.getScalarSizeInBits(); | |
if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), | |
APInt::getAllOnesValue(BitWidth))) | |
return DAG.getConstant(0, SDLoc(N), VT); | |
if (SDValue NewSel = foldBinOpIntoSelect(N)) | |
return NewSel; | |
// reassociate and | |
if (SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1)) | |
return RAND; | |
// fold (and (or x, C), D) -> D if (C & D) == D | |
if (N1C && N0.getOpcode() == ISD::OR) | |
if (ConstantSDNode *ORI = isConstOrConstSplat(N0.getOperand(1))) | |
if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue()) | |
return N1; | |
// fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. | |
if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { | |
SDValue N0Op0 = N0.getOperand(0); | |
APInt Mask = ~N1C->getAPIntValue(); | |
Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits()); | |
if (DAG.MaskedValueIsZero(N0Op0, Mask)) { | |
SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), | |
N0.getValueType(), N0Op0); | |
// Replace uses of the AND with uses of the Zero extend node. | |
CombineTo(N, Zext); | |
// We actually want to replace all uses of the any_extend with the | |
// zero_extend, to avoid duplicating things. This will later cause this | |
// AND to be folded. | |
CombineTo(N0.getNode(), Zext); | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
} | |
// similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> | |
// (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must | |
// already be zero by virtue of the width of the base type of the load. | |
// | |
// the 'X' node here can either be nothing or an extract_vector_elt to catch | |
// more cases. | |
if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && | |
N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && | |
N0.getOperand(0).getOpcode() == ISD::LOAD && | |
N0.getOperand(0).getResNo() == 0) || | |
(N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) { | |
LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? | |
N0 : N0.getOperand(0) ); | |
// Get the constant (if applicable) the zero'th operand is being ANDed with. | |
// This can be a pure constant or a vector splat, in which case we treat the | |
// vector as a scalar and use the splat value. | |
APInt Constant = APInt::getNullValue(1); | |
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { | |
Constant = C->getAPIntValue(); | |
} else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { | |
APInt SplatValue, SplatUndef; | |
unsigned SplatBitSize; | |
bool HasAnyUndefs; | |
bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, | |
SplatBitSize, HasAnyUndefs); | |
if (IsSplat) { | |
// Undef bits can contribute to a possible optimisation if set, so | |
// set them. | |
SplatValue |= SplatUndef; | |
// The splat value may be something like "0x00FFFFFF", which means 0 for | |
// the first vector value and FF for the rest, repeating. We need a mask | |
// that will apply equally to all members of the vector, so AND all the | |
// lanes of the constant together. | |
EVT VT = Vector->getValueType(0); | |
unsigned BitWidth = VT.getScalarSizeInBits(); | |
// If the splat value has been compressed to a bitlength lower | |
// than the size of the vector lane, we need to re-expand it to | |
// the lane size. | |
if (BitWidth > SplatBitSize) | |
for (SplatValue = SplatValue.zextOrTrunc(BitWidth); | |
SplatBitSize < BitWidth; | |
SplatBitSize = SplatBitSize * 2) | |
SplatValue |= SplatValue.shl(SplatBitSize); | |
// Make sure that variable 'Constant' is only set if 'SplatBitSize' is a | |
// multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. | |
if (SplatBitSize % BitWidth == 0) { | |
Constant = APInt::getAllOnesValue(BitWidth); | |
for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i) | |
Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth); | |
} | |
} | |
} | |
// If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is | |
// actually legal and isn't going to get expanded, else this is a false | |
// optimisation. | |
bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, | |
Load->getValueType(0), | |
Load->getMemoryVT()); | |
// Resize the constant to the same size as the original memory access before | |
// extension. If it is still the AllOnesValue then this AND is completely | |
// unneeded. | |
Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits()); | |
bool B; | |
switch (Load->getExtensionType()) { | |
default: B = false; break; | |
case ISD::EXTLOAD: B = CanZextLoadProfitably; break; | |
case ISD::ZEXTLOAD: | |
case ISD::NON_EXTLOAD: B = true; break; | |
} | |
if (B && Constant.isAllOnesValue()) { | |
// If the load type was an EXTLOAD, convert to ZEXTLOAD in order to | |
// preserve semantics once we get rid of the AND. | |
SDValue NewLoad(Load, 0); | |
// Fold the AND away. NewLoad may get replaced immediately. | |
CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); | |
if (Load->getExtensionType() == ISD::EXTLOAD) { | |
NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, | |
Load->getValueType(0), SDLoc(Load), | |
Load->getChain(), Load->getBasePtr(), | |
Load->getOffset(), Load->getMemoryVT(), | |
Load->getMemOperand()); | |
// Replace uses of the EXTLOAD with the new ZEXTLOAD. | |
if (Load->getNumValues() == 3) { | |
// PRE/POST_INC loads have 3 values. | |
SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), | |
NewLoad.getValue(2) }; | |
CombineTo(Load, To, 3, true); | |
} else { | |
CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); | |
} | |
} | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
} | |
// fold (and (load x), 255) -> (zextload x, i8) | |
// fold (and (extload x, i16), 255) -> (zextload x, i8) | |
// fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) | |
if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD || | |
(N0.getOpcode() == ISD::ANY_EXTEND && | |
N0.getOperand(0).getOpcode() == ISD::LOAD))) { | |
bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND; | |
LoadSDNode *LN0 = HasAnyExt | |
? cast<LoadSDNode>(N0.getOperand(0)) | |
: cast<LoadSDNode>(N0); | |
if (LN0->getExtensionType() != ISD::SEXTLOAD && | |
LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) { | |
auto NarrowLoad = false; | |
EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT; | |
EVT ExtVT, LoadedVT; | |
if (isAndLoadExtLoad(N1C, LN0, LoadResultTy, ExtVT, LoadedVT, | |
NarrowLoad)) { | |
if (!NarrowLoad) { | |
SDValue NewLoad = | |
DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, | |
LN0->getChain(), LN0->getBasePtr(), ExtVT, | |
LN0->getMemOperand()); | |
AddToWorklist(N); | |
CombineTo(LN0, NewLoad, NewLoad.getValue(1)); | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} else { | |
EVT PtrType = LN0->getOperand(1).getValueType(); | |
unsigned Alignment = LN0->getAlignment(); | |
SDValue NewPtr = LN0->getBasePtr(); | |
// For big endian targets, we need to add an offset to the pointer | |
// to load the correct bytes. For little endian systems, we merely | |
// need to read fewer bytes from the same pointer. | |
if (DAG.getDataLayout().isBigEndian()) { | |
unsigned LVTStoreBytes = LoadedVT.getStoreSize(); | |
unsigned EVTStoreBytes = ExtVT.getStoreSize(); | |
unsigned PtrOff = LVTStoreBytes - EVTStoreBytes; | |
SDLoc DL(LN0); | |
NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, | |
NewPtr, DAG.getConstant(PtrOff, DL, PtrType)); | |
Alignment = MinAlign(Alignment, PtrOff); | |
} | |
AddToWorklist(NewPtr.getNode()); | |
SDValue Load = DAG.getExtLoad( | |
ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, LN0->getChain(), NewPtr, | |
LN0->getPointerInfo(), ExtVT, Alignment, | |
LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); | |
AddToWorklist(N); | |
CombineTo(LN0, Load, Load.getValue(1)); | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
} | |
} | |
} | |
if (SDValue Combined = visitANDLike(N0, N1, N)) | |
return Combined; | |
// Simplify: (and (op x...), (op y...)) -> (op (and x, y)) | |
if (N0.getOpcode() == N1.getOpcode()) | |
if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) | |
return Tmp; | |
// Masking the negated extension of a boolean is just the zero-extended | |
// boolean: | |
// and (sub 0, zext(bool X)), 1 --> zext(bool X) | |
// and (sub 0, sext(bool X)), 1 --> zext(bool X) | |
// | |
// Note: the SimplifyDemandedBits fold below can make an information-losing | |
// transform, and then we have no way to find this better fold. | |
if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) { | |
ConstantSDNode *SubLHS = isConstOrConstSplat(N0.getOperand(0)); | |
SDValue SubRHS = N0.getOperand(1); | |
if (SubLHS && SubLHS->isNullValue()) { | |
if (SubRHS.getOpcode() == ISD::ZERO_EXTEND && | |
SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) | |
return SubRHS; | |
if (SubRHS.getOpcode() == ISD::SIGN_EXTEND && | |
SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) | |
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0)); | |
} | |
} | |
// fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) | |
// fold (and (sra)) -> (and (srl)) when possible. | |
if (SimplifyDemandedBits(SDValue(N, 0))) | |
return SDValue(N, 0); | |
// fold (zext_inreg (extload x)) -> (zextload x) | |
if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) { | |
LoadSDNode *LN0 = cast<LoadSDNode>(N0); | |
EVT MemVT = LN0->getMemoryVT(); | |
// If we zero all the possible extended bits, then we can turn this into | |
// a zextload if we are running before legalize or the operation is legal. | |
unsigned BitWidth = N1.getScalarValueSizeInBits(); | |
if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, | |
BitWidth - MemVT.getScalarSizeInBits())) && | |
((!LegalOperations && !LN0->isVolatile()) || | |
TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { | |
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, | |
LN0->getChain(), LN0->getBasePtr(), | |
MemVT, LN0->getMemOperand()); | |
AddToWorklist(N); | |
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
} | |
// fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use | |
if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && | |
N0.hasOneUse()) { | |
LoadSDNode *LN0 = cast<LoadSDNode>(N0); | |
EVT MemVT = LN0->getMemoryVT(); | |
// If we zero all the possible extended bits, then we can turn this into | |
// a zextload if we are running before legalize or the operation is legal. | |
unsigned BitWidth = N1.getScalarValueSizeInBits(); | |
if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, | |
BitWidth - MemVT.getScalarSizeInBits())) && | |
((!LegalOperations && !LN0->isVolatile()) || | |
TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { | |
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, | |
LN0->getChain(), LN0->getBasePtr(), | |
MemVT, LN0->getMemOperand()); | |
AddToWorklist(N); | |
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
} | |
// fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) | |
if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { | |
if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), | |
N0.getOperand(1), false)) | |
return BSwap; | |
} | |
return SDValue(); | |
} | |
/// Match (a >> 8) | (a << 8) as (bswap a) >> 16. | |
SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, | |
bool DemandHighBits) { | |
if (!LegalOperations) | |
return SDValue(); | |
EVT VT = N->getValueType(0); | |
if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) | |
return SDValue(); | |
if (!TLI.isOperationLegal(ISD::BSWAP, VT)) | |
return SDValue(); | |
// Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00) | |
bool LookPassAnd0 = false; | |
bool LookPassAnd1 = false; | |
if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) | |
std::swap(N0, N1); | |
if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) | |
std::swap(N0, N1); | |
if (N0.getOpcode() == ISD::AND) { | |
if (!N0.getNode()->hasOneUse()) | |
return SDValue(); | |
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | |
if (!N01C || N01C->getZExtValue() != 0xFF00) | |
return SDValue(); | |
N0 = N0.getOperand(0); | |
LookPassAnd0 = true; | |
} | |
if (N1.getOpcode() == ISD::AND) { | |
if (!N1.getNode()->hasOneUse()) | |
return SDValue(); | |
ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); | |
if (!N11C || N11C->getZExtValue() != 0xFF) | |
return SDValue(); | |
N1 = N1.getOperand(0); | |
LookPassAnd1 = true; | |
} | |
if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) | |
std::swap(N0, N1); | |
if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) | |
return SDValue(); | |
if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse()) | |
return SDValue(); | |
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | |
ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); | |
if (!N01C || !N11C) | |
return SDValue(); | |
if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) | |
return SDValue(); | |
// Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) | |
SDValue N00 = N0->getOperand(0); | |
if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { | |
if (!N00.getNode()->hasOneUse()) | |
return SDValue(); | |
ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); | |
if (!N001C || N001C->getZExtValue() != 0xFF) | |
return SDValue(); | |
N00 = N00.getOperand(0); | |
LookPassAnd0 = true; | |
} | |
SDValue N10 = N1->getOperand(0); | |
if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { | |
if (!N10.getNode()->hasOneUse()) | |
return SDValue(); | |
ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); | |
if (!N101C || N101C->getZExtValue() != 0xFF00) | |
return SDValue(); | |
N10 = N10.getOperand(0); | |
LookPassAnd1 = true; | |
} | |
if (N00 != N10) | |
return SDValue(); | |
// Make sure everything beyond the low halfword gets set to zero since the SRL | |
// 16 will clear the top bits. | |
unsigned OpSizeInBits = VT.getSizeInBits(); | |
if (DemandHighBits && OpSizeInBits > 16) { | |
// If the left-shift isn't masked out then the only way this is a bswap is | |
// if all bits beyond the low 8 are 0. In that case the entire pattern | |
// reduces to a left shift anyway: leave it for other parts of the combiner. | |
if (!LookPassAnd0) | |
return SDValue(); | |
// However, if the right shift isn't masked out then it might be because | |
// it's not needed. See if we can spot that too. | |
if (!LookPassAnd1 && | |
!DAG.MaskedValueIsZero( | |
N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) | |
return SDValue(); | |
} | |
SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); | |
if (OpSizeInBits > 16) { | |
SDLoc DL(N); | |
Res = DAG.getNode(ISD::SRL, DL, VT, Res, | |
DAG.getConstant(OpSizeInBits - 16, DL, | |
getShiftAmountTy(VT))); | |
} | |
return Res; | |
} | |
/// Return true if the specified node is an element that makes up a 32-bit | |
/// packed halfword byteswap. | |
/// ((x & 0x000000ff) << 8) | | |
/// ((x & 0x0000ff00) >> 8) | | |
/// ((x & 0x00ff0000) << 8) | | |
/// ((x & 0xff000000) >> 8) | |
static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { | |
if (!N.getNode()->hasOneUse()) | |
return false; | |
unsigned Opc = N.getOpcode(); | |
if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) | |
return false; | |
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); | |
if (!N1C) | |
return false; | |
unsigned Num; | |
switch (N1C->getZExtValue()) { | |
default: | |
return false; | |
case 0xFF: Num = 0; break; | |
case 0xFF00: Num = 1; break; | |
case 0xFF0000: Num = 2; break; | |
case 0xFF000000: Num = 3; break; | |
} | |
// Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). | |
SDValue N0 = N.getOperand(0); | |
if (Opc == ISD::AND) { | |
if (Num == 0 || Num == 2) { | |
// (x >> 8) & 0xff | |
// (x >> 8) & 0xff0000 | |
if (N0.getOpcode() != ISD::SRL) | |
return false; | |
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | |
if (!C || C->getZExtValue() != 8) | |
return false; | |
} else { | |
// (x << 8) & 0xff00 | |
// (x << 8) & 0xff000000 | |
if (N0.getOpcode() != ISD::SHL) | |
return false; | |
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | |
if (!C || C->getZExtValue() != 8) | |
return false; | |
} | |
} else if (Opc == ISD::SHL) { | |
// (x & 0xff) << 8 | |
// (x & 0xff0000) << 8 | |
if (Num != 0 && Num != 2) | |
return false; | |
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); | |
if (!C || C->getZExtValue() != 8) | |
return false; | |
} else { // Opc == ISD::SRL | |
// (x & 0xff00) >> 8 | |
// (x & 0xff000000) >> 8 | |
if (Num != 1 && Num != 3) | |
return false; | |
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); | |
if (!C || C->getZExtValue() != 8) | |
return false; | |
} | |
if (Parts[Num]) | |
return false; | |
Parts[Num] = N0.getOperand(0).getNode(); | |
return true; | |
} | |
/// Match a 32-bit packed halfword bswap. That is | |
/// ((x & 0x000000ff) << 8) | | |
/// ((x & 0x0000ff00) >> 8) | | |
/// ((x & 0x00ff0000) << 8) | | |
/// ((x & 0xff000000) >> 8) | |
/// => (rotl (bswap x), 16) | |
SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { | |
if (!LegalOperations) | |
return SDValue(); | |
EVT VT = N->getValueType(0); | |
if (VT != MVT::i32) | |
return SDValue(); | |
if (!TLI.isOperationLegal(ISD::BSWAP, VT)) | |
return SDValue(); | |
// Look for either | |
// (or (or (and), (and)), (or (and), (and))) | |
// (or (or (or (and), (and)), (and)), (and)) | |
if (N0.getOpcode() != ISD::OR) | |
return SDValue(); | |
SDValue N00 = N0.getOperand(0); | |
SDValue N01 = N0.getOperand(1); | |
SDNode *Parts[4] = {}; | |
if (N1.getOpcode() == ISD::OR && | |
N00.getNumOperands() == 2 && N01.getNumOperands() == 2) { | |
// (or (or (and), (and)), (or (and), (and))) | |
SDValue N000 = N00.getOperand(0); | |
if (!isBSwapHWordElement(N000, Parts)) | |
return SDValue(); | |
SDValue N001 = N00.getOperand(1); | |
if (!isBSwapHWordElement(N001, Parts)) | |
return SDValue(); | |
SDValue N010 = N01.getOperand(0); | |
if (!isBSwapHWordElement(N010, Parts)) | |
return SDValue(); | |
SDValue N011 = N01.getOperand(1); | |
if (!isBSwapHWordElement(N011, Parts)) | |
return SDValue(); | |
} else { | |
// (or (or (or (and), (and)), (and)), (and)) | |
if (!isBSwapHWordElement(N1, Parts)) | |
return SDValue(); | |
if (!isBSwapHWordElement(N01, Parts)) | |
return SDValue(); | |
if (N00.getOpcode() != ISD::OR) | |
return SDValue(); | |
SDValue N000 = N00.getOperand(0); | |
if (!isBSwapHWordElement(N000, Parts)) | |
return SDValue(); | |
SDValue N001 = N00.getOperand(1); | |
if (!isBSwapHWordElement(N001, Parts)) | |
return SDValue(); | |
} | |
// Make sure the parts are all coming from the same node. | |
if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) | |
return SDValue(); | |
SDLoc DL(N); | |
SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, | |
SDValue(Parts[0], 0)); | |
// Result of the bswap should be rotated by 16. If it's not legal, then | |
// do (x << 16) | (x >> 16). | |
SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); | |
if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) | |
return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); | |
if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) | |
return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); | |
return DAG.getNode(ISD::OR, DL, VT, | |
DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), | |
DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); | |
} | |
/// This contains all DAGCombine rules which reduce two values combined by | |
/// an Or operation to a single value \see visitANDLike(). | |
SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) { | |
EVT VT = N1.getValueType(); | |
SDLoc DL(N); | |
// fold (or x, undef) -> -1 | |
if (!LegalOperations && (N0.isUndef() || N1.isUndef())) | |
return DAG.getAllOnesConstant(DL, VT); | |
if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL)) | |
return V; | |
// (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. | |
if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && | |
// Don't increase # computations. | |
(N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { | |
// We can only do this xform if we know that bits from X that are set in C2 | |
// but not in C1 are already zero. Likewise for Y. | |
if (const ConstantSDNode *N0O1C = | |
getAsNonOpaqueConstant(N0.getOperand(1))) { | |
if (const ConstantSDNode *N1O1C = | |
getAsNonOpaqueConstant(N1.getOperand(1))) { | |
// We can only do this xform if we know that bits from X that are set in | |
// C2 but not in C1 are already zero. Likewise for Y. | |
const APInt &LHSMask = N0O1C->getAPIntValue(); | |
const APInt &RHSMask = N1O1C->getAPIntValue(); | |
if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && | |
DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { | |
SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, | |
N0.getOperand(0), N1.getOperand(0)); | |
return DAG.getNode(ISD::AND, DL, VT, X, | |
DAG.getConstant(LHSMask | RHSMask, DL, VT)); | |
} | |
} | |
} | |
} | |
// (or (and X, M), (and X, N)) -> (and X, (or M, N)) | |
if (N0.getOpcode() == ISD::AND && | |
N1.getOpcode() == ISD::AND && | |
N0.getOperand(0) == N1.getOperand(0) && | |
// Don't increase # computations. | |
(N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { | |
SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, | |
N0.getOperand(1), N1.getOperand(1)); | |
return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X); | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitOR(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N1.getValueType(); | |
// x | x --> x | |
if (N0 == N1) | |
return N0; | |
// fold vector ops | |
if (VT.isVector()) { | |
if (SDValue FoldedVOp = SimplifyVBinOp(N)) | |
return FoldedVOp; | |
// fold (or x, 0) -> x, vector edition | |
if (ISD::isBuildVectorAllZeros(N0.getNode())) | |
return N1; | |
if (ISD::isBuildVectorAllZeros(N1.getNode())) | |
return N0; | |
// fold (or x, -1) -> -1, vector edition | |
if (ISD::isBuildVectorAllOnes(N0.getNode())) | |
// do not return N0, because undef node may exist in N0 | |
return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType()); | |
if (ISD::isBuildVectorAllOnes(N1.getNode())) | |
// do not return N1, because undef node may exist in N1 | |
return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType()); | |
// fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask) | |
// Do this only if the resulting shuffle is legal. | |
if (isa<ShuffleVectorSDNode>(N0) && | |
isa<ShuffleVectorSDNode>(N1) && | |
// Avoid folding a node with illegal type. | |
TLI.isTypeLegal(VT)) { | |
bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode()); | |
bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode()); | |
bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); | |
bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode()); | |
// Ensure both shuffles have a zero input. | |
if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) { | |
assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!"); | |
assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!"); | |
const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); | |
const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); | |
bool CanFold = true; | |
int NumElts = VT.getVectorNumElements(); | |
SmallVector<int, 4> Mask(NumElts); | |
for (int i = 0; i != NumElts; ++i) { | |
int M0 = SV0->getMaskElt(i); | |
int M1 = SV1->getMaskElt(i); | |
// Determine if either index is pointing to a zero vector. | |
bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts)); | |
bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts)); | |
// If one element is zero and the otherside is undef, keep undef. | |
// This also handles the case that both are undef. | |
if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) { | |
Mask[i] = -1; | |
continue; | |
} | |
// Make sure only one of the elements is zero. | |
if (M0Zero == M1Zero) { | |
CanFold = false; | |
break; | |
} | |
assert((M0 >= 0 || M1 >= 0) && "Undef index!"); | |
// We have a zero and non-zero element. If the non-zero came from | |
// SV0 make the index a LHS index. If it came from SV1, make it | |
// a RHS index. We need to mod by NumElts because we don't care | |
// which operand it came from in the original shuffles. | |
Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts; | |
} | |
if (CanFold) { | |
SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0); | |
SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0); | |
bool LegalMask = TLI.isShuffleMaskLegal(Mask, VT); | |
if (!LegalMask) { | |
std::swap(NewLHS, NewRHS); | |
ShuffleVectorSDNode::commuteMask(Mask); | |
LegalMask = TLI.isShuffleMaskLegal(Mask, VT); | |
} | |
if (LegalMask) | |
return DAG.getVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, Mask); | |
} | |
} | |
} | |
} | |
// fold (or c1, c2) -> c1|c2 | |
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); | |
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | |
if (N0C && N1C && !N1C->isOpaque()) | |
return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C); | |
// canonicalize constant to RHS | |
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | |
!DAG.isConstantIntBuildVectorOrConstantInt(N1)) | |
return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); | |
// fold (or x, 0) -> x | |
if (isNullConstant(N1)) | |
return N0; | |
// fold (or x, -1) -> -1 | |
if (isAllOnesConstant(N1)) | |
return N1; | |
if (SDValue NewSel = foldBinOpIntoSelect(N)) | |
return NewSel; | |
// fold (or x, c) -> c iff (x & ~c) == 0 | |
if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) | |
return N1; | |
if (SDValue Combined = visitORLike(N0, N1, N)) | |
return Combined; | |
// Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) | |
if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) | |
return BSwap; | |
if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) | |
return BSwap; | |
// reassociate or | |
if (SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1)) | |
return ROR; | |
// Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) | |
// iff (c1 & c2) != 0. | |
if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && | |
isa<ConstantSDNode>(N0.getOperand(1))) { | |
ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1)); | |
if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0) { | |
if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT, | |
N1C, C1)) | |
return DAG.getNode( | |
ISD::AND, SDLoc(N), VT, | |
DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1), COR); | |
return SDValue(); | |
} | |
} | |
// Simplify: (or (op x...), (op y...)) -> (op (or x, y)) | |
if (N0.getOpcode() == N1.getOpcode()) | |
if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) | |
return Tmp; | |
// See if this is some rotate idiom. | |
if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N))) | |
return SDValue(Rot, 0); | |
if (SDValue Load = MatchLoadCombine(N)) | |
return Load; | |
// Simplify the operands using demanded-bits information. | |
if (SimplifyDemandedBits(SDValue(N, 0))) | |
return SDValue(N, 0); | |
return SDValue(); | |
} | |
/// Match "(X shl/srl V1) & V2" where V2 may not be present. | |
bool DAGCombiner::MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) { | |
if (Op.getOpcode() == ISD::AND) { | |
if (DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { | |
Mask = Op.getOperand(1); | |
Op = Op.getOperand(0); | |
} else { | |
return false; | |
} | |
} | |
if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { | |
Shift = Op; | |
return true; | |
} | |
return false; | |
} | |
// Return true if we can prove that, whenever Neg and Pos are both in the | |
// range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that | |
// for two opposing shifts shift1 and shift2 and a value X with OpBits bits: | |
// | |
// (or (shift1 X, Neg), (shift2 X, Pos)) | |
// | |
// reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate | |
// in direction shift1 by Neg. The range [0, EltSize) means that we only need | |
// to consider shift amounts with defined behavior. | |
static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize) { | |
// If EltSize is a power of 2 then: | |
// | |
// (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) | |
// (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). | |
// | |
// So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check | |
// for the stronger condition: | |
// | |
// Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A] | |
// | |
// for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) | |
// we can just replace Neg with Neg' for the rest of the function. | |
// | |
// In other cases we check for the even stronger condition: | |
// | |
// Neg == EltSize - Pos [B] | |
// | |
// for all Neg and Pos. Note that the (or ...) then invokes undefined | |
// behavior if Pos == 0 (and consequently Neg == EltSize). | |
// | |
// We could actually use [A] whenever EltSize is a power of 2, but the | |
// only extra cases that it would match are those uninteresting ones | |
// where Neg and Pos are never in range at the same time. E.g. for | |
// EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) | |
// as well as (sub 32, Pos), but: | |
// | |
// (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) | |
// | |
// always invokes undefined behavior for 32-bit X. | |
// | |
// Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. | |
unsigned MaskLoBits = 0; | |
if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) { | |
if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { | |
if (NegC->getAPIntValue() == EltSize - 1) { | |
Neg = Neg.getOperand(0); | |
MaskLoBits = Log2_64(EltSize); | |
} | |
} | |
} | |
// Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. | |
if (Neg.getOpcode() != ISD::SUB) | |
return false; | |
ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); | |
if (!NegC) | |
return false; | |
SDValue NegOp1 = Neg.getOperand(1); | |
// On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with | |
// Pos'. The truncation is redundant for the purpose of the equality. | |
if (MaskLoBits && Pos.getOpcode() == ISD::AND) | |
if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) | |
if (PosC->getAPIntValue() == EltSize - 1) | |
Pos = Pos.getOperand(0); | |
// The condition we need is now: | |
// | |
// (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask | |
// | |
// If NegOp1 == Pos then we need: | |
// | |
// EltSize & Mask == NegC & Mask | |
// | |
// (because "x & Mask" is a truncation and distributes through subtraction). | |
APInt Width; | |
if (Pos == NegOp1) | |
Width = NegC->getAPIntValue(); | |
// Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. | |
// Then the condition we want to prove becomes: | |
// | |
// (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask | |
// | |
// which, again because "x & Mask" is a truncation, becomes: | |
// | |
// NegC & Mask == (EltSize - PosC) & Mask | |
// EltSize & Mask == (NegC + PosC) & Mask | |
else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { | |
if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) | |
Width = PosC->getAPIntValue() + NegC->getAPIntValue(); | |
else | |
return false; | |
} else | |
return false; | |
// Now we just need to check that EltSize & Mask == Width & Mask. | |
if (MaskLoBits) | |
// EltSize & Mask is 0 since Mask is EltSize - 1. | |
return Width.getLoBits(MaskLoBits) == 0; | |
return Width == EltSize; | |
} | |
// A subroutine of MatchRotate used once we have found an OR of two opposite | |
// shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces | |
// to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the | |
// former being preferred if supported. InnerPos and InnerNeg are Pos and | |
// Neg with outer conversions stripped away. | |
SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, | |
SDValue Neg, SDValue InnerPos, | |
SDValue InnerNeg, unsigned PosOpcode, | |
unsigned NegOpcode, const SDLoc &DL) { | |
// fold (or (shl x, (*ext y)), | |
// (srl x, (*ext (sub 32, y)))) -> | |
// (rotl x, y) or (rotr x, (sub 32, y)) | |
// | |
// fold (or (shl x, (*ext (sub 32, y))), | |
// (srl x, (*ext y))) -> | |
// (rotr x, y) or (rotl x, (sub 32, y)) | |
EVT VT = Shifted.getValueType(); | |
if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits())) { | |
bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); | |
return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, | |
HasPos ? Pos : Neg).getNode(); | |
} | |
return nullptr; | |
} | |
// MatchRotate - Handle an 'or' of two operands. If this is one of the many | |
// idioms for rotate, and if the target supports rotation instructions, generate | |
// a rot[lr]. | |
SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) { | |
// Must be a legal type. Expanded 'n promoted things won't work with rotates. | |
EVT VT = LHS.getValueType(); | |
if (!TLI.isTypeLegal(VT)) return nullptr; | |
// The target must have at least one rotate flavor. | |
bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT); | |
bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT); | |
if (!HasROTL && !HasROTR) return nullptr; | |
// Match "(X shl/srl V1) & V2" where V2 may not be present. | |
SDValue LHSShift; // The shift. | |
SDValue LHSMask; // AND value if any. | |
if (!MatchRotateHalf(LHS, LHSShift, LHSMask)) | |
return nullptr; // Not part of a rotate. | |
SDValue RHSShift; // The shift. | |
SDValue RHSMask; // AND value if any. | |
if (!MatchRotateHalf(RHS, RHSShift, RHSMask)) | |
return nullptr; // Not part of a rotate. | |
if (LHSShift.getOperand(0) != RHSShift.getOperand(0)) | |
return nullptr; // Not shifting the same value. | |
if (LHSShift.getOpcode() == RHSShift.getOpcode()) | |
return nullptr; // Shifts must disagree. | |
// Canonicalize shl to left side in a shl/srl pair. | |
if (RHSShift.getOpcode() == ISD::SHL) { | |
std::swap(LHS, RHS); | |
std::swap(LHSShift, RHSShift); | |
std::swap(LHSMask, RHSMask); | |
} | |
unsigned EltSizeInBits = VT.getScalarSizeInBits(); | |
SDValue LHSShiftArg = LHSShift.getOperand(0); | |
SDValue LHSShiftAmt = LHSShift.getOperand(1); | |
SDValue RHSShiftArg = RHSShift.getOperand(0); | |
SDValue RHSShiftAmt = RHSShift.getOperand(1); | |
// fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) | |
// fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) | |
if (isConstOrConstSplat(LHSShiftAmt) && isConstOrConstSplat(RHSShiftAmt)) { | |
uint64_t LShVal = isConstOrConstSplat(LHSShiftAmt)->getZExtValue(); | |
uint64_t RShVal = isConstOrConstSplat(RHSShiftAmt)->getZExtValue(); | |
if ((LShVal + RShVal) != EltSizeInBits) | |
return nullptr; | |
SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, | |
LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt); | |
// If there is an AND of either shifted operand, apply it to the result. | |
if (LHSMask.getNode() || RHSMask.getNode()) { | |
SDValue Mask = DAG.getAllOnesConstant(DL, VT); | |
if (LHSMask.getNode()) { | |
APInt RHSBits = APInt::getLowBitsSet(EltSizeInBits, LShVal); | |
Mask = DAG.getNode(ISD::AND, DL, VT, Mask, | |
DAG.getNode(ISD::OR, DL, VT, LHSMask, | |
DAG.getConstant(RHSBits, DL, VT))); | |
} | |
if (RHSMask.getNode()) { | |
APInt LHSBits = APInt::getHighBitsSet(EltSizeInBits, RShVal); | |
Mask = DAG.getNode(ISD::AND, DL, VT, Mask, | |
DAG.getNode(ISD::OR, DL, VT, RHSMask, | |
DAG.getConstant(LHSBits, DL, VT))); | |
} | |
Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask); | |
} | |
return Rot.getNode(); | |
} | |
// If there is a mask here, and we have a variable shift, we can't be sure | |
// that we're masking out the right stuff. | |
if (LHSMask.getNode() || RHSMask.getNode()) | |
return nullptr; | |
// If the shift amount is sign/zext/any-extended just peel it off. | |
SDValue LExtOp0 = LHSShiftAmt; | |
SDValue RExtOp0 = RHSShiftAmt; | |
if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || | |
LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || | |
LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || | |
LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && | |
(RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || | |
RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || | |
RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || | |
RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { | |
LExtOp0 = LHSShiftAmt.getOperand(0); | |
RExtOp0 = RHSShiftAmt.getOperand(0); | |
} | |
SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, | |
LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL); | |
if (TryL) | |
return TryL; | |
SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, | |
RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL); | |
if (TryR) | |
return TryR; | |
return nullptr; | |
} | |
namespace { | |
/// Helper struct to parse and store a memory address as base + index + offset. | |
/// We ignore sign extensions when it is safe to do so. | |
/// The following two expressions are not equivalent. To differentiate we need | |
/// to store whether there was a sign extension involved in the index | |
/// computation. | |
/// (load (i64 add (i64 copyfromreg %c) | |
/// (i64 signextend (add (i8 load %index) | |
/// (i8 1)))) | |
/// vs | |
/// | |
/// (load (i64 add (i64 copyfromreg %c) | |
/// (i64 signextend (i32 add (i32 signextend (i8 load %index)) | |
/// (i32 1))))) | |
struct BaseIndexOffset { | |
SDValue Base; | |
SDValue Index; | |
int64_t Offset; | |
bool IsIndexSignExt; | |
BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {} | |
BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset, | |
bool IsIndexSignExt) : | |
Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {} | |
bool equalBaseIndex(const BaseIndexOffset &Other) { | |
return Other.Base == Base && Other.Index == Index && | |
Other.IsIndexSignExt == IsIndexSignExt; | |
} | |
/// Parses tree in Ptr for base, index, offset addresses. | |
static BaseIndexOffset match(SDValue Ptr, SelectionDAG &DAG, | |
int64_t PartialOffset = 0) { | |
bool IsIndexSignExt = false; | |
// Split up a folded GlobalAddress+Offset into its component parts. | |
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ptr)) | |
if (GA->getOpcode() == ISD::GlobalAddress && GA->getOffset() != 0) { | |
return BaseIndexOffset(DAG.getGlobalAddress(GA->getGlobal(), | |
SDLoc(GA), | |
GA->getValueType(0), | |
/*Offset=*/PartialOffset, | |
/*isTargetGA=*/false, | |
GA->getTargetFlags()), | |
SDValue(), | |
GA->getOffset(), | |
IsIndexSignExt); | |
} | |
// We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD | |
// instruction, then it could be just the BASE or everything else we don't | |
// know how to handle. Just use Ptr as BASE and give up. | |
if (Ptr->getOpcode() != ISD::ADD) | |
return BaseIndexOffset(Ptr, SDValue(), PartialOffset, IsIndexSignExt); | |
// We know that we have at least an ADD instruction. Try to pattern match | |
// the simple case of BASE + OFFSET. | |
if (isa<ConstantSDNode>(Ptr->getOperand(1))) { | |
int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue(); | |
return match(Ptr->getOperand(0), DAG, Offset + PartialOffset); | |
} | |
// Inside a loop the current BASE pointer is calculated using an ADD and a | |
// MUL instruction. In this case Ptr is the actual BASE pointer. | |
// (i64 add (i64 %array_ptr) | |
// (i64 mul (i64 %induction_var) | |
// (i64 %element_size))) | |
if (Ptr->getOperand(1)->getOpcode() == ISD::MUL) | |
return BaseIndexOffset(Ptr, SDValue(), PartialOffset, IsIndexSignExt); | |
// Look at Base + Index + Offset cases. | |
SDValue Base = Ptr->getOperand(0); | |
SDValue IndexOffset = Ptr->getOperand(1); | |
// Skip signextends. | |
if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) { | |
IndexOffset = IndexOffset->getOperand(0); | |
IsIndexSignExt = true; | |
} | |
// Either the case of Base + Index (no offset) or something else. | |
if (IndexOffset->getOpcode() != ISD::ADD) | |
return BaseIndexOffset(Base, IndexOffset, PartialOffset, IsIndexSignExt); | |
// Now we have the case of Base + Index + offset. | |
SDValue Index = IndexOffset->getOperand(0); | |
SDValue Offset = IndexOffset->getOperand(1); | |
if (!isa<ConstantSDNode>(Offset)) | |
return BaseIndexOffset(Ptr, SDValue(), PartialOffset, IsIndexSignExt); | |
// Ignore signextends. | |
if (Index->getOpcode() == ISD::SIGN_EXTEND) { | |
Index = Index->getOperand(0); | |
IsIndexSignExt = true; | |
} else IsIndexSignExt = false; | |
int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue(); | |
return BaseIndexOffset(Base, Index, Off + PartialOffset, IsIndexSignExt); | |
} | |
}; | |
} // namespace | |
namespace { | |
/// Represents known origin of an individual byte in load combine pattern. The | |
/// value of the byte is either constant zero or comes from memory. | |
struct ByteProvider { | |
// For constant zero providers Load is set to nullptr. For memory providers | |
// Load represents the node which loads the byte from memory. | |
// ByteOffset is the offset of the byte in the value produced by the load. | |
LoadSDNode *Load; | |
unsigned ByteOffset; | |
ByteProvider() : Load(nullptr), ByteOffset(0) {} | |
static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) { | |
return ByteProvider(Load, ByteOffset); | |
} | |
static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); } | |
bool isConstantZero() const { return !Load; } | |
bool isMemory() const { return Load; } | |
bool operator==(const ByteProvider &Other) const { | |
return Other.Load == Load && Other.ByteOffset == ByteOffset; | |
} | |
private: | |
ByteProvider(LoadSDNode *Load, unsigned ByteOffset) | |
: Load(Load), ByteOffset(ByteOffset) {} | |
}; | |
/// Recursively traverses the expression calculating the origin of the requested | |
/// byte of the given value. Returns None if the provider can't be calculated. | |
/// | |
/// For all the values except the root of the expression verifies that the value | |
/// has exactly one use and if it's not true return None. This way if the origin | |
/// of the byte is returned it's guaranteed that the values which contribute to | |
/// the byte are not used outside of this expression. | |
/// | |
/// Because the parts of the expression are not allowed to have more than one | |
/// use this function iterates over trees, not DAGs. So it never visits the same | |
/// node more than once. | |
const Optional<ByteProvider> calculateByteProvider(SDValue Op, unsigned Index, | |
unsigned Depth, | |
bool Root = false) { | |
// Typical i64 by i8 pattern requires recursion up to 8 calls depth | |
if (Depth == 10) | |
return None; | |
if (!Root && !Op.hasOneUse()) | |
return None; | |
assert(Op.getValueType().isScalarInteger() && "can't handle other types"); | |
unsigned BitWidth = Op.getValueSizeInBits(); | |
if (BitWidth % 8 != 0) | |
return None; | |
unsigned ByteWidth = BitWidth / 8; | |
assert(Index < ByteWidth && "invalid index requested"); | |
(void) ByteWidth; | |
switch (Op.getOpcode()) { | |
case ISD::OR: { | |
auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1); | |
if (!LHS) | |
return None; | |
auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1); | |
if (!RHS) | |
return None; | |
if (LHS->isConstantZero()) | |
return RHS; | |
if (RHS->isConstantZero()) | |
return LHS; | |
return None; | |
} | |
case ISD::SHL: { | |
auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); | |
if (!ShiftOp) | |
return None; | |
uint64_t BitShift = ShiftOp->getZExtValue(); | |
if (BitShift % 8 != 0) | |
return None; | |
uint64_t ByteShift = BitShift / 8; | |
return Index < ByteShift | |
? ByteProvider::getConstantZero() | |
: calculateByteProvider(Op->getOperand(0), Index - ByteShift, | |
Depth + 1); | |
} | |
case ISD::ANY_EXTEND: | |
case ISD::SIGN_EXTEND: | |
case ISD::ZERO_EXTEND: { | |
SDValue NarrowOp = Op->getOperand(0); | |
unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits(); | |
if (NarrowBitWidth % 8 != 0) | |
return None; | |
uint64_t NarrowByteWidth = NarrowBitWidth / 8; | |
if (Index >= NarrowByteWidth) | |
return Op.getOpcode() == ISD::ZERO_EXTEND | |
? Optional<ByteProvider>(ByteProvider::getConstantZero()) | |
: None; | |
return calculateByteProvider(NarrowOp, Index, Depth + 1); | |
} | |
case ISD::BSWAP: | |
return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1, | |
Depth + 1); | |
case ISD::LOAD: { | |
auto L = cast<LoadSDNode>(Op.getNode()); | |
if (L->isVolatile() || L->isIndexed()) | |
return None; | |
unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits(); | |
if (NarrowBitWidth % 8 != 0) | |
return None; | |
uint64_t NarrowByteWidth = NarrowBitWidth / 8; | |
if (Index >= NarrowByteWidth) | |
return L->getExtensionType() == ISD::ZEXTLOAD | |
? Optional<ByteProvider>(ByteProvider::getConstantZero()) | |
: None; | |
return ByteProvider::getMemory(L, Index); | |
} | |
} | |
return None; | |
} | |
} // namespace | |
/// Match a pattern where a wide type scalar value is loaded by several narrow | |
/// loads and combined by shifts and ors. Fold it into a single load or a load | |
/// and a BSWAP if the targets supports it. | |
/// | |
/// Assuming little endian target: | |
/// i8 *a = ... | |
/// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) | |
/// => | |
/// i32 val = *((i32)a) | |
/// | |
/// i8 *a = ... | |
/// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] | |
/// => | |
/// i32 val = BSWAP(*((i32)a)) | |
/// | |
/// TODO: This rule matches complex patterns with OR node roots and doesn't | |
/// interact well with the worklist mechanism. When a part of the pattern is | |
/// updated (e.g. one of the loads) its direct users are put into the worklist, | |
/// but the root node of the pattern which triggers the load combine is not | |
/// necessarily a direct user of the changed node. For example, once the address | |
/// of t28 load is reassociated load combine won't be triggered: | |
/// t25: i32 = add t4, Constant:i32<2> | |
/// t26: i64 = sign_extend t25 | |
/// t27: i64 = add t2, t26 | |
/// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64 | |
/// t29: i32 = zero_extend t28 | |
/// t32: i32 = shl t29, Constant:i8<8> | |
/// t33: i32 = or t23, t32 | |
/// As a possible fix visitLoad can check if the load can be a part of a load | |
/// combine pattern and add corresponding OR roots to the worklist. | |
SDValue DAGCombiner::MatchLoadCombine(SDNode *N) { | |
assert(N->getOpcode() == ISD::OR && | |
"Can only match load combining against OR nodes"); | |
// Handles simple types only | |
EVT VT = N->getValueType(0); | |
if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) | |
return SDValue(); | |
unsigned ByteWidth = VT.getSizeInBits() / 8; | |
const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | |
// Before legalize we can introduce too wide illegal loads which will be later | |
// split into legal sized loads. This enables us to combine i64 load by i8 | |
// patterns to a couple of i32 loads on 32 bit targets. | |
if (LegalOperations && !TLI.isOperationLegal(ISD::LOAD, VT)) | |
return SDValue(); | |
std::function<unsigned(unsigned, unsigned)> LittleEndianByteAt = []( | |
unsigned BW, unsigned i) { return i; }; | |
std::function<unsigned(unsigned, unsigned)> BigEndianByteAt = []( | |
unsigned BW, unsigned i) { return BW - i - 1; }; | |
bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian(); | |
auto MemoryByteOffset = [&] (ByteProvider P) { | |
assert(P.isMemory() && "Must be a memory byte provider"); | |
unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits(); | |
assert(LoadBitWidth % 8 == 0 && | |
"can only analyze providers for individual bytes not bit"); | |
unsigned LoadByteWidth = LoadBitWidth / 8; | |
return IsBigEndianTarget | |
? BigEndianByteAt(LoadByteWidth, P.ByteOffset) | |
: LittleEndianByteAt(LoadByteWidth, P.ByteOffset); | |
}; | |
Optional<BaseIndexOffset> Base; | |
SDValue Chain; | |
SmallSet<LoadSDNode *, 8> Loads; | |
Optional<ByteProvider> FirstByteProvider; | |
int64_t FirstOffset = INT64_MAX; | |
// Check if all the bytes of the OR we are looking at are loaded from the same | |
// base address. Collect bytes offsets from Base address in ByteOffsets. | |
SmallVector<int64_t, 4> ByteOffsets(ByteWidth); | |
for (unsigned i = 0; i < ByteWidth; i++) { | |
auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true); | |
if (!P || !P->isMemory()) // All the bytes must be loaded from memory | |
return SDValue(); | |
LoadSDNode *L = P->Load; | |
assert(L->hasNUsesOfValue(1, 0) && !L->isVolatile() && !L->isIndexed() && | |
"Must be enforced by calculateByteProvider"); | |
assert(L->getOffset().isUndef() && "Unindexed load must have undef offset"); | |
// All loads must share the same chain | |
SDValue LChain = L->getChain(); | |
if (!Chain) | |
Chain = LChain; | |
else if (Chain != LChain) | |
return SDValue(); | |
// Loads must share the same base address | |
BaseIndexOffset Ptr = BaseIndexOffset::match(L->getBasePtr(), DAG); | |
if (!Base) | |
Base = Ptr; | |
else if (!Base->equalBaseIndex(Ptr)) | |
return SDValue(); | |
// Calculate the offset of the current byte from the base address | |
int64_t ByteOffsetFromBase = Ptr.Offset + MemoryByteOffset(*P); | |
ByteOffsets[i] = ByteOffsetFromBase; | |
// Remember the first byte load | |
if (ByteOffsetFromBase < FirstOffset) { | |
FirstByteProvider = P; | |
FirstOffset = ByteOffsetFromBase; | |
} | |
Loads.insert(L); | |
} | |
assert(Loads.size() > 0 && "All the bytes of the value must be loaded from " | |
"memory, so there must be at least one load which produces the value"); | |
assert(Base && "Base address of the accessed memory location must be set"); | |
assert(FirstOffset != INT64_MAX && "First byte offset must be set"); | |
// Check if the bytes of the OR we are looking at match with either big or | |
// little endian value load | |
bool BigEndian = true, LittleEndian = true; | |
for (unsigned i = 0; i < ByteWidth; i++) { | |
int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset; | |
LittleEndian &= CurrentByteOffset == LittleEndianByteAt(ByteWidth, i); | |
BigEndian &= CurrentByteOffset == BigEndianByteAt(ByteWidth, i); | |
if (!BigEndian && !LittleEndian) | |
return SDValue(); | |
} | |
assert((BigEndian != LittleEndian) && "should be either or"); | |
assert(FirstByteProvider && "must be set"); | |
// Ensure that the first byte is loaded from zero offset of the first load. | |
// So the combined value can be loaded from the first load address. | |
if (MemoryByteOffset(*FirstByteProvider) != 0) | |
return SDValue(); | |
LoadSDNode *FirstLoad = FirstByteProvider->Load; | |
// The node we are looking at matches with the pattern, check if we can | |
// replace it with a single load and bswap if needed. | |
// If the load needs byte swap check if the target supports it | |
bool NeedsBswap = IsBigEndianTarget != BigEndian; | |
// Before legalize we can introduce illegal bswaps which will be later | |
// converted to an explicit bswap sequence. This way we end up with a single | |
// load and byte shuffling instead of several loads and byte shuffling. | |
if (NeedsBswap && LegalOperations && !TLI.isOperationLegal(ISD::BSWAP, VT)) | |
return SDValue(); | |
// Check that a load of the wide type is both allowed and fast on the target | |
bool Fast = false; | |
bool Allowed = TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), | |
VT, FirstLoad->getAddressSpace(), | |
FirstLoad->getAlignment(), &Fast); | |
if (!Allowed || !Fast) | |
return SDValue(); | |
SDValue NewLoad = | |
DAG.getLoad(VT, SDLoc(N), Chain, FirstLoad->getBasePtr(), | |
FirstLoad->getPointerInfo(), FirstLoad->getAlignment()); | |
// Transfer chain users from old loads to the new load. | |
for (LoadSDNode *L : Loads) | |
DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1)); | |
return NeedsBswap ? DAG.getNode(ISD::BSWAP, SDLoc(N), VT, NewLoad) : NewLoad; | |
} | |
SDValue DAGCombiner::visitXOR(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N0.getValueType(); | |
// fold vector ops | |
if (VT.isVector()) { | |
if (SDValue FoldedVOp = SimplifyVBinOp(N)) | |
return FoldedVOp; | |
// fold (xor x, 0) -> x, vector edition | |
if (ISD::isBuildVectorAllZeros(N0.getNode())) | |
return N1; | |
if (ISD::isBuildVectorAllZeros(N1.getNode())) | |
return N0; | |
} | |
// fold (xor undef, undef) -> 0. This is a common idiom (misuse). | |
if (N0.isUndef() && N1.isUndef()) | |
return DAG.getConstant(0, SDLoc(N), VT); | |
// fold (xor x, undef) -> undef | |
if (N0.isUndef()) | |
return N0; | |
if (N1.isUndef()) | |
return N1; | |
// fold (xor c1, c2) -> c1^c2 | |
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); | |
ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); | |
if (N0C && N1C) | |
return DAG.FoldConstantArithmetic(ISD::XOR, SDLoc(N), VT, N0C, N1C); | |
// canonicalize constant to RHS | |
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | |
!DAG.isConstantIntBuildVectorOrConstantInt(N1)) | |
return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0); | |
// fold (xor x, 0) -> x | |
if (isNullConstant(N1)) | |
return N0; | |
if (SDValue NewSel = foldBinOpIntoSelect(N)) | |
return NewSel; | |
// reassociate xor | |
if (SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1)) | |
return RXOR; | |
// fold !(x cc y) -> (x !cc y) | |
SDValue LHS, RHS, CC; | |
if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) { | |
bool isInt = LHS.getValueType().isInteger(); | |
ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), | |
isInt); | |
if (!LegalOperations || | |
TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { | |
switch (N0.getOpcode()) { | |
default: | |
llvm_unreachable("Unhandled SetCC Equivalent!"); | |
case ISD::SETCC: | |
return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC); | |
case ISD::SELECT_CC: | |
return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2), | |
N0.getOperand(3), NotCC); | |
} | |
} | |
} | |
// fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) | |
if (isOneConstant(N1) && N0.getOpcode() == ISD::ZERO_EXTEND && | |
N0.getNode()->hasOneUse() && | |
isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ | |
SDValue V = N0.getOperand(0); | |
SDLoc DL(N0); | |
V = DAG.getNode(ISD::XOR, DL, V.getValueType(), V, | |
DAG.getConstant(1, DL, V.getValueType())); | |
AddToWorklist(V.getNode()); | |
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V); | |
} | |
// fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc | |
if (isOneConstant(N1) && VT == MVT::i1 && | |
(N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { | |
SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); | |
if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { | |
unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; | |
LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS | |
RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS | |
AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); | |
return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); | |
} | |
} | |
// fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants | |
if (isAllOnesConstant(N1) && | |
(N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { | |
SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); | |
if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) { | |
unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; | |
LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS | |
RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS | |
AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); | |
return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); | |
} | |
} | |
// fold (xor (and x, y), y) -> (and (not x), y) | |
if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && | |
N0->getOperand(1) == N1) { | |
SDValue X = N0->getOperand(0); | |
SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); | |
AddToWorklist(NotX.getNode()); | |
return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1); | |
} | |
// fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2)) | |
if (N1C && N0.getOpcode() == ISD::XOR) { | |
if (const ConstantSDNode *N00C = getAsNonOpaqueConstant(N0.getOperand(0))) { | |
SDLoc DL(N); | |
return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), | |
DAG.getConstant(N1C->getAPIntValue() ^ | |
N00C->getAPIntValue(), DL, VT)); | |
} | |
if (const ConstantSDNode *N01C = getAsNonOpaqueConstant(N0.getOperand(1))) { | |
SDLoc DL(N); | |
return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), | |
DAG.getConstant(N1C->getAPIntValue() ^ | |
N01C->getAPIntValue(), DL, VT)); | |
} | |
} | |
// fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X) | |
unsigned OpSizeInBits = VT.getScalarSizeInBits(); | |
if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 && | |
N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0) && | |
TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { | |
if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1))) | |
if (C->getAPIntValue() == (OpSizeInBits - 1)) | |
return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0.getOperand(0)); | |
} | |
// fold (xor x, x) -> 0 | |
if (N0 == N1) | |
return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes); | |
// fold (xor (shl 1, x), -1) -> (rotl ~1, x) | |
// Here is a concrete example of this equivalence: | |
// i16 x == 14 | |
// i16 shl == 1 << 14 == 16384 == 0b0100000000000000 | |
// i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 | |
// | |
// => | |
// | |
// i16 ~1 == 0b1111111111111110 | |
// i16 rol(~1, 14) == 0b1011111111111111 | |
// | |
// Some additional tips to help conceptualize this transform: | |
// - Try to see the operation as placing a single zero in a value of all ones. | |
// - There exists no value for x which would allow the result to contain zero. | |
// - Values of x larger than the bitwidth are undefined and do not require a | |
// consistent result. | |
// - Pushing the zero left requires shifting one bits in from the right. | |
// A rotate left of ~1 is a nice way of achieving the desired result. | |
if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0.getOpcode() == ISD::SHL | |
&& isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { | |
SDLoc DL(N); | |
return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), | |
N0.getOperand(1)); | |
} | |
// Simplify: xor (op x...), (op y...) -> (op (xor x, y)) | |
if (N0.getOpcode() == N1.getOpcode()) | |
if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) | |
return Tmp; | |
// Simplify the expression using non-local knowledge. | |
if (SimplifyDemandedBits(SDValue(N, 0))) | |
return SDValue(N, 0); | |
return SDValue(); | |
} | |
/// Handle transforms common to the three shifts, when the shift amount is a | |
/// constant. | |
SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) { | |
SDNode *LHS = N->getOperand(0).getNode(); | |
if (!LHS->hasOneUse()) return SDValue(); | |
// We want to pull some binops through shifts, so that we have (and (shift)) | |
// instead of (shift (and)), likewise for add, or, xor, etc. This sort of | |
// thing happens with address calculations, so it's important to canonicalize | |
// it. | |
bool HighBitSet = false; // Can we transform this if the high bit is set? | |
switch (LHS->getOpcode()) { | |
default: return SDValue(); | |
case ISD::OR: | |
case ISD::XOR: | |
HighBitSet = false; // We can only transform sra if the high bit is clear. | |
break; | |
case ISD::AND: | |
HighBitSet = true; // We can only transform sra if the high bit is set. | |
break; | |
case ISD::ADD: | |
if (N->getOpcode() != ISD::SHL) | |
return SDValue(); // only shl(add) not sr[al](add). | |
HighBitSet = false; // We can only transform sra if the high bit is clear. | |
break; | |
} | |
// We require the RHS of the binop to be a constant and not opaque as well. | |
ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1)); | |
if (!BinOpCst) return SDValue(); | |
// FIXME: disable this unless the input to the binop is a shift by a constant | |
// or is copy/select.Enable this in other cases when figure out it's exactly profitable. | |
SDNode *BinOpLHSVal = LHS->getOperand(0).getNode(); | |
bool isShift = BinOpLHSVal->getOpcode() == ISD::SHL || | |
BinOpLHSVal->getOpcode() == ISD::SRA || | |
BinOpLHSVal->getOpcode() == ISD::SRL; | |
bool isCopyOrSelect = BinOpLHSVal->getOpcode() == ISD::CopyFromReg || | |
BinOpLHSVal->getOpcode() == ISD::SELECT; | |
if ((!isShift || !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1))) && | |
!isCopyOrSelect) | |
return SDValue(); | |
if (isCopyOrSelect && N->hasOneUse()) | |
return SDValue(); | |
EVT VT = N->getValueType(0); | |
// If this is a signed shift right, and the high bit is modified by the | |
// logical operation, do not perform the transformation. The highBitSet | |
// boolean indicates the value of the high bit of the constant which would | |
// cause it to be modified for this operation. | |
if (N->getOpcode() == ISD::SRA) { | |
bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative(); | |
if (BinOpRHSSignSet != HighBitSet) | |
return SDValue(); | |
} | |
if (!TLI.isDesirableToCommuteWithShift(LHS)) | |
return SDValue(); | |
// Fold the constants, shifting the binop RHS by the shift amount. | |
SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)), | |
N->getValueType(0), | |
LHS->getOperand(1), N->getOperand(1)); | |
assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); | |
// Create the new shift. | |
SDValue NewShift = DAG.getNode(N->getOpcode(), | |
SDLoc(LHS->getOperand(0)), | |
VT, LHS->getOperand(0), N->getOperand(1)); | |
// Create the new binop. | |
return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS); | |
} | |
SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { | |
assert(N->getOpcode() == ISD::TRUNCATE); | |
assert(N->getOperand(0).getOpcode() == ISD::AND); | |
// (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) | |
if (N->hasOneUse() && N->getOperand(0).hasOneUse()) { | |
SDValue N01 = N->getOperand(0).getOperand(1); | |
if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) { | |
SDLoc DL(N); | |
EVT TruncVT = N->getValueType(0); | |
SDValue N00 = N->getOperand(0).getOperand(0); | |
SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00); | |
SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01); | |
AddToWorklist(Trunc00.getNode()); | |
AddToWorklist(Trunc01.getNode()); | |
return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01); | |
} | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitRotate(SDNode *N) { | |
// fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). | |
if (N->getOperand(1).getOpcode() == ISD::TRUNCATE && | |
N->getOperand(1).getOperand(0).getOpcode() == ISD::AND) { | |
if (SDValue NewOp1 = | |
distributeTruncateThroughAnd(N->getOperand(1).getNode())) | |
return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), | |
N->getOperand(0), NewOp1); | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitSHL(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N0.getValueType(); | |
unsigned OpSizeInBits = VT.getScalarSizeInBits(); | |
// fold vector ops | |
if (VT.isVector()) { | |
if (SDValue FoldedVOp = SimplifyVBinOp(N)) | |
return FoldedVOp; | |
BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); | |
// If setcc produces all-one true value then: | |
// (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) | |
if (N1CV && N1CV->isConstant()) { | |
if (N0.getOpcode() == ISD::AND) { | |
SDValue N00 = N0->getOperand(0); | |
SDValue N01 = N0->getOperand(1); | |
BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); | |
if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && | |
TLI.getBooleanContents(N00.getOperand(0).getValueType()) == | |
TargetLowering::ZeroOrNegativeOneBooleanContent) { | |
if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, | |
N01CV, N1CV)) | |
return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); | |
} | |
} | |
} | |
} | |
ConstantSDNode *N1C = isConstOrConstSplat(N1); | |
// fold (shl c1, c2) -> c1<<c2 | |
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); | |
if (N0C && N1C && !N1C->isOpaque()) | |
return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C); | |
// fold (shl 0, x) -> 0 | |
if (isNullConstant(N0)) | |
return N0; | |
// fold (shl x, c >= size(x)) -> undef | |
if (N1C && N1C->getAPIntValue().uge(OpSizeInBits)) | |
return DAG.getUNDEF(VT); | |
// fold (shl x, 0) -> x | |
if (N1C && N1C->isNullValue()) | |
return N0; | |
// fold (shl undef, x) -> 0 | |
if (N0.isUndef()) | |
return DAG.getConstant(0, SDLoc(N), VT); | |
if (SDValue NewSel = foldBinOpIntoSelect(N)) | |
return NewSel; | |
// if (shl x, c) is known to be zero, return 0 | |
if (DAG.MaskedValueIsZero(SDValue(N, 0), | |
APInt::getAllOnesValue(OpSizeInBits))) | |
return DAG.getConstant(0, SDLoc(N), VT); | |
// fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). | |
if (N1.getOpcode() == ISD::TRUNCATE && | |
N1.getOperand(0).getOpcode() == ISD::AND) { | |
if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) | |
return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); | |
} | |
if (N1C && SimplifyDemandedBits(SDValue(N, 0))) | |
return SDValue(N, 0); | |
// fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) | |
if (N1C && N0.getOpcode() == ISD::SHL) { | |
if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { | |
SDLoc DL(N); | |
APInt c1 = N0C1->getAPIntValue(); | |
APInt c2 = N1C->getAPIntValue(); | |
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); | |
APInt Sum = c1 + c2; | |
if (Sum.uge(OpSizeInBits)) | |
return DAG.getConstant(0, DL, VT); | |
return DAG.getNode( | |
ISD::SHL, DL, VT, N0.getOperand(0), | |
DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType())); | |
} | |
} | |
// fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2))) | |
// For this to be valid, the second form must not preserve any of the bits | |
// that are shifted out by the inner shift in the first form. This means | |
// the outer shift size must be >= the number of bits added by the ext. | |
// As a corollary, we don't care what kind of ext it is. | |
if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND || | |
N0.getOpcode() == ISD::ANY_EXTEND || | |
N0.getOpcode() == ISD::SIGN_EXTEND) && | |
N0.getOperand(0).getOpcode() == ISD::SHL) { | |
SDValue N0Op0 = N0.getOperand(0); | |
if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { | |
APInt c1 = N0Op0C1->getAPIntValue(); | |
APInt c2 = N1C->getAPIntValue(); | |
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); | |
EVT InnerShiftVT = N0Op0.getValueType(); | |
uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); | |
if (c2.uge(OpSizeInBits - InnerShiftSize)) { | |
SDLoc DL(N0); | |
APInt Sum = c1 + c2; | |
if (Sum.uge(OpSizeInBits)) | |
return DAG.getConstant(0, DL, VT); | |
return DAG.getNode( | |
ISD::SHL, DL, VT, | |
DAG.getNode(N0.getOpcode(), DL, VT, N0Op0->getOperand(0)), | |
DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType())); | |
} | |
} | |
} | |
// fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) | |
// Only fold this if the inner zext has no other uses to avoid increasing | |
// the total number of instructions. | |
if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && | |
N0.getOperand(0).getOpcode() == ISD::SRL) { | |
SDValue N0Op0 = N0.getOperand(0); | |
if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { | |
if (N0Op0C1->getAPIntValue().ult(VT.getScalarSizeInBits())) { | |
uint64_t c1 = N0Op0C1->getZExtValue(); | |
uint64_t c2 = N1C->getZExtValue(); | |
if (c1 == c2) { | |
SDValue NewOp0 = N0.getOperand(0); | |
EVT CountVT = NewOp0.getOperand(1).getValueType(); | |
SDLoc DL(N); | |
SDValue NewSHL = DAG.getNode(ISD::SHL, DL, NewOp0.getValueType(), | |
NewOp0, | |
DAG.getConstant(c2, DL, CountVT)); | |
AddToWorklist(NewSHL.getNode()); | |
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); | |
} | |
} | |
} | |
} | |
// fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 | |
// fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2 | |
if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && | |
cast<BinaryWithFlagsSDNode>(N0)->Flags.hasExact()) { | |
if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { | |
uint64_t C1 = N0C1->getZExtValue(); | |
uint64_t C2 = N1C->getZExtValue(); | |
SDLoc DL(N); | |
if (C1 <= C2) | |
return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), | |
DAG.getConstant(C2 - C1, DL, N1.getValueType())); | |
return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), | |
DAG.getConstant(C1 - C2, DL, N1.getValueType())); | |
} | |
} | |
// fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or | |
// (and (srl x, (sub c1, c2), MASK) | |
// Only fold this if the inner shift has no other uses -- if it does, folding | |
// this will increase the total number of instructions. | |
if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { | |
if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { | |
uint64_t c1 = N0C1->getZExtValue(); | |
if (c1 < OpSizeInBits) { | |
uint64_t c2 = N1C->getZExtValue(); | |
APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); | |
SDValue Shift; | |
if (c2 > c1) { | |
Mask = Mask.shl(c2 - c1); | |
SDLoc DL(N); | |
Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), | |
DAG.getConstant(c2 - c1, DL, N1.getValueType())); | |
} else { | |
Mask.lshrInPlace(c1 - c2); | |
SDLoc DL(N); | |
Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), | |
DAG.getConstant(c1 - c2, DL, N1.getValueType())); | |
} | |
SDLoc DL(N0); | |
return DAG.getNode(ISD::AND, DL, VT, Shift, | |
DAG.getConstant(Mask, DL, VT)); | |
} | |
} | |
} | |
// fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) | |
if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) && | |
isConstantOrConstantVector(N1, /* No Opaques */ true)) { | |
SDLoc DL(N); | |
SDValue AllBits = DAG.getAllOnesConstant(DL, VT); | |
SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1); | |
return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask); | |
} | |
// fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) | |
// Variant of version done on multiply, except mul by a power of 2 is turned | |
// into a shift. | |
if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() && | |
isConstantOrConstantVector(N1, /* No Opaques */ true) && | |
isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) { | |
SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); | |
SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); | |
AddToWorklist(Shl0.getNode()); | |
AddToWorklist(Shl1.getNode()); | |
return DAG.getNode(ISD::ADD, SDLoc(N), VT, Shl0, Shl1); | |
} | |
// fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) | |
if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() && | |
isConstantOrConstantVector(N1, /* No Opaques */ true) && | |
isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) { | |
SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); | |
if (isConstantOrConstantVector(Shl)) | |
return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl); | |
} | |
if (N1C && !N1C->isOpaque()) | |
if (SDValue NewSHL = visitShiftByConstant(N, N1C)) | |
return NewSHL; | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitSRA(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N0.getValueType(); | |
unsigned OpSizeInBits = VT.getScalarSizeInBits(); | |
// Arithmetic shifting an all-sign-bit value is a no-op. | |
if (DAG.ComputeNumSignBits(N0) == OpSizeInBits) | |
return N0; | |
// fold vector ops | |
if (VT.isVector()) | |
if (SDValue FoldedVOp = SimplifyVBinOp(N)) | |
return FoldedVOp; | |
ConstantSDNode *N1C = isConstOrConstSplat(N1); | |
// fold (sra c1, c2) -> (sra c1, c2) | |
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); | |
if (N0C && N1C && !N1C->isOpaque()) | |
return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C); | |
// fold (sra 0, x) -> 0 | |
if (isNullConstant(N0)) | |
return N0; | |
// fold (sra -1, x) -> -1 | |
if (isAllOnesConstant(N0)) | |
return N0; | |
// fold (sra x, c >= size(x)) -> undef | |
if (N1C && N1C->getAPIntValue().uge(OpSizeInBits)) | |
return DAG.getUNDEF(VT); | |
// fold (sra x, 0) -> x | |
if (N1C && N1C->isNullValue()) | |
return N0; | |
if (SDValue NewSel = foldBinOpIntoSelect(N)) | |
return NewSel; | |
// fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports | |
// sext_inreg. | |
if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { | |
unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); | |
EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); | |
if (VT.isVector()) | |
ExtVT = EVT::getVectorVT(*DAG.getContext(), | |
ExtVT, VT.getVectorNumElements()); | |
if ((!LegalOperations || | |
TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT))) | |
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, | |
N0.getOperand(0), DAG.getValueType(ExtVT)); | |
} | |
// fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) | |
if (N1C && N0.getOpcode() == ISD::SRA) { | |
if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { | |
SDLoc DL(N); | |
APInt c1 = N0C1->getAPIntValue(); | |
APInt c2 = N1C->getAPIntValue(); | |
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); | |
APInt Sum = c1 + c2; | |
if (Sum.uge(OpSizeInBits)) | |
Sum = APInt(OpSizeInBits, OpSizeInBits - 1); | |
return DAG.getNode( | |
ISD::SRA, DL, VT, N0.getOperand(0), | |
DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType())); | |
} | |
} | |
// fold (sra (shl X, m), (sub result_size, n)) | |
// -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for | |
// result_size - n != m. | |
// If truncate is free for the target sext(shl) is likely to result in better | |
// code. | |
if (N0.getOpcode() == ISD::SHL && N1C) { | |
// Get the two constanst of the shifts, CN0 = m, CN = n. | |
const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); | |
if (N01C) { | |
LLVMContext &Ctx = *DAG.getContext(); | |
// Determine what the truncate's result bitsize and type would be. | |
EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); | |
if (VT.isVector()) | |
TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); | |
// Determine the residual right-shift amount. | |
int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); | |
// If the shift is not a no-op (in which case this should be just a sign | |
// extend already), the truncated to type is legal, sign_extend is legal | |
// on that type, and the truncate to that type is both legal and free, | |
// perform the transform. | |
if ((ShiftAmt > 0) && | |
TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && | |
TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && | |
TLI.isTruncateFree(VT, TruncVT)) { | |
SDLoc DL(N); | |
SDValue Amt = DAG.getConstant(ShiftAmt, DL, | |
getShiftAmountTy(N0.getOperand(0).getValueType())); | |
SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, | |
N0.getOperand(0), Amt); | |
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, | |
Shift); | |
return DAG.getNode(ISD::SIGN_EXTEND, DL, | |
N->getValueType(0), Trunc); | |
} | |
} | |
} | |
// fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). | |
if (N1.getOpcode() == ISD::TRUNCATE && | |
N1.getOperand(0).getOpcode() == ISD::AND) { | |
if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) | |
return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); | |
} | |
// fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) | |
// if c1 is equal to the number of bits the trunc removes | |
if (N0.getOpcode() == ISD::TRUNCATE && | |
(N0.getOperand(0).getOpcode() == ISD::SRL || | |
N0.getOperand(0).getOpcode() == ISD::SRA) && | |
N0.getOperand(0).hasOneUse() && | |
N0.getOperand(0).getOperand(1).hasOneUse() && | |
N1C) { | |
SDValue N0Op0 = N0.getOperand(0); | |
if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { | |
unsigned LargeShiftVal = LargeShift->getZExtValue(); | |
EVT LargeVT = N0Op0.getValueType(); | |
if (LargeVT.getScalarSizeInBits() - OpSizeInBits == LargeShiftVal) { | |
SDLoc DL(N); | |
SDValue Amt = | |
DAG.getConstant(LargeShiftVal + N1C->getZExtValue(), DL, | |
getShiftAmountTy(N0Op0.getOperand(0).getValueType())); | |
SDValue SRA = DAG.getNode(ISD::SRA, DL, LargeVT, | |
N0Op0.getOperand(0), Amt); | |
return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); | |
} | |
} | |
} | |
// Simplify, based on bits shifted out of the LHS. | |
if (N1C && SimplifyDemandedBits(SDValue(N, 0))) | |
return SDValue(N, 0); | |
// If the sign bit is known to be zero, switch this to a SRL. | |
if (DAG.SignBitIsZero(N0)) | |
return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); | |
if (N1C && !N1C->isOpaque()) | |
if (SDValue NewSRA = visitShiftByConstant(N, N1C)) | |
return NewSRA; | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitSRL(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N0.getValueType(); | |
unsigned OpSizeInBits = VT.getScalarSizeInBits(); | |
// fold vector ops | |
if (VT.isVector()) | |
if (SDValue FoldedVOp = SimplifyVBinOp(N)) | |
return FoldedVOp; | |
ConstantSDNode *N1C = isConstOrConstSplat(N1); | |
// fold (srl c1, c2) -> c1 >>u c2 | |
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); | |
if (N0C && N1C && !N1C->isOpaque()) | |
return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C); | |
// fold (srl 0, x) -> 0 | |
if (isNullConstant(N0)) | |
return N0; | |
// fold (srl x, c >= size(x)) -> undef | |
if (N1C && N1C->getAPIntValue().uge(OpSizeInBits)) | |
return DAG.getUNDEF(VT); | |
// fold (srl x, 0) -> x | |
if (N1C && N1C->isNullValue()) | |
return N0; | |
if (SDValue NewSel = foldBinOpIntoSelect(N)) | |
return NewSel; | |
// if (srl x, c) is known to be zero, return 0 | |
if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), | |
APInt::getAllOnesValue(OpSizeInBits))) | |
return DAG.getConstant(0, SDLoc(N), VT); | |
// fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) | |
if (N1C && N0.getOpcode() == ISD::SRL) { | |
if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { | |
SDLoc DL(N); | |
APInt c1 = N0C1->getAPIntValue(); | |
APInt c2 = N1C->getAPIntValue(); | |
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); | |
APInt Sum = c1 + c2; | |
if (Sum.uge(OpSizeInBits)) | |
return DAG.getConstant(0, DL, VT); | |
return DAG.getNode( | |
ISD::SRL, DL, VT, N0.getOperand(0), | |
DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType())); | |
} | |
} | |
// fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2))) | |
if (N1C && N0.getOpcode() == ISD::TRUNCATE && | |
N0.getOperand(0).getOpcode() == ISD::SRL && | |
isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) { | |
uint64_t c1 = | |
cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue(); | |
uint64_t c2 = N1C->getZExtValue(); | |
EVT InnerShiftVT = N0.getOperand(0).getValueType(); | |
EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType(); | |
uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); | |
// This is only valid if the OpSizeInBits + c1 = size of inner shift. | |
if (c1 + OpSizeInBits == InnerShiftSize) { | |
SDLoc DL(N0); | |
if (c1 + c2 >= InnerShiftSize) | |
return DAG.getConstant(0, DL, VT); | |
return DAG.getNode(ISD::TRUNCATE, DL, VT, | |
DAG.getNode(ISD::SRL, DL, InnerShiftVT, | |
N0.getOperand(0)->getOperand(0), | |
DAG.getConstant(c1 + c2, DL, | |
ShiftCountVT))); | |
} | |
} | |
// fold (srl (shl x, c), c) -> (and x, cst2) | |
if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 && | |
isConstantOrConstantVector(N1, /* NoOpaques */ true)) { | |
SDLoc DL(N); | |
SDValue Mask = | |
DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1); | |
AddToWorklist(Mask.getNode()); | |
return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask); | |
} | |
// fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) | |
if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { | |
// Shifting in all undef bits? | |
EVT SmallVT = N0.getOperand(0).getValueType(); | |
unsigned BitSize = SmallVT.getScalarSizeInBits(); | |
if (N1C->getZExtValue() >= BitSize) | |
return DAG.getUNDEF(VT); | |
if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { | |
uint64_t ShiftAmt = N1C->getZExtValue(); | |
SDLoc DL0(N0); | |
SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, | |
N0.getOperand(0), | |
DAG.getConstant(ShiftAmt, DL0, | |
getShiftAmountTy(SmallVT))); | |
AddToWorklist(SmallShift.getNode()); | |
APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt); | |
SDLoc DL(N); | |
return DAG.getNode(ISD::AND, DL, VT, | |
DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), | |
DAG.getConstant(Mask, DL, VT)); | |
} | |
} | |
// fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign | |
// bit, which is unmodified by sra. | |
if (N1C && N1C->getZExtValue() + 1 == OpSizeInBits) { | |
if (N0.getOpcode() == ISD::SRA) | |
return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); | |
} | |
// fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). | |
if (N1C && N0.getOpcode() == ISD::CTLZ && | |
N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { | |
APInt KnownZero, KnownOne; | |
DAG.computeKnownBits(N0.getOperand(0), KnownZero, KnownOne); | |
// If any of the input bits are KnownOne, then the input couldn't be all | |
// zeros, thus the result of the srl will always be zero. | |
if (KnownOne.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); | |
// If all of the bits input the to ctlz node are known to be zero, then | |
// the result of the ctlz is "32" and the result of the shift is one. | |
APInt UnknownBits = ~KnownZero; | |
if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); | |
// Otherwise, check to see if there is exactly one bit input to the ctlz. | |
if ((UnknownBits & (UnknownBits - 1)) == 0) { | |
// Okay, we know that only that the single bit specified by UnknownBits | |
// could be set on input to the CTLZ node. If this bit is set, the SRL | |
// will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair | |
// to an SRL/XOR pair, which is likely to simplify more. | |
unsigned ShAmt = UnknownBits.countTrailingZeros(); | |
SDValue Op = N0.getOperand(0); | |
if (ShAmt) { | |
SDLoc DL(N0); | |
Op = DAG.getNode(ISD::SRL, DL, VT, Op, | |
DAG.getConstant(ShAmt, DL, | |
getShiftAmountTy(Op.getValueType()))); | |
AddToWorklist(Op.getNode()); | |
} | |
SDLoc DL(N); | |
return DAG.getNode(ISD::XOR, DL, VT, | |
Op, DAG.getConstant(1, DL, VT)); | |
} | |
} | |
// fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). | |
if (N1.getOpcode() == ISD::TRUNCATE && | |
N1.getOperand(0).getOpcode() == ISD::AND) { | |
if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) | |
return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); | |
} | |
// fold operands of srl based on knowledge that the low bits are not | |
// demanded. | |
if (N1C && SimplifyDemandedBits(SDValue(N, 0))) | |
return SDValue(N, 0); | |
if (N1C && !N1C->isOpaque()) | |
if (SDValue NewSRL = visitShiftByConstant(N, N1C)) | |
return NewSRL; | |
// Attempt to convert a srl of a load into a narrower zero-extending load. | |
if (SDValue NarrowLoad = ReduceLoadWidth(N)) | |
return NarrowLoad; | |
// Here is a common situation. We want to optimize: | |
// | |
// %a = ... | |
// %b = and i32 %a, 2 | |
// %c = srl i32 %b, 1 | |
// brcond i32 %c ... | |
// | |
// into | |
// | |
// %a = ... | |
// %b = and %a, 2 | |
// %c = setcc eq %b, 0 | |
// brcond %c ... | |
// | |
// However when after the source operand of SRL is optimized into AND, the SRL | |
// itself may not be optimized further. Look for it and add the BRCOND into | |
// the worklist. | |
if (N->hasOneUse()) { | |
SDNode *Use = *N->use_begin(); | |
if (Use->getOpcode() == ISD::BRCOND) | |
AddToWorklist(Use); | |
else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { | |
// Also look pass the truncate. | |
Use = *Use->use_begin(); | |
if (Use->getOpcode() == ISD::BRCOND) | |
AddToWorklist(Use); | |
} | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitABS(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
// fold (abs c1) -> c2 | |
if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | |
return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0); | |
// fold (abs (abs x)) -> (abs x) | |
if (N0.getOpcode() == ISD::ABS) | |
return N0; | |
// fold (abs x) -> x iff not-negative | |
if (DAG.SignBitIsZero(N0)) | |
return N0; | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitBSWAP(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
// fold (bswap c1) -> c2 | |
if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | |
return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); | |
// fold (bswap (bswap x)) -> x | |
if (N0.getOpcode() == ISD::BSWAP) | |
return N0->getOperand(0); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitBITREVERSE(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
// fold (bitreverse c1) -> c2 | |
if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | |
return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0); | |
// fold (bitreverse (bitreverse x)) -> x | |
if (N0.getOpcode() == ISD::BITREVERSE) | |
return N0.getOperand(0); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitCTLZ(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
// fold (ctlz c1) -> c2 | |
if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | |
return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
// fold (ctlz_zero_undef c1) -> c2 | |
if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | |
return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitCTTZ(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
// fold (cttz c1) -> c2 | |
if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | |
return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
// fold (cttz_zero_undef c1) -> c2 | |
if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | |
return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitCTPOP(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
// fold (ctpop c1) -> c2 | |
if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | |
return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); | |
return SDValue(); | |
} | |
/// \brief Generate Min/Max node | |
static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS, | |
SDValue RHS, SDValue True, SDValue False, | |
ISD::CondCode CC, const TargetLowering &TLI, | |
SelectionDAG &DAG) { | |
if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) | |
return SDValue(); | |
switch (CC) { | |
case ISD::SETOLT: | |
case ISD::SETOLE: | |
case ISD::SETLT: | |
case ISD::SETLE: | |
case ISD::SETULT: | |
case ISD::SETULE: { | |
unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; | |
if (TLI.isOperationLegal(Opcode, VT)) | |
return DAG.getNode(Opcode, DL, VT, LHS, RHS); | |
return SDValue(); | |
} | |
case ISD::SETOGT: | |
case ISD::SETOGE: | |
case ISD::SETGT: | |
case ISD::SETGE: | |
case ISD::SETUGT: | |
case ISD::SETUGE: { | |
unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; | |
if (TLI.isOperationLegal(Opcode, VT)) | |
return DAG.getNode(Opcode, DL, VT, LHS, RHS); | |
return SDValue(); | |
} | |
default: | |
return SDValue(); | |
} | |
} | |
SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) { | |
SDValue Cond = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
SDValue N2 = N->getOperand(2); | |
EVT VT = N->getValueType(0); | |
EVT CondVT = Cond.getValueType(); | |
SDLoc DL(N); | |
if (!VT.isInteger()) | |
return SDValue(); | |
auto *C1 = dyn_cast<ConstantSDNode>(N1); | |
auto *C2 = dyn_cast<ConstantSDNode>(N2); | |
if (!C1 || !C2) | |
return SDValue(); | |
// Only do this before legalization to avoid conflicting with target-specific | |
// transforms in the other direction (create a select from a zext/sext). There | |
// is also a target-independent combine here in DAGCombiner in the other | |
// direction for (select Cond, -1, 0) when the condition is not i1. | |
if (CondVT == MVT::i1 && !LegalOperations) { | |
if (C1->isNullValue() && C2->isOne()) { | |
// select Cond, 0, 1 --> zext (!Cond) | |
SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); | |
if (VT != MVT::i1) | |
NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond); | |
return NotCond; | |
} | |
if (C1->isNullValue() && C2->isAllOnesValue()) { | |
// select Cond, 0, -1 --> sext (!Cond) | |
SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); | |
if (VT != MVT::i1) | |
NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond); | |
return NotCond; | |
} | |
if (C1->isOne() && C2->isNullValue()) { | |
// select Cond, 1, 0 --> zext (Cond) | |
if (VT != MVT::i1) | |
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); | |
return Cond; | |
} | |
if (C1->isAllOnesValue() && C2->isNullValue()) { | |
// select Cond, -1, 0 --> sext (Cond) | |
if (VT != MVT::i1) | |
Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); | |
return Cond; | |
} | |
// For any constants that differ by 1, we can transform the select into an | |
// extend and add. Use a target hook because some targets may prefer to | |
// transform in the other direction. | |
if (TLI.convertSelectOfConstantsToMath()) { | |
if (C1->getAPIntValue() - 1 == C2->getAPIntValue()) { | |
// select Cond, C1, C1-1 --> add (zext Cond), C1-1 | |
if (VT != MVT::i1) | |
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); | |
return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); | |
} | |
if (C1->getAPIntValue() + 1 == C2->getAPIntValue()) { | |
// select Cond, C1, C1+1 --> add (sext Cond), C1+1 | |
if (VT != MVT::i1) | |
Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); | |
return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); | |
} | |
} | |
return SDValue(); | |
} | |
// fold (select Cond, 0, 1) -> (xor Cond, 1) | |
// We can't do this reliably if integer based booleans have different contents | |
// to floating point based booleans. This is because we can't tell whether we | |
// have an integer-based boolean or a floating-point-based boolean unless we | |
// can find the SETCC that produced it and inspect its operands. This is | |
// fairly easy if C is the SETCC node, but it can potentially be | |
// undiscoverable (or not reasonably discoverable). For example, it could be | |
// in another basic block or it could require searching a complicated | |
// expression. | |
if (CondVT.isInteger() && | |
TLI.getBooleanContents(false, true) == | |
TargetLowering::ZeroOrOneBooleanContent && | |
TLI.getBooleanContents(false, false) == | |
TargetLowering::ZeroOrOneBooleanContent && | |
C1->isNullValue() && C2->isOne()) { | |
SDValue NotCond = | |
DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT)); | |
if (VT.bitsEq(CondVT)) | |
return NotCond; | |
return DAG.getZExtOrTrunc(NotCond, DL, VT); | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitSELECT(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
SDValue N2 = N->getOperand(2); | |
EVT VT = N->getValueType(0); | |
EVT VT0 = N0.getValueType(); | |
// fold (select C, X, X) -> X | |
if (N1 == N2) | |
return N1; | |
if (const ConstantSDNode *N0C = dyn_cast<const ConstantSDNode>(N0)) { | |
// fold (select true, X, Y) -> X | |
// fold (select false, X, Y) -> Y | |
return !N0C->isNullValue() ? N1 : N2; | |
} | |
// fold (select X, X, Y) -> (or X, Y) | |
// fold (select X, 1, Y) -> (or C, Y) | |
if (VT == VT0 && VT == MVT::i1 && (N0 == N1 || isOneConstant(N1))) | |
return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2); | |
if (SDValue V = foldSelectOfConstants(N)) | |
return V; | |
// fold (select C, 0, X) -> (and (not C), X) | |
if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) { | |
SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); | |
AddToWorklist(NOTNode.getNode()); | |
return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2); | |
} | |
// fold (select C, X, 1) -> (or (not C), X) | |
if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) { | |
SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); | |
AddToWorklist(NOTNode.getNode()); | |
return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1); | |
} | |
// fold (select X, Y, X) -> (and X, Y) | |
// fold (select X, Y, 0) -> (and X, Y) | |
if (VT == VT0 && VT == MVT::i1 && (N0 == N2 || isNullConstant(N2))) | |
return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1); | |
// If we can fold this based on the true/false value, do so. | |
if (SimplifySelectOps(N, N1, N2)) | |
return SDValue(N, 0); // Don't revisit N. | |
if (VT0 == MVT::i1) { | |
// The code in this block deals with the following 2 equivalences: | |
// select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) | |
// select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) | |
// The target can specify its preferred form with the | |
// shouldNormalizeToSelectSequence() callback. However we always transform | |
// to the right anyway if we find the inner select exists in the DAG anyway | |
// and we always transform to the left side if we know that we can further | |
// optimize the combination of the conditions. | |
bool normalizeToSequence | |
= TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); | |
// select (and Cond0, Cond1), X, Y | |
// -> select Cond0, (select Cond1, X, Y), Y | |
if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { | |
SDValue Cond0 = N0->getOperand(0); | |
SDValue Cond1 = N0->getOperand(1); | |
SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N), | |
N1.getValueType(), Cond1, N1, N2); | |
if (normalizeToSequence || !InnerSelect.use_empty()) | |
return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, | |
InnerSelect, N2); | |
} | |
// select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) | |
if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { | |
SDValue Cond0 = N0->getOperand(0); | |
SDValue Cond1 = N0->getOperand(1); | |
SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N), | |
N1.getValueType(), Cond1, N1, N2); | |
if (normalizeToSequence || !InnerSelect.use_empty()) | |
return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, N1, | |
InnerSelect); | |
} | |
// select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y | |
if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { | |
SDValue N1_0 = N1->getOperand(0); | |
SDValue N1_1 = N1->getOperand(1); | |
SDValue N1_2 = N1->getOperand(2); | |
if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { | |
// Create the actual and node if we can generate good code for it. | |
if (!normalizeToSequence) { | |
SDValue And = DAG.getNode(ISD::AND, SDLoc(N), N0.getValueType(), | |
N0, N1_0); | |
return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), And, | |
N1_1, N2); | |
} | |
// Otherwise see if we can optimize the "and" to a better pattern. | |
if (SDValue Combined = visitANDLike(N0, N1_0, N)) | |
return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined, | |
N1_1, N2); | |
} | |
} | |
// select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y | |
if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { | |
SDValue N2_0 = N2->getOperand(0); | |
SDValue N2_1 = N2->getOperand(1); | |
SDValue N2_2 = N2->getOperand(2); | |
if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { | |
// Create the actual or node if we can generate good code for it. | |
if (!normalizeToSequence) { | |
SDValue Or = DAG.getNode(ISD::OR, SDLoc(N), N0.getValueType(), | |
N0, N2_0); | |
return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Or, | |
N1, N2_2); | |
} | |
// Otherwise see if we can optimize to a better pattern. | |
if (SDValue Combined = visitORLike(N0, N2_0, N)) | |
return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined, | |
N1, N2_2); | |
} | |
} | |
} | |
// select (xor Cond, 1), X, Y -> select Cond, Y, X | |
if (VT0 == MVT::i1) { | |
if (N0->getOpcode() == ISD::XOR) { | |
if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) { | |
SDValue Cond0 = N0->getOperand(0); | |
if (C->isOne()) | |
return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), | |
Cond0, N2, N1); | |
} | |
} | |
} | |
// fold selects based on a setcc into other things, such as min/max/abs | |
if (N0.getOpcode() == ISD::SETCC) { | |
// select x, y (fcmp lt x, y) -> fminnum x, y | |
// select x, y (fcmp gt x, y) -> fmaxnum x, y | |
// | |
// This is OK if we don't care about what happens if either operand is a | |
// NaN. | |
// | |
// FIXME: Instead of testing for UnsafeFPMath, this should be checking for | |
// no signed zeros as well as no nans. | |
const TargetOptions &Options = DAG.getTarget().Options; | |
if (Options.UnsafeFPMath && | |
VT.isFloatingPoint() && N0.hasOneUse() && | |
DAG.isKnownNeverNaN(N1) && DAG.isKnownNeverNaN(N2)) { | |
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); | |
if (SDValue FMinMax = combineMinNumMaxNum(SDLoc(N), VT, N0.getOperand(0), | |
N0.getOperand(1), N1, N2, CC, | |
TLI, DAG)) | |
return FMinMax; | |
} | |
if ((!LegalOperations && | |
TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) || | |
TLI.isOperationLegal(ISD::SELECT_CC, VT)) | |
return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, | |
N0.getOperand(0), N0.getOperand(1), | |
N1, N2, N0.getOperand(2)); | |
return SimplifySelect(SDLoc(N), N0, N1, N2); | |
} | |
return SDValue(); | |
} | |
static | |
std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) { | |
SDLoc DL(N); | |
EVT LoVT, HiVT; | |
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); | |
// Split the inputs. | |
SDValue Lo, Hi, LL, LH, RL, RH; | |
std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0); | |
std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1); | |
Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2)); | |
Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2)); | |
return std::make_pair(Lo, Hi); | |
} | |
// This function assumes all the vselect's arguments are CONCAT_VECTOR | |
// nodes and that the condition is a BV of ConstantSDNodes (or undefs). | |
static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { | |
SDLoc DL(N); | |
SDValue Cond = N->getOperand(0); | |
SDValue LHS = N->getOperand(1); | |
SDValue RHS = N->getOperand(2); | |
EVT VT = N->getValueType(0); | |
int NumElems = VT.getVectorNumElements(); | |
assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && | |
RHS.getOpcode() == ISD::CONCAT_VECTORS && | |
Cond.getOpcode() == ISD::BUILD_VECTOR); | |
// CONCAT_VECTOR can take an arbitrary number of arguments. We only care about | |
// binary ones here. | |
if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) | |
return SDValue(); | |
// We're sure we have an even number of elements due to the | |
// concat_vectors we have as arguments to vselect. | |
// Skip BV elements until we find one that's not an UNDEF | |
// After we find an UNDEF element, keep looping until we get to half the | |
// length of the BV and see if all the non-undef nodes are the same. | |
ConstantSDNode *BottomHalf = nullptr; | |
for (int i = 0; i < NumElems / 2; ++i) { | |
if (Cond->getOperand(i)->isUndef()) | |
continue; | |
if (BottomHalf == nullptr) | |
BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); | |
else if (Cond->getOperand(i).getNode() != BottomHalf) | |
return SDValue(); | |
} | |
// Do the same for the second half of the BuildVector | |
ConstantSDNode *TopHalf = nullptr; | |
for (int i = NumElems / 2; i < NumElems; ++i) { | |
if (Cond->getOperand(i)->isUndef()) | |
continue; | |
if (TopHalf == nullptr) | |
TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); | |
else if (Cond->getOperand(i).getNode() != TopHalf) | |
return SDValue(); | |
} | |
assert(TopHalf && BottomHalf && | |
"One half of the selector was all UNDEFs and the other was all the " | |
"same value. This should have been addressed before this function."); | |
return DAG.getNode( | |
ISD::CONCAT_VECTORS, DL, VT, | |
BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0), | |
TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); | |
} | |
SDValue DAGCombiner::visitMSCATTER(SDNode *N) { | |
if (Level >= AfterLegalizeTypes) | |
return SDValue(); | |
MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); | |
SDValue Mask = MSC->getMask(); | |
SDValue Data = MSC->getValue(); | |
SDLoc DL(N); | |
// If the MSCATTER data type requires splitting and the mask is provided by a | |
// SETCC, then split both nodes and its operands before legalization. This | |
// prevents the type legalizer from unrolling SETCC into scalar comparisons | |
// and enables future optimizations (e.g. min/max pattern matching on X86). | |
if (Mask.getOpcode() != ISD::SETCC) | |
return SDValue(); | |
// Check if any splitting is required. | |
if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != | |
TargetLowering::TypeSplitVector) | |
return SDValue(); | |
SDValue MaskLo, MaskHi, Lo, Hi; | |
std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); | |
EVT LoVT, HiVT; | |
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MSC->getValueType(0)); | |
SDValue Chain = MSC->getChain(); | |
EVT MemoryVT = MSC->getMemoryVT(); | |
unsigned Alignment = MSC->getOriginalAlignment(); | |
EVT LoMemVT, HiMemVT; | |
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); | |
SDValue DataLo, DataHi; | |
std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); | |
SDValue BasePtr = MSC->getBasePtr(); | |
SDValue IndexLo, IndexHi; | |
std::tie(IndexLo, IndexHi) = DAG.SplitVector(MSC->getIndex(), DL); | |
MachineMemOperand *MMO = DAG.getMachineFunction(). | |
getMachineMemOperand(MSC->getPointerInfo(), | |
MachineMemOperand::MOStore, LoMemVT.getStoreSize(), | |
Alignment, MSC->getAAInfo(), MSC->getRanges()); | |
SDValue OpsLo[] = { Chain, DataLo, MaskLo, BasePtr, IndexLo }; | |
Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataLo.getValueType(), | |
DL, OpsLo, MMO); | |
SDValue OpsHi[] = {Chain, DataHi, MaskHi, BasePtr, IndexHi}; | |
Hi = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(), | |
DL, OpsHi, MMO); | |
AddToWorklist(Lo.getNode()); | |
AddToWorklist(Hi.getNode()); | |
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); | |
} | |
SDValue DAGCombiner::visitMSTORE(SDNode *N) { | |
if (Level >= AfterLegalizeTypes) | |
return SDValue(); | |
MaskedStoreSDNode *MST = dyn_cast<MaskedStoreSDNode>(N); | |
SDValue Mask = MST->getMask(); | |
SDValue Data = MST->getValue(); | |
EVT VT = Data.getValueType(); | |
SDLoc DL(N); | |
// If the MSTORE data type requires splitting and the mask is provided by a | |
// SETCC, then split both nodes and its operands before legalization. This | |
// prevents the type legalizer from unrolling SETCC into scalar comparisons | |
// and enables future optimizations (e.g. min/max pattern matching on X86). | |
if (Mask.getOpcode() == ISD::SETCC) { | |
// Check if any splitting is required. | |
if (TLI.getTypeAction(*DAG.getContext(), VT) != | |
TargetLowering::TypeSplitVector) | |
return SDValue(); | |
SDValue MaskLo, MaskHi, Lo, Hi; | |
std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); | |
SDValue Chain = MST->getChain(); | |
SDValue Ptr = MST->getBasePtr(); | |
EVT MemoryVT = MST->getMemoryVT(); | |
unsigned Alignment = MST->getOriginalAlignment(); | |
// if Alignment is equal to the vector size, | |
// take the half of it for the second part | |
unsigned SecondHalfAlignment = | |
(Alignment == VT.getSizeInBits() / 8) ? Alignment / 2 : Alignment; | |
EVT LoMemVT, HiMemVT; | |
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); | |
SDValue DataLo, DataHi; | |
std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); | |
MachineMemOperand *MMO = DAG.getMachineFunction(). | |
getMachineMemOperand(MST->getPointerInfo(), | |
MachineMemOperand::MOStore, LoMemVT.getStoreSize(), | |
Alignment, MST->getAAInfo(), MST->getRanges()); | |
Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO, | |
MST->isTruncatingStore(), | |
MST->isCompressingStore()); | |
Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, DL, LoMemVT, DAG, | |
MST->isCompressingStore()); | |
MMO = DAG.getMachineFunction(). | |
getMachineMemOperand(MST->getPointerInfo(), | |
MachineMemOperand::MOStore, HiMemVT.getStoreSize(), | |
SecondHalfAlignment, MST->getAAInfo(), | |
MST->getRanges()); | |
Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO, | |
MST->isTruncatingStore(), | |
MST->isCompressingStore()); | |
AddToWorklist(Lo.getNode()); | |
AddToWorklist(Hi.getNode()); | |
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitMGATHER(SDNode *N) { | |
if (Level >= AfterLegalizeTypes) | |
return SDValue(); | |
MaskedGatherSDNode *MGT = dyn_cast<MaskedGatherSDNode>(N); | |
SDValue Mask = MGT->getMask(); | |
SDLoc DL(N); | |
// If the MGATHER result requires splitting and the mask is provided by a | |
// SETCC, then split both nodes and its operands before legalization. This | |
// prevents the type legalizer from unrolling SETCC into scalar comparisons | |
// and enables future optimizations (e.g. min/max pattern matching on X86). | |
if (Mask.getOpcode() != ISD::SETCC) | |
return SDValue(); | |
EVT VT = N->getValueType(0); | |
// Check if any splitting is required. | |
if (TLI.getTypeAction(*DAG.getContext(), VT) != | |
TargetLowering::TypeSplitVector) | |
return SDValue(); | |
SDValue MaskLo, MaskHi, Lo, Hi; | |
std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); | |
SDValue Src0 = MGT->getValue(); | |
SDValue Src0Lo, Src0Hi; | |
std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); | |
EVT LoVT, HiVT; | |
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); | |
SDValue Chain = MGT->getChain(); | |
EVT MemoryVT = MGT->getMemoryVT(); | |
unsigned Alignment = MGT->getOriginalAlignment(); | |
EVT LoMemVT, HiMemVT; | |
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); | |
SDValue BasePtr = MGT->getBasePtr(); | |
SDValue Index = MGT->getIndex(); | |
SDValue IndexLo, IndexHi; | |
std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL); | |
MachineMemOperand *MMO = DAG.getMachineFunction(). | |
getMachineMemOperand(MGT->getPointerInfo(), | |
MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), | |
Alignment, MGT->getAAInfo(), MGT->getRanges()); | |
SDValue OpsLo[] = { Chain, Src0Lo, MaskLo, BasePtr, IndexLo }; | |
Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, DL, OpsLo, | |
MMO); | |
SDValue OpsHi[] = {Chain, Src0Hi, MaskHi, BasePtr, IndexHi}; | |
Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, DL, OpsHi, | |
MMO); | |
AddToWorklist(Lo.getNode()); | |
AddToWorklist(Hi.getNode()); | |
// Build a factor node to remember that this load is independent of the | |
// other one. | |
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), | |
Hi.getValue(1)); | |
// Legalized the chain result - switch anything that used the old chain to | |
// use the new one. | |
DAG.ReplaceAllUsesOfValueWith(SDValue(MGT, 1), Chain); | |
SDValue GatherRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); | |
SDValue RetOps[] = { GatherRes, Chain }; | |
return DAG.getMergeValues(RetOps, DL); | |
} | |
SDValue DAGCombiner::visitMLOAD(SDNode *N) { | |
if (Level >= AfterLegalizeTypes) | |
return SDValue(); | |
MaskedLoadSDNode *MLD = dyn_cast<MaskedLoadSDNode>(N); | |
SDValue Mask = MLD->getMask(); | |
SDLoc DL(N); | |
// If the MLOAD result requires splitting and the mask is provided by a | |
// SETCC, then split both nodes and its operands before legalization. This | |
// prevents the type legalizer from unrolling SETCC into scalar comparisons | |
// and enables future optimizations (e.g. min/max pattern matching on X86). | |
if (Mask.getOpcode() == ISD::SETCC) { | |
EVT VT = N->getValueType(0); | |
// Check if any splitting is required. | |
if (TLI.getTypeAction(*DAG.getContext(), VT) != | |
TargetLowering::TypeSplitVector) | |
return SDValue(); | |
SDValue MaskLo, MaskHi, Lo, Hi; | |
std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); | |
SDValue Src0 = MLD->getSrc0(); | |
SDValue Src0Lo, Src0Hi; | |
std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); | |
EVT LoVT, HiVT; | |
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0)); | |
SDValue Chain = MLD->getChain(); | |
SDValue Ptr = MLD->getBasePtr(); | |
EVT MemoryVT = MLD->getMemoryVT(); | |
unsigned Alignment = MLD->getOriginalAlignment(); | |
// if Alignment is equal to the vector size, | |
// take the half of it for the second part | |
unsigned SecondHalfAlignment = | |
(Alignment == MLD->getValueType(0).getSizeInBits()/8) ? | |
Alignment/2 : Alignment; | |
EVT LoMemVT, HiMemVT; | |
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); | |
MachineMemOperand *MMO = DAG.getMachineFunction(). | |
getMachineMemOperand(MLD->getPointerInfo(), | |
MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), | |
Alignment, MLD->getAAInfo(), MLD->getRanges()); | |
Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, Src0Lo, LoMemVT, MMO, | |
ISD::NON_EXTLOAD, MLD->isExpandingLoad()); | |
Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, DL, LoMemVT, DAG, | |
MLD->isExpandingLoad()); | |
MMO = DAG.getMachineFunction(). | |
getMachineMemOperand(MLD->getPointerInfo(), | |
MachineMemOperand::MOLoad, HiMemVT.getStoreSize(), | |
SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges()); | |
Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, Src0Hi, HiMemVT, MMO, | |
ISD::NON_EXTLOAD, MLD->isExpandingLoad()); | |
AddToWorklist(Lo.getNode()); | |
AddToWorklist(Hi.getNode()); | |
// Build a factor node to remember that this load is independent of the | |
// other one. | |
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), | |
Hi.getValue(1)); | |
// Legalized the chain result - switch anything that used the old chain to | |
// use the new one. | |
DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain); | |
SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); | |
SDValue RetOps[] = { LoadRes, Chain }; | |
return DAG.getMergeValues(RetOps, DL); | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitVSELECT(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
SDValue N2 = N->getOperand(2); | |
SDLoc DL(N); | |
// fold (vselect C, X, X) -> X | |
if (N1 == N2) | |
return N1; | |
// Canonicalize integer abs. | |
// vselect (setg[te] X, 0), X, -X -> | |
// vselect (setgt X, -1), X, -X -> | |
// vselect (setl[te] X, 0), -X, X -> | |
// Y = sra (X, size(X)-1); xor (add (X, Y), Y) | |
if (N0.getOpcode() == ISD::SETCC) { | |
SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); | |
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); | |
bool isAbs = false; | |
bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); | |
if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || | |
(ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && | |
N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) | |
isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); | |
else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && | |
N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) | |
isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); | |
if (isAbs) { | |
EVT VT = LHS.getValueType(); | |
SDValue Shift = DAG.getNode( | |
ISD::SRA, DL, VT, LHS, | |
DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT)); | |
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); | |
AddToWorklist(Shift.getNode()); | |
AddToWorklist(Add.getNode()); | |
return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); | |
} | |
} | |
if (SimplifySelectOps(N, N1, N2)) | |
return SDValue(N, 0); // Don't revisit N. | |
// Fold (vselect (build_vector all_ones), N1, N2) -> N1 | |
if (ISD::isBuildVectorAllOnes(N0.getNode())) | |
return N1; | |
// Fold (vselect (build_vector all_zeros), N1, N2) -> N2 | |
if (ISD::isBuildVectorAllZeros(N0.getNode())) | |
return N2; | |
// The ConvertSelectToConcatVector function is assuming both the above | |
// checks for (vselect (build_vector all{ones,zeros) ...) have been made | |
// and addressed. | |
if (N1.getOpcode() == ISD::CONCAT_VECTORS && | |
N2.getOpcode() == ISD::CONCAT_VECTORS && | |
ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { | |
if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) | |
return CV; | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
SDValue N2 = N->getOperand(2); | |
SDValue N3 = N->getOperand(3); | |
SDValue N4 = N->getOperand(4); | |
ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); | |
// fold select_cc lhs, rhs, x, x, cc -> x | |
if (N2 == N3) | |
return N2; | |
// Determine if the condition we're dealing with is constant | |
if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, | |
CC, SDLoc(N), false)) { | |
AddToWorklist(SCC.getNode()); | |
if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { | |
if (!SCCC->isNullValue()) | |
return N2; // cond always true -> true val | |
else | |
return N3; // cond always false -> false val | |
} else if (SCC->isUndef()) { | |
// When the condition is UNDEF, just return the first operand. This is | |
// coherent the DAG creation, no setcc node is created in this case | |
return N2; | |
} else if (SCC.getOpcode() == ISD::SETCC) { | |
// Fold to a simpler select_cc | |
return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(), | |
SCC.getOperand(0), SCC.getOperand(1), N2, N3, | |
SCC.getOperand(2)); | |
} | |
} | |
// If we can fold this based on the true/false value, do so. | |
if (SimplifySelectOps(N, N2, N3)) | |
return SDValue(N, 0); // Don't revisit N. | |
// fold select_cc into other things, such as min/max/abs | |
return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); | |
} | |
SDValue DAGCombiner::visitSETCC(SDNode *N) { | |
return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1), | |
cast<CondCodeSDNode>(N->getOperand(2))->get(), | |
SDLoc(N)); | |
} | |
SDValue DAGCombiner::visitSETCCE(SDNode *N) { | |
SDValue LHS = N->getOperand(0); | |
SDValue RHS = N->getOperand(1); | |
SDValue Carry = N->getOperand(2); | |
SDValue Cond = N->getOperand(3); | |
// If Carry is false, fold to a regular SETCC. | |
if (Carry.getOpcode() == ISD::CARRY_FALSE) | |
return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); | |
return SDValue(); | |
} | |
/// Try to fold a sext/zext/aext dag node into a ConstantSDNode or | |
/// a build_vector of constants. | |
/// This function is called by the DAGCombiner when visiting sext/zext/aext | |
/// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). | |
/// Vector extends are not folded if operations are legal; this is to | |
/// avoid introducing illegal build_vector dag nodes. | |
static SDNode *tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, | |
SelectionDAG &DAG, bool LegalTypes, | |
bool LegalOperations) { | |
unsigned Opcode = N->getOpcode(); | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || | |
Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || | |
Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) | |
&& "Expected EXTEND dag node in input!"); | |
// fold (sext c1) -> c1 | |
// fold (zext c1) -> c1 | |
// fold (aext c1) -> c1 | |
if (isa<ConstantSDNode>(N0)) | |
return DAG.getNode(Opcode, SDLoc(N), VT, N0).getNode(); | |
// fold (sext (build_vector AllConstants) -> (build_vector AllConstants) | |
// fold (zext (build_vector AllConstants) -> (build_vector AllConstants) | |
// fold (aext (build_vector AllConstants) -> (build_vector AllConstants) | |
EVT SVT = VT.getScalarType(); | |
if (!(VT.isVector() && | |
(!LegalTypes || (!LegalOperations && TLI.isTypeLegal(SVT))) && | |
ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) | |
return nullptr; | |
// We can fold this node into a build_vector. | |
unsigned VTBits = SVT.getSizeInBits(); | |
unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits(); | |
SmallVector<SDValue, 8> Elts; | |
unsigned NumElts = VT.getVectorNumElements(); | |
SDLoc DL(N); | |
for (unsigned i=0; i != NumElts; ++i) { | |
SDValue Op = N0->getOperand(i); | |
if (Op->isUndef()) { | |
Elts.push_back(DAG.getUNDEF(SVT)); | |
continue; | |
} | |
SDLoc DL(Op); | |
// Get the constant value and if needed trunc it to the size of the type. | |
// Nodes like build_vector might have constants wider than the scalar type. | |
APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); | |
if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) | |
Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); | |
else | |
Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); | |
} | |
return DAG.getBuildVector(VT, DL, Elts).getNode(); | |
} | |
// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: | |
// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" | |
// transformation. Returns true if extension are possible and the above | |
// mentioned transformation is profitable. | |
static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0, | |
unsigned ExtOpc, | |
SmallVectorImpl<SDNode *> &ExtendNodes, | |
const TargetLowering &TLI) { | |
bool HasCopyToRegUses = false; | |
bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType()); | |
for (SDNode::use_iterator UI = N0.getNode()->use_begin(), | |
UE = N0.getNode()->use_end(); | |
UI != UE; ++UI) { | |
SDNode *User = *UI; | |
if (User == N) | |
continue; | |
if (UI.getUse().getResNo() != N0.getResNo()) | |
continue; | |
// FIXME: Only extend SETCC N, N and SETCC N, c for now. | |
if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { | |
ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); | |
if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) | |
// Sign bits will be lost after a zext. | |
return false; | |
bool Add = false; | |
for (unsigned i = 0; i != 2; ++i) { | |
SDValue UseOp = User->getOperand(i); | |
if (UseOp == N0) | |
continue; | |
if (!isa<ConstantSDNode>(UseOp)) | |
return false; | |
Add = true; | |
} | |
if (Add) | |
ExtendNodes.push_back(User); | |
continue; | |
} | |
// If truncates aren't free and there are users we can't | |
// extend, it isn't worthwhile. | |
if (!isTruncFree) | |
return false; | |
// Remember if this value is live-out. | |
if (User->getOpcode() == ISD::CopyToReg) | |
HasCopyToRegUses = true; | |
} | |
if (HasCopyToRegUses) { | |
bool BothLiveOut = false; | |
for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); | |
UI != UE; ++UI) { | |
SDUse &Use = UI.getUse(); | |
if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { | |
BothLiveOut = true; | |
break; | |
} | |
} | |
if (BothLiveOut) | |
// Both unextended and extended values are live out. There had better be | |
// a good reason for the transformation. | |
return ExtendNodes.size(); | |
} | |
return true; | |
} | |
void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, | |
SDValue Trunc, SDValue ExtLoad, | |
const SDLoc &DL, ISD::NodeType ExtType) { | |
// Extend SetCC uses if necessary. | |
for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) { | |
SDNode *SetCC = SetCCs[i]; | |
SmallVector<SDValue, 4> Ops; | |
for (unsigned j = 0; j != 2; ++j) { | |
SDValue SOp = SetCC->getOperand(j); | |
if (SOp == Trunc) | |
Ops.push_back(ExtLoad); | |
else | |
Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); | |
} | |
Ops.push_back(SetCC->getOperand(2)); | |
CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); | |
} | |
} | |
// FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). | |
SDValue DAGCombiner::CombineExtLoad(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT DstVT = N->getValueType(0); | |
EVT SrcVT = N0.getValueType(); | |
assert((N->getOpcode() == ISD::SIGN_EXTEND || | |
N->getOpcode() == ISD::ZERO_EXTEND) && | |
"Unexpected node type (not an extend)!"); | |
// fold (sext (load x)) to multiple smaller sextloads; same for zext. | |
// For example, on a target with legal v4i32, but illegal v8i32, turn: | |
// (v8i32 (sext (v8i16 (load x)))) | |
// into: | |
// (v8i32 (concat_vectors (v4i32 (sextload x)), | |
// (v4i32 (sextload (x + 16))))) | |
// Where uses of the original load, i.e.: | |
// (v8i16 (load x)) | |
// are replaced with: | |
// (v8i16 (truncate | |
// (v8i32 (concat_vectors (v4i32 (sextload x)), | |
// (v4i32 (sextload (x + 16))))))) | |
// | |
// This combine is only applicable to illegal, but splittable, vectors. | |
// All legal types, and illegal non-vector types, are handled elsewhere. | |
// This combine is controlled by TargetLowering::isVectorLoadExtDesirable. | |
// | |
if (N0->getOpcode() != ISD::LOAD) | |
return SDValue(); | |
LoadSDNode *LN0 = cast<LoadSDNode>(N0); | |
if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || | |
!N0.hasOneUse() || LN0->isVolatile() || !DstVT.isVector() || | |
!DstVT.isPow2VectorType() || !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) | |
return SDValue(); | |
SmallVector<SDNode *, 4> SetCCs; | |
if (!ExtendUsesToFormExtLoad(N, N0, N->getOpcode(), SetCCs, TLI)) | |
return SDValue(); | |
ISD::LoadExtType ExtType = | |
N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; | |
// Try to split the vector types to get down to legal types. | |
EVT SplitSrcVT = SrcVT; | |
EVT SplitDstVT = DstVT; | |
while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && | |
SplitSrcVT.getVectorNumElements() > 1) { | |
SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; | |
SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; | |
} | |
if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) | |
return SDValue(); | |
SDLoc DL(N); | |
const unsigned NumSplits = | |
DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); | |
const unsigned Stride = SplitSrcVT.getStoreSize(); | |
SmallVector<SDValue, 4> Loads; | |
SmallVector<SDValue, 4> Chains; | |
SDValue BasePtr = LN0->getBasePtr(); | |
for (unsigned Idx = 0; Idx < NumSplits; Idx++) { | |
const unsigned Offset = Idx * Stride; | |
const unsigned Align = MinAlign(LN0->getAlignment(), Offset); | |
SDValue SplitLoad = DAG.getExtLoad( | |
ExtType, DL, SplitDstVT, LN0->getChain(), BasePtr, | |
LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align, | |
LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); | |
BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, | |
DAG.getConstant(Stride, DL, BasePtr.getValueType())); | |
Loads.push_back(SplitLoad.getValue(0)); | |
Chains.push_back(SplitLoad.getValue(1)); | |
} | |
SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); | |
SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); | |
// Simplify TF. | |
AddToWorklist(NewChain.getNode()); | |
CombineTo(N, NewValue); | |
// Replace uses of the original load (before extension) | |
// with a truncate of the concatenated sextloaded vectors. | |
SDValue Trunc = | |
DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); | |
CombineTo(N0.getNode(), Trunc, NewChain); | |
ExtendSetCCUses(SetCCs, Trunc, NewValue, DL, | |
(ISD::NodeType)N->getOpcode()); | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
SDLoc DL(N); | |
if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, | |
LegalOperations)) | |
return SDValue(Res, 0); | |
// fold (sext (sext x)) -> (sext x) | |
// fold (sext (aext x)) -> (sext x) | |
if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) | |
return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0)); | |
if (N0.getOpcode() == ISD::TRUNCATE) { | |
// fold (sext (truncate (load x))) -> (sext (smaller load x)) | |
// fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) | |
if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { | |
SDNode *oye = N0.getOperand(0).getNode(); | |
if (NarrowLoad.getNode() != N0.getNode()) { | |
CombineTo(N0.getNode(), NarrowLoad); | |
// CombineTo deleted the truncate, if needed, but not what's under it. | |
AddToWorklist(oye); | |
} | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
// See if the value being truncated is already sign extended. If so, just | |
// eliminate the trunc/sext pair. | |
SDValue Op = N0.getOperand(0); | |
unsigned OpBits = Op.getScalarValueSizeInBits(); | |
unsigned MidBits = N0.getScalarValueSizeInBits(); | |
unsigned DestBits = VT.getScalarSizeInBits(); | |
unsigned NumSignBits = DAG.ComputeNumSignBits(Op); | |
if (OpBits == DestBits) { | |
// Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign | |
// bits, it is already ready. | |
if (NumSignBits > DestBits-MidBits) | |
return Op; | |
} else if (OpBits < DestBits) { | |
// Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign | |
// bits, just sext from i32. | |
if (NumSignBits > OpBits-MidBits) | |
return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op); | |
} else { | |
// Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign | |
// bits, just truncate to i32. | |
if (NumSignBits > OpBits-MidBits) | |
return DAG.getNode(ISD::TRUNCATE, DL, VT, Op); | |
} | |
// fold (sext (truncate x)) -> (sextinreg x). | |
if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, | |
N0.getValueType())) { | |
if (OpBits < DestBits) | |
Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); | |
else if (OpBits > DestBits) | |
Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); | |
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op, | |
DAG.getValueType(N0.getValueType())); | |
} | |
} | |
// fold (sext (load x)) -> (sext (truncate (sextload x))) | |
// Only generate vector extloads when 1) they're legal, and 2) they are | |
// deemed desirable by the target. | |
if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && | |
((!LegalOperations && !VT.isVector() && | |
!cast<LoadSDNode>(N0)->isVolatile()) || | |
TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()))) { | |
bool DoXform = true; | |
SmallVector<SDNode*, 4> SetCCs; | |
if (!N0.hasOneUse()) | |
DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI); | |
if (VT.isVector()) | |
DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); | |
if (DoXform) { | |
LoadSDNode *LN0 = cast<LoadSDNode>(N0); | |
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, DL, VT, LN0->getChain(), | |
LN0->getBasePtr(), N0.getValueType(), | |
LN0->getMemOperand()); | |
CombineTo(N, ExtLoad); | |
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), | |
N0.getValueType(), ExtLoad); | |
CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); | |
ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL, ISD::SIGN_EXTEND); | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
} | |
// fold (sext (load x)) to multiple smaller sextloads. | |
// Only on illegal but splittable vectors. | |
if (SDValue ExtLoad = CombineExtLoad(N)) | |
return ExtLoad; | |
// fold (sext (sextload x)) -> (sext (truncate (sextload x))) | |
// fold (sext ( extload x)) -> (sext (truncate (sextload x))) | |
if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && | |
ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { | |
LoadSDNode *LN0 = cast<LoadSDNode>(N0); | |
EVT MemVT = LN0->getMemoryVT(); | |
if ((!LegalOperations && !LN0->isVolatile()) || | |
TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT)) { | |
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, DL, VT, LN0->getChain(), | |
LN0->getBasePtr(), MemVT, | |
LN0->getMemOperand()); | |
CombineTo(N, ExtLoad); | |
CombineTo(N0.getNode(), | |
DAG.getNode(ISD::TRUNCATE, SDLoc(N0), | |
N0.getValueType(), ExtLoad), | |
ExtLoad.getValue(1)); | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
} | |
// fold (sext (and/or/xor (load x), cst)) -> | |
// (and/or/xor (sextload x), (sext cst)) | |
if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || | |
N0.getOpcode() == ISD::XOR) && | |
isa<LoadSDNode>(N0.getOperand(0)) && | |
N0.getOperand(1).getOpcode() == ISD::Constant && | |
TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()) && | |
(!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { | |
LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0)); | |
if (LN0->getExtensionType() != ISD::ZEXTLOAD && LN0->isUnindexed()) { | |
bool DoXform = true; | |
SmallVector<SDNode*, 4> SetCCs; | |
if (!N0.hasOneUse()) | |
DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND, | |
SetCCs, TLI); | |
if (DoXform) { | |
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT, | |
LN0->getChain(), LN0->getBasePtr(), | |
LN0->getMemoryVT(), | |
LN0->getMemOperand()); | |
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | |
Mask = Mask.sext(VT.getSizeInBits()); | |
SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, | |
ExtLoad, DAG.getConstant(Mask, DL, VT)); | |
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, | |
SDLoc(N0.getOperand(0)), | |
N0.getOperand(0).getValueType(), ExtLoad); | |
CombineTo(N, And); | |
CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); | |
ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL, ISD::SIGN_EXTEND); | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
} | |
} | |
if (N0.getOpcode() == ISD::SETCC) { | |
SDValue N00 = N0.getOperand(0); | |
SDValue N01 = N0.getOperand(1); | |
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); | |
EVT N00VT = N0.getOperand(0).getValueType(); | |
// sext(setcc) -> sext_in_reg(vsetcc) for vectors. | |
// Only do this before legalize for now. | |
if (VT.isVector() && !LegalOperations && | |
TLI.getBooleanContents(N00VT) == | |
TargetLowering::ZeroOrNegativeOneBooleanContent) { | |
// On some architectures (such as SSE/NEON/etc) the SETCC result type is | |
// of the same size as the compared operands. Only optimize sext(setcc()) | |
// if this is the case. | |
EVT SVT = getSetCCResultType(N00VT); | |
// We know that the # elements of the results is the same as the | |
// # elements of the compare (and the # elements of the compare result | |
// for that matter). Check to see that they are the same size. If so, | |
// we know that the element size of the sext'd result matches the | |
// element size of the compare operands. | |
if (VT.getSizeInBits() == SVT.getSizeInBits()) | |
return DAG.getSetCC(DL, VT, N00, N01, CC); | |
// If the desired elements are smaller or larger than the source | |
// elements, we can use a matching integer vector type and then | |
// truncate/sign extend. | |
EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger(); | |
if (SVT == MatchingVecType) { | |
SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC); | |
return DAG.getSExtOrTrunc(VsetCC, DL, VT); | |
} | |
} | |
// sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0) | |
// Here, T can be 1 or -1, depending on the type of the setcc and | |
// getBooleanContents(). | |
unsigned SetCCWidth = N0.getScalarValueSizeInBits(); | |
// To determine the "true" side of the select, we need to know the high bit | |
// of the value returned by the setcc if it evaluates to true. | |
// If the type of the setcc is i1, then the true case of the select is just | |
// sext(i1 1), that is, -1. | |
// If the type of the setcc is larger (say, i8) then the value of the high | |
// bit depends on getBooleanContents(), so ask TLI for a real "true" value | |
// of the appropriate width. | |
SDValue ExtTrueVal = (SetCCWidth == 1) ? DAG.getAllOnesConstant(DL, VT) | |
: TLI.getConstTrueVal(DAG, VT, DL); | |
SDValue Zero = DAG.getConstant(0, DL, VT); | |
if (SDValue SCC = | |
SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true)) | |
return SCC; | |
if (!VT.isVector()) { | |
EVT SetCCVT = getSetCCResultType(N00VT); | |
// Don't do this transform for i1 because there's a select transform | |
// that would reverse it. | |
// TODO: We should not do this transform at all without a target hook | |
// because a sext is likely cheaper than a select? | |
if (SetCCVT.getScalarSizeInBits() != 1 && | |
(!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) { | |
SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC); | |
return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero); | |
} | |
} | |
} | |
// fold (sext x) -> (zext x) if the sign bit is known zero. | |
if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && | |
DAG.SignBitIsZero(N0)) | |
return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0); | |
return SDValue(); | |
} | |
// isTruncateOf - If N is a truncate of some other value, return true, record | |
// the value being truncated in Op and which of Op's bits are zero in KnownZero. | |
// This function computes KnownZero to avoid a duplicated call to | |
// computeKnownBits in the caller. | |
static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, | |
APInt &KnownZero) { | |
APInt KnownOne; | |
if (N->getOpcode() == ISD::TRUNCATE) { | |
Op = N->getOperand(0); | |
DAG.computeKnownBits(Op, KnownZero, KnownOne); | |
return true; | |
} | |
if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 || | |
cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE) | |
return false; | |
SDValue Op0 = N->getOperand(0); | |
SDValue Op1 = N->getOperand(1); | |
assert(Op0.getValueType() == Op1.getValueType()); | |
if (isNullConstant(Op0)) | |
Op = Op1; | |
else if (isNullConstant(Op1)) | |
Op = Op0; | |
else | |
return false; | |
DAG.computeKnownBits(Op, KnownZero, KnownOne); | |
if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue()) | |
return false; | |
return true; | |
} | |
SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, | |
LegalOperations)) | |
return SDValue(Res, 0); | |
// fold (zext (zext x)) -> (zext x) | |
// fold (zext (aext x)) -> (zext x) | |
if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) | |
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, | |
N0.getOperand(0)); | |
// fold (zext (truncate x)) -> (zext x) or | |
// (zext (truncate x)) -> (truncate x) | |
// This is valid when the truncated bits of x are already zero. | |
// FIXME: We should extend this to work for vectors too. | |
SDValue Op; | |
APInt KnownZero; | |
if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) { | |
APInt TruncatedBits = | |
(Op.getValueSizeInBits() == N0.getValueSizeInBits()) ? | |
APInt(Op.getValueSizeInBits(), 0) : | |
APInt::getBitsSet(Op.getValueSizeInBits(), | |
N0.getValueSizeInBits(), | |
std::min(Op.getValueSizeInBits(), | |
VT.getSizeInBits())); | |
if (TruncatedBits == (KnownZero & TruncatedBits)) { | |
if (VT.bitsGT(Op.getValueType())) | |
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op); | |
if (VT.bitsLT(Op.getValueType())) | |
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); | |
return Op; | |
} | |
} | |
// fold (zext (truncate (load x))) -> (zext (smaller load x)) | |
// fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n))) | |
if (N0.getOpcode() == ISD::TRUNCATE) { | |
if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { | |
SDNode *oye = N0.getOperand(0).getNode(); | |
if (NarrowLoad.getNode() != N0.getNode()) { | |
CombineTo(N0.getNode(), NarrowLoad); | |
// CombineTo deleted the truncate, if needed, but not what's under it. | |
AddToWorklist(oye); | |
} | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
} | |
// fold (zext (truncate x)) -> (and x, mask) | |
if (N0.getOpcode() == ISD::TRUNCATE) { | |
// fold (zext (truncate (load x))) -> (zext (smaller load x)) | |
// fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) | |
if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { | |
SDNode *oye = N0.getOperand(0).getNode(); | |
if (NarrowLoad.getNode() != N0.getNode()) { | |
CombineTo(N0.getNode(), NarrowLoad); | |
// CombineTo deleted the truncate, if needed, but not what's under it. | |
AddToWorklist(oye); | |
} | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
EVT SrcVT = N0.getOperand(0).getValueType(); | |
EVT MinVT = N0.getValueType(); | |
// Try to mask before the extension to avoid having to generate a larger mask, | |
// possibly over several sub-vectors. | |
if (SrcVT.bitsLT(VT)) { | |
if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && | |
TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { | |
SDValue Op = N0.getOperand(0); | |
Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); | |
AddToWorklist(Op.getNode()); | |
return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); | |
} | |
} | |
if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { | |
SDValue Op = N0.getOperand(0); | |
if (SrcVT.bitsLT(VT)) { | |
Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op); | |
AddToWorklist(Op.getNode()); | |
} else if (SrcVT.bitsGT(VT)) { | |
Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); | |
AddToWorklist(Op.getNode()); | |
} | |
return DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); | |
} | |
} | |
// Fold (zext (and (trunc x), cst)) -> (and x, cst), | |
// if either of the casts is not free. | |
if (N0.getOpcode() == ISD::AND && | |
N0.getOperand(0).getOpcode() == ISD::TRUNCATE && | |
N0.getOperand(1).getOpcode() == ISD::Constant && | |
(!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), | |
N0.getValueType()) || | |
!TLI.isZExtFree(N0.getValueType(), VT))) { | |
SDValue X = N0.getOperand(0).getOperand(0); | |
if (X.getValueType().bitsLT(VT)) { | |
X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X); | |
} else if (X.getValueType().bitsGT(VT)) { | |
X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); | |
} | |
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | |
Mask = Mask.zext(VT.getSizeInBits()); | |
SDLoc DL(N); | |
return DAG.getNode(ISD::AND, DL, VT, | |
X, DAG.getConstant(Mask, DL, VT)); | |
} | |
// fold (zext (load x)) -> (zext (truncate (zextload x))) | |
// Only generate vector extloads when 1) they're legal, and 2) they are | |
// deemed desirable by the target. | |
if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && | |
((!LegalOperations && !VT.isVector() && | |
!cast<LoadSDNode>(N0)->isVolatile()) || | |
TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()))) { | |
bool DoXform = true; | |
SmallVector<SDNode*, 4> SetCCs; | |
if (!N0.hasOneUse()) | |
DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI); | |
if (VT.isVector()) | |
DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); | |
if (DoXform) { | |
LoadSDNode *LN0 = cast<LoadSDNode>(N0); | |
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, | |
LN0->getChain(), | |
LN0->getBasePtr(), N0.getValueType(), | |
LN0->getMemOperand()); | |
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), | |
N0.getValueType(), ExtLoad); | |
CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); | |
ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), | |
ISD::ZERO_EXTEND); | |
CombineTo(N, ExtLoad); | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
} | |
// fold (zext (load x)) to multiple smaller zextloads. | |
// Only on illegal but splittable vectors. | |
if (SDValue ExtLoad = CombineExtLoad(N)) | |
return ExtLoad; | |
// fold (zext (and/or/xor (load x), cst)) -> | |
// (and/or/xor (zextload x), (zext cst)) | |
// Unless (and (load x) cst) will match as a zextload already and has | |
// additional users. | |
if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || | |
N0.getOpcode() == ISD::XOR) && | |
isa<LoadSDNode>(N0.getOperand(0)) && | |
N0.getOperand(1).getOpcode() == ISD::Constant && | |
TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()) && | |
(!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { | |
LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0)); | |
if (LN0->getExtensionType() != ISD::SEXTLOAD && LN0->isUnindexed()) { | |
bool DoXform = true; | |
SmallVector<SDNode*, 4> SetCCs; | |
if (!N0.hasOneUse()) { | |
if (N0.getOpcode() == ISD::AND) { | |
auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); | |
auto NarrowLoad = false; | |
EVT LoadResultTy = AndC->getValueType(0); | |
EVT ExtVT, LoadedVT; | |
if (isAndLoadExtLoad(AndC, LN0, LoadResultTy, ExtVT, LoadedVT, | |
NarrowLoad)) | |
DoXform = false; | |
} | |
if (DoXform) | |
DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), | |
ISD::ZERO_EXTEND, SetCCs, TLI); | |
} | |
if (DoXform) { | |
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT, | |
LN0->getChain(), LN0->getBasePtr(), | |
LN0->getMemoryVT(), | |
LN0->getMemOperand()); | |
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | |
Mask = Mask.zext(VT.getSizeInBits()); | |
SDLoc DL(N); | |
SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, | |
ExtLoad, DAG.getConstant(Mask, DL, VT)); | |
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, | |
SDLoc(N0.getOperand(0)), | |
N0.getOperand(0).getValueType(), ExtLoad); | |
CombineTo(N, And); | |
CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); | |
ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL, | |
ISD::ZERO_EXTEND); | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
} | |
} | |
// fold (zext (zextload x)) -> (zext (truncate (zextload x))) | |
// fold (zext ( extload x)) -> (zext (truncate (zextload x))) | |
if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && | |
ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { | |
LoadSDNode *LN0 = cast<LoadSDNode>(N0); | |
EVT MemVT = LN0->getMemoryVT(); | |
if ((!LegalOperations && !LN0->isVolatile()) || | |
TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT)) { | |
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, | |
LN0->getChain(), | |
LN0->getBasePtr(), MemVT, | |
LN0->getMemOperand()); | |
CombineTo(N, ExtLoad); | |
CombineTo(N0.getNode(), | |
DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), | |
ExtLoad), | |
ExtLoad.getValue(1)); | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
} | |
if (N0.getOpcode() == ISD::SETCC) { | |
// Only do this before legalize for now. | |
if (!LegalOperations && VT.isVector() && | |
N0.getValueType().getVectorElementType() == MVT::i1) { | |
EVT N00VT = N0.getOperand(0).getValueType(); | |
if (getSetCCResultType(N00VT) == N0.getValueType()) | |
return SDValue(); | |
// We know that the # elements of the results is the same as the # | |
// elements of the compare (and the # elements of the compare result for | |
// that matter). Check to see that they are the same size. If so, we know | |
// that the element size of the sext'd result matches the element size of | |
// the compare operands. | |
SDLoc DL(N); | |
SDValue VecOnes = DAG.getConstant(1, DL, VT); | |
if (VT.getSizeInBits() == N00VT.getSizeInBits()) { | |
// zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors. | |
SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0), | |
N0.getOperand(1), N0.getOperand(2)); | |
return DAG.getNode(ISD::AND, DL, VT, VSetCC, VecOnes); | |
} | |
// If the desired elements are smaller or larger than the source | |
// elements we can use a matching integer vector type and then | |
// truncate/sign extend. | |
EVT MatchingElementType = EVT::getIntegerVT( | |
*DAG.getContext(), N00VT.getScalarSizeInBits()); | |
EVT MatchingVectorType = EVT::getVectorVT( | |
*DAG.getContext(), MatchingElementType, N00VT.getVectorNumElements()); | |
SDValue VsetCC = | |
DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0), | |
N0.getOperand(1), N0.getOperand(2)); | |
return DAG.getNode(ISD::AND, DL, VT, DAG.getSExtOrTrunc(VsetCC, DL, VT), | |
VecOnes); | |
} | |
// zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc | |
SDLoc DL(N); | |
if (SDValue SCC = SimplifySelectCC( | |
DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), | |
DAG.getConstant(0, DL, VT), | |
cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) | |
return SCC; | |
} | |
// (zext (shl (zext x), cst)) -> (shl (zext x), cst) | |
if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && | |
isa<ConstantSDNode>(N0.getOperand(1)) && | |
N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && | |
N0.hasOneUse()) { | |
SDValue ShAmt = N0.getOperand(1); | |
unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue(); | |
if (N0.getOpcode() == ISD::SHL) { | |
SDValue InnerZExt = N0.getOperand(0); | |
// If the original shl may be shifting out bits, do not perform this | |
// transformation. | |
unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() - | |
InnerZExt.getOperand(0).getValueSizeInBits(); | |
if (ShAmtVal > KnownZeroBits) | |
return SDValue(); | |
} | |
SDLoc DL(N); | |
// Ensure that the shift amount is wide enough for the shifted value. | |
if (VT.getSizeInBits() >= 256) | |
ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); | |
return DAG.getNode(N0.getOpcode(), DL, VT, | |
DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), | |
ShAmt); | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, | |
LegalOperations)) | |
return SDValue(Res, 0); | |
// fold (aext (aext x)) -> (aext x) | |
// fold (aext (zext x)) -> (zext x) | |
// fold (aext (sext x)) -> (sext x) | |
if (N0.getOpcode() == ISD::ANY_EXTEND || | |
N0.getOpcode() == ISD::ZERO_EXTEND || | |
N0.getOpcode() == ISD::SIGN_EXTEND) | |
return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); | |
// fold (aext (truncate (load x))) -> (aext (smaller load x)) | |
// fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) | |
if (N0.getOpcode() == ISD::TRUNCATE) { | |
if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { | |
SDNode *oye = N0.getOperand(0).getNode(); | |
if (NarrowLoad.getNode() != N0.getNode()) { | |
CombineTo(N0.getNode(), NarrowLoad); | |
// CombineTo deleted the truncate, if needed, but not what's under it. | |
AddToWorklist(oye); | |
} | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
} | |
// fold (aext (truncate x)) | |
if (N0.getOpcode() == ISD::TRUNCATE) { | |
SDValue TruncOp = N0.getOperand(0); | |
if (TruncOp.getValueType() == VT) | |
return TruncOp; // x iff x size == zext size. | |
if (TruncOp.getValueType().bitsGT(VT)) | |
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp); | |
return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp); | |
} | |
// Fold (aext (and (trunc x), cst)) -> (and x, cst) | |
// if the trunc is not free. | |
if (N0.getOpcode() == ISD::AND && | |
N0.getOperand(0).getOpcode() == ISD::TRUNCATE && | |
N0.getOperand(1).getOpcode() == ISD::Constant && | |
!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), | |
N0.getValueType())) { | |
SDLoc DL(N); | |
SDValue X = N0.getOperand(0).getOperand(0); | |
if (X.getValueType().bitsLT(VT)) { | |
X = DAG.getNode(ISD::ANY_EXTEND, DL, VT, X); | |
} else if (X.getValueType().bitsGT(VT)) { | |
X = DAG.getNode(ISD::TRUNCATE, DL, VT, X); | |
} | |
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | |
Mask = Mask.zext(VT.getSizeInBits()); | |
return DAG.getNode(ISD::AND, DL, VT, | |
X, DAG.getConstant(Mask, DL, VT)); | |
} | |
// fold (aext (load x)) -> (aext (truncate (extload x))) | |
// None of the supported targets knows how to perform load and any_ext | |
// on vectors in one instruction. We only perform this transformation on | |
// scalars. | |
if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && | |
ISD::isUNINDEXEDLoad(N0.getNode()) && | |
TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { | |
bool DoXform = true; | |
SmallVector<SDNode*, 4> SetCCs; | |
if (!N0.hasOneUse()) | |
DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI); | |
if (DoXform) { | |
LoadSDNode *LN0 = cast<LoadSDNode>(N0); | |
SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, | |
LN0->getChain(), | |
LN0->getBasePtr(), N0.getValueType(), | |
LN0->getMemOperand()); | |
CombineTo(N, ExtLoad); | |
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), | |
N0.getValueType(), ExtLoad); | |
CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); | |
ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), | |
ISD::ANY_EXTEND); | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
} | |
// fold (aext (zextload x)) -> (aext (truncate (zextload x))) | |
// fold (aext (sextload x)) -> (aext (truncate (sextload x))) | |
// fold (aext ( extload x)) -> (aext (truncate (extload x))) | |
if (N0.getOpcode() == ISD::LOAD && | |
!ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && | |
N0.hasOneUse()) { | |
LoadSDNode *LN0 = cast<LoadSDNode>(N0); | |
ISD::LoadExtType ExtType = LN0->getExtensionType(); | |
EVT MemVT = LN0->getMemoryVT(); | |
if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { | |
SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), | |
VT, LN0->getChain(), LN0->getBasePtr(), | |
MemVT, LN0->getMemOperand()); | |
CombineTo(N, ExtLoad); | |
CombineTo(N0.getNode(), | |
DAG.getNode(ISD::TRUNCATE, SDLoc(N0), | |
N0.getValueType(), ExtLoad), | |
ExtLoad.getValue(1)); | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
} | |
if (N0.getOpcode() == ISD::SETCC) { | |
// For vectors: | |
// aext(setcc) -> vsetcc | |
// aext(setcc) -> truncate(vsetcc) | |
// aext(setcc) -> aext(vsetcc) | |
// Only do this before legalize for now. | |
if (VT.isVector() && !LegalOperations) { | |
EVT N0VT = N0.getOperand(0).getValueType(); | |
// We know that the # elements of the results is the same as the | |
// # elements of the compare (and the # elements of the compare result | |
// for that matter). Check to see that they are the same size. If so, | |
// we know that the element size of the sext'd result matches the | |
// element size of the compare operands. | |
if (VT.getSizeInBits() == N0VT.getSizeInBits()) | |
return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), | |
N0.getOperand(1), | |
cast<CondCodeSDNode>(N0.getOperand(2))->get()); | |
// If the desired elements are smaller or larger than the source | |
// elements we can use a matching integer vector type and then | |
// truncate/any extend | |
else { | |
EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger(); | |
SDValue VsetCC = | |
DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), | |
N0.getOperand(1), | |
cast<CondCodeSDNode>(N0.getOperand(2))->get()); | |
return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); | |
} | |
} | |
// aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc | |
SDLoc DL(N); | |
if (SDValue SCC = SimplifySelectCC( | |
DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), | |
DAG.getConstant(0, DL, VT), | |
cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) | |
return SCC; | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitAssertZext(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT EVT = cast<VTSDNode>(N1)->getVT(); | |
// fold (assertzext (assertzext x, vt), vt) -> (assertzext x, vt) | |
if (N0.getOpcode() == ISD::AssertZext && | |
EVT == cast<VTSDNode>(N0.getOperand(1))->getVT()) | |
return N0; | |
return SDValue(); | |
} | |
/// See if the specified operand can be simplified with the knowledge that only | |
/// the bits specified by Mask are used. If so, return the simpler operand, | |
/// otherwise return a null SDValue. | |
/// | |
/// (This exists alongside SimplifyDemandedBits because GetDemandedBits can | |
/// simplify nodes with multiple uses more aggressively.) | |
SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) { | |
switch (V.getOpcode()) { | |
default: break; | |
case ISD::Constant: { | |
const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode()); | |
assert(CV && "Const value should be ConstSDNode."); | |
const APInt &CVal = CV->getAPIntValue(); | |
APInt NewVal = CVal & Mask; | |
if (NewVal != CVal) | |
return DAG.getConstant(NewVal, SDLoc(V), V.getValueType()); | |
break; | |
} | |
case ISD::OR: | |
case ISD::XOR: | |
// If the LHS or RHS don't contribute bits to the or, drop them. | |
if (DAG.MaskedValueIsZero(V.getOperand(0), Mask)) | |
return V.getOperand(1); | |
if (DAG.MaskedValueIsZero(V.getOperand(1), Mask)) | |
return V.getOperand(0); | |
break; | |
case ISD::SRL: | |
// Only look at single-use SRLs. | |
if (!V.getNode()->hasOneUse()) | |
break; | |
if (ConstantSDNode *RHSC = getAsNonOpaqueConstant(V.getOperand(1))) { | |
// See if we can recursively simplify the LHS. | |
unsigned Amt = RHSC->getZExtValue(); | |
// Watch out for shift count overflow though. | |
if (Amt >= Mask.getBitWidth()) break; | |
APInt NewMask = Mask << Amt; | |
if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask)) | |
return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(), | |
SimplifyLHS, V.getOperand(1)); | |
} | |
break; | |
case ISD::AND: { | |
// X & -1 -> X (ignoring bits which aren't demanded). | |
ConstantSDNode *AndVal = isConstOrConstSplat(V.getOperand(1)); | |
if (AndVal && (AndVal->getAPIntValue() & Mask) == Mask) | |
return V.getOperand(0); | |
break; | |
} | |
} | |
return SDValue(); | |
} | |
/// If the result of a wider load is shifted to right of N bits and then | |
/// truncated to a narrower type and where N is a multiple of number of bits of | |
/// the narrower type, transform it to a narrower load from address + N / num of | |
/// bits of new type. If the result is to be extended, also fold the extension | |
/// to form a extending load. | |
SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { | |
unsigned Opc = N->getOpcode(); | |
ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
EVT ExtVT = VT; | |
// This transformation isn't valid for vector loads. | |
if (VT.isVector()) | |
return SDValue(); | |
// Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then | |
// extended to VT. | |
if (Opc == ISD::SIGN_EXTEND_INREG) { | |
ExtType = ISD::SEXTLOAD; | |
ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); | |
} else if (Opc == ISD::SRL) { | |
// Another special-case: SRL is basically zero-extending a narrower value. | |
ExtType = ISD::ZEXTLOAD; | |
N0 = SDValue(N, 0); | |
ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | |
if (!N01) return SDValue(); | |
ExtVT = EVT::getIntegerVT(*DAG.getContext(), | |
VT.getSizeInBits() - N01->getZExtValue()); | |
} | |
if (LegalOperations && !TLI.isLoadExtLegal(ExtType, VT, ExtVT)) | |
return SDValue(); | |
unsigned EVTBits = ExtVT.getSizeInBits(); | |
// Do not generate loads of non-round integer types since these can | |
// be expensive (and would be wrong if the type is not byte sized). | |
if (!ExtVT.isRound()) | |
return SDValue(); | |
unsigned ShAmt = 0; | |
if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { | |
if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | |
ShAmt = N01->getZExtValue(); | |
// Is the shift amount a multiple of size of VT? | |
if ((ShAmt & (EVTBits-1)) == 0) { | |
N0 = N0.getOperand(0); | |
// Is the load width a multiple of size of VT? | |
if ((N0.getValueSizeInBits() & (EVTBits-1)) != 0) | |
return SDValue(); | |
} | |
// At this point, we must have a load or else we can't do the transform. | |
if (!isa<LoadSDNode>(N0)) return SDValue(); | |
// Because a SRL must be assumed to *need* to zero-extend the high bits | |
// (as opposed to anyext the high bits), we can't combine the zextload | |
// lowering of SRL and an sextload. | |
if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD) | |
return SDValue(); | |
// If the shift amount is larger than the input type then we're not | |
// accessing any of the loaded bytes. If the load was a zextload/extload | |
// then the result of the shift+trunc is zero/undef (handled elsewhere). | |
if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits()) | |
return SDValue(); | |
} | |
} | |
// If the load is shifted left (and the result isn't shifted back right), | |
// we can fold the truncate through the shift. | |
unsigned ShLeftAmt = 0; | |
if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && | |
ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { | |
if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | |
ShLeftAmt = N01->getZExtValue(); | |
N0 = N0.getOperand(0); | |
} | |
} | |
// If we haven't found a load, we can't narrow it. Don't transform one with | |
// multiple uses, this would require adding a new load. | |
if (!isa<LoadSDNode>(N0) || !N0.hasOneUse()) | |
return SDValue(); | |
// Don't change the width of a volatile load. | |
LoadSDNode *LN0 = cast<LoadSDNode>(N0); | |
if (LN0->isVolatile()) | |
return SDValue(); | |
// Verify that we are actually reducing a load width here. | |
if (LN0->getMemoryVT().getSizeInBits() < EVTBits) | |
return SDValue(); | |
// For the transform to be legal, the load must produce only two values | |
// (the value loaded and the chain). Don't transform a pre-increment | |
// load, for example, which produces an extra value. Otherwise the | |
// transformation is not equivalent, and the downstream logic to replace | |
// uses gets things wrong. | |
if (LN0->getNumValues() > 2) | |
return SDValue(); | |
// If the load that we're shrinking is an extload and we're not just | |
// discarding the extension we can't simply shrink the load. Bail. | |
// TODO: It would be possible to merge the extensions in some cases. | |
if (LN0->getExtensionType() != ISD::NON_EXTLOAD && | |
LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt) | |
return SDValue(); | |
if (!TLI.shouldReduceLoadWidth(LN0, ExtType, ExtVT)) | |
return SDValue(); | |
EVT PtrType = N0.getOperand(1).getValueType(); | |
if (PtrType == MVT::Untyped || PtrType.isExtended()) | |
// It's not possible to generate a constant of extended or untyped type. | |
return SDValue(); | |
// For big endian targets, we need to adjust the offset to the pointer to | |
// load the correct bytes. | |
if (DAG.getDataLayout().isBigEndian()) { | |
unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits(); | |
unsigned EVTStoreBits = ExtVT.getStoreSizeInBits(); | |
ShAmt = LVTStoreBits - EVTStoreBits - ShAmt; | |
} | |
uint64_t PtrOff = ShAmt / 8; | |
unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); | |
SDLoc DL(LN0); | |
// The original load itself didn't wrap, so an offset within it doesn't. | |
SDNodeFlags Flags; | |
Flags.setNoUnsignedWrap(true); | |
SDValue NewPtr = DAG.getNode(ISD::ADD, DL, | |
PtrType, LN0->getBasePtr(), | |
DAG.getConstant(PtrOff, DL, PtrType), | |
&Flags); | |
AddToWorklist(NewPtr.getNode()); | |
SDValue Load; | |
if (ExtType == ISD::NON_EXTLOAD) | |
Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr, | |
LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign, | |
LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); | |
else | |
Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(), NewPtr, | |
LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT, | |
NewAlign, LN0->getMemOperand()->getFlags(), | |
LN0->getAAInfo()); | |
// Replace the old load's chain with the new load's chain. | |
WorklistRemover DeadNodes(*this); | |
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); | |
// Shift the result left, if we've swallowed a left shift. | |
SDValue Result = Load; | |
if (ShLeftAmt != 0) { | |
EVT ShImmTy = getShiftAmountTy(Result.getValueType()); | |
if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt)) | |
ShImmTy = VT; | |
// If the shift amount is as large as the result size (but, presumably, | |
// no larger than the source) then the useful bits of the result are | |
// zero; we can't simply return the shortened shift, because the result | |
// of that operation is undefined. | |
SDLoc DL(N0); | |
if (ShLeftAmt >= VT.getSizeInBits()) | |
Result = DAG.getConstant(0, DL, VT); | |
else | |
Result = DAG.getNode(ISD::SHL, DL, VT, | |
Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); | |
} | |
// Return the new loaded value. | |
return Result; | |
} | |
SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N->getValueType(0); | |
EVT EVT = cast<VTSDNode>(N1)->getVT(); | |
unsigned VTBits = VT.getScalarSizeInBits(); | |
unsigned EVTBits = EVT.getScalarSizeInBits(); | |
if (N0.isUndef()) | |
return DAG.getUNDEF(VT); | |
// fold (sext_in_reg c1) -> c1 | |
if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | |
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); | |
// If the input is already sign extended, just drop the extension. | |
if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1) | |
return N0; | |
// fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 | |
if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && | |
EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) | |
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, | |
N0.getOperand(0), N1); | |
// fold (sext_in_reg (sext x)) -> (sext x) | |
// fold (sext_in_reg (aext x)) -> (sext x) | |
// if x is small enough. | |
if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { | |
SDValue N00 = N0.getOperand(0); | |
if (N00.getScalarValueSizeInBits() <= EVTBits && | |
(!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) | |
return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); | |
} | |
// fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_in_reg x) | |
if ((N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG || | |
N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG || | |
N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) && | |
N0.getOperand(0).getScalarValueSizeInBits() == EVTBits) { | |
if (!LegalOperations || | |
TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT)) | |
return DAG.getSignExtendVectorInReg(N0.getOperand(0), SDLoc(N), VT); | |
} | |
// fold (sext_in_reg (zext x)) -> (sext x) | |
// iff we are extending the source sign bit. | |
if (N0.getOpcode() == ISD::ZERO_EXTEND) { | |
SDValue N00 = N0.getOperand(0); | |
if (N00.getScalarValueSizeInBits() == EVTBits && | |
(!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) | |
return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); | |
} | |
// fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. | |
if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, EVTBits - 1))) | |
return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT.getScalarType()); | |
// fold operands of sext_in_reg based on knowledge that the top bits are not | |
// demanded. | |
if (SimplifyDemandedBits(SDValue(N, 0))) | |
return SDValue(N, 0); | |
// fold (sext_in_reg (load x)) -> (smaller sextload x) | |
// fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) | |
if (SDValue NarrowLoad = ReduceLoadWidth(N)) | |
return NarrowLoad; | |
// fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) | |
// fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. | |
// We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. | |
if (N0.getOpcode() == ISD::SRL) { | |
if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) | |
if (ShAmt->getZExtValue()+EVTBits <= VTBits) { | |
// We can turn this into an SRA iff the input to the SRL is already sign | |
// extended enough. | |
unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); | |
if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits) | |
return DAG.getNode(ISD::SRA, SDLoc(N), VT, | |
N0.getOperand(0), N0.getOperand(1)); | |
} | |
} | |
// fold (sext_inreg (extload x)) -> (sextload x) | |
if (ISD::isEXTLoad(N0.getNode()) && | |
ISD::isUNINDEXEDLoad(N0.getNode()) && | |
EVT == cast<LoadSDNode>(N0)->getMemoryVT() && | |
((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || | |
TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { | |
LoadSDNode *LN0 = cast<LoadSDNode>(N0); | |
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, | |
LN0->getChain(), | |
LN0->getBasePtr(), EVT, | |
LN0->getMemOperand()); | |
CombineTo(N, ExtLoad); | |
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); | |
AddToWorklist(ExtLoad.getNode()); | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
// fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use | |
if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && | |
N0.hasOneUse() && | |
EVT == cast<LoadSDNode>(N0)->getMemoryVT() && | |
((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || | |
TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { | |
LoadSDNode *LN0 = cast<LoadSDNode>(N0); | |
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, | |
LN0->getChain(), | |
LN0->getBasePtr(), EVT, | |
LN0->getMemOperand()); | |
CombineTo(N, ExtLoad); | |
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
// Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) | |
if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) { | |
if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), | |
N0.getOperand(1), false)) | |
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, | |
BSwap, N1); | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
if (N0.isUndef()) | |
return DAG.getUNDEF(VT); | |
if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, | |
LegalOperations)) | |
return SDValue(Res, 0); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
if (N0.isUndef()) | |
return DAG.getUNDEF(VT); | |
if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, | |
LegalOperations)) | |
return SDValue(Res, 0); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
bool isLE = DAG.getDataLayout().isLittleEndian(); | |
// noop truncate | |
if (N0.getValueType() == N->getValueType(0)) | |
return N0; | |
// fold (truncate c1) -> c1 | |
if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) | |
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); | |
// fold (truncate (truncate x)) -> (truncate x) | |
if (N0.getOpcode() == ISD::TRUNCATE) | |
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); | |
// fold (truncate (ext x)) -> (ext x) or (truncate x) or x | |
if (N0.getOpcode() == ISD::ZERO_EXTEND || | |
N0.getOpcode() == ISD::SIGN_EXTEND || | |
N0.getOpcode() == ISD::ANY_EXTEND) { | |
// if the source is smaller than the dest, we still need an extend. | |
if (N0.getOperand(0).getValueType().bitsLT(VT)) | |
return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); | |
// if the source is larger than the dest, than we just need the truncate. | |
if (N0.getOperand(0).getValueType().bitsGT(VT)) | |
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); | |
// if the source and dest are the same type, we can drop both the extend | |
// and the truncate. | |
return N0.getOperand(0); | |
} | |
// If this is anyext(trunc), don't fold it, allow ourselves to be folded. | |
if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND)) | |
return SDValue(); | |
// Fold extract-and-trunc into a narrow extract. For example: | |
// i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) | |
// i32 y = TRUNCATE(i64 x) | |
// -- becomes -- | |
// v16i8 b = BITCAST (v2i64 val) | |
// i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) | |
// | |
// Note: We only run this optimization after type legalization (which often | |
// creates this pattern) and before operation legalization after which | |
// we need to be more careful about the vector instructions that we generate. | |
if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && | |
LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { | |
EVT VecTy = N0.getOperand(0).getValueType(); | |
EVT ExTy = N0.getValueType(); | |
EVT TrTy = N->getValueType(0); | |
unsigned NumElem = VecTy.getVectorNumElements(); | |
unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); | |
EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem); | |
assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); | |
SDValue EltNo = N0->getOperand(1); | |
if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { | |
int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); | |
EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); | |
int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); | |
SDLoc DL(N); | |
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, | |
DAG.getBitcast(NVT, N0.getOperand(0)), | |
DAG.getConstant(Index, DL, IndexTy)); | |
} | |
} | |
// trunc (select c, a, b) -> select c, (trunc a), (trunc b) | |
if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) { | |
EVT SrcVT = N0.getValueType(); | |
if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && | |
TLI.isTruncateFree(SrcVT, VT)) { | |
SDLoc SL(N0); | |
SDValue Cond = N0.getOperand(0); | |
SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); | |
SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); | |
return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); | |
} | |
} | |
// trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits() | |
if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() && | |
(!LegalOperations || TLI.isOperationLegalOrCustom(ISD::SHL, VT)) && | |
TLI.isTypeDesirableForOp(ISD::SHL, VT)) { | |
if (const ConstantSDNode *CAmt = isConstOrConstSplat(N0.getOperand(1))) { | |
uint64_t Amt = CAmt->getZExtValue(); | |
unsigned Size = VT.getScalarSizeInBits(); | |
if (Amt < Size) { | |
SDLoc SL(N); | |
EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); | |
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); | |
return DAG.getNode(ISD::SHL, SL, VT, Trunc, | |
DAG.getConstant(Amt, SL, AmtVT)); | |
} | |
} | |
} | |
// Fold a series of buildvector, bitcast, and truncate if possible. | |
// For example fold | |
// (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to | |
// (2xi32 (buildvector x, y)). | |
if (Level == AfterLegalizeVectorOps && VT.isVector() && | |
N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && | |
N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && | |
N0.getOperand(0).hasOneUse()) { | |
SDValue BuildVect = N0.getOperand(0); | |
EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); | |
EVT TruncVecEltTy = VT.getVectorElementType(); | |
// Check that the element types match. | |
if (BuildVectEltTy == TruncVecEltTy) { | |
// Now we only need to compute the offset of the truncated elements. | |
unsigned BuildVecNumElts = BuildVect.getNumOperands(); | |
unsigned TruncVecNumElts = VT.getVectorNumElements(); | |
unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; | |
assert((BuildVecNumElts % TruncVecNumElts) == 0 && | |
"Invalid number of elements"); | |
SmallVector<SDValue, 8> Opnds; | |
for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) | |
Opnds.push_back(BuildVect.getOperand(i)); | |
return DAG.getBuildVector(VT, SDLoc(N), Opnds); | |
} | |
} | |
// See if we can simplify the input to this truncate through knowledge that | |
// only the low bits are being used. | |
// For example "trunc (or (shl x, 8), y)" // -> trunc y | |
// Currently we only perform this optimization on scalars because vectors | |
// may have different active low bits. | |
if (!VT.isVector()) { | |
if (SDValue Shorter = | |
GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(), | |
VT.getSizeInBits()))) | |
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); | |
} | |
// fold (truncate (load x)) -> (smaller load x) | |
// fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) | |
if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { | |
if (SDValue Reduced = ReduceLoadWidth(N)) | |
return Reduced; | |
// Handle the case where the load remains an extending load even | |
// after truncation. | |
if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { | |
LoadSDNode *LN0 = cast<LoadSDNode>(N0); | |
if (!LN0->isVolatile() && | |
LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) { | |
SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), | |
VT, LN0->getChain(), LN0->getBasePtr(), | |
LN0->getMemoryVT(), | |
LN0->getMemOperand()); | |
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); | |
return NewLoad; | |
} | |
} | |
} | |
// fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), | |
// where ... are all 'undef'. | |
if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { | |
SmallVector<EVT, 8> VTs; | |
SDValue V; | |
unsigned Idx = 0; | |
unsigned NumDefs = 0; | |
for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { | |
SDValue X = N0.getOperand(i); | |
if (!X.isUndef()) { | |
V = X; | |
Idx = i; | |
NumDefs++; | |
} | |
// Stop if more than one members are non-undef. | |
if (NumDefs > 1) | |
break; | |
VTs.push_back(EVT::getVectorVT(*DAG.getContext(), | |
VT.getVectorElementType(), | |
X.getValueType().getVectorNumElements())); | |
} | |
if (NumDefs == 0) | |
return DAG.getUNDEF(VT); | |
if (NumDefs == 1) { | |
assert(V.getNode() && "The single defined operand is empty!"); | |
SmallVector<SDValue, 8> Opnds; | |
for (unsigned i = 0, e = VTs.size(); i != e; ++i) { | |
if (i != Idx) { | |
Opnds.push_back(DAG.getUNDEF(VTs[i])); | |
continue; | |
} | |
SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); | |
AddToWorklist(NV.getNode()); | |
Opnds.push_back(NV); | |
} | |
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); | |
} | |
} | |
// Fold truncate of a bitcast of a vector to an extract of the low vector | |
// element. | |
// | |
// e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, 0 | |
if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) { | |
SDValue VecSrc = N0.getOperand(0); | |
EVT SrcVT = VecSrc.getValueType(); | |
if (SrcVT.isVector() && SrcVT.getScalarType() == VT && | |
(!LegalOperations || | |
TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, SrcVT))) { | |
SDLoc SL(N); | |
EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); | |
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, | |
VecSrc, DAG.getConstant(0, SL, IdxVT)); | |
} | |
} | |
// Simplify the operands using demanded-bits information. | |
if (!VT.isVector() && | |
SimplifyDemandedBits(SDValue(N, 0))) | |
return SDValue(N, 0); | |
// (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry) | |
// When the adde's carry is not used. | |
if (N0.getOpcode() == ISD::ADDE && N0.hasOneUse() && | |
!N0.getNode()->hasAnyUseOfValue(1) && | |
(!LegalOperations || TLI.isOperationLegal(ISD::ADDE, VT))) { | |
SDLoc SL(N); | |
auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); | |
auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); | |
return DAG.getNode(ISD::ADDE, SL, DAG.getVTList(VT, MVT::Glue), | |
X, Y, N0.getOperand(2)); | |
} | |
return SDValue(); | |
} | |
static SDNode *getBuildPairElt(SDNode *N, unsigned i) { | |
SDValue Elt = N->getOperand(i); | |
if (Elt.getOpcode() != ISD::MERGE_VALUES) | |
return Elt.getNode(); | |
return Elt.getOperand(Elt.getResNo()).getNode(); | |
} | |
/// build_pair (load, load) -> load | |
/// if load locations are consecutive. | |
SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { | |
assert(N->getOpcode() == ISD::BUILD_PAIR); | |
LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); | |
LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); | |
if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || | |
LD1->getAddressSpace() != LD2->getAddressSpace()) | |
return SDValue(); | |
EVT LD1VT = LD1->getValueType(0); | |
unsigned LD1Bytes = LD1VT.getSizeInBits() / 8; | |
if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() && | |
DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) { | |
unsigned Align = LD1->getAlignment(); | |
unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( | |
VT.getTypeForEVT(*DAG.getContext())); | |
if (NewAlign <= Align && | |
(!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) | |
return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(), | |
LD1->getPointerInfo(), Align); | |
} | |
return SDValue(); | |
} | |
static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { | |
// On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi | |
// and Lo parts; on big-endian machines it doesn't. | |
return DAG.getDataLayout().isBigEndian() ? 1 : 0; | |
} | |
static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG, | |
const TargetLowering &TLI) { | |
// If this is not a bitcast to an FP type or if the target doesn't have | |
// IEEE754-compliant FP logic, we're done. | |
EVT VT = N->getValueType(0); | |
if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT)) | |
return SDValue(); | |
// TODO: Use splat values for the constant-checking below and remove this | |
// restriction. | |
SDValue N0 = N->getOperand(0); | |
EVT SourceVT = N0.getValueType(); | |
if (SourceVT.isVector()) | |
return SDValue(); | |
unsigned FPOpcode; | |
APInt SignMask; | |
switch (N0.getOpcode()) { | |
case ISD::AND: | |
FPOpcode = ISD::FABS; | |
SignMask = ~APInt::getSignMask(SourceVT.getSizeInBits()); | |
break; | |
case ISD::XOR: | |
FPOpcode = ISD::FNEG; | |
SignMask = APInt::getSignMask(SourceVT.getSizeInBits()); | |
break; | |
// TODO: ISD::OR --> ISD::FNABS? | |
default: | |
return SDValue(); | |
} | |
// Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X | |
// Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X | |
SDValue LogicOp0 = N0.getOperand(0); | |
ConstantSDNode *LogicOp1 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | |
if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask && | |
LogicOp0.getOpcode() == ISD::BITCAST && | |
LogicOp0->getOperand(0).getValueType() == VT) | |
return DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0->getOperand(0)); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitBITCAST(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
if (N0.isUndef()) | |
return DAG.getUNDEF(VT); | |
// If the input is a BUILD_VECTOR with all constant elements, fold this now. | |
// Only do this before legalize, since afterward the target may be depending | |
// on the bitconvert. | |
// First check to see if this is all constant. | |
if (!LegalTypes && | |
N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && | |
VT.isVector()) { | |
bool isSimple = cast<BuildVectorSDNode>(N0)->isConstant(); | |
EVT DestEltVT = N->getValueType(0).getVectorElementType(); | |
assert(!DestEltVT.isVector() && | |
"Element type of vector ValueType must not be vector!"); | |
if (isSimple) | |
return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT); | |
} | |
// If the input is a constant, let getNode fold it. | |
if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { | |
// If we can't allow illegal operations, we need to check that this is just | |
// a fp -> int or int -> conversion and that the resulting operation will | |
// be legal. | |
if (!LegalOperations || | |
(isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && | |
TLI.isOperationLegal(ISD::ConstantFP, VT)) || | |
(isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && | |
TLI.isOperationLegal(ISD::Constant, VT))) | |
return DAG.getBitcast(VT, N0); | |
} | |
// (conv (conv x, t1), t2) -> (conv x, t2) | |
if (N0.getOpcode() == ISD::BITCAST) | |
return DAG.getBitcast(VT, N0.getOperand(0)); | |
// fold (conv (load x)) -> (load (conv*)x) | |
// If the resultant load doesn't need a higher alignment than the original! | |
if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && | |
// Do not change the width of a volatile load. | |
!cast<LoadSDNode>(N0)->isVolatile() && | |
// Do not remove the cast if the types differ in endian layout. | |
TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == | |
TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && | |
(!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) && | |
TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) { | |
LoadSDNode *LN0 = cast<LoadSDNode>(N0); | |
unsigned OrigAlign = LN0->getAlignment(); | |
bool Fast = false; | |
if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, | |
LN0->getAddressSpace(), OrigAlign, &Fast) && | |
Fast) { | |
SDValue Load = | |
DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), | |
LN0->getPointerInfo(), OrigAlign, | |
LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); | |
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); | |
return Load; | |
} | |
} | |
if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI)) | |
return V; | |
// fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) | |
// fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) | |
// | |
// For ppc_fp128: | |
// fold (bitcast (fneg x)) -> | |
// flipbit = signbit | |
// (xor (bitcast x) (build_pair flipbit, flipbit)) | |
// | |
// fold (bitcast (fabs x)) -> | |
// flipbit = (and (extract_element (bitcast x), 0), signbit) | |
// (xor (bitcast x) (build_pair flipbit, flipbit)) | |
// This often reduces constant pool loads. | |
if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || | |
(N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && | |
N0.getNode()->hasOneUse() && VT.isInteger() && | |
!VT.isVector() && !N0.getValueType().isVector()) { | |
SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0)); | |
AddToWorklist(NewConv.getNode()); | |
SDLoc DL(N); | |
if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { | |
assert(VT.getSizeInBits() == 128); | |
SDValue SignBit = DAG.getConstant( | |
APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); | |
SDValue FlipBit; | |
if (N0.getOpcode() == ISD::FNEG) { | |
FlipBit = SignBit; | |
AddToWorklist(FlipBit.getNode()); | |
} else { | |
assert(N0.getOpcode() == ISD::FABS); | |
SDValue Hi = | |
DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, | |
DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), | |
SDLoc(NewConv))); | |
AddToWorklist(Hi.getNode()); | |
FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); | |
AddToWorklist(FlipBit.getNode()); | |
} | |
SDValue FlipBits = | |
DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); | |
AddToWorklist(FlipBits.getNode()); | |
return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); | |
} | |
APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); | |
if (N0.getOpcode() == ISD::FNEG) | |
return DAG.getNode(ISD::XOR, DL, VT, | |
NewConv, DAG.getConstant(SignBit, DL, VT)); | |
assert(N0.getOpcode() == ISD::FABS); | |
return DAG.getNode(ISD::AND, DL, VT, | |
NewConv, DAG.getConstant(~SignBit, DL, VT)); | |
} | |
// fold (bitconvert (fcopysign cst, x)) -> | |
// (or (and (bitconvert x), sign), (and cst, (not sign))) | |
// Note that we don't handle (copysign x, cst) because this can always be | |
// folded to an fneg or fabs. | |
// | |
// For ppc_fp128: | |
// fold (bitcast (fcopysign cst, x)) -> | |
// flipbit = (and (extract_element | |
// (xor (bitcast cst), (bitcast x)), 0), | |
// signbit) | |
// (xor (bitcast cst) (build_pair flipbit, flipbit)) | |
if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && | |
isa<ConstantFPSDNode>(N0.getOperand(0)) && | |
VT.isInteger() && !VT.isVector()) { | |
unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits(); | |
EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); | |
if (isTypeLegal(IntXVT)) { | |
SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1)); | |
AddToWorklist(X.getNode()); | |
// If X has a different width than the result/lhs, sext it or truncate it. | |
unsigned VTWidth = VT.getSizeInBits(); | |
if (OrigXWidth < VTWidth) { | |
X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); | |
AddToWorklist(X.getNode()); | |
} else if (OrigXWidth > VTWidth) { | |
// To get the sign bit in the right place, we have to shift it right | |
// before truncating. | |
SDLoc DL(X); | |
X = DAG.getNode(ISD::SRL, DL, | |
X.getValueType(), X, | |
DAG.getConstant(OrigXWidth-VTWidth, DL, | |
X.getValueType())); | |
AddToWorklist(X.getNode()); | |
X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); | |
AddToWorklist(X.getNode()); | |
} | |
if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { | |
APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2); | |
SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); | |
AddToWorklist(Cst.getNode()); | |
SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); | |
AddToWorklist(X.getNode()); | |
SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); | |
AddToWorklist(XorResult.getNode()); | |
SDValue XorResult64 = DAG.getNode( | |
ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, | |
DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), | |
SDLoc(XorResult))); | |
AddToWorklist(XorResult64.getNode()); | |
SDValue FlipBit = | |
DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, | |
DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); | |
AddToWorklist(FlipBit.getNode()); | |
SDValue FlipBits = | |
DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); | |
AddToWorklist(FlipBits.getNode()); | |
return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); | |
} | |
APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); | |
X = DAG.getNode(ISD::AND, SDLoc(X), VT, | |
X, DAG.getConstant(SignBit, SDLoc(X), VT)); | |
AddToWorklist(X.getNode()); | |
SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); | |
Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, | |
Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); | |
AddToWorklist(Cst.getNode()); | |
return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); | |
} | |
} | |
// bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. | |
if (N0.getOpcode() == ISD::BUILD_PAIR) | |
if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) | |
return CombineLD; | |
// Remove double bitcasts from shuffles - this is often a legacy of | |
// XformToShuffleWithZero being used to combine bitmaskings (of | |
// float vectors bitcast to integer vectors) into shuffles. | |
// bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) | |
if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && | |
N0->getOpcode() == ISD::VECTOR_SHUFFLE && | |
VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && | |
!(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { | |
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); | |
// If operands are a bitcast, peek through if it casts the original VT. | |
// If operands are a constant, just bitcast back to original VT. | |
auto PeekThroughBitcast = [&](SDValue Op) { | |
if (Op.getOpcode() == ISD::BITCAST && | |
Op.getOperand(0).getValueType() == VT) | |
return SDValue(Op.getOperand(0)); | |
if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || | |
ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) | |
return DAG.getBitcast(VT, Op); | |
return SDValue(); | |
}; | |
SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); | |
SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); | |
if (!(SV0 && SV1)) | |
return SDValue(); | |
int MaskScale = | |
VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); | |
SmallVector<int, 8> NewMask; | |
for (int M : SVN->getMask()) | |
for (int i = 0; i != MaskScale; ++i) | |
NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); | |
bool LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); | |
if (!LegalMask) { | |
std::swap(SV0, SV1); | |
ShuffleVectorSDNode::commuteMask(NewMask); | |
LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); | |
} | |
if (LegalMask) | |
return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask); | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { | |
EVT VT = N->getValueType(0); | |
return CombineConsecutiveLoads(N, VT); | |
} | |
/// We know that BV is a build_vector node with Constant, ConstantFP or Undef | |
/// operands. DstEltVT indicates the destination element value type. | |
SDValue DAGCombiner:: | |
ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { | |
EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); | |
// If this is already the right type, we're done. | |
if (SrcEltVT == DstEltVT) return SDValue(BV, 0); | |
unsigned SrcBitSize = SrcEltVT.getSizeInBits(); | |
unsigned DstBitSize = DstEltVT.getSizeInBits(); | |
// If this is a conversion of N elements of one type to N elements of another | |
// type, convert each element. This handles FP<->INT cases. | |
if (SrcBitSize == DstBitSize) { | |
EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, | |
BV->getValueType(0).getVectorNumElements()); | |
// Due to the FP element handling below calling this routine recursively, | |
// we can end up with a scalar-to-vector node here. | |
if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR) | |
return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT, | |
DAG.getBitcast(DstEltVT, BV->getOperand(0))); | |
SmallVector<SDValue, 8> Ops; | |
for (SDValue Op : BV->op_values()) { | |
// If the vector element type is not legal, the BUILD_VECTOR operands | |
// are promoted and implicitly truncated. Make that explicit here. | |
if (Op.getValueType() != SrcEltVT) | |
Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); | |
Ops.push_back(DAG.getBitcast(DstEltVT, Op)); | |
AddToWorklist(Ops.back().getNode()); | |
} | |
return DAG.getBuildVector(VT, SDLoc(BV), Ops); | |
} | |
// Otherwise, we're growing or shrinking the elements. To avoid having to | |
// handle annoying details of growing/shrinking FP values, we convert them to | |
// int first. | |
if (SrcEltVT.isFloatingPoint()) { | |
// Convert the input float vector to a int vector where the elements are the | |
// same sizes. | |
EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); | |
BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); | |
SrcEltVT = IntVT; | |
} | |
// Now we know the input is an integer vector. If the output is a FP type, | |
// convert to integer first, then to FP of the right size. | |
if (DstEltVT.isFloatingPoint()) { | |
EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); | |
SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); | |
// Next, convert to FP elements of the same size. | |
return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); | |
} | |
SDLoc DL(BV); | |
// Okay, we know the src/dst types are both integers of differing types. | |
// Handling growing first. | |
assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); | |
if (SrcBitSize < DstBitSize) { | |
unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; | |
SmallVector<SDValue, 8> Ops; | |
for (unsigned i = 0, e = BV->getNumOperands(); i != e; | |
i += NumInputsPerOutput) { | |
bool isLE = DAG.getDataLayout().isLittleEndian(); | |
APInt NewBits = APInt(DstBitSize, 0); | |
bool EltIsUndef = true; | |
for (unsigned j = 0; j != NumInputsPerOutput; ++j) { | |
// Shift the previously computed bits over. | |
NewBits <<= SrcBitSize; | |
SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); | |
if (Op.isUndef()) continue; | |
EltIsUndef = false; | |
NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). | |
zextOrTrunc(SrcBitSize).zext(DstBitSize); | |
} | |
if (EltIsUndef) | |
Ops.push_back(DAG.getUNDEF(DstEltVT)); | |
else | |
Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT)); | |
} | |
EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); | |
return DAG.getBuildVector(VT, DL, Ops); | |
} | |
// Finally, this must be the case where we are shrinking elements: each input | |
// turns into multiple outputs. | |
unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; | |
EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, | |
NumOutputsPerInput*BV->getNumOperands()); | |
SmallVector<SDValue, 8> Ops; | |
for (const SDValue &Op : BV->op_values()) { | |
if (Op.isUndef()) { | |
Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT)); | |
continue; | |
} | |
APInt OpVal = cast<ConstantSDNode>(Op)-> | |
getAPIntValue().zextOrTrunc(SrcBitSize); | |
for (unsigned j = 0; j != NumOutputsPerInput; ++j) { | |
APInt ThisVal = OpVal.trunc(DstBitSize); | |
Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT)); | |
OpVal.lshrInPlace(DstBitSize); | |
} | |
// For big endian targets, swap the order of the pieces of each element. | |
if (DAG.getDataLayout().isBigEndian()) | |
std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); | |
} | |
return DAG.getBuildVector(VT, DL, Ops); | |
} | |
static bool isContractable(SDNode *N) { | |
SDNodeFlags F = cast<BinaryWithFlagsSDNode>(N)->Flags; | |
return F.hasAllowContract() || F.hasUnsafeAlgebra(); | |
} | |
/// Try to perform FMA combining on a given FADD node. | |
SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N->getValueType(0); | |
SDLoc SL(N); | |
const TargetOptions &Options = DAG.getTarget().Options; | |
// Floating-point multiply-add with intermediate rounding. | |
bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); | |
// Floating-point multiply-add without intermediate rounding. | |
bool HasFMA = | |
TLI.isFMAFasterThanFMulAndFAdd(VT) && | |
(!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); | |
// No valid opcode, do not combine. | |
if (!HasFMAD && !HasFMA) | |
return SDValue(); | |
bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || | |
Options.UnsafeFPMath || HasFMAD); | |
// If the addition is not contractable, do not combine. | |
if (!AllowFusionGlobally && !isContractable(N)) | |
return SDValue(); | |
const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); | |
if (STI && STI->generateFMAsInMachineCombiner(OptLevel)) | |
return SDValue(); | |
// Always prefer FMAD to FMA for precision. | |
unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; | |
bool Aggressive = TLI.enableAggressiveFMAFusion(VT); | |
bool LookThroughFPExt = TLI.isFPExtFree(VT); | |
// Is the node an FMUL and contractable either due to global flags or | |
// SDNodeFlags. | |
auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { | |
if (N.getOpcode() != ISD::FMUL) | |
return false; | |
return AllowFusionGlobally || isContractable(N.getNode()); | |
}; | |
// If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), | |
// prefer to fold the multiply with fewer uses. | |
if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) { | |
if (N0.getNode()->use_size() > N1.getNode()->use_size()) | |
std::swap(N0, N1); | |
} | |
// fold (fadd (fmul x, y), z) -> (fma x, y, z) | |
if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, | |
N0.getOperand(0), N0.getOperand(1), N1); | |
} | |
// fold (fadd x, (fmul y, z)) -> (fma y, z, x) | |
// Note: Commutes FADD operands. | |
if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, | |
N1.getOperand(0), N1.getOperand(1), N0); | |
} | |
// Look through FP_EXTEND nodes to do more combining. | |
if (LookThroughFPExt) { | |
// fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) | |
if (N0.getOpcode() == ISD::FP_EXTEND) { | |
SDValue N00 = N0.getOperand(0); | |
if (isContractableFMUL(N00)) | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, | |
N00.getOperand(0)), | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, | |
N00.getOperand(1)), N1); | |
} | |
// fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) | |
// Note: Commutes FADD operands. | |
if (N1.getOpcode() == ISD::FP_EXTEND) { | |
SDValue N10 = N1.getOperand(0); | |
if (isContractableFMUL(N10)) | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, | |
N10.getOperand(0)), | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, | |
N10.getOperand(1)), N0); | |
} | |
} | |
// More folding opportunities when target permits. | |
if (Aggressive) { | |
// fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z)) | |
// FIXME: The UnsafeAlgebra flag should be propagated to FMA/FMAD, but FMF | |
// are currently only supported on binary nodes. | |
if (Options.UnsafeFPMath && | |
N0.getOpcode() == PreferredFusedOpcode && | |
N0.getOperand(2).getOpcode() == ISD::FMUL && | |
N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) { | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, | |
N0.getOperand(0), N0.getOperand(1), | |
DAG.getNode(PreferredFusedOpcode, SL, VT, | |
N0.getOperand(2).getOperand(0), | |
N0.getOperand(2).getOperand(1), | |
N1)); | |
} | |
// fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x)) | |
// FIXME: The UnsafeAlgebra flag should be propagated to FMA/FMAD, but FMF | |
// are currently only supported on binary nodes. | |
if (Options.UnsafeFPMath && | |
N1->getOpcode() == PreferredFusedOpcode && | |
N1.getOperand(2).getOpcode() == ISD::FMUL && | |
N1->hasOneUse() && N1.getOperand(2)->hasOneUse()) { | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, | |
N1.getOperand(0), N1.getOperand(1), | |
DAG.getNode(PreferredFusedOpcode, SL, VT, | |
N1.getOperand(2).getOperand(0), | |
N1.getOperand(2).getOperand(1), | |
N0)); | |
} | |
if (LookThroughFPExt) { | |
// fold (fadd (fma x, y, (fpext (fmul u, v))), z) | |
// -> (fma x, y, (fma (fpext u), (fpext v), z)) | |
auto FoldFAddFMAFPExtFMul = [&] ( | |
SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) { | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, | |
DAG.getNode(PreferredFusedOpcode, SL, VT, | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, U), | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, V), | |
Z)); | |
}; | |
if (N0.getOpcode() == PreferredFusedOpcode) { | |
SDValue N02 = N0.getOperand(2); | |
if (N02.getOpcode() == ISD::FP_EXTEND) { | |
SDValue N020 = N02.getOperand(0); | |
if (isContractableFMUL(N020)) | |
return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), | |
N020.getOperand(0), N020.getOperand(1), | |
N1); | |
} | |
} | |
// fold (fadd (fpext (fma x, y, (fmul u, v))), z) | |
// -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) | |
// FIXME: This turns two single-precision and one double-precision | |
// operation into two double-precision operations, which might not be | |
// interesting for all targets, especially GPUs. | |
auto FoldFAddFPExtFMAFMul = [&] ( | |
SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) { | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, X), | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), | |
DAG.getNode(PreferredFusedOpcode, SL, VT, | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, U), | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, V), | |
Z)); | |
}; | |
if (N0.getOpcode() == ISD::FP_EXTEND) { | |
SDValue N00 = N0.getOperand(0); | |
if (N00.getOpcode() == PreferredFusedOpcode) { | |
SDValue N002 = N00.getOperand(2); | |
if (isContractableFMUL(N002)) | |
return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), | |
N002.getOperand(0), N002.getOperand(1), | |
N1); | |
} | |
} | |
// fold (fadd x, (fma y, z, (fpext (fmul u, v))) | |
// -> (fma y, z, (fma (fpext u), (fpext v), x)) | |
if (N1.getOpcode() == PreferredFusedOpcode) { | |
SDValue N12 = N1.getOperand(2); | |
if (N12.getOpcode() == ISD::FP_EXTEND) { | |
SDValue N120 = N12.getOperand(0); | |
if (isContractableFMUL(N120)) | |
return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), | |
N120.getOperand(0), N120.getOperand(1), | |
N0); | |
} | |
} | |
// fold (fadd x, (fpext (fma y, z, (fmul u, v))) | |
// -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) | |
// FIXME: This turns two single-precision and one double-precision | |
// operation into two double-precision operations, which might not be | |
// interesting for all targets, especially GPUs. | |
if (N1.getOpcode() == ISD::FP_EXTEND) { | |
SDValue N10 = N1.getOperand(0); | |
if (N10.getOpcode() == PreferredFusedOpcode) { | |
SDValue N102 = N10.getOperand(2); | |
if (isContractableFMUL(N102)) | |
return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), | |
N102.getOperand(0), N102.getOperand(1), | |
N0); | |
} | |
} | |
} | |
} | |
return SDValue(); | |
} | |
/// Try to perform FMA combining on a given FSUB node. | |
SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N->getValueType(0); | |
SDLoc SL(N); | |
const TargetOptions &Options = DAG.getTarget().Options; | |
// Floating-point multiply-add with intermediate rounding. | |
bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); | |
// Floating-point multiply-add without intermediate rounding. | |
bool HasFMA = | |
TLI.isFMAFasterThanFMulAndFAdd(VT) && | |
(!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); | |
// No valid opcode, do not combine. | |
if (!HasFMAD && !HasFMA) | |
return SDValue(); | |
bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || | |
Options.UnsafeFPMath || HasFMAD); | |
// If the subtraction is not contractable, do not combine. | |
if (!AllowFusionGlobally && !isContractable(N)) | |
return SDValue(); | |
const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); | |
if (STI && STI->generateFMAsInMachineCombiner(OptLevel)) | |
return SDValue(); | |
// Always prefer FMAD to FMA for precision. | |
unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; | |
bool Aggressive = TLI.enableAggressiveFMAFusion(VT); | |
bool LookThroughFPExt = TLI.isFPExtFree(VT); | |
// Is the node an FMUL and contractable either due to global flags or | |
// SDNodeFlags. | |
auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { | |
if (N.getOpcode() != ISD::FMUL) | |
return false; | |
return AllowFusionGlobally || isContractable(N.getNode()); | |
}; | |
// fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) | |
if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, | |
N0.getOperand(0), N0.getOperand(1), | |
DAG.getNode(ISD::FNEG, SL, VT, N1)); | |
} | |
// fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) | |
// Note: Commutes FSUB operands. | |
if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, | |
DAG.getNode(ISD::FNEG, SL, VT, | |
N1.getOperand(0)), | |
N1.getOperand(1), N0); | |
// fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) | |
if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) && | |
(Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { | |
SDValue N00 = N0.getOperand(0).getOperand(0); | |
SDValue N01 = N0.getOperand(0).getOperand(1); | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, | |
DAG.getNode(ISD::FNEG, SL, VT, N00), N01, | |
DAG.getNode(ISD::FNEG, SL, VT, N1)); | |
} | |
// Look through FP_EXTEND nodes to do more combining. | |
if (LookThroughFPExt) { | |
// fold (fsub (fpext (fmul x, y)), z) | |
// -> (fma (fpext x), (fpext y), (fneg z)) | |
if (N0.getOpcode() == ISD::FP_EXTEND) { | |
SDValue N00 = N0.getOperand(0); | |
if (isContractableFMUL(N00)) | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, | |
N00.getOperand(0)), | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, | |
N00.getOperand(1)), | |
DAG.getNode(ISD::FNEG, SL, VT, N1)); | |
} | |
// fold (fsub x, (fpext (fmul y, z))) | |
// -> (fma (fneg (fpext y)), (fpext z), x) | |
// Note: Commutes FSUB operands. | |
if (N1.getOpcode() == ISD::FP_EXTEND) { | |
SDValue N10 = N1.getOperand(0); | |
if (isContractableFMUL(N10)) | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, | |
DAG.getNode(ISD::FNEG, SL, VT, | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, | |
N10.getOperand(0))), | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, | |
N10.getOperand(1)), | |
N0); | |
} | |
// fold (fsub (fpext (fneg (fmul, x, y))), z) | |
// -> (fneg (fma (fpext x), (fpext y), z)) | |
// Note: This could be removed with appropriate canonicalization of the | |
// input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the | |
// orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent | |
// from implementing the canonicalization in visitFSUB. | |
if (N0.getOpcode() == ISD::FP_EXTEND) { | |
SDValue N00 = N0.getOperand(0); | |
if (N00.getOpcode() == ISD::FNEG) { | |
SDValue N000 = N00.getOperand(0); | |
if (isContractableFMUL(N000)) { | |
return DAG.getNode(ISD::FNEG, SL, VT, | |
DAG.getNode(PreferredFusedOpcode, SL, VT, | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, | |
N000.getOperand(0)), | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, | |
N000.getOperand(1)), | |
N1)); | |
} | |
} | |
} | |
// fold (fsub (fneg (fpext (fmul, x, y))), z) | |
// -> (fneg (fma (fpext x)), (fpext y), z) | |
// Note: This could be removed with appropriate canonicalization of the | |
// input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the | |
// orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent | |
// from implementing the canonicalization in visitFSUB. | |
if (N0.getOpcode() == ISD::FNEG) { | |
SDValue N00 = N0.getOperand(0); | |
if (N00.getOpcode() == ISD::FP_EXTEND) { | |
SDValue N000 = N00.getOperand(0); | |
if (isContractableFMUL(N000)) { | |
return DAG.getNode(ISD::FNEG, SL, VT, | |
DAG.getNode(PreferredFusedOpcode, SL, VT, | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, | |
N000.getOperand(0)), | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, | |
N000.getOperand(1)), | |
N1)); | |
} | |
} | |
} | |
} | |
// More folding opportunities when target permits. | |
if (Aggressive) { | |
// fold (fsub (fma x, y, (fmul u, v)), z) | |
// -> (fma x, y (fma u, v, (fneg z))) | |
// FIXME: The UnsafeAlgebra flag should be propagated to FMA/FMAD, but FMF | |
// are currently only supported on binary nodes. | |
if (Options.UnsafeFPMath && N0.getOpcode() == PreferredFusedOpcode && | |
isContractableFMUL(N0.getOperand(2)) && N0->hasOneUse() && | |
N0.getOperand(2)->hasOneUse()) { | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, | |
N0.getOperand(0), N0.getOperand(1), | |
DAG.getNode(PreferredFusedOpcode, SL, VT, | |
N0.getOperand(2).getOperand(0), | |
N0.getOperand(2).getOperand(1), | |
DAG.getNode(ISD::FNEG, SL, VT, | |
N1))); | |
} | |
// fold (fsub x, (fma y, z, (fmul u, v))) | |
// -> (fma (fneg y), z, (fma (fneg u), v, x)) | |
// FIXME: The UnsafeAlgebra flag should be propagated to FMA/FMAD, but FMF | |
// are currently only supported on binary nodes. | |
if (Options.UnsafeFPMath && N1.getOpcode() == PreferredFusedOpcode && | |
isContractableFMUL(N1.getOperand(2))) { | |
SDValue N20 = N1.getOperand(2).getOperand(0); | |
SDValue N21 = N1.getOperand(2).getOperand(1); | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, | |
DAG.getNode(ISD::FNEG, SL, VT, | |
N1.getOperand(0)), | |
N1.getOperand(1), | |
DAG.getNode(PreferredFusedOpcode, SL, VT, | |
DAG.getNode(ISD::FNEG, SL, VT, N20), | |
N21, N0)); | |
} | |
if (LookThroughFPExt) { | |
// fold (fsub (fma x, y, (fpext (fmul u, v))), z) | |
// -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) | |
if (N0.getOpcode() == PreferredFusedOpcode) { | |
SDValue N02 = N0.getOperand(2); | |
if (N02.getOpcode() == ISD::FP_EXTEND) { | |
SDValue N020 = N02.getOperand(0); | |
if (isContractableFMUL(N020)) | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, | |
N0.getOperand(0), N0.getOperand(1), | |
DAG.getNode(PreferredFusedOpcode, SL, VT, | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, | |
N020.getOperand(0)), | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, | |
N020.getOperand(1)), | |
DAG.getNode(ISD::FNEG, SL, VT, | |
N1))); | |
} | |
} | |
// fold (fsub (fpext (fma x, y, (fmul u, v))), z) | |
// -> (fma (fpext x), (fpext y), | |
// (fma (fpext u), (fpext v), (fneg z))) | |
// FIXME: This turns two single-precision and one double-precision | |
// operation into two double-precision operations, which might not be | |
// interesting for all targets, especially GPUs. | |
if (N0.getOpcode() == ISD::FP_EXTEND) { | |
SDValue N00 = N0.getOperand(0); | |
if (N00.getOpcode() == PreferredFusedOpcode) { | |
SDValue N002 = N00.getOperand(2); | |
if (isContractableFMUL(N002)) | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, | |
N00.getOperand(0)), | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, | |
N00.getOperand(1)), | |
DAG.getNode(PreferredFusedOpcode, SL, VT, | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, | |
N002.getOperand(0)), | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, | |
N002.getOperand(1)), | |
DAG.getNode(ISD::FNEG, SL, VT, | |
N1))); | |
} | |
} | |
// fold (fsub x, (fma y, z, (fpext (fmul u, v)))) | |
// -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) | |
if (N1.getOpcode() == PreferredFusedOpcode && | |
N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) { | |
SDValue N120 = N1.getOperand(2).getOperand(0); | |
if (isContractableFMUL(N120)) { | |
SDValue N1200 = N120.getOperand(0); | |
SDValue N1201 = N120.getOperand(1); | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, | |
DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), | |
N1.getOperand(1), | |
DAG.getNode(PreferredFusedOpcode, SL, VT, | |
DAG.getNode(ISD::FNEG, SL, VT, | |
DAG.getNode(ISD::FP_EXTEND, SL, | |
VT, N1200)), | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, | |
N1201), | |
N0)); | |
} | |
} | |
// fold (fsub x, (fpext (fma y, z, (fmul u, v)))) | |
// -> (fma (fneg (fpext y)), (fpext z), | |
// (fma (fneg (fpext u)), (fpext v), x)) | |
// FIXME: This turns two single-precision and one double-precision | |
// operation into two double-precision operations, which might not be | |
// interesting for all targets, especially GPUs. | |
if (N1.getOpcode() == ISD::FP_EXTEND && | |
N1.getOperand(0).getOpcode() == PreferredFusedOpcode) { | |
SDValue N100 = N1.getOperand(0).getOperand(0); | |
SDValue N101 = N1.getOperand(0).getOperand(1); | |
SDValue N102 = N1.getOperand(0).getOperand(2); | |
if (isContractableFMUL(N102)) { | |
SDValue N1020 = N102.getOperand(0); | |
SDValue N1021 = N102.getOperand(1); | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, | |
DAG.getNode(ISD::FNEG, SL, VT, | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, | |
N100)), | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), | |
DAG.getNode(PreferredFusedOpcode, SL, VT, | |
DAG.getNode(ISD::FNEG, SL, VT, | |
DAG.getNode(ISD::FP_EXTEND, SL, | |
VT, N1020)), | |
DAG.getNode(ISD::FP_EXTEND, SL, VT, | |
N1021), | |
N0)); | |
} | |
} | |
} | |
} | |
return SDValue(); | |
} | |
/// Try to perform FMA combining on a given FMUL node based on the distributive | |
/// law x * (y + 1) = x * y + x and variants thereof (commuted versions, | |
/// subtraction instead of addition). | |
SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N->getValueType(0); | |
SDLoc SL(N); | |
assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); | |
const TargetOptions &Options = DAG.getTarget().Options; | |
// The transforms below are incorrect when x == 0 and y == inf, because the | |
// intermediate multiplication produces a nan. | |
if (!Options.NoInfsFPMath) | |
return SDValue(); | |
// Floating-point multiply-add without intermediate rounding. | |
bool HasFMA = | |
(Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) && | |
TLI.isFMAFasterThanFMulAndFAdd(VT) && | |
(!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); | |
// Floating-point multiply-add with intermediate rounding. This can result | |
// in a less precise result due to the changed rounding order. | |
bool HasFMAD = Options.UnsafeFPMath && | |
(LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); | |
// No valid opcode, do not combine. | |
if (!HasFMAD && !HasFMA) | |
return SDValue(); | |
// Always prefer FMAD to FMA for precision. | |
unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; | |
bool Aggressive = TLI.enableAggressiveFMAFusion(VT); | |
// fold (fmul (fadd x, +1.0), y) -> (fma x, y, y) | |
// fold (fmul (fadd x, -1.0), y) -> (fma x, y, (fneg y)) | |
auto FuseFADD = [&](SDValue X, SDValue Y) { | |
if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { | |
auto XC1 = isConstOrConstSplatFP(X.getOperand(1)); | |
if (XC1 && XC1->isExactlyValue(+1.0)) | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y); | |
if (XC1 && XC1->isExactlyValue(-1.0)) | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, | |
DAG.getNode(ISD::FNEG, SL, VT, Y)); | |
} | |
return SDValue(); | |
}; | |
if (SDValue FMA = FuseFADD(N0, N1)) | |
return FMA; | |
if (SDValue FMA = FuseFADD(N1, N0)) | |
return FMA; | |
// fold (fmul (fsub +1.0, x), y) -> (fma (fneg x), y, y) | |
// fold (fmul (fsub -1.0, x), y) -> (fma (fneg x), y, (fneg y)) | |
// fold (fmul (fsub x, +1.0), y) -> (fma x, y, (fneg y)) | |
// fold (fmul (fsub x, -1.0), y) -> (fma x, y, y) | |
auto FuseFSUB = [&](SDValue X, SDValue Y) { | |
if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { | |
auto XC0 = isConstOrConstSplatFP(X.getOperand(0)); | |
if (XC0 && XC0->isExactlyValue(+1.0)) | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, | |
DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, | |
Y); | |
if (XC0 && XC0->isExactlyValue(-1.0)) | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, | |
DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, | |
DAG.getNode(ISD::FNEG, SL, VT, Y)); | |
auto XC1 = isConstOrConstSplatFP(X.getOperand(1)); | |
if (XC1 && XC1->isExactlyValue(+1.0)) | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, | |
DAG.getNode(ISD::FNEG, SL, VT, Y)); | |
if (XC1 && XC1->isExactlyValue(-1.0)) | |
return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y); | |
} | |
return SDValue(); | |
}; | |
if (SDValue FMA = FuseFSUB(N0, N1)) | |
return FMA; | |
if (SDValue FMA = FuseFSUB(N1, N0)) | |
return FMA; | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitFADD(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0); | |
bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1); | |
EVT VT = N->getValueType(0); | |
SDLoc DL(N); | |
const TargetOptions &Options = DAG.getTarget().Options; | |
const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; | |
// fold vector ops | |
if (VT.isVector()) | |
if (SDValue FoldedVOp = SimplifyVBinOp(N)) | |
return FoldedVOp; | |
// fold (fadd c1, c2) -> c1 + c2 | |
if (N0CFP && N1CFP) | |
return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags); | |
// canonicalize constant to RHS | |
if (N0CFP && !N1CFP) | |
return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags); | |
if (SDValue NewSel = foldBinOpIntoSelect(N)) | |
return NewSel; | |
// fold (fadd A, (fneg B)) -> (fsub A, B) | |
if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && | |
isNegatibleForFree(N1, LegalOperations, TLI, &Options) == 2) | |
return DAG.getNode(ISD::FSUB, DL, VT, N0, | |
GetNegatedExpression(N1, DAG, LegalOperations), Flags); | |
// fold (fadd (fneg A), B) -> (fsub B, A) | |
if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && | |
isNegatibleForFree(N0, LegalOperations, TLI, &Options) == 2) | |
return DAG.getNode(ISD::FSUB, DL, VT, N1, | |
GetNegatedExpression(N0, DAG, LegalOperations), Flags); | |
// FIXME: Auto-upgrade the target/function-level option. | |
if (Options.NoSignedZerosFPMath || N->getFlags()->hasNoSignedZeros()) { | |
// fold (fadd A, 0) -> A | |
if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1)) | |
if (N1C->isZero()) | |
return N0; | |
} | |
// If 'unsafe math' is enabled, fold lots of things. | |
if (Options.UnsafeFPMath) { | |
// No FP constant should be created after legalization as Instruction | |
// Selection pass has a hard time dealing with FP constants. | |
bool AllowNewConst = (Level < AfterLegalizeDAG); | |
// fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2)) | |
if (N1CFP && N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() && | |
isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) | |
return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), | |
DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, | |
Flags), | |
Flags); | |
// If allowed, fold (fadd (fneg x), x) -> 0.0 | |
if (AllowNewConst && N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) | |
return DAG.getConstantFP(0.0, DL, VT); | |
// If allowed, fold (fadd x, (fneg x)) -> 0.0 | |
if (AllowNewConst && N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) | |
return DAG.getConstantFP(0.0, DL, VT); | |
// We can fold chains of FADD's of the same value into multiplications. | |
// This transform is not safe in general because we are reducing the number | |
// of rounding steps. | |
if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { | |
if (N0.getOpcode() == ISD::FMUL) { | |
bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); | |
bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); | |
// (fadd (fmul x, c), x) -> (fmul x, c+1) | |
if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { | |
SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), | |
DAG.getConstantFP(1.0, DL, VT), Flags); | |
return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags); | |
} | |
// (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) | |
if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && | |
N1.getOperand(0) == N1.getOperand(1) && | |
N0.getOperand(0) == N1.getOperand(0)) { | |
SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), | |
DAG.getConstantFP(2.0, DL, VT), Flags); | |
return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags); | |
} | |
} | |
if (N1.getOpcode() == ISD::FMUL) { | |
bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); | |
bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); | |
// (fadd x, (fmul x, c)) -> (fmul x, c+1) | |
if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { | |
SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), | |
DAG.getConstantFP(1.0, DL, VT), Flags); | |
return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags); | |
} | |
// (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) | |
if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && | |
N0.getOperand(0) == N0.getOperand(1) && | |
N1.getOperand(0) == N0.getOperand(0)) { | |
SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), | |
DAG.getConstantFP(2.0, DL, VT), Flags); | |
return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags); | |
} | |
} | |
if (N0.getOpcode() == ISD::FADD && AllowNewConst) { | |
bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); | |
// (fadd (fadd x, x), x) -> (fmul x, 3.0) | |
if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && | |
(N0.getOperand(0) == N1)) { | |
return DAG.getNode(ISD::FMUL, DL, VT, | |
N1, DAG.getConstantFP(3.0, DL, VT), Flags); | |
} | |
} | |
if (N1.getOpcode() == ISD::FADD && AllowNewConst) { | |
bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); | |
// (fadd x, (fadd x, x)) -> (fmul x, 3.0) | |
if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && | |
N1.getOperand(0) == N0) { | |
return DAG.getNode(ISD::FMUL, DL, VT, | |
N0, DAG.getConstantFP(3.0, DL, VT), Flags); | |
} | |
} | |
// (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) | |
if (AllowNewConst && | |
N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && | |
N0.getOperand(0) == N0.getOperand(1) && | |
N1.getOperand(0) == N1.getOperand(1) && | |
N0.getOperand(0) == N1.getOperand(0)) { | |
return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), | |
DAG.getConstantFP(4.0, DL, VT), Flags); | |
} | |
} | |
} // enable-unsafe-fp-math | |
// FADD -> FMA combines: | |
if (SDValue Fused = visitFADDForFMACombine(N)) { | |
AddToWorklist(Fused.getNode()); | |
return Fused; | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitFSUB(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); | |
ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); | |
EVT VT = N->getValueType(0); | |
SDLoc DL(N); | |
const TargetOptions &Options = DAG.getTarget().Options; | |
const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; | |
// fold vector ops | |
if (VT.isVector()) | |
if (SDValue FoldedVOp = SimplifyVBinOp(N)) | |
return FoldedVOp; | |
// fold (fsub c1, c2) -> c1-c2 | |
if (N0CFP && N1CFP) | |
return DAG.getNode(ISD::FSUB, DL, VT, N0, N1, Flags); | |
if (SDValue NewSel = foldBinOpIntoSelect(N)) | |
return NewSel; | |
// fold (fsub A, (fneg B)) -> (fadd A, B) | |
if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) | |
return DAG.getNode(ISD::FADD, DL, VT, N0, | |
GetNegatedExpression(N1, DAG, LegalOperations), Flags); | |
// FIXME: Auto-upgrade the target/function-level option. | |
if (Options.NoSignedZerosFPMath || N->getFlags()->hasNoSignedZeros()) { | |
// (fsub 0, B) -> -B | |
if (N0CFP && N0CFP->isZero()) { | |
if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) | |
return GetNegatedExpression(N1, DAG, LegalOperations); | |
if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) | |
return DAG.getNode(ISD::FNEG, DL, VT, N1, Flags); | |
} | |
} | |
// If 'unsafe math' is enabled, fold lots of things. | |
if (Options.UnsafeFPMath) { | |
// (fsub A, 0) -> A | |
if (N1CFP && N1CFP->isZero()) | |
return N0; | |
// (fsub x, x) -> 0.0 | |
if (N0 == N1) | |
return DAG.getConstantFP(0.0f, DL, VT); | |
// (fsub x, (fadd x, y)) -> (fneg y) | |
// (fsub x, (fadd y, x)) -> (fneg y) | |
if (N1.getOpcode() == ISD::FADD) { | |
SDValue N10 = N1->getOperand(0); | |
SDValue N11 = N1->getOperand(1); | |
if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI, &Options)) | |
return GetNegatedExpression(N11, DAG, LegalOperations); | |
if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI, &Options)) | |
return GetNegatedExpression(N10, DAG, LegalOperations); | |
} | |
} | |
// FSUB -> FMA combines: | |
if (SDValue Fused = visitFSUBForFMACombine(N)) { | |
AddToWorklist(Fused.getNode()); | |
return Fused; | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitFMUL(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); | |
ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); | |
EVT VT = N->getValueType(0); | |
SDLoc DL(N); | |
const TargetOptions &Options = DAG.getTarget().Options; | |
const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; | |
// fold vector ops | |
if (VT.isVector()) { | |
// This just handles C1 * C2 for vectors. Other vector folds are below. | |
if (SDValue FoldedVOp = SimplifyVBinOp(N)) | |
return FoldedVOp; | |
} | |
// fold (fmul c1, c2) -> c1*c2 | |
if (N0CFP && N1CFP) | |
return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags); | |
// canonicalize constant to RHS | |
if (isConstantFPBuildVectorOrConstantFP(N0) && | |
!isConstantFPBuildVectorOrConstantFP(N1)) | |
return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags); | |
// fold (fmul A, 1.0) -> A | |
if (N1CFP && N1CFP->isExactlyValue(1.0)) | |
return N0; | |
if (SDValue NewSel = foldBinOpIntoSelect(N)) | |
return NewSel; | |
if (Options.UnsafeFPMath) { | |
// fold (fmul A, 0) -> 0 | |
if (N1CFP && N1CFP->isZero()) | |
return N1; | |
// fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2)) | |
if (N0.getOpcode() == ISD::FMUL) { | |
// Fold scalars or any vector constants (not just splats). | |
// This fold is done in general by InstCombine, but extra fmul insts | |
// may have been generated during lowering. | |
SDValue N00 = N0.getOperand(0); | |
SDValue N01 = N0.getOperand(1); | |
auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); | |
auto *BV00 = dyn_cast<BuildVectorSDNode>(N00); | |
auto *BV01 = dyn_cast<BuildVectorSDNode>(N01); | |
// Check 1: Make sure that the first operand of the inner multiply is NOT | |
// a constant. Otherwise, we may induce infinite looping. | |
if (!(isConstOrConstSplatFP(N00) || (BV00 && BV00->isConstant()))) { | |
// Check 2: Make sure that the second operand of the inner multiply and | |
// the second operand of the outer multiply are constants. | |
if ((N1CFP && isConstOrConstSplatFP(N01)) || | |
(BV1 && BV01 && BV1->isConstant() && BV01->isConstant())) { | |
SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags); | |
return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags); | |
} | |
} | |
} | |
// fold (fmul (fadd x, x), c) -> (fmul x, (fmul 2.0, c)) | |
// Undo the fmul 2.0, x -> fadd x, x transformation, since if it occurs | |
// during an early run of DAGCombiner can prevent folding with fmuls | |
// inserted during lowering. | |
if (N0.getOpcode() == ISD::FADD && | |
(N0.getOperand(0) == N0.getOperand(1)) && | |
N0.hasOneUse()) { | |
const SDValue Two = DAG.getConstantFP(2.0, DL, VT); | |
SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags); | |
return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags); | |
} | |
} | |
// fold (fmul X, 2.0) -> (fadd X, X) | |
if (N1CFP && N1CFP->isExactlyValue(+2.0)) | |
return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags); | |
// fold (fmul X, -1.0) -> (fneg X) | |
if (N1CFP && N1CFP->isExactlyValue(-1.0)) | |
if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) | |
return DAG.getNode(ISD::FNEG, DL, VT, N0); | |
// fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y) | |
if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { | |
if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { | |
// Both can be negated for free, check to see if at least one is cheaper | |
// negated. | |
if (LHSNeg == 2 || RHSNeg == 2) | |
return DAG.getNode(ISD::FMUL, DL, VT, | |
GetNegatedExpression(N0, DAG, LegalOperations), | |
GetNegatedExpression(N1, DAG, LegalOperations), | |
Flags); | |
} | |
} | |
// FMUL -> FMA combines: | |
if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) { | |
AddToWorklist(Fused.getNode()); | |
return Fused; | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitFMA(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
SDValue N2 = N->getOperand(2); | |
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | |
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); | |
EVT VT = N->getValueType(0); | |
SDLoc DL(N); | |
const TargetOptions &Options = DAG.getTarget().Options; | |
// Constant fold FMA. | |
if (isa<ConstantFPSDNode>(N0) && | |
isa<ConstantFPSDNode>(N1) && | |
isa<ConstantFPSDNode>(N2)) { | |
return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2); | |
} | |
if (Options.UnsafeFPMath) { | |
if (N0CFP && N0CFP->isZero()) | |
return N2; | |
if (N1CFP && N1CFP->isZero()) | |
return N2; | |
} | |
// TODO: The FMA node should have flags that propagate to these nodes. | |
if (N0CFP && N0CFP->isExactlyValue(1.0)) | |
return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); | |
if (N1CFP && N1CFP->isExactlyValue(1.0)) | |
return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); | |
// Canonicalize (fma c, x, y) -> (fma x, c, y) | |
if (isConstantFPBuildVectorOrConstantFP(N0) && | |
!isConstantFPBuildVectorOrConstantFP(N1)) | |
return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); | |
// TODO: FMA nodes should have flags that propagate to the created nodes. | |
// For now, create a Flags object for use with all unsafe math transforms. | |
SDNodeFlags Flags; | |
Flags.setUnsafeAlgebra(true); | |
if (Options.UnsafeFPMath) { | |
// (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) | |
if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && | |
isConstantFPBuildVectorOrConstantFP(N1) && | |
isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { | |
return DAG.getNode(ISD::FMUL, DL, VT, N0, | |
DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1), | |
&Flags), &Flags); | |
} | |
// (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) | |
if (N0.getOpcode() == ISD::FMUL && | |
isConstantFPBuildVectorOrConstantFP(N1) && | |
isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { | |
return DAG.getNode(ISD::FMA, DL, VT, | |
N0.getOperand(0), | |
DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1), | |
&Flags), | |
N2); | |
} | |
} | |
// (fma x, 1, y) -> (fadd x, y) | |
// (fma x, -1, y) -> (fadd (fneg x), y) | |
if (N1CFP) { | |
if (N1CFP->isExactlyValue(1.0)) | |
// TODO: The FMA node should have flags that propagate to this node. | |
return DAG.getNode(ISD::FADD, DL, VT, N0, N2); | |
if (N1CFP->isExactlyValue(-1.0) && | |
(!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { | |
SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0); | |
AddToWorklist(RHSNeg.getNode()); | |
// TODO: The FMA node should have flags that propagate to this node. | |
return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg); | |
} | |
} | |
if (Options.UnsafeFPMath) { | |
// (fma x, c, x) -> (fmul x, (c+1)) | |
if (N1CFP && N0 == N2) { | |
return DAG.getNode(ISD::FMUL, DL, VT, N0, | |
DAG.getNode(ISD::FADD, DL, VT, N1, | |
DAG.getConstantFP(1.0, DL, VT), &Flags), | |
&Flags); | |
} | |
// (fma x, c, (fneg x)) -> (fmul x, (c-1)) | |
if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { | |
return DAG.getNode(ISD::FMUL, DL, VT, N0, | |
DAG.getNode(ISD::FADD, DL, VT, N1, | |
DAG.getConstantFP(-1.0, DL, VT), &Flags), | |
&Flags); | |
} | |
} | |
return SDValue(); | |
} | |
// Combine multiple FDIVs with the same divisor into multiple FMULs by the | |
// reciprocal. | |
// E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) | |
// Notice that this is not always beneficial. One reason is different targets | |
// may have different costs for FDIV and FMUL, so sometimes the cost of two | |
// FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason | |
// is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". | |
SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { | |
bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; | |
const SDNodeFlags *Flags = N->getFlags(); | |
if (!UnsafeMath && !Flags->hasAllowReciprocal()) | |
return SDValue(); | |
// Skip if current node is a reciprocal. | |
SDValue N0 = N->getOperand(0); | |
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | |
if (N0CFP && N0CFP->isExactlyValue(1.0)) | |
return SDValue(); | |
// Exit early if the target does not want this transform or if there can't | |
// possibly be enough uses of the divisor to make the transform worthwhile. | |
SDValue N1 = N->getOperand(1); | |
unsigned MinUses = TLI.combineRepeatedFPDivisors(); | |
if (!MinUses || N1->use_size() < MinUses) | |
return SDValue(); | |
// Find all FDIV users of the same divisor. | |
// Use a set because duplicates may be present in the user list. | |
SetVector<SDNode *> Users; | |
for (auto *U : N1->uses()) { | |
if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { | |
// This division is eligible for optimization only if global unsafe math | |
// is enabled or if this division allows reciprocal formation. | |
if (UnsafeMath || U->getFlags()->hasAllowReciprocal()) | |
Users.insert(U); | |
} | |
} | |
// Now that we have the actual number of divisor uses, make sure it meets | |
// the minimum threshold specified by the target. | |
if (Users.size() < MinUses) | |
return SDValue(); | |
EVT VT = N->getValueType(0); | |
SDLoc DL(N); | |
SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); | |
SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); | |
// Dividend / Divisor -> Dividend * Reciprocal | |
for (auto *U : Users) { | |
SDValue Dividend = U->getOperand(0); | |
if (Dividend != FPOne) { | |
SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, | |
Reciprocal, Flags); | |
CombineTo(U, NewNode); | |
} else if (U != Reciprocal.getNode()) { | |
// In the absence of fast-math-flags, this user node is always the | |
// same node as Reciprocal, but with FMF they may be different nodes. | |
CombineTo(U, Reciprocal); | |
} | |
} | |
return SDValue(N, 0); // N was replaced. | |
} | |
SDValue DAGCombiner::visitFDIV(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | |
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); | |
EVT VT = N->getValueType(0); | |
SDLoc DL(N); | |
const TargetOptions &Options = DAG.getTarget().Options; | |
SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; | |
// fold vector ops | |
if (VT.isVector()) | |
if (SDValue FoldedVOp = SimplifyVBinOp(N)) | |
return FoldedVOp; | |
// fold (fdiv c1, c2) -> c1/c2 | |
if (N0CFP && N1CFP) | |
return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags); | |
if (SDValue NewSel = foldBinOpIntoSelect(N)) | |
return NewSel; | |
if (Options.UnsafeFPMath) { | |
// fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. | |
if (N1CFP) { | |
// Compute the reciprocal 1.0 / c2. | |
const APFloat &N1APF = N1CFP->getValueAPF(); | |
APFloat Recip(N1APF.getSemantics(), 1); // 1.0 | |
APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); | |
// Only do the transform if the reciprocal is a legal fp immediate that | |
// isn't too nasty (eg NaN, denormal, ...). | |
if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty | |
(!LegalOperations || | |
// FIXME: custom lowering of ConstantFP might fail (see e.g. ARM | |
// backend)... we should handle this gracefully after Legalize. | |
// TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) || | |
TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) || | |
TLI.isFPImmLegal(Recip, VT))) | |
return DAG.getNode(ISD::FMUL, DL, VT, N0, | |
DAG.getConstantFP(Recip, DL, VT), Flags); | |
} | |
// If this FDIV is part of a reciprocal square root, it may be folded | |
// into a target-specific square root estimate instruction. | |
if (N1.getOpcode() == ISD::FSQRT) { | |
if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) { | |
return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); | |
} | |
} else if (N1.getOpcode() == ISD::FP_EXTEND && | |
N1.getOperand(0).getOpcode() == ISD::FSQRT) { | |
if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0), | |
Flags)) { | |
RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); | |
AddToWorklist(RV.getNode()); | |
return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); | |
} | |
} else if (N1.getOpcode() == ISD::FP_ROUND && | |
N1.getOperand(0).getOpcode() == ISD::FSQRT) { | |
if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0), | |
Flags)) { | |
RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); | |
AddToWorklist(RV.getNode()); | |
return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); | |
} | |
} else if (N1.getOpcode() == ISD::FMUL) { | |
// Look through an FMUL. Even though this won't remove the FDIV directly, | |
// it's still worthwhile to get rid of the FSQRT if possible. | |
SDValue SqrtOp; | |
SDValue OtherOp; | |
if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { | |
SqrtOp = N1.getOperand(0); | |
OtherOp = N1.getOperand(1); | |
} else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { | |
SqrtOp = N1.getOperand(1); | |
OtherOp = N1.getOperand(0); | |
} | |
if (SqrtOp.getNode()) { | |
// We found a FSQRT, so try to make this fold: | |
// x / (y * sqrt(z)) -> x * (rsqrt(z) / y) | |
if (SDValue RV = buildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) { | |
RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags); | |
AddToWorklist(RV.getNode()); | |
return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); | |
} | |
} | |
} | |
// Fold into a reciprocal estimate and multiply instead of a real divide. | |
if (SDValue RV = BuildReciprocalEstimate(N1, Flags)) { | |
AddToWorklist(RV.getNode()); | |
return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); | |
} | |
} | |
// (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) | |
if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { | |
if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { | |
// Both can be negated for free, check to see if at least one is cheaper | |
// negated. | |
if (LHSNeg == 2 || RHSNeg == 2) | |
return DAG.getNode(ISD::FDIV, SDLoc(N), VT, | |
GetNegatedExpression(N0, DAG, LegalOperations), | |
GetNegatedExpression(N1, DAG, LegalOperations), | |
Flags); | |
} | |
} | |
if (SDValue CombineRepeatedDivisors = combineRepeatedFPDivisors(N)) | |
return CombineRepeatedDivisors; | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitFREM(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | |
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); | |
EVT VT = N->getValueType(0); | |
// fold (frem c1, c2) -> fmod(c1,c2) | |
if (N0CFP && N1CFP) | |
return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1, | |
&cast<BinaryWithFlagsSDNode>(N)->Flags); | |
if (SDValue NewSel = foldBinOpIntoSelect(N)) | |
return NewSel; | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitFSQRT(SDNode *N) { | |
if (!DAG.getTarget().Options.UnsafeFPMath) | |
return SDValue(); | |
SDValue N0 = N->getOperand(0); | |
if (TLI.isFsqrtCheap(N0, DAG)) | |
return SDValue(); | |
// TODO: FSQRT nodes should have flags that propagate to the created nodes. | |
// For now, create a Flags object for use with all unsafe math transforms. | |
SDNodeFlags Flags; | |
Flags.setUnsafeAlgebra(true); | |
return buildSqrtEstimate(N0, &Flags); | |
} | |
/// copysign(x, fp_extend(y)) -> copysign(x, y) | |
/// copysign(x, fp_round(y)) -> copysign(x, y) | |
static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { | |
SDValue N1 = N->getOperand(1); | |
if ((N1.getOpcode() == ISD::FP_EXTEND || | |
N1.getOpcode() == ISD::FP_ROUND)) { | |
// Do not optimize out type conversion of f128 type yet. | |
// For some targets like x86_64, configuration is changed to keep one f128 | |
// value in one SSE register, but instruction selection cannot handle | |
// FCOPYSIGN on SSE registers yet. | |
EVT N1VT = N1->getValueType(0); | |
EVT N1Op0VT = N1->getOperand(0)->getValueType(0); | |
return (N1VT == N1Op0VT || N1Op0VT != MVT::f128); | |
} | |
return false; | |
} | |
SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | |
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); | |
EVT VT = N->getValueType(0); | |
if (N0CFP && N1CFP) // Constant fold | |
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1); | |
if (N1CFP) { | |
const APFloat &V = N1CFP->getValueAPF(); | |
// copysign(x, c1) -> fabs(x) iff ispos(c1) | |
// copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) | |
if (!V.isNegative()) { | |
if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) | |
return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); | |
} else { | |
if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) | |
return DAG.getNode(ISD::FNEG, SDLoc(N), VT, | |
DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); | |
} | |
} | |
// copysign(fabs(x), y) -> copysign(x, y) | |
// copysign(fneg(x), y) -> copysign(x, y) | |
// copysign(copysign(x,z), y) -> copysign(x, y) | |
if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || | |
N0.getOpcode() == ISD::FCOPYSIGN) | |
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1); | |
// copysign(x, abs(y)) -> abs(x) | |
if (N1.getOpcode() == ISD::FABS) | |
return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); | |
// copysign(x, copysign(y,z)) -> copysign(x, z) | |
if (N1.getOpcode() == ISD::FCOPYSIGN) | |
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1)); | |
// copysign(x, fp_extend(y)) -> copysign(x, y) | |
// copysign(x, fp_round(y)) -> copysign(x, y) | |
if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) | |
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0)); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
EVT OpVT = N0.getValueType(); | |
// fold (sint_to_fp c1) -> c1fp | |
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | |
// ...but only if the target supports immediate floating-point values | |
(!LegalOperations || | |
TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) | |
return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); | |
// If the input is a legal type, and SINT_TO_FP is not legal on this target, | |
// but UINT_TO_FP is legal on this target, try to convert. | |
if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) && | |
TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) { | |
// If the sign bit is known to be zero, we can change this to UINT_TO_FP. | |
if (DAG.SignBitIsZero(N0)) | |
return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); | |
} | |
// The next optimizations are desirable only if SELECT_CC can be lowered. | |
if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { | |
// fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) | |
if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && | |
!VT.isVector() && | |
(!LegalOperations || | |
TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { | |
SDLoc DL(N); | |
SDValue Ops[] = | |
{ N0.getOperand(0), N0.getOperand(1), | |
DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), | |
N0.getOperand(2) }; | |
return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); | |
} | |
// fold (sint_to_fp (zext (setcc x, y, cc))) -> | |
// (select_cc x, y, 1.0, 0.0,, cc) | |
if (N0.getOpcode() == ISD::ZERO_EXTEND && | |
N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() && | |
(!LegalOperations || | |
TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { | |
SDLoc DL(N); | |
SDValue Ops[] = | |
{ N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1), | |
DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), | |
N0.getOperand(0).getOperand(2) }; | |
return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); | |
} | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
EVT OpVT = N0.getValueType(); | |
// fold (uint_to_fp c1) -> c1fp | |
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | |
// ...but only if the target supports immediate floating-point values | |
(!LegalOperations || | |
TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) | |
return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); | |
// If the input is a legal type, and UINT_TO_FP is not legal on this target, | |
// but SINT_TO_FP is legal on this target, try to convert. | |
if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) && | |
TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) { | |
// If the sign bit is known to be zero, we can change this to SINT_TO_FP. | |
if (DAG.SignBitIsZero(N0)) | |
return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); | |
} | |
// The next optimizations are desirable only if SELECT_CC can be lowered. | |
if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { | |
// fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) | |
if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && | |
(!LegalOperations || | |
TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { | |
SDLoc DL(N); | |
SDValue Ops[] = | |
{ N0.getOperand(0), N0.getOperand(1), | |
DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), | |
N0.getOperand(2) }; | |
return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); | |
} | |
} | |
return SDValue(); | |
} | |
// Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x | |
static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) | |
return SDValue(); | |
SDValue Src = N0.getOperand(0); | |
EVT SrcVT = Src.getValueType(); | |
bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; | |
bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; | |
// We can safely assume the conversion won't overflow the output range, | |
// because (for example) (uint8_t)18293.f is undefined behavior. | |
// Since we can assume the conversion won't overflow, our decision as to | |
// whether the input will fit in the float should depend on the minimum | |
// of the input range and output range. | |
// This means this is also safe for a signed input and unsigned output, since | |
// a negative input would lead to undefined behavior. | |
unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; | |
unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; | |
unsigned ActualSize = std::min(InputSize, OutputSize); | |
const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); | |
// We can only fold away the float conversion if the input range can be | |
// represented exactly in the float range. | |
if (APFloat::semanticsPrecision(sem) >= ActualSize) { | |
if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { | |
unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND | |
: ISD::ZERO_EXTEND; | |
return DAG.getNode(ExtOp, SDLoc(N), VT, Src); | |
} | |
if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) | |
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); | |
return DAG.getBitcast(VT, Src); | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
// fold (fp_to_sint c1fp) -> c1 | |
if (isConstantFPBuildVectorOrConstantFP(N0)) | |
return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); | |
return FoldIntToFPToInt(N, DAG); | |
} | |
SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
// fold (fp_to_uint c1fp) -> c1 | |
if (isConstantFPBuildVectorOrConstantFP(N0)) | |
return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); | |
return FoldIntToFPToInt(N, DAG); | |
} | |
SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | |
EVT VT = N->getValueType(0); | |
// fold (fp_round c1fp) -> c1fp | |
if (N0CFP) | |
return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); | |
// fold (fp_round (fp_extend x)) -> x | |
if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) | |
return N0.getOperand(0); | |
// fold (fp_round (fp_round x)) -> (fp_round x) | |
if (N0.getOpcode() == ISD::FP_ROUND) { | |
const bool NIsTrunc = N->getConstantOperandVal(1) == 1; | |
const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1; | |
// Skip this folding if it results in an fp_round from f80 to f16. | |
// | |
// f80 to f16 always generates an expensive (and as yet, unimplemented) | |
// libcall to __truncxfhf2 instead of selecting native f16 conversion | |
// instructions from f32 or f64. Moreover, the first (value-preserving) | |
// fp_round from f80 to either f32 or f64 may become a NOP in platforms like | |
// x86. | |
if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) | |
return SDValue(); | |
// If the first fp_round isn't a value preserving truncation, it might | |
// introduce a tie in the second fp_round, that wouldn't occur in the | |
// single-step fp_round we want to fold to. | |
// In other words, double rounding isn't the same as rounding. | |
// Also, this is a value preserving truncation iff both fp_round's are. | |
if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { | |
SDLoc DL(N); | |
return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), | |
DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); | |
} | |
} | |
// fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) | |
if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { | |
SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, | |
N0.getOperand(0), N1); | |
AddToWorklist(Tmp.getNode()); | |
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, | |
Tmp, N0.getOperand(1)); | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); | |
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | |
// fold (fp_round_inreg c1fp) -> c1fp | |
if (N0CFP && isTypeLegal(EVT)) { | |
SDLoc DL(N); | |
SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), DL, EVT); | |
return DAG.getNode(ISD::FP_EXTEND, DL, VT, Round); | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
// If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. | |
if (N->hasOneUse() && | |
N->use_begin()->getOpcode() == ISD::FP_ROUND) | |
return SDValue(); | |
// fold (fp_extend c1fp) -> c1fp | |
if (isConstantFPBuildVectorOrConstantFP(N0)) | |
return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); | |
// fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) | |
if (N0.getOpcode() == ISD::FP16_TO_FP && | |
TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) | |
return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); | |
// Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the | |
// value of X. | |
if (N0.getOpcode() == ISD::FP_ROUND | |
&& N0.getConstantOperandVal(1) == 1) { | |
SDValue In = N0.getOperand(0); | |
if (In.getValueType() == VT) return In; | |
if (VT.bitsLT(In.getValueType())) | |
return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, | |
In, N0.getOperand(1)); | |
return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); | |
} | |
// fold (fpext (load x)) -> (fpext (fptrunc (extload x))) | |
if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && | |
TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { | |
LoadSDNode *LN0 = cast<LoadSDNode>(N0); | |
SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, | |
LN0->getChain(), | |
LN0->getBasePtr(), N0.getValueType(), | |
LN0->getMemOperand()); | |
CombineTo(N, ExtLoad); | |
CombineTo(N0.getNode(), | |
DAG.getNode(ISD::FP_ROUND, SDLoc(N0), | |
N0.getValueType(), ExtLoad, | |
DAG.getIntPtrConstant(1, SDLoc(N0))), | |
ExtLoad.getValue(1)); | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitFCEIL(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
// fold (fceil c1) -> fceil(c1) | |
if (isConstantFPBuildVectorOrConstantFP(N0)) | |
return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitFTRUNC(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
// fold (ftrunc c1) -> ftrunc(c1) | |
if (isConstantFPBuildVectorOrConstantFP(N0)) | |
return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitFFLOOR(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
// fold (ffloor c1) -> ffloor(c1) | |
if (isConstantFPBuildVectorOrConstantFP(N0)) | |
return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); | |
return SDValue(); | |
} | |
// FIXME: FNEG and FABS have a lot in common; refactor. | |
SDValue DAGCombiner::visitFNEG(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
// Constant fold FNEG. | |
if (isConstantFPBuildVectorOrConstantFP(N0)) | |
return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); | |
if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(), | |
&DAG.getTarget().Options)) | |
return GetNegatedExpression(N0, DAG, LegalOperations); | |
// Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading | |
// constant pool values. | |
if (!TLI.isFNegFree(VT) && | |
N0.getOpcode() == ISD::BITCAST && | |
N0.getNode()->hasOneUse()) { | |
SDValue Int = N0.getOperand(0); | |
EVT IntVT = Int.getValueType(); | |
if (IntVT.isInteger() && !IntVT.isVector()) { | |
APInt SignMask; | |
if (N0.getValueType().isVector()) { | |
// For a vector, get a mask such as 0x80... per scalar element | |
// and splat it. | |
SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits()); | |
SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); | |
} else { | |
// For a scalar, just generate 0x80... | |
SignMask = APInt::getSignMask(IntVT.getSizeInBits()); | |
} | |
SDLoc DL0(N0); | |
Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int, | |
DAG.getConstant(SignMask, DL0, IntVT)); | |
AddToWorklist(Int.getNode()); | |
return DAG.getBitcast(VT, Int); | |
} | |
} | |
// (fneg (fmul c, x)) -> (fmul -c, x) | |
if (N0.getOpcode() == ISD::FMUL && | |
(N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) { | |
ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); | |
if (CFP1) { | |
APFloat CVal = CFP1->getValueAPF(); | |
CVal.changeSign(); | |
if (Level >= AfterLegalizeDAG && | |
(TLI.isFPImmLegal(CVal, VT) || | |
TLI.isOperationLegal(ISD::ConstantFP, VT))) | |
return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0), | |
DAG.getNode(ISD::FNEG, SDLoc(N), VT, | |
N0.getOperand(1)), | |
&cast<BinaryWithFlagsSDNode>(N0)->Flags); | |
} | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitFMINNUM(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N->getValueType(0); | |
const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); | |
const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); | |
if (N0CFP && N1CFP) { | |
const APFloat &C0 = N0CFP->getValueAPF(); | |
const APFloat &C1 = N1CFP->getValueAPF(); | |
return DAG.getConstantFP(minnum(C0, C1), SDLoc(N), VT); | |
} | |
// Canonicalize to constant on RHS. | |
if (isConstantFPBuildVectorOrConstantFP(N0) && | |
!isConstantFPBuildVectorOrConstantFP(N1)) | |
return DAG.getNode(ISD::FMINNUM, SDLoc(N), VT, N1, N0); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitFMAXNUM(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
EVT VT = N->getValueType(0); | |
const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); | |
const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); | |
if (N0CFP && N1CFP) { | |
const APFloat &C0 = N0CFP->getValueAPF(); | |
const APFloat &C1 = N1CFP->getValueAPF(); | |
return DAG.getConstantFP(maxnum(C0, C1), SDLoc(N), VT); | |
} | |
// Canonicalize to constant on RHS. | |
if (isConstantFPBuildVectorOrConstantFP(N0) && | |
!isConstantFPBuildVectorOrConstantFP(N1)) | |
return DAG.getNode(ISD::FMAXNUM, SDLoc(N), VT, N1, N0); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitFABS(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
// fold (fabs c1) -> fabs(c1) | |
if (isConstantFPBuildVectorOrConstantFP(N0)) | |
return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); | |
// fold (fabs (fabs x)) -> (fabs x) | |
if (N0.getOpcode() == ISD::FABS) | |
return N->getOperand(0); | |
// fold (fabs (fneg x)) -> (fabs x) | |
// fold (fabs (fcopysign x, y)) -> (fabs x) | |
if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) | |
return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); | |
// Transform fabs(bitconvert(x)) -> bitconvert(x & ~sign) to avoid loading | |
// constant pool values. | |
if (!TLI.isFAbsFree(VT) && | |
N0.getOpcode() == ISD::BITCAST && | |
N0.getNode()->hasOneUse()) { | |
SDValue Int = N0.getOperand(0); | |
EVT IntVT = Int.getValueType(); | |
if (IntVT.isInteger() && !IntVT.isVector()) { | |
APInt SignMask; | |
if (N0.getValueType().isVector()) { | |
// For a vector, get a mask such as 0x7f... per scalar element | |
// and splat it. | |
SignMask = ~APInt::getSignMask(N0.getScalarValueSizeInBits()); | |
SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); | |
} else { | |
// For a scalar, just generate 0x7f... | |
SignMask = ~APInt::getSignMask(IntVT.getSizeInBits()); | |
} | |
SDLoc DL(N0); | |
Int = DAG.getNode(ISD::AND, DL, IntVT, Int, | |
DAG.getConstant(SignMask, DL, IntVT)); | |
AddToWorklist(Int.getNode()); | |
return DAG.getBitcast(N->getValueType(0), Int); | |
} | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitBRCOND(SDNode *N) { | |
SDValue Chain = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
SDValue N2 = N->getOperand(2); | |
// If N is a constant we could fold this into a fallthrough or unconditional | |
// branch. However that doesn't happen very often in normal code, because | |
// Instcombine/SimplifyCFG should have handled the available opportunities. | |
// If we did this folding here, it would be necessary to update the | |
// MachineBasicBlock CFG, which is awkward. | |
// fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal | |
// on the target. | |
if (N1.getOpcode() == ISD::SETCC && | |
TLI.isOperationLegalOrCustom(ISD::BR_CC, | |
N1.getOperand(0).getValueType())) { | |
return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, | |
Chain, N1.getOperand(2), | |
N1.getOperand(0), N1.getOperand(1), N2); | |
} | |
if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) || | |
((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) && | |
(N1.getOperand(0).hasOneUse() && | |
N1.getOperand(0).getOpcode() == ISD::SRL))) { | |
SDNode *Trunc = nullptr; | |
if (N1.getOpcode() == ISD::TRUNCATE) { | |
// Look pass the truncate. | |
Trunc = N1.getNode(); | |
N1 = N1.getOperand(0); | |
} | |
// Match this pattern so that we can generate simpler code: | |
// | |
// %a = ... | |
// %b = and i32 %a, 2 | |
// %c = srl i32 %b, 1 | |
// brcond i32 %c ... | |
// | |
// into | |
// | |
// %a = ... | |
// %b = and i32 %a, 2 | |
// %c = setcc eq %b, 0 | |
// brcond %c ... | |
// | |
// This applies only when the AND constant value has one bit set and the | |
// SRL constant is equal to the log2 of the AND constant. The back-end is | |
// smart enough to convert the result into a TEST/JMP sequence. | |
SDValue Op0 = N1.getOperand(0); | |
SDValue Op1 = N1.getOperand(1); | |
if (Op0.getOpcode() == ISD::AND && | |
Op1.getOpcode() == ISD::Constant) { | |
SDValue AndOp1 = Op0.getOperand(1); | |
if (AndOp1.getOpcode() == ISD::Constant) { | |
const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); | |
if (AndConst.isPowerOf2() && | |
cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) { | |
SDLoc DL(N); | |
SDValue SetCC = | |
DAG.getSetCC(DL, | |
getSetCCResultType(Op0.getValueType()), | |
Op0, DAG.getConstant(0, DL, Op0.getValueType()), | |
ISD::SETNE); | |
SDValue NewBRCond = DAG.getNode(ISD::BRCOND, DL, | |
MVT::Other, Chain, SetCC, N2); | |
// Don't add the new BRCond into the worklist or else SimplifySelectCC | |
// will convert it back to (X & C1) >> C2. | |
CombineTo(N, NewBRCond, false); | |
// Truncate is dead. | |
if (Trunc) | |
deleteAndRecombine(Trunc); | |
// Replace the uses of SRL with SETCC | |
WorklistRemover DeadNodes(*this); | |
DAG.ReplaceAllUsesOfValueWith(N1, SetCC); | |
deleteAndRecombine(N1.getNode()); | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
} | |
} | |
if (Trunc) | |
// Restore N1 if the above transformation doesn't match. | |
N1 = N->getOperand(1); | |
} | |
// Transform br(xor(x, y)) -> br(x != y) | |
// Transform br(xor(xor(x,y), 1)) -> br (x == y) | |
if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) { | |
SDNode *TheXor = N1.getNode(); | |
SDValue Op0 = TheXor->getOperand(0); | |
SDValue Op1 = TheXor->getOperand(1); | |
if (Op0.getOpcode() == Op1.getOpcode()) { | |
// Avoid missing important xor optimizations. | |
if (SDValue Tmp = visitXOR(TheXor)) { | |
if (Tmp.getNode() != TheXor) { | |
DEBUG(dbgs() << "\nReplacing.8 "; | |
TheXor->dump(&DAG); | |
dbgs() << "\nWith: "; | |
Tmp.getNode()->dump(&DAG); | |
dbgs() << '\n'); | |
WorklistRemover DeadNodes(*this); | |
DAG.ReplaceAllUsesOfValueWith(N1, Tmp); | |
deleteAndRecombine(TheXor); | |
return DAG.getNode(ISD::BRCOND, SDLoc(N), | |
MVT::Other, Chain, Tmp, N2); | |
} | |
// visitXOR has changed XOR's operands or replaced the XOR completely, | |
// bail out. | |
return SDValue(N, 0); | |
} | |
} | |
if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { | |
bool Equal = false; | |
if (isOneConstant(Op0) && Op0.hasOneUse() && | |
Op0.getOpcode() == ISD::XOR) { | |
TheXor = Op0.getNode(); | |
Equal = true; | |
} | |
EVT SetCCVT = N1.getValueType(); | |
if (LegalTypes) | |
SetCCVT = getSetCCResultType(SetCCVT); | |
SDValue SetCC = DAG.getSetCC(SDLoc(TheXor), | |
SetCCVT, | |
Op0, Op1, | |
Equal ? ISD::SETEQ : ISD::SETNE); | |
// Replace the uses of XOR with SETCC | |
WorklistRemover DeadNodes(*this); | |
DAG.ReplaceAllUsesOfValueWith(N1, SetCC); | |
deleteAndRecombine(N1.getNode()); | |
return DAG.getNode(ISD::BRCOND, SDLoc(N), | |
MVT::Other, Chain, SetCC, N2); | |
} | |
} | |
return SDValue(); | |
} | |
// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. | |
// | |
SDValue DAGCombiner::visitBR_CC(SDNode *N) { | |
CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); | |
SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); | |
// If N is a constant we could fold this into a fallthrough or unconditional | |
// branch. However that doesn't happen very often in normal code, because | |
// Instcombine/SimplifyCFG should have handled the available opportunities. | |
// If we did this folding here, it would be necessary to update the | |
// MachineBasicBlock CFG, which is awkward. | |
// Use SimplifySetCC to simplify SETCC's. | |
SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), | |
CondLHS, CondRHS, CC->get(), SDLoc(N), | |
false); | |
if (Simp.getNode()) AddToWorklist(Simp.getNode()); | |
// fold to a simpler setcc | |
if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) | |
return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, | |
N->getOperand(0), Simp.getOperand(2), | |
Simp.getOperand(0), Simp.getOperand(1), | |
N->getOperand(4)); | |
return SDValue(); | |
} | |
/// Return true if 'Use' is a load or a store that uses N as its base pointer | |
/// and that N may be folded in the load / store addressing mode. | |
static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, | |
SelectionDAG &DAG, | |
const TargetLowering &TLI) { | |
EVT VT; | |
unsigned AS; | |
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) { | |
if (LD->isIndexed() || LD->getBasePtr().getNode() != N) | |
return false; | |
VT = LD->getMemoryVT(); | |
AS = LD->getAddressSpace(); | |
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) { | |
if (ST->isIndexed() || ST->getBasePtr().getNode() != N) | |
return false; | |
VT = ST->getMemoryVT(); | |
AS = ST->getAddressSpace(); | |
} else | |
return false; | |
TargetLowering::AddrMode AM; | |
if (N->getOpcode() == ISD::ADD) { | |
ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); | |
if (Offset) | |
// [reg +/- imm] | |
AM.BaseOffs = Offset->getSExtValue(); | |
else | |
// [reg +/- reg] | |
AM.Scale = 1; | |
} else if (N->getOpcode() == ISD::SUB) { | |
ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); | |
if (Offset) | |
// [reg +/- imm] | |
AM.BaseOffs = -Offset->getSExtValue(); | |
else | |
// [reg +/- reg] | |
AM.Scale = 1; | |
} else | |
return false; | |
return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, | |
VT.getTypeForEVT(*DAG.getContext()), AS); | |
} | |
/// Try turning a load/store into a pre-indexed load/store when the base | |
/// pointer is an add or subtract and it has other uses besides the load/store. | |
/// After the transformation, the new indexed load/store has effectively folded | |
/// the add/subtract in and all of its other uses are redirected to the | |
/// new load/store. | |
bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { | |
if (Level < AfterLegalizeDAG) | |
return false; | |
bool isLoad = true; | |
SDValue Ptr; | |
EVT VT; | |
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { | |
if (LD->isIndexed()) | |
return false; | |
VT = LD->getMemoryVT(); | |
if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) && | |
!TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT)) | |
return false; | |
Ptr = LD->getBasePtr(); | |
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { | |
if (ST->isIndexed()) | |
return false; | |
VT = ST->getMemoryVT(); | |
if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) && | |
!TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT)) | |
return false; | |
Ptr = ST->getBasePtr(); | |
isLoad = false; | |
} else { | |
return false; | |
} | |
// If the pointer is not an add/sub, or if it doesn't have multiple uses, bail | |
// out. There is no reason to make this a preinc/predec. | |
if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || | |
Ptr.getNode()->hasOneUse()) | |
return false; | |
// Ask the target to do addressing mode selection. | |
SDValue BasePtr; | |
SDValue Offset; | |
ISD::MemIndexedMode AM = ISD::UNINDEXED; | |
if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) | |
return false; | |
// Backends without true r+i pre-indexed forms may need to pass a | |
// constant base with a variable offset so that constant coercion | |
// will work with the patterns in canonical form. | |
bool Swapped = false; | |
if (isa<ConstantSDNode>(BasePtr)) { | |
std::swap(BasePtr, Offset); | |
Swapped = true; | |
} | |
// Don't create a indexed load / store with zero offset. | |
if (isNullConstant(Offset)) | |
return false; | |
// Try turning it into a pre-indexed load / store except when: | |
// 1) The new base ptr is a frame index. | |
// 2) If N is a store and the new base ptr is either the same as or is a | |
// predecessor of the value being stored. | |
// 3) Another use of old base ptr is a predecessor of N. If ptr is folded | |
// that would create a cycle. | |
// 4) All uses are load / store ops that use it as old base ptr. | |
// Check #1. Preinc'ing a frame index would require copying the stack pointer | |
// (plus the implicit offset) to a register to preinc anyway. | |
if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) | |
return false; | |
// Check #2. | |
if (!isLoad) { | |
SDValue Val = cast<StoreSDNode>(N)->getValue(); | |
if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode())) | |
return false; | |
} | |
// Caches for hasPredecessorHelper. | |
SmallPtrSet<const SDNode *, 32> Visited; | |
SmallVector<const SDNode *, 16> Worklist; | |
Worklist.push_back(N); | |
// If the offset is a constant, there may be other adds of constants that | |
// can be folded with this one. We should do this to avoid having to keep | |
// a copy of the original base pointer. | |
SmallVector<SDNode *, 16> OtherUses; | |
if (isa<ConstantSDNode>(Offset)) | |
for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(), | |
UE = BasePtr.getNode()->use_end(); | |
UI != UE; ++UI) { | |
SDUse &Use = UI.getUse(); | |
// Skip the use that is Ptr and uses of other results from BasePtr's | |
// node (important for nodes that return multiple results). | |
if (Use.getUser() == Ptr.getNode() || Use != BasePtr) | |
continue; | |
if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist)) | |
continue; | |
if (Use.getUser()->getOpcode() != ISD::ADD && | |
Use.getUser()->getOpcode() != ISD::SUB) { | |
OtherUses.clear(); | |
break; | |
} | |
SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); | |
if (!isa<ConstantSDNode>(Op1)) { | |
OtherUses.clear(); | |
break; | |
} | |
// FIXME: In some cases, we can be smarter about this. | |
if (Op1.getValueType() != Offset.getValueType()) { | |
OtherUses.clear(); | |
break; | |
} | |
OtherUses.push_back(Use.getUser()); | |
} | |
if (Swapped) | |
std::swap(BasePtr, Offset); | |
// Now check for #3 and #4. | |
bool RealUse = false; | |
for (SDNode *Use : Ptr.getNode()->uses()) { | |
if (Use == N) | |
continue; | |
if (SDNode::hasPredecessorHelper(Use, Visited, Worklist)) | |
return false; | |
// If Ptr may be folded in addressing mode of other use, then it's | |
// not profitable to do this transformation. | |
if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) | |
RealUse = true; | |
} | |
if (!RealUse) | |
return false; | |
SDValue Result; | |
if (isLoad) | |
Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), | |
BasePtr, Offset, AM); | |
else | |
Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N), | |
BasePtr, Offset, AM); | |
++PreIndexedNodes; | |
++NodesCombined; | |
DEBUG(dbgs() << "\nReplacing.4 "; | |
N->dump(&DAG); | |
dbgs() << "\nWith: "; | |
Result.getNode()->dump(&DAG); | |
dbgs() << '\n'); | |
WorklistRemover DeadNodes(*this); | |
if (isLoad) { | |
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); | |
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); | |
} else { | |
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); | |
} | |
// Finally, since the node is now dead, remove it from the graph. | |
deleteAndRecombine(N); | |
if (Swapped) | |
std::swap(BasePtr, Offset); | |
// Replace other uses of BasePtr that can be updated to use Ptr | |
for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { | |
unsigned OffsetIdx = 1; | |
if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) | |
OffsetIdx = 0; | |
assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == | |
BasePtr.getNode() && "Expected BasePtr operand"); | |
// We need to replace ptr0 in the following expression: | |
// x0 * offset0 + y0 * ptr0 = t0 | |
// knowing that | |
// x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) | |
// | |
// where x0, x1, y0 and y1 in {-1, 1} are given by the types of the | |
// indexed load/store and the expresion that needs to be re-written. | |
// | |
// Therefore, we have: | |
// t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 | |
ConstantSDNode *CN = | |
cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); | |
int X0, X1, Y0, Y1; | |
const APInt &Offset0 = CN->getAPIntValue(); | |
APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); | |
X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; | |
Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; | |
X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; | |
Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; | |
unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; | |
APInt CNV = Offset0; | |
if (X0 < 0) CNV = -CNV; | |
if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; | |
else CNV = CNV - Offset1; | |
SDLoc DL(OtherUses[i]); | |
// We can now generate the new expression. | |
SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); | |
SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0); | |
SDValue NewUse = DAG.getNode(Opcode, | |
DL, | |
OtherUses[i]->getValueType(0), NewOp1, NewOp2); | |
DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); | |
deleteAndRecombine(OtherUses[i]); | |
} | |
// Replace the uses of Ptr with uses of the updated base value. | |
DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0)); | |
deleteAndRecombine(Ptr.getNode()); | |
return true; | |
} | |
/// Try to combine a load/store with a add/sub of the base pointer node into a | |
/// post-indexed load/store. The transformation folded the add/subtract into the | |
/// new indexed load/store effectively and all of its uses are redirected to the | |
/// new load/store. | |
bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { | |
if (Level < AfterLegalizeDAG) | |
return false; | |
bool isLoad = true; | |
SDValue Ptr; | |
EVT VT; | |
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { | |
if (LD->isIndexed()) | |
return false; | |
VT = LD->getMemoryVT(); | |
if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) && | |
!TLI.isIndexedLoadLegal(ISD::POST_DEC, VT)) | |
return false; | |
Ptr = LD->getBasePtr(); | |
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { | |
if (ST->isIndexed()) | |
return false; | |
VT = ST->getMemoryVT(); | |
if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) && | |
!TLI.isIndexedStoreLegal(ISD::POST_DEC, VT)) | |
return false; | |
Ptr = ST->getBasePtr(); | |
isLoad = false; | |
} else { | |
return false; | |
} | |
if (Ptr.getNode()->hasOneUse()) | |
return false; | |
for (SDNode *Op : Ptr.getNode()->uses()) { | |
if (Op == N || | |
(Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)) | |
continue; | |
SDValue BasePtr; | |
SDValue Offset; | |
ISD::MemIndexedMode AM = ISD::UNINDEXED; | |
if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) { | |
// Don't create a indexed load / store with zero offset. | |
if (isNullConstant(Offset)) | |
continue; | |
// Try turning it into a post-indexed load / store except when | |
// 1) All uses are load / store ops that use it as base ptr (and | |
// it may be folded as addressing mmode). | |
// 2) Op must be independent of N, i.e. Op is neither a predecessor | |
// nor a successor of N. Otherwise, if Op is folded that would | |
// create a cycle. | |
if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) | |
continue; | |
// Check for #1. | |
bool TryNext = false; | |
for (SDNode *Use : BasePtr.getNode()->uses()) { | |
if (Use == Ptr.getNode()) | |
continue; | |
// If all the uses are load / store addresses, then don't do the | |
// transformation. | |
if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){ | |
bool RealUse = false; | |
for (SDNode *UseUse : Use->uses()) { | |
if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI)) | |
RealUse = true; | |
} | |
if (!RealUse) { | |
TryNext = true; | |
break; | |
} | |
} | |
} | |
if (TryNext) | |
continue; | |
// Check for #2 | |
if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) { | |
SDValue Result = isLoad | |
? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), | |
BasePtr, Offset, AM) | |
: DAG.getIndexedStore(SDValue(N,0), SDLoc(N), | |
BasePtr, Offset, AM); | |
++PostIndexedNodes; | |
++NodesCombined; | |
DEBUG(dbgs() << "\nReplacing.5 "; | |
N->dump(&DAG); | |
dbgs() << "\nWith: "; | |
Result.getNode()->dump(&DAG); | |
dbgs() << '\n'); | |
WorklistRemover DeadNodes(*this); | |
if (isLoad) { | |
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); | |
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); | |
} else { | |
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); | |
} | |
// Finally, since the node is now dead, remove it from the graph. | |
deleteAndRecombine(N); | |
// Replace the uses of Use with uses of the updated base value. | |
DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), | |
Result.getValue(isLoad ? 1 : 0)); | |
deleteAndRecombine(Op); | |
return true; | |
} | |
} | |
} | |
return false; | |
} | |
/// \brief Return the base-pointer arithmetic from an indexed \p LD. | |
SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { | |
ISD::MemIndexedMode AM = LD->getAddressingMode(); | |
assert(AM != ISD::UNINDEXED); | |
SDValue BP = LD->getOperand(1); | |
SDValue Inc = LD->getOperand(2); | |
// Some backends use TargetConstants for load offsets, but don't expect | |
// TargetConstants in general ADD nodes. We can convert these constants into | |
// regular Constants (if the constant is not opaque). | |
assert((Inc.getOpcode() != ISD::TargetConstant || | |
!cast<ConstantSDNode>(Inc)->isOpaque()) && | |
"Cannot split out indexing using opaque target constants"); | |
if (Inc.getOpcode() == ISD::TargetConstant) { | |
ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); | |
Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), | |
ConstInc->getValueType(0)); | |
} | |
unsigned Opc = | |
(AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); | |
return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); | |
} | |
SDValue DAGCombiner::visitLOAD(SDNode *N) { | |
LoadSDNode *LD = cast<LoadSDNode>(N); | |
SDValue Chain = LD->getChain(); | |
SDValue Ptr = LD->getBasePtr(); | |
// If load is not volatile and there are no uses of the loaded value (and | |
// the updated indexed value in case of indexed loads), change uses of the | |
// chain value into uses of the chain input (i.e. delete the dead load). | |
if (!LD->isVolatile()) { | |
if (N->getValueType(1) == MVT::Other) { | |
// Unindexed loads. | |
if (!N->hasAnyUseOfValue(0)) { | |
// It's not safe to use the two value CombineTo variant here. e.g. | |
// v1, chain2 = load chain1, loc | |
// v2, chain3 = load chain2, loc | |
// v3 = add v2, c | |
// Now we replace use of chain2 with chain1. This makes the second load | |
// isomorphic to the one we are deleting, and thus makes this load live. | |
DEBUG(dbgs() << "\nReplacing.6 "; | |
N->dump(&DAG); | |
dbgs() << "\nWith chain: "; | |
Chain.getNode()->dump(&DAG); | |
dbgs() << "\n"); | |
WorklistRemover DeadNodes(*this); | |
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); | |
AddUsersToWorklist(Chain.getNode()); | |
if (N->use_empty()) | |
deleteAndRecombine(N); | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
} else { | |
// Indexed loads. | |
assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); | |
// If this load has an opaque TargetConstant offset, then we cannot split | |
// the indexing into an add/sub directly (that TargetConstant may not be | |
// valid for a different type of node, and we cannot convert an opaque | |
// target constant into a regular constant). | |
bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant && | |
cast<ConstantSDNode>(LD->getOperand(2))->isOpaque(); | |
if (!N->hasAnyUseOfValue(0) && | |
((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) { | |
SDValue Undef = DAG.getUNDEF(N->getValueType(0)); | |
SDValue Index; | |
if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) { | |
Index = SplitIndexingFromLoad(LD); | |
// Try to fold the base pointer arithmetic into subsequent loads and | |
// stores. | |
AddUsersToWorklist(N); | |
} else | |
Index = DAG.getUNDEF(N->getValueType(1)); | |
DEBUG(dbgs() << "\nReplacing.7 "; | |
N->dump(&DAG); | |
dbgs() << "\nWith: "; | |
Undef.getNode()->dump(&DAG); | |
dbgs() << " and 2 other values\n"); | |
WorklistRemover DeadNodes(*this); | |
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); | |
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); | |
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); | |
deleteAndRecombine(N); | |
return SDValue(N, 0); // Return N so it doesn't get rechecked! | |
} | |
} | |
} | |
// If this load is directly stored, replace the load value with the stored | |
// value. | |
// TODO: Handle store large -> read small portion. | |
// TODO: Handle TRUNCSTORE/LOADEXT | |
if (OptLevel != CodeGenOpt::None && | |
ISD::isNormalLoad(N) && !LD->isVolatile()) { | |
if (ISD::isNON_TRUNCStore(Chain.getNode())) { | |
StoreSDNode *PrevST = cast<StoreSDNode>(Chain); | |
if (PrevST->getBasePtr() == Ptr && | |
PrevST->getValue().getValueType() == N->getValueType(0)) | |
return CombineTo(N, PrevST->getOperand(1), Chain); | |
} | |
} | |
// Try to infer better alignment information than the load already has. | |
if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) { | |
if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { | |
if (Align > LD->getMemOperand()->getBaseAlignment()) { | |
SDValue NewLoad = DAG.getExtLoad( | |
LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr, | |
LD->getPointerInfo(), LD->getMemoryVT(), Align, | |
LD->getMemOperand()->getFlags(), LD->getAAInfo()); | |
if (NewLoad.getNode() != N) | |
return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true); | |
} | |
} | |
} | |
if (LD->isUnindexed()) { | |
// Walk up chain skipping non-aliasing memory nodes. | |
SDValue BetterChain = FindBetterChain(N, Chain); | |
// If there is a better chain. | |
if (Chain != BetterChain) { | |
SDValue ReplLoad; | |
// Replace the chain to void dependency. | |
if (LD->getExtensionType() == ISD::NON_EXTLOAD) { | |
ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), | |
BetterChain, Ptr, LD->getMemOperand()); | |
} else { | |
ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), | |
LD->getValueType(0), | |
BetterChain, Ptr, LD->getMemoryVT(), | |
LD->getMemOperand()); | |
} | |
// Create token factor to keep old chain connected. | |
SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), | |
MVT::Other, Chain, ReplLoad.getValue(1)); | |
// Make sure the new and old chains are cleaned up. | |
AddToWorklist(Token.getNode()); | |
// Replace uses with load result and token factor. Don't add users | |
// to work list. | |
return CombineTo(N, ReplLoad.getValue(0), Token, false); | |
} | |
} | |
// Try transforming N to an indexed load. | |
if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) | |
return SDValue(N, 0); | |
// Try to slice up N to more direct loads if the slices are mapped to | |
// different register banks or pairing can take place. | |
if (SliceUpLoad(N)) | |
return SDValue(N, 0); | |
return SDValue(); | |
} | |
namespace { | |
/// \brief Helper structure used to slice a load in smaller loads. | |
/// Basically a slice is obtained from the following sequence: | |
/// Origin = load Ty1, Base | |
/// Shift = srl Ty1 Origin, CstTy Amount | |
/// Inst = trunc Shift to Ty2 | |
/// | |
/// Then, it will be rewriten into: | |
/// Slice = load SliceTy, Base + SliceOffset | |
/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 | |
/// | |
/// SliceTy is deduced from the number of bits that are actually used to | |
/// build Inst. | |
struct LoadedSlice { | |
/// \brief Helper structure used to compute the cost of a slice. | |
struct Cost { | |
/// Are we optimizing for code size. | |
bool ForCodeSize; | |
/// Various cost. | |
unsigned Loads; | |
unsigned Truncates; | |
unsigned CrossRegisterBanksCopies; | |
unsigned ZExts; | |
unsigned Shift; | |
Cost(bool ForCodeSize = false) | |
: ForCodeSize(ForCodeSize), Loads(0), Truncates(0), | |
CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {} | |
/// \brief Get the cost of one isolated slice. | |
Cost(const LoadedSlice &LS, bool ForCodeSize = false) | |
: ForCodeSize(ForCodeSize), Loads(1), Truncates(0), | |
CrossRegisterBanksCopies(0), ZExts(0), Shift(0) { | |
EVT TruncType = LS.Inst->getValueType(0); | |
EVT LoadedType = LS.getLoadedType(); | |
if (TruncType != LoadedType && | |
!LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) | |
ZExts = 1; | |
} | |
/// \brief Account for slicing gain in the current cost. | |
/// Slicing provide a few gains like removing a shift or a | |
/// truncate. This method allows to grow the cost of the original | |
/// load with the gain from this slice. | |
void addSliceGain(const LoadedSlice &LS) { | |
// Each slice saves a truncate. | |
const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); | |
if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), | |
LS.Inst->getValueType(0))) | |
++Truncates; | |
// If there is a shift amount, this slice gets rid of it. | |
if (LS.Shift) | |
++Shift; | |
// If this slice can merge a cross register bank copy, account for it. | |
if (LS.canMergeExpensiveCrossRegisterBankCopy()) | |
++CrossRegisterBanksCopies; | |
} | |
Cost &operator+=(const Cost &RHS) { | |
Loads += RHS.Loads; | |
Truncates += RHS.Truncates; | |
CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; | |
ZExts += RHS.ZExts; | |
Shift += RHS.Shift; | |
return *this; | |
} | |
bool operator==(const Cost &RHS) const { | |
return Loads == RHS.Loads && Truncates == RHS.Truncates && | |
CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && | |
ZExts == RHS.ZExts && Shift == RHS.Shift; | |
} | |
bool operator!=(const Cost &RHS) const { return !(*this == RHS); } | |
bool operator<(const Cost &RHS) const { | |
// Assume cross register banks copies are as expensive as loads. | |
// FIXME: Do we want some more target hooks? | |
unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; | |
unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; | |
// Unless we are optimizing for code size, consider the | |
// expensive operation first. | |
if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) | |
return ExpensiveOpsLHS < ExpensiveOpsRHS; | |
return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < | |
(RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); | |
} | |
bool operator>(const Cost &RHS) const { return RHS < *this; } | |
bool operator<=(const Cost &RHS) const { return !(RHS < *this); } | |
bool operator>=(const Cost &RHS) const { return !(*this < RHS); } | |
}; | |
// The last instruction that represent the slice. This should be a | |
// truncate instruction. | |
SDNode *Inst; | |
// The original load instruction. | |
LoadSDNode *Origin; | |
// The right shift amount in bits from the original load. | |
unsigned Shift; | |
// The DAG from which Origin came from. | |
// This is used to get some contextual information about legal types, etc. | |
SelectionDAG *DAG; | |
LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, | |
unsigned Shift = 0, SelectionDAG *DAG = nullptr) | |
: Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} | |
/// \brief Get the bits used in a chunk of bits \p BitWidth large. | |
/// \return Result is \p BitWidth and has used bits set to 1 and | |
/// not used bits set to 0. | |
APInt getUsedBits() const { | |
// Reproduce the trunc(lshr) sequence: | |
// - Start from the truncated value. | |
// - Zero extend to the desired bit width. | |
// - Shift left. | |
assert(Origin && "No original load to compare against."); | |
unsigned BitWidth = Origin->getValueSizeInBits(0); | |
assert(Inst && "This slice is not bound to an instruction"); | |
assert(Inst->getValueSizeInBits(0) <= BitWidth && | |
"Extracted slice is bigger than the whole type!"); | |
APInt UsedBits(Inst->getValueSizeInBits(0), 0); | |
UsedBits.setAllBits(); | |
UsedBits = UsedBits.zext(BitWidth); | |
UsedBits <<= Shift; | |
return UsedBits; | |
} | |
/// \brief Get the size of the slice to be loaded in bytes. | |
unsigned getLoadedSize() const { | |
unsigned SliceSize = getUsedBits().countPopulation(); | |
assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); | |
return SliceSize / 8; | |
} | |
/// \brief Get the type that will be loaded for this slice. | |
/// Note: This may not be the final type for the slice. | |
EVT getLoadedType() const { | |
assert(DAG && "Missing context"); | |
LLVMContext &Ctxt = *DAG->getContext(); | |
return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); | |
} | |
/// \brief Get the alignment of the load used for this slice. | |
unsigned getAlignment() const { | |
unsigned Alignment = Origin->getAlignment(); | |
unsigned Offset = getOffsetFromBase(); | |
if (Offset != 0) | |
Alignment = MinAlign(Alignment, Alignment + Offset); | |
return Alignment; | |
} | |
/// \brief Check if this slice can be rewritten with legal operations. | |
bool isLegal() const { | |
// An invalid slice is not legal. | |
if (!Origin || !Inst || !DAG) | |
return false; | |
// Offsets are for indexed load only, we do not handle that. | |
if (!Origin->getOffset().isUndef()) | |
return false; | |
const TargetLowering &TLI = DAG->getTargetLoweringInfo(); | |
// Check that the type is legal. | |
EVT SliceType = getLoadedType(); | |
if (!TLI.isTypeLegal(SliceType)) | |
return false; | |
// Check that the load is legal for this type. | |
if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) | |
return false; | |
// Check that the offset can be computed. | |
// 1. Check its type. | |
EVT PtrType = Origin->getBasePtr().getValueType(); | |
if (PtrType == MVT::Untyped || PtrType.isExtended()) | |
return false; | |
// 2. Check that it fits in the immediate. | |
if (!TLI.isLegalAddImmediate(getOffsetFromBase())) | |
return false; | |
// 3. Check that the computation is legal. | |
if (!TLI.isOperationLegal(ISD::ADD, PtrType)) | |
return false; | |
// Check that the zext is legal if it needs one. | |
EVT TruncateType = Inst->getValueType(0); | |
if (TruncateType != SliceType && | |
!TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) | |
return false; | |
return true; | |
} | |
/// \brief Get the offset in bytes of this slice in the original chunk of | |
/// bits. | |
/// \pre DAG != nullptr. | |
uint64_t getOffsetFromBase() const { | |
assert(DAG && "Missing context."); | |
bool IsBigEndian = DAG->getDataLayout().isBigEndian(); | |
assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); | |
uint64_t Offset = Shift / 8; | |
unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; | |
assert(!(Origin->getValueSizeInBits(0) & 0x7) && | |
"The size of the original loaded type is not a multiple of a" | |
" byte."); | |
// If Offset is bigger than TySizeInBytes, it means we are loading all | |
// zeros. This should have been optimized before in the process. | |
assert(TySizeInBytes > Offset && | |
"Invalid shift amount for given loaded size"); | |
if (IsBigEndian) | |
Offset = TySizeInBytes - Offset - getLoadedSize(); | |
return Offset; | |
} | |
/// \brief Generate the sequence of instructions to load the slice | |
/// represented by this object and redirect the uses of this slice to | |
/// this new sequence of instructions. | |
/// \pre this->Inst && this->Origin are valid Instructions and this | |
/// object passed the legal check: LoadedSlice::isLegal returned true. | |
/// \return The last instruction of the sequence used to load the slice. | |
SDValue loadSlice() const { | |
assert(Inst && Origin && "Unable to replace a non-existing slice."); | |
const SDValue &OldBaseAddr = Origin->getBasePtr(); | |
SDValue BaseAddr = OldBaseAddr; | |
// Get the offset in that chunk of bytes w.r.t. the endianness. | |
int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); | |
assert(Offset >= 0 && "Offset too big to fit in int64_t!"); | |
if (Offset) { | |
// BaseAddr = BaseAddr + Offset. | |
EVT ArithType = BaseAddr.getValueType(); | |
SDLoc DL(Origin); | |
BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, | |
DAG->getConstant(Offset, DL, ArithType)); | |
} | |
// Create the type of the loaded slice according to its size. | |
EVT SliceType = getLoadedType(); | |
// Create the load for the slice. | |
SDValue LastInst = | |
DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, | |
Origin->getPointerInfo().getWithOffset(Offset), | |
getAlignment(), Origin->getMemOperand()->getFlags()); | |
// If the final type is not the same as the loaded type, this means that | |
// we have to pad with zero. Create a zero extend for that. | |
EVT FinalType = Inst->getValueType(0); | |
if (SliceType != FinalType) | |
LastInst = | |
DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); | |
return LastInst; | |
} | |
/// \brief Check if this slice can be merged with an expensive cross register | |
/// bank copy. E.g., | |
/// i = load i32 | |
/// f = bitcast i32 i to float | |
bool canMergeExpensiveCrossRegisterBankCopy() const { | |
if (!Inst || !Inst->hasOneUse()) | |
return false; | |
SDNode *Use = *Inst->use_begin(); | |
if (Use->getOpcode() != ISD::BITCAST) | |
return false; | |
assert(DAG && "Missing context"); | |
const TargetLowering &TLI = DAG->getTargetLoweringInfo(); | |
EVT ResVT = Use->getValueType(0); | |
const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT()); | |
const TargetRegisterClass *ArgRC = | |
TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT()); | |
if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) | |
return false; | |
// At this point, we know that we perform a cross-register-bank copy. | |
// Check if it is expensive. | |
const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); | |
// Assume bitcasts are cheap, unless both register classes do not | |
// explicitly share a common sub class. | |
if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) | |
return false; | |
// Check if it will be merged with the load. | |
// 1. Check the alignment constraint. | |
unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment( | |
ResVT.getTypeForEVT(*DAG->getContext())); | |
if (RequiredAlignment > getAlignment()) | |
return false; | |
// 2. Check that the load is a legal operation for that type. | |
if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) | |
return false; | |
// 3. Check that we do not have a zext in the way. | |
if (Inst->getValueType(0) != getLoadedType()) | |
return false; | |
return true; | |
} | |
}; | |
} | |
/// \brief Check that all bits set in \p UsedBits form a dense region, i.e., | |
/// \p UsedBits looks like 0..0 1..1 0..0. | |
static bool areUsedBitsDense(const APInt &UsedBits) { | |
// If all the bits are one, this is dense! | |
if (UsedBits.isAllOnesValue()) | |
return true; | |
// Get rid of the unused bits on the right. | |
APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); | |
// Get rid of the unused bits on the left. | |
if (NarrowedUsedBits.countLeadingZeros()) | |
NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); | |
// Check that the chunk of bits is completely used. | |
return NarrowedUsedBits.isAllOnesValue(); | |
} | |
/// \brief Check whether or not \p First and \p Second are next to each other | |
/// in memory. This means that there is no hole between the bits loaded | |
/// by \p First and the bits loaded by \p Second. | |
static bool areSlicesNextToEachOther(const LoadedSlice &First, | |
const LoadedSlice &Second) { | |
assert(First.Origin == Second.Origin && First.Origin && | |
"Unable to match different memory origins."); | |
APInt UsedBits = First.getUsedBits(); | |
assert((UsedBits & Second.getUsedBits()) == 0 && | |
"Slices are not supposed to overlap."); | |
UsedBits |= Second.getUsedBits(); | |
return areUsedBitsDense(UsedBits); | |
} | |
/// \brief Adjust the \p GlobalLSCost according to the target | |
/// paring capabilities and the layout of the slices. | |
/// \pre \p GlobalLSCost should account for at least as many loads as | |
/// there is in the slices in \p LoadedSlices. | |
static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, | |
LoadedSlice::Cost &GlobalLSCost) { | |
unsigned NumberOfSlices = LoadedSlices.size(); | |
// If there is less than 2 elements, no pairing is possible. | |
if (NumberOfSlices < 2) | |
return; | |
// Sort the slices so that elements that are likely to be next to each | |
// other in memory are next to each other in the list. | |
std::sort(LoadedSlices.begin(), LoadedSlices.end(), | |
[](const LoadedSlice &LHS, const LoadedSlice &RHS) { | |
assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); | |
return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); | |
}); | |
const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); | |
// First (resp. Second) is the first (resp. Second) potentially candidate | |
// to be placed in a paired load. | |
const LoadedSlice *First = nullptr; | |
const LoadedSlice *Second = nullptr; | |
for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, | |
// Set the beginning of the pair. | |
First = Second) { | |
Second = &LoadedSlices[CurrSlice]; | |
// If First is NULL, it means we start a new pair. | |
// Get to the next slice. | |
if (!First) | |
continue; | |
EVT LoadedType = First->getLoadedType(); | |
// If the types of the slices are different, we cannot pair them. | |
if (LoadedType != Second->getLoadedType()) | |
continue; | |
// Check if the target supplies paired loads for this type. | |
unsigned RequiredAlignment = 0; | |
if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { | |
// move to the next pair, this type is hopeless. | |
Second = nullptr; | |
continue; | |
} | |
// Check if we meet the alignment requirement. | |
if (RequiredAlignment > First->getAlignment()) | |
continue; | |
// Check that both loads are next to each other in memory. | |
if (!areSlicesNextToEachOther(*First, *Second)) | |
continue; | |
assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); | |
--GlobalLSCost.Loads; | |
// Move to the next pair. | |
Second = nullptr; | |
} | |
} | |
/// \brief Check the profitability of all involved LoadedSlice. | |
/// Currently, it is considered profitable if there is exactly two | |
/// involved slices (1) which are (2) next to each other in memory, and | |
/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). | |
/// | |
/// Note: The order of the elements in \p LoadedSlices may be modified, but not | |
/// the elements themselves. | |
/// | |
/// FIXME: When the cost model will be mature enough, we can relax | |
/// constraints (1) and (2). | |
static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, | |
const APInt &UsedBits, bool ForCodeSize) { | |
unsigned NumberOfSlices = LoadedSlices.size(); | |
if (StressLoadSlicing) | |
return NumberOfSlices > 1; | |
// Check (1). | |
if (NumberOfSlices != 2) | |
return false; | |
// Check (2). | |
if (!areUsedBitsDense(UsedBits)) | |
return false; | |
// Check (3). | |
LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); | |
// The original code has one big load. | |
OrigCost.Loads = 1; | |
for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { | |
const LoadedSlice &LS = LoadedSlices[CurrSlice]; | |
// Accumulate the cost of all the slices. | |
LoadedSlice::Cost SliceCost(LS, ForCodeSize); | |
GlobalSlicingCost += SliceCost; | |
// Account as cost in the original configuration the gain obtained | |
// with the current slices. | |
OrigCost.addSliceGain(LS); | |
} | |
// If the target supports paired load, adjust the cost accordingly. | |
adjustCostForPairing(LoadedSlices, GlobalSlicingCost); | |
return OrigCost > GlobalSlicingCost; | |
} | |
/// \brief If the given load, \p LI, is used only by trunc or trunc(lshr) | |
/// operations, split it in the various pieces being extracted. | |
/// | |
/// This sort of thing is introduced by SROA. | |
/// This slicing takes care not to insert overlapping loads. | |
/// \pre LI is a simple load (i.e., not an atomic or volatile load). | |
bool DAGCombiner::SliceUpLoad(SDNode *N) { | |
if (Level < AfterLegalizeDAG) | |
return false; | |
LoadSDNode *LD = cast<LoadSDNode>(N); | |
if (LD->isVolatile() || !ISD::isNormalLoad(LD) || | |
!LD->getValueType(0).isInteger()) | |
return false; | |
// Keep track of already used bits to detect overlapping values. | |
// In that case, we will just abort the transformation. | |
APInt UsedBits(LD->getValueSizeInBits(0), 0); | |
SmallVector<LoadedSlice, 4> LoadedSlices; | |
// Check if this load is used as several smaller chunks of bits. | |
// Basically, look for uses in trunc or trunc(lshr) and record a new chain | |
// of computation for each trunc. | |
for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); | |
UI != UIEnd; ++UI) { | |
// Skip the uses of the chain. | |
if (UI.getUse().getResNo() != 0) | |
continue; | |
SDNode *User = *UI; | |
unsigned Shift = 0; | |
// Check if this is a trunc(lshr). | |
if (User->getOpcode() == ISD::SRL && User->hasOneUse() && | |
isa<ConstantSDNode>(User->getOperand(1))) { | |
Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue(); | |
User = *User->use_begin(); | |
} | |
// At this point, User is a Truncate, iff we encountered, trunc or | |
// trunc(lshr). | |
if (User->getOpcode() != ISD::TRUNCATE) | |
return false; | |
// The width of the type must be a power of 2 and greater than 8-bits. | |
// Otherwise the load cannot be represented in LLVM IR. | |
// Moreover, if we shifted with a non-8-bits multiple, the slice | |
// will be across several bytes. We do not support that. | |
unsigned Width = User->getValueSizeInBits(0); | |
if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) | |
return 0; | |
// Build the slice for this chain of computations. | |
LoadedSlice LS(User, LD, Shift, &DAG); | |
APInt CurrentUsedBits = LS.getUsedBits(); | |
// Check if this slice overlaps with another. | |
if ((CurrentUsedBits & UsedBits) != 0) | |
return false; | |
// Update the bits used globally. | |
UsedBits |= CurrentUsedBits; | |
// Check if the new slice would be legal. | |
if (!LS.isLegal()) | |
return false; | |
// Record the slice. | |
LoadedSlices.push_back(LS); | |
} | |
// Abort slicing if it does not seem to be profitable. | |
if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) | |
return false; | |
++SlicedLoads; | |
// Rewrite each chain to use an independent load. | |
// By construction, each chain can be represented by a unique load. | |
// Prepare the argument for the new token factor for all the slices. | |
SmallVector<SDValue, 8> ArgChains; | |
for (SmallVectorImpl<LoadedSlice>::const_iterator | |
LSIt = LoadedSlices.begin(), | |
LSItEnd = LoadedSlices.end(); | |
LSIt != LSItEnd; ++LSIt) { | |
SDValue SliceInst = LSIt->loadSlice(); | |
CombineTo(LSIt->Inst, SliceInst, true); | |
if (SliceInst.getOpcode() != ISD::LOAD) | |
SliceInst = SliceInst.getOperand(0); | |
assert(SliceInst->getOpcode() == ISD::LOAD && | |
"It takes more than a zext to get to the loaded slice!!"); | |
ArgChains.push_back(SliceInst.getValue(1)); | |
} | |
SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, | |
ArgChains); | |
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); | |
AddToWorklist(Chain.getNode()); | |
return true; | |
} | |
/// Check to see if V is (and load (ptr), imm), where the load is having | |
/// specific bytes cleared out. If so, return the byte size being masked out | |
/// and the shift amount. | |
static std::pair<unsigned, unsigned> | |
CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { | |
std::pair<unsigned, unsigned> Result(0, 0); | |
// Check for the structure we're looking for. | |
if (V->getOpcode() != ISD::AND || | |
!isa<ConstantSDNode>(V->getOperand(1)) || | |
!ISD::isNormalLoad(V->getOperand(0).getNode())) | |
return Result; | |
// Check the chain and pointer. | |
LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); | |
if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer. | |
// The store should be chained directly to the load or be an operand of a | |
// tokenfactor. | |
if (LD == Chain.getNode()) | |
; // ok. | |
else if (Chain->getOpcode() != ISD::TokenFactor) | |
return Result; // Fail. | |
else { | |
bool isOk = false; | |
for (const SDValue &ChainOp : Chain->op_values()) | |
if (ChainOp.getNode() == LD) { | |
isOk = true; | |
break; | |
} | |
if (!isOk) return Result; | |
} | |
// This only handles simple types. | |
if (V.getValueType() != MVT::i16 && | |
V.getValueType() != MVT::i32 && | |
V.getValueType() != MVT::i64) | |
return Result; | |
// Check the constant mask. Invert it so that the bits being masked out are | |
// 0 and the bits being kept are 1. Use getSExtValue so that leading bits | |
// follow the sign bit for uniformity. | |
uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); | |
unsigned NotMaskLZ = countLeadingZeros(NotMask); | |
if (NotMaskLZ & 7) return Result; // Must be multiple of a byte. | |
unsigned NotMaskTZ = countTrailingZeros(NotMask); | |
if (NotMaskTZ & 7) return Result; // Must be multiple of a byte. | |
if (NotMaskLZ == 64) return Result; // All zero mask. | |
// See if we have a continuous run of bits. If so, we have 0*1+0* | |
if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) | |
return Result; | |
// Adjust NotMaskLZ down to be from the actual size of the int instead of i64. | |
if (V.getValueType() != MVT::i64 && NotMaskLZ) | |
NotMaskLZ -= 64-V.getValueSizeInBits(); | |
unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; | |
switch (MaskedBytes) { | |
case 1: | |
case 2: | |
case 4: break; | |
default: return Result; // All one mask, or 5-byte mask. | |
} | |
// Verify that the first bit starts at a multiple of mask so that the access | |
// is aligned the same as the access width. | |
if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; | |
Result.first = MaskedBytes; | |
Result.second = NotMaskTZ/8; | |
return Result; | |
} | |
/// Check to see if IVal is something that provides a value as specified by | |
/// MaskInfo. If so, replace the specified store with a narrower store of | |
/// truncated IVal. | |
static SDNode * | |
ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, | |
SDValue IVal, StoreSDNode *St, | |
DAGCombiner *DC) { | |
unsigned NumBytes = MaskInfo.first; | |
unsigned ByteShift = MaskInfo.second; | |
SelectionDAG &DAG = DC->getDAG(); | |
// Check to see if IVal is all zeros in the part being masked in by the 'or' | |
// that uses this. If not, this is not a replacement. | |
APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), | |
ByteShift*8, (ByteShift+NumBytes)*8); | |
if (!DAG.MaskedValueIsZero(IVal, Mask)) return nullptr; | |
// Check that it is legal on the target to do this. It is legal if the new | |
// VT we're shrinking to (i8/i16/i32) is legal or we're still before type | |
// legalization. | |
MVT VT = MVT::getIntegerVT(NumBytes*8); | |
if (!DC->isTypeLegal(VT)) | |
return nullptr; | |
// Okay, we can do this! Replace the 'St' store with a store of IVal that is | |
// shifted by ByteShift and truncated down to NumBytes. | |
if (ByteShift) { | |
SDLoc DL(IVal); | |
IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, | |
DAG.getConstant(ByteShift*8, DL, | |
DC->getShiftAmountTy(IVal.getValueType()))); | |
} | |
// Figure out the offset for the store and the alignment of the access. | |
unsigned StOffset; | |
unsigned NewAlign = St->getAlignment(); | |
if (DAG.getDataLayout().isLittleEndian()) | |
StOffset = ByteShift; | |
else | |
StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; | |
SDValue Ptr = St->getBasePtr(); | |
if (StOffset) { | |
SDLoc DL(IVal); | |
Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), | |
Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType())); | |
NewAlign = MinAlign(NewAlign, StOffset); | |
} | |
// Truncate down to the new size. | |
IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); | |
++OpsNarrowed; | |
return DAG | |
.getStore(St->getChain(), SDLoc(St), IVal, Ptr, | |
St->getPointerInfo().getWithOffset(StOffset), NewAlign) | |
.getNode(); | |
} | |
/// Look for sequence of load / op / store where op is one of 'or', 'xor', and | |
/// 'and' of immediates. If 'op' is only touching some of the loaded bits, try | |
/// narrowing the load and store if it would end up being a win for performance | |
/// or code size. | |
SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { | |
StoreSDNode *ST = cast<StoreSDNode>(N); | |
if (ST->isVolatile()) | |
return SDValue(); | |
SDValue Chain = ST->getChain(); | |
SDValue Value = ST->getValue(); | |
SDValue Ptr = ST->getBasePtr(); | |
EVT VT = Value.getValueType(); | |
if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) | |
return SDValue(); | |
unsigned Opc = Value.getOpcode(); | |
// If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst | |
// is a byte mask indicating a consecutive number of bytes, check to see if | |
// Y is known to provide just those bytes. If so, we try to replace the | |
// load + replace + store sequence with a single (narrower) store, which makes | |
// the load dead. | |
if (Opc == ISD::OR) { | |
std::pair<unsigned, unsigned> MaskedLoad; | |
MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); | |
if (MaskedLoad.first) | |
if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, | |
Value.getOperand(1), ST,this)) | |
return SDValue(NewST, 0); | |
// Or is commutative, so try swapping X and Y. | |
MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); | |
if (MaskedLoad.first) | |
if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, | |
Value.getOperand(0), ST,this)) | |
return SDValue(NewST, 0); | |
} | |
if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || | |
Value.getOperand(1).getOpcode() != ISD::Constant) | |
return SDValue(); | |
SDValue N0 = Value.getOperand(0); | |
if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && | |
Chain == SDValue(N0.getNode(), 1)) { | |
LoadSDNode *LD = cast<LoadSDNode>(N0); | |
if (LD->getBasePtr() != Ptr || | |
LD->getPointerInfo().getAddrSpace() != | |
ST->getPointerInfo().getAddrSpace()) | |
return SDValue(); | |
// Find the type to narrow it the load / op / store to. | |
SDValue N1 = Value.getOperand(1); | |
unsigned BitWidth = N1.getValueSizeInBits(); | |
APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); | |
if (Opc == ISD::AND) | |
Imm ^= APInt::getAllOnesValue(BitWidth); | |
if (Imm == 0 || Imm.isAllOnesValue()) | |
return SDValue(); | |
unsigned ShAmt = Imm.countTrailingZeros(); | |
unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; | |
unsigned NewBW = NextPowerOf2(MSB - ShAmt); | |
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); | |
// The narrowing should be profitable, the load/store operation should be | |
// legal (or custom) and the store size should be equal to the NewVT width. | |
while (NewBW < BitWidth && | |
(NewVT.getStoreSizeInBits() != NewBW || | |
!TLI.isOperationLegalOrCustom(Opc, NewVT) || | |
!TLI.isNarrowingProfitable(VT, NewVT))) { | |
NewBW = NextPowerOf2(NewBW); | |
NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); | |
} | |
if (NewBW >= BitWidth) | |
return SDValue(); | |
// If the lsb changed does not start at the type bitwidth boundary, | |
// start at the previous one. | |
if (ShAmt % NewBW) | |
ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; | |
APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, | |
std::min(BitWidth, ShAmt + NewBW)); | |
if ((Imm & Mask) == Imm) { | |
APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); | |
if (Opc == ISD::AND) | |
NewImm ^= APInt::getAllOnesValue(NewBW); | |
uint64_t PtrOff = ShAmt / 8; | |
// For big endian targets, we need to adjust the offset to the pointer to | |
// load the correct bytes. | |
if (DAG.getDataLayout().isBigEndian()) | |
PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; | |
unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff); | |
Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext()); | |
if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy)) | |
return SDValue(); | |
SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD), | |
Ptr.getValueType(), Ptr, | |
DAG.getConstant(PtrOff, SDLoc(LD), | |
Ptr.getValueType())); | |
SDValue NewLD = | |
DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr, | |
LD->getPointerInfo().getWithOffset(PtrOff), NewAlign, | |
LD->getMemOperand()->getFlags(), LD->getAAInfo()); | |
SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, | |
DAG.getConstant(NewImm, SDLoc(Value), | |
NewVT)); | |
SDValue NewST = | |
DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr, | |
ST->getPointerInfo().getWithOffset(PtrOff), NewAlign); | |
AddToWorklist(NewPtr.getNode()); | |
AddToWorklist(NewLD.getNode()); | |
AddToWorklist(NewVal.getNode()); | |
WorklistRemover DeadNodes(*this); | |
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); | |
++OpsNarrowed; | |
return NewST; | |
} | |
} | |
return SDValue(); | |
} | |
/// For a given floating point load / store pair, if the load value isn't used | |
/// by any other operations, then consider transforming the pair to integer | |
/// load / store operations if the target deems the transformation profitable. | |
SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { | |
StoreSDNode *ST = cast<StoreSDNode>(N); | |
SDValue Chain = ST->getChain(); | |
SDValue Value = ST->getValue(); | |
if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && | |
Value.hasOneUse() && | |
Chain == SDValue(Value.getNode(), 1)) { | |
LoadSDNode *LD = cast<LoadSDNode>(Value); | |
EVT VT = LD->getMemoryVT(); | |
if (!VT.isFloatingPoint() || | |
VT != ST->getMemoryVT() || | |
LD->isNonTemporal() || | |
ST->isNonTemporal() || | |
LD->getPointerInfo().getAddrSpace() != 0 || | |
ST->getPointerInfo().getAddrSpace() != 0) | |
return SDValue(); | |
EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); | |
if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || | |
!TLI.isOperationLegal(ISD::STORE, IntVT) || | |
!TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || | |
!TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT)) | |
return SDValue(); | |
unsigned LDAlign = LD->getAlignment(); | |
unsigned STAlign = ST->getAlignment(); | |
Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext()); | |
unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy); | |
if (LDAlign < ABIAlign || STAlign < ABIAlign) | |
return SDValue(); | |
SDValue NewLD = | |
DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(), | |
LD->getPointerInfo(), LDAlign); | |
SDValue NewST = | |
DAG.getStore(NewLD.getValue(1), SDLoc(N), NewLD, ST->getBasePtr(), | |
ST->getPointerInfo(), STAlign); | |
AddToWorklist(NewLD.getNode()); | |
AddToWorklist(NewST.getNode()); | |
WorklistRemover DeadNodes(*this); | |
DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); | |
++LdStFP2Int; | |
return NewST; | |
} | |
return SDValue(); | |
} | |
// This is a helper function for visitMUL to check the profitability | |
// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). | |
// MulNode is the original multiply, AddNode is (add x, c1), | |
// and ConstNode is c2. | |
// | |
// If the (add x, c1) has multiple uses, we could increase | |
// the number of adds if we make this transformation. | |
// It would only be worth doing this if we can remove a | |
// multiply in the process. Check for that here. | |
// To illustrate: | |
// (A + c1) * c3 | |
// (A + c2) * c3 | |
// We're checking for cases where we have common "c3 * A" expressions. | |
bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, | |
SDValue &AddNode, | |
SDValue &ConstNode) { | |
APInt Val; | |
// If the add only has one use, this would be OK to do. | |
if (AddNode.getNode()->hasOneUse()) | |
return true; | |
// Walk all the users of the constant with which we're multiplying. | |
for (SDNode *Use : ConstNode->uses()) { | |
if (Use == MulNode) // This use is the one we're on right now. Skip it. | |
continue; | |
if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. | |
SDNode *OtherOp; | |
SDNode *MulVar = AddNode.getOperand(0).getNode(); | |
// OtherOp is what we're multiplying against the constant. | |
if (Use->getOperand(0) == ConstNode) | |
OtherOp = Use->getOperand(1).getNode(); | |
else | |
OtherOp = Use->getOperand(0).getNode(); | |
// Check to see if multiply is with the same operand of our "add". | |
// | |
// ConstNode = CONST | |
// Use = ConstNode * A <-- visiting Use. OtherOp is A. | |
// ... | |
// AddNode = (A + c1) <-- MulVar is A. | |
// = AddNode * ConstNode <-- current visiting instruction. | |
// | |
// If we make this transformation, we will have a common | |
// multiply (ConstNode * A) that we can save. | |
if (OtherOp == MulVar) | |
return true; | |
// Now check to see if a future expansion will give us a common | |
// multiply. | |
// | |
// ConstNode = CONST | |
// AddNode = (A + c1) | |
// ... = AddNode * ConstNode <-- current visiting instruction. | |
// ... | |
// OtherOp = (A + c2) | |
// Use = OtherOp * ConstNode <-- visiting Use. | |
// | |
// If we make this transformation, we will have a common | |
// multiply (CONST * A) after we also do the same transformation | |
// to the "t2" instruction. | |
if (OtherOp->getOpcode() == ISD::ADD && | |
DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && | |
OtherOp->getOperand(0).getNode() == MulVar) | |
return true; | |
} | |
} | |
// Didn't find a case where this would be profitable. | |
return false; | |
} | |
SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, | |
unsigned NumStores) { | |
SmallVector<SDValue, 8> Chains; | |
SmallPtrSet<const SDNode *, 8> Visited; | |
SDLoc StoreDL(StoreNodes[0].MemNode); | |
for (unsigned i = 0; i < NumStores; ++i) { | |
Visited.insert(StoreNodes[i].MemNode); | |
} | |
// don't include nodes that are children | |
for (unsigned i = 0; i < NumStores; ++i) { | |
if (Visited.count(StoreNodes[i].MemNode->getChain().getNode()) == 0) | |
Chains.push_back(StoreNodes[i].MemNode->getChain()); | |
} | |
assert(Chains.size() > 0 && "Chain should have generated a chain"); | |
return DAG.getNode(ISD::TokenFactor, StoreDL, MVT::Other, Chains); | |
} | |
bool DAGCombiner::MergeStoresOfConstantsOrVecElts( | |
SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, | |
unsigned NumStores, bool IsConstantSrc, bool UseVector) { | |
// Make sure we have something to merge. | |
if (NumStores < 2) | |
return false; | |
int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8; | |
// The latest Node in the DAG. | |
SDLoc DL(StoreNodes[0].MemNode); | |
SDValue StoredVal; | |
if (UseVector) { | |
bool IsVec = MemVT.isVector(); | |
unsigned Elts = NumStores; | |
if (IsVec) { | |
// When merging vector stores, get the total number of elements. | |
Elts *= MemVT.getVectorNumElements(); | |
} | |
// Get the type for the merged vector store. | |
EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); | |
assert(TLI.isTypeLegal(Ty) && "Illegal vector store"); | |
if (IsConstantSrc) { | |
SmallVector<SDValue, 8> BuildVector; | |
for (unsigned I = 0, E = Ty.getVectorNumElements(); I != E; ++I) { | |
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode); | |
SDValue Val = St->getValue(); | |
if (MemVT.getScalarType().isInteger()) | |
if (auto *CFP = dyn_cast<ConstantFPSDNode>(St->getValue())) | |
Val = DAG.getConstant( | |
(uint32_t)CFP->getValueAPF().bitcastToAPInt().getZExtValue(), | |
SDLoc(CFP), MemVT); | |
BuildVector.push_back(Val); | |
} | |
StoredVal = DAG.getBuildVector(Ty, DL, BuildVector); | |
} else { | |
SmallVector<SDValue, 8> Ops; | |
for (unsigned i = 0; i < NumStores; ++i) { | |
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); | |
SDValue Val = St->getValue(); | |
// All operands of BUILD_VECTOR / CONCAT_VECTOR must have the same type. | |
if (Val.getValueType() != MemVT) | |
return false; | |
Ops.push_back(Val); | |
} | |
// Build the extracted vector elements back into a vector. | |
StoredVal = DAG.getNode(IsVec ? ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, | |
DL, Ty, Ops); } | |
} else { | |
// We should always use a vector store when merging extracted vector | |
// elements, so this path implies a store of constants. | |
assert(IsConstantSrc && "Merged vector elements should use vector store"); | |
unsigned SizeInBits = NumStores * ElementSizeBytes * 8; | |
APInt StoreInt(SizeInBits, 0); | |
// Construct a single integer constant which is made of the smaller | |
// constant inputs. | |
bool IsLE = DAG.getDataLayout().isLittleEndian(); | |
for (unsigned i = 0; i < NumStores; ++i) { | |
unsigned Idx = IsLE ? (NumStores - 1 - i) : i; | |
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode); | |
SDValue Val = St->getValue(); | |
StoreInt <<= ElementSizeBytes * 8; | |
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { | |
StoreInt |= C->getAPIntValue().zext(SizeInBits); | |
} else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { | |
StoreInt |= C->getValueAPF().bitcastToAPInt().zext(SizeInBits); | |
} else { | |
llvm_unreachable("Invalid constant element type"); | |
} | |
} | |
// Create the new Load and Store operations. | |
EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); | |
StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); | |
} | |
LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; | |
SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores); | |
SDValue NewStore = DAG.getStore(NewChain, DL, StoredVal, | |
FirstInChain->getBasePtr(), | |
FirstInChain->getPointerInfo(), | |
FirstInChain->getAlignment()); | |
// Replace all merged stores with the new store. | |
for (unsigned i = 0; i < NumStores; ++i) | |
CombineTo(StoreNodes[i].MemNode, NewStore); | |
AddToWorklist(NewChain.getNode()); | |
return true; | |
} | |
void DAGCombiner::getStoreMergeCandidates( | |
StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes) { | |
// This holds the base pointer, index, and the offset in bytes from the base | |
// pointer. | |
BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr(), DAG); | |
EVT MemVT = St->getMemoryVT(); | |
// We must have a base and an offset. | |
if (!BasePtr.Base.getNode()) | |
return; | |
// Do not handle stores to undef base pointers. | |
if (BasePtr.Base.isUndef()) | |
return; | |
bool IsLoadSrc = isa<LoadSDNode>(St->getValue()); | |
bool IsConstantSrc = isa<ConstantSDNode>(St->getValue()) || | |
isa<ConstantFPSDNode>(St->getValue()); | |
bool IsExtractVecSrc = | |
(St->getValue().getOpcode() == ISD::EXTRACT_VECTOR_ELT || | |
St->getValue().getOpcode() == ISD::EXTRACT_SUBVECTOR); | |
auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr) -> bool { | |
if (Other->isVolatile() || Other->isIndexed()) | |
return false; | |
// We can merge constant floats to equivalent integers | |
if (Other->getMemoryVT() != MemVT) | |
if (!(MemVT.isInteger() && MemVT.bitsEq(Other->getMemoryVT()) && | |
isa<ConstantFPSDNode>(Other->getValue()))) | |
return false; | |
if (IsLoadSrc) | |
if (!isa<LoadSDNode>(Other->getValue())) | |
return false; | |
if (IsConstantSrc) | |
if (!(isa<ConstantSDNode>(Other->getValue()) || | |
isa<ConstantFPSDNode>(Other->getValue()))) | |
return false; | |
if (IsExtractVecSrc) | |
if (!(Other->getValue().getOpcode() == ISD::EXTRACT_VECTOR_ELT || | |
Other->getValue().getOpcode() == ISD::EXTRACT_SUBVECTOR)) | |
return false; | |
Ptr = BaseIndexOffset::match(Other->getBasePtr(), DAG); | |
return (Ptr.equalBaseIndex(BasePtr)); | |
}; | |
// We looking for a root node which is an ancestor to all mergable | |
// stores. We search up through a load, to our root and then down | |
// through all children. For instance we will find Store{1,2,3} if | |
// St is Store1, Store2. or Store3 where the root is not a load | |
// which always true for nonvolatile ops. TODO: Expand | |
// the search to find all valid candidates through multiple layers of loads. | |
// | |
// Root | |
// |-------|-------| | |
// Load Load Store3 | |
// | | | |
// Store1 Store2 | |
// | |
// FIXME: We should be able to climb and | |
// descend TokenFactors to find candidates as well. | |
SDNode *RootNode = (St->getChain()).getNode(); | |
if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(RootNode)) { | |
RootNode = Ldn->getChain().getNode(); | |
for (auto I = RootNode->use_begin(), E = RootNode->use_end(); I != E; ++I) | |
if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) // walk down chain | |
for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2) | |
if (I2.getOperandNo() == 0) | |
if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I2)) { | |
BaseIndexOffset Ptr; | |
if (CandidateMatch(OtherST, Ptr)) | |
StoreNodes.push_back(MemOpLink(OtherST, Ptr.Offset)); | |
} | |
} else | |
for (auto I = RootNode->use_begin(), E = RootNode->use_end(); I != E; ++I) | |
if (I.getOperandNo() == 0) | |
if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) { | |
BaseIndexOffset Ptr; | |
if (CandidateMatch(OtherST, Ptr)) | |
StoreNodes.push_back(MemOpLink(OtherST, Ptr.Offset)); | |
} | |
} | |
// We need to check that merging these stores does not cause a loop | |
// in the DAG. Any store candidate may depend on another candidate | |
// indirectly through its operand (we already consider dependencies | |
// through the chain). Check in parallel by searching up from | |
// non-chain operands of candidates. | |
bool DAGCombiner::checkMergeStoreCandidatesForDependencies( | |
SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores) { | |
SmallPtrSet<const SDNode *, 16> Visited; | |
SmallVector<const SDNode *, 8> Worklist; | |
// search ops of store candidates | |
for (unsigned i = 0; i < NumStores; ++i) { | |
SDNode *n = StoreNodes[i].MemNode; | |
// Potential loops may happen only through non-chain operands | |
for (unsigned j = 1; j < n->getNumOperands(); ++j) | |
Worklist.push_back(n->getOperand(j).getNode()); | |
} | |
// search through DAG. We can stop early if we find a storenode | |
for (unsigned i = 0; i < NumStores; ++i) { | |
if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist)) | |
return false; | |
} | |
return true; | |
} | |
bool DAGCombiner::MergeConsecutiveStores(StoreSDNode *St) { | |
if (OptLevel == CodeGenOpt::None) | |
return false; | |
EVT MemVT = St->getMemoryVT(); | |
int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8; | |
if (MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits) | |
return false; | |
bool NoVectors = DAG.getMachineFunction().getFunction()->hasFnAttribute( | |
Attribute::NoImplicitFloat); | |
// This function cannot currently deal with non-byte-sized memory sizes. | |
if (ElementSizeBytes * 8 != MemVT.getSizeInBits()) | |
return false; | |
if (!MemVT.isSimple()) | |
return false; | |
// Perform an early exit check. Do not bother looking at stored values that | |
// are not constants, loads, or extracted vector elements. | |
SDValue StoredVal = St->getValue(); | |
bool IsLoadSrc = isa<LoadSDNode>(StoredVal); | |
bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) || | |
isa<ConstantFPSDNode>(StoredVal); | |
bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT || | |
StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR); | |
if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc) | |
return false; | |
// Don't merge vectors into wider vectors if the source data comes from loads. | |
// TODO: This restriction can be lifted by using logic similar to the | |
// ExtractVecSrc case. | |
if (MemVT.isVector() && IsLoadSrc) | |
return false; | |
SmallVector<MemOpLink, 8> StoreNodes; | |
// Find potential store merge candidates by searching through chain sub-DAG | |
getStoreMergeCandidates(St, StoreNodes); | |
// Check if there is anything to merge. | |
if (StoreNodes.size() < 2) | |
return false; | |
// Sort the memory operands according to their distance from the | |
// base pointer. | |
std::sort(StoreNodes.begin(), StoreNodes.end(), | |
[](MemOpLink LHS, MemOpLink RHS) { | |
return LHS.OffsetFromBase < RHS.OffsetFromBase; | |
}); | |
// Store Merge attempts to merge the lowest stores. This generally | |
// works out as if successful, as the remaining stores are checked | |
// after the first collection of stores is merged. However, in the | |
// case that a non-mergeable store is found first, e.g., {p[-2], | |
// p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent | |
// mergeable cases. To prevent this, we prune such stores from the | |
// front of StoreNodes here. | |
unsigned StartIdx = 0; | |
while ((StartIdx + 1 < StoreNodes.size()) && | |
StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes != | |
StoreNodes[StartIdx + 1].OffsetFromBase) | |
++StartIdx; | |
// Bail if we don't have enough candidates to merge. | |
if (StartIdx + 1 >= StoreNodes.size()) | |
return false; | |
if (StartIdx) | |
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx); | |
// Scan the memory operations on the chain and find the first non-consecutive | |
// store memory address. | |
unsigned NumConsecutiveStores = 0; | |
int64_t StartAddress = StoreNodes[0].OffsetFromBase; | |
// Check that the addresses are consecutive starting from the second | |
// element in the list of stores. | |
for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) { | |
int64_t CurrAddress = StoreNodes[i].OffsetFromBase; | |
if (CurrAddress - StartAddress != (ElementSizeBytes * i)) | |
break; | |
NumConsecutiveStores = i + 1; | |
} | |
if (NumConsecutiveStores < 2) | |
return false; | |
// Check that we can merge these candidates without causing a cycle | |
if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumConsecutiveStores)) | |
return false; | |
// The node with the lowest store address. | |
LLVMContext &Context = *DAG.getContext(); | |
const DataLayout &DL = DAG.getDataLayout(); | |
// Store the constants into memory as one consecutive store. | |
if (IsConstantSrc) { | |
bool RV = false; | |
while (NumConsecutiveStores > 1) { | |
LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; | |
unsigned FirstStoreAS = FirstInChain->getAddressSpace(); | |
unsigned FirstStoreAlign = FirstInChain->getAlignment(); | |
unsigned LastLegalType = 0; | |
unsigned LastLegalVectorType = 0; | |
bool NonZero = false; | |
for (unsigned i = 0; i < NumConsecutiveStores; ++i) { | |
StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode); | |
SDValue StoredVal = ST->getValue(); | |
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) { | |
NonZero |= !C->isNullValue(); | |
} else if (ConstantFPSDNode *C = | |
dyn_cast<ConstantFPSDNode>(StoredVal)) { | |
NonZero |= !C->getConstantFPValue()->isNullValue(); | |
} else { | |
// Non-constant. | |
break; | |
} | |
// Find a legal type for the constant store. | |
unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; | |
EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); | |
bool IsFast = false; | |
if (TLI.isTypeLegal(StoreTy) && | |
TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, | |
FirstStoreAlign, &IsFast) && | |
IsFast) { | |
LastLegalType = i + 1; | |
// Or check whether a truncstore is legal. | |
} else if (TLI.getTypeAction(Context, StoreTy) == | |
TargetLowering::TypePromoteInteger) { | |
EVT LegalizedStoredValueTy = | |
TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); | |
if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) && | |
TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, | |
FirstStoreAS, FirstStoreAlign, &IsFast) && | |
IsFast) { | |
LastLegalType = i + 1; | |
} | |
} | |
// We only use vectors if the constant is known to be zero or the target | |
// allows it and the function is not marked with the noimplicitfloat | |
// attribute. | |
if ((!NonZero || | |
TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) && | |
!NoVectors) { | |
// Find a legal type for the vector store. | |
EVT Ty = EVT::getVectorVT(Context, MemVT, i + 1); | |
if (TLI.isTypeLegal(Ty) && TLI.canMergeStoresTo(Ty) && | |
TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, | |
FirstStoreAlign, &IsFast) && | |
IsFast) | |
LastLegalVectorType = i + 1; | |
} | |
} | |
// Check if we found a legal integer type that creates a meaningful merge. | |
if (LastLegalType < 2 && LastLegalVectorType < 2) | |
break; | |
bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors; | |
unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType; | |
bool Merged = MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, | |
true, UseVector); | |
if (!Merged) | |
break; | |
// Remove merged stores for next iteration. | |
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); | |
RV = true; | |
NumConsecutiveStores -= NumElem; | |
} | |
return RV; | |
} | |
// When extracting multiple vector elements, try to store them | |
// in one vector store rather than a sequence of scalar stores. | |
if (IsExtractVecSrc) { | |
bool RV = false; | |
while (StoreNodes.size() >= 2) { | |
LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; | |
unsigned FirstStoreAS = FirstInChain->getAddressSpace(); | |
unsigned FirstStoreAlign = FirstInChain->getAlignment(); | |
unsigned NumStoresToMerge = 0; | |
bool IsVec = MemVT.isVector(); | |
for (unsigned i = 0; i < NumConsecutiveStores; ++i) { | |
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); | |
unsigned StoreValOpcode = St->getValue().getOpcode(); | |
// This restriction could be loosened. | |
// Bail out if any stored values are not elements extracted from a | |
// vector. It should be possible to handle mixed sources, but load | |
// sources need more careful handling (see the block of code below that | |
// handles consecutive loads). | |
if (StoreValOpcode != ISD::EXTRACT_VECTOR_ELT && | |
StoreValOpcode != ISD::EXTRACT_SUBVECTOR) | |
return false; | |
// Find a legal type for the vector store. | |
unsigned Elts = i + 1; | |
if (IsVec) { | |
// When merging vector stores, get the total number of elements. | |
Elts *= MemVT.getVectorNumElements(); | |
} | |
EVT Ty = | |
EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); | |
bool IsFast; | |
if (TLI.isTypeLegal(Ty) && | |
TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, | |
FirstStoreAlign, &IsFast) && | |
IsFast) | |
NumStoresToMerge = i + 1; | |
} | |
bool Merged = MergeStoresOfConstantsOrVecElts( | |
StoreNodes, MemVT, NumStoresToMerge, false, true); | |
if (!Merged) | |
break; | |
// Remove merged stores for next iteration. | |
StoreNodes.erase(StoreNodes.begin(), | |
StoreNodes.begin() + NumStoresToMerge); | |
RV = true; | |
NumConsecutiveStores -= NumStoresToMerge; | |
} | |
return RV; | |
} | |
// Below we handle the case of multiple consecutive stores that | |
// come from multiple consecutive loads. We merge them into a single | |
// wide load and a single wide store. | |
// Look for load nodes which are used by the stored values. | |
SmallVector<MemOpLink, 8> LoadNodes; | |
// Find acceptable loads. Loads need to have the same chain (token factor), | |
// must not be zext, volatile, indexed, and they must be consecutive. | |
BaseIndexOffset LdBasePtr; | |
for (unsigned i = 0; i < NumConsecutiveStores; ++i) { | |
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); | |
LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue()); | |
if (!Ld) break; | |
// Loads must only have one use. | |
if (!Ld->hasNUsesOfValue(1, 0)) | |
break; | |
// The memory operands must not be volatile. | |
if (Ld->isVolatile() || Ld->isIndexed()) | |
break; | |
// We do not accept ext loads. | |
if (Ld->getExtensionType() != ISD::NON_EXTLOAD) | |
break; | |
// The stored memory type must be the same. | |
if (Ld->getMemoryVT() != MemVT) | |
break; | |
BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr(), DAG); | |
// If this is not the first ptr that we check. | |
if (LdBasePtr.Base.getNode()) { | |
// The base ptr must be the same. | |
if (!LdPtr.equalBaseIndex(LdBasePtr)) | |
break; | |
} else { | |
// Check that all other base pointers are the same as this one. | |
LdBasePtr = LdPtr; | |
} | |
// We found a potential memory operand to merge. | |
LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset)); | |
} | |
if (LoadNodes.size() < 2) | |
return false; | |
// If we have load/store pair instructions and we only have two values, | |
// don't bother. | |
unsigned RequiredAlignment; | |
if (LoadNodes.size() == 2 && TLI.hasPairedLoad(MemVT, RequiredAlignment) && | |
St->getAlignment() >= RequiredAlignment) | |
return false; | |
LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; | |
unsigned FirstStoreAS = FirstInChain->getAddressSpace(); | |
unsigned FirstStoreAlign = FirstInChain->getAlignment(); | |
LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); | |
unsigned FirstLoadAS = FirstLoad->getAddressSpace(); | |
unsigned FirstLoadAlign = FirstLoad->getAlignment(); | |
// Scan the memory operations on the chain and find the first non-consecutive | |
// load memory address. These variables hold the index in the store node | |
// array. | |
unsigned LastConsecutiveLoad = 0; | |
// This variable refers to the size and not index in the array. | |
unsigned LastLegalVectorType = 0; | |
unsigned LastLegalIntegerType = 0; | |
StartAddress = LoadNodes[0].OffsetFromBase; | |
SDValue FirstChain = FirstLoad->getChain(); | |
for (unsigned i = 1; i < LoadNodes.size(); ++i) { | |
// All loads must share the same chain. | |
if (LoadNodes[i].MemNode->getChain() != FirstChain) | |
break; | |
int64_t CurrAddress = LoadNodes[i].OffsetFromBase; | |
if (CurrAddress - StartAddress != (ElementSizeBytes * i)) | |
break; | |
LastConsecutiveLoad = i; | |
// Find a legal type for the vector store. | |
EVT StoreTy = EVT::getVectorVT(Context, MemVT, i+1); | |
bool IsFastSt, IsFastLd; | |
if (TLI.isTypeLegal(StoreTy) && | |
TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, | |
FirstStoreAlign, &IsFastSt) && IsFastSt && | |
TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, | |
FirstLoadAlign, &IsFastLd) && IsFastLd) { | |
LastLegalVectorType = i + 1; | |
} | |
// Find a legal type for the integer store. | |
unsigned SizeInBits = (i+1) * ElementSizeBytes * 8; | |
StoreTy = EVT::getIntegerVT(Context, SizeInBits); | |
if (TLI.isTypeLegal(StoreTy) && | |
TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, | |
FirstStoreAlign, &IsFastSt) && IsFastSt && | |
TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, | |
FirstLoadAlign, &IsFastLd) && IsFastLd) | |
LastLegalIntegerType = i + 1; | |
// Or check whether a truncstore and extload is legal. | |
else if (TLI.getTypeAction(Context, StoreTy) == | |
TargetLowering::TypePromoteInteger) { | |
EVT LegalizedStoredValueTy = | |
TLI.getTypeToTransformTo(Context, StoreTy); | |
if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) && | |
TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValueTy, StoreTy) && | |
TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValueTy, StoreTy) && | |
TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValueTy, StoreTy) && | |
TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, | |
FirstStoreAS, FirstStoreAlign, &IsFastSt) && | |
IsFastSt && | |
TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, | |
FirstLoadAS, FirstLoadAlign, &IsFastLd) && | |
IsFastLd) | |
LastLegalIntegerType = i+1; | |
} | |
} | |
// Only use vector types if the vector type is larger than the integer type. | |
// If they are the same, use integers. | |
bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors; | |
unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType); | |
// We add +1 here because the LastXXX variables refer to location while | |
// the NumElem refers to array/index size. | |
unsigned NumElem = std::min(NumConsecutiveStores, LastConsecutiveLoad + 1); | |
NumElem = std::min(LastLegalType, NumElem); | |
if (NumElem < 2) | |
return false; | |
// Find if it is better to use vectors or integers to load and store | |
// to memory. | |
EVT JointMemOpVT; | |
if (UseVectorTy) { | |
JointMemOpVT = EVT::getVectorVT(Context, MemVT, NumElem); | |
} else { | |
unsigned SizeInBits = NumElem * ElementSizeBytes * 8; | |
JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); | |
} | |
SDLoc LoadDL(LoadNodes[0].MemNode); | |
SDLoc StoreDL(StoreNodes[0].MemNode); | |
// The merged loads are required to have the same incoming chain, so | |
// using the first's chain is acceptable. | |
SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL, FirstLoad->getChain(), | |
FirstLoad->getBasePtr(), | |
FirstLoad->getPointerInfo(), FirstLoadAlign); | |
SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem); | |
AddToWorklist(NewStoreChain.getNode()); | |
SDValue NewStore = | |
DAG.getStore(NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), | |
FirstInChain->getPointerInfo(), FirstStoreAlign); | |
// Transfer chain users from old loads to the new load. | |
for (unsigned i = 0; i < NumElem; ++i) { | |
LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); | |
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), | |
SDValue(NewLoad.getNode(), 1)); | |
} | |
// Replace the all stores with the new store. | |
for (unsigned i = 0; i < NumElem; ++i) | |
CombineTo(StoreNodes[i].MemNode, NewStore); | |
return true; | |
} | |
SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { | |
SDLoc SL(ST); | |
SDValue ReplStore; | |
// Replace the chain to avoid dependency. | |
if (ST->isTruncatingStore()) { | |
ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), | |
ST->getBasePtr(), ST->getMemoryVT(), | |
ST->getMemOperand()); | |
} else { | |
ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), | |
ST->getMemOperand()); | |
} | |
// Create token to keep both nodes around. | |
SDValue Token = DAG.getNode(ISD::TokenFactor, SL, | |
MVT::Other, ST->getChain(), ReplStore); | |
// Make sure the new and old chains are cleaned up. | |
AddToWorklist(Token.getNode()); | |
// Don't add users to work list. | |
return CombineTo(ST, Token, false); | |
} | |
SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { | |
SDValue Value = ST->getValue(); | |
if (Value.getOpcode() == ISD::TargetConstantFP) | |
return SDValue(); | |
SDLoc DL(ST); | |
SDValue Chain = ST->getChain(); | |
SDValue Ptr = ST->getBasePtr(); | |
const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); | |
// NOTE: If the original store is volatile, this transform must not increase | |
// the number of stores. For example, on x86-32 an f64 can be stored in one | |
// processor operation but an i64 (which is not legal) requires two. So the | |
// transform should not be done in this case. | |
SDValue Tmp; | |
switch (CFP->getSimpleValueType(0).SimpleTy) { | |
default: | |
llvm_unreachable("Unknown FP type"); | |
case MVT::f16: // We don't do this for these yet. | |
case MVT::f80: | |
case MVT::f128: | |
case MVT::ppcf128: | |
return SDValue(); | |
case MVT::f32: | |
if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) || | |
TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { | |
; | |
Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). | |
bitcastToAPInt().getZExtValue(), SDLoc(CFP), | |
MVT::i32); | |
return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); | |
} | |
return SDValue(); | |
case MVT::f64: | |
if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && | |
!ST->isVolatile()) || | |
TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { | |
; | |
Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). | |
getZExtValue(), SDLoc(CFP), MVT::i64); | |
return DAG.getStore(Chain, DL, Tmp, | |
Ptr, ST->getMemOperand()); | |
} | |
if (!ST->isVolatile() && | |
TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { | |
// Many FP stores are not made apparent until after legalize, e.g. for | |
// argument passing. Since this is so common, custom legalize the | |
// 64-bit integer store into two 32-bit stores. | |
uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); | |
SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); | |
SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); | |
if (DAG.getDataLayout().isBigEndian()) | |
std::swap(Lo, Hi); | |
unsigned Alignment = ST->getAlignment(); | |
MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); | |
AAMDNodes AAInfo = ST->getAAInfo(); | |
SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), | |
ST->getAlignment(), MMOFlags, AAInfo); | |
Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, | |
DAG.getConstant(4, DL, Ptr.getValueType())); | |
Alignment = MinAlign(Alignment, 4U); | |
SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr, | |
ST->getPointerInfo().getWithOffset(4), | |
Alignment, MMOFlags, AAInfo); | |
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, | |
St0, St1); | |
} | |
return SDValue(); | |
} | |
} | |
SDValue DAGCombiner::visitSTORE(SDNode *N) { | |
StoreSDNode *ST = cast<StoreSDNode>(N); | |
SDValue Chain = ST->getChain(); | |
SDValue Value = ST->getValue(); | |
SDValue Ptr = ST->getBasePtr(); | |
// If this is a store of a bit convert, store the input value if the | |
// resultant store does not need a higher alignment than the original. | |
if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && | |
ST->isUnindexed()) { | |
EVT SVT = Value.getOperand(0).getValueType(); | |
if (((!LegalOperations && !ST->isVolatile()) || | |
TLI.isOperationLegalOrCustom(ISD::STORE, SVT)) && | |
TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT)) { | |
unsigned OrigAlign = ST->getAlignment(); | |
bool Fast = false; | |
if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), SVT, | |
ST->getAddressSpace(), OrigAlign, &Fast) && | |
Fast) { | |
return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, | |
ST->getPointerInfo(), OrigAlign, | |
ST->getMemOperand()->getFlags(), ST->getAAInfo()); | |
} | |
} | |
} | |
// Turn 'store undef, Ptr' -> nothing. | |
if (Value.isUndef() && ST->isUnindexed()) | |
return Chain; | |
// Try to infer better alignment information than the store already has. | |
if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) { | |
if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { | |
if (Align > ST->getAlignment()) { | |
SDValue NewStore = | |
DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(), | |
ST->getMemoryVT(), Align, | |
ST->getMemOperand()->getFlags(), ST->getAAInfo()); | |
if (NewStore.getNode() != N) | |
return CombineTo(ST, NewStore, true); | |
} | |
} | |
} | |
// Try transforming a pair floating point load / store ops to integer | |
// load / store ops. | |
if (SDValue NewST = TransformFPLoadStorePair(N)) | |
return NewST; | |
if (ST->isUnindexed()) { | |
// Walk up chain skipping non-aliasing memory nodes, on this store and any | |
// adjacent stores. | |
if (findBetterNeighborChains(ST)) { | |
// replaceStoreChain uses CombineTo, which handled all of the worklist | |
// manipulation. Return the original node to not do anything else. | |
return SDValue(ST, 0); | |
} | |
Chain = ST->getChain(); | |
} | |
// Try transforming N to an indexed store. | |
if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) | |
return SDValue(N, 0); | |
// FIXME: is there such a thing as a truncating indexed store? | |
if (ST->isTruncatingStore() && ST->isUnindexed() && | |
Value.getValueType().isInteger()) { | |
// See if we can simplify the input to this truncstore with knowledge that | |
// only the low bits are being used. For example: | |
// "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" | |
SDValue Shorter = GetDemandedBits( | |
Value, APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), | |
ST->getMemoryVT().getScalarSizeInBits())); | |
AddToWorklist(Value.getNode()); | |
if (Shorter.getNode()) | |
return DAG.getTruncStore(Chain, SDLoc(N), Shorter, | |
Ptr, ST->getMemoryVT(), ST->getMemOperand()); | |
// Otherwise, see if we can simplify the operation with | |
// SimplifyDemandedBits, which only works if the value has a single use. | |
if (SimplifyDemandedBits( | |
Value, | |
APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), | |
ST->getMemoryVT().getScalarSizeInBits()))) { | |
// Re-visit the store if anything changed and the store hasn't been merged | |
// with another node (N is deleted) SimplifyDemandedBits will add Value's | |
// node back to the worklist if necessary, but we also need to re-visit | |
// the Store node itself. | |
if (N->getOpcode() != ISD::DELETED_NODE) | |
AddToWorklist(N); | |
return SDValue(N, 0); | |
} | |
} | |
// If this is a load followed by a store to the same location, then the store | |
// is dead/noop. | |
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { | |
if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && | |
ST->isUnindexed() && !ST->isVolatile() && | |
// There can't be any side effects between the load and store, such as | |
// a call or store. | |
Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { | |
// The store is dead, remove it. | |
return Chain; | |
} | |
} | |
// If this is a store followed by a store with the same value to the same | |
// location, then the store is dead/noop. | |
if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { | |
if (ST1->getBasePtr() == Ptr && ST->getMemoryVT() == ST1->getMemoryVT() && | |
ST1->getValue() == Value && ST->isUnindexed() && !ST->isVolatile() && | |
ST1->isUnindexed() && !ST1->isVolatile()) { | |
// The store is dead, remove it. | |
return Chain; | |
} | |
} | |
// If this is an FP_ROUND or TRUNC followed by a store, fold this into a | |
// truncating store. We can do this even if this is already a truncstore. | |
if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) | |
&& Value.getNode()->hasOneUse() && ST->isUnindexed() && | |
TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), | |
ST->getMemoryVT())) { | |
return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), | |
Ptr, ST->getMemoryVT(), ST->getMemOperand()); | |
} | |
// Only perform this optimization before the types are legal, because we | |
// don't want to perform this optimization on every DAGCombine invocation. | |
if (!LegalTypes) { | |
for (;;) { | |
// There can be multiple store sequences on the same chain. | |
// Keep trying to merge store sequences until we are unable to do so | |
// or until we merge the last store on the chain. | |
bool Changed = MergeConsecutiveStores(ST); | |
if (!Changed) break; | |
// Return N as merge only uses CombineTo and no worklist clean | |
// up is necessary. | |
if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N)) | |
return SDValue(N, 0); | |
} | |
} | |
// Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' | |
// | |
// Make sure to do this only after attempting to merge stores in order to | |
// avoid changing the types of some subset of stores due to visit order, | |
// preventing their merging. | |
if (isa<ConstantFPSDNode>(ST->getValue())) { | |
if (SDValue NewSt = replaceStoreOfFPConstant(ST)) | |
return NewSt; | |
} | |
if (SDValue NewSt = splitMergedValStore(ST)) | |
return NewSt; | |
return ReduceLoadOpStoreWidth(N); | |
} | |
/// For the instruction sequence of store below, F and I values | |
/// are bundled together as an i64 value before being stored into memory. | |
/// Sometimes it is more efficent to generate separate stores for F and I, | |
/// which can remove the bitwise instructions or sink them to colder places. | |
/// | |
/// (store (or (zext (bitcast F to i32) to i64), | |
/// (shl (zext I to i64), 32)), addr) --> | |
/// (store F, addr) and (store I, addr+4) | |
/// | |
/// Similarly, splitting for other merged store can also be beneficial, like: | |
/// For pair of {i32, i32}, i64 store --> two i32 stores. | |
/// For pair of {i32, i16}, i64 store --> two i32 stores. | |
/// For pair of {i16, i16}, i32 store --> two i16 stores. | |
/// For pair of {i16, i8}, i32 store --> two i16 stores. | |
/// For pair of {i8, i8}, i16 store --> two i8 stores. | |
/// | |
/// We allow each target to determine specifically which kind of splitting is | |
/// supported. | |
/// | |
/// The store patterns are commonly seen from the simple code snippet below | |
/// if only std::make_pair(...) is sroa transformed before inlined into hoo. | |
/// void goo(const std::pair<int, float> &); | |
/// hoo() { | |
/// ... | |
/// goo(std::make_pair(tmp, ftmp)); | |
/// ... | |
/// } | |
/// | |
SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) { | |
if (OptLevel == CodeGenOpt::None) | |
return SDValue(); | |
SDValue Val = ST->getValue(); | |
SDLoc DL(ST); | |
// Match OR operand. | |
if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR) | |
return SDValue(); | |
// Match SHL operand and get Lower and Higher parts of Val. | |
SDValue Op1 = Val.getOperand(0); | |
SDValue Op2 = Val.getOperand(1); | |
SDValue Lo, Hi; | |
if (Op1.getOpcode() != ISD::SHL) { | |
std::swap(Op1, Op2); | |
if (Op1.getOpcode() != ISD::SHL) | |
return SDValue(); | |
} | |
Lo = Op2; | |
Hi = Op1.getOperand(0); | |
if (!Op1.hasOneUse()) | |
return SDValue(); | |
// Match shift amount to HalfValBitSize. | |
unsigned HalfValBitSize = Val.getValueSizeInBits() / 2; | |
ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1)); | |
if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize) | |
return SDValue(); | |
// Lo and Hi are zero-extended from int with size less equal than 32 | |
// to i64. | |
if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() || | |
!Lo.getOperand(0).getValueType().isScalarInteger() || | |
Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize || | |
Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() || | |
!Hi.getOperand(0).getValueType().isScalarInteger() || | |
Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize) | |
return SDValue(); | |
// Use the EVT of low and high parts before bitcast as the input | |
// of target query. | |
EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST) | |
? Lo.getOperand(0).getValueType() | |
: Lo.getValueType(); | |
EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST) | |
? Hi.getOperand(0).getValueType() | |
: Hi.getValueType(); | |
if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) | |
return SDValue(); | |
// Start to split store. | |
unsigned Alignment = ST->getAlignment(); | |
MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); | |
AAMDNodes AAInfo = ST->getAAInfo(); | |
// Change the sizes of Lo and Hi's value types to HalfValBitSize. | |
EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize); | |
Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0)); | |
Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0)); | |
SDValue Chain = ST->getChain(); | |
SDValue Ptr = ST->getBasePtr(); | |
// Lower value store. | |
SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), | |
ST->getAlignment(), MMOFlags, AAInfo); | |
Ptr = | |
DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, | |
DAG.getConstant(HalfValBitSize / 8, DL, Ptr.getValueType())); | |
// Higher value store. | |
SDValue St1 = | |
DAG.getStore(St0, DL, Hi, Ptr, | |
ST->getPointerInfo().getWithOffset(HalfValBitSize / 8), | |
Alignment / 2, MMOFlags, AAInfo); | |
return St1; | |
} | |
SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { | |
SDValue InVec = N->getOperand(0); | |
SDValue InVal = N->getOperand(1); | |
SDValue EltNo = N->getOperand(2); | |
SDLoc DL(N); | |
// If the inserted element is an UNDEF, just use the input vector. | |
if (InVal.isUndef()) | |
return InVec; | |
EVT VT = InVec.getValueType(); | |
// Check that we know which element is being inserted | |
if (!isa<ConstantSDNode>(EltNo)) | |
return SDValue(); | |
unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); | |
// Canonicalize insert_vector_elt dag nodes. | |
// Example: | |
// (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) | |
// -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) | |
// | |
// Do this only if the child insert_vector node has one use; also | |
// do this only if indices are both constants and Idx1 < Idx0. | |
if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() | |
&& isa<ConstantSDNode>(InVec.getOperand(2))) { | |
unsigned OtherElt = | |
cast<ConstantSDNode>(InVec.getOperand(2))->getZExtValue(); | |
if (Elt < OtherElt) { | |
// Swap nodes. | |
SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, | |
InVec.getOperand(0), InVal, EltNo); | |
AddToWorklist(NewOp.getNode()); | |
return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), | |
VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); | |
} | |
} | |
// If we can't generate a legal BUILD_VECTOR, exit | |
if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) | |
return SDValue(); | |
// Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially | |
// be converted to a BUILD_VECTOR). Fill in the Ops vector with the | |
// vector elements. | |
SmallVector<SDValue, 8> Ops; | |
// Do not combine these two vectors if the output vector will not replace | |
// the input vector. | |
if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { | |
Ops.append(InVec.getNode()->op_begin(), | |
InVec.getNode()->op_end()); | |
} else if (InVec.isUndef()) { | |
unsigned NElts = VT.getVectorNumElements(); | |
Ops.append(NElts, DAG.getUNDEF(InVal.getValueType())); | |
} else { | |
return SDValue(); | |
} | |
// Insert the element | |
if (Elt < Ops.size()) { | |
// All the operands of BUILD_VECTOR must have the same type; | |
// we enforce that here. | |
EVT OpVT = Ops[0].getValueType(); | |
Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal; | |
} | |
// Return the new vector | |
return DAG.getBuildVector(VT, DL, Ops); | |
} | |
SDValue DAGCombiner::ReplaceExtractVectorEltOfLoadWithNarrowedLoad( | |
SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad) { | |
assert(!OriginalLoad->isVolatile()); | |
EVT ResultVT = EVE->getValueType(0); | |
EVT VecEltVT = InVecVT.getVectorElementType(); | |
unsigned Align = OriginalLoad->getAlignment(); | |
unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( | |
VecEltVT.getTypeForEVT(*DAG.getContext())); | |
if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT)) | |
return SDValue(); | |
ISD::LoadExtType ExtTy = ResultVT.bitsGT(VecEltVT) ? | |
ISD::NON_EXTLOAD : ISD::EXTLOAD; | |
if (!TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT)) | |
return SDValue(); | |
Align = NewAlign; | |
SDValue NewPtr = OriginalLoad->getBasePtr(); | |
SDValue Offset; | |
EVT PtrType = NewPtr.getValueType(); | |
MachinePointerInfo MPI; | |
SDLoc DL(EVE); | |
if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { | |
int Elt = ConstEltNo->getZExtValue(); | |
unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; | |
Offset = DAG.getConstant(PtrOff, DL, PtrType); | |
MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); | |
} else { | |
Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType); | |
Offset = DAG.getNode( | |
ISD::MUL, DL, PtrType, Offset, | |
DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType)); | |
MPI = OriginalLoad->getPointerInfo(); | |
} | |
NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset); | |
// The replacement we need to do here is a little tricky: we need to | |
// replace an extractelement of a load with a load. | |
// Use ReplaceAllUsesOfValuesWith to do the replacement. | |
// Note that this replacement assumes that the extractvalue is the only | |
// use of the load; that's okay because we don't want to perform this | |
// transformation in other cases anyway. | |
SDValue Load; | |
SDValue Chain; | |
if (ResultVT.bitsGT(VecEltVT)) { | |
// If the result type of vextract is wider than the load, then issue an | |
// extending load instead. | |
ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, | |
VecEltVT) | |
? ISD::ZEXTLOAD | |
: ISD::EXTLOAD; | |
Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT, | |
OriginalLoad->getChain(), NewPtr, MPI, VecEltVT, | |
Align, OriginalLoad->getMemOperand()->getFlags(), | |
OriginalLoad->getAAInfo()); | |
Chain = Load.getValue(1); | |
} else { | |
Load = DAG.getLoad(VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, | |
MPI, Align, OriginalLoad->getMemOperand()->getFlags(), | |
OriginalLoad->getAAInfo()); | |
Chain = Load.getValue(1); | |
if (ResultVT.bitsLT(VecEltVT)) | |
Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); | |
else | |
Load = DAG.getBitcast(ResultVT, Load); | |
} | |
WorklistRemover DeadNodes(*this); | |
SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; | |
SDValue To[] = { Load, Chain }; | |
DAG.ReplaceAllUsesOfValuesWith(From, To, 2); | |
// Since we're explicitly calling ReplaceAllUses, add the new node to the | |
// worklist explicitly as well. | |
AddToWorklist(Load.getNode()); | |
AddUsersToWorklist(Load.getNode()); // Add users too | |
// Make sure to revisit this node to clean it up; it will usually be dead. | |
AddToWorklist(EVE); | |
++OpsNarrowed; | |
return SDValue(EVE, 0); | |
} | |
SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { | |
// (vextract (scalar_to_vector val, 0) -> val | |
SDValue InVec = N->getOperand(0); | |
EVT VT = InVec.getValueType(); | |
EVT NVT = N->getValueType(0); | |
if (InVec.isUndef()) | |
return DAG.getUNDEF(NVT); | |
if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) { | |
// Check if the result type doesn't match the inserted element type. A | |
// SCALAR_TO_VECTOR may truncate the inserted element and the | |
// EXTRACT_VECTOR_ELT may widen the extracted vector. | |
SDValue InOp = InVec.getOperand(0); | |
if (InOp.getValueType() != NVT) { | |
assert(InOp.getValueType().isInteger() && NVT.isInteger()); | |
return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT); | |
} | |
return InOp; | |
} | |
SDValue EltNo = N->getOperand(1); | |
ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); | |
// extract_vector_elt (build_vector x, y), 1 -> y | |
if (ConstEltNo && | |
InVec.getOpcode() == ISD::BUILD_VECTOR && | |
TLI.isTypeLegal(VT) && | |
(InVec.hasOneUse() || | |
TLI.aggressivelyPreferBuildVectorSources(VT))) { | |
SDValue Elt = InVec.getOperand(ConstEltNo->getZExtValue()); | |
EVT InEltVT = Elt.getValueType(); | |
// Sometimes build_vector's scalar input types do not match result type. | |
if (NVT == InEltVT) | |
return Elt; | |
// TODO: It may be useful to truncate if free if the build_vector implicitly | |
// converts. | |
} | |
// extract_vector_elt (v2i32 (bitcast i64:x)), 0 -> i32 (trunc i64:x) | |
if (ConstEltNo && InVec.getOpcode() == ISD::BITCAST && InVec.hasOneUse() && | |
ConstEltNo->isNullValue() && VT.isInteger()) { | |
SDValue BCSrc = InVec.getOperand(0); | |
if (BCSrc.getValueType().isScalarInteger()) | |
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), NVT, BCSrc); | |
} | |
// extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val | |
// | |
// This only really matters if the index is non-constant since other combines | |
// on the constant elements already work. | |
if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && | |
EltNo == InVec.getOperand(2)) { | |
SDValue Elt = InVec.getOperand(1); | |
return VT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, SDLoc(N), NVT) : Elt; | |
} | |
// Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. | |
// We only perform this optimization before the op legalization phase because | |
// we may introduce new vector instructions which are not backed by TD | |
// patterns. For example on AVX, extracting elements from a wide vector | |
// without using extract_subvector. However, if we can find an underlying | |
// scalar value, then we can always use that. | |
if (ConstEltNo && InVec.getOpcode() == ISD::VECTOR_SHUFFLE) { | |
int NumElem = VT.getVectorNumElements(); | |
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec); | |
// Find the new index to extract from. | |
int OrigElt = SVOp->getMaskElt(ConstEltNo->getZExtValue()); | |
// Extracting an undef index is undef. | |
if (OrigElt == -1) | |
return DAG.getUNDEF(NVT); | |
// Select the right vector half to extract from. | |
SDValue SVInVec; | |
if (OrigElt < NumElem) { | |
SVInVec = InVec->getOperand(0); | |
} else { | |
SVInVec = InVec->getOperand(1); | |
OrigElt -= NumElem; | |
} | |
if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { | |
SDValue InOp = SVInVec.getOperand(OrigElt); | |
if (InOp.getValueType() != NVT) { | |
assert(InOp.getValueType().isInteger() && NVT.isInteger()); | |
InOp = DAG.getSExtOrTrunc(InOp, SDLoc(SVInVec), NVT); | |
} | |
return InOp; | |
} | |
// FIXME: We should handle recursing on other vector shuffles and | |
// scalar_to_vector here as well. | |
if (!LegalOperations) { | |
EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); | |
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT, SVInVec, | |
DAG.getConstant(OrigElt, SDLoc(SVOp), IndexTy)); | |
} | |
} | |
bool BCNumEltsChanged = false; | |
EVT ExtVT = VT.getVectorElementType(); | |
EVT LVT = ExtVT; | |
// If the result of load has to be truncated, then it's not necessarily | |
// profitable. | |
if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT)) | |
return SDValue(); | |
if (InVec.getOpcode() == ISD::BITCAST) { | |
// Don't duplicate a load with other uses. | |
if (!InVec.hasOneUse()) | |
return SDValue(); | |
EVT BCVT = InVec.getOperand(0).getValueType(); | |
if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) | |
return SDValue(); | |
if (VT.getVectorNumElements() != BCVT.getVectorNumElements()) | |
BCNumEltsChanged = true; | |
InVec = InVec.getOperand(0); | |
ExtVT = BCVT.getVectorElementType(); | |
} | |
// (vextract (vN[if]M load $addr), i) -> ([if]M load $addr + i * size) | |
if (!LegalOperations && !ConstEltNo && InVec.hasOneUse() && | |
ISD::isNormalLoad(InVec.getNode()) && | |
!N->getOperand(1)->hasPredecessor(InVec.getNode())) { | |
SDValue Index = N->getOperand(1); | |
if (LoadSDNode *OrigLoad = dyn_cast<LoadSDNode>(InVec)) { | |
if (!OrigLoad->isVolatile()) { | |
return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, Index, | |
OrigLoad); | |
} | |
} | |
} | |
// Perform only after legalization to ensure build_vector / vector_shuffle | |
// optimizations have already been done. | |
if (!LegalOperations) return SDValue(); | |
// (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) | |
// (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) | |
// (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) | |
if (ConstEltNo) { | |
int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); | |
LoadSDNode *LN0 = nullptr; | |
const ShuffleVectorSDNode *SVN = nullptr; | |
if (ISD::isNormalLoad(InVec.getNode())) { | |
LN0 = cast<LoadSDNode>(InVec); | |
} else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR && | |
InVec.getOperand(0).getValueType() == ExtVT && | |
ISD::isNormalLoad(InVec.getOperand(0).getNode())) { | |
// Don't duplicate a load with other uses. | |
if (!InVec.hasOneUse()) | |
return SDValue(); | |
LN0 = cast<LoadSDNode>(InVec.getOperand(0)); | |
} else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) { | |
// (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) | |
// => | |
// (load $addr+1*size) | |
// Don't duplicate a load with other uses. | |
if (!InVec.hasOneUse()) | |
return SDValue(); | |
// If the bit convert changed the number of elements, it is unsafe | |
// to examine the mask. | |
if (BCNumEltsChanged) | |
return SDValue(); | |
// Select the input vector, guarding against out of range extract vector. | |
unsigned NumElems = VT.getVectorNumElements(); | |
int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt); | |
InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1); | |
if (InVec.getOpcode() == ISD::BITCAST) { | |
// Don't duplicate a load with other uses. | |
if (!InVec.hasOneUse()) | |
return SDValue(); | |
InVec = InVec.getOperand(0); | |
} | |
if (ISD::isNormalLoad(InVec.getNode())) { | |
LN0 = cast<LoadSDNode>(InVec); | |
Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems; | |
EltNo = DAG.getConstant(Elt, SDLoc(EltNo), EltNo.getValueType()); | |
} | |
} | |
// Make sure we found a non-volatile load and the extractelement is | |
// the only use. | |
if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile()) | |
return SDValue(); | |
// If Idx was -1 above, Elt is going to be -1, so just return undef. | |
if (Elt == -1) | |
return DAG.getUNDEF(LVT); | |
return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, EltNo, LN0); | |
} | |
return SDValue(); | |
} | |
// Simplify (build_vec (ext )) to (bitcast (build_vec )) | |
SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { | |
// We perform this optimization post type-legalization because | |
// the type-legalizer often scalarizes integer-promoted vectors. | |
// Performing this optimization before may create bit-casts which | |
// will be type-legalized to complex code sequences. | |
// We perform this optimization only before the operation legalizer because we | |
// may introduce illegal operations. | |
if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) | |
return SDValue(); | |
unsigned NumInScalars = N->getNumOperands(); | |
SDLoc DL(N); | |
EVT VT = N->getValueType(0); | |
// Check to see if this is a BUILD_VECTOR of a bunch of values | |
// which come from any_extend or zero_extend nodes. If so, we can create | |
// a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR | |
// optimizations. We do not handle sign-extend because we can't fill the sign | |
// using shuffles. | |
EVT SourceType = MVT::Other; | |
bool AllAnyExt = true; | |
for (unsigned i = 0; i != NumInScalars; ++i) { | |
SDValue In = N->getOperand(i); | |
// Ignore undef inputs. | |
if (In.isUndef()) continue; | |
bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND; | |
bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; | |
// Abort if the element is not an extension. | |
if (!ZeroExt && !AnyExt) { | |
SourceType = MVT::Other; | |
break; | |
} | |
// The input is a ZeroExt or AnyExt. Check the original type. | |
EVT InTy = In.getOperand(0).getValueType(); | |
// Check that all of the widened source types are the same. | |
if (SourceType == MVT::Other) | |
// First time. | |
SourceType = InTy; | |
else if (InTy != SourceType) { | |
// Multiple income types. Abort. | |
SourceType = MVT::Other; | |
break; | |
} | |
// Check if all of the extends are ANY_EXTENDs. | |
AllAnyExt &= AnyExt; | |
} | |
// In order to have valid types, all of the inputs must be extended from the | |
// same source type and all of the inputs must be any or zero extend. | |
// Scalar sizes must be a power of two. | |
EVT OutScalarTy = VT.getScalarType(); | |
bool ValidTypes = SourceType != MVT::Other && | |
isPowerOf2_32(OutScalarTy.getSizeInBits()) && | |
isPowerOf2_32(SourceType.getSizeInBits()); | |
// Create a new simpler BUILD_VECTOR sequence which other optimizations can | |
// turn into a single shuffle instruction. | |
if (!ValidTypes) | |
return SDValue(); | |
bool isLE = DAG.getDataLayout().isLittleEndian(); | |
unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); | |
assert(ElemRatio > 1 && "Invalid element size ratio"); | |
SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): | |
DAG.getConstant(0, DL, SourceType); | |
unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); | |
SmallVector<SDValue, 8> Ops(NewBVElems, Filler); | |
// Populate the new build_vector | |
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | |
SDValue Cast = N->getOperand(i); | |
assert((Cast.getOpcode() == ISD::ANY_EXTEND || | |
Cast.getOpcode() == ISD::ZERO_EXTEND || | |
Cast.isUndef()) && "Invalid cast opcode"); | |
SDValue In; | |
if (Cast.isUndef()) | |
In = DAG.getUNDEF(SourceType); | |
else | |
In = Cast->getOperand(0); | |
unsigned Index = isLE ? (i * ElemRatio) : | |
(i * ElemRatio + (ElemRatio - 1)); | |
assert(Index < Ops.size() && "Invalid index"); | |
Ops[Index] = In; | |
} | |
// The type of the new BUILD_VECTOR node. | |
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); | |
assert(VecVT.getSizeInBits() == VT.getSizeInBits() && | |
"Invalid vector size"); | |
// Check if the new vector type is legal. | |
if (!isTypeLegal(VecVT)) return SDValue(); | |
// Make the new BUILD_VECTOR. | |
SDValue BV = DAG.getBuildVector(VecVT, DL, Ops); | |
// The new BUILD_VECTOR node has the potential to be further optimized. | |
AddToWorklist(BV.getNode()); | |
// Bitcast to the desired type. | |
return DAG.getBitcast(VT, BV); | |
} | |
SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) { | |
EVT VT = N->getValueType(0); | |
unsigned NumInScalars = N->getNumOperands(); | |
SDLoc DL(N); | |
EVT SrcVT = MVT::Other; | |
unsigned Opcode = ISD::DELETED_NODE; | |
unsigned NumDefs = 0; | |
for (unsigned i = 0; i != NumInScalars; ++i) { | |
SDValue In = N->getOperand(i); | |
unsigned Opc = In.getOpcode(); | |
if (Opc == ISD::UNDEF) | |
continue; | |
// If all scalar values are floats and converted from integers. | |
if (Opcode == ISD::DELETED_NODE && | |
(Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) { | |
Opcode = Opc; | |
} | |
if (Opc != Opcode) | |
return SDValue(); | |
EVT InVT = In.getOperand(0).getValueType(); | |
// If all scalar values are typed differently, bail out. It's chosen to | |
// simplify BUILD_VECTOR of integer types. | |
if (SrcVT == MVT::Other) | |
SrcVT = InVT; | |
if (SrcVT != InVT) | |
return SDValue(); | |
NumDefs++; | |
} | |
// If the vector has just one element defined, it's not worth to fold it into | |
// a vectorized one. | |
if (NumDefs < 2) | |
return SDValue(); | |
assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP) | |
&& "Should only handle conversion from integer to float."); | |
assert(SrcVT != MVT::Other && "Cannot determine source type!"); | |
EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars); | |
if (!TLI.isOperationLegalOrCustom(Opcode, NVT)) | |
return SDValue(); | |
// Just because the floating-point vector type is legal does not necessarily | |
// mean that the corresponding integer vector type is. | |
if (!isTypeLegal(NVT)) | |
return SDValue(); | |
SmallVector<SDValue, 8> Opnds; | |
for (unsigned i = 0; i != NumInScalars; ++i) { | |
SDValue In = N->getOperand(i); | |
if (In.isUndef()) | |
Opnds.push_back(DAG.getUNDEF(SrcVT)); | |
else | |
Opnds.push_back(In.getOperand(0)); | |
} | |
SDValue BV = DAG.getBuildVector(NVT, DL, Opnds); | |
AddToWorklist(BV.getNode()); | |
return DAG.getNode(Opcode, DL, VT, BV); | |
} | |
SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N, | |
ArrayRef<int> VectorMask, | |
SDValue VecIn1, SDValue VecIn2, | |
unsigned LeftIdx) { | |
MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); | |
SDValue ZeroIdx = DAG.getConstant(0, DL, IdxTy); | |
EVT VT = N->getValueType(0); | |
EVT InVT1 = VecIn1.getValueType(); | |
EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1; | |
unsigned Vec2Offset = InVT1.getVectorNumElements(); | |
unsigned NumElems = VT.getVectorNumElements(); | |
unsigned ShuffleNumElems = NumElems; | |
// We can't generate a shuffle node with mismatched input and output types. | |
// Try to make the types match the type of the output. | |
if (InVT1 != VT || InVT2 != VT) { | |
if ((VT.getSizeInBits() % InVT1.getSizeInBits() == 0) && InVT1 == InVT2) { | |
// If the output vector length is a multiple of both input lengths, | |
// we can concatenate them and pad the rest with undefs. | |
unsigned NumConcats = VT.getSizeInBits() / InVT1.getSizeInBits(); | |
assert(NumConcats >= 2 && "Concat needs at least two inputs!"); | |
SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1)); | |
ConcatOps[0] = VecIn1; | |
ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1); | |
VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); | |
VecIn2 = SDValue(); | |
} else if (InVT1.getSizeInBits() == VT.getSizeInBits() * 2) { | |
if (!TLI.isExtractSubvectorCheap(VT, NumElems)) | |
return SDValue(); | |
if (!VecIn2.getNode()) { | |
// If we only have one input vector, and it's twice the size of the | |
// output, split it in two. | |
VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, | |
DAG.getConstant(NumElems, DL, IdxTy)); | |
VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx); | |
// Since we now have shorter input vectors, adjust the offset of the | |
// second vector's start. | |
Vec2Offset = NumElems; | |
} else if (InVT2.getSizeInBits() <= InVT1.getSizeInBits()) { | |
// VecIn1 is wider than the output, and we have another, possibly | |
// smaller input. Pad the smaller input with undefs, shuffle at the | |
// input vector width, and extract the output. | |
// The shuffle type is different than VT, so check legality again. | |
if (LegalOperations && | |
!TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1)) | |
return SDValue(); | |
// Legalizing INSERT_SUBVECTOR is tricky - you basically have to | |
// lower it back into a BUILD_VECTOR. So if the inserted type is | |
// illegal, don't even try. | |
if (InVT1 != InVT2) { | |
if (!TLI.isTypeLegal(InVT2)) | |
return SDValue(); | |
VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1, | |
DAG.getUNDEF(InVT1), VecIn2, ZeroIdx); | |
} | |
ShuffleNumElems = NumElems * 2; | |
} else { | |
// Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider | |
// than VecIn1. We can't handle this for now - this case will disappear | |
// when we start sorting the vectors by type. | |
return SDValue(); | |
} | |
} else { | |
// TODO: Support cases where the length mismatch isn't exactly by a | |
// factor of 2. | |
// TODO: Move this check upwards, so that if we have bad type | |
// mismatches, we don't create any DAG nodes. | |
return SDValue(); | |
} | |
} | |
// Initialize mask to undef. | |
SmallVector<int, 8> Mask(ShuffleNumElems, -1); | |
// Only need to run up to the number of elements actually used, not the | |
// total number of elements in the shuffle - if we are shuffling a wider | |
// vector, the high lanes should be set to undef. | |
for (unsigned i = 0; i != NumElems; ++i) { | |
if (VectorMask[i] <= 0) | |
continue; | |
unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1); | |
if (VectorMask[i] == (int)LeftIdx) { | |
Mask[i] = ExtIndex; | |
} else if (VectorMask[i] == (int)LeftIdx + 1) { | |
Mask[i] = Vec2Offset + ExtIndex; | |
} | |
} | |
// The type the input vectors may have changed above. | |
InVT1 = VecIn1.getValueType(); | |
// If we already have a VecIn2, it should have the same type as VecIn1. | |
// If we don't, get an undef/zero vector of the appropriate type. | |
VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1); | |
assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type."); | |
SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask); | |
if (ShuffleNumElems > NumElems) | |
Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx); | |
return Shuffle; | |
} | |
// Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT | |
// operations. If the types of the vectors we're extracting from allow it, | |
// turn this into a vector_shuffle node. | |
SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) { | |
SDLoc DL(N); | |
EVT VT = N->getValueType(0); | |
// Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. | |
if (!isTypeLegal(VT)) | |
return SDValue(); | |
// May only combine to shuffle after legalize if shuffle is legal. | |
if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) | |
return SDValue(); | |
bool UsesZeroVector = false; | |
unsigned NumElems = N->getNumOperands(); | |
// Record, for each element of the newly built vector, which input vector | |
// that element comes from. -1 stands for undef, 0 for the zero vector, | |
// and positive values for the input vectors. | |
// VectorMask maps each element to its vector number, and VecIn maps vector | |
// numbers to their initial SDValues. | |
SmallVector<int, 8> VectorMask(NumElems, -1); | |
SmallVector<SDValue, 8> VecIn; | |
VecIn.push_back(SDValue()); | |
for (unsigned i = 0; i != NumElems; ++i) { | |
SDValue Op = N->getOperand(i); | |
if (Op.isUndef()) | |
continue; | |
// See if we can use a blend with a zero vector. | |
// TODO: Should we generalize this to a blend with an arbitrary constant | |
// vector? | |
if (isNullConstant(Op) || isNullFPConstant(Op)) { | |
UsesZeroVector = true; | |
VectorMask[i] = 0; | |
continue; | |
} | |
// Not an undef or zero. If the input is something other than an | |
// EXTRACT_VECTOR_ELT with a constant index, bail out. | |
if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || | |
!isa<ConstantSDNode>(Op.getOperand(1))) | |
return SDValue(); | |
SDValue ExtractedFromVec = Op.getOperand(0); | |
// All inputs must have the same element type as the output. | |
if (VT.getVectorElementType() != | |
ExtractedFromVec.getValueType().getVectorElementType()) | |
return SDValue(); | |
// Have we seen this input vector before? | |
// The vectors are expected to be tiny (usually 1 or 2 elements), so using | |
// a map back from SDValues to numbers isn't worth it. | |
unsigned Idx = std::distance( | |
VecIn.begin(), std::find(VecIn.begin(), VecIn.end(), ExtractedFromVec)); | |
if (Idx == VecIn.size()) | |
VecIn.push_back(ExtractedFromVec); | |
VectorMask[i] = Idx; | |
} | |
// If we didn't find at least one input vector, bail out. | |
if (VecIn.size() < 2) | |
return SDValue(); | |
// TODO: We want to sort the vectors by descending length, so that adjacent | |
// pairs have similar length, and the longer vector is always first in the | |
// pair. | |
// TODO: Should this fire if some of the input vectors has illegal type (like | |
// it does now), or should we let legalization run its course first? | |
// Shuffle phase: | |
// Take pairs of vectors, and shuffle them so that the result has elements | |
// from these vectors in the correct places. | |
// For example, given: | |
// t10: i32 = extract_vector_elt t1, Constant:i64<0> | |
// t11: i32 = extract_vector_elt t2, Constant:i64<0> | |
// t12: i32 = extract_vector_elt t3, Constant:i64<0> | |
// t13: i32 = extract_vector_elt t1, Constant:i64<1> | |
// t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13 | |
// We will generate: | |
// t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2 | |
// t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef | |
SmallVector<SDValue, 4> Shuffles; | |
for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) { | |
unsigned LeftIdx = 2 * In + 1; | |
SDValue VecLeft = VecIn[LeftIdx]; | |
SDValue VecRight = | |
(LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue(); | |
if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft, | |
VecRight, LeftIdx)) | |
Shuffles.push_back(Shuffle); | |
else | |
return SDValue(); | |
} | |
// If we need the zero vector as an "ingredient" in the blend tree, add it | |
// to the list of shuffles. | |
if (UsesZeroVector) | |
Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT) | |
: DAG.getConstantFP(0.0, DL, VT)); | |
// If we only have one shuffle, we're done. | |
if (Shuffles.size() == 1) | |
return Shuffles[0]; | |
// Update the vector mask to point to the post-shuffle vectors. | |
for (int &Vec : VectorMask) | |
if (Vec == 0) | |
Vec = Shuffles.size() - 1; | |
else | |
Vec = (Vec - 1) / 2; | |
// More than one shuffle. Generate a binary tree of blends, e.g. if from | |
// the previous step we got the set of shuffles t10, t11, t12, t13, we will | |
// generate: | |
// t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2 | |
// t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4 | |
// t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6 | |
// t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8 | |
// t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11 | |
// t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13 | |
// t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21 | |
// Make sure the initial size of the shuffle list is even. | |
if (Shuffles.size() % 2) | |
Shuffles.push_back(DAG.getUNDEF(VT)); | |
for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) { | |
if (CurSize % 2) { | |
Shuffles[CurSize] = DAG.getUNDEF(VT); | |
CurSize++; | |
} | |
for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) { | |
int Left = 2 * In; | |
int Right = 2 * In + 1; | |
SmallVector<int, 8> Mask(NumElems, -1); | |
for (unsigned i = 0; i != NumElems; ++i) { | |
if (VectorMask[i] == Left) { | |
Mask[i] = i; | |
VectorMask[i] = In; | |
} else if (VectorMask[i] == Right) { | |
Mask[i] = i + NumElems; | |
VectorMask[i] = In; | |
} | |
} | |
Shuffles[In] = | |
DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask); | |
} | |
} | |
return Shuffles[0]; | |
} | |
SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { | |
EVT VT = N->getValueType(0); | |
// A vector built entirely of undefs is undef. | |
if (ISD::allOperandsUndef(N)) | |
return DAG.getUNDEF(VT); | |
// Check if we can express BUILD VECTOR via subvector extract. | |
if (!LegalTypes && (N->getNumOperands() > 1)) { | |
SDValue Op0 = N->getOperand(0); | |
auto checkElem = [&](SDValue Op) -> uint64_t { | |
if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) && | |
(Op0.getOperand(0) == Op.getOperand(0))) | |
if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1))) | |
return CNode->getZExtValue(); | |
return -1; | |
}; | |
int Offset = checkElem(Op0); | |
for (unsigned i = 0; i < N->getNumOperands(); ++i) { | |
if (Offset + i != checkElem(N->getOperand(i))) { | |
Offset = -1; | |
break; | |
} | |
} | |
if ((Offset == 0) && | |
(Op0.getOperand(0).getValueType() == N->getValueType(0))) | |
return Op0.getOperand(0); | |
if ((Offset != -1) && | |
((Offset % N->getValueType(0).getVectorNumElements()) == | |
0)) // IDX must be multiple of output size. | |
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0), | |
Op0.getOperand(0), Op0.getOperand(1)); | |
} | |
if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) | |
return V; | |
if (SDValue V = reduceBuildVecConvertToConvertBuildVec(N)) | |
return V; | |
if (SDValue V = reduceBuildVecToShuffle(N)) | |
return V; | |
return SDValue(); | |
} | |
static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { | |
const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | |
EVT OpVT = N->getOperand(0).getValueType(); | |
// If the operands are legal vectors, leave them alone. | |
if (TLI.isTypeLegal(OpVT)) | |
return SDValue(); | |
SDLoc DL(N); | |
EVT VT = N->getValueType(0); | |
SmallVector<SDValue, 8> Ops; | |
EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); | |
SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); | |
// Keep track of what we encounter. | |
bool AnyInteger = false; | |
bool AnyFP = false; | |
for (const SDValue &Op : N->ops()) { | |
if (ISD::BITCAST == Op.getOpcode() && | |
!Op.getOperand(0).getValueType().isVector()) | |
Ops.push_back(Op.getOperand(0)); | |
else if (ISD::UNDEF == Op.getOpcode()) | |
Ops.push_back(ScalarUndef); | |
else | |
return SDValue(); | |
// Note whether we encounter an integer or floating point scalar. | |
// If it's neither, bail out, it could be something weird like x86mmx. | |
EVT LastOpVT = Ops.back().getValueType(); | |
if (LastOpVT.isFloatingPoint()) | |
AnyFP = true; | |
else if (LastOpVT.isInteger()) | |
AnyInteger = true; | |
else | |
return SDValue(); | |
} | |
// If any of the operands is a floating point scalar bitcast to a vector, | |
// use floating point types throughout, and bitcast everything. | |
// Replace UNDEFs by another scalar UNDEF node, of the final desired type. | |
if (AnyFP) { | |
SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); | |
ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); | |
if (AnyInteger) { | |
for (SDValue &Op : Ops) { | |
if (Op.getValueType() == SVT) | |
continue; | |
if (Op.isUndef()) | |
Op = ScalarUndef; | |
else | |
Op = DAG.getBitcast(SVT, Op); | |
} | |
} | |
} | |
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, | |
VT.getSizeInBits() / SVT.getSizeInBits()); | |
return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops)); | |
} | |
// Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR | |
// operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at | |
// most two distinct vectors the same size as the result, attempt to turn this | |
// into a legal shuffle. | |
static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { | |
EVT VT = N->getValueType(0); | |
EVT OpVT = N->getOperand(0).getValueType(); | |
int NumElts = VT.getVectorNumElements(); | |
int NumOpElts = OpVT.getVectorNumElements(); | |
SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); | |
SmallVector<int, 8> Mask; | |
for (SDValue Op : N->ops()) { | |
// Peek through any bitcast. | |
while (Op.getOpcode() == ISD::BITCAST) | |
Op = Op.getOperand(0); | |
// UNDEF nodes convert to UNDEF shuffle mask values. | |
if (Op.isUndef()) { | |
Mask.append((unsigned)NumOpElts, -1); | |
continue; | |
} | |
if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) | |
return SDValue(); | |
// What vector are we extracting the subvector from and at what index? | |
SDValue ExtVec = Op.getOperand(0); | |
// We want the EVT of the original extraction to correctly scale the | |
// extraction index. | |
EVT ExtVT = ExtVec.getValueType(); | |
// Peek through any bitcast. | |
while (ExtVec.getOpcode() == ISD::BITCAST) | |
ExtVec = ExtVec.getOperand(0); | |
// UNDEF nodes convert to UNDEF shuffle mask values. | |
if (ExtVec.isUndef()) { | |
Mask.append((unsigned)NumOpElts, -1); | |
continue; | |
} | |
if (!isa<ConstantSDNode>(Op.getOperand(1))) | |
return SDValue(); | |
int ExtIdx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | |
// Ensure that we are extracting a subvector from a vector the same | |
// size as the result. | |
if (ExtVT.getSizeInBits() != VT.getSizeInBits()) | |
return SDValue(); | |
// Scale the subvector index to account for any bitcast. | |
int NumExtElts = ExtVT.getVectorNumElements(); | |
if (0 == (NumExtElts % NumElts)) | |
ExtIdx /= (NumExtElts / NumElts); | |
else if (0 == (NumElts % NumExtElts)) | |
ExtIdx *= (NumElts / NumExtElts); | |
else | |
return SDValue(); | |
// At most we can reference 2 inputs in the final shuffle. | |
if (SV0.isUndef() || SV0 == ExtVec) { | |
SV0 = ExtVec; | |
for (int i = 0; i != NumOpElts; ++i) | |
Mask.push_back(i + ExtIdx); | |
} else if (SV1.isUndef() || SV1 == ExtVec) { | |
SV1 = ExtVec; | |
for (int i = 0; i != NumOpElts; ++i) | |
Mask.push_back(i + ExtIdx + NumElts); | |
} else { | |
return SDValue(); | |
} | |
} | |
if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(Mask, VT)) | |
return SDValue(); | |
return DAG.getVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), | |
DAG.getBitcast(VT, SV1), Mask); | |
} | |
SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { | |
// If we only have one input vector, we don't need to do any concatenation. | |
if (N->getNumOperands() == 1) | |
return N->getOperand(0); | |
// Check if all of the operands are undefs. | |
EVT VT = N->getValueType(0); | |
if (ISD::allOperandsUndef(N)) | |
return DAG.getUNDEF(VT); | |
// Optimize concat_vectors where all but the first of the vectors are undef. | |
if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) { | |
return Op.isUndef(); | |
})) { | |
SDValue In = N->getOperand(0); | |
assert(In.getValueType().isVector() && "Must concat vectors"); | |
// Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr). | |
if (In->getOpcode() == ISD::BITCAST && | |
!In->getOperand(0)->getValueType(0).isVector()) { | |
SDValue Scalar = In->getOperand(0); | |
// If the bitcast type isn't legal, it might be a trunc of a legal type; | |
// look through the trunc so we can still do the transform: | |
// concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) | |
if (Scalar->getOpcode() == ISD::TRUNCATE && | |
!TLI.isTypeLegal(Scalar.getValueType()) && | |
TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) | |
Scalar = Scalar->getOperand(0); | |
EVT SclTy = Scalar->getValueType(0); | |
if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) | |
return SDValue(); | |
unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits(); | |
if (VNTNumElms < 2) | |
return SDValue(); | |
EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms); | |
if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) | |
return SDValue(); | |
SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar); | |
return DAG.getBitcast(VT, Res); | |
} | |
} | |
// Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. | |
// We have already tested above for an UNDEF only concatenation. | |
// fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) | |
// -> (BUILD_VECTOR A, B, ..., C, D, ...) | |
auto IsBuildVectorOrUndef = [](const SDValue &Op) { | |
return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); | |
}; | |
if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) { | |
SmallVector<SDValue, 8> Opnds; | |
EVT SVT = VT.getScalarType(); | |
EVT MinVT = SVT; | |
if (!SVT.isFloatingPoint()) { | |
// If BUILD_VECTOR are from built from integer, they may have different | |
// operand types. Get the smallest type and truncate all operands to it. | |
bool FoundMinVT = false; | |
for (const SDValue &Op : N->ops()) | |
if (ISD::BUILD_VECTOR == Op.getOpcode()) { | |
EVT OpSVT = Op.getOperand(0)->getValueType(0); | |
MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; | |
FoundMinVT = true; | |
} | |
assert(FoundMinVT && "Concat vector type mismatch"); | |
} | |
for (const SDValue &Op : N->ops()) { | |
EVT OpVT = Op.getValueType(); | |
unsigned NumElts = OpVT.getVectorNumElements(); | |
if (ISD::UNDEF == Op.getOpcode()) | |
Opnds.append(NumElts, DAG.getUNDEF(MinVT)); | |
if (ISD::BUILD_VECTOR == Op.getOpcode()) { | |
if (SVT.isFloatingPoint()) { | |
assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); | |
Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); | |
} else { | |
for (unsigned i = 0; i != NumElts; ++i) | |
Opnds.push_back( | |
DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); | |
} | |
} | |
} | |
assert(VT.getVectorNumElements() == Opnds.size() && | |
"Concat vector type mismatch"); | |
return DAG.getBuildVector(VT, SDLoc(N), Opnds); | |
} | |
// Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. | |
if (SDValue V = combineConcatVectorOfScalars(N, DAG)) | |
return V; | |
// Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. | |
if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) | |
if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) | |
return V; | |
// Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR | |
// nodes often generate nop CONCAT_VECTOR nodes. | |
// Scan the CONCAT_VECTOR operands and look for a CONCAT operations that | |
// place the incoming vectors at the exact same location. | |
SDValue SingleSource = SDValue(); | |
unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements(); | |
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | |
SDValue Op = N->getOperand(i); | |
if (Op.isUndef()) | |
continue; | |
// Check if this is the identity extract: | |
if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) | |
return SDValue(); | |
// Find the single incoming vector for the extract_subvector. | |
if (SingleSource.getNode()) { | |
if (Op.getOperand(0) != SingleSource) | |
return SDValue(); | |
} else { | |
SingleSource = Op.getOperand(0); | |
// Check the source type is the same as the type of the result. | |
// If not, this concat may extend the vector, so we can not | |
// optimize it away. | |
if (SingleSource.getValueType() != N->getValueType(0)) | |
return SDValue(); | |
} | |
unsigned IdentityIndex = i * PartNumElem; | |
ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1)); | |
// The extract index must be constant. | |
if (!CS) | |
return SDValue(); | |
// Check that we are reading from the identity index. | |
if (CS->getZExtValue() != IdentityIndex) | |
return SDValue(); | |
} | |
if (SingleSource.getNode()) | |
return SingleSource; | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) { | |
EVT NVT = N->getValueType(0); | |
SDValue V = N->getOperand(0); | |
// Extract from UNDEF is UNDEF. | |
if (V.isUndef()) | |
return DAG.getUNDEF(NVT); | |
// Combine: | |
// (extract_subvec (concat V1, V2, ...), i) | |
// Into: | |
// Vi if possible | |
// Only operand 0 is checked as 'concat' assumes all inputs of the same | |
// type. | |
if (V->getOpcode() == ISD::CONCAT_VECTORS && | |
isa<ConstantSDNode>(N->getOperand(1)) && | |
V->getOperand(0).getValueType() == NVT) { | |
unsigned Idx = N->getConstantOperandVal(1); | |
unsigned NumElems = NVT.getVectorNumElements(); | |
assert((Idx % NumElems) == 0 && | |
"IDX in concat is not a multiple of the result vector length."); | |
return V->getOperand(Idx / NumElems); | |
} | |
// Skip bitcasting | |
if (V->getOpcode() == ISD::BITCAST) | |
V = V.getOperand(0); | |
if (V->getOpcode() == ISD::INSERT_SUBVECTOR) { | |
// Handle only simple case where vector being inserted and vector | |
// being extracted are of same size. | |
EVT SmallVT = V->getOperand(1).getValueType(); | |
if (!NVT.bitsEq(SmallVT)) | |
return SDValue(); | |
// Only handle cases where both indexes are constants. | |
ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1)); | |
ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2)); | |
if (InsIdx && ExtIdx) { | |
// Combine: | |
// (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) | |
// Into: | |
// indices are equal or bit offsets are equal => V1 | |
// otherwise => (extract_subvec V1, ExtIdx) | |
if (InsIdx->getZExtValue() * SmallVT.getScalarSizeInBits() == | |
ExtIdx->getZExtValue() * NVT.getScalarSizeInBits()) | |
return DAG.getBitcast(NVT, V->getOperand(1)); | |
return DAG.getNode( | |
ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, | |
DAG.getBitcast(N->getOperand(0).getValueType(), V->getOperand(0)), | |
N->getOperand(1)); | |
} | |
} | |
return SDValue(); | |
} | |
static SDValue simplifyShuffleOperandRecursively(SmallBitVector &UsedElements, | |
SDValue V, SelectionDAG &DAG) { | |
SDLoc DL(V); | |
EVT VT = V.getValueType(); | |
switch (V.getOpcode()) { | |
default: | |
return V; | |
case ISD::CONCAT_VECTORS: { | |
EVT OpVT = V->getOperand(0).getValueType(); | |
int OpSize = OpVT.getVectorNumElements(); | |
SmallBitVector OpUsedElements(OpSize, false); | |
bool FoundSimplification = false; | |
SmallVector<SDValue, 4> NewOps; | |
NewOps.reserve(V->getNumOperands()); | |
for (int i = 0, NumOps = V->getNumOperands(); i < NumOps; ++i) { | |
SDValue Op = V->getOperand(i); | |
bool OpUsed = false; | |
for (int j = 0; j < OpSize; ++j) | |
if (UsedElements[i * OpSize + j]) { | |
OpUsedElements[j] = true; | |
OpUsed = true; | |
} | |
NewOps.push_back( | |
OpUsed ? simplifyShuffleOperandRecursively(OpUsedElements, Op, DAG) | |
: DAG.getUNDEF(OpVT)); | |
FoundSimplification |= Op == NewOps.back(); | |
OpUsedElements.reset(); | |
} | |
if (FoundSimplification) | |
V = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, NewOps); | |
return V; | |
} | |
case ISD::INSERT_SUBVECTOR: { | |
SDValue BaseV = V->getOperand(0); | |
SDValue SubV = V->getOperand(1); | |
auto *IdxN = dyn_cast<ConstantSDNode>(V->getOperand(2)); | |
if (!IdxN) | |
return V; | |
int SubSize = SubV.getValueType().getVectorNumElements(); | |
int Idx = IdxN->getZExtValue(); | |
bool SubVectorUsed = false; | |
SmallBitVector SubUsedElements(SubSize, false); | |
for (int i = 0; i < SubSize; ++i) | |
if (UsedElements[i + Idx]) { | |
SubVectorUsed = true; | |
SubUsedElements[i] = true; | |
UsedElements[i + Idx] = false; | |
} | |
// Now recurse on both the base and sub vectors. | |
SDValue SimplifiedSubV = | |
SubVectorUsed | |
? simplifyShuffleOperandRecursively(SubUsedElements, SubV, DAG) | |
: DAG.getUNDEF(SubV.getValueType()); | |
SDValue SimplifiedBaseV = simplifyShuffleOperandRecursively(UsedElements, BaseV, DAG); | |
if (SimplifiedSubV != SubV || SimplifiedBaseV != BaseV) | |
V = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, | |
SimplifiedBaseV, SimplifiedSubV, V->getOperand(2)); | |
return V; | |
} | |
} | |
} | |
static SDValue simplifyShuffleOperands(ShuffleVectorSDNode *SVN, SDValue N0, | |
SDValue N1, SelectionDAG &DAG) { | |
EVT VT = SVN->getValueType(0); | |
int NumElts = VT.getVectorNumElements(); | |
SmallBitVector N0UsedElements(NumElts, false), N1UsedElements(NumElts, false); | |
for (int M : SVN->getMask()) | |
if (M >= 0 && M < NumElts) | |
N0UsedElements[M] = true; | |
else if (M >= NumElts) | |
N1UsedElements[M - NumElts] = true; | |
SDValue S0 = simplifyShuffleOperandRecursively(N0UsedElements, N0, DAG); | |
SDValue S1 = simplifyShuffleOperandRecursively(N1UsedElements, N1, DAG); | |
if (S0 == N0 && S1 == N1) | |
return SDValue(); | |
return DAG.getVectorShuffle(VT, SDLoc(SVN), S0, S1, SVN->getMask()); | |
} | |
// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, | |
// or turn a shuffle of a single concat into simpler shuffle then concat. | |
static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { | |
EVT VT = N->getValueType(0); | |
unsigned NumElts = VT.getVectorNumElements(); | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); | |
SmallVector<SDValue, 4> Ops; | |
EVT ConcatVT = N0.getOperand(0).getValueType(); | |
unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); | |
unsigned NumConcats = NumElts / NumElemsPerConcat; | |
// Special case: shuffle(concat(A,B)) can be more efficiently represented | |
// as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high | |
// half vector elements. | |
if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() && | |
std::all_of(SVN->getMask().begin() + NumElemsPerConcat, | |
SVN->getMask().end(), [](int i) { return i == -1; })) { | |
N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), N0.getOperand(1), | |
makeArrayRef(SVN->getMask().begin(), NumElemsPerConcat)); | |
N1 = DAG.getUNDEF(ConcatVT); | |
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); | |
} | |
// Look at every vector that's inserted. We're looking for exact | |
// subvector-sized copies from a concatenated vector | |
for (unsigned I = 0; I != NumConcats; ++I) { | |
// Make sure we're dealing with a copy. | |
unsigned Begin = I * NumElemsPerConcat; | |
bool AllUndef = true, NoUndef = true; | |
for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) { | |
if (SVN->getMaskElt(J) >= 0) | |
AllUndef = false; | |
else | |
NoUndef = false; | |
} | |
if (NoUndef) { | |
if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0) | |
return SDValue(); | |
for (unsigned J = 1; J != NumElemsPerConcat; ++J) | |
if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J)) | |
return SDValue(); | |
unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat; | |
if (FirstElt < N0.getNumOperands()) | |
Ops.push_back(N0.getOperand(FirstElt)); | |
else | |
Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands())); | |
} else if (AllUndef) { | |
Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType())); | |
} else { // Mixed with general masks and undefs, can't do optimization. | |
return SDValue(); | |
} | |
} | |
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); | |
} | |
// Attempt to combine a shuffle of 2 inputs of 'scalar sources' - | |
// BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. | |
// | |
// SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always | |
// a simplification in some sense, but it isn't appropriate in general: some | |
// BUILD_VECTORs are substantially cheaper than others. The general case | |
// of a BUILD_VECTOR requires inserting each element individually (or | |
// performing the equivalent in a temporary stack variable). A BUILD_VECTOR of | |
// all constants is a single constant pool load. A BUILD_VECTOR where each | |
// element is identical is a splat. A BUILD_VECTOR where most of the operands | |
// are undef lowers to a small number of element insertions. | |
// | |
// To deal with this, we currently use a bunch of mostly arbitrary heuristics. | |
// We don't fold shuffles where one side is a non-zero constant, and we don't | |
// fold shuffles if the resulting BUILD_VECTOR would have duplicate | |
// non-constant operands. This seems to work out reasonably well in practice. | |
static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN, | |
SelectionDAG &DAG, | |
const TargetLowering &TLI) { | |
EVT VT = SVN->getValueType(0); | |
unsigned NumElts = VT.getVectorNumElements(); | |
SDValue N0 = SVN->getOperand(0); | |
SDValue N1 = SVN->getOperand(1); | |
if (!N0->hasOneUse() || !N1->hasOneUse()) | |
return SDValue(); | |
// If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as | |
// discussed above. | |
if (!N1.isUndef()) { | |
bool N0AnyConst = isAnyConstantBuildVector(N0.getNode()); | |
bool N1AnyConst = isAnyConstantBuildVector(N1.getNode()); | |
if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode())) | |
return SDValue(); | |
if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode())) | |
return SDValue(); | |
} | |
SmallVector<SDValue, 8> Ops; | |
SmallSet<SDValue, 16> DuplicateOps; | |
for (int M : SVN->getMask()) { | |
SDValue Op = DAG.getUNDEF(VT.getScalarType()); | |
if (M >= 0) { | |
int Idx = M < (int)NumElts ? M : M - NumElts; | |
SDValue &S = (M < (int)NumElts ? N0 : N1); | |
if (S.getOpcode() == ISD::BUILD_VECTOR) { | |
Op = S.getOperand(Idx); | |
} else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) { | |
if (Idx == 0) | |
Op = S.getOperand(0); | |
} else { | |
// Operand can't be combined - bail out. | |
return SDValue(); | |
} | |
} | |
// Don't duplicate a non-constant BUILD_VECTOR operand; semantically, this is | |
// fine, but it's likely to generate low-quality code if the target can't | |
// reconstruct an appropriate shuffle. | |
if (!Op.isUndef() && !isa<ConstantSDNode>(Op) && !isa<ConstantFPSDNode>(Op)) | |
if (!DuplicateOps.insert(Op).second) | |
return SDValue(); | |
Ops.push_back(Op); | |
} | |
// BUILD_VECTOR requires all inputs to be of the same type, find the | |
// maximum type and extend them all. | |
EVT SVT = VT.getScalarType(); | |
if (SVT.isInteger()) | |
for (SDValue &Op : Ops) | |
SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); | |
if (SVT != VT.getScalarType()) | |
for (SDValue &Op : Ops) | |
Op = TLI.isZExtFree(Op.getValueType(), SVT) | |
? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT) | |
: DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT); | |
return DAG.getBuildVector(VT, SDLoc(SVN), Ops); | |
} | |
// Match shuffles that can be converted to any_vector_extend_in_reg. | |
// This is often generated during legalization. | |
// e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src)) | |
// TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case. | |
SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN, | |
SelectionDAG &DAG, | |
const TargetLowering &TLI, | |
bool LegalOperations) { | |
EVT VT = SVN->getValueType(0); | |
bool IsBigEndian = DAG.getDataLayout().isBigEndian(); | |
// TODO Add support for big-endian when we have a test case. | |
if (!VT.isInteger() || IsBigEndian) | |
return SDValue(); | |
unsigned NumElts = VT.getVectorNumElements(); | |
unsigned EltSizeInBits = VT.getScalarSizeInBits(); | |
ArrayRef<int> Mask = SVN->getMask(); | |
SDValue N0 = SVN->getOperand(0); | |
// shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32)) | |
auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) { | |
for (unsigned i = 0; i != NumElts; ++i) { | |
if (Mask[i] < 0) | |
continue; | |
if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale)) | |
continue; | |
return false; | |
} | |
return true; | |
}; | |
// Attempt to match a '*_extend_vector_inreg' shuffle, we just search for | |
// power-of-2 extensions as they are the most likely. | |
for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) { | |
if (!isAnyExtend(Scale)) | |
continue; | |
EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale); | |
EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale); | |
if (!LegalOperations || | |
TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT)) | |
return DAG.getBitcast(VT, | |
DAG.getAnyExtendVectorInReg(N0, SDLoc(SVN), OutVT)); | |
} | |
return SDValue(); | |
} | |
// Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of | |
// each source element of a large type into the lowest elements of a smaller | |
// destination type. This is often generated during legalization. | |
// If the source node itself was a '*_extend_vector_inreg' node then we should | |
// then be able to remove it. | |
SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN, SelectionDAG &DAG) { | |
EVT VT = SVN->getValueType(0); | |
bool IsBigEndian = DAG.getDataLayout().isBigEndian(); | |
// TODO Add support for big-endian when we have a test case. | |
if (!VT.isInteger() || IsBigEndian) | |
return SDValue(); | |
SDValue N0 = SVN->getOperand(0); | |
while (N0.getOpcode() == ISD::BITCAST) | |
N0 = N0.getOperand(0); | |
unsigned Opcode = N0.getOpcode(); | |
if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG && | |
Opcode != ISD::SIGN_EXTEND_VECTOR_INREG && | |
Opcode != ISD::ZERO_EXTEND_VECTOR_INREG) | |
return SDValue(); | |
SDValue N00 = N0.getOperand(0); | |
ArrayRef<int> Mask = SVN->getMask(); | |
unsigned NumElts = VT.getVectorNumElements(); | |
unsigned EltSizeInBits = VT.getScalarSizeInBits(); | |
unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits(); | |
// (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1> | |
// (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1> | |
// (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1> | |
auto isTruncate = [&Mask, &NumElts](unsigned Scale) { | |
for (unsigned i = 0; i != NumElts; ++i) { | |
if (Mask[i] < 0) | |
continue; | |
if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale)) | |
continue; | |
return false; | |
} | |
return true; | |
}; | |
// At the moment we just handle the case where we've truncated back to the | |
// same size as before the extension. | |
// TODO: handle more extension/truncation cases as cases arise. | |
if (EltSizeInBits != ExtSrcSizeInBits) | |
return SDValue(); | |
// Attempt to match a 'truncate_vector_inreg' shuffle, we just search for | |
// power-of-2 truncations as they are the most likely. | |
for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) | |
if (isTruncate(Scale)) | |
return DAG.getBitcast(VT, N00); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { | |
EVT VT = N->getValueType(0); | |
unsigned NumElts = VT.getVectorNumElements(); | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); | |
// Canonicalize shuffle undef, undef -> undef | |
if (N0.isUndef() && N1.isUndef()) | |
return DAG.getUNDEF(VT); | |
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); | |
// Canonicalize shuffle v, v -> v, undef | |
if (N0 == N1) { | |
SmallVector<int, 8> NewMask; | |
for (unsigned i = 0; i != NumElts; ++i) { | |
int Idx = SVN->getMaskElt(i); | |
if (Idx >= (int)NumElts) Idx -= NumElts; | |
NewMask.push_back(Idx); | |
} | |
return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask); | |
} | |
// Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. | |
if (N0.isUndef()) | |
return DAG.getCommutedVectorShuffle(*SVN); | |
// Remove references to rhs if it is undef | |
if (N1.isUndef()) { | |
bool Changed = false; | |
SmallVector<int, 8> NewMask; | |
for (unsigned i = 0; i != NumElts; ++i) { | |
int Idx = SVN->getMaskElt(i); | |
if (Idx >= (int)NumElts) { | |
Idx = -1; | |
Changed = true; | |
} | |
NewMask.push_back(Idx); | |
} | |
if (Changed) | |
return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask); | |
} | |
// If it is a splat, check if the argument vector is another splat or a | |
// build_vector. | |
if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { | |
SDNode *V = N0.getNode(); | |
// If this is a bit convert that changes the element type of the vector but | |
// not the number of vector elements, look through it. Be careful not to | |
// look though conversions that change things like v4f32 to v2f64. | |
if (V->getOpcode() == ISD::BITCAST) { | |
SDValue ConvInput = V->getOperand(0); | |
if (ConvInput.getValueType().isVector() && | |
ConvInput.getValueType().getVectorNumElements() == NumElts) | |
V = ConvInput.getNode(); | |
} | |
if (V->getOpcode() == ISD::BUILD_VECTOR) { | |
assert(V->getNumOperands() == NumElts && | |
"BUILD_VECTOR has wrong number of operands"); | |
SDValue Base; | |
bool AllSame = true; | |
for (unsigned i = 0; i != NumElts; ++i) { | |
if (!V->getOperand(i).isUndef()) { | |
Base = V->getOperand(i); | |
break; | |
} | |
} | |
// Splat of <u, u, u, u>, return <u, u, u, u> | |
if (!Base.getNode()) | |
return N0; | |
for (unsigned i = 0; i != NumElts; ++i) { | |
if (V->getOperand(i) != Base) { | |
AllSame = false; | |
break; | |
} | |
} | |
// Splat of <x, x, x, x>, return <x, x, x, x> | |
if (AllSame) | |
return N0; | |
// Canonicalize any other splat as a build_vector. | |
const SDValue &Splatted = V->getOperand(SVN->getSplatIndex()); | |
SmallVector<SDValue, 8> Ops(NumElts, Splatted); | |
SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops); | |
// We may have jumped through bitcasts, so the type of the | |
// BUILD_VECTOR may not match the type of the shuffle. | |
if (V->getValueType(0) != VT) | |
NewBV = DAG.getBitcast(VT, NewBV); | |
return NewBV; | |
} | |
} | |
// There are various patterns used to build up a vector from smaller vectors, | |
// subvectors, or elements. Scan chains of these and replace unused insertions | |
// or components with undef. | |
if (SDValue S = simplifyShuffleOperands(SVN, N0, N1, DAG)) | |
return S; | |
// Match shuffles that can be converted to any_vector_extend_in_reg. | |
if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations)) | |
return V; | |
// Combine "truncate_vector_in_reg" style shuffles. | |
if (SDValue V = combineTruncationShuffle(SVN, DAG)) | |
return V; | |
if (N0.getOpcode() == ISD::CONCAT_VECTORS && | |
Level < AfterLegalizeVectorOps && | |
(N1.isUndef() || | |
(N1.getOpcode() == ISD::CONCAT_VECTORS && | |
N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { | |
if (SDValue V = partitionShuffleOfConcats(N, DAG)) | |
return V; | |
} | |
// Attempt to combine a shuffle of 2 inputs of 'scalar sources' - | |
// BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. | |
if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) | |
if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI)) | |
return Res; | |
// If this shuffle only has a single input that is a bitcasted shuffle, | |
// attempt to merge the 2 shuffles and suitably bitcast the inputs/output | |
// back to their original types. | |
if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && | |
N1.isUndef() && Level < AfterLegalizeVectorOps && | |
TLI.isTypeLegal(VT)) { | |
// Peek through the bitcast only if there is one user. | |
SDValue BC0 = N0; | |
while (BC0.getOpcode() == ISD::BITCAST) { | |
if (!BC0.hasOneUse()) | |
break; | |
BC0 = BC0.getOperand(0); | |
} | |
auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) { | |
if (Scale == 1) | |
return SmallVector<int, 8>(Mask.begin(), Mask.end()); | |
SmallVector<int, 8> NewMask; | |
for (int M : Mask) | |
for (int s = 0; s != Scale; ++s) | |
NewMask.push_back(M < 0 ? -1 : Scale * M + s); | |
return NewMask; | |
}; | |
if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { | |
EVT SVT = VT.getScalarType(); | |
EVT InnerVT = BC0->getValueType(0); | |
EVT InnerSVT = InnerVT.getScalarType(); | |
// Determine which shuffle works with the smaller scalar type. | |
EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; | |
EVT ScaleSVT = ScaleVT.getScalarType(); | |
if (TLI.isTypeLegal(ScaleVT) && | |
0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && | |
0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { | |
int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); | |
int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); | |
// Scale the shuffle masks to the smaller scalar type. | |
ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); | |
SmallVector<int, 8> InnerMask = | |
ScaleShuffleMask(InnerSVN->getMask(), InnerScale); | |
SmallVector<int, 8> OuterMask = | |
ScaleShuffleMask(SVN->getMask(), OuterScale); | |
// Merge the shuffle masks. | |
SmallVector<int, 8> NewMask; | |
for (int M : OuterMask) | |
NewMask.push_back(M < 0 ? -1 : InnerMask[M]); | |
// Test for shuffle mask legality over both commutations. | |
SDValue SV0 = BC0->getOperand(0); | |
SDValue SV1 = BC0->getOperand(1); | |
bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); | |
if (!LegalMask) { | |
std::swap(SV0, SV1); | |
ShuffleVectorSDNode::commuteMask(NewMask); | |
LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); | |
} | |
if (LegalMask) { | |
SV0 = DAG.getBitcast(ScaleVT, SV0); | |
SV1 = DAG.getBitcast(ScaleVT, SV1); | |
return DAG.getBitcast( | |
VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); | |
} | |
} | |
} | |
} | |
// Canonicalize shuffles according to rules: | |
// shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) | |
// shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) | |
// shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) | |
if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && | |
N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG && | |
TLI.isTypeLegal(VT)) { | |
// The incoming shuffle must be of the same type as the result of the | |
// current shuffle. | |
assert(N1->getOperand(0).getValueType() == VT && | |
"Shuffle types don't match"); | |
SDValue SV0 = N1->getOperand(0); | |
SDValue SV1 = N1->getOperand(1); | |
bool HasSameOp0 = N0 == SV0; | |
bool IsSV1Undef = SV1.isUndef(); | |
if (HasSameOp0 || IsSV1Undef || N0 == SV1) | |
// Commute the operands of this shuffle so that next rule | |
// will trigger. | |
return DAG.getCommutedVectorShuffle(*SVN); | |
} | |
// Try to fold according to rules: | |
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) | |
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) | |
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) | |
// Don't try to fold shuffles with illegal type. | |
// Only fold if this shuffle is the only user of the other shuffle. | |
if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) && | |
Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { | |
ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0); | |
// Don't try to fold splats; they're likely to simplify somehow, or they | |
// might be free. | |
if (OtherSV->isSplat()) | |
return SDValue(); | |
// The incoming shuffle must be of the same type as the result of the | |
// current shuffle. | |
assert(OtherSV->getOperand(0).getValueType() == VT && | |
"Shuffle types don't match"); | |
SDValue SV0, SV1; | |
SmallVector<int, 4> Mask; | |
// Compute the combined shuffle mask for a shuffle with SV0 as the first | |
// operand, and SV1 as the second operand. | |
for (unsigned i = 0; i != NumElts; ++i) { | |
int Idx = SVN->getMaskElt(i); | |
if (Idx < 0) { | |
// Propagate Undef. | |
Mask.push_back(Idx); | |
continue; | |
} | |
SDValue CurrentVec; | |
if (Idx < (int)NumElts) { | |
// This shuffle index refers to the inner shuffle N0. Lookup the inner | |
// shuffle mask to identify which vector is actually referenced. | |
Idx = OtherSV->getMaskElt(Idx); | |
if (Idx < 0) { | |
// Propagate Undef. | |
Mask.push_back(Idx); | |
continue; | |
} | |
CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0) | |
: OtherSV->getOperand(1); | |
} else { | |
// This shuffle index references an element within N1. | |
CurrentVec = N1; | |
} | |
// Simple case where 'CurrentVec' is UNDEF. | |
if (CurrentVec.isUndef()) { | |
Mask.push_back(-1); | |
continue; | |
} | |
// Canonicalize the shuffle index. We don't know yet if CurrentVec | |
// will be the first or second operand of the combined shuffle. | |
Idx = Idx % NumElts; | |
if (!SV0.getNode() || SV0 == CurrentVec) { | |
// Ok. CurrentVec is the left hand side. | |
// Update the mask accordingly. | |
SV0 = CurrentVec; | |
Mask.push_back(Idx); | |
continue; | |
} | |
// Bail out if we cannot convert the shuffle pair into a single shuffle. | |
if (SV1.getNode() && SV1 != CurrentVec) | |
return SDValue(); | |
// Ok. CurrentVec is the right hand side. | |
// Update the mask accordingly. | |
SV1 = CurrentVec; | |
Mask.push_back(Idx + NumElts); | |
} | |
// Check if all indices in Mask are Undef. In case, propagate Undef. | |
bool isUndefMask = true; | |
for (unsigned i = 0; i != NumElts && isUndefMask; ++i) | |
isUndefMask &= Mask[i] < 0; | |
if (isUndefMask) | |
return DAG.getUNDEF(VT); | |
if (!SV0.getNode()) | |
SV0 = DAG.getUNDEF(VT); | |
if (!SV1.getNode()) | |
SV1 = DAG.getUNDEF(VT); | |
// Avoid introducing shuffles with illegal mask. | |
if (!TLI.isShuffleMaskLegal(Mask, VT)) { | |
ShuffleVectorSDNode::commuteMask(Mask); | |
if (!TLI.isShuffleMaskLegal(Mask, VT)) | |
return SDValue(); | |
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) | |
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) | |
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) | |
std::swap(SV0, SV1); | |
} | |
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) | |
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) | |
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) | |
return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, Mask); | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { | |
SDValue InVal = N->getOperand(0); | |
EVT VT = N->getValueType(0); | |
// Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern | |
// with a VECTOR_SHUFFLE. | |
if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { | |
SDValue InVec = InVal->getOperand(0); | |
SDValue EltNo = InVal->getOperand(1); | |
// FIXME: We could support implicit truncation if the shuffle can be | |
// scaled to a smaller vector scalar type. | |
ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo); | |
if (C0 && VT == InVec.getValueType() && | |
VT.getScalarType() == InVal.getValueType()) { | |
SmallVector<int, 8> NewMask(VT.getVectorNumElements(), -1); | |
int Elt = C0->getZExtValue(); | |
NewMask[0] = Elt; | |
if (TLI.isShuffleMaskLegal(NewMask, VT)) | |
return DAG.getVectorShuffle(VT, SDLoc(N), InVec, DAG.getUNDEF(VT), | |
NewMask); | |
} | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { | |
EVT VT = N->getValueType(0); | |
SDValue N0 = N->getOperand(0); | |
SDValue N1 = N->getOperand(1); | |
SDValue N2 = N->getOperand(2); | |
// If inserting an UNDEF, just return the original vector. | |
if (N1.isUndef()) | |
return N0; | |
// If this is an insert of an extracted vector into an undef vector, we can | |
// just use the input to the extract. | |
if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && | |
N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT) | |
return N1.getOperand(0); | |
// Combine INSERT_SUBVECTORs where we are inserting to the same index. | |
// INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx ) | |
// --> INSERT_SUBVECTOR( Vec, SubNew, Idx ) | |
if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && | |
N0.getOperand(1).getValueType() == N1.getValueType() && | |
N0.getOperand(2) == N2) | |
return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0), | |
N1, N2); | |
if (!isa<ConstantSDNode>(N2)) | |
return SDValue(); | |
unsigned InsIdx = cast<ConstantSDNode>(N2)->getZExtValue(); | |
// Canonicalize insert_subvector dag nodes. | |
// Example: | |
// (insert_subvector (insert_subvector A, Idx0), Idx1) | |
// -> (insert_subvector (insert_subvector A, Idx1), Idx0) | |
if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() && | |
N1.getValueType() == N0.getOperand(1).getValueType() && | |
isa<ConstantSDNode>(N0.getOperand(2))) { | |
unsigned OtherIdx = cast<ConstantSDNode>(N0.getOperand(2))->getZExtValue(); | |
if (InsIdx < OtherIdx) { | |
// Swap nodes. | |
SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, | |
N0.getOperand(0), N1, N2); | |
AddToWorklist(NewOp.getNode()); | |
return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()), | |
VT, NewOp, N0.getOperand(1), N0.getOperand(2)); | |
} | |
} | |
// If the input vector is a concatenation, and the insert replaces | |
// one of the pieces, we can optimize into a single concat_vectors. | |
if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() && | |
N0.getOperand(0).getValueType() == N1.getValueType()) { | |
unsigned Factor = N1.getValueType().getVectorNumElements(); | |
SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end()); | |
Ops[cast<ConstantSDNode>(N2)->getZExtValue() / Factor] = N1; | |
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
// fold (fp_to_fp16 (fp16_to_fp op)) -> op | |
if (N0->getOpcode() == ISD::FP16_TO_FP) | |
return N0->getOperand(0); | |
return SDValue(); | |
} | |
SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { | |
SDValue N0 = N->getOperand(0); | |
// fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) | |
if (N0->getOpcode() == ISD::AND) { | |
ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); | |
if (AndConst && AndConst->getAPIntValue() == 0xffff) { | |
return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), | |
N0.getOperand(0)); | |
} | |
} | |
return SDValue(); | |
} | |
/// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle | |
/// with the destination vector and a zero vector. | |
/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> | |
/// vector_shuffle V, Zero, <0, 4, 2, 4> | |
SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { | |
EVT VT = N->getValueType(0); | |
SDValue LHS = N->getOperand(0); | |
SDValue RHS = N->getOperand(1); | |
SDLoc DL(N); | |
// Make sure we're not running after operation legalization where it | |
// may have custom lowered the vector shuffles. | |
if (LegalOperations) | |
return SDValue(); | |
if (N->getOpcode() != ISD::AND) | |
return SDValue(); | |
if (RHS.getOpcode() == ISD::BITCAST) | |
RHS = RHS.getOperand(0); | |
if (RHS.getOpcode() != ISD::BUILD_VECTOR) | |
return SDValue(); | |
EVT RVT = RHS.getValueType(); | |
unsigned NumElts = RHS.getNumOperands(); | |
// Attempt to create a valid clear mask, splitting the mask into | |
// sub elements and checking to see if each is | |
// all zeros or all ones - suitable for shuffle masking. | |
auto BuildClearMask = [&](int Split) { | |
int NumSubElts = NumElts * Split; | |
int NumSubBits = RVT.getScalarSizeInBits() / Split; | |
SmallVector<int, 8> Indices; | |
for (int i = 0; i != NumSubElts; ++i) { | |
int EltIdx = i / Split; | |
int SubIdx = i % Split; | |
SDValue Elt = RHS.getOperand(EltIdx); | |
if (Elt.isUndef()) { | |
Indices.push_back(-1); | |
continue; | |
} | |
APInt Bits; | |
if (isa<ConstantSDNode>(Elt)) | |
Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); | |
else if (isa<ConstantFPSDNode>(Elt)) | |
Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); | |
else | |
return SDValue(); | |
// Extract the sub element from the constant bit mask. | |
if (DAG.getDataLayout().isBigEndian()) { | |
Bits.lshrInPlace((Split - SubIdx - 1) * NumSubBits); | |
} else { | |
Bits.lshrInPlace(SubIdx * NumSubBits); | |
} | |
if (Split > 1) | |
Bits = Bits.trunc(NumSubBits); | |
if (Bits.isAllOnesValue()) | |
Indices.push_back(i); | |
else if (Bits == 0) | |
Indices.push_back(i + NumSubElts); | |
else | |
return SDValue(); | |
} | |
// Let's see if the target supports this vector_shuffle. | |
EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); | |
EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); | |
if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) | |
return SDValue(); | |
SDValue Zero = DAG.getConstant(0, DL, ClearVT); | |
return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL, | |
DAG.getBitcast(ClearVT, LHS), | |
Zero, Indices)); | |
}; | |
// Determine maximum split level (byte level masking). | |
int MaxSplit = 1; | |
if (RVT.getScalarSizeInBits() % 8 == 0) | |
MaxSplit = RVT.getScalarSizeInBits() / 8; | |
for (int Split = 1; Split <= MaxSplit; ++Split) | |
if (RVT.getScalarSizeInBits() % Split == 0) | |
if (SDValue S = BuildClearMask(Split)) | |
return S; | |
return SDValue(); | |
} | |
/// Visit a binary vector operation, like ADD. | |
SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { | |
assert(N->getValueType(0).isVector() && | |
"SimplifyVBinOp only works on vectors!"); | |
SDValue LHS = N->getOperand(0); | |
SDValue RHS = N->getOperand(1); | |
SDValue Ops[] = {LHS, RHS}; | |
// See if we can constant fold the vector operation. | |
if (SDValue Fold = DAG.FoldConstantVectorArithmetic( | |
N->getOpcode(), SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags())) | |
return Fold; | |
// Try to convert a constant mask AND into a shuffle clear mask. | |
if (SDValue Shuffle = XformToShuffleWithZero(N)) | |
return Shuffle; | |
// Type legalization might introduce new shuffles in the DAG. | |
// Fold (VBinOp (shuffle (A, Undef, Mask)), (shuffle (B, Undef, Mask))) | |
// -> (shuffle (VBinOp (A, B)), Undef, Mask). | |
if (LegalTypes && isa<ShuffleVectorSDNode>(LHS) && | |
isa<ShuffleVectorSDNode>(RHS) && LHS.hasOneUse() && RHS.hasOneUse() && | |
LHS.getOperand(1).isUndef() && | |
RHS.getOperand(1).isUndef()) { | |
ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(LHS); | |
ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(RHS); | |
if (SVN0->getMask().equals(SVN1->getMask())) { | |
EVT VT = N->getValueType(0); | |
SDValue UndefVector = LHS.getOperand(1); | |
SDValue NewBinOp = DAG.getNode(N->getOpcode(), SDLoc(N), VT, | |
LHS.getOperand(0), RHS.getOperand(0), | |
N->getFlags()); | |
AddUsersToWorklist(N); | |
return DAG.getVectorShuffle(VT, SDLoc(N), NewBinOp, UndefVector, | |
SVN0->getMask()); | |
} | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, | |
SDValue N2) { | |
assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); | |
SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, | |
cast<CondCodeSDNode>(N0.getOperand(2))->get()); | |
// If we got a simplified select_cc node back from SimplifySelectCC, then | |
// break it down into a new SETCC node, and a new SELECT node, and then return | |
// the SELECT node, since we were called with a SELECT node. | |
if (SCC.getNode()) { | |
// Check to see if we got a select_cc back (to turn into setcc/select). | |
// Otherwise, just return whatever node we got back, like fabs. | |
if (SCC.getOpcode() == ISD::SELECT_CC) { | |
SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), | |
N0.getValueType(), | |
SCC.getOperand(0), SCC.getOperand(1), | |
SCC.getOperand(4)); | |
AddToWorklist(SETCC.getNode()); | |
return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, | |
SCC.getOperand(2), SCC.getOperand(3)); | |
} | |
return SCC; | |
} | |
return SDValue(); | |
} | |
/// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values | |
/// being selected between, see if we can simplify the select. Callers of this | |
/// should assume that TheSelect is deleted if this returns true. As such, they | |
/// should return the appropriate thing (e.g. the node) back to the top-level of | |
/// the DAG combiner loop to avoid it being looked at. | |
bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, | |
SDValue RHS) { | |
// fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) | |
// The select + setcc is redundant, because fsqrt returns NaN for X < 0. | |
if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { | |
if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { | |
// We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) | |
SDValue Sqrt = RHS; | |
ISD::CondCode CC; | |
SDValue CmpLHS; | |
const ConstantFPSDNode *Zero = nullptr; | |
if (TheSelect->getOpcode() == ISD::SELECT_CC) { | |
CC = dyn_cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); | |
CmpLHS = TheSelect->getOperand(0); | |
Zero = isConstOrConstSplatFP(TheSelect->getOperand(1)); | |
} else { | |
// SELECT or VSELECT | |
SDValue Cmp = TheSelect->getOperand(0); | |
if (Cmp.getOpcode() == ISD::SETCC) { | |
CC = dyn_cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); | |
CmpLHS = Cmp.getOperand(0); | |
Zero = isConstOrConstSplatFP(Cmp.getOperand(1)); | |
} | |
} | |
if (Zero && Zero->isZero() && | |
Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || | |
CC == ISD::SETULT || CC == ISD::SETLT)) { | |
// We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) | |
CombineTo(TheSelect, Sqrt); | |
return true; | |
} | |
} | |
} | |
// Cannot simplify select with vector condition | |
if (TheSelect->getOperand(0).getValueType().isVector()) return false; | |
// If this is a select from two identical things, try to pull the operation | |
// through the select. | |
if (LHS.getOpcode() != RHS.getOpcode() || | |
!LHS.hasOneUse() || !RHS.hasOneUse()) | |
return false; | |
// If this is a load and the token chain is identical, replace the select | |
// of two loads with a load through a select of the address to load from. | |
// This triggers in things like "select bool X, 10.0, 123.0" after the FP | |
// constants have been dropped into the constant pool. | |
if (LHS.getOpcode() == ISD::LOAD) { | |
LoadSDNode *LLD = cast<LoadSDNode>(LHS); | |
LoadSDNode *RLD = cast<LoadSDNode>(RHS); | |
// Token chains must be identical. | |
if (LHS.getOperand(0) != RHS.getOperand(0) || | |
// Do not let this transformation reduce the number of volatile loads. | |
LLD->isVolatile() || RLD->isVolatile() || | |
// FIXME: If either is a pre/post inc/dec load, | |
// we'd need to split out the address adjustment. | |
LLD->isIndexed() || RLD->isIndexed() || | |
// If this is an EXTLOAD, the VT's must match. | |
LLD->getMemoryVT() != RLD->getMemoryVT() || | |
// If this is an EXTLOAD, the kind of extension must match. | |
(LLD->getExtensionType() != RLD->getExtensionType() && | |
// The only exception is if one of the extensions is anyext. | |
LLD->getExtensionType() != ISD::EXTLOAD && | |
RLD->getExtensionType() != ISD::EXTLOAD) || | |
// FIXME: this discards src value information. This is | |
// over-conservative. It would be beneficial to be able to remember | |
// both potential memory locations. Since we are discarding | |
// src value info, don't do the transformation if the memory | |
// locations are not in the default address space. | |
LLD->getPointerInfo().getAddrSpace() != 0 || | |
RLD->getPointerInfo().getAddrSpace() != 0 || | |
!TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), | |
LLD->getBasePtr().getValueType())) | |
return false; | |
// Check that the select condition doesn't reach either load. If so, | |
// folding this will induce a cycle into the DAG. If not, this is safe to | |
// xform, so create a select of the addresses. | |
SDValue Addr; | |
if (TheSelect->getOpcode() == ISD::SELECT) { | |
SDNode *CondNode = TheSelect->getOperand(0).getNode(); | |
if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) || | |
(RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode))) | |
return false; | |
// The loads must not depend on one another. | |
if (LLD->isPredecessorOf(RLD) || | |
RLD->isPredecessorOf(LLD)) | |
return false; | |
Addr = DAG.getSelect(SDLoc(TheSelect), | |
LLD->getBasePtr().getValueType(), | |
TheSelect->getOperand(0), LLD->getBasePtr(), | |
RLD->getBasePtr()); | |
} else { // Otherwise SELECT_CC | |
SDNode *CondLHS = TheSelect->getOperand(0).getNode(); | |
SDNode *CondRHS = TheSelect->getOperand(1).getNode(); | |
if ((LLD->hasAnyUseOfValue(1) && | |
(LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) || | |
(RLD->hasAnyUseOfValue(1) && | |
(RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS)))) | |
return false; | |
Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), | |
LLD->getBasePtr().getValueType(), | |
TheSelect->getOperand(0), | |
TheSelect->getOperand(1), | |
LLD->getBasePtr(), RLD->getBasePtr(), | |
TheSelect->getOperand(4)); | |
} | |
SDValue Load; | |
// It is safe to replace the two loads if they have different alignments, | |
// but the new load must be the minimum (most restrictive) alignment of the | |
// inputs. | |
unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment()); | |
MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags(); | |
if (!RLD->isInvariant()) | |
MMOFlags &= ~MachineMemOperand::MOInvariant; | |
if (!RLD->isDereferenceable()) | |
MMOFlags &= ~MachineMemOperand::MODereferenceable; | |
if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { | |
// FIXME: Discards pointer and AA info. | |
Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect), | |
LLD->getChain(), Addr, MachinePointerInfo(), Alignment, | |
MMOFlags); | |
} else { | |
// FIXME: Discards pointer and AA info. | |
Load = DAG.getExtLoad( | |
LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType() | |
: LLD->getExtensionType(), | |
SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr, | |
MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags); | |
} | |
// Users of the select now use the result of the load. | |
CombineTo(TheSelect, Load); | |
// Users of the old loads now use the new load's chain. We know the | |
// old-load value is dead now. | |
CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); | |
CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); | |
return true; | |
} | |
return false; | |
} | |
/// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and | |
/// bitwise 'and'. | |
SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, | |
SDValue N1, SDValue N2, SDValue N3, | |
ISD::CondCode CC) { | |
// If this is a select where the false operand is zero and the compare is a | |
// check of the sign bit, see if we can perform the "gzip trick": | |
// select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A | |
// select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A | |
EVT XType = N0.getValueType(); | |
EVT AType = N2.getValueType(); | |
if (!isNullConstant(N3) || !XType.bitsGE(AType)) | |
return SDValue(); | |
// If the comparison is testing for a positive value, we have to invert | |
// the sign bit mask, so only do that transform if the target has a bitwise | |
// 'and not' instruction (the invert is free). | |
if (CC == ISD::SETGT && TLI.hasAndNot(N2)) { | |
// (X > -1) ? A : 0 | |
// (X > 0) ? X : 0 <-- This is canonical signed max. | |
if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2))) | |
return SDValue(); | |
} else if (CC == ISD::SETLT) { | |
// (X < 0) ? A : 0 | |
// (X < 1) ? X : 0 <-- This is un-canonicalized signed min. | |
if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2))) | |
return SDValue(); | |
} else { | |
return SDValue(); | |
} | |
// and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit | |
// constant. | |
EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); | |
auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); | |
if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { | |
unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1; | |
SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); | |
SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt); | |
AddToWorklist(Shift.getNode()); | |
if (XType.bitsGT(AType)) { | |
Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); | |
AddToWorklist(Shift.getNode()); | |
} | |
if (CC == ISD::SETGT) | |
Shift = DAG.getNOT(DL, Shift, AType); | |
return DAG.getNode(ISD::AND, DL, AType, Shift, N2); | |
} | |
SDValue ShiftAmt = DAG.getConstant(XType.getSizeInBits() - 1, DL, ShiftAmtTy); | |
SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt); | |
AddToWorklist(Shift.getNode()); | |
if (XType.bitsGT(AType)) { | |
Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); | |
AddToWorklist(Shift.getNode()); | |
} | |
if (CC == ISD::SETGT) | |
Shift = DAG.getNOT(DL, Shift, AType); | |
return DAG.getNode(ISD::AND, DL, AType, Shift, N2); | |
} | |
/// Simplify an expression of the form (N0 cond N1) ? N2 : N3 | |
/// where 'cond' is the comparison specified by CC. | |
SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, | |
SDValue N2, SDValue N3, ISD::CondCode CC, | |
bool NotExtCompare) { | |
// (x ? y : y) -> y. | |
if (N2 == N3) return N2; | |
EVT VT = N2.getValueType(); | |
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); | |
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); | |
// Determine if the condition we're dealing with is constant | |
SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), | |
N0, N1, CC, DL, false); | |
if (SCC.getNode()) AddToWorklist(SCC.getNode()); | |
if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) { | |
// fold select_cc true, x, y -> x | |
// fold select_cc false, x, y -> y | |
return !SCCC->isNullValue() ? N2 : N3; | |
} | |
// Check to see if we can simplify the select into an fabs node | |
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) { | |
// Allow either -0.0 or 0.0 | |
if (CFP->isZero()) { | |
// select (setg[te] X, +/-0.0), X, fneg(X) -> fabs | |
if ((CC == ISD::SETGE || CC == ISD::SETGT) && | |
N0 == N2 && N3.getOpcode() == ISD::FNEG && | |
N2 == N3.getOperand(0)) | |
return DAG.getNode(ISD::FABS, DL, VT, N0); | |
// select (setl[te] X, +/-0.0), fneg(X), X -> fabs | |
if ((CC == ISD::SETLT || CC == ISD::SETLE) && | |
N0 == N3 && N2.getOpcode() == ISD::FNEG && | |
N2.getOperand(0) == N3) | |
return DAG.getNode(ISD::FABS, DL, VT, N3); | |
} | |
} | |
// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" | |
// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 | |
// in it. This is a win when the constant is not otherwise available because | |
// it replaces two constant pool loads with one. We only do this if the FP | |
// type is known to be legal, because if it isn't, then we are before legalize | |
// types an we want the other legalization to happen first (e.g. to avoid | |
// messing with soft float) and if the ConstantFP is not legal, because if | |
// it is legal, we may not need to store the FP constant in a constant pool. | |
if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2)) | |
if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) { | |
if (TLI.isTypeLegal(N2.getValueType()) && | |
(TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) != | |
TargetLowering::Legal && | |
!TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0)) && | |
!TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0))) && | |
// If both constants have multiple uses, then we won't need to do an | |
// extra load, they are likely around in registers for other users. | |
(TV->hasOneUse() || FV->hasOneUse())) { | |
Constant *Elts[] = { | |
const_cast<ConstantFP*>(FV->getConstantFPValue()), | |
const_cast<ConstantFP*>(TV->getConstantFPValue()) | |
}; | |
Type *FPTy = Elts[0]->getType(); | |
const DataLayout &TD = DAG.getDataLayout(); | |
// Create a ConstantArray of the two constants. | |
Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); | |
SDValue CPIdx = | |
DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), | |
TD.getPrefTypeAlignment(FPTy)); | |
unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); | |
// Get the offsets to the 0 and 1 element of the array so that we can | |
// select between them. | |
SDValue Zero = DAG.getIntPtrConstant(0, DL); | |
unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); | |
SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); | |
SDValue Cond = DAG.getSetCC(DL, | |
getSetCCResultType(N0.getValueType()), | |
N0, N1, CC); | |
AddToWorklist(Cond.getNode()); | |
SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), | |
Cond, One, Zero); | |
AddToWorklist(CstOffset.getNode()); | |
CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, | |
CstOffset); | |
AddToWorklist(CPIdx.getNode()); | |
return DAG.getLoad( | |
TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, | |
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), | |
Alignment); | |
} | |
} | |
if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC)) | |
return V; | |
// fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) | |
// where y is has a single bit set. | |
// A plaintext description would be, we can turn the SELECT_CC into an AND | |
// when the condition can be materialized as an all-ones register. Any | |
// single bit-test can be materialized as an all-ones register with | |
// shift-left and shift-right-arith. | |
if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && | |
N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { | |
SDValue AndLHS = N0->getOperand(0); | |
ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); | |
if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { | |
// Shift the tested bit over the sign bit. | |
const APInt &AndMask = ConstAndRHS->getAPIntValue(); | |
SDValue ShlAmt = | |
DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), | |
getShiftAmountTy(AndLHS.getValueType())); | |
SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); | |
// Now arithmetic right shift it all the way over, so the result is either | |
// all-ones, or zero. | |
SDValue ShrAmt = | |
DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl), | |
getShiftAmountTy(Shl.getValueType())); | |
SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); | |
return DAG.getNode(ISD::AND, DL, VT, Shr, N3); | |
} | |
} | |
// fold select C, 16, 0 -> shl C, 4 | |
if (N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2() && | |
TLI.getBooleanContents(N0.getValueType()) == | |
TargetLowering::ZeroOrOneBooleanContent) { | |
// If the caller doesn't want us to simplify this into a zext of a compare, | |
// don't do it. | |
if (NotExtCompare && N2C->isOne()) | |
return SDValue(); | |
// Get a SetCC of the condition | |
// NOTE: Don't create a SETCC if it's not legal on this target. | |
if (!LegalOperations || | |
TLI.isOperationLegal(ISD::SETCC, N0.getValueType())) { | |
SDValue Temp, SCC; | |
// cast from setcc result type to select result type | |
if (LegalTypes) { | |
SCC = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), | |
N0, N1, CC); | |
if (N2.getValueType().bitsLT(SCC.getValueType())) | |
Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), | |
N2.getValueType()); | |
else | |
Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), | |
N2.getValueType(), SCC); | |
} else { | |
SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); | |
Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), | |
N2.getValueType(), SCC); | |
} | |
AddToWorklist(SCC.getNode()); | |
AddToWorklist(Temp.getNode()); | |
if (N2C->isOne()) | |
return Temp; | |
// shl setcc result by log2 n2c | |
return DAG.getNode( | |
ISD::SHL, DL, N2.getValueType(), Temp, | |
DAG.getConstant(N2C->getAPIntValue().logBase2(), SDLoc(Temp), | |
getShiftAmountTy(Temp.getValueType()))); | |
} | |
} | |
// Check to see if this is an integer abs. | |
// select_cc setg[te] X, 0, X, -X -> | |
// select_cc setgt X, -1, X, -X -> | |
// select_cc setl[te] X, 0, -X, X -> | |
// select_cc setlt X, 1, -X, X -> | |
// Y = sra (X, size(X)-1); xor (add (X, Y), Y) | |
if (N1C) { | |
ConstantSDNode *SubC = nullptr; | |
if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) || | |
(N1C->isAllOnesValue() && CC == ISD::SETGT)) && | |
N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) | |
SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0)); | |
else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) || | |
(N1C->isOne() && CC == ISD::SETLT)) && | |
N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1)) | |
SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0)); | |
EVT XType = N0.getValueType(); | |
if (SubC && SubC->isNullValue() && XType.isInteger()) { | |
SDLoc DL(N0); | |
SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, | |
N0, | |
DAG.getConstant(XType.getSizeInBits() - 1, DL, | |
getShiftAmountTy(N0.getValueType()))); | |
SDValue Add = DAG.getNode(ISD::ADD, DL, | |
XType, N0, Shift); | |
AddToWorklist(Shift.getNode()); | |
AddToWorklist(Add.getNode()); | |
return DAG.getNode(ISD::XOR, DL, XType, Add, Shift); | |
} | |
} | |
// select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X) | |
// select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X) | |
// select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X) | |
// select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X) | |
// select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X) | |
// select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X) | |
// select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X) | |
// select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X) | |
if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { | |
SDValue ValueOnZero = N2; | |
SDValue Count = N3; | |
// If the condition is NE instead of E, swap the operands. | |
if (CC == ISD::SETNE) | |
std::swap(ValueOnZero, Count); | |
// Check if the value on zero is a constant equal to the bits in the type. | |
if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) { | |
if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) { | |
// If the other operand is cttz/cttz_zero_undef of N0, and cttz is | |
// legal, combine to just cttz. | |
if ((Count.getOpcode() == ISD::CTTZ || | |
Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) && | |
N0 == Count.getOperand(0) && | |
(!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT))) | |
return DAG.getNode(ISD::CTTZ, DL, VT, N0); | |
// If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is | |
// legal, combine to just ctlz. | |
if ((Count.getOpcode() == ISD::CTLZ || | |
Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) && | |
N0 == Count.getOperand(0) && | |
(!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT))) | |
return DAG.getNode(ISD::CTLZ, DL, VT, N0); | |
} | |
} | |
} | |
return SDValue(); | |
} | |
/// This is a stub for TargetLowering::SimplifySetCC. | |
SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, | |
ISD::CondCode Cond, const SDLoc &DL, | |
bool foldBooleans) { | |
TargetLowering::DAGCombinerInfo | |
DagCombineInfo(DAG, Level, false, this); | |
return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); | |
} | |
/// Given an ISD::SDIV node expressing a divide by constant, return | |
/// a DAG expression to select that will generate the same value by multiplying | |
/// by a magic number. | |
/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". | |
SDValue DAGCombiner::BuildSDIV(SDNode *N) { | |
// when optimising for minimum size, we don't want to expand a div to a mul | |
// and a shift. | |
if (DAG.getMachineFunction().getFunction()->optForMinSize()) | |
return SDValue(); | |
ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); | |
if (!C) | |
return SDValue(); | |
// Avoid division by zero. | |
if (C->isNullValue()) | |
return SDValue(); | |
std::vector<SDNode*> Built; | |
SDValue S = | |
TLI.BuildSDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built); | |
for (SDNode *N : Built) | |
AddToWorklist(N); | |
return S; | |
} | |
/// Given an ISD::SDIV node expressing a divide by constant power of 2, return a | |
/// DAG expression that will generate the same value by right shifting. | |
SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { | |
ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); | |
if (!C) | |
return SDValue(); | |
// Avoid division by zero. | |
if (C->isNullValue()) | |
return SDValue(); | |
std::vector<SDNode *> Built; | |
SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, &Built); | |
for (SDNode *N : Built) | |
AddToWorklist(N); | |
return S; | |
} | |
/// Given an ISD::UDIV node expressing a divide by constant, return a DAG | |
/// expression that will generate the same value by multiplying by a magic | |
/// number. | |
/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". | |
SDValue DAGCombiner::BuildUDIV(SDNode *N) { | |
// when optimising for minimum size, we don't want to expand a div to a mul | |
// and a shift. | |
if (DAG.getMachineFunction().getFunction()->optForMinSize()) | |
return SDValue(); | |
ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); | |
if (!C) | |
return SDValue(); | |
// Avoid division by zero. | |
if (C->isNullValue()) | |
return SDValue(); | |
std::vector<SDNode*> Built; | |
SDValue S = | |
TLI.BuildUDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built); | |
for (SDNode *N : Built) | |
AddToWorklist(N); | |
return S; | |
} | |
/// Determines the LogBase2 value for a non-null input value using the | |
/// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). | |
SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) { | |
EVT VT = V.getValueType(); | |
unsigned EltBits = VT.getScalarSizeInBits(); | |
SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V); | |
SDValue Base = DAG.getConstant(EltBits - 1, DL, VT); | |
SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz); | |
return LogBase2; | |
} | |
/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) | |
/// For the reciprocal, we need to find the zero of the function: | |
/// F(X) = A X - 1 [which has a zero at X = 1/A] | |
/// => | |
/// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form | |
/// does not require additional intermediate precision] | |
SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags) { | |
if (Level >= AfterLegalizeDAG) | |
return SDValue(); | |
// TODO: Handle half and/or extended types? | |
EVT VT = Op.getValueType(); | |
if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) | |
return SDValue(); | |
// If estimates are explicitly disabled for this function, we're done. | |
MachineFunction &MF = DAG.getMachineFunction(); | |
int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF); | |
if (Enabled == TLI.ReciprocalEstimate::Disabled) | |
return SDValue(); | |
// Estimates may be explicitly enabled for this type with a custom number of | |
// refinement steps. | |
int Iterations = TLI.getDivRefinementSteps(VT, MF); | |
if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) { | |
AddToWorklist(Est.getNode()); | |
if (Iterations) { | |
EVT VT = Op.getValueType(); | |
SDLoc DL(Op); | |
SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); | |
// Newton iterations: Est = Est + Est (1 - Arg * Est) | |
for (int i = 0; i < Iterations; ++i) { | |
SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est, Flags); | |
AddToWorklist(NewEst.getNode()); | |
NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst, Flags); | |
AddToWorklist(NewEst.getNode()); | |
NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); | |
AddToWorklist(NewEst.getNode()); | |
Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst, Flags); | |
AddToWorklist(Est.getNode()); | |
} | |
} | |
return Est; | |
} | |
return SDValue(); | |
} | |
/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) | |
/// For the reciprocal sqrt, we need to find the zero of the function: | |
/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] | |
/// => | |
/// X_{i+1} = X_i (1.5 - A X_i^2 / 2) | |
/// As a result, we precompute A/2 prior to the iteration loop. | |
SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est, | |
unsigned Iterations, | |
SDNodeFlags *Flags, bool Reciprocal) { | |
EVT VT = Arg.getValueType(); | |
SDLoc DL(Arg); | |
SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); | |
// We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that | |
// this entire sequence requires only one FP constant. | |
SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); | |
AddToWorklist(HalfArg.getNode()); | |
HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); | |
AddToWorklist(HalfArg.getNode()); | |
// Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) | |
for (unsigned i = 0; i < Iterations; ++i) { | |
SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); | |
AddToWorklist(NewEst.getNode()); | |
NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); | |
AddToWorklist(NewEst.getNode()); | |
NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); | |
AddToWorklist(NewEst.getNode()); | |
Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); | |
AddToWorklist(Est.getNode()); | |
} | |
// If non-reciprocal square root is requested, multiply the result by Arg. | |
if (!Reciprocal) { | |
Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); | |
AddToWorklist(Est.getNode()); | |
} | |
return Est; | |
} | |
/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) | |
/// For the reciprocal sqrt, we need to find the zero of the function: | |
/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] | |
/// => | |
/// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) | |
SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est, | |
unsigned Iterations, | |
SDNodeFlags *Flags, bool Reciprocal) { | |
EVT VT = Arg.getValueType(); | |
SDLoc DL(Arg); | |
SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); | |
SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); | |
// This routine must enter the loop below to work correctly | |
// when (Reciprocal == false). | |
assert(Iterations > 0); | |
// Newton iterations for reciprocal square root: | |
// E = (E * -0.5) * ((A * E) * E + -3.0) | |
for (unsigned i = 0; i < Iterations; ++i) { | |
SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags); | |
AddToWorklist(AE.getNode()); | |
SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags); | |
AddToWorklist(AEE.getNode()); | |
SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags); | |
AddToWorklist(RHS.getNode()); | |
// When calculating a square root at the last iteration build: | |
// S = ((A * E) * -0.5) * ((A * E) * E + -3.0) | |
// (notice a common subexpression) | |
SDValue LHS; | |
if (Reciprocal || (i + 1) < Iterations) { | |
// RSQRT: LHS = (E * -0.5) | |
LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); | |
} else { | |
// SQRT: LHS = (A * E) * -0.5 | |
LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags); | |
} | |
AddToWorklist(LHS.getNode()); | |
Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags); | |
AddToWorklist(Est.getNode()); | |
} | |
return Est; | |
} | |
/// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case | |
/// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if | |
/// Op can be zero. | |
SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags *Flags, | |
bool Reciprocal) { | |
if (Level >= AfterLegalizeDAG) | |
return SDValue(); | |
// TODO: Handle half and/or extended types? | |
EVT VT = Op.getValueType(); | |
if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) | |
return SDValue(); | |
// If estimates are explicitly disabled for this function, we're done. | |
MachineFunction &MF = DAG.getMachineFunction(); | |
int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF); | |
if (Enabled == TLI.ReciprocalEstimate::Disabled) | |
return SDValue(); | |
// Estimates may be explicitly enabled for this type with a custom number of | |
// refinement steps. | |
int Iterations = TLI.getSqrtRefinementSteps(VT, MF); | |
bool UseOneConstNR = false; | |
if (SDValue Est = | |
TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR, | |
Reciprocal)) { | |
AddToWorklist(Est.getNode()); | |
if (Iterations) { | |
Est = UseOneConstNR | |
? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal) | |
: buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal); | |
if (!Reciprocal) { | |
// Unfortunately, Est is now NaN if the input was exactly 0.0. | |
// Select out this case and force the answer to 0.0. | |
EVT VT = Op.getValueType(); | |
SDLoc DL(Op); | |
SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); | |
EVT CCVT = getSetCCResultType(VT); | |
SDValue ZeroCmp = DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); | |
AddToWorklist(ZeroCmp.getNode()); | |
Est = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, | |
ZeroCmp, FPZero, Est); | |
AddToWorklist(Est.getNode()); | |
} | |
} | |
return Est; | |
} | |
return SDValue(); | |
} | |
SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags) { | |
return buildSqrtEstimateImpl(Op, Flags, true); | |
} | |
SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags *Flags) { | |
return buildSqrtEstimateImpl(Op, Flags, false); | |
} | |
/// Return true if base is a frame index, which is known not to alias with | |
/// anything but itself. Provides base object and offset as results. | |
static bool findBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset, | |
const GlobalValue *&GV, const void *&CV) { | |
// Assume it is a primitive operation. | |
Base = Ptr; Offset = 0; GV = nullptr; CV = nullptr; | |
// If it's an adding a simple constant then integrate the offset. | |
if (Base.getOpcode() == ISD::ADD) { | |
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) { | |
Base = Base.getOperand(0); | |
Offset += C->getSExtValue(); | |
} | |
} | |
// Return the underlying GlobalValue, and update the Offset. Return false | |
// for GlobalAddressSDNode since the same GlobalAddress may be represented | |
// by multiple nodes with different offsets. | |
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) { | |
GV = G->getGlobal(); | |
Offset += G->getOffset(); | |
return false; | |
} | |
// Return the underlying Constant value, and update the Offset. Return false | |
// for ConstantSDNodes since the same constant pool entry may be represented | |
// by multiple nodes with different offsets. | |
if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) { | |
CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal() | |
: (const void *)C->getConstVal(); | |
Offset += C->getOffset(); | |
return false; | |
} | |
// If it's any of the following then it can't alias with anything but itself. | |
return isa<FrameIndexSDNode>(Base); | |
} | |
/// Return true if there is any possibility that the two addresses overlap. | |
bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const { | |
// If they are the same then they must be aliases. | |
if (Op0->getBasePtr() == Op1->getBasePtr()) return true; | |
// If they are both volatile then they cannot be reordered. | |
if (Op0->isVolatile() && Op1->isVolatile()) return true; | |
// If one operation reads from invariant memory, and the other may store, they | |
// cannot alias. These should really be checking the equivalent of mayWrite, | |
// but it only matters for memory nodes other than load /store. | |
if (Op0->isInvariant() && Op1->writeMem()) | |
return false; | |
if (Op1->isInvariant() && Op0->writeMem()) | |
return false; | |
// Gather base node and offset information. | |
SDValue Base0, Base1; | |
int64_t Offset0, Offset1; | |
const GlobalValue *GV0, *GV1; | |
const void *CV0, *CV1; | |
bool IsFrameIndex0 = findBaseOffset(Op0->getBasePtr(), | |
Base0, Offset0, GV0, CV0); | |
bool IsFrameIndex1 = findBaseOffset(Op1->getBasePtr(), | |
Base1, Offset1, GV1, CV1); | |
// If they have the same base address, then check to see if they overlap. | |
unsigned NumBytes0 = Op0->getMemoryVT().getSizeInBits() >> 3; | |
unsigned NumBytes1 = Op1->getMemoryVT().getSizeInBits() >> 3; | |
if (Base0 == Base1 || (GV0 && (GV0 == GV1)) || (CV0 && (CV0 == CV1))) | |
return !((Offset0 + NumBytes0) <= Offset1 || | |
(Offset1 + NumBytes1) <= Offset0); | |
// It is possible for different frame indices to alias each other, mostly | |
// when tail call optimization reuses return address slots for arguments. | |
// To catch this case, look up the actual index of frame indices to compute | |
// the real alias relationship. | |
if (IsFrameIndex0 && IsFrameIndex1) { | |
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); | |
Offset0 += MFI.getObjectOffset(cast<FrameIndexSDNode>(Base0)->getIndex()); | |
Offset1 += MFI.getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex()); | |
return !((Offset0 + NumBytes0) <= Offset1 || | |
(Offset1 + NumBytes1) <= Offset0); | |
} | |
// Otherwise, if we know what the bases are, and they aren't identical, then | |
// we know they cannot alias. | |
if ((IsFrameIndex0 || CV0 || GV0) && (IsFrameIndex1 || CV1 || GV1)) | |
return false; | |
// If we know required SrcValue1 and SrcValue2 have relatively large alignment | |
// compared to the size and offset of the access, we may be able to prove they | |
// do not alias. This check is conservative for now to catch cases created by | |
// splitting vector types. | |
int64_t SrcValOffset0 = Op0->getSrcValueOffset(); | |
int64_t SrcValOffset1 = Op1->getSrcValueOffset(); | |
unsigned OrigAlignment0 = Op0->getOriginalAlignment(); | |
unsigned OrigAlignment1 = Op1->getOriginalAlignment(); | |
if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 && | |
NumBytes0 == NumBytes1 && OrigAlignment0 > NumBytes0) { | |
int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0; | |
int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1; | |
// There is no overlap between these relatively aligned accesses of similar | |
// size. Return no alias. | |
if ((OffAlign0 + NumBytes0) <= OffAlign1 || | |
(OffAlign1 + NumBytes1) <= OffAlign0) | |
return false; | |
} | |
bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 | |
? CombinerGlobalAA | |
: DAG.getSubtarget().useAA(); | |
#ifndef NDEBUG | |
if (CombinerAAOnlyFunc.getNumOccurrences() && | |
CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) | |
UseAA = false; | |
#endif | |
if (UseAA && | |
Op0->getMemOperand()->getValue() && Op1->getMemOperand()->getValue()) { | |
// Use alias analysis information. | |
int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1); | |
int64_t Overlap0 = NumBytes0 + SrcValOffset0 - MinOffset; | |
int64_t Overlap1 = NumBytes1 + SrcValOffset1 - MinOffset; | |
AliasResult AAResult = | |
AA.alias(MemoryLocation(Op0->getMemOperand()->getValue(), Overlap0, | |
UseTBAA ? Op0->getAAInfo() : AAMDNodes()), | |
MemoryLocation(Op1->getMemOperand()->getValue(), Overlap1, | |
UseTBAA ? Op1->getAAInfo() : AAMDNodes())); | |
if (AAResult == NoAlias) | |
return false; | |
} | |
// Otherwise we have to assume they alias. | |
return true; | |
} | |
/// Walk up chain skipping non-aliasing memory nodes, | |
/// looking for aliasing nodes and adding them to the Aliases vector. | |
void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, | |
SmallVectorImpl<SDValue> &Aliases) { | |
SmallVector<SDValue, 8> Chains; // List of chains to visit. | |
SmallPtrSet<SDNode *, 16> Visited; // Visited node set. | |
// Get alias information for node. | |
bool IsLoad = isa<LoadSDNode>(N) && !cast<LSBaseSDNode>(N)->isVolatile(); | |
// Starting off. | |
Chains.push_back(OriginalChain); | |
unsigned Depth = 0; | |
// Look at each chain and determine if it is an alias. If so, add it to the | |
// aliases list. If not, then continue up the chain looking for the next | |
// candidate. | |
while (!Chains.empty()) { | |
SDValue Chain = Chains.pop_back_val(); | |
// For TokenFactor nodes, look at each operand and only continue up the | |
// chain until we reach the depth limit. | |
// | |
// FIXME: The depth check could be made to return the last non-aliasing | |
// chain we found before we hit a tokenfactor rather than the original | |
// chain. | |
if (Depth > TLI.getGatherAllAliasesMaxDepth()) { | |
Aliases.clear(); | |
Aliases.push_back(OriginalChain); | |
return; | |
} | |
// Don't bother if we've been before. | |
if (!Visited.insert(Chain.getNode()).second) | |
continue; | |
switch (Chain.getOpcode()) { | |
case ISD::EntryToken: | |
// Entry token is ideal chain operand, but handled in FindBetterChain. | |
break; | |
case ISD::LOAD: | |
case ISD::STORE: { | |
// Get alias information for Chain. | |
bool IsOpLoad = isa<LoadSDNode>(Chain.getNode()) && | |
!cast<LSBaseSDNode>(Chain.getNode())->isVolatile(); | |
// If chain is alias then stop here. | |
if (!(IsLoad && IsOpLoad) && | |
isAlias(cast<LSBaseSDNode>(N), cast<LSBaseSDNode>(Chain.getNode()))) { | |
Aliases.push_back(Chain); | |
} else { | |
// Look further up the chain. | |
Chains.push_back(Chain.getOperand(0)); | |
++Depth; | |
} | |
break; | |
} | |
case ISD::TokenFactor: | |
// We have to check each of the operands of the token factor for "small" | |
// token factors, so we queue them up. Adding the operands to the queue | |
// (stack) in reverse order maintains the original order and increases the | |
// likelihood that getNode will find a matching token factor (CSE.) | |
if (Chain.getNumOperands() > 16) { | |
Aliases.push_back(Chain); | |
break; | |
} | |
for (unsigned n = Chain.getNumOperands(); n;) | |
Chains.push_back(Chain.getOperand(--n)); | |
++Depth; | |
break; | |
case ISD::CopyFromReg: | |
// Forward past CopyFromReg. | |
Chains.push_back(Chain.getOperand(0)); | |
++Depth; | |
break; | |
default: | |
// For all other instructions we will just have to take what we can get. | |
Aliases.push_back(Chain); | |
break; | |
} | |
} | |
} | |
/// Walk up chain skipping non-aliasing memory nodes, looking for a better chain | |
/// (aliasing node.) | |
SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { | |
SmallVector<SDValue, 8> Aliases; // Ops for replacing token factor. | |
// Accumulate all the aliases to this node. | |
GatherAllAliases(N, OldChain, Aliases); | |
// If no operands then chain to entry token. | |
if (Aliases.size() == 0) | |
return DAG.getEntryNode(); | |
// If a single operand then chain to it. We don't need to revisit it. | |
if (Aliases.size() == 1) | |
return Aliases[0]; | |
// Construct a custom tailored token factor. | |
return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Aliases); | |
} | |
// This function tries to collect a bunch of potentially interesting | |
// nodes to improve the chains of, all at once. This might seem | |
// redundant, as this function gets called when visiting every store | |
// node, so why not let the work be done on each store as it's visited? | |
// | |
// I believe this is mainly important because MergeConsecutiveStores | |
// is unable to deal with merging stores of different sizes, so unless | |
// we improve the chains of all the potential candidates up-front | |
// before running MergeConsecutiveStores, it might only see some of | |
// the nodes that will eventually be candidates, and then not be able | |
// to go from a partially-merged state to the desired final | |
// fully-merged state. | |
bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) { | |
// This holds the base pointer, index, and the offset in bytes from the base | |
// pointer. | |
BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr(), DAG); | |
// We must have a base and an offset. | |
if (!BasePtr.Base.getNode()) | |
return false; | |
// Do not handle stores to undef base pointers. | |
if (BasePtr.Base.isUndef()) | |
return false; | |
SmallVector<StoreSDNode *, 8> ChainedStores; | |
ChainedStores.push_back(St); | |
// Walk up the chain and look for nodes with offsets from the same | |
// base pointer. Stop when reaching an instruction with a different kind | |
// or instruction which has a different base pointer. | |
StoreSDNode *Index = St; | |
while (Index) { | |
// If the chain has more than one use, then we can't reorder the mem ops. | |
if (Index != St && !SDValue(Index, 0)->hasOneUse()) | |
break; | |
if (Index->isVolatile() || Index->isIndexed()) | |
break; | |
// Find the base pointer and offset for this memory node. | |
BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr(), DAG); | |
// Check that the base pointer is the same as the original one. | |
if (!Ptr.equalBaseIndex(BasePtr)) | |
break; | |
// Walk up the chain to find the next store node, ignoring any | |
// intermediate loads. Any other kind of node will halt the loop. | |
SDNode *NextInChain = Index->getChain().getNode(); | |
while (true) { | |
if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) { | |
// We found a store node. Use it for the next iteration. | |
if (STn->isVolatile() || STn->isIndexed()) { | |
Index = nullptr; | |
break; | |
} | |
ChainedStores.push_back(STn); | |
Index = STn; | |
break; | |
} else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) { | |
NextInChain = Ldn->getChain().getNode(); | |
continue; | |
} else { | |
Index = nullptr; | |
break; | |
} | |
} // end while | |
} | |
// At this point, ChainedStores lists all of the Store nodes | |
// reachable by iterating up through chain nodes matching the above | |
// conditions. For each such store identified, try to find an | |
// earlier chain to attach the store to which won't violate the | |
// required ordering. | |
bool MadeChangeToSt = false; | |
SmallVector<std::pair<StoreSDNode *, SDValue>, 8> BetterChains; | |
for (StoreSDNode *ChainedStore : ChainedStores) { | |
SDValue Chain = ChainedStore->getChain(); | |
SDValue BetterChain = FindBetterChain(ChainedStore, Chain); | |
if (Chain != BetterChain) { | |
if (ChainedStore == St) | |
MadeChangeToSt = true; | |
BetterChains.push_back(std::make_pair(ChainedStore, BetterChain)); | |
} | |
} | |
// Do all replacements after finding the replacements to make to avoid making | |
// the chains more complicated by introducing new TokenFactors. | |
for (auto Replacement : BetterChains) | |
replaceStoreChain(Replacement.first, Replacement.second); | |
return MadeChangeToSt; | |
} | |
/// This is the entry point for the file. | |
void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA, | |
CodeGenOpt::Level OptLevel) { | |
/// This is the main entry point to this class. | |
DAGCombiner(*this, AA, OptLevel).Run(Level); | |
} |