|  | //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass performs global common subexpression elimination on machine | 
|  | // instructions using a scoped hash table based value numbering scheme. It | 
|  | // must be run while the machine function is still in SSA form. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/ScopedHashTable.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetOpcodes.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/MC/MCInstrDesc.h" | 
|  | #include "llvm/MC/MCRegisterInfo.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Allocator.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/RecyclingAllocator.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <cassert> | 
|  | #include <iterator> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "machine-cse" | 
|  |  | 
|  | STATISTIC(NumCoalesces, "Number of copies coalesced"); | 
|  | STATISTIC(NumCSEs,      "Number of common subexpression eliminated"); | 
|  | STATISTIC(NumPhysCSEs, | 
|  | "Number of physreg referencing common subexpr eliminated"); | 
|  | STATISTIC(NumCrossBBCSEs, | 
|  | "Number of cross-MBB physreg referencing CS eliminated"); | 
|  | STATISTIC(NumCommutes,  "Number of copies coalesced after commuting"); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class MachineCSE : public MachineFunctionPass { | 
|  | const TargetInstrInfo *TII; | 
|  | const TargetRegisterInfo *TRI; | 
|  | AliasAnalysis *AA; | 
|  | MachineDominatorTree *DT; | 
|  | MachineRegisterInfo *MRI; | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass identification | 
|  |  | 
|  | MachineCSE() : MachineFunctionPass(ID) { | 
|  | initializeMachineCSEPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override; | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | AU.addRequired<AAResultsWrapperPass>(); | 
|  | AU.addPreservedID(MachineLoopInfoID); | 
|  | AU.addRequired<MachineDominatorTree>(); | 
|  | AU.addPreserved<MachineDominatorTree>(); | 
|  | } | 
|  |  | 
|  | void releaseMemory() override { | 
|  | ScopeMap.clear(); | 
|  | Exps.clear(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | using AllocatorTy = RecyclingAllocator<BumpPtrAllocator, | 
|  | ScopedHashTableVal<MachineInstr *, unsigned>>; | 
|  | using ScopedHTType = | 
|  | ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait, | 
|  | AllocatorTy>; | 
|  | using ScopeType = ScopedHTType::ScopeTy; | 
|  |  | 
|  | unsigned LookAheadLimit = 0; | 
|  | DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap; | 
|  | ScopedHTType VNT; | 
|  | SmallVector<MachineInstr *, 64> Exps; | 
|  | unsigned CurrVN = 0; | 
|  |  | 
|  | bool PerformTrivialCopyPropagation(MachineInstr *MI, | 
|  | MachineBasicBlock *MBB); | 
|  | bool isPhysDefTriviallyDead(unsigned Reg, | 
|  | MachineBasicBlock::const_iterator I, | 
|  | MachineBasicBlock::const_iterator E) const; | 
|  | bool hasLivePhysRegDefUses(const MachineInstr *MI, | 
|  | const MachineBasicBlock *MBB, | 
|  | SmallSet<unsigned,8> &PhysRefs, | 
|  | SmallVectorImpl<unsigned> &PhysDefs, | 
|  | bool &PhysUseDef) const; | 
|  | bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, | 
|  | SmallSet<unsigned,8> &PhysRefs, | 
|  | SmallVectorImpl<unsigned> &PhysDefs, | 
|  | bool &NonLocal) const; | 
|  | bool isCSECandidate(MachineInstr *MI); | 
|  | bool isProfitableToCSE(unsigned CSReg, unsigned Reg, | 
|  | MachineInstr *CSMI, MachineInstr *MI); | 
|  | void EnterScope(MachineBasicBlock *MBB); | 
|  | void ExitScope(MachineBasicBlock *MBB); | 
|  | bool ProcessBlock(MachineBasicBlock *MBB); | 
|  | void ExitScopeIfDone(MachineDomTreeNode *Node, | 
|  | DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren); | 
|  | bool PerformCSE(MachineDomTreeNode *Node); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char MachineCSE::ID = 0; | 
|  |  | 
|  | char &llvm::MachineCSEID = MachineCSE::ID; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE, | 
|  | "Machine Common Subexpression Elimination", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) | 
|  | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) | 
|  | INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE, | 
|  | "Machine Common Subexpression Elimination", false, false) | 
|  |  | 
|  | /// The source register of a COPY machine instruction can be propagated to all | 
|  | /// its users, and this propagation could increase the probability of finding | 
|  | /// common subexpressions. If the COPY has only one user, the COPY itself can | 
|  | /// be removed. | 
|  | bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI, | 
|  | MachineBasicBlock *MBB) { | 
|  | bool Changed = false; | 
|  | for (MachineOperand &MO : MI->operands()) { | 
|  | if (!MO.isReg() || !MO.isUse()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | continue; | 
|  | bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg); | 
|  | MachineInstr *DefMI = MRI->getVRegDef(Reg); | 
|  | if (!DefMI->isCopy()) | 
|  | continue; | 
|  | unsigned SrcReg = DefMI->getOperand(1).getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) | 
|  | continue; | 
|  | if (DefMI->getOperand(0).getSubReg()) | 
|  | continue; | 
|  | // FIXME: We should trivially coalesce subregister copies to expose CSE | 
|  | // opportunities on instructions with truncated operands (see | 
|  | // cse-add-with-overflow.ll). This can be done here as follows: | 
|  | // if (SrcSubReg) | 
|  | //  RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC, | 
|  | //                                     SrcSubReg); | 
|  | // MO.substVirtReg(SrcReg, SrcSubReg, *TRI); | 
|  | // | 
|  | // The 2-addr pass has been updated to handle coalesced subregs. However, | 
|  | // some machine-specific code still can't handle it. | 
|  | // To handle it properly we also need a way find a constrained subregister | 
|  | // class given a super-reg class and subreg index. | 
|  | if (DefMI->getOperand(1).getSubReg()) | 
|  | continue; | 
|  | if (!MRI->constrainRegAttrs(SrcReg, Reg)) | 
|  | continue; | 
|  | LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); | 
|  | LLVM_DEBUG(dbgs() << "***     to: " << *MI); | 
|  |  | 
|  | // Update matching debug values. | 
|  | DefMI->changeDebugValuesDefReg(SrcReg); | 
|  |  | 
|  | // Propagate SrcReg of copies to MI. | 
|  | MO.setReg(SrcReg); | 
|  | MRI->clearKillFlags(SrcReg); | 
|  | // Coalesce single use copies. | 
|  | if (OnlyOneUse) { | 
|  | DefMI->eraseFromParent(); | 
|  | ++NumCoalesces; | 
|  | } | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool | 
|  | MachineCSE::isPhysDefTriviallyDead(unsigned Reg, | 
|  | MachineBasicBlock::const_iterator I, | 
|  | MachineBasicBlock::const_iterator E) const { | 
|  | unsigned LookAheadLeft = LookAheadLimit; | 
|  | while (LookAheadLeft) { | 
|  | // Skip over dbg_value's. | 
|  | I = skipDebugInstructionsForward(I, E); | 
|  |  | 
|  | if (I == E) | 
|  | // Reached end of block, we don't know if register is dead or not. | 
|  | return false; | 
|  |  | 
|  | bool SeenDef = false; | 
|  | for (const MachineOperand &MO : I->operands()) { | 
|  | if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) | 
|  | SeenDef = true; | 
|  | if (!MO.isReg() || !MO.getReg()) | 
|  | continue; | 
|  | if (!TRI->regsOverlap(MO.getReg(), Reg)) | 
|  | continue; | 
|  | if (MO.isUse()) | 
|  | // Found a use! | 
|  | return false; | 
|  | SeenDef = true; | 
|  | } | 
|  | if (SeenDef) | 
|  | // See a def of Reg (or an alias) before encountering any use, it's | 
|  | // trivially dead. | 
|  | return true; | 
|  |  | 
|  | --LookAheadLeft; | 
|  | ++I; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isCallerPreservedOrConstPhysReg(unsigned Reg, | 
|  | const MachineFunction &MF, | 
|  | const TargetRegisterInfo &TRI) { | 
|  | // MachineRegisterInfo::isConstantPhysReg directly called by | 
|  | // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the | 
|  | // reserved registers to be frozen. That doesn't cause a problem  post-ISel as | 
|  | // most (if not all) targets freeze reserved registers right after ISel. | 
|  | // | 
|  | // It does cause issues mid-GlobalISel, however, hence the additional | 
|  | // reservedRegsFrozen check. | 
|  | const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | return TRI.isCallerPreservedPhysReg(Reg, MF) || | 
|  | (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg)); | 
|  | } | 
|  |  | 
|  | /// hasLivePhysRegDefUses - Return true if the specified instruction read/write | 
|  | /// physical registers (except for dead defs of physical registers). It also | 
|  | /// returns the physical register def by reference if it's the only one and the | 
|  | /// instruction does not uses a physical register. | 
|  | bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, | 
|  | const MachineBasicBlock *MBB, | 
|  | SmallSet<unsigned,8> &PhysRefs, | 
|  | SmallVectorImpl<unsigned> &PhysDefs, | 
|  | bool &PhysUseDef) const{ | 
|  | // First, add all uses to PhysRefs. | 
|  | for (const MachineOperand &MO : MI->operands()) { | 
|  | if (!MO.isReg() || MO.isDef()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (!Reg) | 
|  | continue; | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | continue; | 
|  | // Reading either caller preserved or constant physregs is ok. | 
|  | if (!isCallerPreservedOrConstPhysReg(Reg, *MI->getMF(), *TRI)) | 
|  | for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) | 
|  | PhysRefs.insert(*AI); | 
|  | } | 
|  |  | 
|  | // Next, collect all defs into PhysDefs.  If any is already in PhysRefs | 
|  | // (which currently contains only uses), set the PhysUseDef flag. | 
|  | PhysUseDef = false; | 
|  | MachineBasicBlock::const_iterator I = MI; I = std::next(I); | 
|  | for (const MachineOperand &MO : MI->operands()) { | 
|  | if (!MO.isReg() || !MO.isDef()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (!Reg) | 
|  | continue; | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | continue; | 
|  | // Check against PhysRefs even if the def is "dead". | 
|  | if (PhysRefs.count(Reg)) | 
|  | PhysUseDef = true; | 
|  | // If the def is dead, it's ok. But the def may not marked "dead". That's | 
|  | // common since this pass is run before livevariables. We can scan | 
|  | // forward a few instructions and check if it is obviously dead. | 
|  | if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end())) | 
|  | PhysDefs.push_back(Reg); | 
|  | } | 
|  |  | 
|  | // Finally, add all defs to PhysRefs as well. | 
|  | for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) | 
|  | for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI) | 
|  | PhysRefs.insert(*AI); | 
|  |  | 
|  | return !PhysRefs.empty(); | 
|  | } | 
|  |  | 
|  | bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, | 
|  | SmallSet<unsigned,8> &PhysRefs, | 
|  | SmallVectorImpl<unsigned> &PhysDefs, | 
|  | bool &NonLocal) const { | 
|  | // For now conservatively returns false if the common subexpression is | 
|  | // not in the same basic block as the given instruction. The only exception | 
|  | // is if the common subexpression is in the sole predecessor block. | 
|  | const MachineBasicBlock *MBB = MI->getParent(); | 
|  | const MachineBasicBlock *CSMBB = CSMI->getParent(); | 
|  |  | 
|  | bool CrossMBB = false; | 
|  | if (CSMBB != MBB) { | 
|  | if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { | 
|  | if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i])) | 
|  | // Avoid extending live range of physical registers if they are | 
|  | //allocatable or reserved. | 
|  | return false; | 
|  | } | 
|  | CrossMBB = true; | 
|  | } | 
|  | MachineBasicBlock::const_iterator I = CSMI; I = std::next(I); | 
|  | MachineBasicBlock::const_iterator E = MI; | 
|  | MachineBasicBlock::const_iterator EE = CSMBB->end(); | 
|  | unsigned LookAheadLeft = LookAheadLimit; | 
|  | while (LookAheadLeft) { | 
|  | // Skip over dbg_value's. | 
|  | while (I != E && I != EE && I->isDebugInstr()) | 
|  | ++I; | 
|  |  | 
|  | if (I == EE) { | 
|  | assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); | 
|  | (void)CrossMBB; | 
|  | CrossMBB = false; | 
|  | NonLocal = true; | 
|  | I = MBB->begin(); | 
|  | EE = MBB->end(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (I == E) | 
|  | return true; | 
|  |  | 
|  | for (const MachineOperand &MO : I->operands()) { | 
|  | // RegMasks go on instructions like calls that clobber lots of physregs. | 
|  | // Don't attempt to CSE across such an instruction. | 
|  | if (MO.isRegMask()) | 
|  | return false; | 
|  | if (!MO.isReg() || !MO.isDef()) | 
|  | continue; | 
|  | unsigned MOReg = MO.getReg(); | 
|  | if (TargetRegisterInfo::isVirtualRegister(MOReg)) | 
|  | continue; | 
|  | if (PhysRefs.count(MOReg)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | --LookAheadLeft; | 
|  | ++I; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool MachineCSE::isCSECandidate(MachineInstr *MI) { | 
|  | if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() || | 
|  | MI->isInlineAsm() || MI->isDebugInstr()) | 
|  | return false; | 
|  |  | 
|  | // Ignore copies. | 
|  | if (MI->isCopyLike()) | 
|  | return false; | 
|  |  | 
|  | // Ignore stuff that we obviously can't move. | 
|  | if (MI->mayStore() || MI->isCall() || MI->isTerminator() || | 
|  | MI->hasUnmodeledSideEffects()) | 
|  | return false; | 
|  |  | 
|  | if (MI->mayLoad()) { | 
|  | // Okay, this instruction does a load. As a refinement, we allow the target | 
|  | // to decide whether the loaded value is actually a constant. If so, we can | 
|  | // actually use it as a load. | 
|  | if (!MI->isDereferenceableInvariantLoad(AA)) | 
|  | // FIXME: we should be able to hoist loads with no other side effects if | 
|  | // there are no other instructions which can change memory in this loop. | 
|  | // This is a trivial form of alias analysis. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Ignore stack guard loads, otherwise the register that holds CSEed value may | 
|  | // be spilled and get loaded back with corrupted data. | 
|  | if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a | 
|  | /// common expression that defines Reg. | 
|  | bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg, | 
|  | MachineInstr *CSMI, MachineInstr *MI) { | 
|  | // FIXME: Heuristics that works around the lack the live range splitting. | 
|  |  | 
|  | // If CSReg is used at all uses of Reg, CSE should not increase register | 
|  | // pressure of CSReg. | 
|  | bool MayIncreasePressure = true; | 
|  | if (TargetRegisterInfo::isVirtualRegister(CSReg) && | 
|  | TargetRegisterInfo::isVirtualRegister(Reg)) { | 
|  | MayIncreasePressure = false; | 
|  | SmallPtrSet<MachineInstr*, 8> CSUses; | 
|  | for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) { | 
|  | CSUses.insert(&MI); | 
|  | } | 
|  | for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { | 
|  | if (!CSUses.count(&MI)) { | 
|  | MayIncreasePressure = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!MayIncreasePressure) return true; | 
|  |  | 
|  | // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in | 
|  | // an immediate predecessor. We don't want to increase register pressure and | 
|  | // end up causing other computation to be spilled. | 
|  | if (TII->isAsCheapAsAMove(*MI)) { | 
|  | MachineBasicBlock *CSBB = CSMI->getParent(); | 
|  | MachineBasicBlock *BB = MI->getParent(); | 
|  | if (CSBB != BB && !CSBB->isSuccessor(BB)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Heuristics #2: If the expression doesn't not use a vr and the only use | 
|  | // of the redundant computation are copies, do not cse. | 
|  | bool HasVRegUse = false; | 
|  | for (const MachineOperand &MO : MI->operands()) { | 
|  | if (MO.isReg() && MO.isUse() && | 
|  | TargetRegisterInfo::isVirtualRegister(MO.getReg())) { | 
|  | HasVRegUse = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!HasVRegUse) { | 
|  | bool HasNonCopyUse = false; | 
|  | for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { | 
|  | // Ignore copies. | 
|  | if (!MI.isCopyLike()) { | 
|  | HasNonCopyUse = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!HasNonCopyUse) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Heuristics #3: If the common subexpression is used by PHIs, do not reuse | 
|  | // it unless the defined value is already used in the BB of the new use. | 
|  | bool HasPHI = false; | 
|  | for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) { | 
|  | HasPHI |= UseMI.isPHI(); | 
|  | if (UseMI.getParent() == MI->getParent()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return !HasPHI; | 
|  | } | 
|  |  | 
|  | void MachineCSE::EnterScope(MachineBasicBlock *MBB) { | 
|  | LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); | 
|  | ScopeType *Scope = new ScopeType(VNT); | 
|  | ScopeMap[MBB] = Scope; | 
|  | } | 
|  |  | 
|  | void MachineCSE::ExitScope(MachineBasicBlock *MBB) { | 
|  | LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); | 
|  | DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); | 
|  | assert(SI != ScopeMap.end()); | 
|  | delete SI->second; | 
|  | ScopeMap.erase(SI); | 
|  | } | 
|  |  | 
|  | bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) { | 
|  | bool Changed = false; | 
|  |  | 
|  | SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; | 
|  | SmallVector<unsigned, 2> ImplicitDefsToUpdate; | 
|  | SmallVector<unsigned, 2> ImplicitDefs; | 
|  | for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) { | 
|  | MachineInstr *MI = &*I; | 
|  | ++I; | 
|  |  | 
|  | if (!isCSECandidate(MI)) | 
|  | continue; | 
|  |  | 
|  | bool FoundCSE = VNT.count(MI); | 
|  | if (!FoundCSE) { | 
|  | // Using trivial copy propagation to find more CSE opportunities. | 
|  | if (PerformTrivialCopyPropagation(MI, MBB)) { | 
|  | Changed = true; | 
|  |  | 
|  | // After coalescing MI itself may become a copy. | 
|  | if (MI->isCopyLike()) | 
|  | continue; | 
|  |  | 
|  | // Try again to see if CSE is possible. | 
|  | FoundCSE = VNT.count(MI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Commute commutable instructions. | 
|  | bool Commuted = false; | 
|  | if (!FoundCSE && MI->isCommutable()) { | 
|  | if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) { | 
|  | Commuted = true; | 
|  | FoundCSE = VNT.count(NewMI); | 
|  | if (NewMI != MI) { | 
|  | // New instruction. It doesn't need to be kept. | 
|  | NewMI->eraseFromParent(); | 
|  | Changed = true; | 
|  | } else if (!FoundCSE) | 
|  | // MI was changed but it didn't help, commute it back! | 
|  | (void)TII->commuteInstruction(*MI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the instruction defines physical registers and the values *may* be | 
|  | // used, then it's not safe to replace it with a common subexpression. | 
|  | // It's also not safe if the instruction uses physical registers. | 
|  | bool CrossMBBPhysDef = false; | 
|  | SmallSet<unsigned, 8> PhysRefs; | 
|  | SmallVector<unsigned, 2> PhysDefs; | 
|  | bool PhysUseDef = false; | 
|  | if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, | 
|  | PhysDefs, PhysUseDef)) { | 
|  | FoundCSE = false; | 
|  |  | 
|  | // ... Unless the CS is local or is in the sole predecessor block | 
|  | // and it also defines the physical register which is not clobbered | 
|  | // in between and the physical register uses were not clobbered. | 
|  | // This can never be the case if the instruction both uses and | 
|  | // defines the same physical register, which was detected above. | 
|  | if (!PhysUseDef) { | 
|  | unsigned CSVN = VNT.lookup(MI); | 
|  | MachineInstr *CSMI = Exps[CSVN]; | 
|  | if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) | 
|  | FoundCSE = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!FoundCSE) { | 
|  | VNT.insert(MI, CurrVN++); | 
|  | Exps.push_back(MI); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Found a common subexpression, eliminate it. | 
|  | unsigned CSVN = VNT.lookup(MI); | 
|  | MachineInstr *CSMI = Exps[CSVN]; | 
|  | LLVM_DEBUG(dbgs() << "Examining: " << *MI); | 
|  | LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); | 
|  |  | 
|  | // Check if it's profitable to perform this CSE. | 
|  | bool DoCSE = true; | 
|  | unsigned NumDefs = MI->getNumDefs(); | 
|  |  | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) { | 
|  | MachineOperand &MO = MI->getOperand(i); | 
|  | if (!MO.isReg() || !MO.isDef()) | 
|  | continue; | 
|  | unsigned OldReg = MO.getReg(); | 
|  | unsigned NewReg = CSMI->getOperand(i).getReg(); | 
|  |  | 
|  | // Go through implicit defs of CSMI and MI, if a def is not dead at MI, | 
|  | // we should make sure it is not dead at CSMI. | 
|  | if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead()) | 
|  | ImplicitDefsToUpdate.push_back(i); | 
|  |  | 
|  | // Keep track of implicit defs of CSMI and MI, to clear possibly | 
|  | // made-redundant kill flags. | 
|  | if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg) | 
|  | ImplicitDefs.push_back(OldReg); | 
|  |  | 
|  | if (OldReg == NewReg) { | 
|  | --NumDefs; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | assert(TargetRegisterInfo::isVirtualRegister(OldReg) && | 
|  | TargetRegisterInfo::isVirtualRegister(NewReg) && | 
|  | "Do not CSE physical register defs!"); | 
|  |  | 
|  | if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) { | 
|  | LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); | 
|  | DoCSE = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Don't perform CSE if the result of the new instruction cannot exist | 
|  | // within the constraints (register class, bank, or low-level type) of | 
|  | // the old instruction. | 
|  | if (!MRI->constrainRegAttrs(NewReg, OldReg)) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "*** Not the same register constraints, avoid CSE!\n"); | 
|  | DoCSE = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | CSEPairs.push_back(std::make_pair(OldReg, NewReg)); | 
|  | --NumDefs; | 
|  | } | 
|  |  | 
|  | // Actually perform the elimination. | 
|  | if (DoCSE) { | 
|  | for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) { | 
|  | unsigned OldReg = CSEPair.first; | 
|  | unsigned NewReg = CSEPair.second; | 
|  | // OldReg may have been unused but is used now, clear the Dead flag | 
|  | MachineInstr *Def = MRI->getUniqueVRegDef(NewReg); | 
|  | assert(Def != nullptr && "CSEd register has no unique definition?"); | 
|  | Def->clearRegisterDeads(NewReg); | 
|  | // Replace with NewReg and clear kill flags which may be wrong now. | 
|  | MRI->replaceRegWith(OldReg, NewReg); | 
|  | MRI->clearKillFlags(NewReg); | 
|  | } | 
|  |  | 
|  | // Go through implicit defs of CSMI and MI, if a def is not dead at MI, | 
|  | // we should make sure it is not dead at CSMI. | 
|  | for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate) | 
|  | CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false); | 
|  |  | 
|  | // Go through implicit defs of CSMI and MI, and clear the kill flags on | 
|  | // their uses in all the instructions between CSMI and MI. | 
|  | // We might have made some of the kill flags redundant, consider: | 
|  | //   subs  ... implicit-def %nzcv    <- CSMI | 
|  | //   csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore | 
|  | //   subs  ... implicit-def %nzcv    <- MI, to be eliminated | 
|  | //   csinc ... implicit killed %nzcv | 
|  | // Since we eliminated MI, and reused a register imp-def'd by CSMI | 
|  | // (here %nzcv), that register, if it was killed before MI, should have | 
|  | // that kill flag removed, because it's lifetime was extended. | 
|  | if (CSMI->getParent() == MI->getParent()) { | 
|  | for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II) | 
|  | for (auto ImplicitDef : ImplicitDefs) | 
|  | if (MachineOperand *MO = II->findRegisterUseOperand( | 
|  | ImplicitDef, /*isKill=*/true, TRI)) | 
|  | MO->setIsKill(false); | 
|  | } else { | 
|  | // If the instructions aren't in the same BB, bail out and clear the | 
|  | // kill flag on all uses of the imp-def'd register. | 
|  | for (auto ImplicitDef : ImplicitDefs) | 
|  | MRI->clearKillFlags(ImplicitDef); | 
|  | } | 
|  |  | 
|  | if (CrossMBBPhysDef) { | 
|  | // Add physical register defs now coming in from a predecessor to MBB | 
|  | // livein list. | 
|  | while (!PhysDefs.empty()) { | 
|  | unsigned LiveIn = PhysDefs.pop_back_val(); | 
|  | if (!MBB->isLiveIn(LiveIn)) | 
|  | MBB->addLiveIn(LiveIn); | 
|  | } | 
|  | ++NumCrossBBCSEs; | 
|  | } | 
|  |  | 
|  | MI->eraseFromParent(); | 
|  | ++NumCSEs; | 
|  | if (!PhysRefs.empty()) | 
|  | ++NumPhysCSEs; | 
|  | if (Commuted) | 
|  | ++NumCommutes; | 
|  | Changed = true; | 
|  | } else { | 
|  | VNT.insert(MI, CurrVN++); | 
|  | Exps.push_back(MI); | 
|  | } | 
|  | CSEPairs.clear(); | 
|  | ImplicitDefsToUpdate.clear(); | 
|  | ImplicitDefs.clear(); | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given | 
|  | /// dominator tree node if its a leaf or all of its children are done. Walk | 
|  | /// up the dominator tree to destroy ancestors which are now done. | 
|  | void | 
|  | MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, | 
|  | DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) { | 
|  | if (OpenChildren[Node]) | 
|  | return; | 
|  |  | 
|  | // Pop scope. | 
|  | ExitScope(Node->getBlock()); | 
|  |  | 
|  | // Now traverse upwards to pop ancestors whose offsprings are all done. | 
|  | while (MachineDomTreeNode *Parent = Node->getIDom()) { | 
|  | unsigned Left = --OpenChildren[Parent]; | 
|  | if (Left != 0) | 
|  | break; | 
|  | ExitScope(Parent->getBlock()); | 
|  | Node = Parent; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { | 
|  | SmallVector<MachineDomTreeNode*, 32> Scopes; | 
|  | SmallVector<MachineDomTreeNode*, 8> WorkList; | 
|  | DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; | 
|  |  | 
|  | CurrVN = 0; | 
|  |  | 
|  | // Perform a DFS walk to determine the order of visit. | 
|  | WorkList.push_back(Node); | 
|  | do { | 
|  | Node = WorkList.pop_back_val(); | 
|  | Scopes.push_back(Node); | 
|  | const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); | 
|  | OpenChildren[Node] = Children.size(); | 
|  | for (MachineDomTreeNode *Child : Children) | 
|  | WorkList.push_back(Child); | 
|  | } while (!WorkList.empty()); | 
|  |  | 
|  | // Now perform CSE. | 
|  | bool Changed = false; | 
|  | for (MachineDomTreeNode *Node : Scopes) { | 
|  | MachineBasicBlock *MBB = Node->getBlock(); | 
|  | EnterScope(MBB); | 
|  | Changed |= ProcessBlock(MBB); | 
|  | // If it's a leaf node, it's done. Traverse upwards to pop ancestors. | 
|  | ExitScopeIfDone(Node, OpenChildren); | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { | 
|  | if (skipFunction(MF.getFunction())) | 
|  | return false; | 
|  |  | 
|  | TII = MF.getSubtarget().getInstrInfo(); | 
|  | TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | MRI = &MF.getRegInfo(); | 
|  | AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); | 
|  | DT = &getAnalysis<MachineDominatorTree>(); | 
|  | LookAheadLimit = TII->getMachineCSELookAheadLimit(); | 
|  | return PerformCSE(DT->getRootNode()); | 
|  | } |