|  | //===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file was developed by the LLVM research group and is distributed under | 
|  | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines a simple peephole instruction selector for the x86 target | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86.h" | 
|  | #include "X86InstrBuilder.h" | 
|  | #include "X86InstrInfo.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/IntrinsicLowering.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/SSARegMap.h" | 
|  | #include "llvm/Target/MRegisterInfo.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Support/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/Support/InstVisitor.h" | 
|  | #include "llvm/Support/CFG.h" | 
|  | #include "Support/Statistic.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  | Statistic<> | 
|  | NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added"); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct ISel : public FunctionPass, InstVisitor<ISel> { | 
|  | TargetMachine &TM; | 
|  | MachineFunction *F;                 // The function we are compiling into | 
|  | MachineBasicBlock *BB;              // The current MBB we are compiling | 
|  | int VarArgsFrameIndex;              // FrameIndex for start of varargs area | 
|  | int ReturnAddressIndex;             // FrameIndex for the return address | 
|  |  | 
|  | std::map<Value*, unsigned> RegMap;  // Mapping between Val's and SSA Regs | 
|  |  | 
|  | // MBBMap - Mapping between LLVM BB -> Machine BB | 
|  | std::map<const BasicBlock*, MachineBasicBlock*> MBBMap; | 
|  |  | 
|  | ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {} | 
|  |  | 
|  | /// runOnFunction - Top level implementation of instruction selection for | 
|  | /// the entire function. | 
|  | /// | 
|  | bool runOnFunction(Function &Fn) { | 
|  | // First pass over the function, lower any unknown intrinsic functions | 
|  | // with the IntrinsicLowering class. | 
|  | LowerUnknownIntrinsicFunctionCalls(Fn); | 
|  |  | 
|  | F = &MachineFunction::construct(&Fn, TM); | 
|  |  | 
|  | // Create all of the machine basic blocks for the function... | 
|  | for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) | 
|  | F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I)); | 
|  |  | 
|  | BB = &F->front(); | 
|  |  | 
|  | // Set up a frame object for the return address.  This is used by the | 
|  | // llvm.returnaddress & llvm.frameaddress intrinisics. | 
|  | ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4); | 
|  |  | 
|  | // Copy incoming arguments off of the stack... | 
|  | LoadArgumentsToVirtualRegs(Fn); | 
|  |  | 
|  | // Instruction select everything except PHI nodes | 
|  | visit(Fn); | 
|  |  | 
|  | // Select the PHI nodes | 
|  | SelectPHINodes(); | 
|  |  | 
|  | // Insert the FP_REG_KILL instructions into blocks that need them. | 
|  | InsertFPRegKills(); | 
|  |  | 
|  | RegMap.clear(); | 
|  | MBBMap.clear(); | 
|  | F = 0; | 
|  | // We always build a machine code representation for the function | 
|  | return true; | 
|  | } | 
|  |  | 
|  | virtual const char *getPassName() const { | 
|  | return "X86 Simple Instruction Selection"; | 
|  | } | 
|  |  | 
|  | /// visitBasicBlock - This method is called when we are visiting a new basic | 
|  | /// block.  This simply creates a new MachineBasicBlock to emit code into | 
|  | /// and adds it to the current MachineFunction.  Subsequent visit* for | 
|  | /// instructions will be invoked for all instructions in the basic block. | 
|  | /// | 
|  | void visitBasicBlock(BasicBlock &LLVM_BB) { | 
|  | BB = MBBMap[&LLVM_BB]; | 
|  | } | 
|  |  | 
|  | /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the | 
|  | /// function, lowering any calls to unknown intrinsic functions into the | 
|  | /// equivalent LLVM code. | 
|  | /// | 
|  | void LowerUnknownIntrinsicFunctionCalls(Function &F); | 
|  |  | 
|  | /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function | 
|  | /// from the stack into virtual registers. | 
|  | /// | 
|  | void LoadArgumentsToVirtualRegs(Function &F); | 
|  |  | 
|  | /// SelectPHINodes - Insert machine code to generate phis.  This is tricky | 
|  | /// because we have to generate our sources into the source basic blocks, | 
|  | /// not the current one. | 
|  | /// | 
|  | void SelectPHINodes(); | 
|  |  | 
|  | /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks | 
|  | /// that need them.  This only occurs due to the floating point stackifier | 
|  | /// not being aggressive enough to handle arbitrary global stackification. | 
|  | /// | 
|  | void InsertFPRegKills(); | 
|  |  | 
|  | // Visitation methods for various instructions.  These methods simply emit | 
|  | // fixed X86 code for each instruction. | 
|  | // | 
|  |  | 
|  | // Control flow operators | 
|  | void visitReturnInst(ReturnInst &RI); | 
|  | void visitBranchInst(BranchInst &BI); | 
|  |  | 
|  | struct ValueRecord { | 
|  | Value *Val; | 
|  | unsigned Reg; | 
|  | const Type *Ty; | 
|  | ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {} | 
|  | ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {} | 
|  | }; | 
|  | void doCall(const ValueRecord &Ret, MachineInstr *CallMI, | 
|  | const std::vector<ValueRecord> &Args); | 
|  | void visitCallInst(CallInst &I); | 
|  | void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I); | 
|  |  | 
|  | // Arithmetic operators | 
|  | void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass); | 
|  | void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); } | 
|  | void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); } | 
|  | void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, | 
|  | unsigned DestReg, const Type *DestTy, | 
|  | unsigned Op0Reg, unsigned Op1Reg); | 
|  | void doMultiplyConst(MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator MBBI, | 
|  | unsigned DestReg, const Type *DestTy, | 
|  | unsigned Op0Reg, unsigned Op1Val); | 
|  | void visitMul(BinaryOperator &B); | 
|  |  | 
|  | void visitDiv(BinaryOperator &B) { visitDivRem(B); } | 
|  | void visitRem(BinaryOperator &B) { visitDivRem(B); } | 
|  | void visitDivRem(BinaryOperator &B); | 
|  |  | 
|  | // Bitwise operators | 
|  | void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); } | 
|  | void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); } | 
|  | void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); } | 
|  |  | 
|  | // Comparison operators... | 
|  | void visitSetCondInst(SetCondInst &I); | 
|  | unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, | 
|  | MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator MBBI); | 
|  | void visitSelectInst(SelectInst &SI); | 
|  |  | 
|  |  | 
|  | // Memory Instructions | 
|  | void visitLoadInst(LoadInst &I); | 
|  | void visitStoreInst(StoreInst &I); | 
|  | void visitGetElementPtrInst(GetElementPtrInst &I); | 
|  | void visitAllocaInst(AllocaInst &I); | 
|  | void visitMallocInst(MallocInst &I); | 
|  | void visitFreeInst(FreeInst &I); | 
|  |  | 
|  | // Other operators | 
|  | void visitShiftInst(ShiftInst &I); | 
|  | void visitPHINode(PHINode &I) {}      // PHI nodes handled by second pass | 
|  | void visitCastInst(CastInst &I); | 
|  | void visitVANextInst(VANextInst &I); | 
|  | void visitVAArgInst(VAArgInst &I); | 
|  |  | 
|  | void visitInstruction(Instruction &I) { | 
|  | std::cerr << "Cannot instruction select: " << I; | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | /// promote32 - Make a value 32-bits wide, and put it somewhere. | 
|  | /// | 
|  | void promote32(unsigned targetReg, const ValueRecord &VR); | 
|  |  | 
|  | /// getAddressingMode - Get the addressing mode to use to address the | 
|  | /// specified value.  The returned value should be used with addFullAddress. | 
|  | void getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale, | 
|  | unsigned &IndexReg, unsigned &Disp); | 
|  |  | 
|  |  | 
|  | /// getGEPIndex - This is used to fold GEP instructions into X86 addressing | 
|  | /// expressions. | 
|  | void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, | 
|  | std::vector<Value*> &GEPOps, | 
|  | std::vector<const Type*> &GEPTypes, unsigned &BaseReg, | 
|  | unsigned &Scale, unsigned &IndexReg, unsigned &Disp); | 
|  |  | 
|  | /// isGEPFoldable - Return true if the specified GEP can be completely | 
|  | /// folded into the addressing mode of a load/store or lea instruction. | 
|  | bool isGEPFoldable(MachineBasicBlock *MBB, | 
|  | Value *Src, User::op_iterator IdxBegin, | 
|  | User::op_iterator IdxEnd, unsigned &BaseReg, | 
|  | unsigned &Scale, unsigned &IndexReg, unsigned &Disp); | 
|  |  | 
|  | /// emitGEPOperation - Common code shared between visitGetElementPtrInst and | 
|  | /// constant expression GEP support. | 
|  | /// | 
|  | void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, | 
|  | Value *Src, User::op_iterator IdxBegin, | 
|  | User::op_iterator IdxEnd, unsigned TargetReg); | 
|  |  | 
|  | /// emitCastOperation - Common code shared between visitCastInst and | 
|  | /// constant expression cast support. | 
|  | /// | 
|  | void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP, | 
|  | Value *Src, const Type *DestTy, unsigned TargetReg); | 
|  |  | 
|  | /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary | 
|  | /// and constant expression support. | 
|  | /// | 
|  | void emitSimpleBinaryOperation(MachineBasicBlock *BB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Value *Op0, Value *Op1, | 
|  | unsigned OperatorClass, unsigned TargetReg); | 
|  |  | 
|  | void emitDivRemOperation(MachineBasicBlock *BB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | unsigned Op0Reg, unsigned Op1Reg, bool isDiv, | 
|  | const Type *Ty, unsigned TargetReg); | 
|  |  | 
|  | /// emitSetCCOperation - Common code shared between visitSetCondInst and | 
|  | /// constant expression support. | 
|  | /// | 
|  | void emitSetCCOperation(MachineBasicBlock *BB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Value *Op0, Value *Op1, unsigned Opcode, | 
|  | unsigned TargetReg); | 
|  |  | 
|  | /// emitShiftOperation - Common code shared between visitShiftInst and | 
|  | /// constant expression support. | 
|  | /// | 
|  | void emitShiftOperation(MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Value *Op, Value *ShiftAmount, bool isLeftShift, | 
|  | const Type *ResultTy, unsigned DestReg); | 
|  |  | 
|  | /// emitSelectOperation - Common code shared between visitSelectInst and the | 
|  | /// constant expression support. | 
|  | void emitSelectOperation(MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Value *Cond, Value *TrueVal, Value *FalseVal, | 
|  | unsigned DestReg); | 
|  |  | 
|  | /// copyConstantToRegister - Output the instructions required to put the | 
|  | /// specified constant into the specified register. | 
|  | /// | 
|  | void copyConstantToRegister(MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator MBBI, | 
|  | Constant *C, unsigned Reg); | 
|  |  | 
|  | /// makeAnotherReg - This method returns the next register number we haven't | 
|  | /// yet used. | 
|  | /// | 
|  | /// Long values are handled somewhat specially.  They are always allocated | 
|  | /// as pairs of 32 bit integer values.  The register number returned is the | 
|  | /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits | 
|  | /// of the long value. | 
|  | /// | 
|  | unsigned makeAnotherReg(const Type *Ty) { | 
|  | assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) && | 
|  | "Current target doesn't have X86 reg info??"); | 
|  | const X86RegisterInfo *MRI = | 
|  | static_cast<const X86RegisterInfo*>(TM.getRegisterInfo()); | 
|  | if (Ty == Type::LongTy || Ty == Type::ULongTy) { | 
|  | const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy); | 
|  | // Create the lower part | 
|  | F->getSSARegMap()->createVirtualRegister(RC); | 
|  | // Create the upper part. | 
|  | return F->getSSARegMap()->createVirtualRegister(RC)-1; | 
|  | } | 
|  |  | 
|  | // Add the mapping of regnumber => reg class to MachineFunction | 
|  | const TargetRegisterClass *RC = MRI->getRegClassForType(Ty); | 
|  | return F->getSSARegMap()->createVirtualRegister(RC); | 
|  | } | 
|  |  | 
|  | /// getReg - This method turns an LLVM value into a register number.  This | 
|  | /// is guaranteed to produce the same register number for a particular value | 
|  | /// every time it is queried. | 
|  | /// | 
|  | unsigned getReg(Value &V) { return getReg(&V); }  // Allow references | 
|  | unsigned getReg(Value *V) { | 
|  | // Just append to the end of the current bb. | 
|  | MachineBasicBlock::iterator It = BB->end(); | 
|  | return getReg(V, BB, It); | 
|  | } | 
|  | unsigned getReg(Value *V, MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator IPt) { | 
|  | unsigned &Reg = RegMap[V]; | 
|  | if (Reg == 0) { | 
|  | Reg = makeAnotherReg(V->getType()); | 
|  | RegMap[V] = Reg; | 
|  | } | 
|  |  | 
|  | // If this operand is a constant, emit the code to copy the constant into | 
|  | // the register here... | 
|  | // | 
|  | if (Constant *C = dyn_cast<Constant>(V)) { | 
|  | copyConstantToRegister(MBB, IPt, C, Reg); | 
|  | RegMap.erase(V);  // Assign a new name to this constant if ref'd again | 
|  | } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { | 
|  | // Move the address of the global into the register | 
|  | BuildMI(*MBB, IPt, X86::MOV32ri, 1, Reg).addGlobalAddress(GV); | 
|  | RegMap.erase(V);  // Assign a new name to this address if ref'd again | 
|  | } | 
|  |  | 
|  | return Reg; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86 | 
|  | /// Representation. | 
|  | /// | 
|  | enum TypeClass { | 
|  | cByte, cShort, cInt, cFP, cLong | 
|  | }; | 
|  |  | 
|  | /// getClass - Turn a primitive type into a "class" number which is based on the | 
|  | /// size of the type, and whether or not it is floating point. | 
|  | /// | 
|  | static inline TypeClass getClass(const Type *Ty) { | 
|  | switch (Ty->getPrimitiveID()) { | 
|  | case Type::SByteTyID: | 
|  | case Type::UByteTyID:   return cByte;      // Byte operands are class #0 | 
|  | case Type::ShortTyID: | 
|  | case Type::UShortTyID:  return cShort;     // Short operands are class #1 | 
|  | case Type::IntTyID: | 
|  | case Type::UIntTyID: | 
|  | case Type::PointerTyID: return cInt;       // Int's and pointers are class #2 | 
|  |  | 
|  | case Type::FloatTyID: | 
|  | case Type::DoubleTyID:  return cFP;        // Floating Point is #3 | 
|  |  | 
|  | case Type::LongTyID: | 
|  | case Type::ULongTyID:   return cLong;      // Longs are class #4 | 
|  | default: | 
|  | assert(0 && "Invalid type to getClass!"); | 
|  | return cByte;  // not reached | 
|  | } | 
|  | } | 
|  |  | 
|  | // getClassB - Just like getClass, but treat boolean values as bytes. | 
|  | static inline TypeClass getClassB(const Type *Ty) { | 
|  | if (Ty == Type::BoolTy) return cByte; | 
|  | return getClass(Ty); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// copyConstantToRegister - Output the instructions required to put the | 
|  | /// specified constant into the specified register. | 
|  | /// | 
|  | void ISel::copyConstantToRegister(MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Constant *C, unsigned R) { | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { | 
|  | unsigned Class = 0; | 
|  | switch (CE->getOpcode()) { | 
|  | case Instruction::GetElementPtr: | 
|  | emitGEPOperation(MBB, IP, CE->getOperand(0), | 
|  | CE->op_begin()+1, CE->op_end(), R); | 
|  | return; | 
|  | case Instruction::Cast: | 
|  | emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R); | 
|  | return; | 
|  |  | 
|  | case Instruction::Xor: ++Class; // FALL THROUGH | 
|  | case Instruction::Or:  ++Class; // FALL THROUGH | 
|  | case Instruction::And: ++Class; // FALL THROUGH | 
|  | case Instruction::Sub: ++Class; // FALL THROUGH | 
|  | case Instruction::Add: | 
|  | emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), | 
|  | Class, R); | 
|  | return; | 
|  |  | 
|  | case Instruction::Mul: { | 
|  | unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP); | 
|  | unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP); | 
|  | doMultiply(MBB, IP, R, CE->getType(), Op0Reg, Op1Reg); | 
|  | return; | 
|  | } | 
|  | case Instruction::Div: | 
|  | case Instruction::Rem: { | 
|  | unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP); | 
|  | unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP); | 
|  | emitDivRemOperation(MBB, IP, Op0Reg, Op1Reg, | 
|  | CE->getOpcode() == Instruction::Div, | 
|  | CE->getType(), R); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Instruction::SetNE: | 
|  | case Instruction::SetEQ: | 
|  | case Instruction::SetLT: | 
|  | case Instruction::SetGT: | 
|  | case Instruction::SetLE: | 
|  | case Instruction::SetGE: | 
|  | emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), | 
|  | CE->getOpcode(), R); | 
|  | return; | 
|  |  | 
|  | case Instruction::Shl: | 
|  | case Instruction::Shr: | 
|  | emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), | 
|  | CE->getOpcode() == Instruction::Shl, CE->getType(), R); | 
|  | return; | 
|  |  | 
|  | case Instruction::Select: | 
|  | emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), | 
|  | CE->getOperand(2), R); | 
|  | return; | 
|  |  | 
|  | default: | 
|  | std::cerr << "Offending expr: " << C << "\n"; | 
|  | assert(0 && "Constant expression not yet handled!\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (C->getType()->isIntegral()) { | 
|  | unsigned Class = getClassB(C->getType()); | 
|  |  | 
|  | if (Class == cLong) { | 
|  | // Copy the value into the register pair. | 
|  | uint64_t Val = cast<ConstantInt>(C)->getRawValue(); | 
|  | BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF); | 
|  | BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(Class <= cInt && "Type not handled yet!"); | 
|  |  | 
|  | static const unsigned IntegralOpcodeTab[] = { | 
|  | X86::MOV8ri, X86::MOV16ri, X86::MOV32ri | 
|  | }; | 
|  |  | 
|  | if (C->getType() == Type::BoolTy) { | 
|  | BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True); | 
|  | } else { | 
|  | ConstantInt *CI = cast<ConstantInt>(C); | 
|  | BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue()); | 
|  | } | 
|  | } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { | 
|  | if (CFP->isExactlyValue(+0.0)) | 
|  | BuildMI(*MBB, IP, X86::FLD0, 0, R); | 
|  | else if (CFP->isExactlyValue(+1.0)) | 
|  | BuildMI(*MBB, IP, X86::FLD1, 0, R); | 
|  | else { | 
|  | // Otherwise we need to spill the constant to memory... | 
|  | MachineConstantPool *CP = F->getConstantPool(); | 
|  | unsigned CPI = CP->getConstantPoolIndex(CFP); | 
|  | const Type *Ty = CFP->getType(); | 
|  |  | 
|  | assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); | 
|  | unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m; | 
|  | addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI); | 
|  | } | 
|  |  | 
|  | } else if (isa<ConstantPointerNull>(C)) { | 
|  | // Copy zero (null pointer) to the register. | 
|  | BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0); | 
|  | } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) { | 
|  | BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(CPR->getValue()); | 
|  | } else { | 
|  | std::cerr << "Offending constant: " << C << "\n"; | 
|  | assert(0 && "Type not handled yet!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from | 
|  | /// the stack into virtual registers. | 
|  | /// | 
|  | void ISel::LoadArgumentsToVirtualRegs(Function &Fn) { | 
|  | // Emit instructions to load the arguments...  On entry to a function on the | 
|  | // X86, the stack frame looks like this: | 
|  | // | 
|  | // [ESP] -- return address | 
|  | // [ESP + 4] -- first argument (leftmost lexically) | 
|  | // [ESP + 8] -- second argument, if first argument is four bytes in size | 
|  | //    ... | 
|  | // | 
|  | unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot | 
|  | MachineFrameInfo *MFI = F->getFrameInfo(); | 
|  |  | 
|  | for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) { | 
|  | unsigned Reg = getReg(*I); | 
|  |  | 
|  | int FI;          // Frame object index | 
|  | switch (getClassB(I->getType())) { | 
|  | case cByte: | 
|  | FI = MFI->CreateFixedObject(1, ArgOffset); | 
|  | addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI); | 
|  | break; | 
|  | case cShort: | 
|  | FI = MFI->CreateFixedObject(2, ArgOffset); | 
|  | addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI); | 
|  | break; | 
|  | case cInt: | 
|  | FI = MFI->CreateFixedObject(4, ArgOffset); | 
|  | addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI); | 
|  | break; | 
|  | case cLong: | 
|  | FI = MFI->CreateFixedObject(8, ArgOffset); | 
|  | addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI); | 
|  | addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4); | 
|  | ArgOffset += 4;   // longs require 4 additional bytes | 
|  | break; | 
|  | case cFP: | 
|  | unsigned Opcode; | 
|  | if (I->getType() == Type::FloatTy) { | 
|  | Opcode = X86::FLD32m; | 
|  | FI = MFI->CreateFixedObject(4, ArgOffset); | 
|  | } else { | 
|  | Opcode = X86::FLD64m; | 
|  | FI = MFI->CreateFixedObject(8, ArgOffset); | 
|  | ArgOffset += 4;   // doubles require 4 additional bytes | 
|  | } | 
|  | addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI); | 
|  | break; | 
|  | default: | 
|  | assert(0 && "Unhandled argument type!"); | 
|  | } | 
|  | ArgOffset += 4;  // Each argument takes at least 4 bytes on the stack... | 
|  | } | 
|  |  | 
|  | // If the function takes variable number of arguments, add a frame offset for | 
|  | // the start of the first vararg value... this is used to expand | 
|  | // llvm.va_start. | 
|  | if (Fn.getFunctionType()->isVarArg()) | 
|  | VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// SelectPHINodes - Insert machine code to generate phis.  This is tricky | 
|  | /// because we have to generate our sources into the source basic blocks, not | 
|  | /// the current one. | 
|  | /// | 
|  | void ISel::SelectPHINodes() { | 
|  | const TargetInstrInfo &TII = TM.getInstrInfo(); | 
|  | const Function &LF = *F->getFunction();  // The LLVM function... | 
|  | for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) { | 
|  | const BasicBlock *BB = I; | 
|  | MachineBasicBlock &MBB = *MBBMap[I]; | 
|  |  | 
|  | // Loop over all of the PHI nodes in the LLVM basic block... | 
|  | MachineBasicBlock::iterator PHIInsertPoint = MBB.begin(); | 
|  | for (BasicBlock::const_iterator I = BB->begin(); | 
|  | PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) { | 
|  |  | 
|  | // Create a new machine instr PHI node, and insert it. | 
|  | unsigned PHIReg = getReg(*PN); | 
|  | MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint, | 
|  | X86::PHI, PN->getNumOperands(), PHIReg); | 
|  |  | 
|  | MachineInstr *LongPhiMI = 0; | 
|  | if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) | 
|  | LongPhiMI = BuildMI(MBB, PHIInsertPoint, | 
|  | X86::PHI, PN->getNumOperands(), PHIReg+1); | 
|  |  | 
|  | // PHIValues - Map of blocks to incoming virtual registers.  We use this | 
|  | // so that we only initialize one incoming value for a particular block, | 
|  | // even if the block has multiple entries in the PHI node. | 
|  | // | 
|  | std::map<MachineBasicBlock*, unsigned> PHIValues; | 
|  |  | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)]; | 
|  | unsigned ValReg; | 
|  | std::map<MachineBasicBlock*, unsigned>::iterator EntryIt = | 
|  | PHIValues.lower_bound(PredMBB); | 
|  |  | 
|  | if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) { | 
|  | // We already inserted an initialization of the register for this | 
|  | // predecessor.  Recycle it. | 
|  | ValReg = EntryIt->second; | 
|  |  | 
|  | } else { | 
|  | // Get the incoming value into a virtual register. | 
|  | // | 
|  | Value *Val = PN->getIncomingValue(i); | 
|  |  | 
|  | // If this is a constant or GlobalValue, we may have to insert code | 
|  | // into the basic block to compute it into a virtual register. | 
|  | if (isa<Constant>(Val) || isa<GlobalValue>(Val)) { | 
|  | if (isa<ConstantExpr>(Val)) { | 
|  | // Because we don't want to clobber any values which might be in | 
|  | // physical registers with the computation of this constant (which | 
|  | // might be arbitrarily complex if it is a constant expression), | 
|  | // just insert the computation at the top of the basic block. | 
|  | MachineBasicBlock::iterator PI = PredMBB->begin(); | 
|  |  | 
|  | // Skip over any PHI nodes though! | 
|  | while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI) | 
|  | ++PI; | 
|  |  | 
|  | ValReg = getReg(Val, PredMBB, PI); | 
|  | } else { | 
|  | // Simple constants get emitted at the end of the basic block, | 
|  | // before any terminator instructions.  We "know" that the code to | 
|  | // move a constant into a register will never clobber any flags. | 
|  | ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator()); | 
|  | } | 
|  | } else { | 
|  | ValReg = getReg(Val); | 
|  | } | 
|  |  | 
|  | // Remember that we inserted a value for this PHI for this predecessor | 
|  | PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg)); | 
|  | } | 
|  |  | 
|  | PhiMI->addRegOperand(ValReg); | 
|  | PhiMI->addMachineBasicBlockOperand(PredMBB); | 
|  | if (LongPhiMI) { | 
|  | LongPhiMI->addRegOperand(ValReg+1); | 
|  | LongPhiMI->addMachineBasicBlockOperand(PredMBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that we emitted all of the incoming values for the PHI node, make | 
|  | // sure to reposition the InsertPoint after the PHI that we just added. | 
|  | // This is needed because we might have inserted a constant into this | 
|  | // block, right after the PHI's which is before the old insert point! | 
|  | PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI; | 
|  | ++PHIInsertPoint; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// RequiresFPRegKill - The floating point stackifier pass cannot insert | 
|  | /// compensation code on critical edges.  As such, it requires that we kill all | 
|  | /// FP registers on the exit from any blocks that either ARE critical edges, or | 
|  | /// branch to a block that has incoming critical edges. | 
|  | /// | 
|  | /// Note that this kill instruction will eventually be eliminated when | 
|  | /// restrictions in the stackifier are relaxed. | 
|  | /// | 
|  | static bool RequiresFPRegKill(const BasicBlock *BB) { | 
|  | #if 0 | 
|  | for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) { | 
|  | const BasicBlock *Succ = *SI; | 
|  | pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ); | 
|  | ++PI;  // Block have at least one predecessory | 
|  | if (PI != PE) {             // If it has exactly one, this isn't crit edge | 
|  | // If this block has more than one predecessor, check all of the | 
|  | // predecessors to see if they have multiple successors.  If so, then the | 
|  | // block we are analyzing needs an FPRegKill. | 
|  | for (PI = pred_begin(Succ); PI != PE; ++PI) { | 
|  | const BasicBlock *Pred = *PI; | 
|  | succ_const_iterator SI2 = succ_begin(Pred); | 
|  | ++SI2;  // There must be at least one successor of this block. | 
|  | if (SI2 != succ_end(Pred)) | 
|  | return true;   // Yes, we must insert the kill on this edge. | 
|  | } | 
|  | } | 
|  | } | 
|  | // If we got this far, there is no need to insert the kill instruction. | 
|  | return false; | 
|  | #else | 
|  | return true; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that | 
|  | // need them.  This only occurs due to the floating point stackifier not being | 
|  | // aggressive enough to handle arbitrary global stackification. | 
|  | // | 
|  | // Currently we insert an FP_REG_KILL instruction into each block that uses or | 
|  | // defines a floating point virtual register. | 
|  | // | 
|  | // When the global register allocators (like linear scan) finally update live | 
|  | // variable analysis, we can keep floating point values in registers across | 
|  | // portions of the CFG that do not involve critical edges.  This will be a big | 
|  | // win, but we are waiting on the global allocators before we can do this. | 
|  | // | 
|  | // With a bit of work, the floating point stackifier pass can be enhanced to | 
|  | // break critical edges as needed (to make a place to put compensation code), | 
|  | // but this will require some infrastructure improvements as well. | 
|  | // | 
|  | void ISel::InsertFPRegKills() { | 
|  | SSARegMap &RegMap = *F->getSSARegMap(); | 
|  |  | 
|  | for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { | 
|  | for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I) | 
|  | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand& MO = I->getOperand(i); | 
|  | if (MO.isRegister() && MO.getReg()) { | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (MRegisterInfo::isVirtualRegister(Reg)) | 
|  | if (RegMap.getRegClass(Reg)->getSize() == 10) | 
|  | goto UsesFPReg; | 
|  | } | 
|  | } | 
|  | // If we haven't found an FP register use or def in this basic block, check | 
|  | // to see if any of our successors has an FP PHI node, which will cause a | 
|  | // copy to be inserted into this block. | 
|  | for (succ_const_iterator SI = succ_begin(BB->getBasicBlock()), | 
|  | E = succ_end(BB->getBasicBlock()); SI != E; ++SI) { | 
|  | MachineBasicBlock *SBB = MBBMap[*SI]; | 
|  | for (MachineBasicBlock::iterator I = SBB->begin(); | 
|  | I != SBB->end() && I->getOpcode() == X86::PHI; ++I) { | 
|  | if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10) | 
|  | goto UsesFPReg; | 
|  | } | 
|  | } | 
|  | continue; | 
|  | UsesFPReg: | 
|  | // Okay, this block uses an FP register.  If the block has successors (ie, | 
|  | // it's not an unwind/return), insert the FP_REG_KILL instruction. | 
|  | if (BB->getBasicBlock()->getTerminator()->getNumSuccessors() && | 
|  | RequiresFPRegKill(BB->getBasicBlock())) { | 
|  | BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0); | 
|  | ++NumFPKill; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold | 
|  | // it into the conditional branch or select instruction which is the only user | 
|  | // of the cc instruction.  This is the case if the conditional branch is the | 
|  | // only user of the setcc, and if the setcc is in the same basic block as the | 
|  | // conditional branch.  We also don't handle long arguments below, so we reject | 
|  | // them here as well. | 
|  | // | 
|  | static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) { | 
|  | if (SetCondInst *SCI = dyn_cast<SetCondInst>(V)) | 
|  | if (SCI->hasOneUse()) { | 
|  | Instruction *User = cast<Instruction>(SCI->use_back()); | 
|  | if ((isa<BranchInst>(User) || isa<SelectInst>(User)) && | 
|  | SCI->getParent() == User->getParent() && | 
|  | getClassB(SCI->getOperand(0)->getType()) != cLong) | 
|  | return SCI; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Return a fixed numbering for setcc instructions which does not depend on the | 
|  | // order of the opcodes. | 
|  | // | 
|  | static unsigned getSetCCNumber(unsigned Opcode) { | 
|  | switch(Opcode) { | 
|  | default: assert(0 && "Unknown setcc instruction!"); | 
|  | case Instruction::SetEQ: return 0; | 
|  | case Instruction::SetNE: return 1; | 
|  | case Instruction::SetLT: return 2; | 
|  | case Instruction::SetGE: return 3; | 
|  | case Instruction::SetGT: return 4; | 
|  | case Instruction::SetLE: return 5; | 
|  | } | 
|  | } | 
|  |  | 
|  | // LLVM  -> X86 signed  X86 unsigned | 
|  | // -----    ----------  ------------ | 
|  | // seteq -> sete        sete | 
|  | // setne -> setne       setne | 
|  | // setlt -> setl        setb | 
|  | // setge -> setge       setae | 
|  | // setgt -> setg        seta | 
|  | // setle -> setle       setbe | 
|  | // ---- | 
|  | //          sets                       // Used by comparison with 0 optimization | 
|  | //          setns | 
|  | static const unsigned SetCCOpcodeTab[2][8] = { | 
|  | { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr, | 
|  | 0, 0 }, | 
|  | { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr, | 
|  | X86::SETSr, X86::SETNSr }, | 
|  | }; | 
|  |  | 
|  | // EmitComparison - This function emits a comparison of the two operands, | 
|  | // returning the extended setcc code to use. | 
|  | unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, | 
|  | MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator IP) { | 
|  | // The arguments are already supposed to be of the same type. | 
|  | const Type *CompTy = Op0->getType(); | 
|  | unsigned Class = getClassB(CompTy); | 
|  | unsigned Op0r = getReg(Op0, MBB, IP); | 
|  |  | 
|  | // Special case handling of: cmp R, i | 
|  | if (Class == cByte || Class == cShort || Class == cInt) | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { | 
|  | uint64_t Op1v = cast<ConstantInt>(CI)->getRawValue(); | 
|  |  | 
|  | // Mask off any upper bits of the constant, if there are any... | 
|  | Op1v &= (1ULL << (8 << Class)) - 1; | 
|  |  | 
|  | // If this is a comparison against zero, emit more efficient code.  We | 
|  | // can't handle unsigned comparisons against zero unless they are == or | 
|  | // !=.  These should have been strength reduced already anyway. | 
|  | if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) { | 
|  | static const unsigned TESTTab[] = { | 
|  | X86::TEST8rr, X86::TEST16rr, X86::TEST32rr | 
|  | }; | 
|  | BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r); | 
|  |  | 
|  | if (OpNum == 2) return 6;   // Map jl -> js | 
|  | if (OpNum == 3) return 7;   // Map jg -> jns | 
|  | return OpNum; | 
|  | } | 
|  |  | 
|  | static const unsigned CMPTab[] = { | 
|  | X86::CMP8ri, X86::CMP16ri, X86::CMP32ri | 
|  | }; | 
|  |  | 
|  | BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v); | 
|  | return OpNum; | 
|  | } | 
|  |  | 
|  | // Special case handling of comparison against +/- 0.0 | 
|  | if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1)) | 
|  | if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) { | 
|  | BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r); | 
|  | BuildMI(*MBB, IP, X86::FNSTSW8r, 0); | 
|  | BuildMI(*MBB, IP, X86::SAHF, 1); | 
|  | return OpNum; | 
|  | } | 
|  |  | 
|  | unsigned Op1r = getReg(Op1, MBB, IP); | 
|  | switch (Class) { | 
|  | default: assert(0 && "Unknown type class!"); | 
|  | // Emit: cmp <var1>, <var2> (do the comparison).  We can | 
|  | // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with | 
|  | // 32-bit. | 
|  | case cByte: | 
|  | BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r); | 
|  | break; | 
|  | case cShort: | 
|  | BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r); | 
|  | break; | 
|  | case cInt: | 
|  | BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r); | 
|  | break; | 
|  | case cFP: | 
|  | BuildMI(*MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r); | 
|  | BuildMI(*MBB, IP, X86::FNSTSW8r, 0); | 
|  | BuildMI(*MBB, IP, X86::SAHF, 1); | 
|  | break; | 
|  |  | 
|  | case cLong: | 
|  | if (OpNum < 2) {    // seteq, setne | 
|  | unsigned LoTmp = makeAnotherReg(Type::IntTy); | 
|  | unsigned HiTmp = makeAnotherReg(Type::IntTy); | 
|  | unsigned FinalTmp = makeAnotherReg(Type::IntTy); | 
|  | BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r); | 
|  | BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1); | 
|  | BuildMI(*MBB, IP, X86::OR32rr,  2, FinalTmp).addReg(LoTmp).addReg(HiTmp); | 
|  | break;  // Allow the sete or setne to be generated from flags set by OR | 
|  | } else { | 
|  | // Emit a sequence of code which compares the high and low parts once | 
|  | // each, then uses a conditional move to handle the overflow case.  For | 
|  | // example, a setlt for long would generate code like this: | 
|  | // | 
|  | // AL = lo(op1) < lo(op2)   // Signedness depends on operands | 
|  | // BL = hi(op1) < hi(op2)   // Always unsigned comparison | 
|  | // dest = hi(op1) == hi(op2) ? AL : BL; | 
|  | // | 
|  |  | 
|  | // FIXME: This would be much better if we had hierarchical register | 
|  | // classes!  Until then, hardcode registers so that we can deal with their | 
|  | // aliases (because we don't have conditional byte moves). | 
|  | // | 
|  | BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r); | 
|  | BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL); | 
|  | BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1); | 
|  | BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL); | 
|  | BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH); | 
|  | BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH); | 
|  | BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX) | 
|  | .addReg(X86::AX); | 
|  | // NOTE: visitSetCondInst knows that the value is dumped into the BL | 
|  | // register at this point for long values... | 
|  | return OpNum; | 
|  | } | 
|  | } | 
|  | return OpNum; | 
|  | } | 
|  |  | 
|  | /// SetCC instructions - Here we just emit boilerplate code to set a byte-sized | 
|  | /// register, then move it to wherever the result should be. | 
|  | /// | 
|  | void ISel::visitSetCondInst(SetCondInst &I) { | 
|  | if (canFoldSetCCIntoBranchOrSelect(&I)) | 
|  | return;  // Fold this into a branch or select. | 
|  |  | 
|  | unsigned DestReg = getReg(I); | 
|  | MachineBasicBlock::iterator MII = BB->end(); | 
|  | emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(), | 
|  | DestReg); | 
|  | } | 
|  |  | 
|  | /// emitSetCCOperation - Common code shared between visitSetCondInst and | 
|  | /// constant expression support. | 
|  | /// | 
|  | void ISel::emitSetCCOperation(MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Value *Op0, Value *Op1, unsigned Opcode, | 
|  | unsigned TargetReg) { | 
|  | unsigned OpNum = getSetCCNumber(Opcode); | 
|  | OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP); | 
|  |  | 
|  | const Type *CompTy = Op0->getType(); | 
|  | unsigned CompClass = getClassB(CompTy); | 
|  | bool isSigned = CompTy->isSigned() && CompClass != cFP; | 
|  |  | 
|  | if (CompClass != cLong || OpNum < 2) { | 
|  | // Handle normal comparisons with a setcc instruction... | 
|  | BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg); | 
|  | } else { | 
|  | // Handle long comparisons by copying the value which is already in BL into | 
|  | // the register we want... | 
|  | BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ISel::visitSelectInst(SelectInst &SI) { | 
|  | unsigned DestReg = getReg(SI); | 
|  | MachineBasicBlock::iterator MII = BB->end(); | 
|  | emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(), | 
|  | SI.getFalseValue(), DestReg); | 
|  | } | 
|  |  | 
|  | /// emitSelect - Common code shared between visitSelectInst and the constant | 
|  | /// expression support. | 
|  | void ISel::emitSelectOperation(MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Value *Cond, Value *TrueVal, Value *FalseVal, | 
|  | unsigned DestReg) { | 
|  | unsigned SelectClass = getClassB(TrueVal->getType()); | 
|  |  | 
|  | // We don't support 8-bit conditional moves.  If we have incoming constants, | 
|  | // transform them into 16-bit constants to avoid having a run-time conversion. | 
|  | if (SelectClass == cByte) { | 
|  | if (Constant *T = dyn_cast<Constant>(TrueVal)) | 
|  | TrueVal = ConstantExpr::getCast(T, Type::ShortTy); | 
|  | if (Constant *F = dyn_cast<Constant>(FalseVal)) | 
|  | FalseVal = ConstantExpr::getCast(F, Type::ShortTy); | 
|  | } | 
|  |  | 
|  |  | 
|  | unsigned Opcode; | 
|  | if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) { | 
|  | // We successfully folded the setcc into the select instruction. | 
|  |  | 
|  | unsigned OpNum = getSetCCNumber(SCI->getOpcode()); | 
|  | OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB, | 
|  | IP); | 
|  |  | 
|  | const Type *CompTy = SCI->getOperand(0)->getType(); | 
|  | bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP; | 
|  |  | 
|  | // LLVM  -> X86 signed  X86 unsigned | 
|  | // -----    ----------  ------------ | 
|  | // seteq -> cmovNE      cmovNE | 
|  | // setne -> cmovE       cmovE | 
|  | // setlt -> cmovGE      cmovAE | 
|  | // setge -> cmovL       cmovB | 
|  | // setgt -> cmovLE      cmovBE | 
|  | // setle -> cmovG       cmovA | 
|  | // ---- | 
|  | //          cmovNS              // Used by comparison with 0 optimization | 
|  | //          cmovS | 
|  |  | 
|  | switch (SelectClass) { | 
|  | default: assert(0 && "Unknown value class!"); | 
|  | case cFP: { | 
|  | // Annoyingly, we don't have a full set of floating point conditional | 
|  | // moves.  :( | 
|  | static const unsigned OpcodeTab[2][8] = { | 
|  | { X86::FCMOVNE, X86::FCMOVE, X86::FCMOVAE, X86::FCMOVB, | 
|  | X86::FCMOVBE, X86::FCMOVA, 0, 0 }, | 
|  | { X86::FCMOVNE, X86::FCMOVE, 0, 0, 0, 0, 0, 0 }, | 
|  | }; | 
|  | Opcode = OpcodeTab[isSigned][OpNum]; | 
|  |  | 
|  | // If opcode == 0, we hit a case that we don't support.  Output a setcc | 
|  | // and compare the result against zero. | 
|  | if (Opcode == 0) { | 
|  | unsigned CompClass = getClassB(CompTy); | 
|  | unsigned CondReg; | 
|  | if (CompClass != cLong || OpNum < 2) { | 
|  | CondReg = makeAnotherReg(Type::BoolTy); | 
|  | // Handle normal comparisons with a setcc instruction... | 
|  | BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, CondReg); | 
|  | } else { | 
|  | // Long comparisons end up in the BL register. | 
|  | CondReg = X86::BL; | 
|  | } | 
|  |  | 
|  | BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg); | 
|  | Opcode = X86::FCMOVE; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case cByte: | 
|  | case cShort: { | 
|  | static const unsigned OpcodeTab[2][8] = { | 
|  | { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVAE16rr, X86::CMOVB16rr, | 
|  | X86::CMOVBE16rr, X86::CMOVA16rr, 0, 0 }, | 
|  | { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVGE16rr, X86::CMOVL16rr, | 
|  | X86::CMOVLE16rr, X86::CMOVG16rr, X86::CMOVNS16rr, X86::CMOVS16rr }, | 
|  | }; | 
|  | Opcode = OpcodeTab[isSigned][OpNum]; | 
|  | break; | 
|  | } | 
|  | case cInt: | 
|  | case cLong: { | 
|  | static const unsigned OpcodeTab[2][8] = { | 
|  | { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVAE32rr, X86::CMOVB32rr, | 
|  | X86::CMOVBE32rr, X86::CMOVA32rr, 0, 0 }, | 
|  | { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVGE32rr, X86::CMOVL32rr, | 
|  | X86::CMOVLE32rr, X86::CMOVG32rr, X86::CMOVNS32rr, X86::CMOVS32rr }, | 
|  | }; | 
|  | Opcode = OpcodeTab[isSigned][OpNum]; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // Get the value being branched on, and use it to set the condition codes. | 
|  | unsigned CondReg = getReg(Cond, MBB, IP); | 
|  | BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg); | 
|  | switch (SelectClass) { | 
|  | default: assert(0 && "Unknown value class!"); | 
|  | case cFP:    Opcode = X86::FCMOVE; break; | 
|  | case cByte: | 
|  | case cShort: Opcode = X86::CMOVE16rr; break; | 
|  | case cInt: | 
|  | case cLong:  Opcode = X86::CMOVE32rr; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned TrueReg  = getReg(TrueVal, MBB, IP); | 
|  | unsigned FalseReg = getReg(FalseVal, MBB, IP); | 
|  | unsigned RealDestReg = DestReg; | 
|  |  | 
|  |  | 
|  | // Annoyingly enough, X86 doesn't HAVE 8-bit conditional moves.  Because of | 
|  | // this, we have to promote the incoming values to 16 bits, perform a 16-bit | 
|  | // cmove, then truncate the result. | 
|  | if (SelectClass == cByte) { | 
|  | DestReg = makeAnotherReg(Type::ShortTy); | 
|  | if (getClassB(TrueVal->getType()) == cByte) { | 
|  | // Promote the true value, by storing it into AL, and reading from AX. | 
|  | BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::AL).addReg(TrueReg); | 
|  | BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::AH).addImm(0); | 
|  | TrueReg = makeAnotherReg(Type::ShortTy); | 
|  | BuildMI(*MBB, IP, X86::MOV16rr, 1, TrueReg).addReg(X86::AX); | 
|  | } | 
|  | if (getClassB(FalseVal->getType()) == cByte) { | 
|  | // Promote the true value, by storing it into CL, and reading from CX. | 
|  | BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(FalseReg); | 
|  | BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::CH).addImm(0); | 
|  | FalseReg = makeAnotherReg(Type::ShortTy); | 
|  | BuildMI(*MBB, IP, X86::MOV16rr, 1, FalseReg).addReg(X86::CX); | 
|  | } | 
|  | } | 
|  |  | 
|  | BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(TrueReg).addReg(FalseReg); | 
|  |  | 
|  | switch (SelectClass) { | 
|  | case cByte: | 
|  | // We did the computation with 16-bit registers.  Truncate back to our | 
|  | // result by copying into AX then copying out AL. | 
|  | BuildMI(*MBB, IP, X86::MOV16rr, 1, X86::AX).addReg(DestReg); | 
|  | BuildMI(*MBB, IP, X86::MOV8rr, 1, RealDestReg).addReg(X86::AL); | 
|  | break; | 
|  | case cLong: | 
|  | // Move the upper half of the value as well. | 
|  | BuildMI(*MBB, IP, Opcode, 2,DestReg+1).addReg(TrueReg+1).addReg(FalseReg+1); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide | 
|  | /// operand, in the specified target register. | 
|  | /// | 
|  | void ISel::promote32(unsigned targetReg, const ValueRecord &VR) { | 
|  | bool isUnsigned = VR.Ty->isUnsigned(); | 
|  |  | 
|  | Value *Val = VR.Val; | 
|  | const Type *Ty = VR.Ty; | 
|  | if (Val) { | 
|  | if (Constant *C = dyn_cast<Constant>(Val)) { | 
|  | Val = ConstantExpr::getCast(C, Type::IntTy); | 
|  | Ty = Type::IntTy; | 
|  | } | 
|  |  | 
|  | // If this is a simple constant, just emit a MOVri directly to avoid the | 
|  | // copy. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { | 
|  | int TheVal = CI->getRawValue() & 0xFFFFFFFF; | 
|  | BuildMI(BB, X86::MOV32ri, 1, targetReg).addImm(TheVal); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure we have the register number for this value... | 
|  | unsigned Reg = Val ? getReg(Val) : VR.Reg; | 
|  |  | 
|  | switch (getClassB(Ty)) { | 
|  | case cByte: | 
|  | // Extend value into target register (8->32) | 
|  | if (isUnsigned) | 
|  | BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg); | 
|  | else | 
|  | BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg); | 
|  | break; | 
|  | case cShort: | 
|  | // Extend value into target register (16->32) | 
|  | if (isUnsigned) | 
|  | BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg); | 
|  | else | 
|  | BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg); | 
|  | break; | 
|  | case cInt: | 
|  | // Move value into target register (32->32) | 
|  | BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg); | 
|  | break; | 
|  | default: | 
|  | assert(0 && "Unpromotable operand class in promote32"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// 'ret' instruction - Here we are interested in meeting the x86 ABI.  As such, | 
|  | /// we have the following possibilities: | 
|  | /// | 
|  | ///   ret void: No return value, simply emit a 'ret' instruction | 
|  | ///   ret sbyte, ubyte : Extend value into EAX and return | 
|  | ///   ret short, ushort: Extend value into EAX and return | 
|  | ///   ret int, uint    : Move value into EAX and return | 
|  | ///   ret pointer      : Move value into EAX and return | 
|  | ///   ret long, ulong  : Move value into EAX/EDX and return | 
|  | ///   ret float/double : Top of FP stack | 
|  | /// | 
|  | void ISel::visitReturnInst(ReturnInst &I) { | 
|  | if (I.getNumOperands() == 0) { | 
|  | BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction | 
|  | return; | 
|  | } | 
|  |  | 
|  | Value *RetVal = I.getOperand(0); | 
|  | switch (getClassB(RetVal->getType())) { | 
|  | case cByte:   // integral return values: extend or move into EAX and return | 
|  | case cShort: | 
|  | case cInt: | 
|  | promote32(X86::EAX, ValueRecord(RetVal)); | 
|  | // Declare that EAX is live on exit | 
|  | BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP); | 
|  | break; | 
|  | case cFP: {                  // Floats & Doubles: Return in ST(0) | 
|  | unsigned RetReg = getReg(RetVal); | 
|  | BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg); | 
|  | // Declare that top-of-stack is live on exit | 
|  | BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP); | 
|  | break; | 
|  | } | 
|  | case cLong: { | 
|  | unsigned RetReg = getReg(RetVal); | 
|  | BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg); | 
|  | BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1); | 
|  | // Declare that EAX & EDX are live on exit | 
|  | BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX) | 
|  | .addReg(X86::ESP); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | visitInstruction(I); | 
|  | } | 
|  | // Emit a 'ret' instruction | 
|  | BuildMI(BB, X86::RET, 0); | 
|  | } | 
|  |  | 
|  | // getBlockAfter - Return the basic block which occurs lexically after the | 
|  | // specified one. | 
|  | static inline BasicBlock *getBlockAfter(BasicBlock *BB) { | 
|  | Function::iterator I = BB; ++I;  // Get iterator to next block | 
|  | return I != BB->getParent()->end() ? &*I : 0; | 
|  | } | 
|  |  | 
|  | /// visitBranchInst - Handle conditional and unconditional branches here.  Note | 
|  | /// that since code layout is frozen at this point, that if we are trying to | 
|  | /// jump to a block that is the immediate successor of the current block, we can | 
|  | /// just make a fall-through (but we don't currently). | 
|  | /// | 
|  | void ISel::visitBranchInst(BranchInst &BI) { | 
|  | BasicBlock *NextBB = getBlockAfter(BI.getParent());  // BB after current one | 
|  |  | 
|  | if (!BI.isConditional()) {  // Unconditional branch? | 
|  | if (BI.getSuccessor(0) != NextBB) | 
|  | BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // See if we can fold the setcc into the branch itself... | 
|  | SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition()); | 
|  | if (SCI == 0) { | 
|  | // Nope, cannot fold setcc into this branch.  Emit a branch on a condition | 
|  | // computed some other way... | 
|  | unsigned condReg = getReg(BI.getCondition()); | 
|  | BuildMI(BB, X86::TEST8rr, 2).addReg(condReg).addReg(condReg); | 
|  | if (BI.getSuccessor(1) == NextBB) { | 
|  | if (BI.getSuccessor(0) != NextBB) | 
|  | BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0)); | 
|  | } else { | 
|  | BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1)); | 
|  |  | 
|  | if (BI.getSuccessor(0) != NextBB) | 
|  | BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0)); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned OpNum = getSetCCNumber(SCI->getOpcode()); | 
|  | MachineBasicBlock::iterator MII = BB->end(); | 
|  | OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII); | 
|  |  | 
|  | const Type *CompTy = SCI->getOperand(0)->getType(); | 
|  | bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP; | 
|  |  | 
|  |  | 
|  | // LLVM  -> X86 signed  X86 unsigned | 
|  | // -----    ----------  ------------ | 
|  | // seteq -> je          je | 
|  | // setne -> jne         jne | 
|  | // setlt -> jl          jb | 
|  | // setge -> jge         jae | 
|  | // setgt -> jg          ja | 
|  | // setle -> jle         jbe | 
|  | // ---- | 
|  | //          js                  // Used by comparison with 0 optimization | 
|  | //          jns | 
|  |  | 
|  | static const unsigned OpcodeTab[2][8] = { | 
|  | { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 }, | 
|  | { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE, | 
|  | X86::JS, X86::JNS }, | 
|  | }; | 
|  |  | 
|  | if (BI.getSuccessor(0) != NextBB) { | 
|  | BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0)); | 
|  | if (BI.getSuccessor(1) != NextBB) | 
|  | BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1)); | 
|  | } else { | 
|  | // Change to the inverse condition... | 
|  | if (BI.getSuccessor(1) != NextBB) { | 
|  | OpNum ^= 1; | 
|  | BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// doCall - This emits an abstract call instruction, setting up the arguments | 
|  | /// and the return value as appropriate.  For the actual function call itself, | 
|  | /// it inserts the specified CallMI instruction into the stream. | 
|  | /// | 
|  | void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI, | 
|  | const std::vector<ValueRecord> &Args) { | 
|  |  | 
|  | // Count how many bytes are to be pushed on the stack... | 
|  | unsigned NumBytes = 0; | 
|  |  | 
|  | if (!Args.empty()) { | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) | 
|  | switch (getClassB(Args[i].Ty)) { | 
|  | case cByte: case cShort: case cInt: | 
|  | NumBytes += 4; break; | 
|  | case cLong: | 
|  | NumBytes += 8; break; | 
|  | case cFP: | 
|  | NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8; | 
|  | break; | 
|  | default: assert(0 && "Unknown class!"); | 
|  | } | 
|  |  | 
|  | // Adjust the stack pointer for the new arguments... | 
|  | BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes); | 
|  |  | 
|  | // Arguments go on the stack in reverse order, as specified by the ABI. | 
|  | unsigned ArgOffset = 0; | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
|  | unsigned ArgReg; | 
|  | switch (getClassB(Args[i].Ty)) { | 
|  | case cByte: | 
|  | case cShort: | 
|  | if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) { | 
|  | // Zero/Sign extend constant, then stuff into memory. | 
|  | ConstantInt *Val = cast<ConstantInt>(Args[i].Val); | 
|  | Val = cast<ConstantInt>(ConstantExpr::getCast(Val, Type::IntTy)); | 
|  | addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset) | 
|  | .addImm(Val->getRawValue() & 0xFFFFFFFF); | 
|  | } else { | 
|  | // Promote arg to 32 bits wide into a temporary register... | 
|  | ArgReg = makeAnotherReg(Type::UIntTy); | 
|  | promote32(ArgReg, Args[i]); | 
|  | addRegOffset(BuildMI(BB, X86::MOV32mr, 5), | 
|  | X86::ESP, ArgOffset).addReg(ArgReg); | 
|  | } | 
|  | break; | 
|  | case cInt: | 
|  | if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) { | 
|  | unsigned Val = cast<ConstantInt>(Args[i].Val)->getRawValue(); | 
|  | addRegOffset(BuildMI(BB, X86::MOV32mi, 5), | 
|  | X86::ESP, ArgOffset).addImm(Val); | 
|  | } else { | 
|  | ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; | 
|  | addRegOffset(BuildMI(BB, X86::MOV32mr, 5), | 
|  | X86::ESP, ArgOffset).addReg(ArgReg); | 
|  | } | 
|  | break; | 
|  | case cLong: | 
|  | ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; | 
|  | addRegOffset(BuildMI(BB, X86::MOV32mr, 5), | 
|  | X86::ESP, ArgOffset).addReg(ArgReg); | 
|  | addRegOffset(BuildMI(BB, X86::MOV32mr, 5), | 
|  | X86::ESP, ArgOffset+4).addReg(ArgReg+1); | 
|  | ArgOffset += 4;        // 8 byte entry, not 4. | 
|  | break; | 
|  |  | 
|  | case cFP: | 
|  | ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; | 
|  | if (Args[i].Ty == Type::FloatTy) { | 
|  | addRegOffset(BuildMI(BB, X86::FST32m, 5), | 
|  | X86::ESP, ArgOffset).addReg(ArgReg); | 
|  | } else { | 
|  | assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!"); | 
|  | addRegOffset(BuildMI(BB, X86::FST64m, 5), | 
|  | X86::ESP, ArgOffset).addReg(ArgReg); | 
|  | ArgOffset += 4;       // 8 byte entry, not 4. | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: assert(0 && "Unknown class!"); | 
|  | } | 
|  | ArgOffset += 4; | 
|  | } | 
|  | } else { | 
|  | BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0); | 
|  | } | 
|  |  | 
|  | BB->push_back(CallMI); | 
|  |  | 
|  | BuildMI(BB, X86::ADJCALLSTACKUP, 1).addImm(NumBytes); | 
|  |  | 
|  | // If there is a return value, scavenge the result from the location the call | 
|  | // leaves it in... | 
|  | // | 
|  | if (Ret.Ty != Type::VoidTy) { | 
|  | unsigned DestClass = getClassB(Ret.Ty); | 
|  | switch (DestClass) { | 
|  | case cByte: | 
|  | case cShort: | 
|  | case cInt: { | 
|  | // Integral results are in %eax, or the appropriate portion | 
|  | // thereof. | 
|  | static const unsigned regRegMove[] = { | 
|  | X86::MOV8rr, X86::MOV16rr, X86::MOV32rr | 
|  | }; | 
|  | static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX }; | 
|  | BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]); | 
|  | break; | 
|  | } | 
|  | case cFP:     // Floating-point return values live in %ST(0) | 
|  | BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg); | 
|  | break; | 
|  | case cLong:   // Long values are left in EDX:EAX | 
|  | BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX); | 
|  | BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX); | 
|  | break; | 
|  | default: assert(0 && "Unknown class!"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// visitCallInst - Push args on stack and do a procedure call instruction. | 
|  | void ISel::visitCallInst(CallInst &CI) { | 
|  | MachineInstr *TheCall; | 
|  | if (Function *F = CI.getCalledFunction()) { | 
|  | // Is it an intrinsic function call? | 
|  | if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) { | 
|  | visitIntrinsicCall(ID, CI);   // Special intrinsics are not handled here | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Emit a CALL instruction with PC-relative displacement. | 
|  | TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true); | 
|  | } else {  // Emit an indirect call... | 
|  | unsigned Reg = getReg(CI.getCalledValue()); | 
|  | TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg); | 
|  | } | 
|  |  | 
|  | std::vector<ValueRecord> Args; | 
|  | for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i) | 
|  | Args.push_back(ValueRecord(CI.getOperand(i))); | 
|  |  | 
|  | unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0; | 
|  | doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the | 
|  | /// function, lowering any calls to unknown intrinsic functions into the | 
|  | /// equivalent LLVM code. | 
|  | /// | 
|  | void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) { | 
|  | for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) | 
|  | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) | 
|  | if (CallInst *CI = dyn_cast<CallInst>(I++)) | 
|  | if (Function *F = CI->getCalledFunction()) | 
|  | switch (F->getIntrinsicID()) { | 
|  | case Intrinsic::not_intrinsic: | 
|  | case Intrinsic::vastart: | 
|  | case Intrinsic::vacopy: | 
|  | case Intrinsic::vaend: | 
|  | case Intrinsic::returnaddress: | 
|  | case Intrinsic::frameaddress: | 
|  | case Intrinsic::memcpy: | 
|  | case Intrinsic::memset: | 
|  | // We directly implement these intrinsics | 
|  | break; | 
|  | default: | 
|  | // All other intrinsic calls we must lower. | 
|  | Instruction *Before = CI->getPrev(); | 
|  | TM.getIntrinsicLowering().LowerIntrinsicCall(CI); | 
|  | if (Before) {        // Move iterator to instruction after call | 
|  | I = Before;  ++I; | 
|  | } else { | 
|  | I = BB->begin(); | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) { | 
|  | unsigned TmpReg1, TmpReg2; | 
|  | switch (ID) { | 
|  | case Intrinsic::vastart: | 
|  | // Get the address of the first vararg value... | 
|  | TmpReg1 = getReg(CI); | 
|  | addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex); | 
|  | return; | 
|  |  | 
|  | case Intrinsic::vacopy: | 
|  | TmpReg1 = getReg(CI); | 
|  | TmpReg2 = getReg(CI.getOperand(1)); | 
|  | BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2); | 
|  | return; | 
|  | case Intrinsic::vaend: return;   // Noop on X86 | 
|  |  | 
|  | case Intrinsic::returnaddress: | 
|  | case Intrinsic::frameaddress: | 
|  | TmpReg1 = getReg(CI); | 
|  | if (cast<Constant>(CI.getOperand(1))->isNullValue()) { | 
|  | if (ID == Intrinsic::returnaddress) { | 
|  | // Just load the return address | 
|  | addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1), | 
|  | ReturnAddressIndex); | 
|  | } else { | 
|  | addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1), | 
|  | ReturnAddressIndex, -4); | 
|  | } | 
|  | } else { | 
|  | // Values other than zero are not implemented yet. | 
|  | BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0); | 
|  | } | 
|  | return; | 
|  |  | 
|  | case Intrinsic::memcpy: { | 
|  | assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!"); | 
|  | unsigned Align = 1; | 
|  | if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) { | 
|  | Align = AlignC->getRawValue(); | 
|  | if (Align == 0) Align = 1; | 
|  | } | 
|  |  | 
|  | // Turn the byte code into # iterations | 
|  | unsigned CountReg; | 
|  | unsigned Opcode; | 
|  | switch (Align & 3) { | 
|  | case 2:   // WORD aligned | 
|  | if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) { | 
|  | CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2)); | 
|  | } else { | 
|  | CountReg = makeAnotherReg(Type::IntTy); | 
|  | unsigned ByteReg = getReg(CI.getOperand(3)); | 
|  | BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1); | 
|  | } | 
|  | Opcode = X86::REP_MOVSW; | 
|  | break; | 
|  | case 0:   // DWORD aligned | 
|  | if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) { | 
|  | CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4)); | 
|  | } else { | 
|  | CountReg = makeAnotherReg(Type::IntTy); | 
|  | unsigned ByteReg = getReg(CI.getOperand(3)); | 
|  | BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2); | 
|  | } | 
|  | Opcode = X86::REP_MOVSD; | 
|  | break; | 
|  | default:  // BYTE aligned | 
|  | CountReg = getReg(CI.getOperand(3)); | 
|  | Opcode = X86::REP_MOVSB; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // No matter what the alignment is, we put the source in ESI, the | 
|  | // destination in EDI, and the count in ECX. | 
|  | TmpReg1 = getReg(CI.getOperand(1)); | 
|  | TmpReg2 = getReg(CI.getOperand(2)); | 
|  | BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg); | 
|  | BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1); | 
|  | BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2); | 
|  | BuildMI(BB, Opcode, 0); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::memset: { | 
|  | assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!"); | 
|  | unsigned Align = 1; | 
|  | if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) { | 
|  | Align = AlignC->getRawValue(); | 
|  | if (Align == 0) Align = 1; | 
|  | } | 
|  |  | 
|  | // Turn the byte code into # iterations | 
|  | unsigned CountReg; | 
|  | unsigned Opcode; | 
|  | if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) { | 
|  | unsigned Val = ValC->getRawValue() & 255; | 
|  |  | 
|  | // If the value is a constant, then we can potentially use larger copies. | 
|  | switch (Align & 3) { | 
|  | case 2:   // WORD aligned | 
|  | if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) { | 
|  | CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2)); | 
|  | } else { | 
|  | CountReg = makeAnotherReg(Type::IntTy); | 
|  | unsigned ByteReg = getReg(CI.getOperand(3)); | 
|  | BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1); | 
|  | } | 
|  | BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val); | 
|  | Opcode = X86::REP_STOSW; | 
|  | break; | 
|  | case 0:   // DWORD aligned | 
|  | if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) { | 
|  | CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4)); | 
|  | } else { | 
|  | CountReg = makeAnotherReg(Type::IntTy); | 
|  | unsigned ByteReg = getReg(CI.getOperand(3)); | 
|  | BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2); | 
|  | } | 
|  | Val = (Val << 8) | Val; | 
|  | BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val); | 
|  | Opcode = X86::REP_STOSD; | 
|  | break; | 
|  | default:  // BYTE aligned | 
|  | CountReg = getReg(CI.getOperand(3)); | 
|  | BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val); | 
|  | Opcode = X86::REP_STOSB; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | // If it's not a constant value we are storing, just fall back.  We could | 
|  | // try to be clever to form 16 bit and 32 bit values, but we don't yet. | 
|  | unsigned ValReg = getReg(CI.getOperand(2)); | 
|  | BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg); | 
|  | CountReg = getReg(CI.getOperand(3)); | 
|  | Opcode = X86::REP_STOSB; | 
|  | } | 
|  |  | 
|  | // No matter what the alignment is, we put the source in ESI, the | 
|  | // destination in EDI, and the count in ECX. | 
|  | TmpReg1 = getReg(CI.getOperand(1)); | 
|  | //TmpReg2 = getReg(CI.getOperand(2)); | 
|  | BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg); | 
|  | BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1); | 
|  | BuildMI(BB, Opcode, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | default: assert(0 && "Error: unknown intrinsics should have been lowered!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool isSafeToFoldLoadIntoInstruction(LoadInst &LI, Instruction &User) { | 
|  | if (LI.getParent() != User.getParent()) | 
|  | return false; | 
|  | BasicBlock::iterator It = &LI; | 
|  | // Check all of the instructions between the load and the user.  We should | 
|  | // really use alias analysis here, but for now we just do something simple. | 
|  | for (++It; It != BasicBlock::iterator(&User); ++It) { | 
|  | switch (It->getOpcode()) { | 
|  | case Instruction::Free: | 
|  | case Instruction::Store: | 
|  | case Instruction::Call: | 
|  | case Instruction::Invoke: | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// visitSimpleBinary - Implement simple binary operators for integral types... | 
|  | /// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for | 
|  | /// Xor. | 
|  | /// | 
|  | void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) { | 
|  | unsigned DestReg = getReg(B); | 
|  | MachineBasicBlock::iterator MI = BB->end(); | 
|  | Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1); | 
|  |  | 
|  | // Special case: op Reg, load [mem] | 
|  | if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1)) | 
|  | if (!B.swapOperands()) | 
|  | std::swap(Op0, Op1);  // Make sure any loads are in the RHS. | 
|  |  | 
|  | unsigned Class = getClassB(B.getType()); | 
|  | if (isa<LoadInst>(Op1) && Class < cFP && | 
|  | isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op1), B)) { | 
|  |  | 
|  | static const unsigned OpcodeTab[][3] = { | 
|  | // Arithmetic operators | 
|  | { X86::ADD8rm, X86::ADD16rm, X86::ADD32rm },  // ADD | 
|  | { X86::SUB8rm, X86::SUB16rm, X86::SUB32rm },  // SUB | 
|  |  | 
|  | // Bitwise operators | 
|  | { X86::AND8rm, X86::AND16rm, X86::AND32rm },  // AND | 
|  | { X86:: OR8rm, X86:: OR16rm, X86:: OR32rm },  // OR | 
|  | { X86::XOR8rm, X86::XOR16rm, X86::XOR32rm },  // XOR | 
|  | }; | 
|  |  | 
|  | assert(Class < cFP && "General code handles 64-bit integer types!"); | 
|  | unsigned Opcode = OpcodeTab[OperatorClass][Class]; | 
|  |  | 
|  | unsigned BaseReg, Scale, IndexReg, Disp; | 
|  | getAddressingMode(cast<LoadInst>(Op1)->getOperand(0), BaseReg, | 
|  | Scale, IndexReg, Disp); | 
|  |  | 
|  | unsigned Op0r = getReg(Op0); | 
|  | addFullAddress(BuildMI(BB, Opcode, 2, DestReg).addReg(Op0r), | 
|  | BaseReg, Scale, IndexReg, Disp); | 
|  | return; | 
|  | } | 
|  |  | 
|  | emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg); | 
|  | } | 
|  |  | 
|  | /// emitSimpleBinaryOperation - Implement simple binary operators for integral | 
|  | /// types...  OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for | 
|  | /// Or, 4 for Xor. | 
|  | /// | 
|  | /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary | 
|  | /// and constant expression support. | 
|  | /// | 
|  | void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Value *Op0, Value *Op1, | 
|  | unsigned OperatorClass, unsigned DestReg) { | 
|  | unsigned Class = getClassB(Op0->getType()); | 
|  |  | 
|  | // sub 0, X -> neg X | 
|  | if (OperatorClass == 1) | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) { | 
|  | if (CI->isNullValue()) { | 
|  | unsigned op1Reg = getReg(Op1, MBB, IP); | 
|  | static unsigned const NEGTab[] = { | 
|  | X86::NEG8r, X86::NEG16r, X86::NEG32r, 0, X86::NEG32r | 
|  | }; | 
|  | BuildMI(*MBB, IP, NEGTab[Class], 1, DestReg).addReg(op1Reg); | 
|  |  | 
|  | if (Class == cLong) { | 
|  | // We just emitted: Dl = neg Sl | 
|  | // Now emit       : T  = addc Sh, 0 | 
|  | //                : Dh = neg T | 
|  | unsigned T = makeAnotherReg(Type::IntTy); | 
|  | BuildMI(*MBB, IP, X86::ADC32ri, 2, T).addReg(op1Reg+1).addImm(0); | 
|  | BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg+1).addReg(T); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0)) | 
|  | if (CFP->isExactlyValue(-0.0)) { | 
|  | // -0.0 - X === -X | 
|  | unsigned op1Reg = getReg(Op1, MBB, IP); | 
|  | BuildMI(*MBB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Special case: op Reg, <const> | 
|  | if (isa<ConstantInt>(Op1)) { | 
|  | ConstantInt *Op1C = cast<ConstantInt>(Op1); | 
|  | unsigned Op0r = getReg(Op0, MBB, IP); | 
|  |  | 
|  | // xor X, -1 -> not X | 
|  | if (OperatorClass == 4 && Op1C->isAllOnesValue()) { | 
|  | static unsigned const NOTTab[] = { | 
|  | X86::NOT8r, X86::NOT16r, X86::NOT32r, 0, X86::NOT32r | 
|  | }; | 
|  | BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r); | 
|  | if (Class == cLong)  // Invert the top part too | 
|  | BuildMI(*MBB, IP, X86::NOT32r, 1, DestReg+1).addReg(Op0r+1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // add X, -1 -> dec X | 
|  | if (OperatorClass == 0 && Op1C->isAllOnesValue()) { | 
|  | static unsigned const DECTab[] = { | 
|  | X86::DEC8r, X86::DEC16r, X86::DEC32r, 0, X86::DEC32r | 
|  | }; | 
|  | BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r); | 
|  | if (Class == cLong)  // Dh = sbb Sh, 0 | 
|  | BuildMI(*MBB, IP, X86::SBB32ri, 2, DestReg+1).addReg(Op0r+1).addImm(0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // add X, 1 -> inc X | 
|  | if (OperatorClass == 0 && Op1C->equalsInt(1)) { | 
|  | static unsigned const INCTab[] = { | 
|  | X86::INC8r, X86::INC16r, X86::INC32r, 0, X86::INC32r | 
|  | }; | 
|  | BuildMI(*MBB, IP, INCTab[Class], 1, DestReg).addReg(Op0r); | 
|  | if (Class == cLong)  // Dh = adc Sh, 0 | 
|  | BuildMI(*MBB, IP, X86::ADC32ri, 2, DestReg+1).addReg(Op0r+1).addImm(0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static const unsigned OpcodeTab[][5] = { | 
|  | // Arithmetic operators | 
|  | { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri },  // ADD | 
|  | { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, X86::SUB32ri },  // SUB | 
|  |  | 
|  | // Bitwise operators | 
|  | { X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, X86::AND32ri },  // AND | 
|  | { X86:: OR8ri, X86:: OR16ri, X86:: OR32ri, 0, X86::OR32ri  },  // OR | 
|  | { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, X86::XOR32ri },  // XOR | 
|  | }; | 
|  |  | 
|  | unsigned Opcode = OpcodeTab[OperatorClass][Class]; | 
|  | unsigned Op1l = cast<ConstantInt>(Op1C)->getRawValue(); | 
|  |  | 
|  | if (Class != cLong) { | 
|  | BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l); | 
|  | return; | 
|  | } else { | 
|  | // If this is a long value and the high or low bits have a special | 
|  | // property, emit some special cases. | 
|  | unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL; | 
|  |  | 
|  | // If the constant is zero in the low 32-bits, just copy the low part | 
|  | // across and apply the normal 32-bit operation to the high parts.  There | 
|  | // will be no carry or borrow into the top. | 
|  | if (Op1l == 0) { | 
|  | if (OperatorClass != 2) // All but and... | 
|  | BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0r); | 
|  | else | 
|  | BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0); | 
|  | BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg+1) | 
|  | .addReg(Op0r+1).addImm(Op1h); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If this is a logical operation and the top 32-bits are zero, just | 
|  | // operate on the lower 32. | 
|  | if (Op1h == 0 && OperatorClass > 1) { | 
|  | BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg) | 
|  | .addReg(Op0r).addImm(Op1l); | 
|  | if (OperatorClass != 2)  // All but and | 
|  | BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(Op0r+1); | 
|  | else | 
|  | BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // TODO: We could handle lots of other special cases here, such as AND'ing | 
|  | // with 0xFFFFFFFF00000000 -> noop, etc. | 
|  |  | 
|  | // Otherwise, code generate the full operation with a constant. | 
|  | static const unsigned TopTab[] = { | 
|  | X86::ADC32ri, X86::SBB32ri, X86::AND32ri, X86::OR32ri, X86::XOR32ri | 
|  | }; | 
|  |  | 
|  | BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l); | 
|  | BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1) | 
|  | .addReg(Op0r+1).addImm(Op1h); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, handle the general case now. | 
|  | static const unsigned OpcodeTab[][5] = { | 
|  | // Arithmetic operators | 
|  | { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, X86::FpADD, X86::ADD32rr },// ADD | 
|  | { X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, X86::FpSUB, X86::SUB32rr },// SUB | 
|  |  | 
|  | // Bitwise operators | 
|  | { X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, X86::AND32rr },  // AND | 
|  | { X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0, X86:: OR32rr },  // OR | 
|  | { X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, X86::XOR32rr },  // XOR | 
|  | }; | 
|  |  | 
|  | unsigned Opcode = OpcodeTab[OperatorClass][Class]; | 
|  | assert(Opcode && "Floating point arguments to logical inst?"); | 
|  | unsigned Op0r = getReg(Op0, MBB, IP); | 
|  | unsigned Op1r = getReg(Op1, MBB, IP); | 
|  | BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); | 
|  |  | 
|  | if (Class == cLong) {        // Handle the upper 32 bits of long values... | 
|  | static const unsigned TopTab[] = { | 
|  | X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr | 
|  | }; | 
|  | BuildMI(*MBB, IP, TopTab[OperatorClass], 2, | 
|  | DestReg+1).addReg(Op0r+1).addReg(Op1r+1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// doMultiply - Emit appropriate instructions to multiply together the | 
|  | /// registers op0Reg and op1Reg, and put the result in DestReg.  The type of the | 
|  | /// result should be given as DestTy. | 
|  | /// | 
|  | void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, | 
|  | unsigned DestReg, const Type *DestTy, | 
|  | unsigned op0Reg, unsigned op1Reg) { | 
|  | unsigned Class = getClass(DestTy); | 
|  | switch (Class) { | 
|  | case cFP:              // Floating point multiply | 
|  | BuildMI(*MBB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg); | 
|  | return; | 
|  | case cInt: | 
|  | case cShort: | 
|  | BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg) | 
|  | .addReg(op0Reg).addReg(op1Reg); | 
|  | return; | 
|  | case cByte: | 
|  | // Must use the MUL instruction, which forces use of AL... | 
|  | BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg); | 
|  | BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg); | 
|  | BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL); | 
|  | return; | 
|  | default: | 
|  | case cLong: assert(0 && "doMultiply cannot operate on LONG values!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N.  It | 
|  | // returns zero when the input is not exactly a power of two. | 
|  | static unsigned ExactLog2(unsigned Val) { | 
|  | if (Val == 0) return 0; | 
|  | unsigned Count = 0; | 
|  | while (Val != 1) { | 
|  | if (Val & 1) return 0; | 
|  | Val >>= 1; | 
|  | ++Count; | 
|  | } | 
|  | return Count+1; | 
|  | } | 
|  |  | 
|  | void ISel::doMultiplyConst(MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | unsigned DestReg, const Type *DestTy, | 
|  | unsigned op0Reg, unsigned ConstRHS) { | 
|  | unsigned Class = getClass(DestTy); | 
|  |  | 
|  | // If the element size is exactly a power of 2, use a shift to get it. | 
|  | if (unsigned Shift = ExactLog2(ConstRHS)) { | 
|  | switch (Class) { | 
|  | default: assert(0 && "Unknown class for this function!"); | 
|  | case cByte: | 
|  | BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1); | 
|  | return; | 
|  | case cShort: | 
|  | BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1); | 
|  | return; | 
|  | case cInt: | 
|  | BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Class == cShort) { | 
|  | BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS); | 
|  | return; | 
|  | } else if (Class == cInt) { | 
|  | BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Most general case, emit a normal multiply... | 
|  | static const unsigned MOVriTab[] = { | 
|  | X86::MOV8ri, X86::MOV16ri, X86::MOV32ri | 
|  | }; | 
|  |  | 
|  | unsigned TmpReg = makeAnotherReg(DestTy); | 
|  | BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS); | 
|  |  | 
|  | // Emit a MUL to multiply the register holding the index by | 
|  | // elementSize, putting the result in OffsetReg. | 
|  | doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg); | 
|  | } | 
|  |  | 
|  | /// visitMul - Multiplies are not simple binary operators because they must deal | 
|  | /// with the EAX register explicitly. | 
|  | /// | 
|  | void ISel::visitMul(BinaryOperator &I) { | 
|  | unsigned Op0Reg  = getReg(I.getOperand(0)); | 
|  | unsigned DestReg = getReg(I); | 
|  |  | 
|  | // Simple scalar multiply? | 
|  | if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) { | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) { | 
|  | unsigned Val = (unsigned)CI->getRawValue(); // Cannot be 64-bit constant | 
|  | MachineBasicBlock::iterator MBBI = BB->end(); | 
|  | doMultiplyConst(BB, MBBI, DestReg, I.getType(), Op0Reg, Val); | 
|  | } else { | 
|  | unsigned Op1Reg  = getReg(I.getOperand(1)); | 
|  | MachineBasicBlock::iterator MBBI = BB->end(); | 
|  | doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg); | 
|  | } | 
|  | } else { | 
|  | unsigned Op1Reg  = getReg(I.getOperand(1)); | 
|  |  | 
|  | // Long value.  We have to do things the hard way... | 
|  | // Multiply the two low parts... capturing carry into EDX | 
|  | BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg); | 
|  | BuildMI(BB, X86::MUL32r, 1).addReg(Op1Reg);  // AL*BL | 
|  |  | 
|  | unsigned OverflowReg = makeAnotherReg(Type::UIntTy); | 
|  | BuildMI(BB, X86::MOV32rr, 1, DestReg).addReg(X86::EAX);     // AL*BL | 
|  | BuildMI(BB, X86::MOV32rr, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32 | 
|  |  | 
|  | MachineBasicBlock::iterator MBBI = BB->end(); | 
|  | unsigned AHBLReg = makeAnotherReg(Type::UIntTy);   // AH*BL | 
|  | BuildMI(*BB, MBBI, X86::IMUL32rr,2,AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg); | 
|  |  | 
|  | unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy); | 
|  | BuildMI(*BB, MBBI, X86::ADD32rr, 2,                  // AH*BL+(AL*BL >> 32) | 
|  | AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg); | 
|  |  | 
|  | MBBI = BB->end(); | 
|  | unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH | 
|  | BuildMI(*BB, MBBI, X86::IMUL32rr,2,ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1); | 
|  |  | 
|  | BuildMI(*BB, MBBI, X86::ADD32rr, 2,         // AL*BH + AH*BL + (AL*BL >> 32) | 
|  | DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// visitDivRem - Handle division and remainder instructions... these | 
|  | /// instruction both require the same instructions to be generated, they just | 
|  | /// select the result from a different register.  Note that both of these | 
|  | /// instructions work differently for signed and unsigned operands. | 
|  | /// | 
|  | void ISel::visitDivRem(BinaryOperator &I) { | 
|  | unsigned Op0Reg = getReg(I.getOperand(0)); | 
|  | unsigned Op1Reg = getReg(I.getOperand(1)); | 
|  | unsigned ResultReg = getReg(I); | 
|  |  | 
|  | MachineBasicBlock::iterator IP = BB->end(); | 
|  | emitDivRemOperation(BB, IP, Op0Reg, Op1Reg, I.getOpcode() == Instruction::Div, | 
|  | I.getType(), ResultReg); | 
|  | } | 
|  |  | 
|  | void ISel::emitDivRemOperation(MachineBasicBlock *BB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | unsigned Op0Reg, unsigned Op1Reg, bool isDiv, | 
|  | const Type *Ty, unsigned ResultReg) { | 
|  | unsigned Class = getClass(Ty); | 
|  | switch (Class) { | 
|  | case cFP:              // Floating point divide | 
|  | if (isDiv) { | 
|  | BuildMI(*BB, IP, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg); | 
|  | } else {               // Floating point remainder... | 
|  | MachineInstr *TheCall = | 
|  | BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true); | 
|  | std::vector<ValueRecord> Args; | 
|  | Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy)); | 
|  | Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy)); | 
|  | doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args); | 
|  | } | 
|  | return; | 
|  | case cLong: { | 
|  | static const char *FnName[] = | 
|  | { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" }; | 
|  |  | 
|  | unsigned NameIdx = Ty->isUnsigned()*2 + isDiv; | 
|  | MachineInstr *TheCall = | 
|  | BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true); | 
|  |  | 
|  | std::vector<ValueRecord> Args; | 
|  | Args.push_back(ValueRecord(Op0Reg, Type::LongTy)); | 
|  | Args.push_back(ValueRecord(Op1Reg, Type::LongTy)); | 
|  | doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args); | 
|  | return; | 
|  | } | 
|  | case cByte: case cShort: case cInt: | 
|  | break;          // Small integrals, handled below... | 
|  | default: assert(0 && "Unknown class!"); | 
|  | } | 
|  |  | 
|  | static const unsigned Regs[]     ={ X86::AL    , X86::AX     , X86::EAX     }; | 
|  | static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr }; | 
|  | static const unsigned SarOpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri }; | 
|  | static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri }; | 
|  | static const unsigned ExtRegs[]  ={ X86::AH    , X86::DX     , X86::EDX     }; | 
|  |  | 
|  | static const unsigned DivOpcode[][4] = { | 
|  | { X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 },  // Unsigned division | 
|  | { X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 },  // Signed division | 
|  | }; | 
|  |  | 
|  | bool isSigned   = Ty->isSigned(); | 
|  | unsigned Reg    = Regs[Class]; | 
|  | unsigned ExtReg = ExtRegs[Class]; | 
|  |  | 
|  | // Put the first operand into one of the A registers... | 
|  | BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg); | 
|  |  | 
|  | if (isSigned) { | 
|  | // Emit a sign extension instruction... | 
|  | unsigned ShiftResult = makeAnotherReg(Ty); | 
|  | BuildMI(*BB, IP, SarOpcode[Class], 2,ShiftResult).addReg(Op0Reg).addImm(31); | 
|  | BuildMI(*BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult); | 
|  | } else { | 
|  | // If unsigned, emit a zeroing instruction... (reg = 0) | 
|  | BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0); | 
|  | } | 
|  |  | 
|  | // Emit the appropriate divide or remainder instruction... | 
|  | BuildMI(*BB, IP, DivOpcode[isSigned][Class], 1).addReg(Op1Reg); | 
|  |  | 
|  | // Figure out which register we want to pick the result out of... | 
|  | unsigned DestReg = isDiv ? Reg : ExtReg; | 
|  |  | 
|  | // Put the result into the destination register... | 
|  | BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here | 
|  | /// for constant immediate shift values, and for constant immediate | 
|  | /// shift values equal to 1. Even the general case is sort of special, | 
|  | /// because the shift amount has to be in CL, not just any old register. | 
|  | /// | 
|  | void ISel::visitShiftInst(ShiftInst &I) { | 
|  | MachineBasicBlock::iterator IP = BB->end (); | 
|  | emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1), | 
|  | I.getOpcode () == Instruction::Shl, I.getType (), | 
|  | getReg (I)); | 
|  | } | 
|  |  | 
|  | /// emitShiftOperation - Common code shared between visitShiftInst and | 
|  | /// constant expression support. | 
|  | void ISel::emitShiftOperation(MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Value *Op, Value *ShiftAmount, bool isLeftShift, | 
|  | const Type *ResultTy, unsigned DestReg) { | 
|  | unsigned SrcReg = getReg (Op, MBB, IP); | 
|  | bool isSigned = ResultTy->isSigned (); | 
|  | unsigned Class = getClass (ResultTy); | 
|  |  | 
|  | static const unsigned ConstantOperand[][4] = { | 
|  | { X86::SHR8ri, X86::SHR16ri, X86::SHR32ri, X86::SHRD32rri8 },  // SHR | 
|  | { X86::SAR8ri, X86::SAR16ri, X86::SAR32ri, X86::SHRD32rri8 },  // SAR | 
|  | { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 },  // SHL | 
|  | { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 },  // SAL = SHL | 
|  | }; | 
|  |  | 
|  | static const unsigned NonConstantOperand[][4] = { | 
|  | { X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL },  // SHR | 
|  | { X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL },  // SAR | 
|  | { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL },  // SHL | 
|  | { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL },  // SAL = SHL | 
|  | }; | 
|  |  | 
|  | // Longs, as usual, are handled specially... | 
|  | if (Class == cLong) { | 
|  | // If we have a constant shift, we can generate much more efficient code | 
|  | // than otherwise... | 
|  | // | 
|  | if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) { | 
|  | unsigned Amount = CUI->getValue(); | 
|  | if (Amount < 32) { | 
|  | const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned]; | 
|  | if (isLeftShift) { | 
|  | BuildMI(*MBB, IP, Opc[3], 3, | 
|  | DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addImm(Amount); | 
|  | BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount); | 
|  | } else { | 
|  | BuildMI(*MBB, IP, Opc[3], 3, | 
|  | DestReg).addReg(SrcReg  ).addReg(SrcReg+1).addImm(Amount); | 
|  | BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount); | 
|  | } | 
|  | } else {                 // Shifting more than 32 bits | 
|  | Amount -= 32; | 
|  | if (isLeftShift) { | 
|  | BuildMI(*MBB, IP, X86::SHL32ri, 2, | 
|  | DestReg + 1).addReg(SrcReg).addImm(Amount); | 
|  | BuildMI(*MBB, IP, X86::MOV32ri, 1, | 
|  | DestReg).addImm(0); | 
|  | } else { | 
|  | unsigned Opcode = isSigned ? X86::SAR32ri : X86::SHR32ri; | 
|  | BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(SrcReg+1).addImm(Amount); | 
|  | BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | unsigned TmpReg = makeAnotherReg(Type::IntTy); | 
|  |  | 
|  | if (!isLeftShift && isSigned) { | 
|  | // If this is a SHR of a Long, then we need to do funny sign extension | 
|  | // stuff.  TmpReg gets the value to use as the high-part if we are | 
|  | // shifting more than 32 bits. | 
|  | BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31); | 
|  | } else { | 
|  | // Other shifts use a fixed zero value if the shift is more than 32 | 
|  | // bits. | 
|  | BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0); | 
|  | } | 
|  |  | 
|  | // Initialize CL with the shift amount... | 
|  | unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP); | 
|  | BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg); | 
|  |  | 
|  | unsigned TmpReg2 = makeAnotherReg(Type::IntTy); | 
|  | unsigned TmpReg3 = makeAnotherReg(Type::IntTy); | 
|  | if (isLeftShift) { | 
|  | // TmpReg2 = shld inHi, inLo | 
|  | BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1) | 
|  | .addReg(SrcReg); | 
|  | // TmpReg3 = shl  inLo, CL | 
|  | BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg); | 
|  |  | 
|  | // Set the flags to indicate whether the shift was by more than 32 bits. | 
|  | BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32); | 
|  |  | 
|  | // DestHi = (>32) ? TmpReg3 : TmpReg2; | 
|  | BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, | 
|  | DestReg+1).addReg(TmpReg2).addReg(TmpReg3); | 
|  | // DestLo = (>32) ? TmpReg : TmpReg3; | 
|  | BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, | 
|  | DestReg).addReg(TmpReg3).addReg(TmpReg); | 
|  | } else { | 
|  | // TmpReg2 = shrd inLo, inHi | 
|  | BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg) | 
|  | .addReg(SrcReg+1); | 
|  | // TmpReg3 = s[ah]r  inHi, CL | 
|  | BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3) | 
|  | .addReg(SrcReg+1); | 
|  |  | 
|  | // Set the flags to indicate whether the shift was by more than 32 bits. | 
|  | BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32); | 
|  |  | 
|  | // DestLo = (>32) ? TmpReg3 : TmpReg2; | 
|  | BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, | 
|  | DestReg).addReg(TmpReg2).addReg(TmpReg3); | 
|  |  | 
|  | // DestHi = (>32) ? TmpReg : TmpReg3; | 
|  | BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, | 
|  | DestReg+1).addReg(TmpReg3).addReg(TmpReg); | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) { | 
|  | // The shift amount is constant, guaranteed to be a ubyte. Get its value. | 
|  | assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?"); | 
|  |  | 
|  | const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned]; | 
|  | BuildMI(*MBB, IP, Opc[Class], 2, | 
|  | DestReg).addReg(SrcReg).addImm(CUI->getValue()); | 
|  | } else {                  // The shift amount is non-constant. | 
|  | unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP); | 
|  | BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg); | 
|  |  | 
|  | const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned]; | 
|  | BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void ISel::getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale, | 
|  | unsigned &IndexReg, unsigned &Disp) { | 
|  | BaseReg = 0; Scale = 1; IndexReg = 0; Disp = 0; | 
|  | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) { | 
|  | if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(), | 
|  | BaseReg, Scale, IndexReg, Disp)) | 
|  | return; | 
|  | } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { | 
|  | if (CE->getOpcode() == Instruction::GetElementPtr) | 
|  | if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(), | 
|  | BaseReg, Scale, IndexReg, Disp)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If it's not foldable, reset addr mode. | 
|  | BaseReg = getReg(Addr); | 
|  | Scale = 1; IndexReg = 0; Disp = 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov' | 
|  | /// instruction.  The load and store instructions are the only place where we | 
|  | /// need to worry about the memory layout of the target machine. | 
|  | /// | 
|  | void ISel::visitLoadInst(LoadInst &I) { | 
|  | // Check to see if this load instruction is going to be folded into a binary | 
|  | // instruction, like add.  If so, we don't want to emit it.  Wouldn't a real | 
|  | // pattern matching instruction selector be nice? | 
|  | if (I.hasOneUse() && getClassB(I.getType()) < cFP) { | 
|  | Instruction *User = cast<Instruction>(I.use_back()); | 
|  | switch (User->getOpcode()) { | 
|  | default: User = 0; break; | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (User) { | 
|  | // Okay, we found a user.  If the load is the first operand and there is | 
|  | // no second operand load, reverse the operand ordering.  Note that this | 
|  | // can fail for a subtract (ie, no change will be made). | 
|  | if (!isa<LoadInst>(User->getOperand(1))) | 
|  | cast<BinaryOperator>(User)->swapOperands(); | 
|  |  | 
|  | // Okay, now that everything is set up, if this load is used by the second | 
|  | // operand, and if there are no instructions that invalidate the load | 
|  | // before the binary operator, eliminate the load. | 
|  | if (User->getOperand(1) == &I && | 
|  | isSafeToFoldLoadIntoInstruction(I, *User)) | 
|  | return;   // Eliminate the load! | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned DestReg = getReg(I); | 
|  | unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0; | 
|  | getAddressingMode(I.getOperand(0), BaseReg, Scale, IndexReg, Disp); | 
|  |  | 
|  | unsigned Class = getClassB(I.getType()); | 
|  | if (Class == cLong) { | 
|  | addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg), | 
|  | BaseReg, Scale, IndexReg, Disp); | 
|  | addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), | 
|  | BaseReg, Scale, IndexReg, Disp+4); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static const unsigned Opcodes[] = { | 
|  | X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m | 
|  | }; | 
|  | unsigned Opcode = Opcodes[Class]; | 
|  | if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m; | 
|  | addFullAddress(BuildMI(BB, Opcode, 4, DestReg), | 
|  | BaseReg, Scale, IndexReg, Disp); | 
|  | } | 
|  |  | 
|  | /// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov' | 
|  | /// instruction. | 
|  | /// | 
|  | void ISel::visitStoreInst(StoreInst &I) { | 
|  | unsigned BaseReg, Scale, IndexReg, Disp; | 
|  | getAddressingMode(I.getOperand(1), BaseReg, Scale, IndexReg, Disp); | 
|  |  | 
|  | const Type *ValTy = I.getOperand(0)->getType(); | 
|  | unsigned Class = getClassB(ValTy); | 
|  |  | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(0))) { | 
|  | uint64_t Val = CI->getRawValue(); | 
|  | if (Class == cLong) { | 
|  | addFullAddress(BuildMI(BB, X86::MOV32mi, 5), | 
|  | BaseReg, Scale, IndexReg, Disp).addImm(Val & ~0U); | 
|  | addFullAddress(BuildMI(BB, X86::MOV32mi, 5), | 
|  | BaseReg, Scale, IndexReg, Disp+4).addImm(Val>>32); | 
|  | } else { | 
|  | static const unsigned Opcodes[] = { | 
|  | X86::MOV8mi, X86::MOV16mi, X86::MOV32mi | 
|  | }; | 
|  | unsigned Opcode = Opcodes[Class]; | 
|  | addFullAddress(BuildMI(BB, Opcode, 5), | 
|  | BaseReg, Scale, IndexReg, Disp).addImm(Val); | 
|  | } | 
|  | } else if (ConstantBool *CB = dyn_cast<ConstantBool>(I.getOperand(0))) { | 
|  | addFullAddress(BuildMI(BB, X86::MOV8mi, 5), | 
|  | BaseReg, Scale, IndexReg, Disp).addImm(CB->getValue()); | 
|  | } else { | 
|  | if (Class == cLong) { | 
|  | unsigned ValReg = getReg(I.getOperand(0)); | 
|  | addFullAddress(BuildMI(BB, X86::MOV32mr, 5), | 
|  | BaseReg, Scale, IndexReg, Disp).addReg(ValReg); | 
|  | addFullAddress(BuildMI(BB, X86::MOV32mr, 5), | 
|  | BaseReg, Scale, IndexReg, Disp+4).addReg(ValReg+1); | 
|  | } else { | 
|  | unsigned ValReg = getReg(I.getOperand(0)); | 
|  | static const unsigned Opcodes[] = { | 
|  | X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m | 
|  | }; | 
|  | unsigned Opcode = Opcodes[Class]; | 
|  | if (ValTy == Type::DoubleTy) Opcode = X86::FST64m; | 
|  | addFullAddress(BuildMI(BB, Opcode, 1+4), | 
|  | BaseReg, Scale, IndexReg, Disp).addReg(ValReg); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// visitCastInst - Here we have various kinds of copying with or without sign | 
|  | /// extension going on. | 
|  | /// | 
|  | void ISel::visitCastInst(CastInst &CI) { | 
|  | Value *Op = CI.getOperand(0); | 
|  | // If this is a cast from a 32-bit integer to a Long type, and the only uses | 
|  | // of the case are GEP instructions, then the cast does not need to be | 
|  | // generated explicitly, it will be folded into the GEP. | 
|  | if (CI.getType() == Type::LongTy && | 
|  | (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) { | 
|  | bool AllUsesAreGEPs = true; | 
|  | for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I) | 
|  | if (!isa<GetElementPtrInst>(*I)) { | 
|  | AllUsesAreGEPs = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // No need to codegen this cast if all users are getelementptr instrs... | 
|  | if (AllUsesAreGEPs) return; | 
|  | } | 
|  |  | 
|  | unsigned DestReg = getReg(CI); | 
|  | MachineBasicBlock::iterator MI = BB->end(); | 
|  | emitCastOperation(BB, MI, Op, CI.getType(), DestReg); | 
|  | } | 
|  |  | 
|  | /// emitCastOperation - Common code shared between visitCastInst and constant | 
|  | /// expression cast support. | 
|  | /// | 
|  | void ISel::emitCastOperation(MachineBasicBlock *BB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Value *Src, const Type *DestTy, | 
|  | unsigned DestReg) { | 
|  | unsigned SrcReg = getReg(Src, BB, IP); | 
|  | const Type *SrcTy = Src->getType(); | 
|  | unsigned SrcClass = getClassB(SrcTy); | 
|  | unsigned DestClass = getClassB(DestTy); | 
|  |  | 
|  | // Implement casts to bool by using compare on the operand followed by set if | 
|  | // not zero on the result. | 
|  | if (DestTy == Type::BoolTy) { | 
|  | switch (SrcClass) { | 
|  | case cByte: | 
|  | BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg); | 
|  | break; | 
|  | case cShort: | 
|  | BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg); | 
|  | break; | 
|  | case cInt: | 
|  | BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg); | 
|  | break; | 
|  | case cLong: { | 
|  | unsigned TmpReg = makeAnotherReg(Type::IntTy); | 
|  | BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1); | 
|  | break; | 
|  | } | 
|  | case cFP: | 
|  | BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg); | 
|  | BuildMI(*BB, IP, X86::FNSTSW8r, 0); | 
|  | BuildMI(*BB, IP, X86::SAHF, 1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If the zero flag is not set, then the value is true, set the byte to | 
|  | // true. | 
|  | BuildMI(*BB, IP, X86::SETNEr, 1, DestReg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static const unsigned RegRegMove[] = { | 
|  | X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr | 
|  | }; | 
|  |  | 
|  | // Implement casts between values of the same type class (as determined by | 
|  | // getClass) by using a register-to-register move. | 
|  | if (SrcClass == DestClass) { | 
|  | if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) { | 
|  | BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg); | 
|  | } else if (SrcClass == cFP) { | 
|  | if (SrcTy == Type::FloatTy) {  // double -> float | 
|  | assert(DestTy == Type::DoubleTy && "Unknown cFP member!"); | 
|  | BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg); | 
|  | } else {                       // float -> double | 
|  | assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy && | 
|  | "Unknown cFP member!"); | 
|  | // Truncate from double to float by storing to memory as short, then | 
|  | // reading it back. | 
|  | unsigned FltAlign = TM.getTargetData().getFloatAlignment(); | 
|  | int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign); | 
|  | addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5), FrameIdx).addReg(SrcReg); | 
|  | addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx); | 
|  | } | 
|  | } else if (SrcClass == cLong) { | 
|  | BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg); | 
|  | BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1); | 
|  | } else { | 
|  | assert(0 && "Cannot handle this type of cast instruction!"); | 
|  | abort(); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle cast of SMALLER int to LARGER int using a move with sign extension | 
|  | // or zero extension, depending on whether the source type was signed. | 
|  | if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) && | 
|  | SrcClass < DestClass) { | 
|  | bool isLong = DestClass == cLong; | 
|  | if (isLong) DestClass = cInt; | 
|  |  | 
|  | static const unsigned Opc[][4] = { | 
|  | { X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s | 
|  | { X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr }  // u | 
|  | }; | 
|  |  | 
|  | bool isUnsigned = SrcTy->isUnsigned(); | 
|  | BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1, | 
|  | DestReg).addReg(SrcReg); | 
|  |  | 
|  | if (isLong) {  // Handle upper 32 bits as appropriate... | 
|  | if (isUnsigned)     // Zero out top bits... | 
|  | BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0); | 
|  | else                // Sign extend bottom half... | 
|  | BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Special case long -> int ... | 
|  | if (SrcClass == cLong && DestClass == cInt) { | 
|  | BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a | 
|  | // move out of AX or AL. | 
|  | if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt | 
|  | && SrcClass > DestClass) { | 
|  | static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX }; | 
|  | BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg); | 
|  | BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle casts from integer to floating point now... | 
|  | if (DestClass == cFP) { | 
|  | // Promote the integer to a type supported by FLD.  We do this because there | 
|  | // are no unsigned FLD instructions, so we must promote an unsigned value to | 
|  | // a larger signed value, then use FLD on the larger value. | 
|  | // | 
|  | const Type *PromoteType = 0; | 
|  | unsigned PromoteOpcode; | 
|  | unsigned RealDestReg = DestReg; | 
|  | switch (SrcTy->getPrimitiveID()) { | 
|  | case Type::BoolTyID: | 
|  | case Type::SByteTyID: | 
|  | // We don't have the facilities for directly loading byte sized data from | 
|  | // memory (even signed).  Promote it to 16 bits. | 
|  | PromoteType = Type::ShortTy; | 
|  | PromoteOpcode = X86::MOVSX16rr8; | 
|  | break; | 
|  | case Type::UByteTyID: | 
|  | PromoteType = Type::ShortTy; | 
|  | PromoteOpcode = X86::MOVZX16rr8; | 
|  | break; | 
|  | case Type::UShortTyID: | 
|  | PromoteType = Type::IntTy; | 
|  | PromoteOpcode = X86::MOVZX32rr16; | 
|  | break; | 
|  | case Type::UIntTyID: { | 
|  | // Make a 64 bit temporary... and zero out the top of it... | 
|  | unsigned TmpReg = makeAnotherReg(Type::LongTy); | 
|  | BuildMI(*BB, IP, X86::MOV32rr, 1, TmpReg).addReg(SrcReg); | 
|  | BuildMI(*BB, IP, X86::MOV32ri, 1, TmpReg+1).addImm(0); | 
|  | SrcTy = Type::LongTy; | 
|  | SrcClass = cLong; | 
|  | SrcReg = TmpReg; | 
|  | break; | 
|  | } | 
|  | case Type::ULongTyID: | 
|  | // Don't fild into the read destination. | 
|  | DestReg = makeAnotherReg(Type::DoubleTy); | 
|  | break; | 
|  | default:  // No promotion needed... | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (PromoteType) { | 
|  | unsigned TmpReg = makeAnotherReg(PromoteType); | 
|  | unsigned Opc = SrcTy->isSigned() ? X86::MOVSX16rr8 : X86::MOVZX16rr8; | 
|  | BuildMI(*BB, IP, Opc, 1, TmpReg).addReg(SrcReg); | 
|  | SrcTy = PromoteType; | 
|  | SrcClass = getClass(PromoteType); | 
|  | SrcReg = TmpReg; | 
|  | } | 
|  |  | 
|  | // Spill the integer to memory and reload it from there... | 
|  | int FrameIdx = | 
|  | F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData()); | 
|  |  | 
|  | if (SrcClass == cLong) { | 
|  | addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5), | 
|  | FrameIdx).addReg(SrcReg); | 
|  | addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5), | 
|  | FrameIdx, 4).addReg(SrcReg+1); | 
|  | } else { | 
|  | static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr }; | 
|  | addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5), | 
|  | FrameIdx).addReg(SrcReg); | 
|  | } | 
|  |  | 
|  | static const unsigned Op2[] = | 
|  | { 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m }; | 
|  | addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx); | 
|  |  | 
|  | // We need special handling for unsigned 64-bit integer sources.  If the | 
|  | // input number has the "sign bit" set, then we loaded it incorrectly as a | 
|  | // negative 64-bit number.  In this case, add an offset value. | 
|  | if (SrcTy == Type::ULongTy) { | 
|  | // Emit a test instruction to see if the dynamic input value was signed. | 
|  | BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1); | 
|  |  | 
|  | // If the sign bit is set, get a pointer to an offset, otherwise get a | 
|  | // pointer to a zero. | 
|  | MachineConstantPool *CP = F->getConstantPool(); | 
|  | unsigned Zero = makeAnotherReg(Type::IntTy); | 
|  | Constant *Null = Constant::getNullValue(Type::UIntTy); | 
|  | addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero), | 
|  | CP->getConstantPoolIndex(Null)); | 
|  | unsigned Offset = makeAnotherReg(Type::IntTy); | 
|  | Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000); | 
|  |  | 
|  | addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset), | 
|  | CP->getConstantPoolIndex(OffsetCst)); | 
|  | unsigned Addr = makeAnotherReg(Type::IntTy); | 
|  | BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset); | 
|  |  | 
|  | // Load the constant for an add.  FIXME: this could make an 'fadd' that | 
|  | // reads directly from memory, but we don't support these yet. | 
|  | unsigned ConstReg = makeAnotherReg(Type::DoubleTy); | 
|  | addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr); | 
|  |  | 
|  | BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg) | 
|  | .addReg(ConstReg).addReg(DestReg); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle casts from floating point to integer now... | 
|  | if (SrcClass == cFP) { | 
|  | // Change the floating point control register to use "round towards zero" | 
|  | // mode when truncating to an integer value. | 
|  | // | 
|  | int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); | 
|  | addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx); | 
|  |  | 
|  | // Load the old value of the high byte of the control word... | 
|  | unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy); | 
|  | addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW), | 
|  | CWFrameIdx, 1); | 
|  |  | 
|  | // Set the high part to be round to zero... | 
|  | addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5), | 
|  | CWFrameIdx, 1).addImm(12); | 
|  |  | 
|  | // Reload the modified control word now... | 
|  | addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx); | 
|  |  | 
|  | // Restore the memory image of control word to original value | 
|  | addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5), | 
|  | CWFrameIdx, 1).addReg(HighPartOfCW); | 
|  |  | 
|  | // We don't have the facilities for directly storing byte sized data to | 
|  | // memory.  Promote it to 16 bits.  We also must promote unsigned values to | 
|  | // larger classes because we only have signed FP stores. | 
|  | unsigned StoreClass  = DestClass; | 
|  | const Type *StoreTy  = DestTy; | 
|  | if (StoreClass == cByte || DestTy->isUnsigned()) | 
|  | switch (StoreClass) { | 
|  | case cByte:  StoreTy = Type::ShortTy; StoreClass = cShort; break; | 
|  | case cShort: StoreTy = Type::IntTy;   StoreClass = cInt;   break; | 
|  | case cInt:   StoreTy = Type::LongTy;  StoreClass = cLong;  break; | 
|  | // The following treatment of cLong may not be perfectly right, | 
|  | // but it survives chains of casts of the form | 
|  | // double->ulong->double. | 
|  | case cLong:  StoreTy = Type::LongTy;  StoreClass = cLong;  break; | 
|  | default: assert(0 && "Unknown store class!"); | 
|  | } | 
|  |  | 
|  | // Spill the integer to memory and reload it from there... | 
|  | int FrameIdx = | 
|  | F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData()); | 
|  |  | 
|  | static const unsigned Op1[] = | 
|  | { 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m }; | 
|  | addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5), | 
|  | FrameIdx).addReg(SrcReg); | 
|  |  | 
|  | if (DestClass == cLong) { | 
|  | addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx); | 
|  | addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1), | 
|  | FrameIdx, 4); | 
|  | } else { | 
|  | static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm }; | 
|  | addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx); | 
|  | } | 
|  |  | 
|  | // Reload the original control word now... | 
|  | addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Anything we haven't handled already, we can't (yet) handle at all. | 
|  | assert(0 && "Unhandled cast instruction!"); | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | /// visitVANextInst - Implement the va_next instruction... | 
|  | /// | 
|  | void ISel::visitVANextInst(VANextInst &I) { | 
|  | unsigned VAList = getReg(I.getOperand(0)); | 
|  | unsigned DestReg = getReg(I); | 
|  |  | 
|  | unsigned Size; | 
|  | switch (I.getArgType()->getPrimitiveID()) { | 
|  | default: | 
|  | std::cerr << I; | 
|  | assert(0 && "Error: bad type for va_next instruction!"); | 
|  | return; | 
|  | case Type::PointerTyID: | 
|  | case Type::UIntTyID: | 
|  | case Type::IntTyID: | 
|  | Size = 4; | 
|  | break; | 
|  | case Type::ULongTyID: | 
|  | case Type::LongTyID: | 
|  | case Type::DoubleTyID: | 
|  | Size = 8; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Increment the VAList pointer... | 
|  | BuildMI(BB, X86::ADD32ri, 2, DestReg).addReg(VAList).addImm(Size); | 
|  | } | 
|  |  | 
|  | void ISel::visitVAArgInst(VAArgInst &I) { | 
|  | unsigned VAList = getReg(I.getOperand(0)); | 
|  | unsigned DestReg = getReg(I); | 
|  |  | 
|  | switch (I.getType()->getPrimitiveID()) { | 
|  | default: | 
|  | std::cerr << I; | 
|  | assert(0 && "Error: bad type for va_next instruction!"); | 
|  | return; | 
|  | case Type::PointerTyID: | 
|  | case Type::UIntTyID: | 
|  | case Type::IntTyID: | 
|  | addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList); | 
|  | break; | 
|  | case Type::ULongTyID: | 
|  | case Type::LongTyID: | 
|  | addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList); | 
|  | addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4); | 
|  | break; | 
|  | case Type::DoubleTyID: | 
|  | addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// visitGetElementPtrInst - instruction-select GEP instructions | 
|  | /// | 
|  | void ISel::visitGetElementPtrInst(GetElementPtrInst &I) { | 
|  | // If this GEP instruction will be folded into all of its users, we don't need | 
|  | // to explicitly calculate it! | 
|  | unsigned A, B, C, D; | 
|  | if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), A,B,C,D)) { | 
|  | // Check all of the users of the instruction to see if they are loads and | 
|  | // stores. | 
|  | bool AllWillFold = true; | 
|  | for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) | 
|  | if (cast<Instruction>(*UI)->getOpcode() != Instruction::Load) | 
|  | if (cast<Instruction>(*UI)->getOpcode() != Instruction::Store || | 
|  | cast<Instruction>(*UI)->getOperand(0) == &I) { | 
|  | AllWillFold = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If the instruction is foldable, and will be folded into all users, don't | 
|  | // emit it! | 
|  | if (AllWillFold) return; | 
|  | } | 
|  |  | 
|  | unsigned outputReg = getReg(I); | 
|  | emitGEPOperation(BB, BB->end(), I.getOperand(0), | 
|  | I.op_begin()+1, I.op_end(), outputReg); | 
|  | } | 
|  |  | 
|  | /// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and | 
|  | /// GEPTypes (the derived types being stepped through at each level).  On return | 
|  | /// from this function, if some indexes of the instruction are representable as | 
|  | /// an X86 lea instruction, the machine operands are put into the Ops | 
|  | /// instruction and the consumed indexes are poped from the GEPOps/GEPTypes | 
|  | /// lists.  Otherwise, GEPOps.size() is returned.  If this returns a an | 
|  | /// addressing mode that only partially consumes the input, the BaseReg input of | 
|  | /// the addressing mode must be left free. | 
|  | /// | 
|  | /// Note that there is one fewer entry in GEPTypes than there is in GEPOps. | 
|  | /// | 
|  | void ISel::getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, | 
|  | std::vector<Value*> &GEPOps, | 
|  | std::vector<const Type*> &GEPTypes, unsigned &BaseReg, | 
|  | unsigned &Scale, unsigned &IndexReg, unsigned &Disp) { | 
|  | const TargetData &TD = TM.getTargetData(); | 
|  |  | 
|  | // Clear out the state we are working with... | 
|  | BaseReg = 0;    // No base register | 
|  | Scale = 1;      // Unit scale | 
|  | IndexReg = 0;   // No index register | 
|  | Disp = 0;       // No displacement | 
|  |  | 
|  | // While there are GEP indexes that can be folded into the current address, | 
|  | // keep processing them. | 
|  | while (!GEPTypes.empty()) { | 
|  | if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) { | 
|  | // It's a struct access.  CUI is the index into the structure, | 
|  | // which names the field. This index must have unsigned type. | 
|  | const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back()); | 
|  |  | 
|  | // Use the TargetData structure to pick out what the layout of the | 
|  | // structure is in memory.  Since the structure index must be constant, we | 
|  | // can get its value and use it to find the right byte offset from the | 
|  | // StructLayout class's list of structure member offsets. | 
|  | Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()]; | 
|  | GEPOps.pop_back();        // Consume a GEP operand | 
|  | GEPTypes.pop_back(); | 
|  | } else { | 
|  | // It's an array or pointer access: [ArraySize x ElementType]. | 
|  | const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back()); | 
|  | Value *idx = GEPOps.back(); | 
|  |  | 
|  | // idx is the index into the array.  Unlike with structure | 
|  | // indices, we may not know its actual value at code-generation | 
|  | // time. | 
|  |  | 
|  | // If idx is a constant, fold it into the offset. | 
|  | unsigned TypeSize = TD.getTypeSize(SqTy->getElementType()); | 
|  | if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) { | 
|  | Disp += TypeSize*CSI->getValue(); | 
|  | } else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(idx)) { | 
|  | Disp += TypeSize*CUI->getValue(); | 
|  | } else { | 
|  | // If the index reg is already taken, we can't handle this index. | 
|  | if (IndexReg) return; | 
|  |  | 
|  | // If this is a size that we can handle, then add the index as | 
|  | switch (TypeSize) { | 
|  | case 1: case 2: case 4: case 8: | 
|  | // These are all acceptable scales on X86. | 
|  | Scale = TypeSize; | 
|  | break; | 
|  | default: | 
|  | // Otherwise, we can't handle this scale | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (CastInst *CI = dyn_cast<CastInst>(idx)) | 
|  | if (CI->getOperand(0)->getType() == Type::IntTy || | 
|  | CI->getOperand(0)->getType() == Type::UIntTy) | 
|  | idx = CI->getOperand(0); | 
|  |  | 
|  | IndexReg = MBB ? getReg(idx, MBB, IP) : 1; | 
|  | } | 
|  |  | 
|  | GEPOps.pop_back();        // Consume a GEP operand | 
|  | GEPTypes.pop_back(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // GEPTypes is empty, which means we have a single operand left.  See if we | 
|  | // can set it as the base register. | 
|  | // | 
|  | // FIXME: When addressing modes are more powerful/correct, we could load | 
|  | // global addresses directly as 32-bit immediates. | 
|  | assert(BaseReg == 0); | 
|  | BaseReg = MBB ? getReg(GEPOps[0], MBB, IP) : 1; | 
|  | GEPOps.pop_back();        // Consume the last GEP operand | 
|  | } | 
|  |  | 
|  |  | 
|  | /// isGEPFoldable - Return true if the specified GEP can be completely | 
|  | /// folded into the addressing mode of a load/store or lea instruction. | 
|  | bool ISel::isGEPFoldable(MachineBasicBlock *MBB, | 
|  | Value *Src, User::op_iterator IdxBegin, | 
|  | User::op_iterator IdxEnd, unsigned &BaseReg, | 
|  | unsigned &Scale, unsigned &IndexReg, unsigned &Disp) { | 
|  | if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src)) | 
|  | Src = CPR->getValue(); | 
|  |  | 
|  | std::vector<Value*> GEPOps; | 
|  | GEPOps.resize(IdxEnd-IdxBegin+1); | 
|  | GEPOps[0] = Src; | 
|  | std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1); | 
|  |  | 
|  | std::vector<const Type*> GEPTypes; | 
|  | GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd), | 
|  | gep_type_end(Src->getType(), IdxBegin, IdxEnd)); | 
|  |  | 
|  | MachineBasicBlock::iterator IP; | 
|  | if (MBB) IP = MBB->end(); | 
|  | getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp); | 
|  |  | 
|  | // We can fold it away iff the getGEPIndex call eliminated all operands. | 
|  | return GEPOps.empty(); | 
|  | } | 
|  |  | 
|  | void ISel::emitGEPOperation(MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator IP, | 
|  | Value *Src, User::op_iterator IdxBegin, | 
|  | User::op_iterator IdxEnd, unsigned TargetReg) { | 
|  | const TargetData &TD = TM.getTargetData(); | 
|  | if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src)) | 
|  | Src = CPR->getValue(); | 
|  |  | 
|  | std::vector<Value*> GEPOps; | 
|  | GEPOps.resize(IdxEnd-IdxBegin+1); | 
|  | GEPOps[0] = Src; | 
|  | std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1); | 
|  |  | 
|  | std::vector<const Type*> GEPTypes; | 
|  | GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd), | 
|  | gep_type_end(Src->getType(), IdxBegin, IdxEnd)); | 
|  |  | 
|  | // Keep emitting instructions until we consume the entire GEP instruction. | 
|  | while (!GEPOps.empty()) { | 
|  | unsigned OldSize = GEPOps.size(); | 
|  | unsigned BaseReg, Scale, IndexReg, Disp; | 
|  | getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp); | 
|  |  | 
|  | if (GEPOps.size() != OldSize) { | 
|  | // getGEPIndex consumed some of the input.  Build an LEA instruction here. | 
|  | unsigned NextTarget = 0; | 
|  | if (!GEPOps.empty()) { | 
|  | assert(BaseReg == 0 && | 
|  | "getGEPIndex should have left the base register open for chaining!"); | 
|  | NextTarget = BaseReg = makeAnotherReg(Type::UIntTy); | 
|  | } | 
|  |  | 
|  | if (IndexReg == 0 && Disp == 0) | 
|  | BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg); | 
|  | else | 
|  | addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg), | 
|  | BaseReg, Scale, IndexReg, Disp); | 
|  | --IP; | 
|  | TargetReg = NextTarget; | 
|  | } else if (GEPTypes.empty()) { | 
|  | // The getGEPIndex operation didn't want to build an LEA.  Check to see if | 
|  | // all operands are consumed but the base pointer.  If so, just load it | 
|  | // into the register. | 
|  | if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps[0])) { | 
|  | BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV); | 
|  | } else { | 
|  | unsigned BaseReg = getReg(GEPOps[0], MBB, IP); | 
|  | BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg); | 
|  | } | 
|  | break;                // we are now done | 
|  |  | 
|  | } else { | 
|  | // It's an array or pointer access: [ArraySize x ElementType]. | 
|  | const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back()); | 
|  | Value *idx = GEPOps.back(); | 
|  | GEPOps.pop_back();        // Consume a GEP operand | 
|  | GEPTypes.pop_back(); | 
|  |  | 
|  | // Many GEP instructions use a [cast (int/uint) to LongTy] as their | 
|  | // operand on X86.  Handle this case directly now... | 
|  | if (CastInst *CI = dyn_cast<CastInst>(idx)) | 
|  | if (CI->getOperand(0)->getType() == Type::IntTy || | 
|  | CI->getOperand(0)->getType() == Type::UIntTy) | 
|  | idx = CI->getOperand(0); | 
|  |  | 
|  | // We want to add BaseReg to(idxReg * sizeof ElementType). First, we | 
|  | // must find the size of the pointed-to type (Not coincidentally, the next | 
|  | // type is the type of the elements in the array). | 
|  | const Type *ElTy = SqTy->getElementType(); | 
|  | unsigned elementSize = TD.getTypeSize(ElTy); | 
|  |  | 
|  | // If idxReg is a constant, we don't need to perform the multiply! | 
|  | if (ConstantInt *CSI = dyn_cast<ConstantInt>(idx)) { | 
|  | if (!CSI->isNullValue()) { | 
|  | unsigned Offset = elementSize*CSI->getRawValue(); | 
|  | unsigned Reg = makeAnotherReg(Type::UIntTy); | 
|  | BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg) | 
|  | .addReg(Reg).addImm(Offset); | 
|  | --IP;            // Insert the next instruction before this one. | 
|  | TargetReg = Reg; // Codegen the rest of the GEP into this | 
|  | } | 
|  | } else if (elementSize == 1) { | 
|  | // If the element size is 1, we don't have to multiply, just add | 
|  | unsigned idxReg = getReg(idx, MBB, IP); | 
|  | unsigned Reg = makeAnotherReg(Type::UIntTy); | 
|  | BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg); | 
|  | --IP;            // Insert the next instruction before this one. | 
|  | TargetReg = Reg; // Codegen the rest of the GEP into this | 
|  | } else { | 
|  | unsigned idxReg = getReg(idx, MBB, IP); | 
|  | unsigned OffsetReg = makeAnotherReg(Type::UIntTy); | 
|  |  | 
|  | // Make sure we can back the iterator up to point to the first | 
|  | // instruction emitted. | 
|  | MachineBasicBlock::iterator BeforeIt = IP; | 
|  | if (IP == MBB->begin()) | 
|  | BeforeIt = MBB->end(); | 
|  | else | 
|  | --BeforeIt; | 
|  | doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize); | 
|  |  | 
|  | // Emit an ADD to add OffsetReg to the basePtr. | 
|  | unsigned Reg = makeAnotherReg(Type::UIntTy); | 
|  | BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg) | 
|  | .addReg(Reg).addReg(OffsetReg); | 
|  |  | 
|  | // Step to the first instruction of the multiply. | 
|  | if (BeforeIt == MBB->end()) | 
|  | IP = MBB->begin(); | 
|  | else | 
|  | IP = ++BeforeIt; | 
|  |  | 
|  | TargetReg = Reg; // Codegen the rest of the GEP into this | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// visitAllocaInst - If this is a fixed size alloca, allocate space from the | 
|  | /// frame manager, otherwise do it the hard way. | 
|  | /// | 
|  | void ISel::visitAllocaInst(AllocaInst &I) { | 
|  | // Find the data size of the alloca inst's getAllocatedType. | 
|  | const Type *Ty = I.getAllocatedType(); | 
|  | unsigned TySize = TM.getTargetData().getTypeSize(Ty); | 
|  |  | 
|  | // If this is a fixed size alloca in the entry block for the function, | 
|  | // statically stack allocate the space. | 
|  | // | 
|  | if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) { | 
|  | if (I.getParent() == I.getParent()->getParent()->begin()) { | 
|  | TySize *= CUI->getValue();   // Get total allocated size... | 
|  | unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty); | 
|  |  | 
|  | // Create a new stack object using the frame manager... | 
|  | int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment); | 
|  | addFrameReference(BuildMI(BB, X86::LEA32r, 5, getReg(I)), FrameIdx); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create a register to hold the temporary result of multiplying the type size | 
|  | // constant by the variable amount. | 
|  | unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy); | 
|  | unsigned SrcReg1 = getReg(I.getArraySize()); | 
|  |  | 
|  | // TotalSizeReg = mul <numelements>, <TypeSize> | 
|  | MachineBasicBlock::iterator MBBI = BB->end(); | 
|  | doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize); | 
|  |  | 
|  | // AddedSize = add <TotalSizeReg>, 15 | 
|  | unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy); | 
|  | BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15); | 
|  |  | 
|  | // AlignedSize = and <AddedSize>, ~15 | 
|  | unsigned AlignedSize = makeAnotherReg(Type::UIntTy); | 
|  | BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15); | 
|  |  | 
|  | // Subtract size from stack pointer, thereby allocating some space. | 
|  | BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize); | 
|  |  | 
|  | // Put a pointer to the space into the result register, by copying | 
|  | // the stack pointer. | 
|  | BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP); | 
|  |  | 
|  | // Inform the Frame Information that we have just allocated a variable-sized | 
|  | // object. | 
|  | F->getFrameInfo()->CreateVariableSizedObject(); | 
|  | } | 
|  |  | 
|  | /// visitMallocInst - Malloc instructions are code generated into direct calls | 
|  | /// to the library malloc. | 
|  | /// | 
|  | void ISel::visitMallocInst(MallocInst &I) { | 
|  | unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType()); | 
|  | unsigned Arg; | 
|  |  | 
|  | if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) { | 
|  | Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize)); | 
|  | } else { | 
|  | Arg = makeAnotherReg(Type::UIntTy); | 
|  | unsigned Op0Reg = getReg(I.getOperand(0)); | 
|  | MachineBasicBlock::iterator MBBI = BB->end(); | 
|  | doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize); | 
|  | } | 
|  |  | 
|  | std::vector<ValueRecord> Args; | 
|  | Args.push_back(ValueRecord(Arg, Type::UIntTy)); | 
|  | MachineInstr *TheCall = BuildMI(X86::CALLpcrel32, | 
|  | 1).addExternalSymbol("malloc", true); | 
|  | doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// visitFreeInst - Free instructions are code gen'd to call the free libc | 
|  | /// function. | 
|  | /// | 
|  | void ISel::visitFreeInst(FreeInst &I) { | 
|  | std::vector<ValueRecord> Args; | 
|  | Args.push_back(ValueRecord(I.getOperand(0))); | 
|  | MachineInstr *TheCall = BuildMI(X86::CALLpcrel32, | 
|  | 1).addExternalSymbol("free", true); | 
|  | doCall(ValueRecord(0, Type::VoidTy), TheCall, Args); | 
|  | } | 
|  |  | 
|  | /// createX86SimpleInstructionSelector - This pass converts an LLVM function | 
|  | /// into a machine code representation is a very simple peep-hole fashion.  The | 
|  | /// generated code sucks but the implementation is nice and simple. | 
|  | /// | 
|  | FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) { | 
|  | return new ISel(TM); | 
|  | } |