|  | //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the PowerPC implementation of the TargetInstrInfo class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "PPCInstrInfo.h" | 
|  | #include "MCTargetDesc/PPCPredicates.h" | 
|  | #include "PPC.h" | 
|  | #include "PPCHazardRecognizers.h" | 
|  | #include "PPCInstrBuilder.h" | 
|  | #include "PPCMachineFunctionInfo.h" | 
|  | #include "PPCTargetMachine.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/LiveIntervals.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/PseudoSourceValue.h" | 
|  | #include "llvm/CodeGen/ScheduleDAG.h" | 
|  | #include "llvm/CodeGen/SlotIndexes.h" | 
|  | #include "llvm/CodeGen/StackMaps.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/MCInst.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/TargetRegistry.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "ppc-instr-info" | 
|  |  | 
|  | #define GET_INSTRMAP_INFO | 
|  | #define GET_INSTRINFO_CTOR_DTOR | 
|  | #include "PPCGenInstrInfo.inc" | 
|  |  | 
|  | STATISTIC(NumStoreSPILLVSRRCAsVec, | 
|  | "Number of spillvsrrc spilled to stack as vec"); | 
|  | STATISTIC(NumStoreSPILLVSRRCAsGpr, | 
|  | "Number of spillvsrrc spilled to stack as gpr"); | 
|  | STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); | 
|  | STATISTIC(CmpIselsConverted, | 
|  | "Number of ISELs that depend on comparison of constants converted"); | 
|  | STATISTIC(MissedConvertibleImmediateInstrs, | 
|  | "Number of compare-immediate instructions fed by constants"); | 
|  | STATISTIC(NumRcRotatesConvertedToRcAnd, | 
|  | "Number of record-form rotates converted to record-form andi"); | 
|  |  | 
|  | static cl:: | 
|  | opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, | 
|  | cl::desc("Disable analysis for CTR loops")); | 
|  |  | 
|  | static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", | 
|  | cl::desc("Disable compare instruction optimization"), cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", | 
|  | cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), | 
|  | cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, | 
|  | cl::desc("Use the old (incorrect) instruction latency calculation")); | 
|  |  | 
|  | // Index into the OpcodesForSpill array. | 
|  | enum SpillOpcodeKey { | 
|  | SOK_Int4Spill, | 
|  | SOK_Int8Spill, | 
|  | SOK_Float8Spill, | 
|  | SOK_Float4Spill, | 
|  | SOK_CRSpill, | 
|  | SOK_CRBitSpill, | 
|  | SOK_VRVectorSpill, | 
|  | SOK_VSXVectorSpill, | 
|  | SOK_VectorFloat8Spill, | 
|  | SOK_VectorFloat4Spill, | 
|  | SOK_VRSaveSpill, | 
|  | SOK_QuadFloat8Spill, | 
|  | SOK_QuadFloat4Spill, | 
|  | SOK_QuadBitSpill, | 
|  | SOK_SpillToVSR, | 
|  | SOK_SPESpill, | 
|  | SOK_SPE4Spill, | 
|  | SOK_LastOpcodeSpill  // This must be last on the enum. | 
|  | }; | 
|  |  | 
|  | // Pin the vtable to this file. | 
|  | void PPCInstrInfo::anchor() {} | 
|  |  | 
|  | PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) | 
|  | : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, | 
|  | /* CatchRetOpcode */ -1, | 
|  | STI.isPPC64() ? PPC::BLR8 : PPC::BLR), | 
|  | Subtarget(STI), RI(STI.getTargetMachine()) {} | 
|  |  | 
|  | /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for | 
|  | /// this target when scheduling the DAG. | 
|  | ScheduleHazardRecognizer * | 
|  | PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, | 
|  | const ScheduleDAG *DAG) const { | 
|  | unsigned Directive = | 
|  | static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); | 
|  | if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || | 
|  | Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { | 
|  | const InstrItineraryData *II = | 
|  | static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); | 
|  | return new ScoreboardHazardRecognizer(II, DAG); | 
|  | } | 
|  |  | 
|  | return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); | 
|  | } | 
|  |  | 
|  | /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer | 
|  | /// to use for this target when scheduling the DAG. | 
|  | ScheduleHazardRecognizer * | 
|  | PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, | 
|  | const ScheduleDAG *DAG) const { | 
|  | unsigned Directive = | 
|  | DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective(); | 
|  |  | 
|  | // FIXME: Leaving this as-is until we have POWER9 scheduling info | 
|  | if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) | 
|  | return new PPCDispatchGroupSBHazardRecognizer(II, DAG); | 
|  |  | 
|  | // Most subtargets use a PPC970 recognizer. | 
|  | if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && | 
|  | Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { | 
|  | assert(DAG->TII && "No InstrInfo?"); | 
|  |  | 
|  | return new PPCHazardRecognizer970(*DAG); | 
|  | } | 
|  |  | 
|  | return new ScoreboardHazardRecognizer(II, DAG); | 
|  | } | 
|  |  | 
|  | unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, | 
|  | const MachineInstr &MI, | 
|  | unsigned *PredCost) const { | 
|  | if (!ItinData || UseOldLatencyCalc) | 
|  | return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); | 
|  |  | 
|  | // The default implementation of getInstrLatency calls getStageLatency, but | 
|  | // getStageLatency does not do the right thing for us. While we have | 
|  | // itinerary, most cores are fully pipelined, and so the itineraries only | 
|  | // express the first part of the pipeline, not every stage. Instead, we need | 
|  | // to use the listed output operand cycle number (using operand 0 here, which | 
|  | // is an output). | 
|  |  | 
|  | unsigned Latency = 1; | 
|  | unsigned DefClass = MI.getDesc().getSchedClass(); | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) | 
|  | continue; | 
|  |  | 
|  | int Cycle = ItinData->getOperandCycle(DefClass, i); | 
|  | if (Cycle < 0) | 
|  | continue; | 
|  |  | 
|  | Latency = std::max(Latency, (unsigned) Cycle); | 
|  | } | 
|  |  | 
|  | return Latency; | 
|  | } | 
|  |  | 
|  | int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, | 
|  | const MachineInstr &DefMI, unsigned DefIdx, | 
|  | const MachineInstr &UseMI, | 
|  | unsigned UseIdx) const { | 
|  | int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, | 
|  | UseMI, UseIdx); | 
|  |  | 
|  | if (!DefMI.getParent()) | 
|  | return Latency; | 
|  |  | 
|  | const MachineOperand &DefMO = DefMI.getOperand(DefIdx); | 
|  | unsigned Reg = DefMO.getReg(); | 
|  |  | 
|  | bool IsRegCR; | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) { | 
|  | const MachineRegisterInfo *MRI = | 
|  | &DefMI.getParent()->getParent()->getRegInfo(); | 
|  | IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || | 
|  | MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); | 
|  | } else { | 
|  | IsRegCR = PPC::CRRCRegClass.contains(Reg) || | 
|  | PPC::CRBITRCRegClass.contains(Reg); | 
|  | } | 
|  |  | 
|  | if (UseMI.isBranch() && IsRegCR) { | 
|  | if (Latency < 0) | 
|  | Latency = getInstrLatency(ItinData, DefMI); | 
|  |  | 
|  | // On some cores, there is an additional delay between writing to a condition | 
|  | // register, and using it from a branch. | 
|  | unsigned Directive = Subtarget.getDarwinDirective(); | 
|  | switch (Directive) { | 
|  | default: break; | 
|  | case PPC::DIR_7400: | 
|  | case PPC::DIR_750: | 
|  | case PPC::DIR_970: | 
|  | case PPC::DIR_E5500: | 
|  | case PPC::DIR_PWR4: | 
|  | case PPC::DIR_PWR5: | 
|  | case PPC::DIR_PWR5X: | 
|  | case PPC::DIR_PWR6: | 
|  | case PPC::DIR_PWR6X: | 
|  | case PPC::DIR_PWR7: | 
|  | case PPC::DIR_PWR8: | 
|  | // FIXME: Is this needed for POWER9? | 
|  | Latency += 2; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Latency; | 
|  | } | 
|  |  | 
|  | // This function does not list all associative and commutative operations, but | 
|  | // only those worth feeding through the machine combiner in an attempt to | 
|  | // reduce the critical path. Mostly, this means floating-point operations, | 
|  | // because they have high latencies (compared to other operations, such and | 
|  | // and/or, which are also associative and commutative, but have low latencies). | 
|  | bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { | 
|  | switch (Inst.getOpcode()) { | 
|  | // FP Add: | 
|  | case PPC::FADD: | 
|  | case PPC::FADDS: | 
|  | // FP Multiply: | 
|  | case PPC::FMUL: | 
|  | case PPC::FMULS: | 
|  | // Altivec Add: | 
|  | case PPC::VADDFP: | 
|  | // VSX Add: | 
|  | case PPC::XSADDDP: | 
|  | case PPC::XVADDDP: | 
|  | case PPC::XVADDSP: | 
|  | case PPC::XSADDSP: | 
|  | // VSX Multiply: | 
|  | case PPC::XSMULDP: | 
|  | case PPC::XVMULDP: | 
|  | case PPC::XVMULSP: | 
|  | case PPC::XSMULSP: | 
|  | // QPX Add: | 
|  | case PPC::QVFADD: | 
|  | case PPC::QVFADDS: | 
|  | case PPC::QVFADDSs: | 
|  | // QPX Multiply: | 
|  | case PPC::QVFMUL: | 
|  | case PPC::QVFMULS: | 
|  | case PPC::QVFMULSs: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::getMachineCombinerPatterns( | 
|  | MachineInstr &Root, | 
|  | SmallVectorImpl<MachineCombinerPattern> &Patterns) const { | 
|  | // Using the machine combiner in this way is potentially expensive, so | 
|  | // restrict to when aggressive optimizations are desired. | 
|  | if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) | 
|  | return false; | 
|  |  | 
|  | // FP reassociation is only legal when we don't need strict IEEE semantics. | 
|  | if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) | 
|  | return false; | 
|  |  | 
|  | return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); | 
|  | } | 
|  |  | 
|  | // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. | 
|  | bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, | 
|  | unsigned &SrcReg, unsigned &DstReg, | 
|  | unsigned &SubIdx) const { | 
|  | switch (MI.getOpcode()) { | 
|  | default: return false; | 
|  | case PPC::EXTSW: | 
|  | case PPC::EXTSW_32: | 
|  | case PPC::EXTSW_32_64: | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SubIdx = PPC::sub_32; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, | 
|  | int &FrameIndex) const { | 
|  | unsigned Opcode = MI.getOpcode(); | 
|  | const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); | 
|  | const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; | 
|  |  | 
|  | if (End != std::find(OpcodesForSpill, End, Opcode)) { | 
|  | // Check for the operands added by addFrameReference (the immediate is the | 
|  | // offset which defaults to 0). | 
|  | if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && | 
|  | MI.getOperand(2).isFI()) { | 
|  | FrameIndex = MI.getOperand(2).getIndex(); | 
|  | return MI.getOperand(0).getReg(); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // For opcodes with the ReMaterializable flag set, this function is called to | 
|  | // verify the instruction is really rematable. | 
|  | bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, | 
|  | AliasAnalysis *AA) const { | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | // This function should only be called for opcodes with the ReMaterializable | 
|  | // flag set. | 
|  | llvm_unreachable("Unknown rematerializable operation!"); | 
|  | break; | 
|  | case PPC::LI: | 
|  | case PPC::LI8: | 
|  | case PPC::LIS: | 
|  | case PPC::LIS8: | 
|  | case PPC::QVGPCI: | 
|  | case PPC::ADDIStocHA: | 
|  | case PPC::ADDItocL: | 
|  | case PPC::LOAD_STACK_GUARD: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, | 
|  | int &FrameIndex) const { | 
|  | unsigned Opcode = MI.getOpcode(); | 
|  | const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); | 
|  | const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; | 
|  |  | 
|  | if (End != std::find(OpcodesForSpill, End, Opcode)) { | 
|  | if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && | 
|  | MI.getOperand(2).isFI()) { | 
|  | FrameIndex = MI.getOperand(2).getIndex(); | 
|  | return MI.getOperand(0).getReg(); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, | 
|  | unsigned OpIdx1, | 
|  | unsigned OpIdx2) const { | 
|  | MachineFunction &MF = *MI.getParent()->getParent(); | 
|  |  | 
|  | // Normal instructions can be commuted the obvious way. | 
|  | if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo) | 
|  | return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); | 
|  | // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a | 
|  | // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because | 
|  | // changing the relative order of the mask operands might change what happens | 
|  | // to the high-bits of the mask (and, thus, the result). | 
|  |  | 
|  | // Cannot commute if it has a non-zero rotate count. | 
|  | if (MI.getOperand(3).getImm() != 0) | 
|  | return nullptr; | 
|  |  | 
|  | // If we have a zero rotate count, we have: | 
|  | //   M = mask(MB,ME) | 
|  | //   Op0 = (Op1 & ~M) | (Op2 & M) | 
|  | // Change this to: | 
|  | //   M = mask((ME+1)&31, (MB-1)&31) | 
|  | //   Op0 = (Op2 & ~M) | (Op1 & M) | 
|  |  | 
|  | // Swap op1/op2 | 
|  | assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && | 
|  | "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo."); | 
|  | unsigned Reg0 = MI.getOperand(0).getReg(); | 
|  | unsigned Reg1 = MI.getOperand(1).getReg(); | 
|  | unsigned Reg2 = MI.getOperand(2).getReg(); | 
|  | unsigned SubReg1 = MI.getOperand(1).getSubReg(); | 
|  | unsigned SubReg2 = MI.getOperand(2).getSubReg(); | 
|  | bool Reg1IsKill = MI.getOperand(1).isKill(); | 
|  | bool Reg2IsKill = MI.getOperand(2).isKill(); | 
|  | bool ChangeReg0 = false; | 
|  | // If machine instrs are no longer in two-address forms, update | 
|  | // destination register as well. | 
|  | if (Reg0 == Reg1) { | 
|  | // Must be two address instruction! | 
|  | assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && | 
|  | "Expecting a two-address instruction!"); | 
|  | assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); | 
|  | Reg2IsKill = false; | 
|  | ChangeReg0 = true; | 
|  | } | 
|  |  | 
|  | // Masks. | 
|  | unsigned MB = MI.getOperand(4).getImm(); | 
|  | unsigned ME = MI.getOperand(5).getImm(); | 
|  |  | 
|  | // We can't commute a trivial mask (there is no way to represent an all-zero | 
|  | // mask). | 
|  | if (MB == 0 && ME == 31) | 
|  | return nullptr; | 
|  |  | 
|  | if (NewMI) { | 
|  | // Create a new instruction. | 
|  | unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); | 
|  | bool Reg0IsDead = MI.getOperand(0).isDead(); | 
|  | return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) | 
|  | .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) | 
|  | .addReg(Reg2, getKillRegState(Reg2IsKill)) | 
|  | .addReg(Reg1, getKillRegState(Reg1IsKill)) | 
|  | .addImm((ME + 1) & 31) | 
|  | .addImm((MB - 1) & 31); | 
|  | } | 
|  |  | 
|  | if (ChangeReg0) { | 
|  | MI.getOperand(0).setReg(Reg2); | 
|  | MI.getOperand(0).setSubReg(SubReg2); | 
|  | } | 
|  | MI.getOperand(2).setReg(Reg1); | 
|  | MI.getOperand(1).setReg(Reg2); | 
|  | MI.getOperand(2).setSubReg(SubReg1); | 
|  | MI.getOperand(1).setSubReg(SubReg2); | 
|  | MI.getOperand(2).setIsKill(Reg1IsKill); | 
|  | MI.getOperand(1).setIsKill(Reg2IsKill); | 
|  |  | 
|  | // Swap the mask around. | 
|  | MI.getOperand(4).setImm((ME + 1) & 31); | 
|  | MI.getOperand(5).setImm((MB - 1) & 31); | 
|  | return &MI; | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, | 
|  | unsigned &SrcOpIdx2) const { | 
|  | // For VSX A-Type FMA instructions, it is the first two operands that can be | 
|  | // commuted, however, because the non-encoded tied input operand is listed | 
|  | // first, the operands to swap are actually the second and third. | 
|  |  | 
|  | int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); | 
|  | if (AltOpc == -1) | 
|  | return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); | 
|  |  | 
|  | // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 | 
|  | // and SrcOpIdx2. | 
|  | return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); | 
|  | } | 
|  |  | 
|  | void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI) const { | 
|  | // This function is used for scheduling, and the nop wanted here is the type | 
|  | // that terminates dispatch groups on the POWER cores. | 
|  | unsigned Directive = Subtarget.getDarwinDirective(); | 
|  | unsigned Opcode; | 
|  | switch (Directive) { | 
|  | default:            Opcode = PPC::NOP; break; | 
|  | case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; | 
|  | case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; | 
|  | case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ | 
|  | // FIXME: Update when POWER9 scheduling model is ready. | 
|  | case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; | 
|  | } | 
|  |  | 
|  | DebugLoc DL; | 
|  | BuildMI(MBB, MI, DL, get(Opcode)); | 
|  | } | 
|  |  | 
|  | /// Return the noop instruction to use for a noop. | 
|  | void PPCInstrInfo::getNoop(MCInst &NopInst) const { | 
|  | NopInst.setOpcode(PPC::NOP); | 
|  | } | 
|  |  | 
|  | // Branch analysis. | 
|  | // Note: If the condition register is set to CTR or CTR8 then this is a | 
|  | // BDNZ (imm == 1) or BDZ (imm == 0) branch. | 
|  | bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock *&TBB, | 
|  | MachineBasicBlock *&FBB, | 
|  | SmallVectorImpl<MachineOperand> &Cond, | 
|  | bool AllowModify) const { | 
|  | bool isPPC64 = Subtarget.isPPC64(); | 
|  |  | 
|  | // If the block has no terminators, it just falls into the block after it. | 
|  | MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); | 
|  | if (I == MBB.end()) | 
|  | return false; | 
|  |  | 
|  | if (!isUnpredicatedTerminator(*I)) | 
|  | return false; | 
|  |  | 
|  | if (AllowModify) { | 
|  | // If the BB ends with an unconditional branch to the fallthrough BB, | 
|  | // we eliminate the branch instruction. | 
|  | if (I->getOpcode() == PPC::B && | 
|  | MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { | 
|  | I->eraseFromParent(); | 
|  |  | 
|  | // We update iterator after deleting the last branch. | 
|  | I = MBB.getLastNonDebugInstr(); | 
|  | if (I == MBB.end() || !isUnpredicatedTerminator(*I)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Get the last instruction in the block. | 
|  | MachineInstr &LastInst = *I; | 
|  |  | 
|  | // If there is only one terminator instruction, process it. | 
|  | if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { | 
|  | if (LastInst.getOpcode() == PPC::B) { | 
|  | if (!LastInst.getOperand(0).isMBB()) | 
|  | return true; | 
|  | TBB = LastInst.getOperand(0).getMBB(); | 
|  | return false; | 
|  | } else if (LastInst.getOpcode() == PPC::BCC) { | 
|  | if (!LastInst.getOperand(2).isMBB()) | 
|  | return true; | 
|  | // Block ends with fall-through condbranch. | 
|  | TBB = LastInst.getOperand(2).getMBB(); | 
|  | Cond.push_back(LastInst.getOperand(0)); | 
|  | Cond.push_back(LastInst.getOperand(1)); | 
|  | return false; | 
|  | } else if (LastInst.getOpcode() == PPC::BC) { | 
|  | if (!LastInst.getOperand(1).isMBB()) | 
|  | return true; | 
|  | // Block ends with fall-through condbranch. | 
|  | TBB = LastInst.getOperand(1).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); | 
|  | Cond.push_back(LastInst.getOperand(0)); | 
|  | return false; | 
|  | } else if (LastInst.getOpcode() == PPC::BCn) { | 
|  | if (!LastInst.getOperand(1).isMBB()) | 
|  | return true; | 
|  | // Block ends with fall-through condbranch. | 
|  | TBB = LastInst.getOperand(1).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); | 
|  | Cond.push_back(LastInst.getOperand(0)); | 
|  | return false; | 
|  | } else if (LastInst.getOpcode() == PPC::BDNZ8 || | 
|  | LastInst.getOpcode() == PPC::BDNZ) { | 
|  | if (!LastInst.getOperand(0).isMBB()) | 
|  | return true; | 
|  | if (DisableCTRLoopAnal) | 
|  | return true; | 
|  | TBB = LastInst.getOperand(0).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(1)); | 
|  | Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, | 
|  | true)); | 
|  | return false; | 
|  | } else if (LastInst.getOpcode() == PPC::BDZ8 || | 
|  | LastInst.getOpcode() == PPC::BDZ) { | 
|  | if (!LastInst.getOperand(0).isMBB()) | 
|  | return true; | 
|  | if (DisableCTRLoopAnal) | 
|  | return true; | 
|  | TBB = LastInst.getOperand(0).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(0)); | 
|  | Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, | 
|  | true)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise, don't know what this is. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Get the instruction before it if it's a terminator. | 
|  | MachineInstr &SecondLastInst = *I; | 
|  |  | 
|  | // If there are three terminators, we don't know what sort of block this is. | 
|  | if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) | 
|  | return true; | 
|  |  | 
|  | // If the block ends with PPC::B and PPC:BCC, handle it. | 
|  | if (SecondLastInst.getOpcode() == PPC::BCC && | 
|  | LastInst.getOpcode() == PPC::B) { | 
|  | if (!SecondLastInst.getOperand(2).isMBB() || | 
|  | !LastInst.getOperand(0).isMBB()) | 
|  | return true; | 
|  | TBB = SecondLastInst.getOperand(2).getMBB(); | 
|  | Cond.push_back(SecondLastInst.getOperand(0)); | 
|  | Cond.push_back(SecondLastInst.getOperand(1)); | 
|  | FBB = LastInst.getOperand(0).getMBB(); | 
|  | return false; | 
|  | } else if (SecondLastInst.getOpcode() == PPC::BC && | 
|  | LastInst.getOpcode() == PPC::B) { | 
|  | if (!SecondLastInst.getOperand(1).isMBB() || | 
|  | !LastInst.getOperand(0).isMBB()) | 
|  | return true; | 
|  | TBB = SecondLastInst.getOperand(1).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); | 
|  | Cond.push_back(SecondLastInst.getOperand(0)); | 
|  | FBB = LastInst.getOperand(0).getMBB(); | 
|  | return false; | 
|  | } else if (SecondLastInst.getOpcode() == PPC::BCn && | 
|  | LastInst.getOpcode() == PPC::B) { | 
|  | if (!SecondLastInst.getOperand(1).isMBB() || | 
|  | !LastInst.getOperand(0).isMBB()) | 
|  | return true; | 
|  | TBB = SecondLastInst.getOperand(1).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); | 
|  | Cond.push_back(SecondLastInst.getOperand(0)); | 
|  | FBB = LastInst.getOperand(0).getMBB(); | 
|  | return false; | 
|  | } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || | 
|  | SecondLastInst.getOpcode() == PPC::BDNZ) && | 
|  | LastInst.getOpcode() == PPC::B) { | 
|  | if (!SecondLastInst.getOperand(0).isMBB() || | 
|  | !LastInst.getOperand(0).isMBB()) | 
|  | return true; | 
|  | if (DisableCTRLoopAnal) | 
|  | return true; | 
|  | TBB = SecondLastInst.getOperand(0).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(1)); | 
|  | Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, | 
|  | true)); | 
|  | FBB = LastInst.getOperand(0).getMBB(); | 
|  | return false; | 
|  | } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || | 
|  | SecondLastInst.getOpcode() == PPC::BDZ) && | 
|  | LastInst.getOpcode() == PPC::B) { | 
|  | if (!SecondLastInst.getOperand(0).isMBB() || | 
|  | !LastInst.getOperand(0).isMBB()) | 
|  | return true; | 
|  | if (DisableCTRLoopAnal) | 
|  | return true; | 
|  | TBB = SecondLastInst.getOperand(0).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(0)); | 
|  | Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, | 
|  | true)); | 
|  | FBB = LastInst.getOperand(0).getMBB(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the block ends with two PPC:Bs, handle it.  The second one is not | 
|  | // executed, so remove it. | 
|  | if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { | 
|  | if (!SecondLastInst.getOperand(0).isMBB()) | 
|  | return true; | 
|  | TBB = SecondLastInst.getOperand(0).getMBB(); | 
|  | I = LastInst; | 
|  | if (AllowModify) | 
|  | I->eraseFromParent(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise, can't handle this. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, | 
|  | int *BytesRemoved) const { | 
|  | assert(!BytesRemoved && "code size not handled"); | 
|  |  | 
|  | MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); | 
|  | if (I == MBB.end()) | 
|  | return 0; | 
|  |  | 
|  | if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && | 
|  | I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && | 
|  | I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && | 
|  | I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ) | 
|  | return 0; | 
|  |  | 
|  | // Remove the branch. | 
|  | I->eraseFromParent(); | 
|  |  | 
|  | I = MBB.end(); | 
|  |  | 
|  | if (I == MBB.begin()) return 1; | 
|  | --I; | 
|  | if (I->getOpcode() != PPC::BCC && | 
|  | I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && | 
|  | I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && | 
|  | I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ) | 
|  | return 1; | 
|  |  | 
|  | // Remove the branch. | 
|  | I->eraseFromParent(); | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock *TBB, | 
|  | MachineBasicBlock *FBB, | 
|  | ArrayRef<MachineOperand> Cond, | 
|  | const DebugLoc &DL, | 
|  | int *BytesAdded) const { | 
|  | // Shouldn't be a fall through. | 
|  | assert(TBB && "insertBranch must not be told to insert a fallthrough"); | 
|  | assert((Cond.size() == 2 || Cond.size() == 0) && | 
|  | "PPC branch conditions have two components!"); | 
|  | assert(!BytesAdded && "code size not handled"); | 
|  |  | 
|  | bool isPPC64 = Subtarget.isPPC64(); | 
|  |  | 
|  | // One-way branch. | 
|  | if (!FBB) { | 
|  | if (Cond.empty())   // Unconditional branch | 
|  | BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); | 
|  | else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) | 
|  | BuildMI(&MBB, DL, get(Cond[0].getImm() ? | 
|  | (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : | 
|  | (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB); | 
|  | else if (Cond[0].getImm() == PPC::PRED_BIT_SET) | 
|  | BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); | 
|  | else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) | 
|  | BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); | 
|  | else                // Conditional branch | 
|  | BuildMI(&MBB, DL, get(PPC::BCC)) | 
|  | .addImm(Cond[0].getImm()) | 
|  | .add(Cond[1]) | 
|  | .addMBB(TBB); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Two-way Conditional Branch. | 
|  | if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) | 
|  | BuildMI(&MBB, DL, get(Cond[0].getImm() ? | 
|  | (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : | 
|  | (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB); | 
|  | else if (Cond[0].getImm() == PPC::PRED_BIT_SET) | 
|  | BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); | 
|  | else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) | 
|  | BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); | 
|  | else | 
|  | BuildMI(&MBB, DL, get(PPC::BCC)) | 
|  | .addImm(Cond[0].getImm()) | 
|  | .add(Cond[1]) | 
|  | .addMBB(TBB); | 
|  | BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | // Select analysis. | 
|  | bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, | 
|  | ArrayRef<MachineOperand> Cond, | 
|  | unsigned TrueReg, unsigned FalseReg, | 
|  | int &CondCycles, int &TrueCycles, int &FalseCycles) const { | 
|  | if (Cond.size() != 2) | 
|  | return false; | 
|  |  | 
|  | // If this is really a bdnz-like condition, then it cannot be turned into a | 
|  | // select. | 
|  | if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) | 
|  | return false; | 
|  |  | 
|  | // Check register classes. | 
|  | const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); | 
|  | const TargetRegisterClass *RC = | 
|  | RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); | 
|  | if (!RC) | 
|  | return false; | 
|  |  | 
|  | // isel is for regular integer GPRs only. | 
|  | if (!PPC::GPRCRegClass.hasSubClassEq(RC) && | 
|  | !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && | 
|  | !PPC::G8RCRegClass.hasSubClassEq(RC) && | 
|  | !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) | 
|  | return false; | 
|  |  | 
|  | // FIXME: These numbers are for the A2, how well they work for other cores is | 
|  | // an open question. On the A2, the isel instruction has a 2-cycle latency | 
|  | // but single-cycle throughput. These numbers are used in combination with | 
|  | // the MispredictPenalty setting from the active SchedMachineModel. | 
|  | CondCycles = 1; | 
|  | TrueCycles = 1; | 
|  | FalseCycles = 1; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | const DebugLoc &dl, unsigned DestReg, | 
|  | ArrayRef<MachineOperand> Cond, unsigned TrueReg, | 
|  | unsigned FalseReg) const { | 
|  | assert(Cond.size() == 2 && | 
|  | "PPC branch conditions have two components!"); | 
|  |  | 
|  | // Get the register classes. | 
|  | MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); | 
|  | const TargetRegisterClass *RC = | 
|  | RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); | 
|  | assert(RC && "TrueReg and FalseReg must have overlapping register classes"); | 
|  |  | 
|  | bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || | 
|  | PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); | 
|  | assert((Is64Bit || | 
|  | PPC::GPRCRegClass.hasSubClassEq(RC) || | 
|  | PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && | 
|  | "isel is for regular integer GPRs only"); | 
|  |  | 
|  | unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; | 
|  | auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); | 
|  |  | 
|  | unsigned SubIdx = 0; | 
|  | bool SwapOps = false; | 
|  | switch (SelectPred) { | 
|  | case PPC::PRED_EQ: | 
|  | case PPC::PRED_EQ_MINUS: | 
|  | case PPC::PRED_EQ_PLUS: | 
|  | SubIdx = PPC::sub_eq; SwapOps = false; break; | 
|  | case PPC::PRED_NE: | 
|  | case PPC::PRED_NE_MINUS: | 
|  | case PPC::PRED_NE_PLUS: | 
|  | SubIdx = PPC::sub_eq; SwapOps = true; break; | 
|  | case PPC::PRED_LT: | 
|  | case PPC::PRED_LT_MINUS: | 
|  | case PPC::PRED_LT_PLUS: | 
|  | SubIdx = PPC::sub_lt; SwapOps = false; break; | 
|  | case PPC::PRED_GE: | 
|  | case PPC::PRED_GE_MINUS: | 
|  | case PPC::PRED_GE_PLUS: | 
|  | SubIdx = PPC::sub_lt; SwapOps = true; break; | 
|  | case PPC::PRED_GT: | 
|  | case PPC::PRED_GT_MINUS: | 
|  | case PPC::PRED_GT_PLUS: | 
|  | SubIdx = PPC::sub_gt; SwapOps = false; break; | 
|  | case PPC::PRED_LE: | 
|  | case PPC::PRED_LE_MINUS: | 
|  | case PPC::PRED_LE_PLUS: | 
|  | SubIdx = PPC::sub_gt; SwapOps = true; break; | 
|  | case PPC::PRED_UN: | 
|  | case PPC::PRED_UN_MINUS: | 
|  | case PPC::PRED_UN_PLUS: | 
|  | SubIdx = PPC::sub_un; SwapOps = false; break; | 
|  | case PPC::PRED_NU: | 
|  | case PPC::PRED_NU_MINUS: | 
|  | case PPC::PRED_NU_PLUS: | 
|  | SubIdx = PPC::sub_un; SwapOps = true; break; | 
|  | case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break; | 
|  | case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; | 
|  | } | 
|  |  | 
|  | unsigned FirstReg =  SwapOps ? FalseReg : TrueReg, | 
|  | SecondReg = SwapOps ? TrueReg  : FalseReg; | 
|  |  | 
|  | // The first input register of isel cannot be r0. If it is a member | 
|  | // of a register class that can be r0, then copy it first (the | 
|  | // register allocator should eliminate the copy). | 
|  | if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || | 
|  | MRI.getRegClass(FirstReg)->contains(PPC::X0)) { | 
|  | const TargetRegisterClass *FirstRC = | 
|  | MRI.getRegClass(FirstReg)->contains(PPC::X0) ? | 
|  | &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; | 
|  | unsigned OldFirstReg = FirstReg; | 
|  | FirstReg = MRI.createVirtualRegister(FirstRC); | 
|  | BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) | 
|  | .addReg(OldFirstReg); | 
|  | } | 
|  |  | 
|  | BuildMI(MBB, MI, dl, get(OpCode), DestReg) | 
|  | .addReg(FirstReg).addReg(SecondReg) | 
|  | .addReg(Cond[1].getReg(), 0, SubIdx); | 
|  | } | 
|  |  | 
|  | static unsigned getCRBitValue(unsigned CRBit) { | 
|  | unsigned Ret = 4; | 
|  | if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || | 
|  | CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || | 
|  | CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || | 
|  | CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) | 
|  | Ret = 3; | 
|  | if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || | 
|  | CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || | 
|  | CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || | 
|  | CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) | 
|  | Ret = 2; | 
|  | if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || | 
|  | CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || | 
|  | CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || | 
|  | CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) | 
|  | Ret = 1; | 
|  | if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || | 
|  | CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || | 
|  | CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || | 
|  | CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) | 
|  | Ret = 0; | 
|  |  | 
|  | assert(Ret != 4 && "Invalid CR bit register"); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I, | 
|  | const DebugLoc &DL, unsigned DestReg, | 
|  | unsigned SrcReg, bool KillSrc) const { | 
|  | // We can end up with self copies and similar things as a result of VSX copy | 
|  | // legalization. Promote them here. | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  | if (PPC::F8RCRegClass.contains(DestReg) && | 
|  | PPC::VSRCRegClass.contains(SrcReg)) { | 
|  | unsigned SuperReg = | 
|  | TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); | 
|  |  | 
|  | if (VSXSelfCopyCrash && SrcReg == SuperReg) | 
|  | llvm_unreachable("nop VSX copy"); | 
|  |  | 
|  | DestReg = SuperReg; | 
|  | } else if (PPC::F8RCRegClass.contains(SrcReg) && | 
|  | PPC::VSRCRegClass.contains(DestReg)) { | 
|  | unsigned SuperReg = | 
|  | TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); | 
|  |  | 
|  | if (VSXSelfCopyCrash && DestReg == SuperReg) | 
|  | llvm_unreachable("nop VSX copy"); | 
|  |  | 
|  | SrcReg = SuperReg; | 
|  | } | 
|  |  | 
|  | // Different class register copy | 
|  | if (PPC::CRBITRCRegClass.contains(SrcReg) && | 
|  | PPC::GPRCRegClass.contains(DestReg)) { | 
|  | unsigned CRReg = getCRFromCRBit(SrcReg); | 
|  | BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); | 
|  | getKillRegState(KillSrc); | 
|  | // Rotate the CR bit in the CR fields to be the least significant bit and | 
|  | // then mask with 0x1 (MB = ME = 31). | 
|  | BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) | 
|  | .addReg(DestReg, RegState::Kill) | 
|  | .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) | 
|  | .addImm(31) | 
|  | .addImm(31); | 
|  | return; | 
|  | } else if (PPC::CRRCRegClass.contains(SrcReg) && | 
|  | PPC::G8RCRegClass.contains(DestReg)) { | 
|  | BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); | 
|  | getKillRegState(KillSrc); | 
|  | return; | 
|  | } else if (PPC::CRRCRegClass.contains(SrcReg) && | 
|  | PPC::GPRCRegClass.contains(DestReg)) { | 
|  | BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); | 
|  | getKillRegState(KillSrc); | 
|  | return; | 
|  | } else if (PPC::G8RCRegClass.contains(SrcReg) && | 
|  | PPC::VSFRCRegClass.contains(DestReg)) { | 
|  | BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); | 
|  | NumGPRtoVSRSpill++; | 
|  | getKillRegState(KillSrc); | 
|  | return; | 
|  | } else if (PPC::VSFRCRegClass.contains(SrcReg) && | 
|  | PPC::G8RCRegClass.contains(DestReg)) { | 
|  | BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); | 
|  | getKillRegState(KillSrc); | 
|  | return; | 
|  | } else if (PPC::SPERCRegClass.contains(SrcReg) && | 
|  | PPC::SPE4RCRegClass.contains(DestReg)) { | 
|  | BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); | 
|  | getKillRegState(KillSrc); | 
|  | return; | 
|  | } else if (PPC::SPE4RCRegClass.contains(SrcReg) && | 
|  | PPC::SPERCRegClass.contains(DestReg)) { | 
|  | BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); | 
|  | getKillRegState(KillSrc); | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | unsigned Opc; | 
|  | if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = PPC::OR; | 
|  | else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = PPC::OR8; | 
|  | else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = PPC::FMR; | 
|  | else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = PPC::MCRF; | 
|  | else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = PPC::VOR; | 
|  | else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) | 
|  | // There are two different ways this can be done: | 
|  | //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only | 
|  | //      issue in VSU pipeline 0. | 
|  | //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but | 
|  | //      can go to either pipeline. | 
|  | // We'll always use xxlor here, because in practically all cases where | 
|  | // copies are generated, they are close enough to some use that the | 
|  | // lower-latency form is preferable. | 
|  | Opc = PPC::XXLOR; | 
|  | else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || | 
|  | PPC::VSSRCRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; | 
|  | else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = PPC::QVFMR; | 
|  | else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = PPC::QVFMRs; | 
|  | else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = PPC::QVFMRb; | 
|  | else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = PPC::CROR; | 
|  | else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = PPC::EVOR; | 
|  | else | 
|  | llvm_unreachable("Impossible reg-to-reg copy"); | 
|  |  | 
|  | const MCInstrDesc &MCID = get(Opc); | 
|  | if (MCID.getNumOperands() == 3) | 
|  | BuildMI(MBB, I, DL, MCID, DestReg) | 
|  | .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); | 
|  | else | 
|  | BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); | 
|  | } | 
|  |  | 
|  | unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg, | 
|  | const TargetRegisterClass *RC) | 
|  | const { | 
|  | const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); | 
|  | int OpcodeIndex = 0; | 
|  |  | 
|  | if (RC != nullptr) { | 
|  | if (PPC::GPRCRegClass.hasSubClassEq(RC) || | 
|  | PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_Int4Spill; | 
|  | } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || | 
|  | PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_Int8Spill; | 
|  | } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_Float8Spill; | 
|  | } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_Float4Spill; | 
|  | } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_SPESpill; | 
|  | } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_SPE4Spill; | 
|  | } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_CRSpill; | 
|  | } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_CRBitSpill; | 
|  | } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_VRVectorSpill; | 
|  | } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_VSXVectorSpill; | 
|  | } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_VectorFloat8Spill; | 
|  | } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_VectorFloat4Spill; | 
|  | } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_VRSaveSpill; | 
|  | } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_QuadFloat8Spill; | 
|  | } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_QuadFloat4Spill; | 
|  | } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_QuadBitSpill; | 
|  | } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_SpillToVSR; | 
|  | } else { | 
|  | llvm_unreachable("Unknown regclass!"); | 
|  | } | 
|  | } else { | 
|  | if (PPC::GPRCRegClass.contains(Reg) || | 
|  | PPC::GPRC_NOR0RegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_Int4Spill; | 
|  | } else if (PPC::G8RCRegClass.contains(Reg) || | 
|  | PPC::G8RC_NOX0RegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_Int8Spill; | 
|  | } else if (PPC::F8RCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_Float8Spill; | 
|  | } else if (PPC::F4RCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_Float4Spill; | 
|  | } else if (PPC::CRRCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_CRSpill; | 
|  | } else if (PPC::CRBITRCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_CRBitSpill; | 
|  | } else if (PPC::VRRCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_VRVectorSpill; | 
|  | } else if (PPC::VSRCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_VSXVectorSpill; | 
|  | } else if (PPC::VSFRCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_VectorFloat8Spill; | 
|  | } else if (PPC::VSSRCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_VectorFloat4Spill; | 
|  | } else if (PPC::VRSAVERCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_VRSaveSpill; | 
|  | } else if (PPC::QFRCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_QuadFloat8Spill; | 
|  | } else if (PPC::QSRCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_QuadFloat4Spill; | 
|  | } else if (PPC::QBRCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_QuadBitSpill; | 
|  | } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_SpillToVSR; | 
|  | } else { | 
|  | llvm_unreachable("Unknown regclass!"); | 
|  | } | 
|  | } | 
|  | return OpcodesForSpill[OpcodeIndex]; | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg, | 
|  | const TargetRegisterClass *RC) const { | 
|  | const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); | 
|  | int OpcodeIndex = 0; | 
|  |  | 
|  | if (RC != nullptr) { | 
|  | if (PPC::GPRCRegClass.hasSubClassEq(RC) || | 
|  | PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_Int4Spill; | 
|  | } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || | 
|  | PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_Int8Spill; | 
|  | } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_Float8Spill; | 
|  | } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_Float4Spill; | 
|  | } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_SPESpill; | 
|  | } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_SPE4Spill; | 
|  | } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_CRSpill; | 
|  | } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_CRBitSpill; | 
|  | } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_VRVectorSpill; | 
|  | } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_VSXVectorSpill; | 
|  | } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_VectorFloat8Spill; | 
|  | } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_VectorFloat4Spill; | 
|  | } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_VRSaveSpill; | 
|  | } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_QuadFloat8Spill; | 
|  | } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_QuadFloat4Spill; | 
|  | } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_QuadBitSpill; | 
|  | } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { | 
|  | OpcodeIndex = SOK_SpillToVSR; | 
|  | } else { | 
|  | llvm_unreachable("Unknown regclass!"); | 
|  | } | 
|  | } else { | 
|  | if (PPC::GPRCRegClass.contains(Reg) || | 
|  | PPC::GPRC_NOR0RegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_Int4Spill; | 
|  | } else if (PPC::G8RCRegClass.contains(Reg) || | 
|  | PPC::G8RC_NOX0RegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_Int8Spill; | 
|  | } else if (PPC::F8RCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_Float8Spill; | 
|  | } else if (PPC::F4RCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_Float4Spill; | 
|  | } else if (PPC::CRRCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_CRSpill; | 
|  | } else if (PPC::CRBITRCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_CRBitSpill; | 
|  | } else if (PPC::VRRCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_VRVectorSpill; | 
|  | } else if (PPC::VSRCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_VSXVectorSpill; | 
|  | } else if (PPC::VSFRCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_VectorFloat8Spill; | 
|  | } else if (PPC::VSSRCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_VectorFloat4Spill; | 
|  | } else if (PPC::VRSAVERCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_VRSaveSpill; | 
|  | } else if (PPC::QFRCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_QuadFloat8Spill; | 
|  | } else if (PPC::QSRCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_QuadFloat4Spill; | 
|  | } else if (PPC::QBRCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_QuadBitSpill; | 
|  | } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { | 
|  | OpcodeIndex = SOK_SpillToVSR; | 
|  | } else { | 
|  | llvm_unreachable("Unknown regclass!"); | 
|  | } | 
|  | } | 
|  | return OpcodesForSpill[OpcodeIndex]; | 
|  | } | 
|  |  | 
|  | void PPCInstrInfo::StoreRegToStackSlot( | 
|  | MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, | 
|  | const TargetRegisterClass *RC, | 
|  | SmallVectorImpl<MachineInstr *> &NewMIs) const { | 
|  | unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC); | 
|  | DebugLoc DL; | 
|  |  | 
|  | PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); | 
|  | FuncInfo->setHasSpills(); | 
|  |  | 
|  | NewMIs.push_back(addFrameReference( | 
|  | BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), | 
|  | FrameIdx)); | 
|  |  | 
|  | if (PPC::CRRCRegClass.hasSubClassEq(RC) || | 
|  | PPC::CRBITRCRegClass.hasSubClassEq(RC)) | 
|  | FuncInfo->setSpillsCR(); | 
|  |  | 
|  | if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) | 
|  | FuncInfo->setSpillsVRSAVE(); | 
|  |  | 
|  | if (isXFormMemOp(Opcode)) | 
|  | FuncInfo->setHasNonRISpills(); | 
|  | } | 
|  |  | 
|  | void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | unsigned SrcReg, bool isKill, | 
|  | int FrameIdx, | 
|  | const TargetRegisterClass *RC, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | SmallVector<MachineInstr *, 4> NewMIs; | 
|  |  | 
|  | // We need to avoid a situation in which the value from a VRRC register is | 
|  | // spilled using an Altivec instruction and reloaded into a VSRC register | 
|  | // using a VSX instruction. The issue with this is that the VSX | 
|  | // load/store instructions swap the doublewords in the vector and the Altivec | 
|  | // ones don't. The register classes on the spill/reload may be different if | 
|  | // the register is defined using an Altivec instruction and is then used by a | 
|  | // VSX instruction. | 
|  | RC = updatedRC(RC); | 
|  |  | 
|  | StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); | 
|  |  | 
|  | for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) | 
|  | MBB.insert(MI, NewMIs[i]); | 
|  |  | 
|  | const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | MachineMemOperand *MMO = MF.getMachineMemOperand( | 
|  | MachinePointerInfo::getFixedStack(MF, FrameIdx), | 
|  | MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), | 
|  | MFI.getObjectAlignment(FrameIdx)); | 
|  | NewMIs.back()->addMemOperand(MF, MMO); | 
|  | } | 
|  |  | 
|  | void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, | 
|  | unsigned DestReg, int FrameIdx, | 
|  | const TargetRegisterClass *RC, | 
|  | SmallVectorImpl<MachineInstr *> &NewMIs) | 
|  | const { | 
|  | unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC); | 
|  | NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), | 
|  | FrameIdx)); | 
|  | PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); | 
|  |  | 
|  | if (PPC::CRRCRegClass.hasSubClassEq(RC) || | 
|  | PPC::CRBITRCRegClass.hasSubClassEq(RC)) | 
|  | FuncInfo->setSpillsCR(); | 
|  |  | 
|  | if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) | 
|  | FuncInfo->setSpillsVRSAVE(); | 
|  |  | 
|  | if (isXFormMemOp(Opcode)) | 
|  | FuncInfo->setHasNonRISpills(); | 
|  | } | 
|  |  | 
|  | void | 
|  | PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | unsigned DestReg, int FrameIdx, | 
|  | const TargetRegisterClass *RC, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | SmallVector<MachineInstr*, 4> NewMIs; | 
|  | DebugLoc DL; | 
|  | if (MI != MBB.end()) DL = MI->getDebugLoc(); | 
|  |  | 
|  | PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); | 
|  | FuncInfo->setHasSpills(); | 
|  |  | 
|  | // We need to avoid a situation in which the value from a VRRC register is | 
|  | // spilled using an Altivec instruction and reloaded into a VSRC register | 
|  | // using a VSX instruction. The issue with this is that the VSX | 
|  | // load/store instructions swap the doublewords in the vector and the Altivec | 
|  | // ones don't. The register classes on the spill/reload may be different if | 
|  | // the register is defined using an Altivec instruction and is then used by a | 
|  | // VSX instruction. | 
|  | if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) | 
|  | RC = &PPC::VSRCRegClass; | 
|  |  | 
|  | LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); | 
|  |  | 
|  | for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) | 
|  | MBB.insert(MI, NewMIs[i]); | 
|  |  | 
|  | const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | MachineMemOperand *MMO = MF.getMachineMemOperand( | 
|  | MachinePointerInfo::getFixedStack(MF, FrameIdx), | 
|  | MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), | 
|  | MFI.getObjectAlignment(FrameIdx)); | 
|  | NewMIs.back()->addMemOperand(MF, MMO); | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo:: | 
|  | reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { | 
|  | assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); | 
|  | if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) | 
|  | Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); | 
|  | else | 
|  | // Leave the CR# the same, but invert the condition. | 
|  | Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, | 
|  | unsigned Reg, MachineRegisterInfo *MRI) const { | 
|  | // For some instructions, it is legal to fold ZERO into the RA register field. | 
|  | // A zero immediate should always be loaded with a single li. | 
|  | unsigned DefOpc = DefMI.getOpcode(); | 
|  | if (DefOpc != PPC::LI && DefOpc != PPC::LI8) | 
|  | return false; | 
|  | if (!DefMI.getOperand(1).isImm()) | 
|  | return false; | 
|  | if (DefMI.getOperand(1).getImm() != 0) | 
|  | return false; | 
|  |  | 
|  | // Note that we cannot here invert the arguments of an isel in order to fold | 
|  | // a ZERO into what is presented as the second argument. All we have here | 
|  | // is the condition bit, and that might come from a CR-logical bit operation. | 
|  |  | 
|  | const MCInstrDesc &UseMCID = UseMI.getDesc(); | 
|  |  | 
|  | // Only fold into real machine instructions. | 
|  | if (UseMCID.isPseudo()) | 
|  | return false; | 
|  |  | 
|  | unsigned UseIdx; | 
|  | for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) | 
|  | if (UseMI.getOperand(UseIdx).isReg() && | 
|  | UseMI.getOperand(UseIdx).getReg() == Reg) | 
|  | break; | 
|  |  | 
|  | assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); | 
|  | assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); | 
|  |  | 
|  | const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; | 
|  |  | 
|  | // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 | 
|  | // register (which might also be specified as a pointer class kind). | 
|  | if (UseInfo->isLookupPtrRegClass()) { | 
|  | if (UseInfo->RegClass /* Kind */ != 1) | 
|  | return false; | 
|  | } else { | 
|  | if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && | 
|  | UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Make sure this is not tied to an output register (or otherwise | 
|  | // constrained). This is true for ST?UX registers, for example, which | 
|  | // are tied to their output registers. | 
|  | if (UseInfo->Constraints != 0) | 
|  | return false; | 
|  |  | 
|  | unsigned ZeroReg; | 
|  | if (UseInfo->isLookupPtrRegClass()) { | 
|  | bool isPPC64 = Subtarget.isPPC64(); | 
|  | ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; | 
|  | } else { | 
|  | ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? | 
|  | PPC::ZERO8 : PPC::ZERO; | 
|  | } | 
|  |  | 
|  | bool DeleteDef = MRI->hasOneNonDBGUse(Reg); | 
|  | UseMI.getOperand(UseIdx).setReg(ZeroReg); | 
|  |  | 
|  | if (DeleteDef) | 
|  | DefMI.eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool MBBDefinesCTR(MachineBasicBlock &MBB) { | 
|  | for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); | 
|  | I != IE; ++I) | 
|  | if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We should make sure that, if we're going to predicate both sides of a | 
|  | // condition (a diamond), that both sides don't define the counter register. We | 
|  | // can predicate counter-decrement-based branches, but while that predicates | 
|  | // the branching, it does not predicate the counter decrement. If we tried to | 
|  | // merge the triangle into one predicated block, we'd decrement the counter | 
|  | // twice. | 
|  | bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, | 
|  | unsigned NumT, unsigned ExtraT, | 
|  | MachineBasicBlock &FMBB, | 
|  | unsigned NumF, unsigned ExtraF, | 
|  | BranchProbability Probability) const { | 
|  | return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { | 
|  | // The predicated branches are identified by their type, not really by the | 
|  | // explicit presence of a predicate. Furthermore, some of them can be | 
|  | // predicated more than once. Because if conversion won't try to predicate | 
|  | // any instruction which already claims to be predicated (by returning true | 
|  | // here), always return false. In doing so, we let isPredicable() be the | 
|  | // final word on whether not the instruction can be (further) predicated. | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { | 
|  | if (!MI.isTerminator()) | 
|  | return false; | 
|  |  | 
|  | // Conditional branch is a special case. | 
|  | if (MI.isBranch() && !MI.isBarrier()) | 
|  | return true; | 
|  |  | 
|  | return !isPredicated(MI); | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, | 
|  | ArrayRef<MachineOperand> Pred) const { | 
|  | unsigned OpC = MI.getOpcode(); | 
|  | if (OpC == PPC::BLR || OpC == PPC::BLR8) { | 
|  | if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { | 
|  | bool isPPC64 = Subtarget.isPPC64(); | 
|  | MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) | 
|  | : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); | 
|  | } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { | 
|  | MI.setDesc(get(PPC::BCLR)); | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI) | 
|  | .addReg(Pred[1].getReg()); | 
|  | } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { | 
|  | MI.setDesc(get(PPC::BCLRn)); | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI) | 
|  | .addReg(Pred[1].getReg()); | 
|  | } else { | 
|  | MI.setDesc(get(PPC::BCCLR)); | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI) | 
|  | .addImm(Pred[0].getImm()) | 
|  | .addReg(Pred[1].getReg()); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } else if (OpC == PPC::B) { | 
|  | if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { | 
|  | bool isPPC64 = Subtarget.isPPC64(); | 
|  | MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) | 
|  | : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); | 
|  | } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { | 
|  | MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); | 
|  | MI.RemoveOperand(0); | 
|  |  | 
|  | MI.setDesc(get(PPC::BC)); | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI) | 
|  | .addReg(Pred[1].getReg()) | 
|  | .addMBB(MBB); | 
|  | } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { | 
|  | MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); | 
|  | MI.RemoveOperand(0); | 
|  |  | 
|  | MI.setDesc(get(PPC::BCn)); | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI) | 
|  | .addReg(Pred[1].getReg()) | 
|  | .addMBB(MBB); | 
|  | } else { | 
|  | MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); | 
|  | MI.RemoveOperand(0); | 
|  |  | 
|  | MI.setDesc(get(PPC::BCC)); | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI) | 
|  | .addImm(Pred[0].getImm()) | 
|  | .addReg(Pred[1].getReg()) | 
|  | .addMBB(MBB); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 || | 
|  | OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { | 
|  | if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) | 
|  | llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); | 
|  |  | 
|  | bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; | 
|  | bool isPPC64 = Subtarget.isPPC64(); | 
|  |  | 
|  | if (Pred[0].getImm() == PPC::PRED_BIT_SET) { | 
|  | MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) | 
|  | : (setLR ? PPC::BCCTRL : PPC::BCCTR))); | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI) | 
|  | .addReg(Pred[1].getReg()); | 
|  | return true; | 
|  | } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { | 
|  | MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) | 
|  | : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI) | 
|  | .addReg(Pred[1].getReg()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) | 
|  | : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI) | 
|  | .addImm(Pred[0].getImm()) | 
|  | .addReg(Pred[1].getReg()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, | 
|  | ArrayRef<MachineOperand> Pred2) const { | 
|  | assert(Pred1.size() == 2 && "Invalid PPC first predicate"); | 
|  | assert(Pred2.size() == 2 && "Invalid PPC second predicate"); | 
|  |  | 
|  | if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) | 
|  | return false; | 
|  | if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) | 
|  | return false; | 
|  |  | 
|  | // P1 can only subsume P2 if they test the same condition register. | 
|  | if (Pred1[1].getReg() != Pred2[1].getReg()) | 
|  | return false; | 
|  |  | 
|  | PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); | 
|  | PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); | 
|  |  | 
|  | if (P1 == P2) | 
|  | return true; | 
|  |  | 
|  | // Does P1 subsume P2, e.g. GE subsumes GT. | 
|  | if (P1 == PPC::PRED_LE && | 
|  | (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) | 
|  | return true; | 
|  | if (P1 == PPC::PRED_GE && | 
|  | (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, | 
|  | std::vector<MachineOperand> &Pred) const { | 
|  | // Note: At the present time, the contents of Pred from this function is | 
|  | // unused by IfConversion. This implementation follows ARM by pushing the | 
|  | // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of | 
|  | // predicate, instructions defining CTR or CTR8 are also included as | 
|  | // predicate-defining instructions. | 
|  |  | 
|  | const TargetRegisterClass *RCs[] = | 
|  | { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, | 
|  | &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; | 
|  |  | 
|  | bool Found = false; | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI.getOperand(i); | 
|  | for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { | 
|  | const TargetRegisterClass *RC = RCs[c]; | 
|  | if (MO.isReg()) { | 
|  | if (MO.isDef() && RC->contains(MO.getReg())) { | 
|  | Pred.push_back(MO); | 
|  | Found = true; | 
|  | } | 
|  | } else if (MO.isRegMask()) { | 
|  | for (TargetRegisterClass::iterator I = RC->begin(), | 
|  | IE = RC->end(); I != IE; ++I) | 
|  | if (MO.clobbersPhysReg(*I)) { | 
|  | Pred.push_back(MO); | 
|  | Found = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Found; | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const { | 
|  | unsigned OpC = MI.getOpcode(); | 
|  | switch (OpC) { | 
|  | default: | 
|  | return false; | 
|  | case PPC::B: | 
|  | case PPC::BLR: | 
|  | case PPC::BLR8: | 
|  | case PPC::BCTR: | 
|  | case PPC::BCTR8: | 
|  | case PPC::BCTRL: | 
|  | case PPC::BCTRL8: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, | 
|  | unsigned &SrcReg2, int &Mask, | 
|  | int &Value) const { | 
|  | unsigned Opc = MI.getOpcode(); | 
|  |  | 
|  | switch (Opc) { | 
|  | default: return false; | 
|  | case PPC::CMPWI: | 
|  | case PPC::CMPLWI: | 
|  | case PPC::CMPDI: | 
|  | case PPC::CMPLDI: | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | SrcReg2 = 0; | 
|  | Value = MI.getOperand(2).getImm(); | 
|  | Mask = 0xFFFF; | 
|  | return true; | 
|  | case PPC::CMPW: | 
|  | case PPC::CMPLW: | 
|  | case PPC::CMPD: | 
|  | case PPC::CMPLD: | 
|  | case PPC::FCMPUS: | 
|  | case PPC::FCMPUD: | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | SrcReg2 = MI.getOperand(2).getReg(); | 
|  | Value = 0; | 
|  | Mask = 0; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, | 
|  | unsigned SrcReg2, int Mask, int Value, | 
|  | const MachineRegisterInfo *MRI) const { | 
|  | if (DisableCmpOpt) | 
|  | return false; | 
|  |  | 
|  | int OpC = CmpInstr.getOpcode(); | 
|  | unsigned CRReg = CmpInstr.getOperand(0).getReg(); | 
|  |  | 
|  | // FP record forms set CR1 based on the exception status bits, not a | 
|  | // comparison with zero. | 
|  | if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) | 
|  | return false; | 
|  |  | 
|  | // The record forms set the condition register based on a signed comparison | 
|  | // with zero (so says the ISA manual). This is not as straightforward as it | 
|  | // seems, however, because this is always a 64-bit comparison on PPC64, even | 
|  | // for instructions that are 32-bit in nature (like slw for example). | 
|  | // So, on PPC32, for unsigned comparisons, we can use the record forms only | 
|  | // for equality checks (as those don't depend on the sign). On PPC64, | 
|  | // we are restricted to equality for unsigned 64-bit comparisons and for | 
|  | // signed 32-bit comparisons the applicability is more restricted. | 
|  | bool isPPC64 = Subtarget.isPPC64(); | 
|  | bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW; | 
|  | bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; | 
|  | bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; | 
|  |  | 
|  | // Get the unique definition of SrcReg. | 
|  | MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); | 
|  | if (!MI) return false; | 
|  |  | 
|  | bool equalityOnly = false; | 
|  | bool noSub = false; | 
|  | if (isPPC64) { | 
|  | if (is32BitSignedCompare) { | 
|  | // We can perform this optimization only if MI is sign-extending. | 
|  | if (isSignExtended(*MI)) | 
|  | noSub = true; | 
|  | else | 
|  | return false; | 
|  | } else if (is32BitUnsignedCompare) { | 
|  | // We can perform this optimization, equality only, if MI is | 
|  | // zero-extending. | 
|  | if (isZeroExtended(*MI)) { | 
|  | noSub = true; | 
|  | equalityOnly = true; | 
|  | } else | 
|  | return false; | 
|  | } else | 
|  | equalityOnly = is64BitUnsignedCompare; | 
|  | } else | 
|  | equalityOnly = is32BitUnsignedCompare; | 
|  |  | 
|  | if (equalityOnly) { | 
|  | // We need to check the uses of the condition register in order to reject | 
|  | // non-equality comparisons. | 
|  | for (MachineRegisterInfo::use_instr_iterator | 
|  | I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); | 
|  | I != IE; ++I) { | 
|  | MachineInstr *UseMI = &*I; | 
|  | if (UseMI->getOpcode() == PPC::BCC) { | 
|  | PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); | 
|  | unsigned PredCond = PPC::getPredicateCondition(Pred); | 
|  | // We ignore hint bits when checking for non-equality comparisons. | 
|  | if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) | 
|  | return false; | 
|  | } else if (UseMI->getOpcode() == PPC::ISEL || | 
|  | UseMI->getOpcode() == PPC::ISEL8) { | 
|  | unsigned SubIdx = UseMI->getOperand(3).getSubReg(); | 
|  | if (SubIdx != PPC::sub_eq) | 
|  | return false; | 
|  | } else | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator I = CmpInstr; | 
|  |  | 
|  | // Scan forward to find the first use of the compare. | 
|  | for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; | 
|  | ++I) { | 
|  | bool FoundUse = false; | 
|  | for (MachineRegisterInfo::use_instr_iterator | 
|  | J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); | 
|  | J != JE; ++J) | 
|  | if (&*J == &*I) { | 
|  | FoundUse = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (FoundUse) | 
|  | break; | 
|  | } | 
|  |  | 
|  | SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; | 
|  | SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; | 
|  |  | 
|  | // There are two possible candidates which can be changed to set CR[01]. | 
|  | // One is MI, the other is a SUB instruction. | 
|  | // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). | 
|  | MachineInstr *Sub = nullptr; | 
|  | if (SrcReg2 != 0) | 
|  | // MI is not a candidate for CMPrr. | 
|  | MI = nullptr; | 
|  | // FIXME: Conservatively refuse to convert an instruction which isn't in the | 
|  | // same BB as the comparison. This is to allow the check below to avoid calls | 
|  | // (and other explicit clobbers); instead we should really check for these | 
|  | // more explicitly (in at least a few predecessors). | 
|  | else if (MI->getParent() != CmpInstr.getParent()) | 
|  | return false; | 
|  | else if (Value != 0) { | 
|  | // The record-form instructions set CR bit based on signed comparison | 
|  | // against 0. We try to convert a compare against 1 or -1 into a compare | 
|  | // against 0 to exploit record-form instructions. For example, we change | 
|  | // the condition "greater than -1" into "greater than or equal to 0" | 
|  | // and "less than 1" into "less than or equal to 0". | 
|  |  | 
|  | // Since we optimize comparison based on a specific branch condition, | 
|  | // we don't optimize if condition code is used by more than once. | 
|  | if (equalityOnly || !MRI->hasOneUse(CRReg)) | 
|  | return false; | 
|  |  | 
|  | MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); | 
|  | if (UseMI->getOpcode() != PPC::BCC) | 
|  | return false; | 
|  |  | 
|  | PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); | 
|  | PPC::Predicate NewPred = Pred; | 
|  | unsigned PredCond = PPC::getPredicateCondition(Pred); | 
|  | unsigned PredHint = PPC::getPredicateHint(Pred); | 
|  | int16_t Immed = (int16_t)Value; | 
|  |  | 
|  | // When modifying the condition in the predicate, we propagate hint bits | 
|  | // from the original predicate to the new one. | 
|  | if (Immed == -1 && PredCond == PPC::PRED_GT) | 
|  | // We convert "greater than -1" into "greater than or equal to 0", | 
|  | // since we are assuming signed comparison by !equalityOnly | 
|  | NewPred = PPC::getPredicate(PPC::PRED_GE, PredHint); | 
|  | else if (Immed == -1 && PredCond == PPC::PRED_LE) | 
|  | // We convert "less than or equal to -1" into "less than 0". | 
|  | NewPred = PPC::getPredicate(PPC::PRED_LT, PredHint); | 
|  | else if (Immed == 1 && PredCond == PPC::PRED_LT) | 
|  | // We convert "less than 1" into "less than or equal to 0". | 
|  | NewPred = PPC::getPredicate(PPC::PRED_LE, PredHint); | 
|  | else if (Immed == 1 && PredCond == PPC::PRED_GE) | 
|  | // We convert "greater than or equal to 1" into "greater than 0". | 
|  | NewPred = PPC::getPredicate(PPC::PRED_GT, PredHint); | 
|  | else | 
|  | return false; | 
|  |  | 
|  | PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), | 
|  | NewPred)); | 
|  | } | 
|  |  | 
|  | // Search for Sub. | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  | --I; | 
|  |  | 
|  | // Get ready to iterate backward from CmpInstr. | 
|  | MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); | 
|  |  | 
|  | for (; I != E && !noSub; --I) { | 
|  | const MachineInstr &Instr = *I; | 
|  | unsigned IOpC = Instr.getOpcode(); | 
|  |  | 
|  | if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || | 
|  | Instr.readsRegister(PPC::CR0, TRI))) | 
|  | // This instruction modifies or uses the record condition register after | 
|  | // the one we want to change. While we could do this transformation, it | 
|  | // would likely not be profitable. This transformation removes one | 
|  | // instruction, and so even forcing RA to generate one move probably | 
|  | // makes it unprofitable. | 
|  | return false; | 
|  |  | 
|  | // Check whether CmpInstr can be made redundant by the current instruction. | 
|  | if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || | 
|  | OpC == PPC::CMPD || OpC == PPC::CMPLD) && | 
|  | (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && | 
|  | ((Instr.getOperand(1).getReg() == SrcReg && | 
|  | Instr.getOperand(2).getReg() == SrcReg2) || | 
|  | (Instr.getOperand(1).getReg() == SrcReg2 && | 
|  | Instr.getOperand(2).getReg() == SrcReg))) { | 
|  | Sub = &*I; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (I == B) | 
|  | // The 'and' is below the comparison instruction. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return false if no candidates exist. | 
|  | if (!MI && !Sub) | 
|  | return false; | 
|  |  | 
|  | // The single candidate is called MI. | 
|  | if (!MI) MI = Sub; | 
|  |  | 
|  | int NewOpC = -1; | 
|  | int MIOpC = MI->getOpcode(); | 
|  | if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 || | 
|  | MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8) | 
|  | NewOpC = MIOpC; | 
|  | else { | 
|  | NewOpC = PPC::getRecordFormOpcode(MIOpC); | 
|  | if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) | 
|  | NewOpC = MIOpC; | 
|  | } | 
|  |  | 
|  | // FIXME: On the non-embedded POWER architectures, only some of the record | 
|  | // forms are fast, and we should use only the fast ones. | 
|  |  | 
|  | // The defining instruction has a record form (or is already a record | 
|  | // form). It is possible, however, that we'll need to reverse the condition | 
|  | // code of the users. | 
|  | if (NewOpC == -1) | 
|  | return false; | 
|  |  | 
|  | // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP | 
|  | // needs to be updated to be based on SUB.  Push the condition code | 
|  | // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the | 
|  | // condition code of these operands will be modified. | 
|  | // Here, Value == 0 means we haven't converted comparison against 1 or -1 to | 
|  | // comparison against 0, which may modify predicate. | 
|  | bool ShouldSwap = false; | 
|  | if (Sub && Value == 0) { | 
|  | ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && | 
|  | Sub->getOperand(2).getReg() == SrcReg; | 
|  |  | 
|  | // The operands to subf are the opposite of sub, so only in the fixed-point | 
|  | // case, invert the order. | 
|  | ShouldSwap = !ShouldSwap; | 
|  | } | 
|  |  | 
|  | if (ShouldSwap) | 
|  | for (MachineRegisterInfo::use_instr_iterator | 
|  | I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); | 
|  | I != IE; ++I) { | 
|  | MachineInstr *UseMI = &*I; | 
|  | if (UseMI->getOpcode() == PPC::BCC) { | 
|  | PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); | 
|  | unsigned PredCond = PPC::getPredicateCondition(Pred); | 
|  | assert((!equalityOnly || | 
|  | PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && | 
|  | "Invalid predicate for equality-only optimization"); | 
|  | (void)PredCond; // To suppress warning in release build. | 
|  | PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), | 
|  | PPC::getSwappedPredicate(Pred))); | 
|  | } else if (UseMI->getOpcode() == PPC::ISEL || | 
|  | UseMI->getOpcode() == PPC::ISEL8) { | 
|  | unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); | 
|  | assert((!equalityOnly || NewSubReg == PPC::sub_eq) && | 
|  | "Invalid CR bit for equality-only optimization"); | 
|  |  | 
|  | if (NewSubReg == PPC::sub_lt) | 
|  | NewSubReg = PPC::sub_gt; | 
|  | else if (NewSubReg == PPC::sub_gt) | 
|  | NewSubReg = PPC::sub_lt; | 
|  |  | 
|  | SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), | 
|  | NewSubReg)); | 
|  | } else // We need to abort on a user we don't understand. | 
|  | return false; | 
|  | } | 
|  | assert(!(Value != 0 && ShouldSwap) && | 
|  | "Non-zero immediate support and ShouldSwap" | 
|  | "may conflict in updating predicate"); | 
|  |  | 
|  | // Create a new virtual register to hold the value of the CR set by the | 
|  | // record-form instruction. If the instruction was not previously in | 
|  | // record form, then set the kill flag on the CR. | 
|  | CmpInstr.eraseFromParent(); | 
|  |  | 
|  | MachineBasicBlock::iterator MII = MI; | 
|  | BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), | 
|  | get(TargetOpcode::COPY), CRReg) | 
|  | .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); | 
|  |  | 
|  | // Even if CR0 register were dead before, it is alive now since the | 
|  | // instruction we just built uses it. | 
|  | MI->clearRegisterDeads(PPC::CR0); | 
|  |  | 
|  | if (MIOpC != NewOpC) { | 
|  | // We need to be careful here: we're replacing one instruction with | 
|  | // another, and we need to make sure that we get all of the right | 
|  | // implicit uses and defs. On the other hand, the caller may be holding | 
|  | // an iterator to this instruction, and so we can't delete it (this is | 
|  | // specifically the case if this is the instruction directly after the | 
|  | // compare). | 
|  |  | 
|  | // Rotates are expensive instructions. If we're emitting a record-form | 
|  | // rotate that can just be an andi/andis, we should just emit that. | 
|  | if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { | 
|  | unsigned GPRRes = MI->getOperand(0).getReg(); | 
|  | int64_t SH = MI->getOperand(2).getImm(); | 
|  | int64_t MB = MI->getOperand(3).getImm(); | 
|  | int64_t ME = MI->getOperand(4).getImm(); | 
|  | // We can only do this if both the start and end of the mask are in the | 
|  | // same halfword. | 
|  | bool MBInLoHWord = MB >= 16; | 
|  | bool MEInLoHWord = ME >= 16; | 
|  | uint64_t Mask = ~0LLU; | 
|  |  | 
|  | if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { | 
|  | Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); | 
|  | // The mask value needs to shift right 16 if we're emitting andis. | 
|  | Mask >>= MBInLoHWord ? 0 : 16; | 
|  | NewOpC = MIOpC == PPC::RLWINM ? | 
|  | (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) : | 
|  | (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8); | 
|  | } else if (MRI->use_empty(GPRRes) && (ME == 31) && | 
|  | (ME - MB + 1 == SH) && (MB >= 16)) { | 
|  | // If we are rotating by the exact number of bits as are in the mask | 
|  | // and the mask is in the least significant bits of the register, | 
|  | // that's just an andis. (as long as the GPR result has no uses). | 
|  | Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); | 
|  | Mask >>= 16; | 
|  | NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8; | 
|  | } | 
|  | // If we've set the mask, we can transform. | 
|  | if (Mask != ~0LLU) { | 
|  | MI->RemoveOperand(4); | 
|  | MI->RemoveOperand(3); | 
|  | MI->getOperand(2).setImm(Mask); | 
|  | NumRcRotatesConvertedToRcAnd++; | 
|  | } | 
|  | } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { | 
|  | int64_t MB = MI->getOperand(3).getImm(); | 
|  | if (MB >= 48) { | 
|  | uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; | 
|  | NewOpC = PPC::ANDIo8; | 
|  | MI->RemoveOperand(3); | 
|  | MI->getOperand(2).setImm(Mask); | 
|  | NumRcRotatesConvertedToRcAnd++; | 
|  | } | 
|  | } | 
|  |  | 
|  | const MCInstrDesc &NewDesc = get(NewOpC); | 
|  | MI->setDesc(NewDesc); | 
|  |  | 
|  | if (NewDesc.ImplicitDefs) | 
|  | for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); | 
|  | *ImpDefs; ++ImpDefs) | 
|  | if (!MI->definesRegister(*ImpDefs)) | 
|  | MI->addOperand(*MI->getParent()->getParent(), | 
|  | MachineOperand::CreateReg(*ImpDefs, true, true)); | 
|  | if (NewDesc.ImplicitUses) | 
|  | for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); | 
|  | *ImpUses; ++ImpUses) | 
|  | if (!MI->readsRegister(*ImpUses)) | 
|  | MI->addOperand(*MI->getParent()->getParent(), | 
|  | MachineOperand::CreateReg(*ImpUses, false, true)); | 
|  | } | 
|  | assert(MI->definesRegister(PPC::CR0) && | 
|  | "Record-form instruction does not define cr0?"); | 
|  |  | 
|  | // Modify the condition code of operands in OperandsToUpdate. | 
|  | // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to | 
|  | // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. | 
|  | for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) | 
|  | PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); | 
|  |  | 
|  | for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) | 
|  | SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// GetInstSize - Return the number of bytes of code the specified | 
|  | /// instruction may be.  This returns the maximum number of bytes. | 
|  | /// | 
|  | unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { | 
|  | unsigned Opcode = MI.getOpcode(); | 
|  |  | 
|  | if (Opcode == PPC::INLINEASM) { | 
|  | const MachineFunction *MF = MI.getParent()->getParent(); | 
|  | const char *AsmStr = MI.getOperand(0).getSymbolName(); | 
|  | return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); | 
|  | } else if (Opcode == TargetOpcode::STACKMAP) { | 
|  | StackMapOpers Opers(&MI); | 
|  | return Opers.getNumPatchBytes(); | 
|  | } else if (Opcode == TargetOpcode::PATCHPOINT) { | 
|  | PatchPointOpers Opers(&MI); | 
|  | return Opers.getNumPatchBytes(); | 
|  | } else { | 
|  | return get(Opcode).getSize(); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, unsigned> | 
|  | PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { | 
|  | const unsigned Mask = PPCII::MO_ACCESS_MASK; | 
|  | return std::make_pair(TF & Mask, TF & ~Mask); | 
|  | } | 
|  |  | 
|  | ArrayRef<std::pair<unsigned, const char *>> | 
|  | PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { | 
|  | using namespace PPCII; | 
|  | static const std::pair<unsigned, const char *> TargetFlags[] = { | 
|  | {MO_LO, "ppc-lo"}, | 
|  | {MO_HA, "ppc-ha"}, | 
|  | {MO_TPREL_LO, "ppc-tprel-lo"}, | 
|  | {MO_TPREL_HA, "ppc-tprel-ha"}, | 
|  | {MO_DTPREL_LO, "ppc-dtprel-lo"}, | 
|  | {MO_TLSLD_LO, "ppc-tlsld-lo"}, | 
|  | {MO_TOC_LO, "ppc-toc-lo"}, | 
|  | {MO_TLS, "ppc-tls"}}; | 
|  | return makeArrayRef(TargetFlags); | 
|  | } | 
|  |  | 
|  | ArrayRef<std::pair<unsigned, const char *>> | 
|  | PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { | 
|  | using namespace PPCII; | 
|  | static const std::pair<unsigned, const char *> TargetFlags[] = { | 
|  | {MO_PLT, "ppc-plt"}, | 
|  | {MO_PIC_FLAG, "ppc-pic"}, | 
|  | {MO_NLP_FLAG, "ppc-nlp"}, | 
|  | {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}}; | 
|  | return makeArrayRef(TargetFlags); | 
|  | } | 
|  |  | 
|  | // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. | 
|  | // The VSX versions have the advantage of a full 64-register target whereas | 
|  | // the FP ones have the advantage of lower latency and higher throughput. So | 
|  | // what we are after is using the faster instructions in low register pressure | 
|  | // situations and using the larger register file in high register pressure | 
|  | // situations. | 
|  | bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { | 
|  | unsigned UpperOpcode, LowerOpcode; | 
|  | switch (MI.getOpcode()) { | 
|  | case PPC::DFLOADf32: | 
|  | UpperOpcode = PPC::LXSSP; | 
|  | LowerOpcode = PPC::LFS; | 
|  | break; | 
|  | case PPC::DFLOADf64: | 
|  | UpperOpcode = PPC::LXSD; | 
|  | LowerOpcode = PPC::LFD; | 
|  | break; | 
|  | case PPC::DFSTOREf32: | 
|  | UpperOpcode = PPC::STXSSP; | 
|  | LowerOpcode = PPC::STFS; | 
|  | break; | 
|  | case PPC::DFSTOREf64: | 
|  | UpperOpcode = PPC::STXSD; | 
|  | LowerOpcode = PPC::STFD; | 
|  | break; | 
|  | case PPC::XFLOADf32: | 
|  | UpperOpcode = PPC::LXSSPX; | 
|  | LowerOpcode = PPC::LFSX; | 
|  | break; | 
|  | case PPC::XFLOADf64: | 
|  | UpperOpcode = PPC::LXSDX; | 
|  | LowerOpcode = PPC::LFDX; | 
|  | break; | 
|  | case PPC::XFSTOREf32: | 
|  | UpperOpcode = PPC::STXSSPX; | 
|  | LowerOpcode = PPC::STFSX; | 
|  | break; | 
|  | case PPC::XFSTOREf64: | 
|  | UpperOpcode = PPC::STXSDX; | 
|  | LowerOpcode = PPC::STFDX; | 
|  | break; | 
|  | case PPC::LIWAX: | 
|  | UpperOpcode = PPC::LXSIWAX; | 
|  | LowerOpcode = PPC::LFIWAX; | 
|  | break; | 
|  | case PPC::LIWZX: | 
|  | UpperOpcode = PPC::LXSIWZX; | 
|  | LowerOpcode = PPC::LFIWZX; | 
|  | break; | 
|  | case PPC::STIWX: | 
|  | UpperOpcode = PPC::STXSIWX; | 
|  | LowerOpcode = PPC::STFIWX; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unknown Operation!"); | 
|  | } | 
|  |  | 
|  | unsigned TargetReg = MI.getOperand(0).getReg(); | 
|  | unsigned Opcode; | 
|  | if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || | 
|  | (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) | 
|  | Opcode = LowerOpcode; | 
|  | else | 
|  | Opcode = UpperOpcode; | 
|  | MI.setDesc(get(Opcode)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isAnImmediateOperand(const MachineOperand &MO) { | 
|  | return MO.isCPI() || MO.isGlobal() || MO.isImm(); | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { | 
|  | auto &MBB = *MI.getParent(); | 
|  | auto DL = MI.getDebugLoc(); | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | case TargetOpcode::LOAD_STACK_GUARD: { | 
|  | assert(Subtarget.isTargetLinux() && | 
|  | "Only Linux target is expected to contain LOAD_STACK_GUARD"); | 
|  | const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; | 
|  | const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; | 
|  | MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI) | 
|  | .addImm(Offset) | 
|  | .addReg(Reg); | 
|  | return true; | 
|  | } | 
|  | case PPC::DFLOADf32: | 
|  | case PPC::DFLOADf64: | 
|  | case PPC::DFSTOREf32: | 
|  | case PPC::DFSTOREf64: { | 
|  | assert(Subtarget.hasP9Vector() && | 
|  | "Invalid D-Form Pseudo-ops on Pre-P9 target."); | 
|  | assert(MI.getOperand(2).isReg() && | 
|  | isAnImmediateOperand(MI.getOperand(1)) && | 
|  | "D-form op must have register and immediate operands"); | 
|  | return expandVSXMemPseudo(MI); | 
|  | } | 
|  | case PPC::XFLOADf32: | 
|  | case PPC::XFSTOREf32: | 
|  | case PPC::LIWAX: | 
|  | case PPC::LIWZX: | 
|  | case PPC::STIWX: { | 
|  | assert(Subtarget.hasP8Vector() && | 
|  | "Invalid X-Form Pseudo-ops on Pre-P8 target."); | 
|  | assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && | 
|  | "X-form op must have register and register operands"); | 
|  | return expandVSXMemPseudo(MI); | 
|  | } | 
|  | case PPC::XFLOADf64: | 
|  | case PPC::XFSTOREf64: { | 
|  | assert(Subtarget.hasVSX() && | 
|  | "Invalid X-Form Pseudo-ops on target that has no VSX."); | 
|  | assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && | 
|  | "X-form op must have register and register operands"); | 
|  | return expandVSXMemPseudo(MI); | 
|  | } | 
|  | case PPC::SPILLTOVSR_LD: { | 
|  | unsigned TargetReg = MI.getOperand(0).getReg(); | 
|  | if (PPC::VSFRCRegClass.contains(TargetReg)) { | 
|  | MI.setDesc(get(PPC::DFLOADf64)); | 
|  | return expandPostRAPseudo(MI); | 
|  | } | 
|  | else | 
|  | MI.setDesc(get(PPC::LD)); | 
|  | return true; | 
|  | } | 
|  | case PPC::SPILLTOVSR_ST: { | 
|  | unsigned SrcReg = MI.getOperand(0).getReg(); | 
|  | if (PPC::VSFRCRegClass.contains(SrcReg)) { | 
|  | NumStoreSPILLVSRRCAsVec++; | 
|  | MI.setDesc(get(PPC::DFSTOREf64)); | 
|  | return expandPostRAPseudo(MI); | 
|  | } else { | 
|  | NumStoreSPILLVSRRCAsGpr++; | 
|  | MI.setDesc(get(PPC::STD)); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | case PPC::SPILLTOVSR_LDX: { | 
|  | unsigned TargetReg = MI.getOperand(0).getReg(); | 
|  | if (PPC::VSFRCRegClass.contains(TargetReg)) | 
|  | MI.setDesc(get(PPC::LXSDX)); | 
|  | else | 
|  | MI.setDesc(get(PPC::LDX)); | 
|  | return true; | 
|  | } | 
|  | case PPC::SPILLTOVSR_STX: { | 
|  | unsigned SrcReg = MI.getOperand(0).getReg(); | 
|  | if (PPC::VSFRCRegClass.contains(SrcReg)) { | 
|  | NumStoreSPILLVSRRCAsVec++; | 
|  | MI.setDesc(get(PPC::STXSDX)); | 
|  | } else { | 
|  | NumStoreSPILLVSRRCAsGpr++; | 
|  | MI.setDesc(get(PPC::STDX)); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case PPC::CFENCE8: { | 
|  | auto Val = MI.getOperand(0).getReg(); | 
|  | BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); | 
|  | BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) | 
|  | .addImm(PPC::PRED_NE_MINUS) | 
|  | .addReg(PPC::CR7) | 
|  | .addImm(1); | 
|  | MI.setDesc(get(PPC::ISYNC)); | 
|  | MI.RemoveOperand(0); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Essentially a compile-time implementation of a compare->isel sequence. | 
|  | // It takes two constants to compare, along with the true/false registers | 
|  | // and the comparison type (as a subreg to a CR field) and returns one | 
|  | // of the true/false registers, depending on the comparison results. | 
|  | static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, | 
|  | unsigned TrueReg, unsigned FalseReg, | 
|  | unsigned CRSubReg) { | 
|  | // Signed comparisons. The immediates are assumed to be sign-extended. | 
|  | if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { | 
|  | switch (CRSubReg) { | 
|  | default: llvm_unreachable("Unknown integer comparison type."); | 
|  | case PPC::sub_lt: | 
|  | return Imm1 < Imm2 ? TrueReg : FalseReg; | 
|  | case PPC::sub_gt: | 
|  | return Imm1 > Imm2 ? TrueReg : FalseReg; | 
|  | case PPC::sub_eq: | 
|  | return Imm1 == Imm2 ? TrueReg : FalseReg; | 
|  | } | 
|  | } | 
|  | // Unsigned comparisons. | 
|  | else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { | 
|  | switch (CRSubReg) { | 
|  | default: llvm_unreachable("Unknown integer comparison type."); | 
|  | case PPC::sub_lt: | 
|  | return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; | 
|  | case PPC::sub_gt: | 
|  | return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; | 
|  | case PPC::sub_eq: | 
|  | return Imm1 == Imm2 ? TrueReg : FalseReg; | 
|  | } | 
|  | } | 
|  | return PPC::NoRegister; | 
|  | } | 
|  |  | 
|  | // Replace an instruction with one that materializes a constant (and sets | 
|  | // CR0 if the original instruction was a record-form instruction). | 
|  | void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, | 
|  | const LoadImmediateInfo &LII) const { | 
|  | // Remove existing operands. | 
|  | int OperandToKeep = LII.SetCR ? 1 : 0; | 
|  | for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) | 
|  | MI.RemoveOperand(i); | 
|  |  | 
|  | // Replace the instruction. | 
|  | if (LII.SetCR) { | 
|  | MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo)); | 
|  | // Set the immediate. | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI) | 
|  | .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); | 
|  | return; | 
|  | } | 
|  | else | 
|  | MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); | 
|  |  | 
|  | // Set the immediate. | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI) | 
|  | .addImm(LII.Imm); | 
|  | } | 
|  |  | 
|  | MachineInstr *PPCInstrInfo::getForwardingDefMI( | 
|  | MachineInstr &MI, | 
|  | unsigned &OpNoForForwarding, | 
|  | bool &SeenIntermediateUse) const { | 
|  | OpNoForForwarding = ~0U; | 
|  | MachineInstr *DefMI = nullptr; | 
|  | MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  | // If we're in SSA, get the defs through the MRI. Otherwise, only look | 
|  | // within the basic block to see if the register is defined using an LI/LI8. | 
|  | if (MRI->isSSA()) { | 
|  | for (int i = 1, e = MI.getNumOperands(); i < e; i++) { | 
|  | if (!MI.getOperand(i).isReg()) | 
|  | continue; | 
|  | unsigned Reg = MI.getOperand(i).getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | continue; | 
|  | unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); | 
|  | if (TargetRegisterInfo::isVirtualRegister(TrueReg)) { | 
|  | DefMI = MRI->getVRegDef(TrueReg); | 
|  | if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) { | 
|  | OpNoForForwarding = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // Looking back through the definition for each operand could be expensive, | 
|  | // so exit early if this isn't an instruction that either has an immediate | 
|  | // form or is already an immediate form that we can handle. | 
|  | ImmInstrInfo III; | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | bool ConvertibleImmForm = | 
|  | Opc == PPC::CMPWI || Opc == PPC::CMPLWI || | 
|  | Opc == PPC::CMPDI || Opc == PPC::CMPLDI || | 
|  | Opc == PPC::ADDI || Opc == PPC::ADDI8 || | 
|  | Opc == PPC::ORI || Opc == PPC::ORI8 || | 
|  | Opc == PPC::XORI || Opc == PPC::XORI8 || | 
|  | Opc == PPC::RLDICL || Opc == PPC::RLDICLo || | 
|  | Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || | 
|  | Opc == PPC::RLWINM || Opc == PPC::RLWINMo || | 
|  | Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o; | 
|  | if (!instrHasImmForm(MI, III, true) && !ConvertibleImmForm) | 
|  | return nullptr; | 
|  |  | 
|  | // Don't convert or %X, %Y, %Y since that's just a register move. | 
|  | if ((Opc == PPC::OR || Opc == PPC::OR8) && | 
|  | MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) | 
|  | return nullptr; | 
|  | for (int i = 1, e = MI.getNumOperands(); i < e; i++) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | SeenIntermediateUse = false; | 
|  | if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { | 
|  | MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; | 
|  | It++; | 
|  | unsigned Reg = MI.getOperand(i).getReg(); | 
|  | // MachineInstr::readsRegister only returns true if the machine | 
|  | // instruction reads the exact register or its super-register. It | 
|  | // does not consider uses of sub-registers which seems like strange | 
|  | // behaviour. Nonetheless, if we end up with a 64-bit register here, | 
|  | // get the corresponding 32-bit register to check. | 
|  | if (PPC::G8RCRegClass.contains(Reg)) | 
|  | Reg = Reg - PPC::X0 + PPC::R0; | 
|  |  | 
|  | // Is this register defined by some form of add-immediate (including | 
|  | // load-immediate) within this basic block? | 
|  | for ( ; It != E; ++It) { | 
|  | if (It->modifiesRegister(Reg, &getRegisterInfo())) { | 
|  | switch (It->getOpcode()) { | 
|  | default: break; | 
|  | case PPC::LI: | 
|  | case PPC::LI8: | 
|  | case PPC::ADDItocL: | 
|  | case PPC::ADDI: | 
|  | case PPC::ADDI8: | 
|  | OpNoForForwarding = i; | 
|  | return &*It; | 
|  | } | 
|  | break; | 
|  | } else if (It->readsRegister(Reg, &getRegisterInfo())) | 
|  | // If we see another use of this reg between the def and the MI, | 
|  | // we want to flat it so the def isn't deleted. | 
|  | SeenIntermediateUse = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return OpNoForForwarding == ~0U ? nullptr : DefMI; | 
|  | } | 
|  |  | 
|  | const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { | 
|  | static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { | 
|  | // Power 8 | 
|  | {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, | 
|  | PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, | 
|  | PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, | 
|  | PPC::SPILLTOVSR_ST, PPC::EVSTDD, PPC::SPESTW}, | 
|  | // Power 9 | 
|  | {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, | 
|  | PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, | 
|  | PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, | 
|  | PPC::SPILLTOVSR_ST}}; | 
|  |  | 
|  | return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; | 
|  | } | 
|  |  | 
|  | const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { | 
|  | static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { | 
|  | // Power 8 | 
|  | {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, | 
|  | PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX, | 
|  | PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, | 
|  | PPC::SPILLTOVSR_LD, PPC::EVLDD, PPC::SPELWZ}, | 
|  | // Power 9 | 
|  | {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, | 
|  | PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32, | 
|  | PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, | 
|  | PPC::SPILLTOVSR_LD}}; | 
|  |  | 
|  | return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; | 
|  | } | 
|  |  | 
|  | // If this instruction has an immediate form and one of its operands is a | 
|  | // result of a load-immediate or an add-immediate, convert it to | 
|  | // the immediate form if the constant is in range. | 
|  | bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, | 
|  | MachineInstr **KilledDef) const { | 
|  | MachineFunction *MF = MI.getParent()->getParent(); | 
|  | MachineRegisterInfo *MRI = &MF->getRegInfo(); | 
|  | bool PostRA = !MRI->isSSA(); | 
|  | bool SeenIntermediateUse = true; | 
|  | unsigned ForwardingOperand = ~0U; | 
|  | MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, | 
|  | SeenIntermediateUse); | 
|  | if (!DefMI) | 
|  | return false; | 
|  | assert(ForwardingOperand < MI.getNumOperands() && | 
|  | "The forwarding operand needs to be valid at this point"); | 
|  | bool KillFwdDefMI = !SeenIntermediateUse && | 
|  | MI.getOperand(ForwardingOperand).isKill(); | 
|  | if (KilledDef && KillFwdDefMI) | 
|  | *KilledDef = DefMI; | 
|  |  | 
|  | ImmInstrInfo III; | 
|  | bool HasImmForm = instrHasImmForm(MI, III, PostRA); | 
|  | // If this is a reg+reg instruction that has a reg+imm form, | 
|  | // and one of the operands is produced by an add-immediate, | 
|  | // try to convert it. | 
|  | if (HasImmForm && transformToImmFormFedByAdd(MI, III, ForwardingOperand, | 
|  | *DefMI, KillFwdDefMI)) | 
|  | return true; | 
|  |  | 
|  | if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) || | 
|  | !DefMI->getOperand(1).isImm()) | 
|  | return false; | 
|  |  | 
|  | int64_t Immediate = DefMI->getOperand(1).getImm(); | 
|  | // Sign-extend to 64-bits. | 
|  | int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? | 
|  | (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; | 
|  |  | 
|  | // If this is a reg+reg instruction that has a reg+imm form, | 
|  | // and one of the operands is produced by LI, convert it now. | 
|  | if (HasImmForm) | 
|  | return transformToImmFormFedByLI(MI, III, ForwardingOperand, SExtImm); | 
|  |  | 
|  | bool ReplaceWithLI = false; | 
|  | bool Is64BitLI = false; | 
|  | int64_t NewImm = 0; | 
|  | bool SetCR = false; | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | switch (Opc) { | 
|  | default: return false; | 
|  |  | 
|  | // FIXME: Any branches conditional on such a comparison can be made | 
|  | // unconditional. At this time, this happens too infrequently to be worth | 
|  | // the implementation effort, but if that ever changes, we could convert | 
|  | // such a pattern here. | 
|  | case PPC::CMPWI: | 
|  | case PPC::CMPLWI: | 
|  | case PPC::CMPDI: | 
|  | case PPC::CMPLDI: { | 
|  | // Doing this post-RA would require dataflow analysis to reliably find uses | 
|  | // of the CR register set by the compare. | 
|  | if (PostRA) | 
|  | return false; | 
|  | // If a compare-immediate is fed by an immediate and is itself an input of | 
|  | // an ISEL (the most common case) into a COPY of the correct register. | 
|  | bool Changed = false; | 
|  | unsigned DefReg = MI.getOperand(0).getReg(); | 
|  | int64_t Comparand = MI.getOperand(2).getImm(); | 
|  | int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ? | 
|  | (Comparand | 0xFFFFFFFFFFFF0000) : Comparand; | 
|  |  | 
|  | for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { | 
|  | unsigned UseOpc = CompareUseMI.getOpcode(); | 
|  | if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) | 
|  | continue; | 
|  | unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); | 
|  | unsigned TrueReg = CompareUseMI.getOperand(1).getReg(); | 
|  | unsigned FalseReg = CompareUseMI.getOperand(2).getReg(); | 
|  | unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg, | 
|  | FalseReg, CRSubReg); | 
|  | if (RegToCopy == PPC::NoRegister) | 
|  | continue; | 
|  | // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. | 
|  | if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { | 
|  | CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); | 
|  | CompareUseMI.getOperand(1).ChangeToImmediate(0); | 
|  | CompareUseMI.RemoveOperand(3); | 
|  | CompareUseMI.RemoveOperand(2); | 
|  | continue; | 
|  | } | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); | 
|  | LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump()); | 
|  | LLVM_DEBUG(dbgs() << "Is converted to:\n"); | 
|  | // Convert to copy and remove unneeded operands. | 
|  | CompareUseMI.setDesc(get(PPC::COPY)); | 
|  | CompareUseMI.RemoveOperand(3); | 
|  | CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); | 
|  | CmpIselsConverted++; | 
|  | Changed = true; | 
|  | LLVM_DEBUG(CompareUseMI.dump()); | 
|  | } | 
|  | if (Changed) | 
|  | return true; | 
|  | // This may end up incremented multiple times since this function is called | 
|  | // during a fixed-point transformation, but it is only meant to indicate the | 
|  | // presence of this opportunity. | 
|  | MissedConvertibleImmediateInstrs++; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Immediate forms - may simply be convertable to an LI. | 
|  | case PPC::ADDI: | 
|  | case PPC::ADDI8: { | 
|  | // Does the sum fit in a 16-bit signed field? | 
|  | int64_t Addend = MI.getOperand(2).getImm(); | 
|  | if (isInt<16>(Addend + SExtImm)) { | 
|  | ReplaceWithLI = true; | 
|  | Is64BitLI = Opc == PPC::ADDI8; | 
|  | NewImm = Addend + SExtImm; | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | case PPC::RLDICL: | 
|  | case PPC::RLDICLo: | 
|  | case PPC::RLDICL_32: | 
|  | case PPC::RLDICL_32_64: { | 
|  | // Use APInt's rotate function. | 
|  | int64_t SH = MI.getOperand(2).getImm(); | 
|  | int64_t MB = MI.getOperand(3).getImm(); | 
|  | APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ? | 
|  | 64 : 32, SExtImm, true); | 
|  | InVal = InVal.rotl(SH); | 
|  | uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; | 
|  | InVal &= Mask; | 
|  | // Can't replace negative values with an LI as that will sign-extend | 
|  | // and not clear the left bits. If we're setting the CR bit, we will use | 
|  | // ANDIo which won't sign extend, so that's safe. | 
|  | if (isUInt<15>(InVal.getSExtValue()) || | 
|  | (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) { | 
|  | ReplaceWithLI = true; | 
|  | Is64BitLI = Opc != PPC::RLDICL_32; | 
|  | NewImm = InVal.getSExtValue(); | 
|  | SetCR = Opc == PPC::RLDICLo; | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | case PPC::RLWINM: | 
|  | case PPC::RLWINM8: | 
|  | case PPC::RLWINMo: | 
|  | case PPC::RLWINM8o: { | 
|  | int64_t SH = MI.getOperand(2).getImm(); | 
|  | int64_t MB = MI.getOperand(3).getImm(); | 
|  | int64_t ME = MI.getOperand(4).getImm(); | 
|  | APInt InVal(32, SExtImm, true); | 
|  | InVal = InVal.rotl(SH); | 
|  | // Set the bits (        MB + 32        ) to (        ME + 32        ). | 
|  | uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); | 
|  | InVal &= Mask; | 
|  | // Can't replace negative values with an LI as that will sign-extend | 
|  | // and not clear the left bits. If we're setting the CR bit, we will use | 
|  | // ANDIo which won't sign extend, so that's safe. | 
|  | bool ValueFits = isUInt<15>(InVal.getSExtValue()); | 
|  | ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) && | 
|  | isUInt<16>(InVal.getSExtValue())); | 
|  | if (ValueFits) { | 
|  | ReplaceWithLI = true; | 
|  | Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o; | 
|  | NewImm = InVal.getSExtValue(); | 
|  | SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o; | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | case PPC::ORI: | 
|  | case PPC::ORI8: | 
|  | case PPC::XORI: | 
|  | case PPC::XORI8: { | 
|  | int64_t LogicalImm = MI.getOperand(2).getImm(); | 
|  | int64_t Result = 0; | 
|  | if (Opc == PPC::ORI || Opc == PPC::ORI8) | 
|  | Result = LogicalImm | SExtImm; | 
|  | else | 
|  | Result = LogicalImm ^ SExtImm; | 
|  | if (isInt<16>(Result)) { | 
|  | ReplaceWithLI = true; | 
|  | Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; | 
|  | NewImm = Result; | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ReplaceWithLI) { | 
|  | // We need to be careful with CR-setting instructions we're replacing. | 
|  | if (SetCR) { | 
|  | // We don't know anything about uses when we're out of SSA, so only | 
|  | // replace if the new immediate will be reproduced. | 
|  | bool ImmChanged = (SExtImm & NewImm) != NewImm; | 
|  | if (PostRA && ImmChanged) | 
|  | return false; | 
|  |  | 
|  | if (!PostRA) { | 
|  | // If the defining load-immediate has no other uses, we can just replace | 
|  | // the immediate with the new immediate. | 
|  | if (MRI->hasOneUse(DefMI->getOperand(0).getReg())) | 
|  | DefMI->getOperand(1).setImm(NewImm); | 
|  |  | 
|  | // If we're not using the GPR result of the CR-setting instruction, we | 
|  | // just need to and with zero/non-zero depending on the new immediate. | 
|  | else if (MRI->use_empty(MI.getOperand(0).getReg())) { | 
|  | if (NewImm) { | 
|  | assert(Immediate && "Transformation converted zero to non-zero?"); | 
|  | NewImm = Immediate; | 
|  | } | 
|  | } | 
|  | else if (ImmChanged) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | LLVM_DEBUG(dbgs() << "Fed by:\n"); | 
|  | LLVM_DEBUG(DefMI->dump()); | 
|  | LoadImmediateInfo LII; | 
|  | LII.Imm = NewImm; | 
|  | LII.Is64Bit = Is64BitLI; | 
|  | LII.SetCR = SetCR; | 
|  | // If we're setting the CR, the original load-immediate must be kept (as an | 
|  | // operand to ANDIo/ANDI8o). | 
|  | if (KilledDef && SetCR) | 
|  | *KilledDef = nullptr; | 
|  | replaceInstrWithLI(MI, LII); | 
|  | LLVM_DEBUG(dbgs() << "With:\n"); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isVFReg(unsigned Reg) { | 
|  | return PPC::VFRCRegClass.contains(Reg); | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::instrHasImmForm(const MachineInstr &MI, | 
|  | ImmInstrInfo &III, bool PostRA) const { | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | // The vast majority of the instructions would need their operand 2 replaced | 
|  | // with an immediate when switching to the reg+imm form. A marked exception | 
|  | // are the update form loads/stores for which a constant operand 2 would need | 
|  | // to turn into a displacement and move operand 1 to the operand 2 position. | 
|  | III.ImmOpNo = 2; | 
|  | III.OpNoForForwarding = 2; | 
|  | III.ImmWidth = 16; | 
|  | III.ImmMustBeMultipleOf = 1; | 
|  | III.TruncateImmTo = 0; | 
|  | III.IsSummingOperands = false; | 
|  | switch (Opc) { | 
|  | default: return false; | 
|  | case PPC::ADD4: | 
|  | case PPC::ADD8: | 
|  | III.SignedImm = true; | 
|  | III.ZeroIsSpecialOrig = 0; | 
|  | III.ZeroIsSpecialNew = 1; | 
|  | III.IsCommutative = true; | 
|  | III.IsSummingOperands = true; | 
|  | III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; | 
|  | break; | 
|  | case PPC::ADDC: | 
|  | case PPC::ADDC8: | 
|  | III.SignedImm = true; | 
|  | III.ZeroIsSpecialOrig = 0; | 
|  | III.ZeroIsSpecialNew = 0; | 
|  | III.IsCommutative = true; | 
|  | III.IsSummingOperands = true; | 
|  | III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; | 
|  | break; | 
|  | case PPC::ADDCo: | 
|  | III.SignedImm = true; | 
|  | III.ZeroIsSpecialOrig = 0; | 
|  | III.ZeroIsSpecialNew = 0; | 
|  | III.IsCommutative = true; | 
|  | III.IsSummingOperands = true; | 
|  | III.ImmOpcode = PPC::ADDICo; | 
|  | break; | 
|  | case PPC::SUBFC: | 
|  | case PPC::SUBFC8: | 
|  | III.SignedImm = true; | 
|  | III.ZeroIsSpecialOrig = 0; | 
|  | III.ZeroIsSpecialNew = 0; | 
|  | III.IsCommutative = false; | 
|  | III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; | 
|  | break; | 
|  | case PPC::CMPW: | 
|  | case PPC::CMPD: | 
|  | III.SignedImm = true; | 
|  | III.ZeroIsSpecialOrig = 0; | 
|  | III.ZeroIsSpecialNew = 0; | 
|  | III.IsCommutative = false; | 
|  | III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; | 
|  | break; | 
|  | case PPC::CMPLW: | 
|  | case PPC::CMPLD: | 
|  | III.SignedImm = false; | 
|  | III.ZeroIsSpecialOrig = 0; | 
|  | III.ZeroIsSpecialNew = 0; | 
|  | III.IsCommutative = false; | 
|  | III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; | 
|  | break; | 
|  | case PPC::ANDo: | 
|  | case PPC::AND8o: | 
|  | case PPC::OR: | 
|  | case PPC::OR8: | 
|  | case PPC::XOR: | 
|  | case PPC::XOR8: | 
|  | III.SignedImm = false; | 
|  | III.ZeroIsSpecialOrig = 0; | 
|  | III.ZeroIsSpecialNew = 0; | 
|  | III.IsCommutative = true; | 
|  | switch(Opc) { | 
|  | default: llvm_unreachable("Unknown opcode"); | 
|  | case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break; | 
|  | case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break; | 
|  | case PPC::OR: III.ImmOpcode = PPC::ORI; break; | 
|  | case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; | 
|  | case PPC::XOR: III.ImmOpcode = PPC::XORI; break; | 
|  | case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; | 
|  | } | 
|  | break; | 
|  | case PPC::RLWNM: | 
|  | case PPC::RLWNM8: | 
|  | case PPC::RLWNMo: | 
|  | case PPC::RLWNM8o: | 
|  | case PPC::SLW: | 
|  | case PPC::SLW8: | 
|  | case PPC::SLWo: | 
|  | case PPC::SLW8o: | 
|  | case PPC::SRW: | 
|  | case PPC::SRW8: | 
|  | case PPC::SRWo: | 
|  | case PPC::SRW8o: | 
|  | case PPC::SRAW: | 
|  | case PPC::SRAWo: | 
|  | III.SignedImm = false; | 
|  | III.ZeroIsSpecialOrig = 0; | 
|  | III.ZeroIsSpecialNew = 0; | 
|  | III.IsCommutative = false; | 
|  | // This isn't actually true, but the instructions ignore any of the | 
|  | // upper bits, so any immediate loaded with an LI is acceptable. | 
|  | // This does not apply to shift right algebraic because a value | 
|  | // out of range will produce a -1/0. | 
|  | III.ImmWidth = 16; | 
|  | if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || | 
|  | Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o) | 
|  | III.TruncateImmTo = 5; | 
|  | else | 
|  | III.TruncateImmTo = 6; | 
|  | switch(Opc) { | 
|  | default: llvm_unreachable("Unknown opcode"); | 
|  | case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; | 
|  | case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; | 
|  | case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break; | 
|  | case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break; | 
|  | case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; | 
|  | case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; | 
|  | case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break; | 
|  | case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break; | 
|  | case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; | 
|  | case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; | 
|  | case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break; | 
|  | case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break; | 
|  | case PPC::SRAW: | 
|  | III.ImmWidth = 5; | 
|  | III.TruncateImmTo = 0; | 
|  | III.ImmOpcode = PPC::SRAWI; | 
|  | break; | 
|  | case PPC::SRAWo: | 
|  | III.ImmWidth = 5; | 
|  | III.TruncateImmTo = 0; | 
|  | III.ImmOpcode = PPC::SRAWIo; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case PPC::RLDCL: | 
|  | case PPC::RLDCLo: | 
|  | case PPC::RLDCR: | 
|  | case PPC::RLDCRo: | 
|  | case PPC::SLD: | 
|  | case PPC::SLDo: | 
|  | case PPC::SRD: | 
|  | case PPC::SRDo: | 
|  | case PPC::SRAD: | 
|  | case PPC::SRADo: | 
|  | III.SignedImm = false; | 
|  | III.ZeroIsSpecialOrig = 0; | 
|  | III.ZeroIsSpecialNew = 0; | 
|  | III.IsCommutative = false; | 
|  | // This isn't actually true, but the instructions ignore any of the | 
|  | // upper bits, so any immediate loaded with an LI is acceptable. | 
|  | // This does not apply to shift right algebraic because a value | 
|  | // out of range will produce a -1/0. | 
|  | III.ImmWidth = 16; | 
|  | if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo || | 
|  | Opc == PPC::RLDCR || Opc == PPC::RLDCRo) | 
|  | III.TruncateImmTo = 6; | 
|  | else | 
|  | III.TruncateImmTo = 7; | 
|  | switch(Opc) { | 
|  | default: llvm_unreachable("Unknown opcode"); | 
|  | case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; | 
|  | case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break; | 
|  | case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; | 
|  | case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break; | 
|  | case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; | 
|  | case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break; | 
|  | case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; | 
|  | case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break; | 
|  | case PPC::SRAD: | 
|  | III.ImmWidth = 6; | 
|  | III.TruncateImmTo = 0; | 
|  | III.ImmOpcode = PPC::SRADI; | 
|  | break; | 
|  | case PPC::SRADo: | 
|  | III.ImmWidth = 6; | 
|  | III.TruncateImmTo = 0; | 
|  | III.ImmOpcode = PPC::SRADIo; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | // Loads and stores: | 
|  | case PPC::LBZX: | 
|  | case PPC::LBZX8: | 
|  | case PPC::LHZX: | 
|  | case PPC::LHZX8: | 
|  | case PPC::LHAX: | 
|  | case PPC::LHAX8: | 
|  | case PPC::LWZX: | 
|  | case PPC::LWZX8: | 
|  | case PPC::LWAX: | 
|  | case PPC::LDX: | 
|  | case PPC::LFSX: | 
|  | case PPC::LFDX: | 
|  | case PPC::STBX: | 
|  | case PPC::STBX8: | 
|  | case PPC::STHX: | 
|  | case PPC::STHX8: | 
|  | case PPC::STWX: | 
|  | case PPC::STWX8: | 
|  | case PPC::STDX: | 
|  | case PPC::STFSX: | 
|  | case PPC::STFDX: | 
|  | III.SignedImm = true; | 
|  | III.ZeroIsSpecialOrig = 1; | 
|  | III.ZeroIsSpecialNew = 2; | 
|  | III.IsCommutative = true; | 
|  | III.IsSummingOperands = true; | 
|  | III.ImmOpNo = 1; | 
|  | III.OpNoForForwarding = 2; | 
|  | switch(Opc) { | 
|  | default: llvm_unreachable("Unknown opcode"); | 
|  | case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; | 
|  | case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; | 
|  | case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; | 
|  | case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; | 
|  | case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; | 
|  | case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; | 
|  | case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; | 
|  | case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; | 
|  | case PPC::LWAX: | 
|  | III.ImmOpcode = PPC::LWA; | 
|  | III.ImmMustBeMultipleOf = 4; | 
|  | break; | 
|  | case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; | 
|  | case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; | 
|  | case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; | 
|  | case PPC::STBX: III.ImmOpcode = PPC::STB; break; | 
|  | case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; | 
|  | case PPC::STHX: III.ImmOpcode = PPC::STH; break; | 
|  | case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; | 
|  | case PPC::STWX: III.ImmOpcode = PPC::STW; break; | 
|  | case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; | 
|  | case PPC::STDX: | 
|  | III.ImmOpcode = PPC::STD; | 
|  | III.ImmMustBeMultipleOf = 4; | 
|  | break; | 
|  | case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; | 
|  | case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; | 
|  | } | 
|  | break; | 
|  | case PPC::LBZUX: | 
|  | case PPC::LBZUX8: | 
|  | case PPC::LHZUX: | 
|  | case PPC::LHZUX8: | 
|  | case PPC::LHAUX: | 
|  | case PPC::LHAUX8: | 
|  | case PPC::LWZUX: | 
|  | case PPC::LWZUX8: | 
|  | case PPC::LDUX: | 
|  | case PPC::LFSUX: | 
|  | case PPC::LFDUX: | 
|  | case PPC::STBUX: | 
|  | case PPC::STBUX8: | 
|  | case PPC::STHUX: | 
|  | case PPC::STHUX8: | 
|  | case PPC::STWUX: | 
|  | case PPC::STWUX8: | 
|  | case PPC::STDUX: | 
|  | case PPC::STFSUX: | 
|  | case PPC::STFDUX: | 
|  | III.SignedImm = true; | 
|  | III.ZeroIsSpecialOrig = 2; | 
|  | III.ZeroIsSpecialNew = 3; | 
|  | III.IsCommutative = false; | 
|  | III.IsSummingOperands = true; | 
|  | III.ImmOpNo = 2; | 
|  | III.OpNoForForwarding = 3; | 
|  | switch(Opc) { | 
|  | default: llvm_unreachable("Unknown opcode"); | 
|  | case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; | 
|  | case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; | 
|  | case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; | 
|  | case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; | 
|  | case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; | 
|  | case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; | 
|  | case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; | 
|  | case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; | 
|  | case PPC::LDUX: | 
|  | III.ImmOpcode = PPC::LDU; | 
|  | III.ImmMustBeMultipleOf = 4; | 
|  | break; | 
|  | case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; | 
|  | case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; | 
|  | case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; | 
|  | case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; | 
|  | case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; | 
|  | case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; | 
|  | case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; | 
|  | case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; | 
|  | case PPC::STDUX: | 
|  | III.ImmOpcode = PPC::STDU; | 
|  | III.ImmMustBeMultipleOf = 4; | 
|  | break; | 
|  | case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; | 
|  | case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; | 
|  | } | 
|  | break; | 
|  | // Power9 and up only. For some of these, the X-Form version has access to all | 
|  | // 64 VSR's whereas the D-Form only has access to the VR's. We replace those | 
|  | // with pseudo-ops pre-ra and for post-ra, we check that the register loaded | 
|  | // into or stored from is one of the VR registers. | 
|  | case PPC::LXVX: | 
|  | case PPC::LXSSPX: | 
|  | case PPC::LXSDX: | 
|  | case PPC::STXVX: | 
|  | case PPC::STXSSPX: | 
|  | case PPC::STXSDX: | 
|  | case PPC::XFLOADf32: | 
|  | case PPC::XFLOADf64: | 
|  | case PPC::XFSTOREf32: | 
|  | case PPC::XFSTOREf64: | 
|  | if (!Subtarget.hasP9Vector()) | 
|  | return false; | 
|  | III.SignedImm = true; | 
|  | III.ZeroIsSpecialOrig = 1; | 
|  | III.ZeroIsSpecialNew = 2; | 
|  | III.IsCommutative = true; | 
|  | III.IsSummingOperands = true; | 
|  | III.ImmOpNo = 1; | 
|  | III.OpNoForForwarding = 2; | 
|  | III.ImmMustBeMultipleOf = 4; | 
|  | switch(Opc) { | 
|  | default: llvm_unreachable("Unknown opcode"); | 
|  | case PPC::LXVX: | 
|  | III.ImmOpcode = PPC::LXV; | 
|  | III.ImmMustBeMultipleOf = 16; | 
|  | break; | 
|  | case PPC::LXSSPX: | 
|  | if (PostRA) { | 
|  | if (isVFReg(MI.getOperand(0).getReg())) | 
|  | III.ImmOpcode = PPC::LXSSP; | 
|  | else | 
|  | III.ImmOpcode = PPC::LFS; | 
|  | break; | 
|  | } | 
|  | LLVM_FALLTHROUGH; | 
|  | case PPC::XFLOADf32: | 
|  | III.ImmOpcode = PPC::DFLOADf32; | 
|  | break; | 
|  | case PPC::LXSDX: | 
|  | if (PostRA) { | 
|  | if (isVFReg(MI.getOperand(0).getReg())) | 
|  | III.ImmOpcode = PPC::LXSD; | 
|  | else | 
|  | III.ImmOpcode = PPC::LFD; | 
|  | break; | 
|  | } | 
|  | LLVM_FALLTHROUGH; | 
|  | case PPC::XFLOADf64: | 
|  | III.ImmOpcode = PPC::DFLOADf64; | 
|  | break; | 
|  | case PPC::STXVX: | 
|  | III.ImmOpcode = PPC::STXV; | 
|  | III.ImmMustBeMultipleOf = 16; | 
|  | break; | 
|  | case PPC::STXSSPX: | 
|  | if (PostRA) { | 
|  | if (isVFReg(MI.getOperand(0).getReg())) | 
|  | III.ImmOpcode = PPC::STXSSP; | 
|  | else | 
|  | III.ImmOpcode = PPC::STFS; | 
|  | break; | 
|  | } | 
|  | LLVM_FALLTHROUGH; | 
|  | case PPC::XFSTOREf32: | 
|  | III.ImmOpcode = PPC::DFSTOREf32; | 
|  | break; | 
|  | case PPC::STXSDX: | 
|  | if (PostRA) { | 
|  | if (isVFReg(MI.getOperand(0).getReg())) | 
|  | III.ImmOpcode = PPC::STXSD; | 
|  | else | 
|  | III.ImmOpcode = PPC::STFD; | 
|  | break; | 
|  | } | 
|  | LLVM_FALLTHROUGH; | 
|  | case PPC::XFSTOREf64: | 
|  | III.ImmOpcode = PPC::DFSTOREf64; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Utility function for swaping two arbitrary operands of an instruction. | 
|  | static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { | 
|  | assert(Op1 != Op2 && "Cannot swap operand with itself."); | 
|  |  | 
|  | unsigned MaxOp = std::max(Op1, Op2); | 
|  | unsigned MinOp = std::min(Op1, Op2); | 
|  | MachineOperand MOp1 = MI.getOperand(MinOp); | 
|  | MachineOperand MOp2 = MI.getOperand(MaxOp); | 
|  | MI.RemoveOperand(std::max(Op1, Op2)); | 
|  | MI.RemoveOperand(std::min(Op1, Op2)); | 
|  |  | 
|  | // If the operands we are swapping are the two at the end (the common case) | 
|  | // we can just remove both and add them in the opposite order. | 
|  | if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { | 
|  | MI.addOperand(MOp2); | 
|  | MI.addOperand(MOp1); | 
|  | } else { | 
|  | // Store all operands in a temporary vector, remove them and re-add in the | 
|  | // right order. | 
|  | SmallVector<MachineOperand, 2> MOps; | 
|  | unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. | 
|  | for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { | 
|  | MOps.push_back(MI.getOperand(i)); | 
|  | MI.RemoveOperand(i); | 
|  | } | 
|  | // MOp2 needs to be added next. | 
|  | MI.addOperand(MOp2); | 
|  | // Now add the rest. | 
|  | for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { | 
|  | if (i == MaxOp) | 
|  | MI.addOperand(MOp1); | 
|  | else { | 
|  | MI.addOperand(MOps.back()); | 
|  | MOps.pop_back(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if the 'MI' that has the index OpNoForForwarding | 
|  | // meets the requirement described in the ImmInstrInfo. | 
|  | bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, | 
|  | const ImmInstrInfo &III, | 
|  | unsigned OpNoForForwarding | 
|  | ) const { | 
|  | // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 | 
|  | // would not work pre-RA, we can only do the check post RA. | 
|  | MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); | 
|  | if (MRI.isSSA()) | 
|  | return false; | 
|  |  | 
|  | // Cannot do the transform if MI isn't summing the operands. | 
|  | if (!III.IsSummingOperands) | 
|  | return false; | 
|  |  | 
|  | // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. | 
|  | if (!III.ZeroIsSpecialOrig) | 
|  | return false; | 
|  |  | 
|  | // We cannot do the transform if the operand we are trying to replace | 
|  | // isn't the same as the operand the instruction allows. | 
|  | if (OpNoForForwarding != III.OpNoForForwarding) | 
|  | return false; | 
|  |  | 
|  | // Check if the instruction we are trying to transform really has | 
|  | // the special zero register as its operand. | 
|  | if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && | 
|  | MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) | 
|  | return false; | 
|  |  | 
|  | // This machine instruction is convertible if it is, | 
|  | // 1. summing the operands. | 
|  | // 2. one of the operands is special zero register. | 
|  | // 3. the operand we are trying to replace is allowed by the MI. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check if the DefMI is the add inst and set the ImmMO and RegMO | 
|  | // accordingly. | 
|  | bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, | 
|  | const ImmInstrInfo &III, | 
|  | MachineOperand *&ImmMO, | 
|  | MachineOperand *&RegMO) const { | 
|  | unsigned Opc = DefMI.getOpcode(); | 
|  | if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) | 
|  | return false; | 
|  |  | 
|  | assert(DefMI.getNumOperands() >= 3 && | 
|  | "Add inst must have at least three operands"); | 
|  | RegMO = &DefMI.getOperand(1); | 
|  | ImmMO = &DefMI.getOperand(2); | 
|  |  | 
|  | // This DefMI is elgible for forwarding if it is: | 
|  | // 1. add inst | 
|  | // 2. one of the operands is Imm/CPI/Global. | 
|  | return isAnImmediateOperand(*ImmMO); | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::isRegElgibleForForwarding(const MachineOperand &RegMO, | 
|  | const MachineInstr &DefMI, | 
|  | const MachineInstr &MI, | 
|  | bool KillDefMI | 
|  | ) const { | 
|  | // x = addi y, imm | 
|  | // ... | 
|  | // z = lfdx 0, x   -> z = lfd imm(y) | 
|  | // The Reg "y" can be forwarded to the MI(z) only when there is no DEF | 
|  | // of "y" between the DEF of "x" and "z". | 
|  | // The query is only valid post RA. | 
|  | const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); | 
|  | if (MRI.isSSA()) | 
|  | return false; | 
|  |  | 
|  | // MachineInstr::readsRegister only returns true if the machine | 
|  | // instruction reads the exact register or its super-register. It | 
|  | // does not consider uses of sub-registers which seems like strange | 
|  | // behaviour. Nonetheless, if we end up with a 64-bit register here, | 
|  | // get the corresponding 32-bit register to check. | 
|  | unsigned Reg = RegMO.getReg(); | 
|  | if (PPC::G8RCRegClass.contains(Reg)) | 
|  | Reg = Reg - PPC::X0 + PPC::R0; | 
|  |  | 
|  | // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. | 
|  | MachineBasicBlock::const_reverse_iterator It = MI; | 
|  | MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); | 
|  | It++; | 
|  | for (; It != E; ++It) { | 
|  | if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) | 
|  | return false; | 
|  | // Made it to DefMI without encountering a clobber. | 
|  | if ((&*It) == &DefMI) | 
|  | break; | 
|  | } | 
|  | assert((&*It) == &DefMI && "DefMI is missing"); | 
|  |  | 
|  | // If DefMI also uses the register to be forwarded, we can only forward it | 
|  | // if DefMI is being erased. | 
|  | if (DefMI.readsRegister(Reg, &getRegisterInfo())) | 
|  | return KillDefMI; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, | 
|  | const MachineInstr &DefMI, | 
|  | const ImmInstrInfo &III, | 
|  | int64_t &Imm) const { | 
|  | assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); | 
|  | if (DefMI.getOpcode() == PPC::ADDItocL) { | 
|  | // The operand for ADDItocL is CPI, which isn't imm at compiling time, | 
|  | // However, we know that, it is 16-bit width, and has the alignment of 4. | 
|  | // Check if the instruction met the requirement. | 
|  | if (III.ImmMustBeMultipleOf > 4 || | 
|  | III.TruncateImmTo || III.ImmWidth != 16) | 
|  | return false; | 
|  |  | 
|  | // Going from XForm to DForm loads means that the displacement needs to be | 
|  | // not just an immediate but also a multiple of 4, or 16 depending on the | 
|  | // load. A DForm load cannot be represented if it is a multiple of say 2. | 
|  | // XForm loads do not have this restriction. | 
|  | if (ImmMO.isGlobal() && | 
|  | ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (ImmMO.isImm()) { | 
|  | // It is Imm, we need to check if the Imm fit the range. | 
|  | int64_t Immediate = ImmMO.getImm(); | 
|  | // Sign-extend to 64-bits. | 
|  | Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? | 
|  | (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; | 
|  |  | 
|  | if (Imm % III.ImmMustBeMultipleOf) | 
|  | return false; | 
|  | if (III.TruncateImmTo) | 
|  | Imm &= ((1 << III.TruncateImmTo) - 1); | 
|  | if (III.SignedImm) { | 
|  | APInt ActualValue(64, Imm, true); | 
|  | if (!ActualValue.isSignedIntN(III.ImmWidth)) | 
|  | return false; | 
|  | } else { | 
|  | uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; | 
|  | if ((uint64_t)Imm > UnsignedMax) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | else | 
|  | return false; | 
|  |  | 
|  | // This ImmMO is forwarded if it meets the requriement describle | 
|  | // in ImmInstrInfo | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If an X-Form instruction is fed by an add-immediate and one of its operands | 
|  | // is the literal zero, attempt to forward the source of the add-immediate to | 
|  | // the corresponding D-Form instruction with the displacement coming from | 
|  | // the immediate being added. | 
|  | bool PPCInstrInfo::transformToImmFormFedByAdd(MachineInstr &MI, | 
|  | const ImmInstrInfo &III, | 
|  | unsigned OpNoForForwarding, | 
|  | MachineInstr &DefMI, | 
|  | bool KillDefMI) const { | 
|  | //         RegMO ImmMO | 
|  | //           |    | | 
|  | // x = addi reg, imm  <----- DefMI | 
|  | // y = op    0 ,  x   <----- MI | 
|  | //                | | 
|  | //         OpNoForForwarding | 
|  | // Check if the MI meet the requirement described in the III. | 
|  | if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) | 
|  | return false; | 
|  |  | 
|  | // Check if the DefMI meet the requirement | 
|  | // described in the III. If yes, set the ImmMO and RegMO accordingly. | 
|  | MachineOperand *ImmMO = nullptr; | 
|  | MachineOperand *RegMO = nullptr; | 
|  | if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) | 
|  | return false; | 
|  | assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); | 
|  |  | 
|  | // As we get the Imm operand now, we need to check if the ImmMO meet | 
|  | // the requirement described in the III. If yes set the Imm. | 
|  | int64_t Imm = 0; | 
|  | if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) | 
|  | return false; | 
|  |  | 
|  | // Check if the RegMO can be forwarded to MI. | 
|  | if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI)) | 
|  | return false; | 
|  |  | 
|  | // We know that, the MI and DefMI both meet the pattern, and | 
|  | // the Imm also meet the requirement with the new Imm-form. | 
|  | // It is safe to do the transformation now. | 
|  | LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | LLVM_DEBUG(dbgs() << "Fed by:\n"); | 
|  | LLVM_DEBUG(DefMI.dump()); | 
|  |  | 
|  | // Update the base reg first. | 
|  | MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), | 
|  | false, false, | 
|  | RegMO->isKill()); | 
|  |  | 
|  | // Then, update the imm. | 
|  | if (ImmMO->isImm()) { | 
|  | // If the ImmMO is Imm, change the operand that has ZERO to that Imm | 
|  | // directly. | 
|  | MI.getOperand(III.ZeroIsSpecialOrig).ChangeToImmediate(Imm); | 
|  | } | 
|  | else { | 
|  | // Otherwise, it is Constant Pool Index(CPI) or Global, | 
|  | // which is relocation in fact. We need to replace the special zero | 
|  | // register with ImmMO. | 
|  | // Before that, we need to fixup the target flags for imm. | 
|  | // For some reason, we miss to set the flag for the ImmMO if it is CPI. | 
|  | if (DefMI.getOpcode() == PPC::ADDItocL) | 
|  | ImmMO->setTargetFlags(PPCII::MO_TOC_LO); | 
|  |  | 
|  | // MI didn't have the interface such as MI.setOperand(i) though | 
|  | // it has MI.getOperand(i). To repalce the ZERO MachineOperand with | 
|  | // ImmMO, we need to remove ZERO operand and all the operands behind it, | 
|  | // and, add the ImmMO, then, move back all the operands behind ZERO. | 
|  | SmallVector<MachineOperand, 2> MOps; | 
|  | for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { | 
|  | MOps.push_back(MI.getOperand(i)); | 
|  | MI.RemoveOperand(i); | 
|  | } | 
|  |  | 
|  | // Remove the last MO in the list, which is ZERO operand in fact. | 
|  | MOps.pop_back(); | 
|  | // Add the imm operand. | 
|  | MI.addOperand(*ImmMO); | 
|  | // Now add the rest back. | 
|  | for (auto &MO : MOps) | 
|  | MI.addOperand(MO); | 
|  | } | 
|  |  | 
|  | // Update the opcode. | 
|  | MI.setDesc(get(III.ImmOpcode)); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "With:\n"); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, | 
|  | const ImmInstrInfo &III, | 
|  | unsigned ConstantOpNo, | 
|  | int64_t Imm) const { | 
|  | MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); | 
|  | bool PostRA = !MRI.isSSA(); | 
|  | // Exit early if we can't convert this. | 
|  | if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) | 
|  | return false; | 
|  | if (Imm % III.ImmMustBeMultipleOf) | 
|  | return false; | 
|  | if (III.TruncateImmTo) | 
|  | Imm &= ((1 << III.TruncateImmTo) - 1); | 
|  | if (III.SignedImm) { | 
|  | APInt ActualValue(64, Imm, true); | 
|  | if (!ActualValue.isSignedIntN(III.ImmWidth)) | 
|  | return false; | 
|  | } else { | 
|  | uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; | 
|  | if ((uint64_t)Imm > UnsignedMax) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we're post-RA, the instructions don't agree on whether register zero is | 
|  | // special, we can transform this as long as the register operand that will | 
|  | // end up in the location where zero is special isn't R0. | 
|  | if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { | 
|  | unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : | 
|  | III.ZeroIsSpecialNew + 1; | 
|  | unsigned OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); | 
|  | unsigned NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); | 
|  | // If R0 is in the operand where zero is special for the new instruction, | 
|  | // it is unsafe to transform if the constant operand isn't that operand. | 
|  | if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && | 
|  | ConstantOpNo != III.ZeroIsSpecialNew) | 
|  | return false; | 
|  | if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && | 
|  | ConstantOpNo != PosForOrigZero) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | bool SpecialShift32 = | 
|  | Opc == PPC::SLW || Opc == PPC::SLWo || Opc == PPC::SRW || Opc == PPC::SRWo; | 
|  | bool SpecialShift64 = | 
|  | Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo; | 
|  | bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo || | 
|  | Opc == PPC::SLDo || Opc == PPC::SRDo; | 
|  | bool RightShift = | 
|  | Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo; | 
|  |  | 
|  | MI.setDesc(get(III.ImmOpcode)); | 
|  | if (ConstantOpNo == III.OpNoForForwarding) { | 
|  | // Converting shifts to immediate form is a bit tricky since they may do | 
|  | // one of three things: | 
|  | // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero | 
|  | // 2. If the shift amount is zero, the result is unchanged (save for maybe | 
|  | //    setting CR0) | 
|  | // 3. If the shift amount is in [1, OpSize), it's just a shift | 
|  | if (SpecialShift32 || SpecialShift64) { | 
|  | LoadImmediateInfo LII; | 
|  | LII.Imm = 0; | 
|  | LII.SetCR = SetCR; | 
|  | LII.Is64Bit = SpecialShift64; | 
|  | uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); | 
|  | if (Imm & (SpecialShift32 ? 0x20 : 0x40)) | 
|  | replaceInstrWithLI(MI, LII); | 
|  | // Shifts by zero don't change the value. If we don't need to set CR0, | 
|  | // just convert this to a COPY. Can't do this post-RA since we've already | 
|  | // cleaned up the copies. | 
|  | else if (!SetCR && ShAmt == 0 && !PostRA) { | 
|  | MI.RemoveOperand(2); | 
|  | MI.setDesc(get(PPC::COPY)); | 
|  | } else { | 
|  | // The 32 bit and 64 bit instructions are quite different. | 
|  | if (SpecialShift32) { | 
|  | // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31). | 
|  | uint64_t SH = RightShift ? 32 - ShAmt : ShAmt; | 
|  | uint64_t MB = RightShift ? ShAmt : 0; | 
|  | uint64_t ME = RightShift ? 31 : 31 - ShAmt; | 
|  | MI.getOperand(III.OpNoForForwarding).ChangeToImmediate(SH); | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) | 
|  | .addImm(ME); | 
|  | } else { | 
|  | // Left shifts use (N, 63-N), right shifts use (64-N, N). | 
|  | uint64_t SH = RightShift ? 64 - ShAmt : ShAmt; | 
|  | uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; | 
|  | MI.getOperand(III.OpNoForForwarding).ChangeToImmediate(SH); | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); | 
|  | } | 
|  | } | 
|  | } else | 
|  | MI.getOperand(ConstantOpNo).ChangeToImmediate(Imm); | 
|  | } | 
|  | // Convert commutative instructions (switch the operands and convert the | 
|  | // desired one to an immediate. | 
|  | else if (III.IsCommutative) { | 
|  | MI.getOperand(ConstantOpNo).ChangeToImmediate(Imm); | 
|  | swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); | 
|  | } else | 
|  | llvm_unreachable("Should have exited early!"); | 
|  |  | 
|  | // For instructions for which the constant register replaces a different | 
|  | // operand than where the immediate goes, we need to swap them. | 
|  | if (III.OpNoForForwarding != III.ImmOpNo) | 
|  | swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); | 
|  |  | 
|  | // If the R0/X0 register is special for the original instruction and not for | 
|  | // the new instruction (or vice versa), we need to fix up the register class. | 
|  | if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { | 
|  | if (!III.ZeroIsSpecialOrig) { | 
|  | unsigned RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); | 
|  | const TargetRegisterClass *NewRC = | 
|  | MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? | 
|  | &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; | 
|  | MRI.setRegClass(RegToModify, NewRC); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const TargetRegisterClass * | 
|  | PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { | 
|  | if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) | 
|  | return &PPC::VSRCRegClass; | 
|  | return RC; | 
|  | } | 
|  |  | 
|  | int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { | 
|  | return PPC::getRecordFormOpcode(Opcode); | 
|  | } | 
|  |  | 
|  | // This function returns true if the machine instruction | 
|  | // always outputs a value by sign-extending a 32 bit value, | 
|  | // i.e. 0 to 31-th bits are same as 32-th bit. | 
|  | static bool isSignExtendingOp(const MachineInstr &MI) { | 
|  | int Opcode = MI.getOpcode(); | 
|  | if (Opcode == PPC::LI     || Opcode == PPC::LI8     || | 
|  | Opcode == PPC::LIS    || Opcode == PPC::LIS8    || | 
|  | Opcode == PPC::SRAW   || Opcode == PPC::SRAWo   || | 
|  | Opcode == PPC::SRAWI  || Opcode == PPC::SRAWIo  || | 
|  | Opcode == PPC::LWA    || Opcode == PPC::LWAX    || | 
|  | Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || | 
|  | Opcode == PPC::LHA    || Opcode == PPC::LHAX    || | 
|  | Opcode == PPC::LHA8   || Opcode == PPC::LHAX8   || | 
|  | Opcode == PPC::LBZ    || Opcode == PPC::LBZX    || | 
|  | Opcode == PPC::LBZ8   || Opcode == PPC::LBZX8   || | 
|  | Opcode == PPC::LBZU   || Opcode == PPC::LBZUX   || | 
|  | Opcode == PPC::LBZU8  || Opcode == PPC::LBZUX8  || | 
|  | Opcode == PPC::LHZ    || Opcode == PPC::LHZX    || | 
|  | Opcode == PPC::LHZ8   || Opcode == PPC::LHZX8   || | 
|  | Opcode == PPC::LHZU   || Opcode == PPC::LHZUX   || | 
|  | Opcode == PPC::LHZU8  || Opcode == PPC::LHZUX8  || | 
|  | Opcode == PPC::EXTSB  || Opcode == PPC::EXTSBo  || | 
|  | Opcode == PPC::EXTSH  || Opcode == PPC::EXTSHo  || | 
|  | Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8  || | 
|  | Opcode == PPC::EXTSW  || Opcode == PPC::EXTSWo  || | 
|  | Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || | 
|  | Opcode == PPC::EXTSB8_32_64) | 
|  | return true; | 
|  |  | 
|  | if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) | 
|  | return true; | 
|  |  | 
|  | if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo || | 
|  | Opcode == PPC::RLWNM  || Opcode == PPC::RLWNMo) && | 
|  | MI.getOperand(3).getImm() > 0 && | 
|  | MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // This function returns true if the machine instruction | 
|  | // always outputs zeros in higher 32 bits. | 
|  | static bool isZeroExtendingOp(const MachineInstr &MI) { | 
|  | int Opcode = MI.getOpcode(); | 
|  | // The 16-bit immediate is sign-extended in li/lis. | 
|  | // If the most significant bit is zero, all higher bits are zero. | 
|  | if (Opcode == PPC::LI  || Opcode == PPC::LI8 || | 
|  | Opcode == PPC::LIS || Opcode == PPC::LIS8) { | 
|  | int64_t Imm = MI.getOperand(1).getImm(); | 
|  | if (((uint64_t)Imm & ~0x7FFFuLL) == 0) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // We have some variations of rotate-and-mask instructions | 
|  | // that clear higher 32-bits. | 
|  | if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo || | 
|  | Opcode == PPC::RLDCL  || Opcode == PPC::RLDCLo  || | 
|  | Opcode == PPC::RLDICL_32_64) && | 
|  | MI.getOperand(3).getImm() >= 32) | 
|  | return true; | 
|  |  | 
|  | if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) && | 
|  | MI.getOperand(3).getImm() >= 32 && | 
|  | MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) | 
|  | return true; | 
|  |  | 
|  | if ((Opcode == PPC::RLWINM  || Opcode == PPC::RLWINMo || | 
|  | Opcode == PPC::RLWNM   || Opcode == PPC::RLWNMo  || | 
|  | Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && | 
|  | MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) | 
|  | return true; | 
|  |  | 
|  | // There are other instructions that clear higher 32-bits. | 
|  | if (Opcode == PPC::CNTLZW  || Opcode == PPC::CNTLZWo || | 
|  | Opcode == PPC::CNTTZW  || Opcode == PPC::CNTTZWo || | 
|  | Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || | 
|  | Opcode == PPC::CNTLZD  || Opcode == PPC::CNTLZDo || | 
|  | Opcode == PPC::CNTTZD  || Opcode == PPC::CNTTZDo || | 
|  | Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || | 
|  | Opcode == PPC::SLW     || Opcode == PPC::SLWo    || | 
|  | Opcode == PPC::SRW     || Opcode == PPC::SRWo    || | 
|  | Opcode == PPC::SLW8    || Opcode == PPC::SRW8    || | 
|  | Opcode == PPC::SLWI    || Opcode == PPC::SLWIo   || | 
|  | Opcode == PPC::SRWI    || Opcode == PPC::SRWIo   || | 
|  | Opcode == PPC::LWZ     || Opcode == PPC::LWZX    || | 
|  | Opcode == PPC::LWZU    || Opcode == PPC::LWZUX   || | 
|  | Opcode == PPC::LWBRX   || Opcode == PPC::LHBRX   || | 
|  | Opcode == PPC::LHZ     || Opcode == PPC::LHZX    || | 
|  | Opcode == PPC::LHZU    || Opcode == PPC::LHZUX   || | 
|  | Opcode == PPC::LBZ     || Opcode == PPC::LBZX    || | 
|  | Opcode == PPC::LBZU    || Opcode == PPC::LBZUX   || | 
|  | Opcode == PPC::LWZ8    || Opcode == PPC::LWZX8   || | 
|  | Opcode == PPC::LWZU8   || Opcode == PPC::LWZUX8  || | 
|  | Opcode == PPC::LWBRX8  || Opcode == PPC::LHBRX8  || | 
|  | Opcode == PPC::LHZ8    || Opcode == PPC::LHZX8   || | 
|  | Opcode == PPC::LHZU8   || Opcode == PPC::LHZUX8  || | 
|  | Opcode == PPC::LBZ8    || Opcode == PPC::LBZX8   || | 
|  | Opcode == PPC::LBZU8   || Opcode == PPC::LBZUX8  || | 
|  | Opcode == PPC::ANDIo   || Opcode == PPC::ANDISo  || | 
|  | Opcode == PPC::ROTRWI  || Opcode == PPC::ROTRWIo || | 
|  | Opcode == PPC::EXTLWI  || Opcode == PPC::EXTLWIo || | 
|  | Opcode == PPC::MFVSRWZ) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // This function returns true if the input MachineInstr is a TOC save | 
|  | // instruction. | 
|  | bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { | 
|  | if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) | 
|  | return false; | 
|  | unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); | 
|  | unsigned StackOffset = MI.getOperand(1).getImm(); | 
|  | unsigned StackReg = MI.getOperand(2).getReg(); | 
|  | if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We limit the max depth to track incoming values of PHIs or binary ops | 
|  | // (e.g. AND) to avoid excessive cost. | 
|  | const unsigned MAX_DEPTH = 1; | 
|  |  | 
|  | bool | 
|  | PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, | 
|  | const unsigned Depth) const { | 
|  | const MachineFunction *MF = MI.getParent()->getParent(); | 
|  | const MachineRegisterInfo *MRI = &MF->getRegInfo(); | 
|  |  | 
|  | // If we know this instruction returns sign- or zero-extended result, | 
|  | // return true. | 
|  | if (SignExt ? isSignExtendingOp(MI): | 
|  | isZeroExtendingOp(MI)) | 
|  | return true; | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | case PPC::COPY: { | 
|  | unsigned SrcReg = MI.getOperand(1).getReg(); | 
|  |  | 
|  | // In both ELFv1 and v2 ABI, method parameters and the return value | 
|  | // are sign- or zero-extended. | 
|  | if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { | 
|  | const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); | 
|  | // We check the ZExt/SExt flags for a method parameter. | 
|  | if (MI.getParent()->getBasicBlock() == | 
|  | &MF->getFunction().getEntryBlock()) { | 
|  | unsigned VReg = MI.getOperand(0).getReg(); | 
|  | if (MF->getRegInfo().isLiveIn(VReg)) | 
|  | return SignExt ? FuncInfo->isLiveInSExt(VReg) : | 
|  | FuncInfo->isLiveInZExt(VReg); | 
|  | } | 
|  |  | 
|  | // For a method return value, we check the ZExt/SExt flags in attribute. | 
|  | // We assume the following code sequence for method call. | 
|  | //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 | 
|  | //   BL8_NOP @func,... | 
|  | //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 | 
|  | //   %5 = COPY %x3; G8RC:%5 | 
|  | if (SrcReg == PPC::X3) { | 
|  | const MachineBasicBlock *MBB = MI.getParent(); | 
|  | MachineBasicBlock::const_instr_iterator II = | 
|  | MachineBasicBlock::const_instr_iterator(&MI); | 
|  | if (II != MBB->instr_begin() && | 
|  | (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { | 
|  | const MachineInstr &CallMI = *(--II); | 
|  | if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { | 
|  | const Function *CalleeFn = | 
|  | dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); | 
|  | if (!CalleeFn) | 
|  | return false; | 
|  | const IntegerType *IntTy = | 
|  | dyn_cast<IntegerType>(CalleeFn->getReturnType()); | 
|  | const AttributeSet &Attrs = | 
|  | CalleeFn->getAttributes().getRetAttributes(); | 
|  | if (IntTy && IntTy->getBitWidth() <= 32) | 
|  | return Attrs.hasAttribute(SignExt ? Attribute::SExt : | 
|  | Attribute::ZExt); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is a copy from another register, we recursively check source. | 
|  | if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) | 
|  | return false; | 
|  | const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); | 
|  | if (SrcMI != NULL) | 
|  | return isSignOrZeroExtended(*SrcMI, SignExt, Depth); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case PPC::ANDIo: | 
|  | case PPC::ANDISo: | 
|  | case PPC::ORI: | 
|  | case PPC::ORIS: | 
|  | case PPC::XORI: | 
|  | case PPC::XORIS: | 
|  | case PPC::ANDIo8: | 
|  | case PPC::ANDISo8: | 
|  | case PPC::ORI8: | 
|  | case PPC::ORIS8: | 
|  | case PPC::XORI8: | 
|  | case PPC::XORIS8: { | 
|  | // logical operation with 16-bit immediate does not change the upper bits. | 
|  | // So, we track the operand register as we do for register copy. | 
|  | unsigned SrcReg = MI.getOperand(1).getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) | 
|  | return false; | 
|  | const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); | 
|  | if (SrcMI != NULL) | 
|  | return isSignOrZeroExtended(*SrcMI, SignExt, Depth); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If all incoming values are sign-/zero-extended, | 
|  | // the output of OR, ISEL or PHI is also sign-/zero-extended. | 
|  | case PPC::OR: | 
|  | case PPC::OR8: | 
|  | case PPC::ISEL: | 
|  | case PPC::PHI: { | 
|  | if (Depth >= MAX_DEPTH) | 
|  | return false; | 
|  |  | 
|  | // The input registers for PHI are operand 1, 3, ... | 
|  | // The input registers for others are operand 1 and 2. | 
|  | unsigned E = 3, D = 1; | 
|  | if (MI.getOpcode() == PPC::PHI) { | 
|  | E = MI.getNumOperands(); | 
|  | D = 2; | 
|  | } | 
|  |  | 
|  | for (unsigned I = 1; I != E; I += D) { | 
|  | if (MI.getOperand(I).isReg()) { | 
|  | unsigned SrcReg = MI.getOperand(I).getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) | 
|  | return false; | 
|  | const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); | 
|  | if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) | 
|  | return false; | 
|  | } | 
|  | else | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If at least one of the incoming values of an AND is zero extended | 
|  | // then the output is also zero-extended. If both of the incoming values | 
|  | // are sign-extended then the output is also sign extended. | 
|  | case PPC::AND: | 
|  | case PPC::AND8: { | 
|  | if (Depth >= MAX_DEPTH) | 
|  | return false; | 
|  |  | 
|  | assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); | 
|  |  | 
|  | unsigned SrcReg1 = MI.getOperand(1).getReg(); | 
|  | unsigned SrcReg2 = MI.getOperand(2).getReg(); | 
|  |  | 
|  | if (!TargetRegisterInfo::isVirtualRegister(SrcReg1) || | 
|  | !TargetRegisterInfo::isVirtualRegister(SrcReg2)) | 
|  | return false; | 
|  |  | 
|  | const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); | 
|  | const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); | 
|  | if (!MISrc1 || !MISrc2) | 
|  | return false; | 
|  |  | 
|  | if(SignExt) | 
|  | return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && | 
|  | isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); | 
|  | else | 
|  | return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || | 
|  | isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); | 
|  | } | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } |