|  | //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Loops should be simplified before this analysis. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/BranchProbabilityInfo.h" | 
|  | #include "llvm/ADT/PostOrderIterator.h" | 
|  | #include "llvm/ADT/SCCIterator.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/PassManager.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/BranchProbability.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "branch-prob" | 
|  |  | 
|  | static cl::opt<bool> PrintBranchProb( | 
|  | "print-bpi", cl::init(false), cl::Hidden, | 
|  | cl::desc("Print the branch probability info.")); | 
|  |  | 
|  | cl::opt<std::string> PrintBranchProbFuncName( | 
|  | "print-bpi-func-name", cl::Hidden, | 
|  | cl::desc("The option to specify the name of the function " | 
|  | "whose branch probability info is printed.")); | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob", | 
|  | "Branch Probability Analysis", false, true) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob", | 
|  | "Branch Probability Analysis", false, true) | 
|  |  | 
|  | char BranchProbabilityInfoWrapperPass::ID = 0; | 
|  |  | 
|  | // Weights are for internal use only. They are used by heuristics to help to | 
|  | // estimate edges' probability. Example: | 
|  | // | 
|  | // Using "Loop Branch Heuristics" we predict weights of edges for the | 
|  | // block BB2. | 
|  | //         ... | 
|  | //          | | 
|  | //          V | 
|  | //         BB1<-+ | 
|  | //          |   | | 
|  | //          |   | (Weight = 124) | 
|  | //          V   | | 
|  | //         BB2--+ | 
|  | //          | | 
|  | //          | (Weight = 4) | 
|  | //          V | 
|  | //         BB3 | 
|  | // | 
|  | // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875 | 
|  | // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125 | 
|  | static const uint32_t LBH_TAKEN_WEIGHT = 124; | 
|  | static const uint32_t LBH_NONTAKEN_WEIGHT = 4; | 
|  | // Unlikely edges within a loop are half as likely as other edges | 
|  | static const uint32_t LBH_UNLIKELY_WEIGHT = 62; | 
|  |  | 
|  | /// Unreachable-terminating branch taken probability. | 
|  | /// | 
|  | /// This is the probability for a branch being taken to a block that terminates | 
|  | /// (eventually) in unreachable. These are predicted as unlikely as possible. | 
|  | /// All reachable probability will equally share the remaining part. | 
|  | static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1); | 
|  |  | 
|  | /// Weight for a branch taken going into a cold block. | 
|  | /// | 
|  | /// This is the weight for a branch taken toward a block marked | 
|  | /// cold.  A block is marked cold if it's postdominated by a | 
|  | /// block containing a call to a cold function.  Cold functions | 
|  | /// are those marked with attribute 'cold'. | 
|  | static const uint32_t CC_TAKEN_WEIGHT = 4; | 
|  |  | 
|  | /// Weight for a branch not-taken into a cold block. | 
|  | /// | 
|  | /// This is the weight for a branch not taken toward a block marked | 
|  | /// cold. | 
|  | static const uint32_t CC_NONTAKEN_WEIGHT = 64; | 
|  |  | 
|  | static const uint32_t PH_TAKEN_WEIGHT = 20; | 
|  | static const uint32_t PH_NONTAKEN_WEIGHT = 12; | 
|  |  | 
|  | static const uint32_t ZH_TAKEN_WEIGHT = 20; | 
|  | static const uint32_t ZH_NONTAKEN_WEIGHT = 12; | 
|  |  | 
|  | static const uint32_t FPH_TAKEN_WEIGHT = 20; | 
|  | static const uint32_t FPH_NONTAKEN_WEIGHT = 12; | 
|  |  | 
|  | /// Invoke-terminating normal branch taken weight | 
|  | /// | 
|  | /// This is the weight for branching to the normal destination of an invoke | 
|  | /// instruction. We expect this to happen most of the time. Set the weight to an | 
|  | /// absurdly high value so that nested loops subsume it. | 
|  | static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1; | 
|  |  | 
|  | /// Invoke-terminating normal branch not-taken weight. | 
|  | /// | 
|  | /// This is the weight for branching to the unwind destination of an invoke | 
|  | /// instruction. This is essentially never taken. | 
|  | static const uint32_t IH_NONTAKEN_WEIGHT = 1; | 
|  |  | 
|  | /// Add \p BB to PostDominatedByUnreachable set if applicable. | 
|  | void | 
|  | BranchProbabilityInfo::updatePostDominatedByUnreachable(const BasicBlock *BB) { | 
|  | const Instruction *TI = BB->getTerminator(); | 
|  | if (TI->getNumSuccessors() == 0) { | 
|  | if (isa<UnreachableInst>(TI) || | 
|  | // If this block is terminated by a call to | 
|  | // @llvm.experimental.deoptimize then treat it like an unreachable since | 
|  | // the @llvm.experimental.deoptimize call is expected to practically | 
|  | // never execute. | 
|  | BB->getTerminatingDeoptimizeCall()) | 
|  | PostDominatedByUnreachable.insert(BB); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the terminator is an InvokeInst, check only the normal destination block | 
|  | // as the unwind edge of InvokeInst is also very unlikely taken. | 
|  | if (auto *II = dyn_cast<InvokeInst>(TI)) { | 
|  | if (PostDominatedByUnreachable.count(II->getNormalDest())) | 
|  | PostDominatedByUnreachable.insert(BB); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (auto *I : successors(BB)) | 
|  | // If any of successor is not post dominated then BB is also not. | 
|  | if (!PostDominatedByUnreachable.count(I)) | 
|  | return; | 
|  |  | 
|  | PostDominatedByUnreachable.insert(BB); | 
|  | } | 
|  |  | 
|  | /// Add \p BB to PostDominatedByColdCall set if applicable. | 
|  | void | 
|  | BranchProbabilityInfo::updatePostDominatedByColdCall(const BasicBlock *BB) { | 
|  | assert(!PostDominatedByColdCall.count(BB)); | 
|  | const Instruction *TI = BB->getTerminator(); | 
|  | if (TI->getNumSuccessors() == 0) | 
|  | return; | 
|  |  | 
|  | // If all of successor are post dominated then BB is also done. | 
|  | if (llvm::all_of(successors(BB), [&](const BasicBlock *SuccBB) { | 
|  | return PostDominatedByColdCall.count(SuccBB); | 
|  | })) { | 
|  | PostDominatedByColdCall.insert(BB); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the terminator is an InvokeInst, check only the normal destination | 
|  | // block as the unwind edge of InvokeInst is also very unlikely taken. | 
|  | if (auto *II = dyn_cast<InvokeInst>(TI)) | 
|  | if (PostDominatedByColdCall.count(II->getNormalDest())) { | 
|  | PostDominatedByColdCall.insert(BB); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, if the block itself contains a cold function, add it to the | 
|  | // set of blocks post-dominated by a cold call. | 
|  | for (auto &I : *BB) | 
|  | if (const CallInst *CI = dyn_cast<CallInst>(&I)) | 
|  | if (CI->hasFnAttr(Attribute::Cold)) { | 
|  | PostDominatedByColdCall.insert(BB); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Calculate edge weights for successors lead to unreachable. | 
|  | /// | 
|  | /// Predict that a successor which leads necessarily to an | 
|  | /// unreachable-terminated block as extremely unlikely. | 
|  | bool BranchProbabilityInfo::calcUnreachableHeuristics(const BasicBlock *BB) { | 
|  | const Instruction *TI = BB->getTerminator(); | 
|  | (void) TI; | 
|  | assert(TI->getNumSuccessors() > 1 && "expected more than one successor!"); | 
|  | assert(!isa<InvokeInst>(TI) && | 
|  | "Invokes should have already been handled by calcInvokeHeuristics"); | 
|  |  | 
|  | SmallVector<unsigned, 4> UnreachableEdges; | 
|  | SmallVector<unsigned, 4> ReachableEdges; | 
|  |  | 
|  | for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) | 
|  | if (PostDominatedByUnreachable.count(*I)) | 
|  | UnreachableEdges.push_back(I.getSuccessorIndex()); | 
|  | else | 
|  | ReachableEdges.push_back(I.getSuccessorIndex()); | 
|  |  | 
|  | // Skip probabilities if all were reachable. | 
|  | if (UnreachableEdges.empty()) | 
|  | return false; | 
|  |  | 
|  | if (ReachableEdges.empty()) { | 
|  | BranchProbability Prob(1, UnreachableEdges.size()); | 
|  | for (unsigned SuccIdx : UnreachableEdges) | 
|  | setEdgeProbability(BB, SuccIdx, Prob); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | auto UnreachableProb = UR_TAKEN_PROB; | 
|  | auto ReachableProb = | 
|  | (BranchProbability::getOne() - UR_TAKEN_PROB * UnreachableEdges.size()) / | 
|  | ReachableEdges.size(); | 
|  |  | 
|  | for (unsigned SuccIdx : UnreachableEdges) | 
|  | setEdgeProbability(BB, SuccIdx, UnreachableProb); | 
|  | for (unsigned SuccIdx : ReachableEdges) | 
|  | setEdgeProbability(BB, SuccIdx, ReachableProb); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Propagate existing explicit probabilities from either profile data or | 
|  | // 'expect' intrinsic processing. Examine metadata against unreachable | 
|  | // heuristic. The probability of the edge coming to unreachable block is | 
|  | // set to min of metadata and unreachable heuristic. | 
|  | bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) { | 
|  | const Instruction *TI = BB->getTerminator(); | 
|  | assert(TI->getNumSuccessors() > 1 && "expected more than one successor!"); | 
|  | if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI))) | 
|  | return false; | 
|  |  | 
|  | MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); | 
|  | if (!WeightsNode) | 
|  | return false; | 
|  |  | 
|  | // Check that the number of successors is manageable. | 
|  | assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors"); | 
|  |  | 
|  | // Ensure there are weights for all of the successors. Note that the first | 
|  | // operand to the metadata node is a name, not a weight. | 
|  | if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1) | 
|  | return false; | 
|  |  | 
|  | // Build up the final weights that will be used in a temporary buffer. | 
|  | // Compute the sum of all weights to later decide whether they need to | 
|  | // be scaled to fit in 32 bits. | 
|  | uint64_t WeightSum = 0; | 
|  | SmallVector<uint32_t, 2> Weights; | 
|  | SmallVector<unsigned, 2> UnreachableIdxs; | 
|  | SmallVector<unsigned, 2> ReachableIdxs; | 
|  | Weights.reserve(TI->getNumSuccessors()); | 
|  | for (unsigned i = 1, e = WeightsNode->getNumOperands(); i != e; ++i) { | 
|  | ConstantInt *Weight = | 
|  | mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(i)); | 
|  | if (!Weight) | 
|  | return false; | 
|  | assert(Weight->getValue().getActiveBits() <= 32 && | 
|  | "Too many bits for uint32_t"); | 
|  | Weights.push_back(Weight->getZExtValue()); | 
|  | WeightSum += Weights.back(); | 
|  | if (PostDominatedByUnreachable.count(TI->getSuccessor(i - 1))) | 
|  | UnreachableIdxs.push_back(i - 1); | 
|  | else | 
|  | ReachableIdxs.push_back(i - 1); | 
|  | } | 
|  | assert(Weights.size() == TI->getNumSuccessors() && "Checked above"); | 
|  |  | 
|  | // If the sum of weights does not fit in 32 bits, scale every weight down | 
|  | // accordingly. | 
|  | uint64_t ScalingFactor = | 
|  | (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1; | 
|  |  | 
|  | if (ScalingFactor > 1) { | 
|  | WeightSum = 0; | 
|  | for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { | 
|  | Weights[i] /= ScalingFactor; | 
|  | WeightSum += Weights[i]; | 
|  | } | 
|  | } | 
|  | assert(WeightSum <= UINT32_MAX && | 
|  | "Expected weights to scale down to 32 bits"); | 
|  |  | 
|  | if (WeightSum == 0 || ReachableIdxs.size() == 0) { | 
|  | for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) | 
|  | Weights[i] = 1; | 
|  | WeightSum = TI->getNumSuccessors(); | 
|  | } | 
|  |  | 
|  | // Set the probability. | 
|  | SmallVector<BranchProbability, 2> BP; | 
|  | for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) | 
|  | BP.push_back({ Weights[i], static_cast<uint32_t>(WeightSum) }); | 
|  |  | 
|  | // Examine the metadata against unreachable heuristic. | 
|  | // If the unreachable heuristic is more strong then we use it for this edge. | 
|  | if (UnreachableIdxs.size() > 0 && ReachableIdxs.size() > 0) { | 
|  | auto ToDistribute = BranchProbability::getZero(); | 
|  | auto UnreachableProb = UR_TAKEN_PROB; | 
|  | for (auto i : UnreachableIdxs) | 
|  | if (UnreachableProb < BP[i]) { | 
|  | ToDistribute += BP[i] - UnreachableProb; | 
|  | BP[i] = UnreachableProb; | 
|  | } | 
|  |  | 
|  | // If we modified the probability of some edges then we must distribute | 
|  | // the difference between reachable blocks. | 
|  | if (ToDistribute > BranchProbability::getZero()) { | 
|  | BranchProbability PerEdge = ToDistribute / ReachableIdxs.size(); | 
|  | for (auto i : ReachableIdxs) | 
|  | BP[i] += PerEdge; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) | 
|  | setEdgeProbability(BB, i, BP[i]); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Calculate edge weights for edges leading to cold blocks. | 
|  | /// | 
|  | /// A cold block is one post-dominated by  a block with a call to a | 
|  | /// cold function.  Those edges are unlikely to be taken, so we give | 
|  | /// them relatively low weight. | 
|  | /// | 
|  | /// Return true if we could compute the weights for cold edges. | 
|  | /// Return false, otherwise. | 
|  | bool BranchProbabilityInfo::calcColdCallHeuristics(const BasicBlock *BB) { | 
|  | const Instruction *TI = BB->getTerminator(); | 
|  | (void) TI; | 
|  | assert(TI->getNumSuccessors() > 1 && "expected more than one successor!"); | 
|  | assert(!isa<InvokeInst>(TI) && | 
|  | "Invokes should have already been handled by calcInvokeHeuristics"); | 
|  |  | 
|  | // Determine which successors are post-dominated by a cold block. | 
|  | SmallVector<unsigned, 4> ColdEdges; | 
|  | SmallVector<unsigned, 4> NormalEdges; | 
|  | for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) | 
|  | if (PostDominatedByColdCall.count(*I)) | 
|  | ColdEdges.push_back(I.getSuccessorIndex()); | 
|  | else | 
|  | NormalEdges.push_back(I.getSuccessorIndex()); | 
|  |  | 
|  | // Skip probabilities if no cold edges. | 
|  | if (ColdEdges.empty()) | 
|  | return false; | 
|  |  | 
|  | if (NormalEdges.empty()) { | 
|  | BranchProbability Prob(1, ColdEdges.size()); | 
|  | for (unsigned SuccIdx : ColdEdges) | 
|  | setEdgeProbability(BB, SuccIdx, Prob); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | auto ColdProb = BranchProbability::getBranchProbability( | 
|  | CC_TAKEN_WEIGHT, | 
|  | (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(ColdEdges.size())); | 
|  | auto NormalProb = BranchProbability::getBranchProbability( | 
|  | CC_NONTAKEN_WEIGHT, | 
|  | (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(NormalEdges.size())); | 
|  |  | 
|  | for (unsigned SuccIdx : ColdEdges) | 
|  | setEdgeProbability(BB, SuccIdx, ColdProb); | 
|  | for (unsigned SuccIdx : NormalEdges) | 
|  | setEdgeProbability(BB, SuccIdx, NormalProb); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Calculate Edge Weights using "Pointer Heuristics". Predict a comparison | 
|  | // between two pointer or pointer and NULL will fail. | 
|  | bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) { | 
|  | const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); | 
|  | if (!BI || !BI->isConditional()) | 
|  | return false; | 
|  |  | 
|  | Value *Cond = BI->getCondition(); | 
|  | ICmpInst *CI = dyn_cast<ICmpInst>(Cond); | 
|  | if (!CI || !CI->isEquality()) | 
|  | return false; | 
|  |  | 
|  | Value *LHS = CI->getOperand(0); | 
|  |  | 
|  | if (!LHS->getType()->isPointerTy()) | 
|  | return false; | 
|  |  | 
|  | assert(CI->getOperand(1)->getType()->isPointerTy()); | 
|  |  | 
|  | // p != 0   ->   isProb = true | 
|  | // p == 0   ->   isProb = false | 
|  | // p != q   ->   isProb = true | 
|  | // p == q   ->   isProb = false; | 
|  | unsigned TakenIdx = 0, NonTakenIdx = 1; | 
|  | bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE; | 
|  | if (!isProb) | 
|  | std::swap(TakenIdx, NonTakenIdx); | 
|  |  | 
|  | BranchProbability TakenProb(PH_TAKEN_WEIGHT, | 
|  | PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT); | 
|  | setEdgeProbability(BB, TakenIdx, TakenProb); | 
|  | setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int getSCCNum(const BasicBlock *BB, | 
|  | const BranchProbabilityInfo::SccInfo &SccI) { | 
|  | auto SccIt = SccI.SccNums.find(BB); | 
|  | if (SccIt == SccI.SccNums.end()) | 
|  | return -1; | 
|  | return SccIt->second; | 
|  | } | 
|  |  | 
|  | // Consider any block that is an entry point to the SCC as a header. | 
|  | static bool isSCCHeader(const BasicBlock *BB, int SccNum, | 
|  | BranchProbabilityInfo::SccInfo &SccI) { | 
|  | assert(getSCCNum(BB, SccI) == SccNum); | 
|  |  | 
|  | // Lazily compute the set of headers for a given SCC and cache the results | 
|  | // in the SccHeaderMap. | 
|  | if (SccI.SccHeaders.size() <= static_cast<unsigned>(SccNum)) | 
|  | SccI.SccHeaders.resize(SccNum + 1); | 
|  | auto &HeaderMap = SccI.SccHeaders[SccNum]; | 
|  | bool Inserted; | 
|  | BranchProbabilityInfo::SccHeaderMap::iterator HeaderMapIt; | 
|  | std::tie(HeaderMapIt, Inserted) = HeaderMap.insert(std::make_pair(BB, false)); | 
|  | if (Inserted) { | 
|  | bool IsHeader = llvm::any_of(make_range(pred_begin(BB), pred_end(BB)), | 
|  | [&](const BasicBlock *Pred) { | 
|  | return getSCCNum(Pred, SccI) != SccNum; | 
|  | }); | 
|  | HeaderMapIt->second = IsHeader; | 
|  | return IsHeader; | 
|  | } else | 
|  | return HeaderMapIt->second; | 
|  | } | 
|  |  | 
|  | // Compute the unlikely successors to the block BB in the loop L, specifically | 
|  | // those that are unlikely because this is a loop, and add them to the | 
|  | // UnlikelyBlocks set. | 
|  | static void | 
|  | computeUnlikelySuccessors(const BasicBlock *BB, Loop *L, | 
|  | SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) { | 
|  | // Sometimes in a loop we have a branch whose condition is made false by | 
|  | // taking it. This is typically something like | 
|  | //  int n = 0; | 
|  | //  while (...) { | 
|  | //    if (++n >= MAX) { | 
|  | //      n = 0; | 
|  | //    } | 
|  | //  } | 
|  | // In this sort of situation taking the branch means that at the very least it | 
|  | // won't be taken again in the next iteration of the loop, so we should | 
|  | // consider it less likely than a typical branch. | 
|  | // | 
|  | // We detect this by looking back through the graph of PHI nodes that sets the | 
|  | // value that the condition depends on, and seeing if we can reach a successor | 
|  | // block which can be determined to make the condition false. | 
|  | // | 
|  | // FIXME: We currently consider unlikely blocks to be half as likely as other | 
|  | // blocks, but if we consider the example above the likelyhood is actually | 
|  | // 1/MAX. We could therefore be more precise in how unlikely we consider | 
|  | // blocks to be, but it would require more careful examination of the form | 
|  | // of the comparison expression. | 
|  | const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); | 
|  | if (!BI || !BI->isConditional()) | 
|  | return; | 
|  |  | 
|  | // Check if the branch is based on an instruction compared with a constant | 
|  | CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); | 
|  | if (!CI || !isa<Instruction>(CI->getOperand(0)) || | 
|  | !isa<Constant>(CI->getOperand(1))) | 
|  | return; | 
|  |  | 
|  | // Either the instruction must be a PHI, or a chain of operations involving | 
|  | // constants that ends in a PHI which we can then collapse into a single value | 
|  | // if the PHI value is known. | 
|  | Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0)); | 
|  | PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS); | 
|  | Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1)); | 
|  | // Collect the instructions until we hit a PHI | 
|  | SmallVector<BinaryOperator *, 1> InstChain; | 
|  | while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) && | 
|  | isa<Constant>(CmpLHS->getOperand(1))) { | 
|  | // Stop if the chain extends outside of the loop | 
|  | if (!L->contains(CmpLHS)) | 
|  | return; | 
|  | InstChain.push_back(cast<BinaryOperator>(CmpLHS)); | 
|  | CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0)); | 
|  | if (CmpLHS) | 
|  | CmpPHI = dyn_cast<PHINode>(CmpLHS); | 
|  | } | 
|  | if (!CmpPHI || !L->contains(CmpPHI)) | 
|  | return; | 
|  |  | 
|  | // Trace the phi node to find all values that come from successors of BB | 
|  | SmallPtrSet<PHINode*, 8> VisitedInsts; | 
|  | SmallVector<PHINode*, 8> WorkList; | 
|  | WorkList.push_back(CmpPHI); | 
|  | VisitedInsts.insert(CmpPHI); | 
|  | while (!WorkList.empty()) { | 
|  | PHINode *P = WorkList.back(); | 
|  | WorkList.pop_back(); | 
|  | for (BasicBlock *B : P->blocks()) { | 
|  | // Skip blocks that aren't part of the loop | 
|  | if (!L->contains(B)) | 
|  | continue; | 
|  | Value *V = P->getIncomingValueForBlock(B); | 
|  | // If the source is a PHI add it to the work list if we haven't | 
|  | // already visited it. | 
|  | if (PHINode *PN = dyn_cast<PHINode>(V)) { | 
|  | if (VisitedInsts.insert(PN).second) | 
|  | WorkList.push_back(PN); | 
|  | continue; | 
|  | } | 
|  | // If this incoming value is a constant and B is a successor of BB, then | 
|  | // we can constant-evaluate the compare to see if it makes the branch be | 
|  | // taken or not. | 
|  | Constant *CmpLHSConst = dyn_cast<Constant>(V); | 
|  | if (!CmpLHSConst || | 
|  | std::find(succ_begin(BB), succ_end(BB), B) == succ_end(BB)) | 
|  | continue; | 
|  | // First collapse InstChain | 
|  | for (Instruction *I : llvm::reverse(InstChain)) { | 
|  | CmpLHSConst = ConstantExpr::get(I->getOpcode(), CmpLHSConst, | 
|  | cast<Constant>(I->getOperand(1)), true); | 
|  | if (!CmpLHSConst) | 
|  | break; | 
|  | } | 
|  | if (!CmpLHSConst) | 
|  | continue; | 
|  | // Now constant-evaluate the compare | 
|  | Constant *Result = ConstantExpr::getCompare(CI->getPredicate(), | 
|  | CmpLHSConst, CmpConst, true); | 
|  | // If the result means we don't branch to the block then that block is | 
|  | // unlikely. | 
|  | if (Result && | 
|  | ((Result->isZeroValue() && B == BI->getSuccessor(0)) || | 
|  | (Result->isOneValue() && B == BI->getSuccessor(1)))) | 
|  | UnlikelyBlocks.insert(B); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges | 
|  | // as taken, exiting edges as not-taken. | 
|  | bool BranchProbabilityInfo::calcLoopBranchHeuristics(const BasicBlock *BB, | 
|  | const LoopInfo &LI, | 
|  | SccInfo &SccI) { | 
|  | int SccNum; | 
|  | Loop *L = LI.getLoopFor(BB); | 
|  | if (!L) { | 
|  | SccNum = getSCCNum(BB, SccI); | 
|  | if (SccNum < 0) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SmallPtrSet<const BasicBlock*, 8> UnlikelyBlocks; | 
|  | if (L) | 
|  | computeUnlikelySuccessors(BB, L, UnlikelyBlocks); | 
|  |  | 
|  | SmallVector<unsigned, 8> BackEdges; | 
|  | SmallVector<unsigned, 8> ExitingEdges; | 
|  | SmallVector<unsigned, 8> InEdges; // Edges from header to the loop. | 
|  | SmallVector<unsigned, 8> UnlikelyEdges; | 
|  |  | 
|  | for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { | 
|  | // Use LoopInfo if we have it, otherwise fall-back to SCC info to catch | 
|  | // irreducible loops. | 
|  | if (L) { | 
|  | if (UnlikelyBlocks.count(*I) != 0) | 
|  | UnlikelyEdges.push_back(I.getSuccessorIndex()); | 
|  | else if (!L->contains(*I)) | 
|  | ExitingEdges.push_back(I.getSuccessorIndex()); | 
|  | else if (L->getHeader() == *I) | 
|  | BackEdges.push_back(I.getSuccessorIndex()); | 
|  | else | 
|  | InEdges.push_back(I.getSuccessorIndex()); | 
|  | } else { | 
|  | if (getSCCNum(*I, SccI) != SccNum) | 
|  | ExitingEdges.push_back(I.getSuccessorIndex()); | 
|  | else if (isSCCHeader(*I, SccNum, SccI)) | 
|  | BackEdges.push_back(I.getSuccessorIndex()); | 
|  | else | 
|  | InEdges.push_back(I.getSuccessorIndex()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BackEdges.empty() && ExitingEdges.empty() && UnlikelyEdges.empty()) | 
|  | return false; | 
|  |  | 
|  | // Collect the sum of probabilities of back-edges/in-edges/exiting-edges, and | 
|  | // normalize them so that they sum up to one. | 
|  | unsigned Denom = (BackEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) + | 
|  | (InEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) + | 
|  | (UnlikelyEdges.empty() ? 0 : LBH_UNLIKELY_WEIGHT) + | 
|  | (ExitingEdges.empty() ? 0 : LBH_NONTAKEN_WEIGHT); | 
|  |  | 
|  | if (uint32_t numBackEdges = BackEdges.size()) { | 
|  | BranchProbability TakenProb = BranchProbability(LBH_TAKEN_WEIGHT, Denom); | 
|  | auto Prob = TakenProb / numBackEdges; | 
|  | for (unsigned SuccIdx : BackEdges) | 
|  | setEdgeProbability(BB, SuccIdx, Prob); | 
|  | } | 
|  |  | 
|  | if (uint32_t numInEdges = InEdges.size()) { | 
|  | BranchProbability TakenProb = BranchProbability(LBH_TAKEN_WEIGHT, Denom); | 
|  | auto Prob = TakenProb / numInEdges; | 
|  | for (unsigned SuccIdx : InEdges) | 
|  | setEdgeProbability(BB, SuccIdx, Prob); | 
|  | } | 
|  |  | 
|  | if (uint32_t numExitingEdges = ExitingEdges.size()) { | 
|  | BranchProbability NotTakenProb = BranchProbability(LBH_NONTAKEN_WEIGHT, | 
|  | Denom); | 
|  | auto Prob = NotTakenProb / numExitingEdges; | 
|  | for (unsigned SuccIdx : ExitingEdges) | 
|  | setEdgeProbability(BB, SuccIdx, Prob); | 
|  | } | 
|  |  | 
|  | if (uint32_t numUnlikelyEdges = UnlikelyEdges.size()) { | 
|  | BranchProbability UnlikelyProb = BranchProbability(LBH_UNLIKELY_WEIGHT, | 
|  | Denom); | 
|  | auto Prob = UnlikelyProb / numUnlikelyEdges; | 
|  | for (unsigned SuccIdx : UnlikelyEdges) | 
|  | setEdgeProbability(BB, SuccIdx, Prob); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); | 
|  | if (!BI || !BI->isConditional()) | 
|  | return false; | 
|  |  | 
|  | Value *Cond = BI->getCondition(); | 
|  | ICmpInst *CI = dyn_cast<ICmpInst>(Cond); | 
|  | if (!CI) | 
|  | return false; | 
|  |  | 
|  | auto GetConstantInt = [](Value *V) { | 
|  | if (auto *I = dyn_cast<BitCastInst>(V)) | 
|  | return dyn_cast<ConstantInt>(I->getOperand(0)); | 
|  | return dyn_cast<ConstantInt>(V); | 
|  | }; | 
|  |  | 
|  | Value *RHS = CI->getOperand(1); | 
|  | ConstantInt *CV = GetConstantInt(RHS); | 
|  | if (!CV) | 
|  | return false; | 
|  |  | 
|  | // If the LHS is the result of AND'ing a value with a single bit bitmask, | 
|  | // we don't have information about probabilities. | 
|  | if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0))) | 
|  | if (LHS->getOpcode() == Instruction::And) | 
|  | if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) | 
|  | if (AndRHS->getValue().isPowerOf2()) | 
|  | return false; | 
|  |  | 
|  | // Check if the LHS is the return value of a library function | 
|  | LibFunc Func = NumLibFuncs; | 
|  | if (TLI) | 
|  | if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0))) | 
|  | if (Function *CalledFn = Call->getCalledFunction()) | 
|  | TLI->getLibFunc(*CalledFn, Func); | 
|  |  | 
|  | bool isProb; | 
|  | if (Func == LibFunc_strcasecmp || | 
|  | Func == LibFunc_strcmp || | 
|  | Func == LibFunc_strncasecmp || | 
|  | Func == LibFunc_strncmp || | 
|  | Func == LibFunc_memcmp) { | 
|  | // strcmp and similar functions return zero, negative, or positive, if the | 
|  | // first string is equal, less, or greater than the second. We consider it | 
|  | // likely that the strings are not equal, so a comparison with zero is | 
|  | // probably false, but also a comparison with any other number is also | 
|  | // probably false given that what exactly is returned for nonzero values is | 
|  | // not specified. Any kind of comparison other than equality we know | 
|  | // nothing about. | 
|  | switch (CI->getPredicate()) { | 
|  | case CmpInst::ICMP_EQ: | 
|  | isProb = false; | 
|  | break; | 
|  | case CmpInst::ICMP_NE: | 
|  | isProb = true; | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } else if (CV->isZero()) { | 
|  | switch (CI->getPredicate()) { | 
|  | case CmpInst::ICMP_EQ: | 
|  | // X == 0   ->  Unlikely | 
|  | isProb = false; | 
|  | break; | 
|  | case CmpInst::ICMP_NE: | 
|  | // X != 0   ->  Likely | 
|  | isProb = true; | 
|  | break; | 
|  | case CmpInst::ICMP_SLT: | 
|  | // X < 0   ->  Unlikely | 
|  | isProb = false; | 
|  | break; | 
|  | case CmpInst::ICMP_SGT: | 
|  | // X > 0   ->  Likely | 
|  | isProb = true; | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) { | 
|  | // InstCombine canonicalizes X <= 0 into X < 1. | 
|  | // X <= 0   ->  Unlikely | 
|  | isProb = false; | 
|  | } else if (CV->isMinusOne()) { | 
|  | switch (CI->getPredicate()) { | 
|  | case CmpInst::ICMP_EQ: | 
|  | // X == -1  ->  Unlikely | 
|  | isProb = false; | 
|  | break; | 
|  | case CmpInst::ICMP_NE: | 
|  | // X != -1  ->  Likely | 
|  | isProb = true; | 
|  | break; | 
|  | case CmpInst::ICMP_SGT: | 
|  | // InstCombine canonicalizes X >= 0 into X > -1. | 
|  | // X >= 0   ->  Likely | 
|  | isProb = true; | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned TakenIdx = 0, NonTakenIdx = 1; | 
|  |  | 
|  | if (!isProb) | 
|  | std::swap(TakenIdx, NonTakenIdx); | 
|  |  | 
|  | BranchProbability TakenProb(ZH_TAKEN_WEIGHT, | 
|  | ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT); | 
|  | setEdgeProbability(BB, TakenIdx, TakenProb); | 
|  | setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) { | 
|  | const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); | 
|  | if (!BI || !BI->isConditional()) | 
|  | return false; | 
|  |  | 
|  | Value *Cond = BI->getCondition(); | 
|  | FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond); | 
|  | if (!FCmp) | 
|  | return false; | 
|  |  | 
|  | bool isProb; | 
|  | if (FCmp->isEquality()) { | 
|  | // f1 == f2 -> Unlikely | 
|  | // f1 != f2 -> Likely | 
|  | isProb = !FCmp->isTrueWhenEqual(); | 
|  | } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) { | 
|  | // !isnan -> Likely | 
|  | isProb = true; | 
|  | } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) { | 
|  | // isnan -> Unlikely | 
|  | isProb = false; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned TakenIdx = 0, NonTakenIdx = 1; | 
|  |  | 
|  | if (!isProb) | 
|  | std::swap(TakenIdx, NonTakenIdx); | 
|  |  | 
|  | BranchProbability TakenProb(FPH_TAKEN_WEIGHT, | 
|  | FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT); | 
|  | setEdgeProbability(BB, TakenIdx, TakenProb); | 
|  | setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool BranchProbabilityInfo::calcInvokeHeuristics(const BasicBlock *BB) { | 
|  | const InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator()); | 
|  | if (!II) | 
|  | return false; | 
|  |  | 
|  | BranchProbability TakenProb(IH_TAKEN_WEIGHT, | 
|  | IH_TAKEN_WEIGHT + IH_NONTAKEN_WEIGHT); | 
|  | setEdgeProbability(BB, 0 /*Index for Normal*/, TakenProb); | 
|  | setEdgeProbability(BB, 1 /*Index for Unwind*/, TakenProb.getCompl()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void BranchProbabilityInfo::releaseMemory() { | 
|  | Probs.clear(); | 
|  | } | 
|  |  | 
|  | void BranchProbabilityInfo::print(raw_ostream &OS) const { | 
|  | OS << "---- Branch Probabilities ----\n"; | 
|  | // We print the probabilities from the last function the analysis ran over, | 
|  | // or the function it is currently running over. | 
|  | assert(LastF && "Cannot print prior to running over a function"); | 
|  | for (const auto &BI : *LastF) { | 
|  | for (succ_const_iterator SI = succ_begin(&BI), SE = succ_end(&BI); SI != SE; | 
|  | ++SI) { | 
|  | printEdgeProbability(OS << "  ", &BI, *SI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool BranchProbabilityInfo:: | 
|  | isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const { | 
|  | // Hot probability is at least 4/5 = 80% | 
|  | // FIXME: Compare against a static "hot" BranchProbability. | 
|  | return getEdgeProbability(Src, Dst) > BranchProbability(4, 5); | 
|  | } | 
|  |  | 
|  | const BasicBlock * | 
|  | BranchProbabilityInfo::getHotSucc(const BasicBlock *BB) const { | 
|  | auto MaxProb = BranchProbability::getZero(); | 
|  | const BasicBlock *MaxSucc = nullptr; | 
|  |  | 
|  | for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { | 
|  | const BasicBlock *Succ = *I; | 
|  | auto Prob = getEdgeProbability(BB, Succ); | 
|  | if (Prob > MaxProb) { | 
|  | MaxProb = Prob; | 
|  | MaxSucc = Succ; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Hot probability is at least 4/5 = 80% | 
|  | if (MaxProb > BranchProbability(4, 5)) | 
|  | return MaxSucc; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Get the raw edge probability for the edge. If can't find it, return a | 
|  | /// default probability 1/N where N is the number of successors. Here an edge is | 
|  | /// specified using PredBlock and an | 
|  | /// index to the successors. | 
|  | BranchProbability | 
|  | BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, | 
|  | unsigned IndexInSuccessors) const { | 
|  | auto I = Probs.find(std::make_pair(Src, IndexInSuccessors)); | 
|  |  | 
|  | if (I != Probs.end()) | 
|  | return I->second; | 
|  |  | 
|  | return {1, static_cast<uint32_t>(succ_size(Src))}; | 
|  | } | 
|  |  | 
|  | BranchProbability | 
|  | BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, | 
|  | succ_const_iterator Dst) const { | 
|  | return getEdgeProbability(Src, Dst.getSuccessorIndex()); | 
|  | } | 
|  |  | 
|  | /// Get the raw edge probability calculated for the block pair. This returns the | 
|  | /// sum of all raw edge probabilities from Src to Dst. | 
|  | BranchProbability | 
|  | BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, | 
|  | const BasicBlock *Dst) const { | 
|  | auto Prob = BranchProbability::getZero(); | 
|  | bool FoundProb = false; | 
|  | for (succ_const_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I) | 
|  | if (*I == Dst) { | 
|  | auto MapI = Probs.find(std::make_pair(Src, I.getSuccessorIndex())); | 
|  | if (MapI != Probs.end()) { | 
|  | FoundProb = true; | 
|  | Prob += MapI->second; | 
|  | } | 
|  | } | 
|  | uint32_t succ_num = std::distance(succ_begin(Src), succ_end(Src)); | 
|  | return FoundProb ? Prob : BranchProbability(1, succ_num); | 
|  | } | 
|  |  | 
|  | /// Set the edge probability for a given edge specified by PredBlock and an | 
|  | /// index to the successors. | 
|  | void BranchProbabilityInfo::setEdgeProbability(const BasicBlock *Src, | 
|  | unsigned IndexInSuccessors, | 
|  | BranchProbability Prob) { | 
|  | Probs[std::make_pair(Src, IndexInSuccessors)] = Prob; | 
|  | Handles.insert(BasicBlockCallbackVH(Src, this)); | 
|  | LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> " | 
|  | << IndexInSuccessors << " successor probability to " << Prob | 
|  | << "\n"); | 
|  | } | 
|  |  | 
|  | raw_ostream & | 
|  | BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS, | 
|  | const BasicBlock *Src, | 
|  | const BasicBlock *Dst) const { | 
|  | const BranchProbability Prob = getEdgeProbability(Src, Dst); | 
|  | OS << "edge " << Src->getName() << " -> " << Dst->getName() | 
|  | << " probability is " << Prob | 
|  | << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n"); | 
|  |  | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) { | 
|  | for (auto I = Probs.begin(), E = Probs.end(); I != E; ++I) { | 
|  | auto Key = I->first; | 
|  | if (Key.first == BB) | 
|  | Probs.erase(Key); | 
|  | } | 
|  | } | 
|  |  | 
|  | void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LI, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName() | 
|  | << " ----\n\n"); | 
|  | LastF = &F; // Store the last function we ran on for printing. | 
|  | assert(PostDominatedByUnreachable.empty()); | 
|  | assert(PostDominatedByColdCall.empty()); | 
|  |  | 
|  | // Record SCC numbers of blocks in the CFG to identify irreducible loops. | 
|  | // FIXME: We could only calculate this if the CFG is known to be irreducible | 
|  | // (perhaps cache this info in LoopInfo if we can easily calculate it there?). | 
|  | int SccNum = 0; | 
|  | SccInfo SccI; | 
|  | for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd(); | 
|  | ++It, ++SccNum) { | 
|  | // Ignore single-block SCCs since they either aren't loops or LoopInfo will | 
|  | // catch them. | 
|  | const std::vector<const BasicBlock *> &Scc = *It; | 
|  | if (Scc.size() == 1) | 
|  | continue; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":"); | 
|  | for (auto *BB : Scc) { | 
|  | LLVM_DEBUG(dbgs() << " " << BB->getName()); | 
|  | SccI.SccNums[BB] = SccNum; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "\n"); | 
|  | } | 
|  |  | 
|  | // Walk the basic blocks in post-order so that we can build up state about | 
|  | // the successors of a block iteratively. | 
|  | for (auto BB : post_order(&F.getEntryBlock())) { | 
|  | LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName() | 
|  | << "\n"); | 
|  | updatePostDominatedByUnreachable(BB); | 
|  | updatePostDominatedByColdCall(BB); | 
|  | // If there is no at least two successors, no sense to set probability. | 
|  | if (BB->getTerminator()->getNumSuccessors() < 2) | 
|  | continue; | 
|  | if (calcMetadataWeights(BB)) | 
|  | continue; | 
|  | if (calcInvokeHeuristics(BB)) | 
|  | continue; | 
|  | if (calcUnreachableHeuristics(BB)) | 
|  | continue; | 
|  | if (calcColdCallHeuristics(BB)) | 
|  | continue; | 
|  | if (calcLoopBranchHeuristics(BB, LI, SccI)) | 
|  | continue; | 
|  | if (calcPointerHeuristics(BB)) | 
|  | continue; | 
|  | if (calcZeroHeuristics(BB, TLI)) | 
|  | continue; | 
|  | if (calcFloatingPointHeuristics(BB)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | PostDominatedByUnreachable.clear(); | 
|  | PostDominatedByColdCall.clear(); | 
|  |  | 
|  | if (PrintBranchProb && | 
|  | (PrintBranchProbFuncName.empty() || | 
|  | F.getName().equals(PrintBranchProbFuncName))) { | 
|  | print(dbgs()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void BranchProbabilityInfoWrapperPass::getAnalysisUsage( | 
|  | AnalysisUsage &AU) const { | 
|  | // We require DT so it's available when LI is available. The LI updating code | 
|  | // asserts that DT is also present so if we don't make sure that we have DT | 
|  | // here, that assert will trigger. | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | AU.addRequired<LoopInfoWrapperPass>(); | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | AU.setPreservesAll(); | 
|  | } | 
|  |  | 
|  | bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) { | 
|  | const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | 
|  | const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); | 
|  | BPI.calculate(F, LI, &TLI); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); } | 
|  |  | 
|  | void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS, | 
|  | const Module *) const { | 
|  | BPI.print(OS); | 
|  | } | 
|  |  | 
|  | AnalysisKey BranchProbabilityAnalysis::Key; | 
|  | BranchProbabilityInfo | 
|  | BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) { | 
|  | BranchProbabilityInfo BPI; | 
|  | BPI.calculate(F, AM.getResult<LoopAnalysis>(F), &AM.getResult<TargetLibraryAnalysis>(F)); | 
|  | return BPI; | 
|  | } | 
|  |  | 
|  | PreservedAnalyses | 
|  | BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { | 
|  | OS << "Printing analysis results of BPI for function " | 
|  | << "'" << F.getName() << "':" | 
|  | << "\n"; | 
|  | AM.getResult<BranchProbabilityAnalysis>(F).print(OS); | 
|  | return PreservedAnalyses::all(); | 
|  | } |