|  | //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the interfaces that X86 uses to lower LLVM code into a | 
|  | // selection DAG. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "x86-isel" | 
|  | #include "X86.h" | 
|  | #include "X86InstrBuilder.h" | 
|  | #include "X86ISelLowering.h" | 
|  | #include "X86TargetMachine.h" | 
|  | #include "X86TargetObjectFile.h" | 
|  | #include "Utils/X86ShuffleDecode.h" | 
|  | #include "llvm/CallingConv.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/GlobalAlias.h" | 
|  | #include "llvm/GlobalVariable.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/Intrinsics.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/CodeGen/IntrinsicLowering.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/PseudoSourceValue.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/MCContext.h" | 
|  | #include "llvm/MC/MCExpr.h" | 
|  | #include "llvm/MC/MCSymbol.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/ADT/VectorExtras.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/Dwarf.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | using namespace llvm; | 
|  | using namespace dwarf; | 
|  |  | 
|  | STATISTIC(NumTailCalls, "Number of tail calls"); | 
|  |  | 
|  | // Forward declarations. | 
|  | static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, | 
|  | SDValue V2); | 
|  |  | 
|  | static SDValue Insert128BitVector(SDValue Result, | 
|  | SDValue Vec, | 
|  | SDValue Idx, | 
|  | SelectionDAG &DAG, | 
|  | DebugLoc dl); | 
|  |  | 
|  | static SDValue Extract128BitVector(SDValue Vec, | 
|  | SDValue Idx, | 
|  | SelectionDAG &DAG, | 
|  | DebugLoc dl); | 
|  |  | 
|  | static SDValue ConcatVectors(SDValue Lower, SDValue Upper, SelectionDAG &DAG); | 
|  |  | 
|  |  | 
|  | /// Generate a DAG to grab 128-bits from a vector > 128 bits.  This | 
|  | /// sets things up to match to an AVX VEXTRACTF128 instruction or a | 
|  | /// simple subregister reference.  Idx is an index in the 128 bits we | 
|  | /// want.  It need not be aligned to a 128-bit bounday.  That makes | 
|  | /// lowering EXTRACT_VECTOR_ELT operations easier. | 
|  | static SDValue Extract128BitVector(SDValue Vec, | 
|  | SDValue Idx, | 
|  | SelectionDAG &DAG, | 
|  | DebugLoc dl) { | 
|  | EVT VT = Vec.getValueType(); | 
|  | assert(VT.getSizeInBits() == 256 && "Unexpected vector size!"); | 
|  |  | 
|  | EVT ElVT = VT.getVectorElementType(); | 
|  |  | 
|  | int Factor = VT.getSizeInBits() / 128; | 
|  |  | 
|  | EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), | 
|  | ElVT, | 
|  | VT.getVectorNumElements() / Factor); | 
|  |  | 
|  | // Extract from UNDEF is UNDEF. | 
|  | if (Vec.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getNode(ISD::UNDEF, dl, ResultVT); | 
|  |  | 
|  | if (isa<ConstantSDNode>(Idx)) { | 
|  | unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); | 
|  |  | 
|  | // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR | 
|  | // we can match to VEXTRACTF128. | 
|  | unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits(); | 
|  |  | 
|  | // This is the index of the first element of the 128-bit chunk | 
|  | // we want. | 
|  | unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128) | 
|  | * ElemsPerChunk); | 
|  |  | 
|  | SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32); | 
|  |  | 
|  | SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, | 
|  | VecIdx); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Generate a DAG to put 128-bits into a vector > 128 bits.  This | 
|  | /// sets things up to match to an AVX VINSERTF128 instruction or a | 
|  | /// simple superregister reference.  Idx is an index in the 128 bits | 
|  | /// we want.  It need not be aligned to a 128-bit bounday.  That makes | 
|  | /// lowering INSERT_VECTOR_ELT operations easier. | 
|  | static SDValue Insert128BitVector(SDValue Result, | 
|  | SDValue Vec, | 
|  | SDValue Idx, | 
|  | SelectionDAG &DAG, | 
|  | DebugLoc dl) { | 
|  | if (isa<ConstantSDNode>(Idx)) { | 
|  | EVT VT = Vec.getValueType(); | 
|  | assert(VT.getSizeInBits() == 128 && "Unexpected vector size!"); | 
|  |  | 
|  | EVT ElVT = VT.getVectorElementType(); | 
|  |  | 
|  | unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); | 
|  |  | 
|  | EVT ResultVT = Result.getValueType(); | 
|  |  | 
|  | // Insert the relevant 128 bits. | 
|  | unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits(); | 
|  |  | 
|  | // This is the index of the first element of the 128-bit chunk | 
|  | // we want. | 
|  | unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128) | 
|  | * ElemsPerChunk); | 
|  |  | 
|  | SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32); | 
|  |  | 
|  | Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec, | 
|  | VecIdx); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Given two vectors, concat them. | 
|  | static SDValue ConcatVectors(SDValue Lower, SDValue Upper, SelectionDAG &DAG) { | 
|  | DebugLoc dl = Lower.getDebugLoc(); | 
|  |  | 
|  | assert(Lower.getValueType() == Upper.getValueType() && "Mismatched vectors!"); | 
|  |  | 
|  | EVT VT = EVT::getVectorVT(*DAG.getContext(), | 
|  | Lower.getValueType().getVectorElementType(), | 
|  | Lower.getValueType().getVectorNumElements() * 2); | 
|  |  | 
|  | // TODO: Generalize to arbitrary vector length (this assumes 256-bit vectors). | 
|  | assert(VT.getSizeInBits() == 256 && "Unsupported vector concat!"); | 
|  |  | 
|  | // Insert the upper subvector. | 
|  | SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Upper, | 
|  | DAG.getConstant( | 
|  | // This is half the length of the result | 
|  | // vector.  Start inserting the upper 128 | 
|  | // bits here. | 
|  | Lower.getValueType().getVectorNumElements(), | 
|  | MVT::i32), | 
|  | DAG, dl); | 
|  |  | 
|  | // Insert the lower subvector. | 
|  | Vec = Insert128BitVector(Vec, Lower, DAG.getConstant(0, MVT::i32), DAG, dl); | 
|  | return Vec; | 
|  | } | 
|  |  | 
|  | static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) { | 
|  | const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>(); | 
|  | bool is64Bit = Subtarget->is64Bit(); | 
|  |  | 
|  | if (Subtarget->isTargetEnvMacho()) { | 
|  | if (is64Bit) | 
|  | return new X8664_MachoTargetObjectFile(); | 
|  | return new TargetLoweringObjectFileMachO(); | 
|  | } | 
|  |  | 
|  | if (Subtarget->isTargetELF()) { | 
|  | if (is64Bit) | 
|  | return new X8664_ELFTargetObjectFile(TM); | 
|  | return new X8632_ELFTargetObjectFile(TM); | 
|  | } | 
|  | if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho()) | 
|  | return new TargetLoweringObjectFileCOFF(); | 
|  | llvm_unreachable("unknown subtarget type"); | 
|  | } | 
|  |  | 
|  | X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) | 
|  | : TargetLowering(TM, createTLOF(TM)) { | 
|  | Subtarget = &TM.getSubtarget<X86Subtarget>(); | 
|  | X86ScalarSSEf64 = Subtarget->hasXMMInt(); | 
|  | X86ScalarSSEf32 = Subtarget->hasXMM(); | 
|  | X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP; | 
|  |  | 
|  | RegInfo = TM.getRegisterInfo(); | 
|  | TD = getTargetData(); | 
|  |  | 
|  | // Set up the TargetLowering object. | 
|  | static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }; | 
|  |  | 
|  | // X86 is weird, it always uses i8 for shift amounts and setcc results. | 
|  | setBooleanContents(ZeroOrOneBooleanContent); | 
|  | setSchedulingPreference(Sched::RegPressure); | 
|  | setStackPointerRegisterToSaveRestore(X86StackPtr); | 
|  |  | 
|  | if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) { | 
|  | // Setup Windows compiler runtime calls. | 
|  | setLibcallName(RTLIB::SDIV_I64, "_alldiv"); | 
|  | setLibcallName(RTLIB::UDIV_I64, "_aulldiv"); | 
|  | setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2"); | 
|  | setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2"); | 
|  | setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall); | 
|  | setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall); | 
|  | setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C); | 
|  | setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C); | 
|  | } | 
|  |  | 
|  | if (Subtarget->isTargetDarwin()) { | 
|  | // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. | 
|  | setUseUnderscoreSetJmp(false); | 
|  | setUseUnderscoreLongJmp(false); | 
|  | } else if (Subtarget->isTargetMingw()) { | 
|  | // MS runtime is weird: it exports _setjmp, but longjmp! | 
|  | setUseUnderscoreSetJmp(true); | 
|  | setUseUnderscoreLongJmp(false); | 
|  | } else { | 
|  | setUseUnderscoreSetJmp(true); | 
|  | setUseUnderscoreLongJmp(true); | 
|  | } | 
|  |  | 
|  | // Set up the register classes. | 
|  | addRegisterClass(MVT::i8, X86::GR8RegisterClass); | 
|  | addRegisterClass(MVT::i16, X86::GR16RegisterClass); | 
|  | addRegisterClass(MVT::i32, X86::GR32RegisterClass); | 
|  | if (Subtarget->is64Bit()) | 
|  | addRegisterClass(MVT::i64, X86::GR64RegisterClass); | 
|  |  | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); | 
|  |  | 
|  | // We don't accept any truncstore of integer registers. | 
|  | setTruncStoreAction(MVT::i64, MVT::i32, Expand); | 
|  | setTruncStoreAction(MVT::i64, MVT::i16, Expand); | 
|  | setTruncStoreAction(MVT::i64, MVT::i8 , Expand); | 
|  | setTruncStoreAction(MVT::i32, MVT::i16, Expand); | 
|  | setTruncStoreAction(MVT::i32, MVT::i8 , Expand); | 
|  | setTruncStoreAction(MVT::i16, MVT::i8,  Expand); | 
|  |  | 
|  | // SETOEQ and SETUNE require checking two conditions. | 
|  | setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand); | 
|  | setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand); | 
|  | setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand); | 
|  | setCondCodeAction(ISD::SETUNE, MVT::f32, Expand); | 
|  | setCondCodeAction(ISD::SETUNE, MVT::f64, Expand); | 
|  | setCondCodeAction(ISD::SETUNE, MVT::f80, Expand); | 
|  |  | 
|  | // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this | 
|  | // operation. | 
|  | setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote); | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand); | 
|  | } else if (!UseSoftFloat) { | 
|  | // We have an algorithm for SSE2->double, and we turn this into a | 
|  | // 64-bit FILD followed by conditional FADD for other targets. | 
|  | setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom); | 
|  | // We have an algorithm for SSE2, and we turn this into a 64-bit | 
|  | // FILD for other targets. | 
|  | setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom); | 
|  | } | 
|  |  | 
|  | // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have | 
|  | // this operation. | 
|  | setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote); | 
|  |  | 
|  | if (!UseSoftFloat) { | 
|  | // SSE has no i16 to fp conversion, only i32 | 
|  | if (X86ScalarSSEf32) { | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote); | 
|  | // f32 and f64 cases are Legal, f80 case is not | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom); | 
|  | } else { | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom); | 
|  | } | 
|  | } else { | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote); | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote); | 
|  | } | 
|  |  | 
|  | // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64 | 
|  | // are Legal, f80 is custom lowered. | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom); | 
|  |  | 
|  | // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have | 
|  | // this operation. | 
|  | setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote); | 
|  |  | 
|  | if (X86ScalarSSEf32) { | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote); | 
|  | // f32 and f64 cases are Legal, f80 case is not | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom); | 
|  | } else { | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom); | 
|  | } | 
|  |  | 
|  | // Handle FP_TO_UINT by promoting the destination to a larger signed | 
|  | // conversion. | 
|  | setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote); | 
|  | setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote); | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand); | 
|  | setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote); | 
|  | } else if (!UseSoftFloat) { | 
|  | if (X86ScalarSSEf32 && !Subtarget->hasSSE3()) | 
|  | // Expand FP_TO_UINT into a select. | 
|  | // FIXME: We would like to use a Custom expander here eventually to do | 
|  | // the optimal thing for SSE vs. the default expansion in the legalizer. | 
|  | setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand); | 
|  | else | 
|  | // With SSE3 we can use fisttpll to convert to a signed i64; without | 
|  | // SSE, we're stuck with a fistpll. | 
|  | setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom); | 
|  | } | 
|  |  | 
|  | // TODO: when we have SSE, these could be more efficient, by using movd/movq. | 
|  | if (!X86ScalarSSEf64) { | 
|  | setOperationAction(ISD::BITCAST        , MVT::f32  , Expand); | 
|  | setOperationAction(ISD::BITCAST        , MVT::i32  , Expand); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::BITCAST      , MVT::f64  , Expand); | 
|  | // Without SSE, i64->f64 goes through memory. | 
|  | setOperationAction(ISD::BITCAST      , MVT::i64  , Expand); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Scalar integer divide and remainder are lowered to use operations that | 
|  | // produce two results, to match the available instructions. This exposes | 
|  | // the two-result form to trivial CSE, which is able to combine x/y and x%y | 
|  | // into a single instruction. | 
|  | // | 
|  | // Scalar integer multiply-high is also lowered to use two-result | 
|  | // operations, to match the available instructions. However, plain multiply | 
|  | // (low) operations are left as Legal, as there are single-result | 
|  | // instructions for this in x86. Using the two-result multiply instructions | 
|  | // when both high and low results are needed must be arranged by dagcombine. | 
|  | for (unsigned i = 0, e = 4; i != e; ++i) { | 
|  | MVT VT = IntVTs[i]; | 
|  | setOperationAction(ISD::MULHS, VT, Expand); | 
|  | setOperationAction(ISD::MULHU, VT, Expand); | 
|  | setOperationAction(ISD::SDIV, VT, Expand); | 
|  | setOperationAction(ISD::UDIV, VT, Expand); | 
|  | setOperationAction(ISD::SREM, VT, Expand); | 
|  | setOperationAction(ISD::UREM, VT, Expand); | 
|  |  | 
|  | // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences. | 
|  | setOperationAction(ISD::ADDC, VT, Custom); | 
|  | setOperationAction(ISD::ADDE, VT, Custom); | 
|  | setOperationAction(ISD::SUBC, VT, Custom); | 
|  | setOperationAction(ISD::SUBE, VT, Custom); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::BR_JT            , MVT::Other, Expand); | 
|  | setOperationAction(ISD::BRCOND           , MVT::Other, Custom); | 
|  | setOperationAction(ISD::BR_CC            , MVT::Other, Expand); | 
|  | setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand); | 
|  | if (Subtarget->is64Bit()) | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand); | 
|  | setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand); | 
|  | setOperationAction(ISD::FREM             , MVT::f32  , Expand); | 
|  | setOperationAction(ISD::FREM             , MVT::f64  , Expand); | 
|  | setOperationAction(ISD::FREM             , MVT::f80  , Expand); | 
|  | setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom); | 
|  |  | 
|  | setOperationAction(ISD::CTTZ             , MVT::i8   , Custom); | 
|  | setOperationAction(ISD::CTLZ             , MVT::i8   , Custom); | 
|  | setOperationAction(ISD::CTTZ             , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::CTLZ             , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::CTTZ             , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::CTLZ             , MVT::i32  , Custom); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::CTTZ           , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::CTLZ           , MVT::i64  , Custom); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasPOPCNT()) { | 
|  | setOperationAction(ISD::CTPOP          , MVT::i8   , Promote); | 
|  | } else { | 
|  | setOperationAction(ISD::CTPOP          , MVT::i8   , Expand); | 
|  | setOperationAction(ISD::CTPOP          , MVT::i16  , Expand); | 
|  | setOperationAction(ISD::CTPOP          , MVT::i32  , Expand); | 
|  | if (Subtarget->is64Bit()) | 
|  | setOperationAction(ISD::CTPOP        , MVT::i64  , Expand); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::BSWAP            , MVT::i16  , Expand); | 
|  |  | 
|  | // These should be promoted to a larger select which is supported. | 
|  | setOperationAction(ISD::SELECT          , MVT::i1   , Promote); | 
|  | // X86 wants to expand cmov itself. | 
|  | setOperationAction(ISD::SELECT          , MVT::i8   , Custom); | 
|  | setOperationAction(ISD::SELECT          , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::SELECT          , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SELECT          , MVT::f32  , Custom); | 
|  | setOperationAction(ISD::SELECT          , MVT::f64  , Custom); | 
|  | setOperationAction(ISD::SELECT          , MVT::f80  , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::i8   , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::f32  , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::f64  , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::f80  , Custom); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::SELECT        , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::SETCC         , MVT::i64  , Custom); | 
|  | } | 
|  | setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom); | 
|  |  | 
|  | // Darwin ABI issue. | 
|  | setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::JumpTable       , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom); | 
|  | if (Subtarget->is64Bit()) | 
|  | setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::JumpTable     , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom); | 
|  | setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom); | 
|  | } | 
|  | // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) | 
|  | setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasXMM()) | 
|  | setOperationAction(ISD::PREFETCH      , MVT::Other, Legal); | 
|  |  | 
|  | // We may not have a libcall for MEMBARRIER so we should lower this. | 
|  | setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom); | 
|  |  | 
|  | // On X86 and X86-64, atomic operations are lowered to locked instructions. | 
|  | // Locked instructions, in turn, have implicit fence semantics (all memory | 
|  | // operations are flushed before issuing the locked instruction, and they | 
|  | // are not buffered), so we can fold away the common pattern of | 
|  | // fence-atomic-fence. | 
|  | setShouldFoldAtomicFences(true); | 
|  |  | 
|  | // Expand certain atomics | 
|  | for (unsigned i = 0, e = 4; i != e; ++i) { | 
|  | MVT VT = IntVTs[i]; | 
|  | setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); | 
|  | } | 
|  |  | 
|  | if (!Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom); | 
|  | } | 
|  |  | 
|  | // FIXME - use subtarget debug flags | 
|  | if (!Subtarget->isTargetDarwin() && | 
|  | !Subtarget->isTargetELF() && | 
|  | !Subtarget->isTargetCygMing()) { | 
|  | setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); | 
|  | setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand); | 
|  | setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); | 
|  | setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setExceptionPointerRegister(X86::RAX); | 
|  | setExceptionSelectorRegister(X86::RDX); | 
|  | } else { | 
|  | setExceptionPointerRegister(X86::EAX); | 
|  | setExceptionSelectorRegister(X86::EDX); | 
|  | } | 
|  | setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); | 
|  | setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom); | 
|  |  | 
|  | setOperationAction(ISD::TRAP, MVT::Other, Legal); | 
|  |  | 
|  | // VASTART needs to be custom lowered to use the VarArgsFrameIndex | 
|  | setOperationAction(ISD::VASTART           , MVT::Other, Custom); | 
|  | setOperationAction(ISD::VAEND             , MVT::Other, Expand); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::VAARG           , MVT::Other, Custom); | 
|  | setOperationAction(ISD::VACOPY          , MVT::Other, Custom); | 
|  | } else { | 
|  | setOperationAction(ISD::VAARG           , MVT::Other, Expand); | 
|  | setOperationAction(ISD::VACOPY          , MVT::Other, Expand); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand); | 
|  | setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand); | 
|  | if (Subtarget->is64Bit()) | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); | 
|  | if (Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); | 
|  | else | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); | 
|  |  | 
|  | if (!UseSoftFloat && X86ScalarSSEf64) { | 
|  | // f32 and f64 use SSE. | 
|  | // Set up the FP register classes. | 
|  | addRegisterClass(MVT::f32, X86::FR32RegisterClass); | 
|  | addRegisterClass(MVT::f64, X86::FR64RegisterClass); | 
|  |  | 
|  | // Use ANDPD to simulate FABS. | 
|  | setOperationAction(ISD::FABS , MVT::f64, Custom); | 
|  | setOperationAction(ISD::FABS , MVT::f32, Custom); | 
|  |  | 
|  | // Use XORP to simulate FNEG. | 
|  | setOperationAction(ISD::FNEG , MVT::f64, Custom); | 
|  | setOperationAction(ISD::FNEG , MVT::f32, Custom); | 
|  |  | 
|  | // Use ANDPD and ORPD to simulate FCOPYSIGN. | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); | 
|  |  | 
|  | // We don't support sin/cos/fmod | 
|  | setOperationAction(ISD::FSIN , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOS , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSIN , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOS , MVT::f32, Expand); | 
|  |  | 
|  | // Expand FP immediates into loads from the stack, except for the special | 
|  | // cases we handle. | 
|  | addLegalFPImmediate(APFloat(+0.0)); // xorpd | 
|  | addLegalFPImmediate(APFloat(+0.0f)); // xorps | 
|  | } else if (!UseSoftFloat && X86ScalarSSEf32) { | 
|  | // Use SSE for f32, x87 for f64. | 
|  | // Set up the FP register classes. | 
|  | addRegisterClass(MVT::f32, X86::FR32RegisterClass); | 
|  | addRegisterClass(MVT::f64, X86::RFP64RegisterClass); | 
|  |  | 
|  | // Use ANDPS to simulate FABS. | 
|  | setOperationAction(ISD::FABS , MVT::f32, Custom); | 
|  |  | 
|  | // Use XORP to simulate FNEG. | 
|  | setOperationAction(ISD::FNEG , MVT::f32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::UNDEF,     MVT::f64, Expand); | 
|  |  | 
|  | // Use ANDPS and ORPS to simulate FCOPYSIGN. | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); | 
|  |  | 
|  | // We don't support sin/cos/fmod | 
|  | setOperationAction(ISD::FSIN , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOS , MVT::f32, Expand); | 
|  |  | 
|  | // Special cases we handle for FP constants. | 
|  | addLegalFPImmediate(APFloat(+0.0f)); // xorps | 
|  | addLegalFPImmediate(APFloat(+0.0)); // FLD0 | 
|  | addLegalFPImmediate(APFloat(+1.0)); // FLD1 | 
|  | addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS | 
|  | addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS | 
|  |  | 
|  | if (!UnsafeFPMath) { | 
|  | setOperationAction(ISD::FSIN           , MVT::f64  , Expand); | 
|  | setOperationAction(ISD::FCOS           , MVT::f64  , Expand); | 
|  | } | 
|  | } else if (!UseSoftFloat) { | 
|  | // f32 and f64 in x87. | 
|  | // Set up the FP register classes. | 
|  | addRegisterClass(MVT::f64, X86::RFP64RegisterClass); | 
|  | addRegisterClass(MVT::f32, X86::RFP32RegisterClass); | 
|  |  | 
|  | setOperationAction(ISD::UNDEF,     MVT::f64, Expand); | 
|  | setOperationAction(ISD::UNDEF,     MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); | 
|  |  | 
|  | if (!UnsafeFPMath) { | 
|  | setOperationAction(ISD::FSIN           , MVT::f64  , Expand); | 
|  | setOperationAction(ISD::FCOS           , MVT::f64  , Expand); | 
|  | } | 
|  | addLegalFPImmediate(APFloat(+0.0)); // FLD0 | 
|  | addLegalFPImmediate(APFloat(+1.0)); // FLD1 | 
|  | addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS | 
|  | addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS | 
|  | addLegalFPImmediate(APFloat(+0.0f)); // FLD0 | 
|  | addLegalFPImmediate(APFloat(+1.0f)); // FLD1 | 
|  | addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS | 
|  | addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS | 
|  | } | 
|  |  | 
|  | // Long double always uses X87. | 
|  | if (!UseSoftFloat) { | 
|  | addRegisterClass(MVT::f80, X86::RFP80RegisterClass); | 
|  | setOperationAction(ISD::UNDEF,     MVT::f80, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand); | 
|  | { | 
|  | APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended); | 
|  | addLegalFPImmediate(TmpFlt);  // FLD0 | 
|  | TmpFlt.changeSign(); | 
|  | addLegalFPImmediate(TmpFlt);  // FLD0/FCHS | 
|  |  | 
|  | bool ignored; | 
|  | APFloat TmpFlt2(+1.0); | 
|  | TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven, | 
|  | &ignored); | 
|  | addLegalFPImmediate(TmpFlt2);  // FLD1 | 
|  | TmpFlt2.changeSign(); | 
|  | addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS | 
|  | } | 
|  |  | 
|  | if (!UnsafeFPMath) { | 
|  | setOperationAction(ISD::FSIN           , MVT::f80  , Expand); | 
|  | setOperationAction(ISD::FCOS           , MVT::f80  , Expand); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Always use a library call for pow. | 
|  | setOperationAction(ISD::FPOW             , MVT::f32  , Expand); | 
|  | setOperationAction(ISD::FPOW             , MVT::f64  , Expand); | 
|  | setOperationAction(ISD::FPOW             , MVT::f80  , Expand); | 
|  |  | 
|  | setOperationAction(ISD::FLOG, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FLOG2, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FLOG10, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FEXP, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FEXP2, MVT::f80, Expand); | 
|  |  | 
|  | // First set operation action for all vector types to either promote | 
|  | // (for widening) or expand (for scalarization). Then we will selectively | 
|  | // turn on ones that can be effectively codegen'd. | 
|  | for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; | 
|  | VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { | 
|  | setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand); | 
|  | setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand); | 
|  | setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand); | 
|  | setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand); | 
|  | for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; | 
|  | InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT) | 
|  | setTruncStoreAction((MVT::SimpleValueType)VT, | 
|  | (MVT::SimpleValueType)InnerVT, Expand); | 
|  | setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand); | 
|  | } | 
|  |  | 
|  | // FIXME: In order to prevent SSE instructions being expanded to MMX ones | 
|  | // with -msoft-float, disable use of MMX as well. | 
|  | if (!UseSoftFloat && Subtarget->hasMMX()) { | 
|  | addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass); | 
|  | // No operations on x86mmx supported, everything uses intrinsics. | 
|  | } | 
|  |  | 
|  | // MMX-sized vectors (other than x86mmx) are expected to be expanded | 
|  | // into smaller operations. | 
|  | setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand); | 
|  | setOperationAction(ISD::MULHS,              MVT::v4i16, Expand); | 
|  | setOperationAction(ISD::MULHS,              MVT::v2i32, Expand); | 
|  | setOperationAction(ISD::MULHS,              MVT::v1i64, Expand); | 
|  | setOperationAction(ISD::AND,                MVT::v8i8,  Expand); | 
|  | setOperationAction(ISD::AND,                MVT::v4i16, Expand); | 
|  | setOperationAction(ISD::AND,                MVT::v2i32, Expand); | 
|  | setOperationAction(ISD::AND,                MVT::v1i64, Expand); | 
|  | setOperationAction(ISD::OR,                 MVT::v8i8,  Expand); | 
|  | setOperationAction(ISD::OR,                 MVT::v4i16, Expand); | 
|  | setOperationAction(ISD::OR,                 MVT::v2i32, Expand); | 
|  | setOperationAction(ISD::OR,                 MVT::v1i64, Expand); | 
|  | setOperationAction(ISD::XOR,                MVT::v8i8,  Expand); | 
|  | setOperationAction(ISD::XOR,                MVT::v4i16, Expand); | 
|  | setOperationAction(ISD::XOR,                MVT::v2i32, Expand); | 
|  | setOperationAction(ISD::XOR,                MVT::v1i64, Expand); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand); | 
|  | setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand); | 
|  | setOperationAction(ISD::SELECT,             MVT::v4i16, Expand); | 
|  | setOperationAction(ISD::SELECT,             MVT::v2i32, Expand); | 
|  | setOperationAction(ISD::SELECT,             MVT::v1i64, Expand); | 
|  | setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand); | 
|  | setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand); | 
|  | setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand); | 
|  | setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand); | 
|  |  | 
|  | if (!UseSoftFloat && Subtarget->hasXMM()) { | 
|  | addRegisterClass(MVT::v4f32, X86::VR128RegisterClass); | 
|  |  | 
|  | setOperationAction(ISD::FADD,               MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FSUB,               MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FMUL,               MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FDIV,               MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FNEG,               MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::LOAD,               MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom); | 
|  | } | 
|  |  | 
|  | if (!UseSoftFloat && Subtarget->hasXMMInt()) { | 
|  | addRegisterClass(MVT::v2f64, X86::VR128RegisterClass); | 
|  |  | 
|  | // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM | 
|  | // registers cannot be used even for integer operations. | 
|  | addRegisterClass(MVT::v16i8, X86::VR128RegisterClass); | 
|  | addRegisterClass(MVT::v8i16, X86::VR128RegisterClass); | 
|  | addRegisterClass(MVT::v4i32, X86::VR128RegisterClass); | 
|  | addRegisterClass(MVT::v2i64, X86::VR128RegisterClass); | 
|  |  | 
|  | setOperationAction(ISD::ADD,                MVT::v16i8, Legal); | 
|  | setOperationAction(ISD::ADD,                MVT::v8i16, Legal); | 
|  | setOperationAction(ISD::ADD,                MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::ADD,                MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::MUL,                MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::SUB,                MVT::v16i8, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v8i16, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::MUL,                MVT::v8i16, Legal); | 
|  | setOperationAction(ISD::FADD,               MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FSUB,               MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FMUL,               MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FDIV,               MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FNEG,               MVT::v2f64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom); | 
|  |  | 
|  | // Custom lower build_vector, vector_shuffle, and extract_vector_elt. | 
|  | for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) { | 
|  | EVT VT = (MVT::SimpleValueType)i; | 
|  | // Do not attempt to custom lower non-power-of-2 vectors | 
|  | if (!isPowerOf2_32(VT.getVectorNumElements())) | 
|  | continue; | 
|  | // Do not attempt to custom lower non-128-bit vectors | 
|  | if (!VT.is128BitVector()) | 
|  | continue; | 
|  | setOperationAction(ISD::BUILD_VECTOR, | 
|  | VT.getSimpleVT().SimpleTy, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, | 
|  | VT.getSimpleVT().SimpleTy, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, | 
|  | VT.getSimpleVT().SimpleTy, Custom); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); | 
|  | } | 
|  |  | 
|  | // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. | 
|  | for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) { | 
|  | MVT::SimpleValueType SVT = (MVT::SimpleValueType)i; | 
|  | EVT VT = SVT; | 
|  |  | 
|  | // Do not attempt to promote non-128-bit vectors | 
|  | if (!VT.is128BitVector()) | 
|  | continue; | 
|  |  | 
|  | setOperationAction(ISD::AND,    SVT, Promote); | 
|  | AddPromotedToType (ISD::AND,    SVT, MVT::v2i64); | 
|  | setOperationAction(ISD::OR,     SVT, Promote); | 
|  | AddPromotedToType (ISD::OR,     SVT, MVT::v2i64); | 
|  | setOperationAction(ISD::XOR,    SVT, Promote); | 
|  | AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64); | 
|  | setOperationAction(ISD::LOAD,   SVT, Promote); | 
|  | AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64); | 
|  | setOperationAction(ISD::SELECT, SVT, Promote); | 
|  | AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64); | 
|  | } | 
|  |  | 
|  | setTruncStoreAction(MVT::f64, MVT::f32, Expand); | 
|  |  | 
|  | // Custom lower v2i64 and v2f64 selects. | 
|  | setOperationAction(ISD::LOAD,               MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::SELECT,             MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::v2i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasSSE41()) { | 
|  | setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal); | 
|  | setOperationAction(ISD::FCEIL,              MVT::f32,   Legal); | 
|  | setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal); | 
|  | setOperationAction(ISD::FRINT,              MVT::f32,   Legal); | 
|  | setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal); | 
|  | setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal); | 
|  | setOperationAction(ISD::FCEIL,              MVT::f64,   Legal); | 
|  | setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal); | 
|  | setOperationAction(ISD::FRINT,              MVT::f64,   Legal); | 
|  | setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal); | 
|  |  | 
|  | // FIXME: Do we need to handle scalar-to-vector here? | 
|  | setOperationAction(ISD::MUL,                MVT::v4i32, Legal); | 
|  |  | 
|  | // Can turn SHL into an integer multiply. | 
|  | setOperationAction(ISD::SHL,                MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::SHL,                MVT::v16i8, Custom); | 
|  |  | 
|  | // i8 and i16 vectors are custom , because the source register and source | 
|  | // source memory operand types are not the same width.  f32 vectors are | 
|  | // custom since the immediate controlling the insert encodes additional | 
|  | // information. | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasSSE42()) | 
|  | setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom); | 
|  |  | 
|  | if (!UseSoftFloat && Subtarget->hasAVX()) { | 
|  | addRegisterClass(MVT::v8f32, X86::VR256RegisterClass); | 
|  | addRegisterClass(MVT::v4f64, X86::VR256RegisterClass); | 
|  | addRegisterClass(MVT::v8i32, X86::VR256RegisterClass); | 
|  | addRegisterClass(MVT::v4i64, X86::VR256RegisterClass); | 
|  | addRegisterClass(MVT::v32i8, X86::VR256RegisterClass); | 
|  |  | 
|  | setOperationAction(ISD::LOAD,               MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v8i32, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v4i64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FADD,               MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FSUB,               MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FMUL,               MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FDIV,               MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FNEG,               MVT::v8f32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::FADD,               MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FSUB,               MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FMUL,               MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FDIV,               MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FNEG,               MVT::v4f64, Custom); | 
|  |  | 
|  | // Custom lower build_vector, vector_shuffle, scalar_to_vector, | 
|  | // insert_vector_elt extract_subvector and extract_vector_elt for | 
|  | // 256-bit types. | 
|  | for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; | 
|  | i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; | 
|  | ++i) { | 
|  | MVT::SimpleValueType VT = (MVT::SimpleValueType)i; | 
|  | // Do not attempt to custom lower non-256-bit vectors | 
|  | if (!isPowerOf2_32(MVT(VT).getVectorNumElements()) | 
|  | || (MVT(VT).getSizeInBits() < 256)) | 
|  | continue; | 
|  | setOperationAction(ISD::BUILD_VECTOR,       VT, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom); | 
|  | } | 
|  | // Custom-lower insert_subvector and extract_subvector based on | 
|  | // the result type. | 
|  | for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; | 
|  | i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; | 
|  | ++i) { | 
|  | MVT::SimpleValueType VT = (MVT::SimpleValueType)i; | 
|  | // Do not attempt to custom lower non-256-bit vectors | 
|  | if (!isPowerOf2_32(MVT(VT).getVectorNumElements())) | 
|  | continue; | 
|  |  | 
|  | if (MVT(VT).getSizeInBits() == 128) { | 
|  | setOperationAction(ISD::EXTRACT_SUBVECTOR,  VT, Custom); | 
|  | } | 
|  | else if (MVT(VT).getSizeInBits() == 256) { | 
|  | setOperationAction(ISD::INSERT_SUBVECTOR,  VT, Custom); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64. | 
|  | // Don't promote loads because we need them for VPERM vector index versions. | 
|  |  | 
|  | for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; | 
|  | VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; | 
|  | VT++) { | 
|  | if (!isPowerOf2_32(MVT((MVT::SimpleValueType)VT).getVectorNumElements()) | 
|  | || (MVT((MVT::SimpleValueType)VT).getSizeInBits() < 256)) | 
|  | continue; | 
|  | setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote); | 
|  | AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v4i64); | 
|  | setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote); | 
|  | AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v4i64); | 
|  | setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote); | 
|  | AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v4i64); | 
|  | //setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote); | 
|  | //AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v4i64); | 
|  | setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote); | 
|  | AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v4i64); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We want to custom lower some of our intrinsics. | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); | 
|  |  | 
|  |  | 
|  | // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't | 
|  | // handle type legalization for these operations here. | 
|  | // | 
|  | // FIXME: We really should do custom legalization for addition and | 
|  | // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better | 
|  | // than generic legalization for 64-bit multiplication-with-overflow, though. | 
|  | for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) { | 
|  | // Add/Sub/Mul with overflow operations are custom lowered. | 
|  | MVT VT = IntVTs[i]; | 
|  | setOperationAction(ISD::SADDO, VT, Custom); | 
|  | setOperationAction(ISD::UADDO, VT, Custom); | 
|  | setOperationAction(ISD::SSUBO, VT, Custom); | 
|  | setOperationAction(ISD::USUBO, VT, Custom); | 
|  | setOperationAction(ISD::SMULO, VT, Custom); | 
|  | setOperationAction(ISD::UMULO, VT, Custom); | 
|  | } | 
|  |  | 
|  | // There are no 8-bit 3-address imul/mul instructions | 
|  | setOperationAction(ISD::SMULO, MVT::i8, Expand); | 
|  | setOperationAction(ISD::UMULO, MVT::i8, Expand); | 
|  |  | 
|  | if (!Subtarget->is64Bit()) { | 
|  | // These libcalls are not available in 32-bit. | 
|  | setLibcallName(RTLIB::SHL_I128, 0); | 
|  | setLibcallName(RTLIB::SRL_I128, 0); | 
|  | setLibcallName(RTLIB::SRA_I128, 0); | 
|  | } | 
|  |  | 
|  | // We have target-specific dag combine patterns for the following nodes: | 
|  | setTargetDAGCombine(ISD::VECTOR_SHUFFLE); | 
|  | setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); | 
|  | setTargetDAGCombine(ISD::BUILD_VECTOR); | 
|  | setTargetDAGCombine(ISD::SELECT); | 
|  | setTargetDAGCombine(ISD::SHL); | 
|  | setTargetDAGCombine(ISD::SRA); | 
|  | setTargetDAGCombine(ISD::SRL); | 
|  | setTargetDAGCombine(ISD::OR); | 
|  | setTargetDAGCombine(ISD::AND); | 
|  | setTargetDAGCombine(ISD::ADD); | 
|  | setTargetDAGCombine(ISD::SUB); | 
|  | setTargetDAGCombine(ISD::STORE); | 
|  | setTargetDAGCombine(ISD::ZERO_EXTEND); | 
|  | if (Subtarget->is64Bit()) | 
|  | setTargetDAGCombine(ISD::MUL); | 
|  |  | 
|  | computeRegisterProperties(); | 
|  |  | 
|  | // On Darwin, -Os means optimize for size without hurting performance, | 
|  | // do not reduce the limit. | 
|  | maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores | 
|  | maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8; | 
|  | maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores | 
|  | maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4; | 
|  | maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores | 
|  | maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4; | 
|  | setPrefLoopAlignment(16); | 
|  | benefitFromCodePlacementOpt = true; | 
|  | } | 
|  |  | 
|  |  | 
|  | MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const { | 
|  | return MVT::i8; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getMaxByValAlign - Helper for getByValTypeAlignment to determine | 
|  | /// the desired ByVal argument alignment. | 
|  | static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) { | 
|  | if (MaxAlign == 16) | 
|  | return; | 
|  | if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) { | 
|  | if (VTy->getBitWidth() == 128) | 
|  | MaxAlign = 16; | 
|  | } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
|  | unsigned EltAlign = 0; | 
|  | getMaxByValAlign(ATy->getElementType(), EltAlign); | 
|  | if (EltAlign > MaxAlign) | 
|  | MaxAlign = EltAlign; | 
|  | } else if (const StructType *STy = dyn_cast<StructType>(Ty)) { | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | 
|  | unsigned EltAlign = 0; | 
|  | getMaxByValAlign(STy->getElementType(i), EltAlign); | 
|  | if (EltAlign > MaxAlign) | 
|  | MaxAlign = EltAlign; | 
|  | if (MaxAlign == 16) | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate | 
|  | /// function arguments in the caller parameter area. For X86, aggregates | 
|  | /// that contain SSE vectors are placed at 16-byte boundaries while the rest | 
|  | /// are at 4-byte boundaries. | 
|  | unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const { | 
|  | if (Subtarget->is64Bit()) { | 
|  | // Max of 8 and alignment of type. | 
|  | unsigned TyAlign = TD->getABITypeAlignment(Ty); | 
|  | if (TyAlign > 8) | 
|  | return TyAlign; | 
|  | return 8; | 
|  | } | 
|  |  | 
|  | unsigned Align = 4; | 
|  | if (Subtarget->hasXMM()) | 
|  | getMaxByValAlign(Ty, Align); | 
|  | return Align; | 
|  | } | 
|  |  | 
|  | /// getOptimalMemOpType - Returns the target specific optimal type for load | 
|  | /// and store operations as a result of memset, memcpy, and memmove | 
|  | /// lowering. If DstAlign is zero that means it's safe to destination | 
|  | /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it | 
|  | /// means there isn't a need to check it against alignment requirement, | 
|  | /// probably because the source does not need to be loaded. If | 
|  | /// 'NonScalarIntSafe' is true, that means it's safe to return a | 
|  | /// non-scalar-integer type, e.g. empty string source, constant, or loaded | 
|  | /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is | 
|  | /// constant so it does not need to be loaded. | 
|  | /// It returns EVT::Other if the type should be determined using generic | 
|  | /// target-independent logic. | 
|  | EVT | 
|  | X86TargetLowering::getOptimalMemOpType(uint64_t Size, | 
|  | unsigned DstAlign, unsigned SrcAlign, | 
|  | bool NonScalarIntSafe, | 
|  | bool MemcpyStrSrc, | 
|  | MachineFunction &MF) const { | 
|  | // FIXME: This turns off use of xmm stores for memset/memcpy on targets like | 
|  | // linux.  This is because the stack realignment code can't handle certain | 
|  | // cases like PR2962.  This should be removed when PR2962 is fixed. | 
|  | const Function *F = MF.getFunction(); | 
|  | if (NonScalarIntSafe && | 
|  | !F->hasFnAttr(Attribute::NoImplicitFloat)) { | 
|  | if (Size >= 16 && | 
|  | (Subtarget->isUnalignedMemAccessFast() || | 
|  | ((DstAlign == 0 || DstAlign >= 16) && | 
|  | (SrcAlign == 0 || SrcAlign >= 16))) && | 
|  | Subtarget->getStackAlignment() >= 16) { | 
|  | if (Subtarget->hasSSE2()) | 
|  | return MVT::v4i32; | 
|  | if (Subtarget->hasSSE1()) | 
|  | return MVT::v4f32; | 
|  | } else if (!MemcpyStrSrc && Size >= 8 && | 
|  | !Subtarget->is64Bit() && | 
|  | Subtarget->getStackAlignment() >= 8 && | 
|  | Subtarget->hasXMMInt()) { | 
|  | // Do not use f64 to lower memcpy if source is string constant. It's | 
|  | // better to use i32 to avoid the loads. | 
|  | return MVT::f64; | 
|  | } | 
|  | } | 
|  | if (Subtarget->is64Bit() && Size >= 8) | 
|  | return MVT::i64; | 
|  | return MVT::i32; | 
|  | } | 
|  |  | 
|  | /// getJumpTableEncoding - Return the entry encoding for a jump table in the | 
|  | /// current function.  The returned value is a member of the | 
|  | /// MachineJumpTableInfo::JTEntryKind enum. | 
|  | unsigned X86TargetLowering::getJumpTableEncoding() const { | 
|  | // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF | 
|  | // symbol. | 
|  | if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && | 
|  | Subtarget->isPICStyleGOT()) | 
|  | return MachineJumpTableInfo::EK_Custom32; | 
|  |  | 
|  | // Otherwise, use the normal jump table encoding heuristics. | 
|  | return TargetLowering::getJumpTableEncoding(); | 
|  | } | 
|  |  | 
|  | const MCExpr * | 
|  | X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, | 
|  | const MachineBasicBlock *MBB, | 
|  | unsigned uid,MCContext &Ctx) const{ | 
|  | assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ && | 
|  | Subtarget->isPICStyleGOT()); | 
|  | // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF | 
|  | // entries. | 
|  | return MCSymbolRefExpr::Create(MBB->getSymbol(), | 
|  | MCSymbolRefExpr::VK_GOTOFF, Ctx); | 
|  | } | 
|  |  | 
|  | /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC | 
|  | /// jumptable. | 
|  | SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table, | 
|  | SelectionDAG &DAG) const { | 
|  | if (!Subtarget->is64Bit()) | 
|  | // This doesn't have DebugLoc associated with it, but is not really the | 
|  | // same as a Register. | 
|  | return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy()); | 
|  | return Table; | 
|  | } | 
|  |  | 
|  | /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the | 
|  | /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an | 
|  | /// MCExpr. | 
|  | const MCExpr *X86TargetLowering:: | 
|  | getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, | 
|  | MCContext &Ctx) const { | 
|  | // X86-64 uses RIP relative addressing based on the jump table label. | 
|  | if (Subtarget->isPICStyleRIPRel()) | 
|  | return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); | 
|  |  | 
|  | // Otherwise, the reference is relative to the PIC base. | 
|  | return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx); | 
|  | } | 
|  |  | 
|  | /// getFunctionAlignment - Return the Log2 alignment of this function. | 
|  | unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const { | 
|  | return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4; | 
|  | } | 
|  |  | 
|  | // FIXME: Why this routine is here? Move to RegInfo! | 
|  | std::pair<const TargetRegisterClass*, uint8_t> | 
|  | X86TargetLowering::findRepresentativeClass(EVT VT) const{ | 
|  | const TargetRegisterClass *RRC = 0; | 
|  | uint8_t Cost = 1; | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | default: | 
|  | return TargetLowering::findRepresentativeClass(VT); | 
|  | case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: | 
|  | RRC = (Subtarget->is64Bit() | 
|  | ? X86::GR64RegisterClass : X86::GR32RegisterClass); | 
|  | break; | 
|  | case MVT::x86mmx: | 
|  | RRC = X86::VR64RegisterClass; | 
|  | break; | 
|  | case MVT::f32: case MVT::f64: | 
|  | case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: | 
|  | case MVT::v4f32: case MVT::v2f64: | 
|  | case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32: | 
|  | case MVT::v4f64: | 
|  | RRC = X86::VR128RegisterClass; | 
|  | break; | 
|  | } | 
|  | return std::make_pair(RRC, Cost); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace, | 
|  | unsigned &Offset) const { | 
|  | if (!Subtarget->isTargetLinux()) | 
|  | return false; | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs: | 
|  | Offset = 0x28; | 
|  | if (getTargetMachine().getCodeModel() == CodeModel::Kernel) | 
|  | AddressSpace = 256; | 
|  | else | 
|  | AddressSpace = 257; | 
|  | } else { | 
|  | // %gs:0x14 on i386 | 
|  | Offset = 0x14; | 
|  | AddressSpace = 256; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //               Return Value Calling Convention Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86GenCallingConv.inc" | 
|  |  | 
|  | bool | 
|  | X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | LLVMContext &Context) const { | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, getTargetMachine(), | 
|  | RVLocs, Context); | 
|  | return CCInfo.CheckReturn(Outs, RetCC_X86); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerReturn(SDValue Chain, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | DebugLoc dl, SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); | 
|  |  | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, getTargetMachine(), | 
|  | RVLocs, *DAG.getContext()); | 
|  | CCInfo.AnalyzeReturn(Outs, RetCC_X86); | 
|  |  | 
|  | // Add the regs to the liveout set for the function. | 
|  | MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); | 
|  | for (unsigned i = 0; i != RVLocs.size(); ++i) | 
|  | if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg())) | 
|  | MRI.addLiveOut(RVLocs[i].getLocReg()); | 
|  |  | 
|  | SDValue Flag; | 
|  |  | 
|  | SmallVector<SDValue, 6> RetOps; | 
|  | RetOps.push_back(Chain); // Operand #0 = Chain (updated below) | 
|  | // Operand #1 = Bytes To Pop | 
|  | RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(), | 
|  | MVT::i16)); | 
|  |  | 
|  | // Copy the result values into the output registers. | 
|  | for (unsigned i = 0; i != RVLocs.size(); ++i) { | 
|  | CCValAssign &VA = RVLocs[i]; | 
|  | assert(VA.isRegLoc() && "Can only return in registers!"); | 
|  | SDValue ValToCopy = OutVals[i]; | 
|  | EVT ValVT = ValToCopy.getValueType(); | 
|  |  | 
|  | // If this is x86-64, and we disabled SSE, we can't return FP values, | 
|  | // or SSE or MMX vectors. | 
|  | if ((ValVT == MVT::f32 || ValVT == MVT::f64 || | 
|  | VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) && | 
|  | (Subtarget->is64Bit() && !Subtarget->hasXMM())) { | 
|  | report_fatal_error("SSE register return with SSE disabled"); | 
|  | } | 
|  | // Likewise we can't return F64 values with SSE1 only.  gcc does so, but | 
|  | // llvm-gcc has never done it right and no one has noticed, so this | 
|  | // should be OK for now. | 
|  | if (ValVT == MVT::f64 && | 
|  | (Subtarget->is64Bit() && !Subtarget->hasXMMInt())) | 
|  | report_fatal_error("SSE2 register return with SSE2 disabled"); | 
|  |  | 
|  | // Returns in ST0/ST1 are handled specially: these are pushed as operands to | 
|  | // the RET instruction and handled by the FP Stackifier. | 
|  | if (VA.getLocReg() == X86::ST0 || | 
|  | VA.getLocReg() == X86::ST1) { | 
|  | // If this is a copy from an xmm register to ST(0), use an FPExtend to | 
|  | // change the value to the FP stack register class. | 
|  | if (isScalarFPTypeInSSEReg(VA.getValVT())) | 
|  | ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy); | 
|  | RetOps.push_back(ValToCopy); | 
|  | // Don't emit a copytoreg. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64 | 
|  | // which is returned in RAX / RDX. | 
|  | if (Subtarget->is64Bit()) { | 
|  | if (ValVT == MVT::x86mmx) { | 
|  | if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) { | 
|  | ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy); | 
|  | ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, | 
|  | ValToCopy); | 
|  | // If we don't have SSE2 available, convert to v4f32 so the generated | 
|  | // register is legal. | 
|  | if (!Subtarget->hasSSE2()) | 
|  | ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag); | 
|  | Flag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | // The x86-64 ABI for returning structs by value requires that we copy | 
|  | // the sret argument into %rax for the return. We saved the argument into | 
|  | // a virtual register in the entry block, so now we copy the value out | 
|  | // and into %rax. | 
|  | if (Subtarget->is64Bit() && | 
|  | DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | unsigned Reg = FuncInfo->getSRetReturnReg(); | 
|  | assert(Reg && | 
|  | "SRetReturnReg should have been set in LowerFormalArguments()."); | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy()); | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag); | 
|  | Flag = Chain.getValue(1); | 
|  |  | 
|  | // RAX now acts like a return value. | 
|  | MRI.addLiveOut(X86::RAX); | 
|  | } | 
|  |  | 
|  | RetOps[0] = Chain;  // Update chain. | 
|  |  | 
|  | // Add the flag if we have it. | 
|  | if (Flag.getNode()) | 
|  | RetOps.push_back(Flag); | 
|  |  | 
|  | return DAG.getNode(X86ISD::RET_FLAG, dl, | 
|  | MVT::Other, &RetOps[0], RetOps.size()); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const { | 
|  | if (N->getNumValues() != 1) | 
|  | return false; | 
|  | if (!N->hasNUsesOfValue(1, 0)) | 
|  | return false; | 
|  |  | 
|  | SDNode *Copy = *N->use_begin(); | 
|  | if (Copy->getOpcode() != ISD::CopyToReg && | 
|  | Copy->getOpcode() != ISD::FP_EXTEND) | 
|  | return false; | 
|  |  | 
|  | bool HasRet = false; | 
|  | for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | if (UI->getOpcode() != X86ISD::RET_FLAG) | 
|  | return false; | 
|  | HasRet = true; | 
|  | } | 
|  |  | 
|  | return HasRet; | 
|  | } | 
|  |  | 
|  | /// LowerCallResult - Lower the result values of a call into the | 
|  | /// appropriate copies out of appropriate physical registers. | 
|  | /// | 
|  | SDValue | 
|  | X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | DebugLoc dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  |  | 
|  | // Assign locations to each value returned by this call. | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | bool Is64Bit = Subtarget->is64Bit(); | 
|  | CCState CCInfo(CallConv, isVarArg, getTargetMachine(), | 
|  | RVLocs, *DAG.getContext()); | 
|  | CCInfo.AnalyzeCallResult(Ins, RetCC_X86); | 
|  |  | 
|  | // Copy all of the result registers out of their specified physreg. | 
|  | for (unsigned i = 0; i != RVLocs.size(); ++i) { | 
|  | CCValAssign &VA = RVLocs[i]; | 
|  | EVT CopyVT = VA.getValVT(); | 
|  |  | 
|  | // If this is x86-64, and we disabled SSE, we can't return FP values | 
|  | if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && | 
|  | ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) { | 
|  | report_fatal_error("SSE register return with SSE disabled"); | 
|  | } | 
|  |  | 
|  | SDValue Val; | 
|  |  | 
|  | // If this is a call to a function that returns an fp value on the floating | 
|  | // point stack, we must guarantee the the value is popped from the stack, so | 
|  | // a CopyFromReg is not good enough - the copy instruction may be eliminated | 
|  | // if the return value is not used. We use the FpGET_ST0 instructions | 
|  | // instead. | 
|  | if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) { | 
|  | // If we prefer to use the value in xmm registers, copy it out as f80 and | 
|  | // use a truncate to move it from fp stack reg to xmm reg. | 
|  | if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80; | 
|  | bool isST0 = VA.getLocReg() == X86::ST0; | 
|  | unsigned Opc = 0; | 
|  | if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32; | 
|  | if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64; | 
|  | if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80; | 
|  | SDValue Ops[] = { Chain, InFlag }; | 
|  | Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Glue, | 
|  | Ops, 2), 1); | 
|  | Val = Chain.getValue(0); | 
|  |  | 
|  | // Round the f80 to the right size, which also moves it to the appropriate | 
|  | // xmm register. | 
|  | if (CopyVT != VA.getValVT()) | 
|  | Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val, | 
|  | // This truncation won't change the value. | 
|  | DAG.getIntPtrConstant(1)); | 
|  | } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) { | 
|  | // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64. | 
|  | if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) { | 
|  | Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), | 
|  | MVT::v2i64, InFlag).getValue(1); | 
|  | Val = Chain.getValue(0); | 
|  | Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, | 
|  | Val, DAG.getConstant(0, MVT::i64)); | 
|  | } else { | 
|  | Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), | 
|  | MVT::i64, InFlag).getValue(1); | 
|  | Val = Chain.getValue(0); | 
|  | } | 
|  | Val = DAG.getNode(ISD::BITCAST, dl, CopyVT, Val); | 
|  | } else { | 
|  | Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), | 
|  | CopyVT, InFlag).getValue(1); | 
|  | Val = Chain.getValue(0); | 
|  | } | 
|  | InFlag = Chain.getValue(2); | 
|  | InVals.push_back(Val); | 
|  | } | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                C & StdCall & Fast Calling Convention implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  StdCall calling convention seems to be standard for many Windows' API | 
|  | //  routines and around. It differs from C calling convention just a little: | 
|  | //  callee should clean up the stack, not caller. Symbols should be also | 
|  | //  decorated in some fancy way :) It doesn't support any vector arguments. | 
|  | //  For info on fast calling convention see Fast Calling Convention (tail call) | 
|  | //  implementation LowerX86_32FastCCCallTo. | 
|  |  | 
|  | /// CallIsStructReturn - Determines whether a call uses struct return | 
|  | /// semantics. | 
|  | static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) { | 
|  | if (Outs.empty()) | 
|  | return false; | 
|  |  | 
|  | return Outs[0].Flags.isSRet(); | 
|  | } | 
|  |  | 
|  | /// ArgsAreStructReturn - Determines whether a function uses struct | 
|  | /// return semantics. | 
|  | static bool | 
|  | ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) { | 
|  | if (Ins.empty()) | 
|  | return false; | 
|  |  | 
|  | return Ins[0].Flags.isSRet(); | 
|  | } | 
|  |  | 
|  | /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified | 
|  | /// by "Src" to address "Dst" with size and alignment information specified by | 
|  | /// the specific parameter attribute. The copy will be passed as a byval | 
|  | /// function parameter. | 
|  | static SDValue | 
|  | CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, | 
|  | ISD::ArgFlagsTy Flags, SelectionDAG &DAG, | 
|  | DebugLoc dl) { | 
|  | SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); | 
|  |  | 
|  | return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), | 
|  | /*isVolatile*/false, /*AlwaysInline=*/true, | 
|  | MachinePointerInfo(), MachinePointerInfo()); | 
|  | } | 
|  |  | 
|  | /// IsTailCallConvention - Return true if the calling convention is one that | 
|  | /// supports tail call optimization. | 
|  | static bool IsTailCallConvention(CallingConv::ID CC) { | 
|  | return (CC == CallingConv::Fast || CC == CallingConv::GHC); | 
|  | } | 
|  |  | 
|  | /// FuncIsMadeTailCallSafe - Return true if the function is being made into | 
|  | /// a tailcall target by changing its ABI. | 
|  | static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) { | 
|  | return GuaranteedTailCallOpt && IsTailCallConvention(CC); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerMemArgument(SDValue Chain, | 
|  | CallingConv::ID CallConv, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | DebugLoc dl, SelectionDAG &DAG, | 
|  | const CCValAssign &VA, | 
|  | MachineFrameInfo *MFI, | 
|  | unsigned i) const { | 
|  | // Create the nodes corresponding to a load from this parameter slot. | 
|  | ISD::ArgFlagsTy Flags = Ins[i].Flags; | 
|  | bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv); | 
|  | bool isImmutable = !AlwaysUseMutable && !Flags.isByVal(); | 
|  | EVT ValVT; | 
|  |  | 
|  | // If value is passed by pointer we have address passed instead of the value | 
|  | // itself. | 
|  | if (VA.getLocInfo() == CCValAssign::Indirect) | 
|  | ValVT = VA.getLocVT(); | 
|  | else | 
|  | ValVT = VA.getValVT(); | 
|  |  | 
|  | // FIXME: For now, all byval parameter objects are marked mutable. This can be | 
|  | // changed with more analysis. | 
|  | // In case of tail call optimization mark all arguments mutable. Since they | 
|  | // could be overwritten by lowering of arguments in case of a tail call. | 
|  | if (Flags.isByVal()) { | 
|  | int FI = MFI->CreateFixedObject(Flags.getByValSize(), | 
|  | VA.getLocMemOffset(), isImmutable); | 
|  | return DAG.getFrameIndex(FI, getPointerTy()); | 
|  | } else { | 
|  | int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8, | 
|  | VA.getLocMemOffset(), isImmutable); | 
|  | SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); | 
|  | return DAG.getLoad(ValVT, dl, Chain, FIN, | 
|  | MachinePointerInfo::getFixedStack(FI), | 
|  | false, false, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerFormalArguments(SDValue Chain, | 
|  | CallingConv::ID CallConv, | 
|  | bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | DebugLoc dl, | 
|  | SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) | 
|  | const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); | 
|  |  | 
|  | const Function* Fn = MF.getFunction(); | 
|  | if (Fn->hasExternalLinkage() && | 
|  | Subtarget->isTargetCygMing() && | 
|  | Fn->getName() == "main") | 
|  | FuncInfo->setForceFramePointer(true); | 
|  |  | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  | bool Is64Bit = Subtarget->is64Bit(); | 
|  | bool IsWin64 = Subtarget->isTargetWin64(); | 
|  |  | 
|  | assert(!(isVarArg && IsTailCallConvention(CallConv)) && | 
|  | "Var args not supported with calling convention fastcc or ghc"); | 
|  |  | 
|  | // Assign locations to all of the incoming arguments. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, getTargetMachine(), | 
|  | ArgLocs, *DAG.getContext()); | 
|  |  | 
|  | // Allocate shadow area for Win64 | 
|  | if (IsWin64) { | 
|  | CCInfo.AllocateStack(32, 8); | 
|  | } | 
|  |  | 
|  | CCInfo.AnalyzeFormalArguments(Ins, CC_X86); | 
|  |  | 
|  | unsigned LastVal = ~0U; | 
|  | SDValue ArgValue; | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | // TODO: If an arg is passed in two places (e.g. reg and stack), skip later | 
|  | // places. | 
|  | assert(VA.getValNo() != LastVal && | 
|  | "Don't support value assigned to multiple locs yet"); | 
|  | LastVal = VA.getValNo(); | 
|  |  | 
|  | if (VA.isRegLoc()) { | 
|  | EVT RegVT = VA.getLocVT(); | 
|  | TargetRegisterClass *RC = NULL; | 
|  | if (RegVT == MVT::i32) | 
|  | RC = X86::GR32RegisterClass; | 
|  | else if (Is64Bit && RegVT == MVT::i64) | 
|  | RC = X86::GR64RegisterClass; | 
|  | else if (RegVT == MVT::f32) | 
|  | RC = X86::FR32RegisterClass; | 
|  | else if (RegVT == MVT::f64) | 
|  | RC = X86::FR64RegisterClass; | 
|  | else if (RegVT.isVector() && RegVT.getSizeInBits() == 256) | 
|  | RC = X86::VR256RegisterClass; | 
|  | else if (RegVT.isVector() && RegVT.getSizeInBits() == 128) | 
|  | RC = X86::VR128RegisterClass; | 
|  | else if (RegVT == MVT::x86mmx) | 
|  | RC = X86::VR64RegisterClass; | 
|  | else | 
|  | llvm_unreachable("Unknown argument type!"); | 
|  |  | 
|  | unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); | 
|  | ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); | 
|  |  | 
|  | // If this is an 8 or 16-bit value, it is really passed promoted to 32 | 
|  | // bits.  Insert an assert[sz]ext to capture this, then truncate to the | 
|  | // right size. | 
|  | if (VA.getLocInfo() == CCValAssign::SExt) | 
|  | ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, | 
|  | DAG.getValueType(VA.getValVT())); | 
|  | else if (VA.getLocInfo() == CCValAssign::ZExt) | 
|  | ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, | 
|  | DAG.getValueType(VA.getValVT())); | 
|  | else if (VA.getLocInfo() == CCValAssign::BCvt) | 
|  | ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue); | 
|  |  | 
|  | if (VA.isExtInLoc()) { | 
|  | // Handle MMX values passed in XMM regs. | 
|  | if (RegVT.isVector()) { | 
|  | ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), | 
|  | ArgValue); | 
|  | } else | 
|  | ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); | 
|  | } | 
|  | } else { | 
|  | assert(VA.isMemLoc()); | 
|  | ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i); | 
|  | } | 
|  |  | 
|  | // If value is passed via pointer - do a load. | 
|  | if (VA.getLocInfo() == CCValAssign::Indirect) | 
|  | ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, | 
|  | MachinePointerInfo(), false, false, 0); | 
|  |  | 
|  | InVals.push_back(ArgValue); | 
|  | } | 
|  |  | 
|  | // The x86-64 ABI for returning structs by value requires that we copy | 
|  | // the sret argument into %rax for the return. Save the argument into | 
|  | // a virtual register so that we can access it from the return points. | 
|  | if (Is64Bit && MF.getFunction()->hasStructRetAttr()) { | 
|  | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | unsigned Reg = FuncInfo->getSRetReturnReg(); | 
|  | if (!Reg) { | 
|  | Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64)); | 
|  | FuncInfo->setSRetReturnReg(Reg); | 
|  | } | 
|  | SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); | 
|  | } | 
|  |  | 
|  | unsigned StackSize = CCInfo.getNextStackOffset(); | 
|  | // Align stack specially for tail calls. | 
|  | if (FuncIsMadeTailCallSafe(CallConv)) | 
|  | StackSize = GetAlignedArgumentStackSize(StackSize, DAG); | 
|  |  | 
|  | // If the function takes variable number of arguments, make a frame index for | 
|  | // the start of the first vararg value... for expansion of llvm.va_start. | 
|  | if (isVarArg) { | 
|  | if (!IsWin64 && (Is64Bit || (CallConv != CallingConv::X86_FastCall && | 
|  | CallConv != CallingConv::X86_ThisCall))) { | 
|  | FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true)); | 
|  | } | 
|  | if (Is64Bit) { | 
|  | unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0; | 
|  |  | 
|  | // FIXME: We should really autogenerate these arrays | 
|  | static const unsigned GPR64ArgRegsWin64[] = { | 
|  | X86::RCX, X86::RDX, X86::R8,  X86::R9 | 
|  | }; | 
|  | static const unsigned GPR64ArgRegs64Bit[] = { | 
|  | X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 | 
|  | }; | 
|  | static const unsigned XMMArgRegs64Bit[] = { | 
|  | X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, | 
|  | X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 | 
|  | }; | 
|  | const unsigned *GPR64ArgRegs; | 
|  | unsigned NumXMMRegs = 0; | 
|  |  | 
|  | if (IsWin64) { | 
|  | // The XMM registers which might contain var arg parameters are shadowed | 
|  | // in their paired GPR.  So we only need to save the GPR to their home | 
|  | // slots. | 
|  | TotalNumIntRegs = 4; | 
|  | GPR64ArgRegs = GPR64ArgRegsWin64; | 
|  | } else { | 
|  | TotalNumIntRegs = 6; TotalNumXMMRegs = 8; | 
|  | GPR64ArgRegs = GPR64ArgRegs64Bit; | 
|  |  | 
|  | NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs); | 
|  | } | 
|  | unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, | 
|  | TotalNumIntRegs); | 
|  |  | 
|  | bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat); | 
|  | assert(!(NumXMMRegs && !Subtarget->hasXMM()) && | 
|  | "SSE register cannot be used when SSE is disabled!"); | 
|  | assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) && | 
|  | "SSE register cannot be used when SSE is disabled!"); | 
|  | if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM()) | 
|  | // Kernel mode asks for SSE to be disabled, so don't push them | 
|  | // on the stack. | 
|  | TotalNumXMMRegs = 0; | 
|  |  | 
|  | if (IsWin64) { | 
|  | const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering(); | 
|  | // Get to the caller-allocated home save location.  Add 8 to account | 
|  | // for the return address. | 
|  | int HomeOffset = TFI.getOffsetOfLocalArea() + 8; | 
|  | FuncInfo->setRegSaveFrameIndex( | 
|  | MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false)); | 
|  | FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex()); | 
|  | } else { | 
|  | // For X86-64, if there are vararg parameters that are passed via | 
|  | // registers, then we must store them to their spots on the stack so they | 
|  | // may be loaded by deferencing the result of va_next. | 
|  | FuncInfo->setVarArgsGPOffset(NumIntRegs * 8); | 
|  | FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16); | 
|  | FuncInfo->setRegSaveFrameIndex( | 
|  | MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16, | 
|  | false)); | 
|  | } | 
|  |  | 
|  | // Store the integer parameter registers. | 
|  | SmallVector<SDValue, 8> MemOps; | 
|  | SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), | 
|  | getPointerTy()); | 
|  | unsigned Offset = FuncInfo->getVarArgsGPOffset(); | 
|  | for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) { | 
|  | SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN, | 
|  | DAG.getIntPtrConstant(Offset)); | 
|  | unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs], | 
|  | X86::GR64RegisterClass); | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); | 
|  | SDValue Store = | 
|  | DAG.getStore(Val.getValue(1), dl, Val, FIN, | 
|  | MachinePointerInfo::getFixedStack( | 
|  | FuncInfo->getRegSaveFrameIndex(), Offset), | 
|  | false, false, 0); | 
|  | MemOps.push_back(Store); | 
|  | Offset += 8; | 
|  | } | 
|  |  | 
|  | if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) { | 
|  | // Now store the XMM (fp + vector) parameter registers. | 
|  | SmallVector<SDValue, 11> SaveXMMOps; | 
|  | SaveXMMOps.push_back(Chain); | 
|  |  | 
|  | unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass); | 
|  | SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8); | 
|  | SaveXMMOps.push_back(ALVal); | 
|  |  | 
|  | SaveXMMOps.push_back(DAG.getIntPtrConstant( | 
|  | FuncInfo->getRegSaveFrameIndex())); | 
|  | SaveXMMOps.push_back(DAG.getIntPtrConstant( | 
|  | FuncInfo->getVarArgsFPOffset())); | 
|  |  | 
|  | for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) { | 
|  | unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs], | 
|  | X86::VR128RegisterClass); | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32); | 
|  | SaveXMMOps.push_back(Val); | 
|  | } | 
|  | MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl, | 
|  | MVT::Other, | 
|  | &SaveXMMOps[0], SaveXMMOps.size())); | 
|  | } | 
|  |  | 
|  | if (!MemOps.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | &MemOps[0], MemOps.size()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Some CCs need callee pop. | 
|  | if (Subtarget->IsCalleePop(isVarArg, CallConv)) { | 
|  | FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything. | 
|  | } else { | 
|  | FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing. | 
|  | // If this is an sret function, the return should pop the hidden pointer. | 
|  | if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins)) | 
|  | FuncInfo->setBytesToPopOnReturn(4); | 
|  | } | 
|  |  | 
|  | if (!Is64Bit) { | 
|  | // RegSaveFrameIndex is X86-64 only. | 
|  | FuncInfo->setRegSaveFrameIndex(0xAAAAAAA); | 
|  | if (CallConv == CallingConv::X86_FastCall || | 
|  | CallConv == CallingConv::X86_ThisCall) | 
|  | // fastcc functions can't have varargs. | 
|  | FuncInfo->setVarArgsFrameIndex(0xAAAAAAA); | 
|  | } | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerMemOpCallTo(SDValue Chain, | 
|  | SDValue StackPtr, SDValue Arg, | 
|  | DebugLoc dl, SelectionDAG &DAG, | 
|  | const CCValAssign &VA, | 
|  | ISD::ArgFlagsTy Flags) const { | 
|  | unsigned LocMemOffset = VA.getLocMemOffset(); | 
|  | SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); | 
|  | PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); | 
|  | if (Flags.isByVal()) | 
|  | return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl); | 
|  |  | 
|  | return DAG.getStore(Chain, dl, Arg, PtrOff, | 
|  | MachinePointerInfo::getStack(LocMemOffset), | 
|  | false, false, 0); | 
|  | } | 
|  |  | 
|  | /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call | 
|  | /// optimization is performed and it is required. | 
|  | SDValue | 
|  | X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG, | 
|  | SDValue &OutRetAddr, SDValue Chain, | 
|  | bool IsTailCall, bool Is64Bit, | 
|  | int FPDiff, DebugLoc dl) const { | 
|  | // Adjust the Return address stack slot. | 
|  | EVT VT = getPointerTy(); | 
|  | OutRetAddr = getReturnAddressFrameIndex(DAG); | 
|  |  | 
|  | // Load the "old" Return address. | 
|  | OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(), | 
|  | false, false, 0); | 
|  | return SDValue(OutRetAddr.getNode(), 1); | 
|  | } | 
|  |  | 
|  | /// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call | 
|  | /// optimization is performed and it is required (FPDiff!=0). | 
|  | static SDValue | 
|  | EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF, | 
|  | SDValue Chain, SDValue RetAddrFrIdx, | 
|  | bool Is64Bit, int FPDiff, DebugLoc dl) { | 
|  | // Store the return address to the appropriate stack slot. | 
|  | if (!FPDiff) return Chain; | 
|  | // Calculate the new stack slot for the return address. | 
|  | int SlotSize = Is64Bit ? 8 : 4; | 
|  | int NewReturnAddrFI = | 
|  | MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false); | 
|  | EVT VT = Is64Bit ? MVT::i64 : MVT::i32; | 
|  | SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT); | 
|  | Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx, | 
|  | MachinePointerInfo::getFixedStack(NewReturnAddrFI), | 
|  | false, false, 0); | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | bool &isTailCall, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | DebugLoc dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | bool Is64Bit        = Subtarget->is64Bit(); | 
|  | bool IsWin64        = Subtarget->isTargetWin64(); | 
|  | bool IsStructRet    = CallIsStructReturn(Outs); | 
|  | bool IsSibcall      = false; | 
|  |  | 
|  | if (isTailCall) { | 
|  | // Check if it's really possible to do a tail call. | 
|  | isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, | 
|  | isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(), | 
|  | Outs, OutVals, Ins, DAG); | 
|  |  | 
|  | // Sibcalls are automatically detected tailcalls which do not require | 
|  | // ABI changes. | 
|  | if (!GuaranteedTailCallOpt && isTailCall) | 
|  | IsSibcall = true; | 
|  |  | 
|  | if (isTailCall) | 
|  | ++NumTailCalls; | 
|  | } | 
|  |  | 
|  | assert(!(isVarArg && IsTailCallConvention(CallConv)) && | 
|  | "Var args not supported with calling convention fastcc or ghc"); | 
|  |  | 
|  | // Analyze operands of the call, assigning locations to each operand. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, getTargetMachine(), | 
|  | ArgLocs, *DAG.getContext()); | 
|  |  | 
|  | // Allocate shadow area for Win64 | 
|  | if (IsWin64) { | 
|  | CCInfo.AllocateStack(32, 8); | 
|  | } | 
|  |  | 
|  | CCInfo.AnalyzeCallOperands(Outs, CC_X86); | 
|  |  | 
|  | // Get a count of how many bytes are to be pushed on the stack. | 
|  | unsigned NumBytes = CCInfo.getNextStackOffset(); | 
|  | if (IsSibcall) | 
|  | // This is a sibcall. The memory operands are available in caller's | 
|  | // own caller's stack. | 
|  | NumBytes = 0; | 
|  | else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv)) | 
|  | NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG); | 
|  |  | 
|  | int FPDiff = 0; | 
|  | if (isTailCall && !IsSibcall) { | 
|  | // Lower arguments at fp - stackoffset + fpdiff. | 
|  | unsigned NumBytesCallerPushed = | 
|  | MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn(); | 
|  | FPDiff = NumBytesCallerPushed - NumBytes; | 
|  |  | 
|  | // Set the delta of movement of the returnaddr stackslot. | 
|  | // But only set if delta is greater than previous delta. | 
|  | if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta())) | 
|  | MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff); | 
|  | } | 
|  |  | 
|  | if (!IsSibcall) | 
|  | Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); | 
|  |  | 
|  | SDValue RetAddrFrIdx; | 
|  | // Load return adress for tail calls. | 
|  | if (isTailCall && FPDiff) | 
|  | Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, | 
|  | Is64Bit, FPDiff, dl); | 
|  |  | 
|  | SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; | 
|  | SmallVector<SDValue, 8> MemOpChains; | 
|  | SDValue StackPtr; | 
|  |  | 
|  | // Walk the register/memloc assignments, inserting copies/loads.  In the case | 
|  | // of tail call optimization arguments are handle later. | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | EVT RegVT = VA.getLocVT(); | 
|  | SDValue Arg = OutVals[i]; | 
|  | ISD::ArgFlagsTy Flags = Outs[i].Flags; | 
|  | bool isByVal = Flags.isByVal(); | 
|  |  | 
|  | // Promote the value if needed. | 
|  | switch (VA.getLocInfo()) { | 
|  | default: llvm_unreachable("Unknown loc info!"); | 
|  | case CCValAssign::Full: break; | 
|  | case CCValAssign::SExt: | 
|  | Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg); | 
|  | break; | 
|  | case CCValAssign::ZExt: | 
|  | Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg); | 
|  | break; | 
|  | case CCValAssign::AExt: | 
|  | if (RegVT.isVector() && RegVT.getSizeInBits() == 128) { | 
|  | // Special case: passing MMX values in XMM registers. | 
|  | Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); | 
|  | Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg); | 
|  | Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg); | 
|  | } else | 
|  | Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg); | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg); | 
|  | break; | 
|  | case CCValAssign::Indirect: { | 
|  | // Store the argument. | 
|  | SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); | 
|  | int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); | 
|  | Chain = DAG.getStore(Chain, dl, Arg, SpillSlot, | 
|  | MachinePointerInfo::getFixedStack(FI), | 
|  | false, false, 0); | 
|  | Arg = SpillSlot; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VA.isRegLoc()) { | 
|  | RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); | 
|  | if (isVarArg && IsWin64) { | 
|  | // Win64 ABI requires argument XMM reg to be copied to the corresponding | 
|  | // shadow reg if callee is a varargs function. | 
|  | unsigned ShadowReg = 0; | 
|  | switch (VA.getLocReg()) { | 
|  | case X86::XMM0: ShadowReg = X86::RCX; break; | 
|  | case X86::XMM1: ShadowReg = X86::RDX; break; | 
|  | case X86::XMM2: ShadowReg = X86::R8; break; | 
|  | case X86::XMM3: ShadowReg = X86::R9; break; | 
|  | } | 
|  | if (ShadowReg) | 
|  | RegsToPass.push_back(std::make_pair(ShadowReg, Arg)); | 
|  | } | 
|  | } else if (!IsSibcall && (!isTailCall || isByVal)) { | 
|  | assert(VA.isMemLoc()); | 
|  | if (StackPtr.getNode() == 0) | 
|  | StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy()); | 
|  | MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, | 
|  | dl, DAG, VA, Flags)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MemOpChains.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | &MemOpChains[0], MemOpChains.size()); | 
|  |  | 
|  | // Build a sequence of copy-to-reg nodes chained together with token chain | 
|  | // and flag operands which copy the outgoing args into registers. | 
|  | SDValue InFlag; | 
|  | // Tail call byval lowering might overwrite argument registers so in case of | 
|  | // tail call optimization the copies to registers are lowered later. | 
|  | if (!isTailCall) | 
|  | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { | 
|  | Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, | 
|  | RegsToPass[i].second, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | if (Subtarget->isPICStyleGOT()) { | 
|  | // ELF / PIC requires GOT in the EBX register before function calls via PLT | 
|  | // GOT pointer. | 
|  | if (!isTailCall) { | 
|  | Chain = DAG.getCopyToReg(Chain, dl, X86::EBX, | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, | 
|  | DebugLoc(), getPointerTy()), | 
|  | InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } else { | 
|  | // If we are tail calling and generating PIC/GOT style code load the | 
|  | // address of the callee into ECX. The value in ecx is used as target of | 
|  | // the tail jump. This is done to circumvent the ebx/callee-saved problem | 
|  | // for tail calls on PIC/GOT architectures. Normally we would just put the | 
|  | // address of GOT into ebx and then call target@PLT. But for tail calls | 
|  | // ebx would be restored (since ebx is callee saved) before jumping to the | 
|  | // target@PLT. | 
|  |  | 
|  | // Note: The actual moving to ECX is done further down. | 
|  | GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); | 
|  | if (G && !G->getGlobal()->hasHiddenVisibility() && | 
|  | !G->getGlobal()->hasProtectedVisibility()) | 
|  | Callee = LowerGlobalAddress(Callee, DAG); | 
|  | else if (isa<ExternalSymbolSDNode>(Callee)) | 
|  | Callee = LowerExternalSymbol(Callee, DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Is64Bit && isVarArg && !IsWin64) { | 
|  | // From AMD64 ABI document: | 
|  | // For calls that may call functions that use varargs or stdargs | 
|  | // (prototype-less calls or calls to functions containing ellipsis (...) in | 
|  | // the declaration) %al is used as hidden argument to specify the number | 
|  | // of SSE registers used. The contents of %al do not need to match exactly | 
|  | // the number of registers, but must be an ubound on the number of SSE | 
|  | // registers used and is in the range 0 - 8 inclusive. | 
|  |  | 
|  | // Count the number of XMM registers allocated. | 
|  | static const unsigned XMMArgRegs[] = { | 
|  | X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, | 
|  | X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 | 
|  | }; | 
|  | unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); | 
|  | assert((Subtarget->hasXMM() || !NumXMMRegs) | 
|  | && "SSE registers cannot be used when SSE is disabled"); | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain, dl, X86::AL, | 
|  | DAG.getConstant(NumXMMRegs, MVT::i8), InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  |  | 
|  | // For tail calls lower the arguments to the 'real' stack slot. | 
|  | if (isTailCall) { | 
|  | // Force all the incoming stack arguments to be loaded from the stack | 
|  | // before any new outgoing arguments are stored to the stack, because the | 
|  | // outgoing stack slots may alias the incoming argument stack slots, and | 
|  | // the alias isn't otherwise explicit. This is slightly more conservative | 
|  | // than necessary, because it means that each store effectively depends | 
|  | // on every argument instead of just those arguments it would clobber. | 
|  | SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain); | 
|  |  | 
|  | SmallVector<SDValue, 8> MemOpChains2; | 
|  | SDValue FIN; | 
|  | int FI = 0; | 
|  | // Do not flag preceeding copytoreg stuff together with the following stuff. | 
|  | InFlag = SDValue(); | 
|  | if (GuaranteedTailCallOpt) { | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | if (VA.isRegLoc()) | 
|  | continue; | 
|  | assert(VA.isMemLoc()); | 
|  | SDValue Arg = OutVals[i]; | 
|  | ISD::ArgFlagsTy Flags = Outs[i].Flags; | 
|  | // Create frame index. | 
|  | int32_t Offset = VA.getLocMemOffset()+FPDiff; | 
|  | uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8; | 
|  | FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); | 
|  | FIN = DAG.getFrameIndex(FI, getPointerTy()); | 
|  |  | 
|  | if (Flags.isByVal()) { | 
|  | // Copy relative to framepointer. | 
|  | SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset()); | 
|  | if (StackPtr.getNode() == 0) | 
|  | StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, | 
|  | getPointerTy()); | 
|  | Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source); | 
|  |  | 
|  | MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, | 
|  | ArgChain, | 
|  | Flags, DAG, dl)); | 
|  | } else { | 
|  | // Store relative to framepointer. | 
|  | MemOpChains2.push_back( | 
|  | DAG.getStore(ArgChain, dl, Arg, FIN, | 
|  | MachinePointerInfo::getFixedStack(FI), | 
|  | false, false, 0)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MemOpChains2.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | &MemOpChains2[0], MemOpChains2.size()); | 
|  |  | 
|  | // Copy arguments to their registers. | 
|  | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { | 
|  | Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, | 
|  | RegsToPass[i].second, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  | InFlag =SDValue(); | 
|  |  | 
|  | // Store the return address to the appropriate stack slot. | 
|  | Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit, | 
|  | FPDiff, dl); | 
|  | } | 
|  |  | 
|  | if (getTargetMachine().getCodeModel() == CodeModel::Large) { | 
|  | assert(Is64Bit && "Large code model is only legal in 64-bit mode."); | 
|  | // In the 64-bit large code model, we have to make all calls | 
|  | // through a register, since the call instruction's 32-bit | 
|  | // pc-relative offset may not be large enough to hold the whole | 
|  | // address. | 
|  | } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { | 
|  | // If the callee is a GlobalAddress node (quite common, every direct call | 
|  | // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack | 
|  | // it. | 
|  |  | 
|  | // We should use extra load for direct calls to dllimported functions in | 
|  | // non-JIT mode. | 
|  | const GlobalValue *GV = G->getGlobal(); | 
|  | if (!GV->hasDLLImportLinkage()) { | 
|  | unsigned char OpFlags = 0; | 
|  |  | 
|  | // On ELF targets, in both X86-64 and X86-32 mode, direct calls to | 
|  | // external symbols most go through the PLT in PIC mode.  If the symbol | 
|  | // has hidden or protected visibility, or if it is static or local, then | 
|  | // we don't need to use the PLT - we can directly call it. | 
|  | if (Subtarget->isTargetELF() && | 
|  | getTargetMachine().getRelocationModel() == Reloc::PIC_ && | 
|  | GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) { | 
|  | OpFlags = X86II::MO_PLT; | 
|  | } else if (Subtarget->isPICStyleStubAny() && | 
|  | (GV->isDeclaration() || GV->isWeakForLinker()) && | 
|  | Subtarget->getDarwinVers() < 9) { | 
|  | // PC-relative references to external symbols should go through $stub, | 
|  | // unless we're building with the leopard linker or later, which | 
|  | // automatically synthesizes these stubs. | 
|  | OpFlags = X86II::MO_DARWIN_STUB; | 
|  | } | 
|  |  | 
|  | Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), | 
|  | G->getOffset(), OpFlags); | 
|  | } | 
|  | } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { | 
|  | unsigned char OpFlags = 0; | 
|  |  | 
|  | // On ELF targets, in either X86-64 or X86-32 mode, direct calls to | 
|  | // external symbols should go through the PLT. | 
|  | if (Subtarget->isTargetELF() && | 
|  | getTargetMachine().getRelocationModel() == Reloc::PIC_) { | 
|  | OpFlags = X86II::MO_PLT; | 
|  | } else if (Subtarget->isPICStyleStubAny() && | 
|  | Subtarget->getDarwinVers() < 9) { | 
|  | // PC-relative references to external symbols should go through $stub, | 
|  | // unless we're building with the leopard linker or later, which | 
|  | // automatically synthesizes these stubs. | 
|  | OpFlags = X86II::MO_DARWIN_STUB; | 
|  | } | 
|  |  | 
|  | Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(), | 
|  | OpFlags); | 
|  | } | 
|  |  | 
|  | // Returns a chain & a flag for retval copy to use. | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SmallVector<SDValue, 8> Ops; | 
|  |  | 
|  | if (!IsSibcall && isTailCall) { | 
|  | Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), | 
|  | DAG.getIntPtrConstant(0, true), InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Callee); | 
|  |  | 
|  | if (isTailCall) | 
|  | Ops.push_back(DAG.getConstant(FPDiff, MVT::i32)); | 
|  |  | 
|  | // Add argument registers to the end of the list so that they are known live | 
|  | // into the call. | 
|  | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) | 
|  | Ops.push_back(DAG.getRegister(RegsToPass[i].first, | 
|  | RegsToPass[i].second.getValueType())); | 
|  |  | 
|  | // Add an implicit use GOT pointer in EBX. | 
|  | if (!isTailCall && Subtarget->isPICStyleGOT()) | 
|  | Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy())); | 
|  |  | 
|  | // Add an implicit use of AL for non-Windows x86 64-bit vararg functions. | 
|  | if (Is64Bit && isVarArg && !IsWin64) | 
|  | Ops.push_back(DAG.getRegister(X86::AL, MVT::i8)); | 
|  |  | 
|  | if (InFlag.getNode()) | 
|  | Ops.push_back(InFlag); | 
|  |  | 
|  | if (isTailCall) { | 
|  | // We used to do: | 
|  | //// If this is the first return lowered for this function, add the regs | 
|  | //// to the liveout set for the function. | 
|  | // This isn't right, although it's probably harmless on x86; liveouts | 
|  | // should be computed from returns not tail calls.  Consider a void | 
|  | // function making a tail call to a function returning int. | 
|  | return DAG.getNode(X86ISD::TC_RETURN, dl, | 
|  | NodeTys, &Ops[0], Ops.size()); | 
|  | } | 
|  |  | 
|  | Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size()); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | // Create the CALLSEQ_END node. | 
|  | unsigned NumBytesForCalleeToPush; | 
|  | if (Subtarget->IsCalleePop(isVarArg, CallConv)) | 
|  | NumBytesForCalleeToPush = NumBytes;    // Callee pops everything | 
|  | else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet) | 
|  | // If this is a call to a struct-return function, the callee | 
|  | // pops the hidden struct pointer, so we have to push it back. | 
|  | // This is common for Darwin/X86, Linux & Mingw32 targets. | 
|  | NumBytesForCalleeToPush = 4; | 
|  | else | 
|  | NumBytesForCalleeToPush = 0;  // Callee pops nothing. | 
|  |  | 
|  | // Returns a flag for retval copy to use. | 
|  | if (!IsSibcall) { | 
|  | Chain = DAG.getCALLSEQ_END(Chain, | 
|  | DAG.getIntPtrConstant(NumBytes, true), | 
|  | DAG.getIntPtrConstant(NumBytesForCalleeToPush, | 
|  | true), | 
|  | InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | // Handle result values, copying them out of physregs into vregs that we | 
|  | // return. | 
|  | return LowerCallResult(Chain, InFlag, CallConv, isVarArg, | 
|  | Ins, dl, DAG, InVals); | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                Fast Calling Convention (tail call) implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | //  Like std call, callee cleans arguments, convention except that ECX is | 
|  | //  reserved for storing the tail called function address. Only 2 registers are | 
|  | //  free for argument passing (inreg). Tail call optimization is performed | 
|  | //  provided: | 
|  | //                * tailcallopt is enabled | 
|  | //                * caller/callee are fastcc | 
|  | //  On X86_64 architecture with GOT-style position independent code only local | 
|  | //  (within module) calls are supported at the moment. | 
|  | //  To keep the stack aligned according to platform abi the function | 
|  | //  GetAlignedArgumentStackSize ensures that argument delta is always multiples | 
|  | //  of stack alignment. (Dynamic linkers need this - darwin's dyld for example) | 
|  | //  If a tail called function callee has more arguments than the caller the | 
|  | //  caller needs to make sure that there is room to move the RETADDR to. This is | 
|  | //  achieved by reserving an area the size of the argument delta right after the | 
|  | //  original REtADDR, but before the saved framepointer or the spilled registers | 
|  | //  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4) | 
|  | //  stack layout: | 
|  | //    arg1 | 
|  | //    arg2 | 
|  | //    RETADDR | 
|  | //    [ new RETADDR | 
|  | //      move area ] | 
|  | //    (possible EBP) | 
|  | //    ESI | 
|  | //    EDI | 
|  | //    local1 .. | 
|  |  | 
|  | /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned | 
|  | /// for a 16 byte align requirement. | 
|  | unsigned | 
|  | X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize, | 
|  | SelectionDAG& DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const TargetMachine &TM = MF.getTarget(); | 
|  | const TargetFrameLowering &TFI = *TM.getFrameLowering(); | 
|  | unsigned StackAlignment = TFI.getStackAlignment(); | 
|  | uint64_t AlignMask = StackAlignment - 1; | 
|  | int64_t Offset = StackSize; | 
|  | uint64_t SlotSize = TD->getPointerSize(); | 
|  | if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) { | 
|  | // Number smaller than 12 so just add the difference. | 
|  | Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask)); | 
|  | } else { | 
|  | // Mask out lower bits, add stackalignment once plus the 12 bytes. | 
|  | Offset = ((~AlignMask) & Offset) + StackAlignment + | 
|  | (StackAlignment-SlotSize); | 
|  | } | 
|  | return Offset; | 
|  | } | 
|  |  | 
|  | /// MatchingStackOffset - Return true if the given stack call argument is | 
|  | /// already available in the same position (relatively) of the caller's | 
|  | /// incoming argument stack. | 
|  | static | 
|  | bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, | 
|  | MachineFrameInfo *MFI, const MachineRegisterInfo *MRI, | 
|  | const X86InstrInfo *TII) { | 
|  | unsigned Bytes = Arg.getValueType().getSizeInBits() / 8; | 
|  | int FI = INT_MAX; | 
|  | if (Arg.getOpcode() == ISD::CopyFromReg) { | 
|  | unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(VR)) | 
|  | return false; | 
|  | MachineInstr *Def = MRI->getVRegDef(VR); | 
|  | if (!Def) | 
|  | return false; | 
|  | if (!Flags.isByVal()) { | 
|  | if (!TII->isLoadFromStackSlot(Def, FI)) | 
|  | return false; | 
|  | } else { | 
|  | unsigned Opcode = Def->getOpcode(); | 
|  | if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) && | 
|  | Def->getOperand(1).isFI()) { | 
|  | FI = Def->getOperand(1).getIndex(); | 
|  | Bytes = Flags.getByValSize(); | 
|  | } else | 
|  | return false; | 
|  | } | 
|  | } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) { | 
|  | if (Flags.isByVal()) | 
|  | // ByVal argument is passed in as a pointer but it's now being | 
|  | // dereferenced. e.g. | 
|  | // define @foo(%struct.X* %A) { | 
|  | //   tail call @bar(%struct.X* byval %A) | 
|  | // } | 
|  | return false; | 
|  | SDValue Ptr = Ld->getBasePtr(); | 
|  | FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr); | 
|  | if (!FINode) | 
|  | return false; | 
|  | FI = FINode->getIndex(); | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | assert(FI != INT_MAX); | 
|  | if (!MFI->isFixedObjectIndex(FI)) | 
|  | return false; | 
|  | return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI); | 
|  | } | 
|  |  | 
|  | /// IsEligibleForTailCallOptimization - Check whether the call is eligible | 
|  | /// for tail call optimization. Targets which want to do tail call | 
|  | /// optimization should implement this function. | 
|  | bool | 
|  | X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, | 
|  | CallingConv::ID CalleeCC, | 
|  | bool isVarArg, | 
|  | bool isCalleeStructRet, | 
|  | bool isCallerStructRet, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | SelectionDAG& DAG) const { | 
|  | if (!IsTailCallConvention(CalleeCC) && | 
|  | CalleeCC != CallingConv::C) | 
|  | return false; | 
|  |  | 
|  | // If -tailcallopt is specified, make fastcc functions tail-callable. | 
|  | const MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const Function *CallerF = DAG.getMachineFunction().getFunction(); | 
|  | CallingConv::ID CallerCC = CallerF->getCallingConv(); | 
|  | bool CCMatch = CallerCC == CalleeCC; | 
|  |  | 
|  | if (GuaranteedTailCallOpt) { | 
|  | if (IsTailCallConvention(CalleeCC) && CCMatch) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Look for obvious safe cases to perform tail call optimization that do not | 
|  | // require ABI changes. This is what gcc calls sibcall. | 
|  |  | 
|  | // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to | 
|  | // emit a special epilogue. | 
|  | if (RegInfo->needsStackRealignment(MF)) | 
|  | return false; | 
|  |  | 
|  | // Do not sibcall optimize vararg calls unless the call site is not passing | 
|  | // any arguments. | 
|  | if (isVarArg && !Outs.empty()) | 
|  | return false; | 
|  |  | 
|  | // Also avoid sibcall optimization if either caller or callee uses struct | 
|  | // return semantics. | 
|  | if (isCalleeStructRet || isCallerStructRet) | 
|  | return false; | 
|  |  | 
|  | // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack. | 
|  | // Therefore if it's not used by the call it is not safe to optimize this into | 
|  | // a sibcall. | 
|  | bool Unused = false; | 
|  | for (unsigned i = 0, e = Ins.size(); i != e; ++i) { | 
|  | if (!Ins[i].Used) { | 
|  | Unused = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (Unused) { | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CalleeCC, false, getTargetMachine(), | 
|  | RVLocs, *DAG.getContext()); | 
|  | CCInfo.AnalyzeCallResult(Ins, RetCC_X86); | 
|  | for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = RVLocs[i]; | 
|  | if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the calling conventions do not match, then we'd better make sure the | 
|  | // results are returned in the same way as what the caller expects. | 
|  | if (!CCMatch) { | 
|  | SmallVector<CCValAssign, 16> RVLocs1; | 
|  | CCState CCInfo1(CalleeCC, false, getTargetMachine(), | 
|  | RVLocs1, *DAG.getContext()); | 
|  | CCInfo1.AnalyzeCallResult(Ins, RetCC_X86); | 
|  |  | 
|  | SmallVector<CCValAssign, 16> RVLocs2; | 
|  | CCState CCInfo2(CallerCC, false, getTargetMachine(), | 
|  | RVLocs2, *DAG.getContext()); | 
|  | CCInfo2.AnalyzeCallResult(Ins, RetCC_X86); | 
|  |  | 
|  | if (RVLocs1.size() != RVLocs2.size()) | 
|  | return false; | 
|  | for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { | 
|  | if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) | 
|  | return false; | 
|  | if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) | 
|  | return false; | 
|  | if (RVLocs1[i].isRegLoc()) { | 
|  | if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) | 
|  | return false; | 
|  | } else { | 
|  | if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the callee takes no arguments then go on to check the results of the | 
|  | // call. | 
|  | if (!Outs.empty()) { | 
|  | // Check if stack adjustment is needed. For now, do not do this if any | 
|  | // argument is passed on the stack. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(), | 
|  | ArgLocs, *DAG.getContext()); | 
|  |  | 
|  | // Allocate shadow area for Win64 | 
|  | if (Subtarget->isTargetWin64()) { | 
|  | CCInfo.AllocateStack(32, 8); | 
|  | } | 
|  |  | 
|  | CCInfo.AnalyzeCallOperands(Outs, CC_X86); | 
|  | if (CCInfo.getNextStackOffset()) { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn()) | 
|  | return false; | 
|  |  | 
|  | // Check if the arguments are already laid out in the right way as | 
|  | // the caller's fixed stack objects. | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  | const MachineRegisterInfo *MRI = &MF.getRegInfo(); | 
|  | const X86InstrInfo *TII = | 
|  | ((X86TargetMachine&)getTargetMachine()).getInstrInfo(); | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | SDValue Arg = OutVals[i]; | 
|  | ISD::ArgFlagsTy Flags = Outs[i].Flags; | 
|  | if (VA.getLocInfo() == CCValAssign::Indirect) | 
|  | return false; | 
|  | if (!VA.isRegLoc()) { | 
|  | if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, | 
|  | MFI, MRI, TII)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the tailcall address may be in a register, then make sure it's | 
|  | // possible to register allocate for it. In 32-bit, the call address can | 
|  | // only target EAX, EDX, or ECX since the tail call must be scheduled after | 
|  | // callee-saved registers are restored. These happen to be the same | 
|  | // registers used to pass 'inreg' arguments so watch out for those. | 
|  | if (!Subtarget->is64Bit() && | 
|  | !isa<GlobalAddressSDNode>(Callee) && | 
|  | !isa<ExternalSymbolSDNode>(Callee)) { | 
|  | unsigned NumInRegs = 0; | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | if (!VA.isRegLoc()) | 
|  | continue; | 
|  | unsigned Reg = VA.getLocReg(); | 
|  | switch (Reg) { | 
|  | default: break; | 
|  | case X86::EAX: case X86::EDX: case X86::ECX: | 
|  | if (++NumInRegs == 3) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // An stdcall caller is expected to clean up its arguments; the callee | 
|  | // isn't going to do that. | 
|  | if (!CCMatch && CallerCC==CallingConv::X86_StdCall) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | FastISel * | 
|  | X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const { | 
|  | return X86::createFastISel(funcInfo); | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           Other Lowering Hooks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static bool MayFoldLoad(SDValue Op) { | 
|  | return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode()); | 
|  | } | 
|  |  | 
|  | static bool MayFoldIntoStore(SDValue Op) { | 
|  | return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin()); | 
|  | } | 
|  |  | 
|  | static bool isTargetShuffle(unsigned Opcode) { | 
|  | switch(Opcode) { | 
|  | default: return false; | 
|  | case X86ISD::PSHUFD: | 
|  | case X86ISD::PSHUFHW: | 
|  | case X86ISD::PSHUFLW: | 
|  | case X86ISD::SHUFPD: | 
|  | case X86ISD::PALIGN: | 
|  | case X86ISD::SHUFPS: | 
|  | case X86ISD::MOVLHPS: | 
|  | case X86ISD::MOVLHPD: | 
|  | case X86ISD::MOVHLPS: | 
|  | case X86ISD::MOVLPS: | 
|  | case X86ISD::MOVLPD: | 
|  | case X86ISD::MOVSHDUP: | 
|  | case X86ISD::MOVSLDUP: | 
|  | case X86ISD::MOVDDUP: | 
|  | case X86ISD::MOVSS: | 
|  | case X86ISD::MOVSD: | 
|  | case X86ISD::UNPCKLPS: | 
|  | case X86ISD::UNPCKLPD: | 
|  | case X86ISD::VUNPCKLPS: | 
|  | case X86ISD::VUNPCKLPD: | 
|  | case X86ISD::VUNPCKLPSY: | 
|  | case X86ISD::VUNPCKLPDY: | 
|  | case X86ISD::PUNPCKLWD: | 
|  | case X86ISD::PUNPCKLBW: | 
|  | case X86ISD::PUNPCKLDQ: | 
|  | case X86ISD::PUNPCKLQDQ: | 
|  | case X86ISD::UNPCKHPS: | 
|  | case X86ISD::UNPCKHPD: | 
|  | case X86ISD::PUNPCKHWD: | 
|  | case X86ISD::PUNPCKHBW: | 
|  | case X86ISD::PUNPCKHDQ: | 
|  | case X86ISD::PUNPCKHQDQ: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT, | 
|  | SDValue V1, SelectionDAG &DAG) { | 
|  | switch(Opc) { | 
|  | default: llvm_unreachable("Unknown x86 shuffle node"); | 
|  | case X86ISD::MOVSHDUP: | 
|  | case X86ISD::MOVSLDUP: | 
|  | case X86ISD::MOVDDUP: | 
|  | return DAG.getNode(Opc, dl, VT, V1); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT, | 
|  | SDValue V1, unsigned TargetMask, SelectionDAG &DAG) { | 
|  | switch(Opc) { | 
|  | default: llvm_unreachable("Unknown x86 shuffle node"); | 
|  | case X86ISD::PSHUFD: | 
|  | case X86ISD::PSHUFHW: | 
|  | case X86ISD::PSHUFLW: | 
|  | return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT, | 
|  | SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) { | 
|  | switch(Opc) { | 
|  | default: llvm_unreachable("Unknown x86 shuffle node"); | 
|  | case X86ISD::PALIGN: | 
|  | case X86ISD::SHUFPD: | 
|  | case X86ISD::SHUFPS: | 
|  | return DAG.getNode(Opc, dl, VT, V1, V2, | 
|  | DAG.getConstant(TargetMask, MVT::i8)); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT, | 
|  | SDValue V1, SDValue V2, SelectionDAG &DAG) { | 
|  | switch(Opc) { | 
|  | default: llvm_unreachable("Unknown x86 shuffle node"); | 
|  | case X86ISD::MOVLHPS: | 
|  | case X86ISD::MOVLHPD: | 
|  | case X86ISD::MOVHLPS: | 
|  | case X86ISD::MOVLPS: | 
|  | case X86ISD::MOVLPD: | 
|  | case X86ISD::MOVSS: | 
|  | case X86ISD::MOVSD: | 
|  | case X86ISD::UNPCKLPS: | 
|  | case X86ISD::UNPCKLPD: | 
|  | case X86ISD::VUNPCKLPS: | 
|  | case X86ISD::VUNPCKLPD: | 
|  | case X86ISD::VUNPCKLPSY: | 
|  | case X86ISD::VUNPCKLPDY: | 
|  | case X86ISD::PUNPCKLWD: | 
|  | case X86ISD::PUNPCKLBW: | 
|  | case X86ISD::PUNPCKLDQ: | 
|  | case X86ISD::PUNPCKLQDQ: | 
|  | case X86ISD::UNPCKHPS: | 
|  | case X86ISD::UNPCKHPD: | 
|  | case X86ISD::PUNPCKHWD: | 
|  | case X86ISD::PUNPCKHBW: | 
|  | case X86ISD::PUNPCKHDQ: | 
|  | case X86ISD::PUNPCKHQDQ: | 
|  | return DAG.getNode(Opc, dl, VT, V1, V2); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | int ReturnAddrIndex = FuncInfo->getRAIndex(); | 
|  |  | 
|  | if (ReturnAddrIndex == 0) { | 
|  | // Set up a frame object for the return address. | 
|  | uint64_t SlotSize = TD->getPointerSize(); | 
|  | ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize, | 
|  | false); | 
|  | FuncInfo->setRAIndex(ReturnAddrIndex); | 
|  | } | 
|  |  | 
|  | return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy()); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, | 
|  | bool hasSymbolicDisplacement) { | 
|  | // Offset should fit into 32 bit immediate field. | 
|  | if (!isInt<32>(Offset)) | 
|  | return false; | 
|  |  | 
|  | // If we don't have a symbolic displacement - we don't have any extra | 
|  | // restrictions. | 
|  | if (!hasSymbolicDisplacement) | 
|  | return true; | 
|  |  | 
|  | // FIXME: Some tweaks might be needed for medium code model. | 
|  | if (M != CodeModel::Small && M != CodeModel::Kernel) | 
|  | return false; | 
|  |  | 
|  | // For small code model we assume that latest object is 16MB before end of 31 | 
|  | // bits boundary. We may also accept pretty large negative constants knowing | 
|  | // that all objects are in the positive half of address space. | 
|  | if (M == CodeModel::Small && Offset < 16*1024*1024) | 
|  | return true; | 
|  |  | 
|  | // For kernel code model we know that all object resist in the negative half | 
|  | // of 32bits address space. We may not accept negative offsets, since they may | 
|  | // be just off and we may accept pretty large positive ones. | 
|  | if (M == CodeModel::Kernel && Offset > 0) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86 | 
|  | /// specific condition code, returning the condition code and the LHS/RHS of the | 
|  | /// comparison to make. | 
|  | static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP, | 
|  | SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) { | 
|  | if (!isFP) { | 
|  | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { | 
|  | if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) { | 
|  | // X > -1   -> X == 0, jump !sign. | 
|  | RHS = DAG.getConstant(0, RHS.getValueType()); | 
|  | return X86::COND_NS; | 
|  | } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) { | 
|  | // X < 0   -> X == 0, jump on sign. | 
|  | return X86::COND_S; | 
|  | } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) { | 
|  | // X < 1   -> X <= 0 | 
|  | RHS = DAG.getConstant(0, RHS.getValueType()); | 
|  | return X86::COND_LE; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (SetCCOpcode) { | 
|  | default: llvm_unreachable("Invalid integer condition!"); | 
|  | case ISD::SETEQ:  return X86::COND_E; | 
|  | case ISD::SETGT:  return X86::COND_G; | 
|  | case ISD::SETGE:  return X86::COND_GE; | 
|  | case ISD::SETLT:  return X86::COND_L; | 
|  | case ISD::SETLE:  return X86::COND_LE; | 
|  | case ISD::SETNE:  return X86::COND_NE; | 
|  | case ISD::SETULT: return X86::COND_B; | 
|  | case ISD::SETUGT: return X86::COND_A; | 
|  | case ISD::SETULE: return X86::COND_BE; | 
|  | case ISD::SETUGE: return X86::COND_AE; | 
|  | } | 
|  | } | 
|  |  | 
|  | // First determine if it is required or is profitable to flip the operands. | 
|  |  | 
|  | // If LHS is a foldable load, but RHS is not, flip the condition. | 
|  | if (ISD::isNON_EXTLoad(LHS.getNode()) && | 
|  | !ISD::isNON_EXTLoad(RHS.getNode())) { | 
|  | SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode); | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  |  | 
|  | switch (SetCCOpcode) { | 
|  | default: break; | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETOLE: | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETUGE: | 
|  | std::swap(LHS, RHS); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // On a floating point condition, the flags are set as follows: | 
|  | // ZF  PF  CF   op | 
|  | //  0 | 0 | 0 | X > Y | 
|  | //  0 | 0 | 1 | X < Y | 
|  | //  1 | 0 | 0 | X == Y | 
|  | //  1 | 1 | 1 | unordered | 
|  | switch (SetCCOpcode) { | 
|  | default: llvm_unreachable("Condcode should be pre-legalized away"); | 
|  | case ISD::SETUEQ: | 
|  | case ISD::SETEQ:   return X86::COND_E; | 
|  | case ISD::SETOLT:              // flipped | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT:   return X86::COND_A; | 
|  | case ISD::SETOLE:              // flipped | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETGE:   return X86::COND_AE; | 
|  | case ISD::SETUGT:              // flipped | 
|  | case ISD::SETULT: | 
|  | case ISD::SETLT:   return X86::COND_B; | 
|  | case ISD::SETUGE:              // flipped | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE:   return X86::COND_BE; | 
|  | case ISD::SETONE: | 
|  | case ISD::SETNE:   return X86::COND_NE; | 
|  | case ISD::SETUO:   return X86::COND_P; | 
|  | case ISD::SETO:    return X86::COND_NP; | 
|  | case ISD::SETOEQ: | 
|  | case ISD::SETUNE:  return X86::COND_INVALID; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// hasFPCMov - is there a floating point cmov for the specific X86 condition | 
|  | /// code. Current x86 isa includes the following FP cmov instructions: | 
|  | /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. | 
|  | static bool hasFPCMov(unsigned X86CC) { | 
|  | switch (X86CC) { | 
|  | default: | 
|  | return false; | 
|  | case X86::COND_B: | 
|  | case X86::COND_BE: | 
|  | case X86::COND_E: | 
|  | case X86::COND_P: | 
|  | case X86::COND_A: | 
|  | case X86::COND_AE: | 
|  | case X86::COND_NE: | 
|  | case X86::COND_NP: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isFPImmLegal - Returns true if the target can instruction select the | 
|  | /// specified FP immediate natively. If false, the legalizer will | 
|  | /// materialize the FP immediate as a load from a constant pool. | 
|  | bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { | 
|  | for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) { | 
|  | if (Imm.bitwiseIsEqual(LegalFPImmediates[i])) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isUndefOrInRange - Return true if Val is undef or if its value falls within | 
|  | /// the specified range (L, H]. | 
|  | static bool isUndefOrInRange(int Val, int Low, int Hi) { | 
|  | return (Val < 0) || (Val >= Low && Val < Hi); | 
|  | } | 
|  |  | 
|  | /// isUndefOrEqual - Val is either less than zero (undef) or equal to the | 
|  | /// specified value. | 
|  | static bool isUndefOrEqual(int Val, int CmpVal) { | 
|  | if (Val < 0 || Val == CmpVal) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that | 
|  | /// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference | 
|  | /// the second operand. | 
|  | static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) { | 
|  | if (VT == MVT::v4f32 || VT == MVT::v4i32 ) | 
|  | return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4); | 
|  | if (VT == MVT::v2f64 || VT == MVT::v2i64) | 
|  | return (Mask[0] < 2 && Mask[1] < 2); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) { | 
|  | SmallVector<int, 8> M; | 
|  | N->getMask(M); | 
|  | return ::isPSHUFDMask(M, N->getValueType(0)); | 
|  | } | 
|  |  | 
|  | /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that | 
|  | /// is suitable for input to PSHUFHW. | 
|  | static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) { | 
|  | if (VT != MVT::v8i16) | 
|  | return false; | 
|  |  | 
|  | // Lower quadword copied in order or undef. | 
|  | for (int i = 0; i != 4; ++i) | 
|  | if (Mask[i] >= 0 && Mask[i] != i) | 
|  | return false; | 
|  |  | 
|  | // Upper quadword shuffled. | 
|  | for (int i = 4; i != 8; ++i) | 
|  | if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) { | 
|  | SmallVector<int, 8> M; | 
|  | N->getMask(M); | 
|  | return ::isPSHUFHWMask(M, N->getValueType(0)); | 
|  | } | 
|  |  | 
|  | /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that | 
|  | /// is suitable for input to PSHUFLW. | 
|  | static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) { | 
|  | if (VT != MVT::v8i16) | 
|  | return false; | 
|  |  | 
|  | // Upper quadword copied in order. | 
|  | for (int i = 4; i != 8; ++i) | 
|  | if (Mask[i] >= 0 && Mask[i] != i) | 
|  | return false; | 
|  |  | 
|  | // Lower quadword shuffled. | 
|  | for (int i = 0; i != 4; ++i) | 
|  | if (Mask[i] >= 4) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) { | 
|  | SmallVector<int, 8> M; | 
|  | N->getMask(M); | 
|  | return ::isPSHUFLWMask(M, N->getValueType(0)); | 
|  | } | 
|  |  | 
|  | /// isPALIGNRMask - Return true if the node specifies a shuffle of elements that | 
|  | /// is suitable for input to PALIGNR. | 
|  | static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT, | 
|  | bool hasSSSE3) { | 
|  | int i, e = VT.getVectorNumElements(); | 
|  |  | 
|  | // Do not handle v2i64 / v2f64 shuffles with palignr. | 
|  | if (e < 4 || !hasSSSE3) | 
|  | return false; | 
|  |  | 
|  | for (i = 0; i != e; ++i) | 
|  | if (Mask[i] >= 0) | 
|  | break; | 
|  |  | 
|  | // All undef, not a palignr. | 
|  | if (i == e) | 
|  | return false; | 
|  |  | 
|  | // Determine if it's ok to perform a palignr with only the LHS, since we | 
|  | // don't have access to the actual shuffle elements to see if RHS is undef. | 
|  | bool Unary = Mask[i] < (int)e; | 
|  | bool NeedsUnary = false; | 
|  |  | 
|  | int s = Mask[i] - i; | 
|  |  | 
|  | // Check the rest of the elements to see if they are consecutive. | 
|  | for (++i; i != e; ++i) { | 
|  | int m = Mask[i]; | 
|  | if (m < 0) | 
|  | continue; | 
|  |  | 
|  | Unary = Unary && (m < (int)e); | 
|  | NeedsUnary = NeedsUnary || (m < s); | 
|  |  | 
|  | if (NeedsUnary && !Unary) | 
|  | return false; | 
|  | if (Unary && m != ((s+i) & (e-1))) | 
|  | return false; | 
|  | if (!Unary && m != (s+i)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) { | 
|  | SmallVector<int, 8> M; | 
|  | N->getMask(M); | 
|  | return ::isPALIGNRMask(M, N->getValueType(0), true); | 
|  | } | 
|  |  | 
|  | /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to SHUFP*. | 
|  | static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) { | 
|  | int NumElems = VT.getVectorNumElements(); | 
|  | if (NumElems != 2 && NumElems != 4) | 
|  | return false; | 
|  |  | 
|  | int Half = NumElems / 2; | 
|  | for (int i = 0; i < Half; ++i) | 
|  | if (!isUndefOrInRange(Mask[i], 0, NumElems)) | 
|  | return false; | 
|  | for (int i = Half; i < NumElems; ++i) | 
|  | if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86::isSHUFPMask(ShuffleVectorSDNode *N) { | 
|  | SmallVector<int, 8> M; | 
|  | N->getMask(M); | 
|  | return ::isSHUFPMask(M, N->getValueType(0)); | 
|  | } | 
|  |  | 
|  | /// isCommutedSHUFP - Returns true if the shuffle mask is exactly | 
|  | /// the reverse of what x86 shuffles want. x86 shuffles requires the lower | 
|  | /// half elements to come from vector 1 (which would equal the dest.) and | 
|  | /// the upper half to come from vector 2. | 
|  | static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) { | 
|  | int NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | if (NumElems != 2 && NumElems != 4) | 
|  | return false; | 
|  |  | 
|  | int Half = NumElems / 2; | 
|  | for (int i = 0; i < Half; ++i) | 
|  | if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2)) | 
|  | return false; | 
|  | for (int i = Half; i < NumElems; ++i) | 
|  | if (!isUndefOrInRange(Mask[i], 0, NumElems)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isCommutedSHUFP(ShuffleVectorSDNode *N) { | 
|  | SmallVector<int, 8> M; | 
|  | N->getMask(M); | 
|  | return isCommutedSHUFPMask(M, N->getValueType(0)); | 
|  | } | 
|  |  | 
|  | /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVHLPS. | 
|  | bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) { | 
|  | if (N->getValueType(0).getVectorNumElements() != 4) | 
|  | return false; | 
|  |  | 
|  | // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3 | 
|  | return isUndefOrEqual(N->getMaskElt(0), 6) && | 
|  | isUndefOrEqual(N->getMaskElt(1), 7) && | 
|  | isUndefOrEqual(N->getMaskElt(2), 2) && | 
|  | isUndefOrEqual(N->getMaskElt(3), 3); | 
|  | } | 
|  |  | 
|  | /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form | 
|  | /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef, | 
|  | /// <2, 3, 2, 3> | 
|  | bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) { | 
|  | unsigned NumElems = N->getValueType(0).getVectorNumElements(); | 
|  |  | 
|  | if (NumElems != 4) | 
|  | return false; | 
|  |  | 
|  | return isUndefOrEqual(N->getMaskElt(0), 2) && | 
|  | isUndefOrEqual(N->getMaskElt(1), 3) && | 
|  | isUndefOrEqual(N->getMaskElt(2), 2) && | 
|  | isUndefOrEqual(N->getMaskElt(3), 3); | 
|  | } | 
|  |  | 
|  | /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. | 
|  | bool X86::isMOVLPMask(ShuffleVectorSDNode *N) { | 
|  | unsigned NumElems = N->getValueType(0).getVectorNumElements(); | 
|  |  | 
|  | if (NumElems != 2 && NumElems != 4) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0; i < NumElems/2; ++i) | 
|  | if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems)) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = NumElems/2; i < NumElems; ++i) | 
|  | if (!isUndefOrEqual(N->getMaskElt(i), i)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVLHPS. | 
|  | bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) { | 
|  | unsigned NumElems = N->getValueType(0).getVectorNumElements(); | 
|  |  | 
|  | if ((NumElems != 2 && NumElems != 4) | 
|  | || N->getValueType(0).getSizeInBits() > 128) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0; i < NumElems/2; ++i) | 
|  | if (!isUndefOrEqual(N->getMaskElt(i), i)) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0; i < NumElems/2; ++i) | 
|  | if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to UNPCKL. | 
|  | static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT, | 
|  | bool V2IsSplat = false) { | 
|  | int NumElts = VT.getVectorNumElements(); | 
|  | if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) | 
|  | return false; | 
|  |  | 
|  | // Handle vector lengths > 128 bits.  Define a "section" as a set of | 
|  | // 128 bits.  AVX defines UNPCK* to operate independently on 128-bit | 
|  | // sections. | 
|  | unsigned NumSections = VT.getSizeInBits() / 128; | 
|  | if (NumSections == 0 ) NumSections = 1;  // Handle MMX | 
|  | unsigned NumSectionElts = NumElts / NumSections; | 
|  |  | 
|  | unsigned Start = 0; | 
|  | unsigned End = NumSectionElts; | 
|  | for (unsigned s = 0; s < NumSections; ++s) { | 
|  | for (unsigned i = Start, j = s * NumSectionElts; | 
|  | i != End; | 
|  | i += 2, ++j) { | 
|  | int BitI  = Mask[i]; | 
|  | int BitI1 = Mask[i+1]; | 
|  | if (!isUndefOrEqual(BitI, j)) | 
|  | return false; | 
|  | if (V2IsSplat) { | 
|  | if (!isUndefOrEqual(BitI1, NumElts)) | 
|  | return false; | 
|  | } else { | 
|  | if (!isUndefOrEqual(BitI1, j + NumElts)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | // Process the next 128 bits. | 
|  | Start += NumSectionElts; | 
|  | End += NumSectionElts; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) { | 
|  | SmallVector<int, 8> M; | 
|  | N->getMask(M); | 
|  | return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat); | 
|  | } | 
|  |  | 
|  | /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to UNPCKH. | 
|  | static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT, | 
|  | bool V2IsSplat = false) { | 
|  | int NumElts = VT.getVectorNumElements(); | 
|  | if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) | 
|  | return false; | 
|  |  | 
|  | for (int i = 0, j = 0; i != NumElts; i += 2, ++j) { | 
|  | int BitI  = Mask[i]; | 
|  | int BitI1 = Mask[i+1]; | 
|  | if (!isUndefOrEqual(BitI, j + NumElts/2)) | 
|  | return false; | 
|  | if (V2IsSplat) { | 
|  | if (isUndefOrEqual(BitI1, NumElts)) | 
|  | return false; | 
|  | } else { | 
|  | if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) { | 
|  | SmallVector<int, 8> M; | 
|  | N->getMask(M); | 
|  | return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat); | 
|  | } | 
|  |  | 
|  | /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form | 
|  | /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, | 
|  | /// <0, 0, 1, 1> | 
|  | static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) { | 
|  | int NumElems = VT.getVectorNumElements(); | 
|  | if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) | 
|  | return false; | 
|  |  | 
|  | // Handle vector lengths > 128 bits.  Define a "section" as a set of | 
|  | // 128 bits.  AVX defines UNPCK* to operate independently on 128-bit | 
|  | // sections. | 
|  | unsigned NumSections = VT.getSizeInBits() / 128; | 
|  | if (NumSections == 0 ) NumSections = 1;  // Handle MMX | 
|  | unsigned NumSectionElts = NumElems / NumSections; | 
|  |  | 
|  | for (unsigned s = 0; s < NumSections; ++s) { | 
|  | for (unsigned i = s * NumSectionElts, j = s * NumSectionElts; | 
|  | i != NumSectionElts * (s + 1); | 
|  | i += 2, ++j) { | 
|  | int BitI  = Mask[i]; | 
|  | int BitI1 = Mask[i+1]; | 
|  |  | 
|  | if (!isUndefOrEqual(BitI, j)) | 
|  | return false; | 
|  | if (!isUndefOrEqual(BitI1, j)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) { | 
|  | SmallVector<int, 8> M; | 
|  | N->getMask(M); | 
|  | return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0)); | 
|  | } | 
|  |  | 
|  | /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form | 
|  | /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef, | 
|  | /// <2, 2, 3, 3> | 
|  | static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) { | 
|  | int NumElems = VT.getVectorNumElements(); | 
|  | if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) | 
|  | return false; | 
|  |  | 
|  | for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) { | 
|  | int BitI  = Mask[i]; | 
|  | int BitI1 = Mask[i+1]; | 
|  | if (!isUndefOrEqual(BitI, j)) | 
|  | return false; | 
|  | if (!isUndefOrEqual(BitI1, j)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) { | 
|  | SmallVector<int, 8> M; | 
|  | N->getMask(M); | 
|  | return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0)); | 
|  | } | 
|  |  | 
|  | /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVSS, | 
|  | /// MOVSD, and MOVD, i.e. setting the lowest element. | 
|  | static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) { | 
|  | if (VT.getVectorElementType().getSizeInBits() < 32) | 
|  | return false; | 
|  |  | 
|  | int NumElts = VT.getVectorNumElements(); | 
|  |  | 
|  | if (!isUndefOrEqual(Mask[0], NumElts)) | 
|  | return false; | 
|  |  | 
|  | for (int i = 1; i < NumElts; ++i) | 
|  | if (!isUndefOrEqual(Mask[i], i)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86::isMOVLMask(ShuffleVectorSDNode *N) { | 
|  | SmallVector<int, 8> M; | 
|  | N->getMask(M); | 
|  | return ::isMOVLMask(M, N->getValueType(0)); | 
|  | } | 
|  |  | 
|  | /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse | 
|  | /// of what x86 movss want. X86 movs requires the lowest  element to be lowest | 
|  | /// element of vector 2 and the other elements to come from vector 1 in order. | 
|  | static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT, | 
|  | bool V2IsSplat = false, bool V2IsUndef = false) { | 
|  | int NumOps = VT.getVectorNumElements(); | 
|  | if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16) | 
|  | return false; | 
|  |  | 
|  | if (!isUndefOrEqual(Mask[0], 0)) | 
|  | return false; | 
|  |  | 
|  | for (int i = 1; i < NumOps; ++i) | 
|  | if (!(isUndefOrEqual(Mask[i], i+NumOps) || | 
|  | (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) || | 
|  | (V2IsSplat && isUndefOrEqual(Mask[i], NumOps)))) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false, | 
|  | bool V2IsUndef = false) { | 
|  | SmallVector<int, 8> M; | 
|  | N->getMask(M); | 
|  | return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef); | 
|  | } | 
|  |  | 
|  | /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVSHDUP. | 
|  | bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) { | 
|  | if (N->getValueType(0).getVectorNumElements() != 4) | 
|  | return false; | 
|  |  | 
|  | // Expect 1, 1, 3, 3 | 
|  | for (unsigned i = 0; i < 2; ++i) { | 
|  | int Elt = N->getMaskElt(i); | 
|  | if (Elt >= 0 && Elt != 1) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HasHi = false; | 
|  | for (unsigned i = 2; i < 4; ++i) { | 
|  | int Elt = N->getMaskElt(i); | 
|  | if (Elt >= 0 && Elt != 3) | 
|  | return false; | 
|  | if (Elt == 3) | 
|  | HasHi = true; | 
|  | } | 
|  | // Don't use movshdup if it can be done with a shufps. | 
|  | // FIXME: verify that matching u, u, 3, 3 is what we want. | 
|  | return HasHi; | 
|  | } | 
|  |  | 
|  | /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVSLDUP. | 
|  | bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) { | 
|  | if (N->getValueType(0).getVectorNumElements() != 4) | 
|  | return false; | 
|  |  | 
|  | // Expect 0, 0, 2, 2 | 
|  | for (unsigned i = 0; i < 2; ++i) | 
|  | if (N->getMaskElt(i) > 0) | 
|  | return false; | 
|  |  | 
|  | bool HasHi = false; | 
|  | for (unsigned i = 2; i < 4; ++i) { | 
|  | int Elt = N->getMaskElt(i); | 
|  | if (Elt >= 0 && Elt != 2) | 
|  | return false; | 
|  | if (Elt == 2) | 
|  | HasHi = true; | 
|  | } | 
|  | // Don't use movsldup if it can be done with a shufps. | 
|  | return HasHi; | 
|  | } | 
|  |  | 
|  | /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVDDUP. | 
|  | bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) { | 
|  | int e = N->getValueType(0).getVectorNumElements() / 2; | 
|  |  | 
|  | for (int i = 0; i < e; ++i) | 
|  | if (!isUndefOrEqual(N->getMaskElt(i), i)) | 
|  | return false; | 
|  | for (int i = 0; i < e; ++i) | 
|  | if (!isUndefOrEqual(N->getMaskElt(e+i), i)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isVEXTRACTF128Index - Return true if the specified | 
|  | /// EXTRACT_SUBVECTOR operand specifies a vector extract that is | 
|  | /// suitable for input to VEXTRACTF128. | 
|  | bool X86::isVEXTRACTF128Index(SDNode *N) { | 
|  | if (!isa<ConstantSDNode>(N->getOperand(1).getNode())) | 
|  | return false; | 
|  |  | 
|  | // The index should be aligned on a 128-bit boundary. | 
|  | uint64_t Index = | 
|  | cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue(); | 
|  |  | 
|  | unsigned VL = N->getValueType(0).getVectorNumElements(); | 
|  | unsigned VBits = N->getValueType(0).getSizeInBits(); | 
|  | unsigned ElSize = VBits / VL; | 
|  | bool Result = (Index * ElSize) % 128 == 0; | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR | 
|  | /// operand specifies a subvector insert that is suitable for input to | 
|  | /// VINSERTF128. | 
|  | bool X86::isVINSERTF128Index(SDNode *N) { | 
|  | if (!isa<ConstantSDNode>(N->getOperand(2).getNode())) | 
|  | return false; | 
|  |  | 
|  | // The index should be aligned on a 128-bit boundary. | 
|  | uint64_t Index = | 
|  | cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue(); | 
|  |  | 
|  | unsigned VL = N->getValueType(0).getVectorNumElements(); | 
|  | unsigned VBits = N->getValueType(0).getSizeInBits(); | 
|  | unsigned ElSize = VBits / VL; | 
|  | bool Result = (Index * ElSize) % 128 == 0; | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle | 
|  | /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions. | 
|  | unsigned X86::getShuffleSHUFImmediate(SDNode *N) { | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); | 
|  | int NumOperands = SVOp->getValueType(0).getVectorNumElements(); | 
|  |  | 
|  | unsigned Shift = (NumOperands == 4) ? 2 : 1; | 
|  | unsigned Mask = 0; | 
|  | for (int i = 0; i < NumOperands; ++i) { | 
|  | int Val = SVOp->getMaskElt(NumOperands-i-1); | 
|  | if (Val < 0) Val = 0; | 
|  | if (Val >= NumOperands) Val -= NumOperands; | 
|  | Mask |= Val; | 
|  | if (i != NumOperands - 1) | 
|  | Mask <<= Shift; | 
|  | } | 
|  | return Mask; | 
|  | } | 
|  |  | 
|  | /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle | 
|  | /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction. | 
|  | unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) { | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); | 
|  | unsigned Mask = 0; | 
|  | // 8 nodes, but we only care about the last 4. | 
|  | for (unsigned i = 7; i >= 4; --i) { | 
|  | int Val = SVOp->getMaskElt(i); | 
|  | if (Val >= 0) | 
|  | Mask |= (Val - 4); | 
|  | if (i != 4) | 
|  | Mask <<= 2; | 
|  | } | 
|  | return Mask; | 
|  | } | 
|  |  | 
|  | /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle | 
|  | /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction. | 
|  | unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) { | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); | 
|  | unsigned Mask = 0; | 
|  | // 8 nodes, but we only care about the first 4. | 
|  | for (int i = 3; i >= 0; --i) { | 
|  | int Val = SVOp->getMaskElt(i); | 
|  | if (Val >= 0) | 
|  | Mask |= Val; | 
|  | if (i != 0) | 
|  | Mask <<= 2; | 
|  | } | 
|  | return Mask; | 
|  | } | 
|  |  | 
|  | /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle | 
|  | /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction. | 
|  | unsigned X86::getShufflePALIGNRImmediate(SDNode *N) { | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); | 
|  | EVT VVT = N->getValueType(0); | 
|  | unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3; | 
|  | int Val = 0; | 
|  |  | 
|  | unsigned i, e; | 
|  | for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) { | 
|  | Val = SVOp->getMaskElt(i); | 
|  | if (Val >= 0) | 
|  | break; | 
|  | } | 
|  | return (Val - i) * EltSize; | 
|  | } | 
|  |  | 
|  | /// getExtractVEXTRACTF128Immediate - Return the appropriate immediate | 
|  | /// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128 | 
|  | /// instructions. | 
|  | unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) { | 
|  | if (!isa<ConstantSDNode>(N->getOperand(1).getNode())) | 
|  | llvm_unreachable("Illegal extract subvector for VEXTRACTF128"); | 
|  |  | 
|  | uint64_t Index = | 
|  | cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue(); | 
|  |  | 
|  | EVT VecVT = N->getOperand(0).getValueType(); | 
|  | EVT ElVT = VecVT.getVectorElementType(); | 
|  |  | 
|  | unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits(); | 
|  |  | 
|  | return Index / NumElemsPerChunk; | 
|  | } | 
|  |  | 
|  | /// getInsertVINSERTF128Immediate - Return the appropriate immediate | 
|  | /// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128 | 
|  | /// instructions. | 
|  | unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) { | 
|  | if (!isa<ConstantSDNode>(N->getOperand(2).getNode())) | 
|  | llvm_unreachable("Illegal insert subvector for VINSERTF128"); | 
|  |  | 
|  | uint64_t Index = | 
|  | cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue(); | 
|  |  | 
|  | EVT VecVT = N->getValueType(0); | 
|  | EVT ElVT = VecVT.getVectorElementType(); | 
|  |  | 
|  | unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits(); | 
|  |  | 
|  | return Index / NumElemsPerChunk; | 
|  | } | 
|  |  | 
|  | /// isZeroNode - Returns true if Elt is a constant zero or a floating point | 
|  | /// constant +0.0. | 
|  | bool X86::isZeroNode(SDValue Elt) { | 
|  | return ((isa<ConstantSDNode>(Elt) && | 
|  | cast<ConstantSDNode>(Elt)->isNullValue()) || | 
|  | (isa<ConstantFPSDNode>(Elt) && | 
|  | cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero())); | 
|  | } | 
|  |  | 
|  | /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in | 
|  | /// their permute mask. | 
|  | static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp, | 
|  | SelectionDAG &DAG) { | 
|  | EVT VT = SVOp->getValueType(0); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SmallVector<int, 8> MaskVec; | 
|  |  | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | int idx = SVOp->getMaskElt(i); | 
|  | if (idx < 0) | 
|  | MaskVec.push_back(idx); | 
|  | else if (idx < (int)NumElems) | 
|  | MaskVec.push_back(idx + NumElems); | 
|  | else | 
|  | MaskVec.push_back(idx - NumElems); | 
|  | } | 
|  | return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1), | 
|  | SVOp->getOperand(0), &MaskVec[0]); | 
|  | } | 
|  |  | 
|  | /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming | 
|  | /// the two vector operands have swapped position. | 
|  | static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) { | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | int idx = Mask[i]; | 
|  | if (idx < 0) | 
|  | continue; | 
|  | else if (idx < (int)NumElems) | 
|  | Mask[i] = idx + NumElems; | 
|  | else | 
|  | Mask[i] = idx - NumElems; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ShouldXformToMOVHLPS - Return true if the node should be transformed to | 
|  | /// match movhlps. The lower half elements should come from upper half of | 
|  | /// V1 (and in order), and the upper half elements should come from the upper | 
|  | /// half of V2 (and in order). | 
|  | static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) { | 
|  | if (Op->getValueType(0).getVectorNumElements() != 4) | 
|  | return false; | 
|  | for (unsigned i = 0, e = 2; i != e; ++i) | 
|  | if (!isUndefOrEqual(Op->getMaskElt(i), i+2)) | 
|  | return false; | 
|  | for (unsigned i = 2; i != 4; ++i) | 
|  | if (!isUndefOrEqual(Op->getMaskElt(i), i+4)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isScalarLoadToVector - Returns true if the node is a scalar load that | 
|  | /// is promoted to a vector. It also returns the LoadSDNode by reference if | 
|  | /// required. | 
|  | static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) { | 
|  | if (N->getOpcode() != ISD::SCALAR_TO_VECTOR) | 
|  | return false; | 
|  | N = N->getOperand(0).getNode(); | 
|  | if (!ISD::isNON_EXTLoad(N)) | 
|  | return false; | 
|  | if (LD) | 
|  | *LD = cast<LoadSDNode>(N); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to | 
|  | /// match movlp{s|d}. The lower half elements should come from lower half of | 
|  | /// V1 (and in order), and the upper half elements should come from the upper | 
|  | /// half of V2 (and in order). And since V1 will become the source of the | 
|  | /// MOVLP, it must be either a vector load or a scalar load to vector. | 
|  | static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, | 
|  | ShuffleVectorSDNode *Op) { | 
|  | if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1)) | 
|  | return false; | 
|  | // Is V2 is a vector load, don't do this transformation. We will try to use | 
|  | // load folding shufps op. | 
|  | if (ISD::isNON_EXTLoad(V2)) | 
|  | return false; | 
|  |  | 
|  | unsigned NumElems = Op->getValueType(0).getVectorNumElements(); | 
|  |  | 
|  | if (NumElems != 2 && NumElems != 4) | 
|  | return false; | 
|  | for (unsigned i = 0, e = NumElems/2; i != e; ++i) | 
|  | if (!isUndefOrEqual(Op->getMaskElt(i), i)) | 
|  | return false; | 
|  | for (unsigned i = NumElems/2; i != NumElems; ++i) | 
|  | if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are | 
|  | /// all the same. | 
|  | static bool isSplatVector(SDNode *N) { | 
|  | if (N->getOpcode() != ISD::BUILD_VECTOR) | 
|  | return false; | 
|  |  | 
|  | SDValue SplatValue = N->getOperand(0); | 
|  | for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) | 
|  | if (N->getOperand(i) != SplatValue) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved | 
|  | /// to an zero vector. | 
|  | /// FIXME: move to dag combiner / method on ShuffleVectorSDNode | 
|  | static bool isZeroShuffle(ShuffleVectorSDNode *N) { | 
|  | SDValue V1 = N->getOperand(0); | 
|  | SDValue V2 = N->getOperand(1); | 
|  | unsigned NumElems = N->getValueType(0).getVectorNumElements(); | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | int Idx = N->getMaskElt(i); | 
|  | if (Idx >= (int)NumElems) { | 
|  | unsigned Opc = V2.getOpcode(); | 
|  | if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode())) | 
|  | continue; | 
|  | if (Opc != ISD::BUILD_VECTOR || | 
|  | !X86::isZeroNode(V2.getOperand(Idx-NumElems))) | 
|  | return false; | 
|  | } else if (Idx >= 0) { | 
|  | unsigned Opc = V1.getOpcode(); | 
|  | if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode())) | 
|  | continue; | 
|  | if (Opc != ISD::BUILD_VECTOR || | 
|  | !X86::isZeroNode(V1.getOperand(Idx))) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// getZeroVector - Returns a vector of specified type with all zero elements. | 
|  | /// | 
|  | static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG, | 
|  | DebugLoc dl) { | 
|  | assert(VT.isVector() && "Expected a vector type"); | 
|  |  | 
|  | // Always build SSE zero vectors as <4 x i32> bitcasted | 
|  | // to their dest type. This ensures they get CSE'd. | 
|  | SDValue Vec; | 
|  | if (VT.getSizeInBits() == 128) {  // SSE | 
|  | if (HasSSE2) {  // SSE2 | 
|  | SDValue Cst = DAG.getTargetConstant(0, MVT::i32); | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); | 
|  | } else { // SSE1 | 
|  | SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32); | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst); | 
|  | } | 
|  | } else if (VT.getSizeInBits() == 256) { // AVX | 
|  | // 256-bit logic and arithmetic instructions in AVX are | 
|  | // all floating-point, no support for integer ops. Default | 
|  | // to emitting fp zeroed vectors then. | 
|  | SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32); | 
|  | SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8); | 
|  | } | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, Vec); | 
|  | } | 
|  |  | 
|  | /// getOnesVector - Returns a vector of specified type with all bits set. | 
|  | /// | 
|  | static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) { | 
|  | assert(VT.isVector() && "Expected a vector type"); | 
|  |  | 
|  | // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest | 
|  | // type.  This ensures they get CSE'd. | 
|  | SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32); | 
|  | SDValue Vec; | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, Vec); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements | 
|  | /// that point to V2 points to its first element. | 
|  | static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { | 
|  | EVT VT = SVOp->getValueType(0); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | bool Changed = false; | 
|  | SmallVector<int, 8> MaskVec; | 
|  | SVOp->getMask(MaskVec); | 
|  |  | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | if (MaskVec[i] > (int)NumElems) { | 
|  | MaskVec[i] = NumElems; | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | if (Changed) | 
|  | return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0), | 
|  | SVOp->getOperand(1), &MaskVec[0]); | 
|  | return SDValue(SVOp, 0); | 
|  | } | 
|  |  | 
|  | /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd | 
|  | /// operation of specified width. | 
|  | static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, | 
|  | SDValue V2) { | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SmallVector<int, 8> Mask; | 
|  | Mask.push_back(NumElems); | 
|  | for (unsigned i = 1; i != NumElems; ++i) | 
|  | Mask.push_back(i); | 
|  | return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); | 
|  | } | 
|  |  | 
|  | /// getUnpackl - Returns a vector_shuffle node for an unpackl operation. | 
|  | static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, | 
|  | SDValue V2) { | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SmallVector<int, 8> Mask; | 
|  | for (unsigned i = 0, e = NumElems/2; i != e; ++i) { | 
|  | Mask.push_back(i); | 
|  | Mask.push_back(i + NumElems); | 
|  | } | 
|  | return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); | 
|  | } | 
|  |  | 
|  | /// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation. | 
|  | static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, | 
|  | SDValue V2) { | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | unsigned Half = NumElems/2; | 
|  | SmallVector<int, 8> Mask; | 
|  | for (unsigned i = 0; i != Half; ++i) { | 
|  | Mask.push_back(i + Half); | 
|  | Mask.push_back(i + NumElems + Half); | 
|  | } | 
|  | return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); | 
|  | } | 
|  |  | 
|  | /// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32. | 
|  | static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) { | 
|  | EVT PVT = MVT::v4f32; | 
|  | EVT VT = SV->getValueType(0); | 
|  | DebugLoc dl = SV->getDebugLoc(); | 
|  | SDValue V1 = SV->getOperand(0); | 
|  | int NumElems = VT.getVectorNumElements(); | 
|  | int EltNo = SV->getSplatIndex(); | 
|  |  | 
|  | // unpack elements to the correct location | 
|  | while (NumElems > 4) { | 
|  | if (EltNo < NumElems/2) { | 
|  | V1 = getUnpackl(DAG, dl, VT, V1, V1); | 
|  | } else { | 
|  | V1 = getUnpackh(DAG, dl, VT, V1, V1); | 
|  | EltNo -= NumElems/2; | 
|  | } | 
|  | NumElems >>= 1; | 
|  | } | 
|  |  | 
|  | // Perform the splat. | 
|  | int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo }; | 
|  | V1 = DAG.getNode(ISD::BITCAST, dl, PVT, V1); | 
|  | V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]); | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, V1); | 
|  | } | 
|  |  | 
|  | /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified | 
|  | /// vector of zero or undef vector.  This produces a shuffle where the low | 
|  | /// element of V2 is swizzled into the zero/undef vector, landing at element | 
|  | /// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3). | 
|  | static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx, | 
|  | bool isZero, bool HasSSE2, | 
|  | SelectionDAG &DAG) { | 
|  | EVT VT = V2.getValueType(); | 
|  | SDValue V1 = isZero | 
|  | ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SmallVector<int, 16> MaskVec; | 
|  | for (unsigned i = 0; i != NumElems; ++i) | 
|  | // If this is the insertion idx, put the low elt of V2 here. | 
|  | MaskVec.push_back(i == Idx ? NumElems : i); | 
|  | return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]); | 
|  | } | 
|  |  | 
|  | /// getShuffleScalarElt - Returns the scalar element that will make up the ith | 
|  | /// element of the result of the vector shuffle. | 
|  | SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG, | 
|  | unsigned Depth) { | 
|  | if (Depth == 6) | 
|  | return SDValue();  // Limit search depth. | 
|  |  | 
|  | SDValue V = SDValue(N, 0); | 
|  | EVT VT = V.getValueType(); | 
|  | unsigned Opcode = V.getOpcode(); | 
|  |  | 
|  | // Recurse into ISD::VECTOR_SHUFFLE node to find scalars. | 
|  | if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) { | 
|  | Index = SV->getMaskElt(Index); | 
|  |  | 
|  | if (Index < 0) | 
|  | return DAG.getUNDEF(VT.getVectorElementType()); | 
|  |  | 
|  | int NumElems = VT.getVectorNumElements(); | 
|  | SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1); | 
|  | return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1); | 
|  | } | 
|  |  | 
|  | // Recurse into target specific vector shuffles to find scalars. | 
|  | if (isTargetShuffle(Opcode)) { | 
|  | int NumElems = VT.getVectorNumElements(); | 
|  | SmallVector<unsigned, 16> ShuffleMask; | 
|  | SDValue ImmN; | 
|  |  | 
|  | switch(Opcode) { | 
|  | case X86ISD::SHUFPS: | 
|  | case X86ISD::SHUFPD: | 
|  | ImmN = N->getOperand(N->getNumOperands()-1); | 
|  | DecodeSHUFPSMask(NumElems, | 
|  | cast<ConstantSDNode>(ImmN)->getZExtValue(), | 
|  | ShuffleMask); | 
|  | break; | 
|  | case X86ISD::PUNPCKHBW: | 
|  | case X86ISD::PUNPCKHWD: | 
|  | case X86ISD::PUNPCKHDQ: | 
|  | case X86ISD::PUNPCKHQDQ: | 
|  | DecodePUNPCKHMask(NumElems, ShuffleMask); | 
|  | break; | 
|  | case X86ISD::UNPCKHPS: | 
|  | case X86ISD::UNPCKHPD: | 
|  | DecodeUNPCKHPMask(NumElems, ShuffleMask); | 
|  | break; | 
|  | case X86ISD::PUNPCKLBW: | 
|  | case X86ISD::PUNPCKLWD: | 
|  | case X86ISD::PUNPCKLDQ: | 
|  | case X86ISD::PUNPCKLQDQ: | 
|  | DecodePUNPCKLMask(VT, ShuffleMask); | 
|  | break; | 
|  | case X86ISD::UNPCKLPS: | 
|  | case X86ISD::UNPCKLPD: | 
|  | case X86ISD::VUNPCKLPS: | 
|  | case X86ISD::VUNPCKLPD: | 
|  | case X86ISD::VUNPCKLPSY: | 
|  | case X86ISD::VUNPCKLPDY: | 
|  | DecodeUNPCKLPMask(VT, ShuffleMask); | 
|  | break; | 
|  | case X86ISD::MOVHLPS: | 
|  | DecodeMOVHLPSMask(NumElems, ShuffleMask); | 
|  | break; | 
|  | case X86ISD::MOVLHPS: | 
|  | DecodeMOVLHPSMask(NumElems, ShuffleMask); | 
|  | break; | 
|  | case X86ISD::PSHUFD: | 
|  | ImmN = N->getOperand(N->getNumOperands()-1); | 
|  | DecodePSHUFMask(NumElems, | 
|  | cast<ConstantSDNode>(ImmN)->getZExtValue(), | 
|  | ShuffleMask); | 
|  | break; | 
|  | case X86ISD::PSHUFHW: | 
|  | ImmN = N->getOperand(N->getNumOperands()-1); | 
|  | DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), | 
|  | ShuffleMask); | 
|  | break; | 
|  | case X86ISD::PSHUFLW: | 
|  | ImmN = N->getOperand(N->getNumOperands()-1); | 
|  | DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), | 
|  | ShuffleMask); | 
|  | break; | 
|  | case X86ISD::MOVSS: | 
|  | case X86ISD::MOVSD: { | 
|  | // The index 0 always comes from the first element of the second source, | 
|  | // this is why MOVSS and MOVSD are used in the first place. The other | 
|  | // elements come from the other positions of the first source vector. | 
|  | unsigned OpNum = (Index == 0) ? 1 : 0; | 
|  | return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG, | 
|  | Depth+1); | 
|  | } | 
|  | default: | 
|  | assert("not implemented for target shuffle node"); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | Index = ShuffleMask[Index]; | 
|  | if (Index < 0) | 
|  | return DAG.getUNDEF(VT.getVectorElementType()); | 
|  |  | 
|  | SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1); | 
|  | return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, | 
|  | Depth+1); | 
|  | } | 
|  |  | 
|  | // Actual nodes that may contain scalar elements | 
|  | if (Opcode == ISD::BITCAST) { | 
|  | V = V.getOperand(0); | 
|  | EVT SrcVT = V.getValueType(); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) | 
|  | return (Index == 0) ? V.getOperand(0) | 
|  | : DAG.getUNDEF(VT.getVectorElementType()); | 
|  |  | 
|  | if (V.getOpcode() == ISD::BUILD_VECTOR) | 
|  | return V.getOperand(Index); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// getNumOfConsecutiveZeros - Return the number of elements of a vector | 
|  | /// shuffle operation which come from a consecutively from a zero. The | 
|  | /// search can start in two diferent directions, from left or right. | 
|  | static | 
|  | unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems, | 
|  | bool ZerosFromLeft, SelectionDAG &DAG) { | 
|  | int i = 0; | 
|  |  | 
|  | while (i < NumElems) { | 
|  | unsigned Index = ZerosFromLeft ? i : NumElems-i-1; | 
|  | SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0); | 
|  | if (!(Elt.getNode() && | 
|  | (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt)))) | 
|  | break; | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to | 
|  | /// MaskE correspond consecutively to elements from one of the vector operands, | 
|  | /// starting from its index OpIdx. Also tell OpNum which source vector operand. | 
|  | static | 
|  | bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE, | 
|  | int OpIdx, int NumElems, unsigned &OpNum) { | 
|  | bool SeenV1 = false; | 
|  | bool SeenV2 = false; | 
|  |  | 
|  | for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) { | 
|  | int Idx = SVOp->getMaskElt(i); | 
|  | // Ignore undef indicies | 
|  | if (Idx < 0) | 
|  | continue; | 
|  |  | 
|  | if (Idx < NumElems) | 
|  | SeenV1 = true; | 
|  | else | 
|  | SeenV2 = true; | 
|  |  | 
|  | // Only accept consecutive elements from the same vector | 
|  | if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | OpNum = SeenV1 ? 0 : 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isVectorShiftRight - Returns true if the shuffle can be implemented as a | 
|  | /// logical left shift of a vector. | 
|  | static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, | 
|  | bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { | 
|  | unsigned NumElems = SVOp->getValueType(0).getVectorNumElements(); | 
|  | unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, | 
|  | false /* check zeros from right */, DAG); | 
|  | unsigned OpSrc; | 
|  |  | 
|  | if (!NumZeros) | 
|  | return false; | 
|  |  | 
|  | // Considering the elements in the mask that are not consecutive zeros, | 
|  | // check if they consecutively come from only one of the source vectors. | 
|  | // | 
|  | //               V1 = {X, A, B, C}     0 | 
|  | //                         \  \  \    / | 
|  | //   vector_shuffle V1, V2 <1, 2, 3, X> | 
|  | // | 
|  | if (!isShuffleMaskConsecutive(SVOp, | 
|  | 0,                   // Mask Start Index | 
|  | NumElems-NumZeros-1, // Mask End Index | 
|  | NumZeros,            // Where to start looking in the src vector | 
|  | NumElems,            // Number of elements in vector | 
|  | OpSrc))              // Which source operand ? | 
|  | return false; | 
|  |  | 
|  | isLeft = false; | 
|  | ShAmt = NumZeros; | 
|  | ShVal = SVOp->getOperand(OpSrc); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isVectorShiftLeft - Returns true if the shuffle can be implemented as a | 
|  | /// logical left shift of a vector. | 
|  | static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, | 
|  | bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { | 
|  | unsigned NumElems = SVOp->getValueType(0).getVectorNumElements(); | 
|  | unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, | 
|  | true /* check zeros from left */, DAG); | 
|  | unsigned OpSrc; | 
|  |  | 
|  | if (!NumZeros) | 
|  | return false; | 
|  |  | 
|  | // Considering the elements in the mask that are not consecutive zeros, | 
|  | // check if they consecutively come from only one of the source vectors. | 
|  | // | 
|  | //                           0    { A, B, X, X } = V2 | 
|  | //                          / \    /  / | 
|  | //   vector_shuffle V1, V2 <X, X, 4, 5> | 
|  | // | 
|  | if (!isShuffleMaskConsecutive(SVOp, | 
|  | NumZeros,     // Mask Start Index | 
|  | NumElems-1,   // Mask End Index | 
|  | 0,            // Where to start looking in the src vector | 
|  | NumElems,     // Number of elements in vector | 
|  | OpSrc))       // Which source operand ? | 
|  | return false; | 
|  |  | 
|  | isLeft = true; | 
|  | ShAmt = NumZeros; | 
|  | ShVal = SVOp->getOperand(OpSrc); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isVectorShift - Returns true if the shuffle can be implemented as a | 
|  | /// logical left or right shift of a vector. | 
|  | static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, | 
|  | bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { | 
|  | if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) || | 
|  | isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8. | 
|  | /// | 
|  | static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros, | 
|  | unsigned NumNonZero, unsigned NumZero, | 
|  | SelectionDAG &DAG, | 
|  | const TargetLowering &TLI) { | 
|  | if (NumNonZero > 8) | 
|  | return SDValue(); | 
|  |  | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | SDValue V(0, 0); | 
|  | bool First = true; | 
|  | for (unsigned i = 0; i < 16; ++i) { | 
|  | bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; | 
|  | if (ThisIsNonZero && First) { | 
|  | if (NumZero) | 
|  | V = getZeroVector(MVT::v8i16, true, DAG, dl); | 
|  | else | 
|  | V = DAG.getUNDEF(MVT::v8i16); | 
|  | First = false; | 
|  | } | 
|  |  | 
|  | if ((i & 1) != 0) { | 
|  | SDValue ThisElt(0, 0), LastElt(0, 0); | 
|  | bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; | 
|  | if (LastIsNonZero) { | 
|  | LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl, | 
|  | MVT::i16, Op.getOperand(i-1)); | 
|  | } | 
|  | if (ThisIsNonZero) { | 
|  | ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i)); | 
|  | ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16, | 
|  | ThisElt, DAG.getConstant(8, MVT::i8)); | 
|  | if (LastIsNonZero) | 
|  | ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt); | 
|  | } else | 
|  | ThisElt = LastElt; | 
|  |  | 
|  | if (ThisElt.getNode()) | 
|  | V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt, | 
|  | DAG.getIntPtrConstant(i/2)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V); | 
|  | } | 
|  |  | 
|  | /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16. | 
|  | /// | 
|  | static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros, | 
|  | unsigned NumNonZero, unsigned NumZero, | 
|  | SelectionDAG &DAG, | 
|  | const TargetLowering &TLI) { | 
|  | if (NumNonZero > 4) | 
|  | return SDValue(); | 
|  |  | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | SDValue V(0, 0); | 
|  | bool First = true; | 
|  | for (unsigned i = 0; i < 8; ++i) { | 
|  | bool isNonZero = (NonZeros & (1 << i)) != 0; | 
|  | if (isNonZero) { | 
|  | if (First) { | 
|  | if (NumZero) | 
|  | V = getZeroVector(MVT::v8i16, true, DAG, dl); | 
|  | else | 
|  | V = DAG.getUNDEF(MVT::v8i16); | 
|  | First = false; | 
|  | } | 
|  | V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, | 
|  | MVT::v8i16, V, Op.getOperand(i), | 
|  | DAG.getIntPtrConstant(i)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// getVShift - Return a vector logical shift node. | 
|  | /// | 
|  | static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp, | 
|  | unsigned NumBits, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI, DebugLoc dl) { | 
|  | EVT ShVT = MVT::v2i64; | 
|  | unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL; | 
|  | SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp); | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, | 
|  | DAG.getNode(Opc, dl, ShVT, SrcOp, | 
|  | DAG.getConstant(NumBits, | 
|  | TLI.getShiftAmountTy(SrcOp.getValueType())))); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl, | 
|  | SelectionDAG &DAG) const { | 
|  |  | 
|  | // Check if the scalar load can be widened into a vector load. And if | 
|  | // the address is "base + cst" see if the cst can be "absorbed" into | 
|  | // the shuffle mask. | 
|  | if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) { | 
|  | SDValue Ptr = LD->getBasePtr(); | 
|  | if (!ISD::isNormalLoad(LD) || LD->isVolatile()) | 
|  | return SDValue(); | 
|  | EVT PVT = LD->getValueType(0); | 
|  | if (PVT != MVT::i32 && PVT != MVT::f32) | 
|  | return SDValue(); | 
|  |  | 
|  | int FI = -1; | 
|  | int64_t Offset = 0; | 
|  | if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) { | 
|  | FI = FINode->getIndex(); | 
|  | Offset = 0; | 
|  | } else if (DAG.isBaseWithConstantOffset(Ptr) && | 
|  | isa<FrameIndexSDNode>(Ptr.getOperand(0))) { | 
|  | FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); | 
|  | Offset = Ptr.getConstantOperandVal(1); | 
|  | Ptr = Ptr.getOperand(0); | 
|  | } else { | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue Chain = LD->getChain(); | 
|  | // Make sure the stack object alignment is at least 16. | 
|  | MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | if (DAG.InferPtrAlignment(Ptr) < 16) { | 
|  | if (MFI->isFixedObjectIndex(FI)) { | 
|  | // Can't change the alignment. FIXME: It's possible to compute | 
|  | // the exact stack offset and reference FI + adjust offset instead. | 
|  | // If someone *really* cares about this. That's the way to implement it. | 
|  | return SDValue(); | 
|  | } else { | 
|  | MFI->setObjectAlignment(FI, 16); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (Offset % 16) must be multiple of 4. Then address is then | 
|  | // Ptr + (Offset & ~15). | 
|  | if (Offset < 0) | 
|  | return SDValue(); | 
|  | if ((Offset % 16) & 3) | 
|  | return SDValue(); | 
|  | int64_t StartOffset = Offset & ~15; | 
|  | if (StartOffset) | 
|  | Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(), | 
|  | Ptr,DAG.getConstant(StartOffset, Ptr.getValueType())); | 
|  |  | 
|  | int EltNo = (Offset - StartOffset) >> 2; | 
|  | int Mask[4] = { EltNo, EltNo, EltNo, EltNo }; | 
|  | EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32; | 
|  | SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr, | 
|  | LD->getPointerInfo().getWithOffset(StartOffset), | 
|  | false, false, 0); | 
|  | // Canonicalize it to a v4i32 shuffle. | 
|  | V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, | 
|  | DAG.getVectorShuffle(MVT::v4i32, dl, V1, | 
|  | DAG.getUNDEF(MVT::v4i32),&Mask[0])); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a | 
|  | /// vector of type 'VT', see if the elements can be replaced by a single large | 
|  | /// load which has the same value as a build_vector whose operands are 'elts'. | 
|  | /// | 
|  | /// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a | 
|  | /// | 
|  | /// FIXME: we'd also like to handle the case where the last elements are zero | 
|  | /// rather than undef via VZEXT_LOAD, but we do not detect that case today. | 
|  | /// There's even a handy isZeroNode for that purpose. | 
|  | static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts, | 
|  | DebugLoc &DL, SelectionDAG &DAG) { | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | unsigned NumElems = Elts.size(); | 
|  |  | 
|  | LoadSDNode *LDBase = NULL; | 
|  | unsigned LastLoadedElt = -1U; | 
|  |  | 
|  | // For each element in the initializer, see if we've found a load or an undef. | 
|  | // If we don't find an initial load element, or later load elements are | 
|  | // non-consecutive, bail out. | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | SDValue Elt = Elts[i]; | 
|  |  | 
|  | if (!Elt.getNode() || | 
|  | (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode()))) | 
|  | return SDValue(); | 
|  | if (!LDBase) { | 
|  | if (Elt.getNode()->getOpcode() == ISD::UNDEF) | 
|  | return SDValue(); | 
|  | LDBase = cast<LoadSDNode>(Elt.getNode()); | 
|  | LastLoadedElt = i; | 
|  | continue; | 
|  | } | 
|  | if (Elt.getOpcode() == ISD::UNDEF) | 
|  | continue; | 
|  |  | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Elt); | 
|  | if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i)) | 
|  | return SDValue(); | 
|  | LastLoadedElt = i; | 
|  | } | 
|  |  | 
|  | // If we have found an entire vector of loads and undefs, then return a large | 
|  | // load of the entire vector width starting at the base pointer.  If we found | 
|  | // consecutive loads for the low half, generate a vzext_load node. | 
|  | if (LastLoadedElt == NumElems - 1) { | 
|  | if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16) | 
|  | return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(), | 
|  | LDBase->getPointerInfo(), | 
|  | LDBase->isVolatile(), LDBase->isNonTemporal(), 0); | 
|  | return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(), | 
|  | LDBase->getPointerInfo(), | 
|  | LDBase->isVolatile(), LDBase->isNonTemporal(), | 
|  | LDBase->getAlignment()); | 
|  | } else if (NumElems == 4 && LastLoadedElt == 1) { | 
|  | SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other); | 
|  | SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() }; | 
|  | SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, | 
|  | Ops, 2, MVT::i32, | 
|  | LDBase->getMemOperand()); | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, ResNode); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT ExtVT = VT.getVectorElementType(); | 
|  |  | 
|  | unsigned NumElems = Op.getNumOperands(); | 
|  |  | 
|  | // For AVX-length vectors, build the individual 128-bit pieces and | 
|  | // use shuffles to put them in place. | 
|  | if (VT.getSizeInBits() > 256 && | 
|  | Subtarget->hasAVX() && | 
|  | !ISD::isBuildVectorAllZeros(Op.getNode())) { | 
|  | SmallVector<SDValue, 8> V; | 
|  | V.resize(NumElems); | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | V[i] = Op.getOperand(i); | 
|  | } | 
|  |  | 
|  | EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2); | 
|  |  | 
|  | // Build the lower subvector. | 
|  | SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2); | 
|  | // Build the upper subvector. | 
|  | SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2], | 
|  | NumElems/2); | 
|  |  | 
|  | return ConcatVectors(Lower, Upper, DAG); | 
|  | } | 
|  |  | 
|  | // All zero's are handled with pxor in SSE2 and above, xorps in SSE1. | 
|  | // All one's are handled with pcmpeqd. In AVX, zero's are handled with | 
|  | // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd | 
|  | // is present, so AllOnes is ignored. | 
|  | if (ISD::isBuildVectorAllZeros(Op.getNode()) || | 
|  | (Op.getValueType().getSizeInBits() != 256 && | 
|  | ISD::isBuildVectorAllOnes(Op.getNode()))) { | 
|  | // Canonicalize this to <4 x i32> (SSE) to | 
|  | // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are | 
|  | // eliminated on x86-32 hosts. | 
|  | if (Op.getValueType() == MVT::v4i32) | 
|  | return Op; | 
|  |  | 
|  | if (ISD::isBuildVectorAllOnes(Op.getNode())) | 
|  | return getOnesVector(Op.getValueType(), DAG, dl); | 
|  | return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl); | 
|  | } | 
|  |  | 
|  | unsigned EVTBits = ExtVT.getSizeInBits(); | 
|  |  | 
|  | unsigned NumZero  = 0; | 
|  | unsigned NumNonZero = 0; | 
|  | unsigned NonZeros = 0; | 
|  | bool IsAllConstants = true; | 
|  | SmallSet<SDValue, 8> Values; | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | SDValue Elt = Op.getOperand(i); | 
|  | if (Elt.getOpcode() == ISD::UNDEF) | 
|  | continue; | 
|  | Values.insert(Elt); | 
|  | if (Elt.getOpcode() != ISD::Constant && | 
|  | Elt.getOpcode() != ISD::ConstantFP) | 
|  | IsAllConstants = false; | 
|  | if (X86::isZeroNode(Elt)) | 
|  | NumZero++; | 
|  | else { | 
|  | NonZeros |= (1 << i); | 
|  | NumNonZero++; | 
|  | } | 
|  | } | 
|  |  | 
|  | // All undef vector. Return an UNDEF.  All zero vectors were handled above. | 
|  | if (NumNonZero == 0) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | // Special case for single non-zero, non-undef, element. | 
|  | if (NumNonZero == 1) { | 
|  | unsigned Idx = CountTrailingZeros_32(NonZeros); | 
|  | SDValue Item = Op.getOperand(Idx); | 
|  |  | 
|  | // If this is an insertion of an i64 value on x86-32, and if the top bits of | 
|  | // the value are obviously zero, truncate the value to i32 and do the | 
|  | // insertion that way.  Only do this if the value is non-constant or if the | 
|  | // value is a constant being inserted into element 0.  It is cheaper to do | 
|  | // a constant pool load than it is to do a movd + shuffle. | 
|  | if (ExtVT == MVT::i64 && !Subtarget->is64Bit() && | 
|  | (!IsAllConstants || Idx == 0)) { | 
|  | if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) { | 
|  | // Handle SSE only. | 
|  | assert(VT == MVT::v2i64 && "Expected an SSE value type!"); | 
|  | EVT VecVT = MVT::v4i32; | 
|  | unsigned VecElts = 4; | 
|  |  | 
|  | // Truncate the value (which may itself be a constant) to i32, and | 
|  | // convert it to a vector with movd (S2V+shuffle to zero extend). | 
|  | Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item); | 
|  | Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item); | 
|  | Item = getShuffleVectorZeroOrUndef(Item, 0, true, | 
|  | Subtarget->hasSSE2(), DAG); | 
|  |  | 
|  | // Now we have our 32-bit value zero extended in the low element of | 
|  | // a vector.  If Idx != 0, swizzle it into place. | 
|  | if (Idx != 0) { | 
|  | SmallVector<int, 4> Mask; | 
|  | Mask.push_back(Idx); | 
|  | for (unsigned i = 1; i != VecElts; ++i) | 
|  | Mask.push_back(i); | 
|  | Item = DAG.getVectorShuffle(VecVT, dl, Item, | 
|  | DAG.getUNDEF(Item.getValueType()), | 
|  | &Mask[0]); | 
|  | } | 
|  | return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have a constant or non-constant insertion into the low element of | 
|  | // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into | 
|  | // the rest of the elements.  This will be matched as movd/movq/movss/movsd | 
|  | // depending on what the source datatype is. | 
|  | if (Idx == 0) { | 
|  | if (NumZero == 0) { | 
|  | return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); | 
|  | } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 || | 
|  | (ExtVT == MVT::i64 && Subtarget->is64Bit())) { | 
|  | Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); | 
|  | // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. | 
|  | return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(), | 
|  | DAG); | 
|  | } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) { | 
|  | Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item); | 
|  | assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!"); | 
|  | EVT MiddleVT = MVT::v4i32; | 
|  | Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item); | 
|  | Item = getShuffleVectorZeroOrUndef(Item, 0, true, | 
|  | Subtarget->hasSSE2(), DAG); | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, Item); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Is it a vector logical left shift? | 
|  | if (NumElems == 2 && Idx == 1 && | 
|  | X86::isZeroNode(Op.getOperand(0)) && | 
|  | !X86::isZeroNode(Op.getOperand(1))) { | 
|  | unsigned NumBits = VT.getSizeInBits(); | 
|  | return getVShift(true, VT, | 
|  | DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, | 
|  | VT, Op.getOperand(1)), | 
|  | NumBits/2, DAG, *this, dl); | 
|  | } | 
|  |  | 
|  | if (IsAllConstants) // Otherwise, it's better to do a constpool load. | 
|  | return SDValue(); | 
|  |  | 
|  | // Otherwise, if this is a vector with i32 or f32 elements, and the element | 
|  | // is a non-constant being inserted into an element other than the low one, | 
|  | // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka | 
|  | // movd/movss) to move this into the low element, then shuffle it into | 
|  | // place. | 
|  | if (EVTBits == 32) { | 
|  | Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); | 
|  |  | 
|  | // Turn it into a shuffle of zero and zero-extended scalar to vector. | 
|  | Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, | 
|  | Subtarget->hasSSE2(), DAG); | 
|  | SmallVector<int, 8> MaskVec; | 
|  | for (unsigned i = 0; i < NumElems; i++) | 
|  | MaskVec.push_back(i == Idx ? 0 : 1); | 
|  | return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Splat is obviously ok. Let legalizer expand it to a shuffle. | 
|  | if (Values.size() == 1) { | 
|  | if (EVTBits == 32) { | 
|  | // Instead of a shuffle like this: | 
|  | // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0> | 
|  | // Check if it's possible to issue this instead. | 
|  | // shuffle (vload ptr)), undef, <1, 1, 1, 1> | 
|  | unsigned Idx = CountTrailingZeros_32(NonZeros); | 
|  | SDValue Item = Op.getOperand(Idx); | 
|  | if (Op.getNode()->isOnlyUserOf(Item.getNode())) | 
|  | return LowerAsSplatVectorLoad(Item, VT, dl, DAG); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // A vector full of immediates; various special cases are already | 
|  | // handled, so this is best done with a single constant-pool load. | 
|  | if (IsAllConstants) | 
|  | return SDValue(); | 
|  |  | 
|  | // Let legalizer expand 2-wide build_vectors. | 
|  | if (EVTBits == 64) { | 
|  | if (NumNonZero == 1) { | 
|  | // One half is zero or undef. | 
|  | unsigned Idx = CountTrailingZeros_32(NonZeros); | 
|  | SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, | 
|  | Op.getOperand(Idx)); | 
|  | return getShuffleVectorZeroOrUndef(V2, Idx, true, | 
|  | Subtarget->hasSSE2(), DAG); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // If element VT is < 32 bits, convert it to inserts into a zero vector. | 
|  | if (EVTBits == 8 && NumElems == 16) { | 
|  | SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG, | 
|  | *this); | 
|  | if (V.getNode()) return V; | 
|  | } | 
|  |  | 
|  | if (EVTBits == 16 && NumElems == 8) { | 
|  | SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG, | 
|  | *this); | 
|  | if (V.getNode()) return V; | 
|  | } | 
|  |  | 
|  | // If element VT is == 32 bits, turn it into a number of shuffles. | 
|  | SmallVector<SDValue, 8> V; | 
|  | V.resize(NumElems); | 
|  | if (NumElems == 4 && NumZero > 0) { | 
|  | for (unsigned i = 0; i < 4; ++i) { | 
|  | bool isZero = !(NonZeros & (1 << i)); | 
|  | if (isZero) | 
|  | V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl); | 
|  | else | 
|  | V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0; i < 2; ++i) { | 
|  | switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { | 
|  | default: break; | 
|  | case 0: | 
|  | V[i] = V[i*2];  // Must be a zero vector. | 
|  | break; | 
|  | case 1: | 
|  | V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]); | 
|  | break; | 
|  | case 2: | 
|  | V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]); | 
|  | break; | 
|  | case 3: | 
|  | V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<int, 8> MaskVec; | 
|  | bool Reverse = (NonZeros & 0x3) == 2; | 
|  | for (unsigned i = 0; i < 2; ++i) | 
|  | MaskVec.push_back(Reverse ? 1-i : i); | 
|  | Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2; | 
|  | for (unsigned i = 0; i < 2; ++i) | 
|  | MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems); | 
|  | return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]); | 
|  | } | 
|  |  | 
|  | if (Values.size() > 1 && VT.getSizeInBits() == 128) { | 
|  | // Check for a build vector of consecutive loads. | 
|  | for (unsigned i = 0; i < NumElems; ++i) | 
|  | V[i] = Op.getOperand(i); | 
|  |  | 
|  | // Check for elements which are consecutive loads. | 
|  | SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG); | 
|  | if (LD.getNode()) | 
|  | return LD; | 
|  |  | 
|  | // For SSE 4.1, use insertps to put the high elements into the low element. | 
|  | if (getSubtarget()->hasSSE41()) { | 
|  | SDValue Result; | 
|  | if (Op.getOperand(0).getOpcode() != ISD::UNDEF) | 
|  | Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0)); | 
|  | else | 
|  | Result = DAG.getUNDEF(VT); | 
|  |  | 
|  | for (unsigned i = 1; i < NumElems; ++i) { | 
|  | if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue; | 
|  | Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result, | 
|  | Op.getOperand(i), DAG.getIntPtrConstant(i)); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Otherwise, expand into a number of unpckl*, start by extending each of | 
|  | // our (non-undef) elements to the full vector width with the element in the | 
|  | // bottom slot of the vector (which generates no code for SSE). | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | if (Op.getOperand(i).getOpcode() != ISD::UNDEF) | 
|  | V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); | 
|  | else | 
|  | V[i] = DAG.getUNDEF(VT); | 
|  | } | 
|  |  | 
|  | // Next, we iteratively mix elements, e.g. for v4f32: | 
|  | //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0> | 
|  | //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1> | 
|  | //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0> | 
|  | unsigned EltStride = NumElems >> 1; | 
|  | while (EltStride != 0) { | 
|  | for (unsigned i = 0; i < EltStride; ++i) { | 
|  | // If V[i+EltStride] is undef and this is the first round of mixing, | 
|  | // then it is safe to just drop this shuffle: V[i] is already in the | 
|  | // right place, the one element (since it's the first round) being | 
|  | // inserted as undef can be dropped.  This isn't safe for successive | 
|  | // rounds because they will permute elements within both vectors. | 
|  | if (V[i+EltStride].getOpcode() == ISD::UNDEF && | 
|  | EltStride == NumElems/2) | 
|  | continue; | 
|  |  | 
|  | V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]); | 
|  | } | 
|  | EltStride >>= 1; | 
|  | } | 
|  | return V[0]; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const { | 
|  | // We support concatenate two MMX registers and place them in a MMX | 
|  | // register.  This is better than doing a stack convert. | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | EVT ResVT = Op.getValueType(); | 
|  | assert(Op.getNumOperands() == 2); | 
|  | assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 || | 
|  | ResVT == MVT::v8i16 || ResVT == MVT::v16i8); | 
|  | int Mask[2]; | 
|  | SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0)); | 
|  | SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec); | 
|  | InVec = Op.getOperand(1); | 
|  | if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) { | 
|  | unsigned NumElts = ResVT.getVectorNumElements(); | 
|  | VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp); | 
|  | VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp, | 
|  | InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1)); | 
|  | } else { | 
|  | InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec); | 
|  | SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec); | 
|  | Mask[0] = 0; Mask[1] = 2; | 
|  | VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask); | 
|  | } | 
|  | return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp); | 
|  | } | 
|  |  | 
|  | // v8i16 shuffles - Prefer shuffles in the following order: | 
|  | // 1. [all]   pshuflw, pshufhw, optional move | 
|  | // 2. [ssse3] 1 x pshufb | 
|  | // 3. [ssse3] 2 x pshufb + 1 x por | 
|  | // 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw) | 
|  | SDValue | 
|  | X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | SDValue V1 = SVOp->getOperand(0); | 
|  | SDValue V2 = SVOp->getOperand(1); | 
|  | DebugLoc dl = SVOp->getDebugLoc(); | 
|  | SmallVector<int, 8> MaskVals; | 
|  |  | 
|  | // Determine if more than 1 of the words in each of the low and high quadwords | 
|  | // of the result come from the same quadword of one of the two inputs.  Undef | 
|  | // mask values count as coming from any quadword, for better codegen. | 
|  | SmallVector<unsigned, 4> LoQuad(4); | 
|  | SmallVector<unsigned, 4> HiQuad(4); | 
|  | BitVector InputQuads(4); | 
|  | for (unsigned i = 0; i < 8; ++i) { | 
|  | SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad; | 
|  | int EltIdx = SVOp->getMaskElt(i); | 
|  | MaskVals.push_back(EltIdx); | 
|  | if (EltIdx < 0) { | 
|  | ++Quad[0]; | 
|  | ++Quad[1]; | 
|  | ++Quad[2]; | 
|  | ++Quad[3]; | 
|  | continue; | 
|  | } | 
|  | ++Quad[EltIdx / 4]; | 
|  | InputQuads.set(EltIdx / 4); | 
|  | } | 
|  |  | 
|  | int BestLoQuad = -1; | 
|  | unsigned MaxQuad = 1; | 
|  | for (unsigned i = 0; i < 4; ++i) { | 
|  | if (LoQuad[i] > MaxQuad) { | 
|  | BestLoQuad = i; | 
|  | MaxQuad = LoQuad[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | int BestHiQuad = -1; | 
|  | MaxQuad = 1; | 
|  | for (unsigned i = 0; i < 4; ++i) { | 
|  | if (HiQuad[i] > MaxQuad) { | 
|  | BestHiQuad = i; | 
|  | MaxQuad = HiQuad[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // For SSSE3, If all 8 words of the result come from only 1 quadword of each | 
|  | // of the two input vectors, shuffle them into one input vector so only a | 
|  | // single pshufb instruction is necessary. If There are more than 2 input | 
|  | // quads, disable the next transformation since it does not help SSSE3. | 
|  | bool V1Used = InputQuads[0] || InputQuads[1]; | 
|  | bool V2Used = InputQuads[2] || InputQuads[3]; | 
|  | if (Subtarget->hasSSSE3()) { | 
|  | if (InputQuads.count() == 2 && V1Used && V2Used) { | 
|  | BestLoQuad = InputQuads.find_first(); | 
|  | BestHiQuad = InputQuads.find_next(BestLoQuad); | 
|  | } | 
|  | if (InputQuads.count() > 2) { | 
|  | BestLoQuad = -1; | 
|  | BestHiQuad = -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update | 
|  | // the shuffle mask.  If a quad is scored as -1, that means that it contains | 
|  | // words from all 4 input quadwords. | 
|  | SDValue NewV; | 
|  | if (BestLoQuad >= 0 || BestHiQuad >= 0) { | 
|  | SmallVector<int, 8> MaskV; | 
|  | MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad); | 
|  | MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad); | 
|  | NewV = DAG.getVectorShuffle(MVT::v2i64, dl, | 
|  | DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1), | 
|  | DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]); | 
|  | NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV); | 
|  |  | 
|  | // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the | 
|  | // source words for the shuffle, to aid later transformations. | 
|  | bool AllWordsInNewV = true; | 
|  | bool InOrder[2] = { true, true }; | 
|  | for (unsigned i = 0; i != 8; ++i) { | 
|  | int idx = MaskVals[i]; | 
|  | if (idx != (int)i) | 
|  | InOrder[i/4] = false; | 
|  | if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad) | 
|  | continue; | 
|  | AllWordsInNewV = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV; | 
|  | if (AllWordsInNewV) { | 
|  | for (int i = 0; i != 8; ++i) { | 
|  | int idx = MaskVals[i]; | 
|  | if (idx < 0) | 
|  | continue; | 
|  | idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4; | 
|  | if ((idx != i) && idx < 4) | 
|  | pshufhw = false; | 
|  | if ((idx != i) && idx > 3) | 
|  | pshuflw = false; | 
|  | } | 
|  | V1 = NewV; | 
|  | V2Used = false; | 
|  | BestLoQuad = 0; | 
|  | BestHiQuad = 1; | 
|  | } | 
|  |  | 
|  | // If we've eliminated the use of V2, and the new mask is a pshuflw or | 
|  | // pshufhw, that's as cheap as it gets.  Return the new shuffle. | 
|  | if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) { | 
|  | unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW; | 
|  | unsigned TargetMask = 0; | 
|  | NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, | 
|  | DAG.getUNDEF(MVT::v8i16), &MaskVals[0]); | 
|  | TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()): | 
|  | X86::getShufflePSHUFLWImmediate(NewV.getNode()); | 
|  | V1 = NewV.getOperand(0); | 
|  | return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have SSSE3, and all words of the result are from 1 input vector, | 
|  | // case 2 is generated, otherwise case 3 is generated.  If no SSSE3 | 
|  | // is present, fall back to case 4. | 
|  | if (Subtarget->hasSSSE3()) { | 
|  | SmallVector<SDValue,16> pshufbMask; | 
|  |  | 
|  | // If we have elements from both input vectors, set the high bit of the | 
|  | // shuffle mask element to zero out elements that come from V2 in the V1 | 
|  | // mask, and elements that come from V1 in the V2 mask, so that the two | 
|  | // results can be OR'd together. | 
|  | bool TwoInputs = V1Used && V2Used; | 
|  | for (unsigned i = 0; i != 8; ++i) { | 
|  | int EltIdx = MaskVals[i] * 2; | 
|  | if (TwoInputs && (EltIdx >= 16)) { | 
|  | pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); | 
|  | pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); | 
|  | continue; | 
|  | } | 
|  | pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8)); | 
|  | pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8)); | 
|  | } | 
|  | V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1); | 
|  | V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, dl, | 
|  | MVT::v16i8, &pshufbMask[0], 16)); | 
|  | if (!TwoInputs) | 
|  | return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); | 
|  |  | 
|  | // Calculate the shuffle mask for the second input, shuffle it, and | 
|  | // OR it with the first shuffled input. | 
|  | pshufbMask.clear(); | 
|  | for (unsigned i = 0; i != 8; ++i) { | 
|  | int EltIdx = MaskVals[i] * 2; | 
|  | if (EltIdx < 16) { | 
|  | pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); | 
|  | pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); | 
|  | continue; | 
|  | } | 
|  | pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8)); | 
|  | pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8)); | 
|  | } | 
|  | V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2); | 
|  | V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, dl, | 
|  | MVT::v16i8, &pshufbMask[0], 16)); | 
|  | V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2); | 
|  | return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); | 
|  | } | 
|  |  | 
|  | // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order, | 
|  | // and update MaskVals with new element order. | 
|  | BitVector InOrder(8); | 
|  | if (BestLoQuad >= 0) { | 
|  | SmallVector<int, 8> MaskV; | 
|  | for (int i = 0; i != 4; ++i) { | 
|  | int idx = MaskVals[i]; | 
|  | if (idx < 0) { | 
|  | MaskV.push_back(-1); | 
|  | InOrder.set(i); | 
|  | } else if ((idx / 4) == BestLoQuad) { | 
|  | MaskV.push_back(idx & 3); | 
|  | InOrder.set(i); | 
|  | } else { | 
|  | MaskV.push_back(-1); | 
|  | } | 
|  | } | 
|  | for (unsigned i = 4; i != 8; ++i) | 
|  | MaskV.push_back(i); | 
|  | NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), | 
|  | &MaskV[0]); | 
|  |  | 
|  | if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) | 
|  | NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16, | 
|  | NewV.getOperand(0), | 
|  | X86::getShufflePSHUFLWImmediate(NewV.getNode()), | 
|  | DAG); | 
|  | } | 
|  |  | 
|  | // If BestHi >= 0, generate a pshufhw to put the high elements in order, | 
|  | // and update MaskVals with the new element order. | 
|  | if (BestHiQuad >= 0) { | 
|  | SmallVector<int, 8> MaskV; | 
|  | for (unsigned i = 0; i != 4; ++i) | 
|  | MaskV.push_back(i); | 
|  | for (unsigned i = 4; i != 8; ++i) { | 
|  | int idx = MaskVals[i]; | 
|  | if (idx < 0) { | 
|  | MaskV.push_back(-1); | 
|  | InOrder.set(i); | 
|  | } else if ((idx / 4) == BestHiQuad) { | 
|  | MaskV.push_back((idx & 3) + 4); | 
|  | InOrder.set(i); | 
|  | } else { | 
|  | MaskV.push_back(-1); | 
|  | } | 
|  | } | 
|  | NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), | 
|  | &MaskV[0]); | 
|  |  | 
|  | if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) | 
|  | NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16, | 
|  | NewV.getOperand(0), | 
|  | X86::getShufflePSHUFHWImmediate(NewV.getNode()), | 
|  | DAG); | 
|  | } | 
|  |  | 
|  | // In case BestHi & BestLo were both -1, which means each quadword has a word | 
|  | // from each of the four input quadwords, calculate the InOrder bitvector now | 
|  | // before falling through to the insert/extract cleanup. | 
|  | if (BestLoQuad == -1 && BestHiQuad == -1) { | 
|  | NewV = V1; | 
|  | for (int i = 0; i != 8; ++i) | 
|  | if (MaskVals[i] < 0 || MaskVals[i] == i) | 
|  | InOrder.set(i); | 
|  | } | 
|  |  | 
|  | // The other elements are put in the right place using pextrw and pinsrw. | 
|  | for (unsigned i = 0; i != 8; ++i) { | 
|  | if (InOrder[i]) | 
|  | continue; | 
|  | int EltIdx = MaskVals[i]; | 
|  | if (EltIdx < 0) | 
|  | continue; | 
|  | SDValue ExtOp = (EltIdx < 8) | 
|  | ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1, | 
|  | DAG.getIntPtrConstant(EltIdx)) | 
|  | : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2, | 
|  | DAG.getIntPtrConstant(EltIdx - 8)); | 
|  | NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp, | 
|  | DAG.getIntPtrConstant(i)); | 
|  | } | 
|  | return NewV; | 
|  | } | 
|  |  | 
|  | // v16i8 shuffles - Prefer shuffles in the following order: | 
|  | // 1. [ssse3] 1 x pshufb | 
|  | // 2. [ssse3] 2 x pshufb + 1 x por | 
|  | // 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw | 
|  | static | 
|  | SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp, | 
|  | SelectionDAG &DAG, | 
|  | const X86TargetLowering &TLI) { | 
|  | SDValue V1 = SVOp->getOperand(0); | 
|  | SDValue V2 = SVOp->getOperand(1); | 
|  | DebugLoc dl = SVOp->getDebugLoc(); | 
|  | SmallVector<int, 16> MaskVals; | 
|  | SVOp->getMask(MaskVals); | 
|  |  | 
|  | // If we have SSSE3, case 1 is generated when all result bytes come from | 
|  | // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is | 
|  | // present, fall back to case 3. | 
|  | // FIXME: kill V2Only once shuffles are canonizalized by getNode. | 
|  | bool V1Only = true; | 
|  | bool V2Only = true; | 
|  | for (unsigned i = 0; i < 16; ++i) { | 
|  | int EltIdx = MaskVals[i]; | 
|  | if (EltIdx < 0) | 
|  | continue; | 
|  | if (EltIdx < 16) | 
|  | V2Only = false; | 
|  | else | 
|  | V1Only = false; | 
|  | } | 
|  |  | 
|  | // If SSSE3, use 1 pshufb instruction per vector with elements in the result. | 
|  | if (TLI.getSubtarget()->hasSSSE3()) { | 
|  | SmallVector<SDValue,16> pshufbMask; | 
|  |  | 
|  | // If all result elements are from one input vector, then only translate | 
|  | // undef mask values to 0x80 (zero out result) in the pshufb mask. | 
|  | // | 
|  | // Otherwise, we have elements from both input vectors, and must zero out | 
|  | // elements that come from V2 in the first mask, and V1 in the second mask | 
|  | // so that we can OR them together. | 
|  | bool TwoInputs = !(V1Only || V2Only); | 
|  | for (unsigned i = 0; i != 16; ++i) { | 
|  | int EltIdx = MaskVals[i]; | 
|  | if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) { | 
|  | pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); | 
|  | continue; | 
|  | } | 
|  | pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8)); | 
|  | } | 
|  | // If all the elements are from V2, assign it to V1 and return after | 
|  | // building the first pshufb. | 
|  | if (V2Only) | 
|  | V1 = V2; | 
|  | V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, dl, | 
|  | MVT::v16i8, &pshufbMask[0], 16)); | 
|  | if (!TwoInputs) | 
|  | return V1; | 
|  |  | 
|  | // Calculate the shuffle mask for the second input, shuffle it, and | 
|  | // OR it with the first shuffled input. | 
|  | pshufbMask.clear(); | 
|  | for (unsigned i = 0; i != 16; ++i) { | 
|  | int EltIdx = MaskVals[i]; | 
|  | if (EltIdx < 16) { | 
|  | pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); | 
|  | continue; | 
|  | } | 
|  | pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8)); | 
|  | } | 
|  | V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, dl, | 
|  | MVT::v16i8, &pshufbMask[0], 16)); | 
|  | return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2); | 
|  | } | 
|  |  | 
|  | // No SSSE3 - Calculate in place words and then fix all out of place words | 
|  | // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from | 
|  | // the 16 different words that comprise the two doublequadword input vectors. | 
|  | V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); | 
|  | V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); | 
|  | SDValue NewV = V2Only ? V2 : V1; | 
|  | for (int i = 0; i != 8; ++i) { | 
|  | int Elt0 = MaskVals[i*2]; | 
|  | int Elt1 = MaskVals[i*2+1]; | 
|  |  | 
|  | // This word of the result is all undef, skip it. | 
|  | if (Elt0 < 0 && Elt1 < 0) | 
|  | continue; | 
|  |  | 
|  | // This word of the result is already in the correct place, skip it. | 
|  | if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1)) | 
|  | continue; | 
|  | if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17)) | 
|  | continue; | 
|  |  | 
|  | SDValue Elt0Src = Elt0 < 16 ? V1 : V2; | 
|  | SDValue Elt1Src = Elt1 < 16 ? V1 : V2; | 
|  | SDValue InsElt; | 
|  |  | 
|  | // If Elt0 and Elt1 are defined, are consecutive, and can be load | 
|  | // using a single extract together, load it and store it. | 
|  | if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) { | 
|  | InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src, | 
|  | DAG.getIntPtrConstant(Elt1 / 2)); | 
|  | NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt, | 
|  | DAG.getIntPtrConstant(i)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If Elt1 is defined, extract it from the appropriate source.  If the | 
|  | // source byte is not also odd, shift the extracted word left 8 bits | 
|  | // otherwise clear the bottom 8 bits if we need to do an or. | 
|  | if (Elt1 >= 0) { | 
|  | InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src, | 
|  | DAG.getIntPtrConstant(Elt1 / 2)); | 
|  | if ((Elt1 & 1) == 0) | 
|  | InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt, | 
|  | DAG.getConstant(8, | 
|  | TLI.getShiftAmountTy(InsElt.getValueType()))); | 
|  | else if (Elt0 >= 0) | 
|  | InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt, | 
|  | DAG.getConstant(0xFF00, MVT::i16)); | 
|  | } | 
|  | // If Elt0 is defined, extract it from the appropriate source.  If the | 
|  | // source byte is not also even, shift the extracted word right 8 bits. If | 
|  | // Elt1 was also defined, OR the extracted values together before | 
|  | // inserting them in the result. | 
|  | if (Elt0 >= 0) { | 
|  | SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, | 
|  | Elt0Src, DAG.getIntPtrConstant(Elt0 / 2)); | 
|  | if ((Elt0 & 1) != 0) | 
|  | InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0, | 
|  | DAG.getConstant(8, | 
|  | TLI.getShiftAmountTy(InsElt0.getValueType()))); | 
|  | else if (Elt1 >= 0) | 
|  | InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0, | 
|  | DAG.getConstant(0x00FF, MVT::i16)); | 
|  | InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0) | 
|  | : InsElt0; | 
|  | } | 
|  | NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt, | 
|  | DAG.getIntPtrConstant(i)); | 
|  | } | 
|  | return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV); | 
|  | } | 
|  |  | 
|  | /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide | 
|  | /// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be | 
|  | /// done when every pair / quad of shuffle mask elements point to elements in | 
|  | /// the right sequence. e.g. | 
|  | /// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15> | 
|  | static | 
|  | SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp, | 
|  | SelectionDAG &DAG, DebugLoc dl) { | 
|  | EVT VT = SVOp->getValueType(0); | 
|  | SDValue V1 = SVOp->getOperand(0); | 
|  | SDValue V2 = SVOp->getOperand(1); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | unsigned NewWidth = (NumElems == 4) ? 2 : 4; | 
|  | EVT NewVT; | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | default: assert(false && "Unexpected!"); | 
|  | case MVT::v4f32: NewVT = MVT::v2f64; break; | 
|  | case MVT::v4i32: NewVT = MVT::v2i64; break; | 
|  | case MVT::v8i16: NewVT = MVT::v4i32; break; | 
|  | case MVT::v16i8: NewVT = MVT::v4i32; break; | 
|  | } | 
|  |  | 
|  | int Scale = NumElems / NewWidth; | 
|  | SmallVector<int, 8> MaskVec; | 
|  | for (unsigned i = 0; i < NumElems; i += Scale) { | 
|  | int StartIdx = -1; | 
|  | for (int j = 0; j < Scale; ++j) { | 
|  | int EltIdx = SVOp->getMaskElt(i+j); | 
|  | if (EltIdx < 0) | 
|  | continue; | 
|  | if (StartIdx == -1) | 
|  | StartIdx = EltIdx - (EltIdx % Scale); | 
|  | if (EltIdx != StartIdx + j) | 
|  | return SDValue(); | 
|  | } | 
|  | if (StartIdx == -1) | 
|  | MaskVec.push_back(-1); | 
|  | else | 
|  | MaskVec.push_back(StartIdx / Scale); | 
|  | } | 
|  |  | 
|  | V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1); | 
|  | V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2); | 
|  | return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]); | 
|  | } | 
|  |  | 
|  | /// getVZextMovL - Return a zero-extending vector move low node. | 
|  | /// | 
|  | static SDValue getVZextMovL(EVT VT, EVT OpVT, | 
|  | SDValue SrcOp, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget, DebugLoc dl) { | 
|  | if (VT == MVT::v2f64 || VT == MVT::v4f32) { | 
|  | LoadSDNode *LD = NULL; | 
|  | if (!isScalarLoadToVector(SrcOp.getNode(), &LD)) | 
|  | LD = dyn_cast<LoadSDNode>(SrcOp); | 
|  | if (!LD) { | 
|  | // movssrr and movsdrr do not clear top bits. Try to use movd, movq | 
|  | // instead. | 
|  | MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32; | 
|  | if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) && | 
|  | SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR && | 
|  | SrcOp.getOperand(0).getOpcode() == ISD::BITCAST && | 
|  | SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) { | 
|  | // PR2108 | 
|  | OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32; | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, | 
|  | DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT, | 
|  | DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, | 
|  | OpVT, | 
|  | SrcOp.getOperand(0) | 
|  | .getOperand(0)))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, | 
|  | DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT, | 
|  | DAG.getNode(ISD::BITCAST, dl, | 
|  | OpVT, SrcOp))); | 
|  | } | 
|  |  | 
|  | /// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of | 
|  | /// shuffles. | 
|  | static SDValue | 
|  | LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { | 
|  | SDValue V1 = SVOp->getOperand(0); | 
|  | SDValue V2 = SVOp->getOperand(1); | 
|  | DebugLoc dl = SVOp->getDebugLoc(); | 
|  | EVT VT = SVOp->getValueType(0); | 
|  |  | 
|  | SmallVector<std::pair<int, int>, 8> Locs; | 
|  | Locs.resize(4); | 
|  | SmallVector<int, 8> Mask1(4U, -1); | 
|  | SmallVector<int, 8> PermMask; | 
|  | SVOp->getMask(PermMask); | 
|  |  | 
|  | unsigned NumHi = 0; | 
|  | unsigned NumLo = 0; | 
|  | for (unsigned i = 0; i != 4; ++i) { | 
|  | int Idx = PermMask[i]; | 
|  | if (Idx < 0) { | 
|  | Locs[i] = std::make_pair(-1, -1); | 
|  | } else { | 
|  | assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!"); | 
|  | if (Idx < 4) { | 
|  | Locs[i] = std::make_pair(0, NumLo); | 
|  | Mask1[NumLo] = Idx; | 
|  | NumLo++; | 
|  | } else { | 
|  | Locs[i] = std::make_pair(1, NumHi); | 
|  | if (2+NumHi < 4) | 
|  | Mask1[2+NumHi] = Idx; | 
|  | NumHi++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NumLo <= 2 && NumHi <= 2) { | 
|  | // If no more than two elements come from either vector. This can be | 
|  | // implemented with two shuffles. First shuffle gather the elements. | 
|  | // The second shuffle, which takes the first shuffle as both of its | 
|  | // vector operands, put the elements into the right order. | 
|  | V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); | 
|  |  | 
|  | SmallVector<int, 8> Mask2(4U, -1); | 
|  |  | 
|  | for (unsigned i = 0; i != 4; ++i) { | 
|  | if (Locs[i].first == -1) | 
|  | continue; | 
|  | else { | 
|  | unsigned Idx = (i < 2) ? 0 : 4; | 
|  | Idx += Locs[i].first * 2 + Locs[i].second; | 
|  | Mask2[i] = Idx; | 
|  | } | 
|  | } | 
|  |  | 
|  | return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]); | 
|  | } else if (NumLo == 3 || NumHi == 3) { | 
|  | // Otherwise, we must have three elements from one vector, call it X, and | 
|  | // one element from the other, call it Y.  First, use a shufps to build an | 
|  | // intermediate vector with the one element from Y and the element from X | 
|  | // that will be in the same half in the final destination (the indexes don't | 
|  | // matter). Then, use a shufps to build the final vector, taking the half | 
|  | // containing the element from Y from the intermediate, and the other half | 
|  | // from X. | 
|  | if (NumHi == 3) { | 
|  | // Normalize it so the 3 elements come from V1. | 
|  | CommuteVectorShuffleMask(PermMask, VT); | 
|  | std::swap(V1, V2); | 
|  | } | 
|  |  | 
|  | // Find the element from V2. | 
|  | unsigned HiIndex; | 
|  | for (HiIndex = 0; HiIndex < 3; ++HiIndex) { | 
|  | int Val = PermMask[HiIndex]; | 
|  | if (Val < 0) | 
|  | continue; | 
|  | if (Val >= 4) | 
|  | break; | 
|  | } | 
|  |  | 
|  | Mask1[0] = PermMask[HiIndex]; | 
|  | Mask1[1] = -1; | 
|  | Mask1[2] = PermMask[HiIndex^1]; | 
|  | Mask1[3] = -1; | 
|  | V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); | 
|  |  | 
|  | if (HiIndex >= 2) { | 
|  | Mask1[0] = PermMask[0]; | 
|  | Mask1[1] = PermMask[1]; | 
|  | Mask1[2] = HiIndex & 1 ? 6 : 4; | 
|  | Mask1[3] = HiIndex & 1 ? 4 : 6; | 
|  | return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); | 
|  | } else { | 
|  | Mask1[0] = HiIndex & 1 ? 2 : 0; | 
|  | Mask1[1] = HiIndex & 1 ? 0 : 2; | 
|  | Mask1[2] = PermMask[2]; | 
|  | Mask1[3] = PermMask[3]; | 
|  | if (Mask1[2] >= 0) | 
|  | Mask1[2] += 4; | 
|  | if (Mask1[3] >= 0) | 
|  | Mask1[3] += 4; | 
|  | return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Break it into (shuffle shuffle_hi, shuffle_lo). | 
|  | Locs.clear(); | 
|  | Locs.resize(4); | 
|  | SmallVector<int,8> LoMask(4U, -1); | 
|  | SmallVector<int,8> HiMask(4U, -1); | 
|  |  | 
|  | SmallVector<int,8> *MaskPtr = &LoMask; | 
|  | unsigned MaskIdx = 0; | 
|  | unsigned LoIdx = 0; | 
|  | unsigned HiIdx = 2; | 
|  | for (unsigned i = 0; i != 4; ++i) { | 
|  | if (i == 2) { | 
|  | MaskPtr = &HiMask; | 
|  | MaskIdx = 1; | 
|  | LoIdx = 0; | 
|  | HiIdx = 2; | 
|  | } | 
|  | int Idx = PermMask[i]; | 
|  | if (Idx < 0) { | 
|  | Locs[i] = std::make_pair(-1, -1); | 
|  | } else if (Idx < 4) { | 
|  | Locs[i] = std::make_pair(MaskIdx, LoIdx); | 
|  | (*MaskPtr)[LoIdx] = Idx; | 
|  | LoIdx++; | 
|  | } else { | 
|  | Locs[i] = std::make_pair(MaskIdx, HiIdx); | 
|  | (*MaskPtr)[HiIdx] = Idx; | 
|  | HiIdx++; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]); | 
|  | SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]); | 
|  | SmallVector<int, 8> MaskOps; | 
|  | for (unsigned i = 0; i != 4; ++i) { | 
|  | if (Locs[i].first == -1) { | 
|  | MaskOps.push_back(-1); | 
|  | } else { | 
|  | unsigned Idx = Locs[i].first * 4 + Locs[i].second; | 
|  | MaskOps.push_back(Idx); | 
|  | } | 
|  | } | 
|  | return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]); | 
|  | } | 
|  |  | 
|  | static bool MayFoldVectorLoad(SDValue V) { | 
|  | if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST) | 
|  | V = V.getOperand(0); | 
|  | if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR) | 
|  | V = V.getOperand(0); | 
|  | if (MayFoldLoad(V)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // FIXME: the version above should always be used. Since there's | 
|  | // a bug where several vector shuffles can't be folded because the | 
|  | // DAG is not updated during lowering and a node claims to have two | 
|  | // uses while it only has one, use this version, and let isel match | 
|  | // another instruction if the load really happens to have more than | 
|  | // one use. Remove this version after this bug get fixed. | 
|  | // rdar://8434668, PR8156 | 
|  | static bool RelaxedMayFoldVectorLoad(SDValue V) { | 
|  | if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST) | 
|  | V = V.getOperand(0); | 
|  | if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR) | 
|  | V = V.getOperand(0); | 
|  | if (ISD::isNormalLoad(V.getNode())) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by | 
|  | /// a vector extract, and if both can be later optimized into a single load. | 
|  | /// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked | 
|  | /// here because otherwise a target specific shuffle node is going to be | 
|  | /// emitted for this shuffle, and the optimization not done. | 
|  | /// FIXME: This is probably not the best approach, but fix the problem | 
|  | /// until the right path is decided. | 
|  | static | 
|  | bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI) { | 
|  | EVT VT = V.getValueType(); | 
|  | ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V); | 
|  |  | 
|  | // Be sure that the vector shuffle is present in a pattern like this: | 
|  | // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr) | 
|  | if (!V.hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | SDNode *N = *V.getNode()->use_begin(); | 
|  | if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT) | 
|  | return false; | 
|  |  | 
|  | SDValue EltNo = N->getOperand(1); | 
|  | if (!isa<ConstantSDNode>(EltNo)) | 
|  | return false; | 
|  |  | 
|  | // If the bit convert changed the number of elements, it is unsafe | 
|  | // to examine the mask. | 
|  | bool HasShuffleIntoBitcast = false; | 
|  | if (V.getOpcode() == ISD::BITCAST) { | 
|  | EVT SrcVT = V.getOperand(0).getValueType(); | 
|  | if (SrcVT.getVectorNumElements() != VT.getVectorNumElements()) | 
|  | return false; | 
|  | V = V.getOperand(0); | 
|  | HasShuffleIntoBitcast = true; | 
|  | } | 
|  |  | 
|  | // Select the input vector, guarding against out of range extract vector. | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); | 
|  | int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt); | 
|  | V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1); | 
|  |  | 
|  | // Skip one more bit_convert if necessary | 
|  | if (V.getOpcode() == ISD::BITCAST) | 
|  | V = V.getOperand(0); | 
|  |  | 
|  | if (ISD::isNormalLoad(V.getNode())) { | 
|  | // Is the original load suitable? | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(V); | 
|  |  | 
|  | // FIXME: avoid the multi-use bug that is preventing lots of | 
|  | // of foldings to be detected, this is still wrong of course, but | 
|  | // give the temporary desired behavior, and if it happens that | 
|  | // the load has real more uses, during isel it will not fold, and | 
|  | // will generate poor code. | 
|  | if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse() | 
|  | return false; | 
|  |  | 
|  | if (!HasShuffleIntoBitcast) | 
|  | return true; | 
|  |  | 
|  | // If there's a bitcast before the shuffle, check if the load type and | 
|  | // alignment is valid. | 
|  | unsigned Align = LN0->getAlignment(); | 
|  | unsigned NewAlign = | 
|  | TLI.getTargetData()->getABITypeAlignment( | 
|  | VT.getTypeForEVT(*DAG.getContext())); | 
|  |  | 
|  | if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static | 
|  | SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) { | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | // Canonizalize to v2f64. | 
|  | V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, | 
|  | getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64, | 
|  | V1, DAG)); | 
|  | } | 
|  |  | 
|  | static | 
|  | SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, | 
|  | bool HasSSE2) { | 
|  | SDValue V1 = Op.getOperand(0); | 
|  | SDValue V2 = Op.getOperand(1); | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | assert(VT != MVT::v2i64 && "unsupported shuffle type"); | 
|  |  | 
|  | if (HasSSE2 && VT == MVT::v2f64) | 
|  | return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG); | 
|  |  | 
|  | // v4f32 or v4i32 | 
|  | return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG); | 
|  | } | 
|  |  | 
|  | static | 
|  | SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) { | 
|  | SDValue V1 = Op.getOperand(0); | 
|  | SDValue V2 = Op.getOperand(1); | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | assert((VT == MVT::v4i32 || VT == MVT::v4f32) && | 
|  | "unsupported shuffle type"); | 
|  |  | 
|  | if (V2.getOpcode() == ISD::UNDEF) | 
|  | V2 = V1; | 
|  |  | 
|  | // v4i32 or v4f32 | 
|  | return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG); | 
|  | } | 
|  |  | 
|  | static | 
|  | SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) { | 
|  | SDValue V1 = Op.getOperand(0); | 
|  | SDValue V2 = Op.getOperand(1); | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second | 
|  | // operand of these instructions is only memory, so check if there's a | 
|  | // potencial load folding here, otherwise use SHUFPS or MOVSD to match the | 
|  | // same masks. | 
|  | bool CanFoldLoad = false; | 
|  |  | 
|  | // Trivial case, when V2 comes from a load. | 
|  | if (MayFoldVectorLoad(V2)) | 
|  | CanFoldLoad = true; | 
|  |  | 
|  | // When V1 is a load, it can be folded later into a store in isel, example: | 
|  | //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1) | 
|  | //    turns into: | 
|  | //  (MOVLPSmr addr:$src1, VR128:$src2) | 
|  | // So, recognize this potential and also use MOVLPS or MOVLPD | 
|  | if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op)) | 
|  | CanFoldLoad = true; | 
|  |  | 
|  | // Both of them can't be memory operations though. | 
|  | if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2)) | 
|  | CanFoldLoad = false; | 
|  |  | 
|  | if (CanFoldLoad) { | 
|  | if (HasSSE2 && NumElems == 2) | 
|  | return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG); | 
|  |  | 
|  | if (NumElems == 4) | 
|  | return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG); | 
|  | } | 
|  |  | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | // movl and movlp will both match v2i64, but v2i64 is never matched by | 
|  | // movl earlier because we make it strict to avoid messing with the movlp load | 
|  | // folding logic (see the code above getMOVLP call). Match it here then, | 
|  | // this is horrible, but will stay like this until we move all shuffle | 
|  | // matching to x86 specific nodes. Note that for the 1st condition all | 
|  | // types are matched with movsd. | 
|  | if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp)) | 
|  | return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG); | 
|  | else if (HasSSE2) | 
|  | return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG); | 
|  |  | 
|  |  | 
|  | assert(VT != MVT::v4i32 && "unsupported shuffle type"); | 
|  |  | 
|  | // Invert the operand order and use SHUFPS to match it. | 
|  | return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1, | 
|  | X86::getShuffleSHUFImmediate(SVOp), DAG); | 
|  | } | 
|  |  | 
|  | static inline unsigned getUNPCKLOpcode(EVT VT, const X86Subtarget *Subtarget) { | 
|  | switch(VT.getSimpleVT().SimpleTy) { | 
|  | case MVT::v4i32: return X86ISD::PUNPCKLDQ; | 
|  | case MVT::v2i64: return X86ISD::PUNPCKLQDQ; | 
|  | case MVT::v4f32: | 
|  | return Subtarget->hasAVX() ? X86ISD::VUNPCKLPS : X86ISD::UNPCKLPS; | 
|  | case MVT::v2f64: | 
|  | return Subtarget->hasAVX() ? X86ISD::VUNPCKLPD : X86ISD::UNPCKLPD; | 
|  | case MVT::v8f32: return X86ISD::VUNPCKLPSY; | 
|  | case MVT::v4f64: return X86ISD::VUNPCKLPDY; | 
|  | case MVT::v16i8: return X86ISD::PUNPCKLBW; | 
|  | case MVT::v8i16: return X86ISD::PUNPCKLWD; | 
|  | default: | 
|  | llvm_unreachable("Unknown type for unpckl"); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline unsigned getUNPCKHOpcode(EVT VT) { | 
|  | switch(VT.getSimpleVT().SimpleTy) { | 
|  | case MVT::v4i32: return X86ISD::PUNPCKHDQ; | 
|  | case MVT::v2i64: return X86ISD::PUNPCKHQDQ; | 
|  | case MVT::v4f32: return X86ISD::UNPCKHPS; | 
|  | case MVT::v2f64: return X86ISD::UNPCKHPD; | 
|  | case MVT::v16i8: return X86ISD::PUNPCKHBW; | 
|  | case MVT::v8i16: return X86ISD::PUNPCKHWD; | 
|  | default: | 
|  | llvm_unreachable("Unknown type for unpckh"); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static | 
|  | SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | SDValue V1 = Op.getOperand(0); | 
|  | SDValue V2 = Op.getOperand(1); | 
|  |  | 
|  | if (isZeroShuffle(SVOp)) | 
|  | return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl); | 
|  |  | 
|  | // Handle splat operations | 
|  | if (SVOp->isSplat()) { | 
|  | // Special case, this is the only place now where it's | 
|  | // allowed to return a vector_shuffle operation without | 
|  | // using a target specific node, because *hopefully* it | 
|  | // will be optimized away by the dag combiner. | 
|  | if (VT.getVectorNumElements() <= 4 && | 
|  | CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI)) | 
|  | return Op; | 
|  |  | 
|  | // Handle splats by matching through known masks | 
|  | if (VT.getVectorNumElements() <= 4) | 
|  | return SDValue(); | 
|  |  | 
|  | // Canonicalize all of the remaining to v4f32. | 
|  | return PromoteSplat(SVOp, DAG); | 
|  | } | 
|  |  | 
|  | // If the shuffle can be profitably rewritten as a narrower shuffle, then | 
|  | // do it! | 
|  | if (VT == MVT::v8i16 || VT == MVT::v16i8) { | 
|  | SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl); | 
|  | if (NewOp.getNode()) | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, NewOp); | 
|  | } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) { | 
|  | // FIXME: Figure out a cleaner way to do this. | 
|  | // Try to make use of movq to zero out the top part. | 
|  | if (ISD::isBuildVectorAllZeros(V2.getNode())) { | 
|  | SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl); | 
|  | if (NewOp.getNode()) { | 
|  | if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false)) | 
|  | return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0), | 
|  | DAG, Subtarget, dl); | 
|  | } | 
|  | } else if (ISD::isBuildVectorAllZeros(V1.getNode())) { | 
|  | SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl); | 
|  | if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp))) | 
|  | return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1), | 
|  | DAG, Subtarget, dl); | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | SDValue V1 = Op.getOperand(0); | 
|  | SDValue V2 = Op.getOperand(1); | 
|  | EVT VT = Op.getValueType(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | bool isMMX = VT.getSizeInBits() == 64; | 
|  | bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; | 
|  | bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; | 
|  | bool V1IsSplat = false; | 
|  | bool V2IsSplat = false; | 
|  | bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX(); | 
|  | bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX(); | 
|  | bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX(); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize); | 
|  |  | 
|  | // Shuffle operations on MMX not supported. | 
|  | if (isMMX) | 
|  | return Op; | 
|  |  | 
|  | // Vector shuffle lowering takes 3 steps: | 
|  | // | 
|  | // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable | 
|  | //    narrowing and commutation of operands should be handled. | 
|  | // 2) Matching of shuffles with known shuffle masks to x86 target specific | 
|  | //    shuffle nodes. | 
|  | // 3) Rewriting of unmatched masks into new generic shuffle operations, | 
|  | //    so the shuffle can be broken into other shuffles and the legalizer can | 
|  | //    try the lowering again. | 
|  | // | 
|  | // The general ideia is that no vector_shuffle operation should be left to | 
|  | // be matched during isel, all of them must be converted to a target specific | 
|  | // node here. | 
|  |  | 
|  | // Normalize the input vectors. Here splats, zeroed vectors, profitable | 
|  | // narrowing and commutation of operands should be handled. The actual code | 
|  | // doesn't include all of those, work in progress... | 
|  | SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget); | 
|  | if (NewOp.getNode()) | 
|  | return NewOp; | 
|  |  | 
|  | // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and | 
|  | // unpckh_undef). Only use pshufd if speed is more important than size. | 
|  | if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp)) | 
|  | if (VT != MVT::v2i64 && VT != MVT::v2f64) | 
|  | return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()), dl, VT, V1, V1, DAG); | 
|  | if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp)) | 
|  | if (VT != MVT::v2i64 && VT != MVT::v2f64) | 
|  | return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG); | 
|  |  | 
|  | if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef && | 
|  | RelaxedMayFoldVectorLoad(V1)) | 
|  | return getMOVDDup(Op, dl, V1, DAG); | 
|  |  | 
|  | if (X86::isMOVHLPS_v_undef_Mask(SVOp)) | 
|  | return getMOVHighToLow(Op, dl, DAG); | 
|  |  | 
|  | // Use to match splats | 
|  | if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef && | 
|  | (VT == MVT::v2f64 || VT == MVT::v2i64)) | 
|  | return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG); | 
|  |  | 
|  | if (X86::isPSHUFDMask(SVOp)) { | 
|  | // The actual implementation will match the mask in the if above and then | 
|  | // during isel it can match several different instructions, not only pshufd | 
|  | // as its name says, sad but true, emulate the behavior for now... | 
|  | if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64))) | 
|  | return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG); | 
|  |  | 
|  | unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp); | 
|  |  | 
|  | if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32)) | 
|  | return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG); | 
|  |  | 
|  | if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64)) | 
|  | return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1, | 
|  | TargetMask, DAG); | 
|  |  | 
|  | if (VT == MVT::v4f32) | 
|  | return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1, | 
|  | TargetMask, DAG); | 
|  | } | 
|  |  | 
|  | // Check if this can be converted into a logical shift. | 
|  | bool isLeft = false; | 
|  | unsigned ShAmt = 0; | 
|  | SDValue ShVal; | 
|  | bool isShift = getSubtarget()->hasSSE2() && | 
|  | isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt); | 
|  | if (isShift && ShVal.hasOneUse()) { | 
|  | // If the shifted value has multiple uses, it may be cheaper to use | 
|  | // v_set0 + movlhps or movhlps, etc. | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | ShAmt *= EltVT.getSizeInBits(); | 
|  | return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl); | 
|  | } | 
|  |  | 
|  | if (X86::isMOVLMask(SVOp)) { | 
|  | if (V1IsUndef) | 
|  | return V2; | 
|  | if (ISD::isBuildVectorAllZeros(V1.getNode())) | 
|  | return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl); | 
|  | if (!X86::isMOVLPMask(SVOp)) { | 
|  | if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64)) | 
|  | return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG); | 
|  |  | 
|  | if (VT == MVT::v4i32 || VT == MVT::v4f32) | 
|  | return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: fold these into legal mask. | 
|  | if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp)) | 
|  | return getMOVLowToHigh(Op, dl, DAG, HasSSE2); | 
|  |  | 
|  | if (X86::isMOVHLPSMask(SVOp)) | 
|  | return getMOVHighToLow(Op, dl, DAG); | 
|  |  | 
|  | if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4) | 
|  | return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG); | 
|  |  | 
|  | if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4) | 
|  | return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG); | 
|  |  | 
|  | if (X86::isMOVLPMask(SVOp)) | 
|  | return getMOVLP(Op, dl, DAG, HasSSE2); | 
|  |  | 
|  | if (ShouldXformToMOVHLPS(SVOp) || | 
|  | ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp)) | 
|  | return CommuteVectorShuffle(SVOp, DAG); | 
|  |  | 
|  | if (isShift) { | 
|  | // No better options. Use a vshl / vsrl. | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | ShAmt *= EltVT.getSizeInBits(); | 
|  | return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl); | 
|  | } | 
|  |  | 
|  | bool Commuted = false; | 
|  | // FIXME: This should also accept a bitcast of a splat?  Be careful, not | 
|  | // 1,1,1,1 -> v8i16 though. | 
|  | V1IsSplat = isSplatVector(V1.getNode()); | 
|  | V2IsSplat = isSplatVector(V2.getNode()); | 
|  |  | 
|  | // Canonicalize the splat or undef, if present, to be on the RHS. | 
|  | if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) { | 
|  | Op = CommuteVectorShuffle(SVOp, DAG); | 
|  | SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | V1 = SVOp->getOperand(0); | 
|  | V2 = SVOp->getOperand(1); | 
|  | std::swap(V1IsSplat, V2IsSplat); | 
|  | std::swap(V1IsUndef, V2IsUndef); | 
|  | Commuted = true; | 
|  | } | 
|  |  | 
|  | if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) { | 
|  | // Shuffling low element of v1 into undef, just return v1. | 
|  | if (V2IsUndef) | 
|  | return V1; | 
|  | // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which | 
|  | // the instruction selector will not match, so get a canonical MOVL with | 
|  | // swapped operands to undo the commute. | 
|  | return getMOVL(DAG, dl, VT, V2, V1); | 
|  | } | 
|  |  | 
|  | if (X86::isUNPCKLMask(SVOp)) | 
|  | return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()), | 
|  | dl, VT, V1, V2, DAG); | 
|  |  | 
|  | if (X86::isUNPCKHMask(SVOp)) | 
|  | return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG); | 
|  |  | 
|  | if (V2IsSplat) { | 
|  | // Normalize mask so all entries that point to V2 points to its first | 
|  | // element then try to match unpck{h|l} again. If match, return a | 
|  | // new vector_shuffle with the corrected mask. | 
|  | SDValue NewMask = NormalizeMask(SVOp, DAG); | 
|  | ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask); | 
|  | if (NSVOp != SVOp) { | 
|  | if (X86::isUNPCKLMask(NSVOp, true)) { | 
|  | return NewMask; | 
|  | } else if (X86::isUNPCKHMask(NSVOp, true)) { | 
|  | return NewMask; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Commuted) { | 
|  | // Commute is back and try unpck* again. | 
|  | // FIXME: this seems wrong. | 
|  | SDValue NewOp = CommuteVectorShuffle(SVOp, DAG); | 
|  | ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp); | 
|  |  | 
|  | if (X86::isUNPCKLMask(NewSVOp)) | 
|  | return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()), | 
|  | dl, VT, V2, V1, DAG); | 
|  |  | 
|  | if (X86::isUNPCKHMask(NewSVOp)) | 
|  | return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG); | 
|  | } | 
|  |  | 
|  | // Normalize the node to match x86 shuffle ops if needed | 
|  | if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp)) | 
|  | return CommuteVectorShuffle(SVOp, DAG); | 
|  |  | 
|  | // The checks below are all present in isShuffleMaskLegal, but they are | 
|  | // inlined here right now to enable us to directly emit target specific | 
|  | // nodes, and remove one by one until they don't return Op anymore. | 
|  | SmallVector<int, 16> M; | 
|  | SVOp->getMask(M); | 
|  |  | 
|  | if (isPALIGNRMask(M, VT, HasSSSE3)) | 
|  | return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2, | 
|  | X86::getShufflePALIGNRImmediate(SVOp), | 
|  | DAG); | 
|  |  | 
|  | if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) && | 
|  | SVOp->getSplatIndex() == 0 && V2IsUndef) { | 
|  | if (VT == MVT::v2f64) { | 
|  | X86ISD::NodeType Opcode = | 
|  | getSubtarget()->hasAVX() ? X86ISD::VUNPCKLPD : X86ISD::UNPCKLPD; | 
|  | return getTargetShuffleNode(Opcode, dl, VT, V1, V1, DAG); | 
|  | } | 
|  | if (VT == MVT::v2i64) | 
|  | return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG); | 
|  | } | 
|  |  | 
|  | if (isPSHUFHWMask(M, VT)) | 
|  | return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1, | 
|  | X86::getShufflePSHUFHWImmediate(SVOp), | 
|  | DAG); | 
|  |  | 
|  | if (isPSHUFLWMask(M, VT)) | 
|  | return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1, | 
|  | X86::getShufflePSHUFLWImmediate(SVOp), | 
|  | DAG); | 
|  |  | 
|  | if (isSHUFPMask(M, VT)) { | 
|  | unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp); | 
|  | if (VT == MVT::v4f32 || VT == MVT::v4i32) | 
|  | return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2, | 
|  | TargetMask, DAG); | 
|  | if (VT == MVT::v2f64 || VT == MVT::v2i64) | 
|  | return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2, | 
|  | TargetMask, DAG); | 
|  | } | 
|  |  | 
|  | if (X86::isUNPCKL_v_undef_Mask(SVOp)) | 
|  | if (VT != MVT::v2i64 && VT != MVT::v2f64) | 
|  | return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()), | 
|  | dl, VT, V1, V1, DAG); | 
|  | if (X86::isUNPCKH_v_undef_Mask(SVOp)) | 
|  | if (VT != MVT::v2i64 && VT != MVT::v2f64) | 
|  | return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG); | 
|  |  | 
|  | // Handle v8i16 specifically since SSE can do byte extraction and insertion. | 
|  | if (VT == MVT::v8i16) { | 
|  | SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG); | 
|  | if (NewOp.getNode()) | 
|  | return NewOp; | 
|  | } | 
|  |  | 
|  | if (VT == MVT::v16i8) { | 
|  | SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this); | 
|  | if (NewOp.getNode()) | 
|  | return NewOp; | 
|  | } | 
|  |  | 
|  | // Handle all 4 wide cases with a number of shuffles. | 
|  | if (NumElems == 4) | 
|  | return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | if (VT.getSizeInBits() == 8) { | 
|  | SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32, | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, | 
|  | DAG.getValueType(VT)); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); | 
|  | } else if (VT.getSizeInBits() == 16) { | 
|  | unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | // If Idx is 0, it's cheaper to do a move instead of a pextrw. | 
|  | if (Idx == 0) | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, | 
|  | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, | 
|  | DAG.getNode(ISD::BITCAST, dl, | 
|  | MVT::v4i32, | 
|  | Op.getOperand(0)), | 
|  | Op.getOperand(1))); | 
|  | SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32, | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, | 
|  | DAG.getValueType(VT)); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); | 
|  | } else if (VT == MVT::f32) { | 
|  | // EXTRACTPS outputs to a GPR32 register which will require a movd to copy | 
|  | // the result back to FR32 register. It's only worth matching if the | 
|  | // result has a single use which is a store or a bitcast to i32.  And in | 
|  | // the case of a store, it's not worth it if the index is a constant 0, | 
|  | // because a MOVSSmr can be used instead, which is smaller and faster. | 
|  | if (!Op.hasOneUse()) | 
|  | return SDValue(); | 
|  | SDNode *User = *Op.getNode()->use_begin(); | 
|  | if ((User->getOpcode() != ISD::STORE || | 
|  | (isa<ConstantSDNode>(Op.getOperand(1)) && | 
|  | cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) && | 
|  | (User->getOpcode() != ISD::BITCAST || | 
|  | User->getValueType(0) != MVT::i32)) | 
|  | return SDValue(); | 
|  | SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, | 
|  | DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, | 
|  | Op.getOperand(0)), | 
|  | Op.getOperand(1)); | 
|  | return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract); | 
|  | } else if (VT == MVT::i32) { | 
|  | // ExtractPS works with constant index. | 
|  | if (isa<ConstantSDNode>(Op.getOperand(1))) | 
|  | return Op; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | if (!isa<ConstantSDNode>(Op.getOperand(1))) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | EVT VecVT = Vec.getValueType(); | 
|  |  | 
|  | // If this is a 256-bit vector result, first extract the 128-bit | 
|  | // vector and then extract from the 128-bit vector. | 
|  | if (VecVT.getSizeInBits() > 128) { | 
|  | DebugLoc dl = Op.getNode()->getDebugLoc(); | 
|  | unsigned NumElems = VecVT.getVectorNumElements(); | 
|  | SDValue Idx = Op.getOperand(1); | 
|  |  | 
|  | if (!isa<ConstantSDNode>(Idx)) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned ExtractNumElems = NumElems / (VecVT.getSizeInBits() / 128); | 
|  | unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); | 
|  |  | 
|  | // Get the 128-bit vector. | 
|  | bool Upper = IdxVal >= ExtractNumElems; | 
|  | Vec = Extract128BitVector(Vec, Idx, DAG, dl); | 
|  |  | 
|  | // Extract from it. | 
|  | SDValue ScaledIdx = Idx; | 
|  | if (Upper) | 
|  | ScaledIdx = DAG.getNode(ISD::SUB, dl, Idx.getValueType(), Idx, | 
|  | DAG.getConstant(ExtractNumElems, | 
|  | Idx.getValueType())); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec, | 
|  | ScaledIdx); | 
|  | } | 
|  |  | 
|  | assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length"); | 
|  |  | 
|  | if (Subtarget->hasSSE41()) { | 
|  | SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG); | 
|  | if (Res.getNode()) | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | // TODO: handle v16i8. | 
|  | if (VT.getSizeInBits() == 16) { | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | if (Idx == 0) | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, | 
|  | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, | 
|  | DAG.getNode(ISD::BITCAST, dl, | 
|  | MVT::v4i32, Vec), | 
|  | Op.getOperand(1))); | 
|  | // Transform it so it match pextrw which produces a 32-bit result. | 
|  | EVT EltVT = MVT::i32; | 
|  | SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT, | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract, | 
|  | DAG.getValueType(VT)); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); | 
|  | } else if (VT.getSizeInBits() == 32) { | 
|  | unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | if (Idx == 0) | 
|  | return Op; | 
|  |  | 
|  | // SHUFPS the element to the lowest double word, then movss. | 
|  | int Mask[4] = { Idx, -1, -1, -1 }; | 
|  | EVT VVT = Op.getOperand(0).getValueType(); | 
|  | SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), | 
|  | DAG.getUNDEF(VVT), Mask); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } else if (VT.getSizeInBits() == 64) { | 
|  | // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b | 
|  | // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught | 
|  | //        to match extract_elt for f64. | 
|  | unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | if (Idx == 0) | 
|  | return Op; | 
|  |  | 
|  | // UNPCKHPD the element to the lowest double word, then movsd. | 
|  | // Note if the lower 64 bits of the result of the UNPCKHPD is then stored | 
|  | // to a f64mem, the whole operation is folded into a single MOVHPDmr. | 
|  | int Mask[2] = { 1, -1 }; | 
|  | EVT VVT = Op.getOperand(0).getValueType(); | 
|  | SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), | 
|  | DAG.getUNDEF(VVT), Mask); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | SDValue N1 = Op.getOperand(1); | 
|  | SDValue N2 = Op.getOperand(2); | 
|  |  | 
|  | if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) && | 
|  | isa<ConstantSDNode>(N2)) { | 
|  | unsigned Opc; | 
|  | if (VT == MVT::v8i16) | 
|  | Opc = X86ISD::PINSRW; | 
|  | else if (VT == MVT::v16i8) | 
|  | Opc = X86ISD::PINSRB; | 
|  | else | 
|  | Opc = X86ISD::PINSRB; | 
|  |  | 
|  | // Transform it so it match pinsr{b,w} which expects a GR32 as its second | 
|  | // argument. | 
|  | if (N1.getValueType() != MVT::i32) | 
|  | N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); | 
|  | if (N2.getValueType() != MVT::i32) | 
|  | N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue()); | 
|  | return DAG.getNode(Opc, dl, VT, N0, N1, N2); | 
|  | } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) { | 
|  | // Bits [7:6] of the constant are the source select.  This will always be | 
|  | //  zero here.  The DAG Combiner may combine an extract_elt index into these | 
|  | //  bits.  For example (insert (extract, 3), 2) could be matched by putting | 
|  | //  the '3' into bits [7:6] of X86ISD::INSERTPS. | 
|  | // Bits [5:4] of the constant are the destination select.  This is the | 
|  | //  value of the incoming immediate. | 
|  | // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may | 
|  | //   combine either bitwise AND or insert of float 0.0 to set these bits. | 
|  | N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4); | 
|  | // Create this as a scalar to vector.. | 
|  | N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1); | 
|  | return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2); | 
|  | } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) { | 
|  | // PINSR* works with constant index. | 
|  | return Op; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  |  | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | SDValue N1 = Op.getOperand(1); | 
|  | SDValue N2 = Op.getOperand(2); | 
|  |  | 
|  | // If this is a 256-bit vector result, first insert into a 128-bit | 
|  | // vector and then insert into the 256-bit vector. | 
|  | if (VT.getSizeInBits() > 128) { | 
|  | if (!isa<ConstantSDNode>(N2)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Get the 128-bit vector. | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue(); | 
|  | bool Upper = IdxVal >= NumElems / 2; | 
|  |  | 
|  | SDValue SubN0 = Extract128BitVector(N0, N2, DAG, dl); | 
|  |  | 
|  | // Insert into it. | 
|  | SDValue ScaledN2 = N2; | 
|  | if (Upper) | 
|  | ScaledN2 = DAG.getNode(ISD::SUB, dl, N2.getValueType(), N2, | 
|  | DAG.getConstant(NumElems / | 
|  | (VT.getSizeInBits() / 128), | 
|  | N2.getValueType())); | 
|  | Op = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubN0.getValueType(), SubN0, | 
|  | N1, ScaledN2); | 
|  |  | 
|  | // Insert the 128-bit vector | 
|  | // FIXME: Why UNDEF? | 
|  | return Insert128BitVector(N0, Op, N2, DAG, dl); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasSSE41()) | 
|  | return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG); | 
|  |  | 
|  | if (EltVT == MVT::i8) | 
|  | return SDValue(); | 
|  |  | 
|  | if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) { | 
|  | // Transform it so it match pinsrw which expects a 16-bit value in a GR32 | 
|  | // as its second argument. | 
|  | if (N1.getValueType() != MVT::i32) | 
|  | N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); | 
|  | if (N2.getValueType() != MVT::i32) | 
|  | N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue()); | 
|  | return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const { | 
|  | LLVMContext *Context = DAG.getContext(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | EVT OpVT = Op.getValueType(); | 
|  |  | 
|  | // If this is a 256-bit vector result, first insert into a 128-bit | 
|  | // vector and then insert into the 256-bit vector. | 
|  | if (OpVT.getSizeInBits() > 128) { | 
|  | // Insert into a 128-bit vector. | 
|  | EVT VT128 = EVT::getVectorVT(*Context, | 
|  | OpVT.getVectorElementType(), | 
|  | OpVT.getVectorNumElements() / 2); | 
|  |  | 
|  | Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0)); | 
|  |  | 
|  | // Insert the 128-bit vector. | 
|  | return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op, | 
|  | DAG.getConstant(0, MVT::i32), | 
|  | DAG, dl); | 
|  | } | 
|  |  | 
|  | if (Op.getValueType() == MVT::v1i64 && | 
|  | Op.getOperand(0).getValueType() == MVT::i64) | 
|  | return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0)); | 
|  |  | 
|  | SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0)); | 
|  | assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 && | 
|  | "Expected an SSE type!"); | 
|  | return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), | 
|  | DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt)); | 
|  | } | 
|  |  | 
|  | // Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in | 
|  | // a simple subregister reference or explicit instructions to grab | 
|  | // upper bits of a vector. | 
|  | SDValue | 
|  | X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const { | 
|  | if (Subtarget->hasAVX()) { | 
|  | DebugLoc dl = Op.getNode()->getDebugLoc(); | 
|  | SDValue Vec = Op.getNode()->getOperand(0); | 
|  | SDValue Idx = Op.getNode()->getOperand(1); | 
|  |  | 
|  | if (Op.getNode()->getValueType(0).getSizeInBits() == 128 | 
|  | && Vec.getNode()->getValueType(0).getSizeInBits() == 256) { | 
|  | return Extract128BitVector(Vec, Idx, DAG, dl); | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a | 
|  | // simple superregister reference or explicit instructions to insert | 
|  | // the upper bits of a vector. | 
|  | SDValue | 
|  | X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const { | 
|  | if (Subtarget->hasAVX()) { | 
|  | DebugLoc dl = Op.getNode()->getDebugLoc(); | 
|  | SDValue Vec = Op.getNode()->getOperand(0); | 
|  | SDValue SubVec = Op.getNode()->getOperand(1); | 
|  | SDValue Idx = Op.getNode()->getOperand(2); | 
|  |  | 
|  | if (Op.getNode()->getValueType(0).getSizeInBits() == 256 | 
|  | && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) { | 
|  | return Insert128BitVector(Vec, SubVec, Idx, DAG, dl); | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as | 
|  | // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is | 
|  | // one of the above mentioned nodes. It has to be wrapped because otherwise | 
|  | // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only | 
|  | // be used to form addressing mode. These wrapped nodes will be selected | 
|  | // into MOV32ri. | 
|  | SDValue | 
|  | X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { | 
|  | ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); | 
|  |  | 
|  | // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the | 
|  | // global base reg. | 
|  | unsigned char OpFlag = 0; | 
|  | unsigned WrapperKind = X86ISD::Wrapper; | 
|  | CodeModel::Model M = getTargetMachine().getCodeModel(); | 
|  |  | 
|  | if (Subtarget->isPICStyleRIPRel() && | 
|  | (M == CodeModel::Small || M == CodeModel::Kernel)) | 
|  | WrapperKind = X86ISD::WrapperRIP; | 
|  | else if (Subtarget->isPICStyleGOT()) | 
|  | OpFlag = X86II::MO_GOTOFF; | 
|  | else if (Subtarget->isPICStyleStubPIC()) | 
|  | OpFlag = X86II::MO_PIC_BASE_OFFSET; | 
|  |  | 
|  | SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(), | 
|  | CP->getAlignment(), | 
|  | CP->getOffset(), OpFlag); | 
|  | DebugLoc DL = CP->getDebugLoc(); | 
|  | Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); | 
|  | // With PIC, the address is actually $g + Offset. | 
|  | if (OpFlag) { | 
|  | Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, | 
|  | DebugLoc(), getPointerTy()), | 
|  | Result); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { | 
|  | JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); | 
|  |  | 
|  | // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the | 
|  | // global base reg. | 
|  | unsigned char OpFlag = 0; | 
|  | unsigned WrapperKind = X86ISD::Wrapper; | 
|  | CodeModel::Model M = getTargetMachine().getCodeModel(); | 
|  |  | 
|  | if (Subtarget->isPICStyleRIPRel() && | 
|  | (M == CodeModel::Small || M == CodeModel::Kernel)) | 
|  | WrapperKind = X86ISD::WrapperRIP; | 
|  | else if (Subtarget->isPICStyleGOT()) | 
|  | OpFlag = X86II::MO_GOTOFF; | 
|  | else if (Subtarget->isPICStyleStubPIC()) | 
|  | OpFlag = X86II::MO_PIC_BASE_OFFSET; | 
|  |  | 
|  | SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(), | 
|  | OpFlag); | 
|  | DebugLoc DL = JT->getDebugLoc(); | 
|  | Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); | 
|  |  | 
|  | // With PIC, the address is actually $g + Offset. | 
|  | if (OpFlag) | 
|  | Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, | 
|  | DebugLoc(), getPointerTy()), | 
|  | Result); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const { | 
|  | const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); | 
|  |  | 
|  | // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the | 
|  | // global base reg. | 
|  | unsigned char OpFlag = 0; | 
|  | unsigned WrapperKind = X86ISD::Wrapper; | 
|  | CodeModel::Model M = getTargetMachine().getCodeModel(); | 
|  |  | 
|  | if (Subtarget->isPICStyleRIPRel() && | 
|  | (M == CodeModel::Small || M == CodeModel::Kernel)) | 
|  | WrapperKind = X86ISD::WrapperRIP; | 
|  | else if (Subtarget->isPICStyleGOT()) | 
|  | OpFlag = X86II::MO_GOTOFF; | 
|  | else if (Subtarget->isPICStyleStubPIC()) | 
|  | OpFlag = X86II::MO_PIC_BASE_OFFSET; | 
|  |  | 
|  | SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag); | 
|  |  | 
|  | DebugLoc DL = Op.getDebugLoc(); | 
|  | Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); | 
|  |  | 
|  |  | 
|  | // With PIC, the address is actually $g + Offset. | 
|  | if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && | 
|  | !Subtarget->is64Bit()) { | 
|  | Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, | 
|  | DebugLoc(), getPointerTy()), | 
|  | Result); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { | 
|  | // Create the TargetBlockAddressAddress node. | 
|  | unsigned char OpFlags = | 
|  | Subtarget->ClassifyBlockAddressReference(); | 
|  | CodeModel::Model M = getTargetMachine().getCodeModel(); | 
|  | const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | SDValue Result = DAG.getBlockAddress(BA, getPointerTy(), | 
|  | /*isTarget=*/true, OpFlags); | 
|  |  | 
|  | if (Subtarget->isPICStyleRIPRel() && | 
|  | (M == CodeModel::Small || M == CodeModel::Kernel)) | 
|  | Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result); | 
|  | else | 
|  | Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result); | 
|  |  | 
|  | // With PIC, the address is actually $g + Offset. | 
|  | if (isGlobalRelativeToPICBase(OpFlags)) { | 
|  | Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()), | 
|  | Result); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl, | 
|  | int64_t Offset, | 
|  | SelectionDAG &DAG) const { | 
|  | // Create the TargetGlobalAddress node, folding in the constant | 
|  | // offset if it is legal. | 
|  | unsigned char OpFlags = | 
|  | Subtarget->ClassifyGlobalReference(GV, getTargetMachine()); | 
|  | CodeModel::Model M = getTargetMachine().getCodeModel(); | 
|  | SDValue Result; | 
|  | if (OpFlags == X86II::MO_NO_FLAG && | 
|  | X86::isOffsetSuitableForCodeModel(Offset, M)) { | 
|  | // A direct static reference to a global. | 
|  | Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset); | 
|  | Offset = 0; | 
|  | } else { | 
|  | Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags); | 
|  | } | 
|  |  | 
|  | if (Subtarget->isPICStyleRIPRel() && | 
|  | (M == CodeModel::Small || M == CodeModel::Kernel)) | 
|  | Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result); | 
|  | else | 
|  | Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result); | 
|  |  | 
|  | // With PIC, the address is actually $g + Offset. | 
|  | if (isGlobalRelativeToPICBase(OpFlags)) { | 
|  | Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()), | 
|  | Result); | 
|  | } | 
|  |  | 
|  | // For globals that require a load from a stub to get the address, emit the | 
|  | // load. | 
|  | if (isGlobalStubReference(OpFlags)) | 
|  | Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result, | 
|  | MachinePointerInfo::getGOT(), false, false, 0); | 
|  |  | 
|  | // If there was a non-zero offset that we didn't fold, create an explicit | 
|  | // addition for it. | 
|  | if (Offset != 0) | 
|  | Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result, | 
|  | DAG.getConstant(Offset, getPointerTy())); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { | 
|  | const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); | 
|  | int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); | 
|  | return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG); | 
|  | } | 
|  |  | 
|  | static SDValue | 
|  | GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA, | 
|  | SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg, | 
|  | unsigned char OperandFlags) { | 
|  | MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | DebugLoc dl = GA->getDebugLoc(); | 
|  | SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, | 
|  | GA->getValueType(0), | 
|  | GA->getOffset(), | 
|  | OperandFlags); | 
|  | if (InFlag) { | 
|  | SDValue Ops[] = { Chain,  TGA, *InFlag }; | 
|  | Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3); | 
|  | } else { | 
|  | SDValue Ops[]  = { Chain, TGA }; | 
|  | Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2); | 
|  | } | 
|  |  | 
|  | // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. | 
|  | MFI->setAdjustsStack(true); | 
|  |  | 
|  | SDValue Flag = Chain.getValue(1); | 
|  | return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag); | 
|  | } | 
|  |  | 
|  | // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit | 
|  | static SDValue | 
|  | LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG, | 
|  | const EVT PtrVT) { | 
|  | SDValue InFlag; | 
|  | DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better | 
|  | SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, | 
|  | DebugLoc(), PtrVT), InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD); | 
|  | } | 
|  |  | 
|  | // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit | 
|  | static SDValue | 
|  | LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG, | 
|  | const EVT PtrVT) { | 
|  | return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, | 
|  | X86::RAX, X86II::MO_TLSGD); | 
|  | } | 
|  |  | 
|  | // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or | 
|  | // "local exec" model. | 
|  | static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, | 
|  | const EVT PtrVT, TLSModel::Model model, | 
|  | bool is64Bit) { | 
|  | DebugLoc dl = GA->getDebugLoc(); | 
|  |  | 
|  | // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit). | 
|  | Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(), | 
|  | is64Bit ? 257 : 256)); | 
|  |  | 
|  | SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), | 
|  | DAG.getIntPtrConstant(0), | 
|  | MachinePointerInfo(Ptr), false, false, 0); | 
|  |  | 
|  | unsigned char OperandFlags = 0; | 
|  | // Most TLS accesses are not RIP relative, even on x86-64.  One exception is | 
|  | // initialexec. | 
|  | unsigned WrapperKind = X86ISD::Wrapper; | 
|  | if (model == TLSModel::LocalExec) { | 
|  | OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF; | 
|  | } else if (is64Bit) { | 
|  | assert(model == TLSModel::InitialExec); | 
|  | OperandFlags = X86II::MO_GOTTPOFF; | 
|  | WrapperKind = X86ISD::WrapperRIP; | 
|  | } else { | 
|  | assert(model == TLSModel::InitialExec); | 
|  | OperandFlags = X86II::MO_INDNTPOFF; | 
|  | } | 
|  |  | 
|  | // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial | 
|  | // exec) | 
|  | SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, | 
|  | GA->getValueType(0), | 
|  | GA->getOffset(), OperandFlags); | 
|  | SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); | 
|  |  | 
|  | if (model == TLSModel::InitialExec) | 
|  | Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset, | 
|  | MachinePointerInfo::getGOT(), false, false, 0); | 
|  |  | 
|  | // The address of the thread local variable is the add of the thread | 
|  | // pointer with the offset of the variable. | 
|  | return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { | 
|  |  | 
|  | GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); | 
|  | const GlobalValue *GV = GA->getGlobal(); | 
|  |  | 
|  | if (Subtarget->isTargetELF()) { | 
|  | // TODO: implement the "local dynamic" model | 
|  | // TODO: implement the "initial exec"model for pic executables | 
|  |  | 
|  | // If GV is an alias then use the aliasee for determining | 
|  | // thread-localness. | 
|  | if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) | 
|  | GV = GA->resolveAliasedGlobal(false); | 
|  |  | 
|  | TLSModel::Model model | 
|  | = getTLSModel(GV, getTargetMachine().getRelocationModel()); | 
|  |  | 
|  | switch (model) { | 
|  | case TLSModel::GeneralDynamic: | 
|  | case TLSModel::LocalDynamic: // not implemented | 
|  | if (Subtarget->is64Bit()) | 
|  | return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy()); | 
|  | return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy()); | 
|  |  | 
|  | case TLSModel::InitialExec: | 
|  | case TLSModel::LocalExec: | 
|  | return LowerToTLSExecModel(GA, DAG, getPointerTy(), model, | 
|  | Subtarget->is64Bit()); | 
|  | } | 
|  | } else if (Subtarget->isTargetDarwin()) { | 
|  | // Darwin only has one model of TLS.  Lower to that. | 
|  | unsigned char OpFlag = 0; | 
|  | unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ? | 
|  | X86ISD::WrapperRIP : X86ISD::Wrapper; | 
|  |  | 
|  | // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the | 
|  | // global base reg. | 
|  | bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) && | 
|  | !Subtarget->is64Bit(); | 
|  | if (PIC32) | 
|  | OpFlag = X86II::MO_TLVP_PIC_BASE; | 
|  | else | 
|  | OpFlag = X86II::MO_TLVP; | 
|  | DebugLoc DL = Op.getDebugLoc(); | 
|  | SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, | 
|  | GA->getValueType(0), | 
|  | GA->getOffset(), OpFlag); | 
|  | SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); | 
|  |  | 
|  | // With PIC32, the address is actually $g + Offset. | 
|  | if (PIC32) | 
|  | Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(), | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, | 
|  | DebugLoc(), getPointerTy()), | 
|  | Offset); | 
|  |  | 
|  | // Lowering the machine isd will make sure everything is in the right | 
|  | // location. | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SDValue Args[] = { Chain, Offset }; | 
|  | Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2); | 
|  |  | 
|  | // TLSCALL will be codegen'ed as call. Inform MFI that function has calls. | 
|  | MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | MFI->setAdjustsStack(true); | 
|  |  | 
|  | // And our return value (tls address) is in the standard call return value | 
|  | // location. | 
|  | unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; | 
|  | return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy()); | 
|  | } | 
|  |  | 
|  | assert(false && | 
|  | "TLS not implemented for this target."); | 
|  |  | 
|  | llvm_unreachable("Unreachable"); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and | 
|  | /// take a 2 x i32 value to shift plus a shift amount. | 
|  | SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const { | 
|  | assert(Op.getNumOperands() == 3 && "Not a double-shift!"); | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned VTBits = VT.getSizeInBits(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; | 
|  | SDValue ShOpLo = Op.getOperand(0); | 
|  | SDValue ShOpHi = Op.getOperand(1); | 
|  | SDValue ShAmt  = Op.getOperand(2); | 
|  | SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, | 
|  | DAG.getConstant(VTBits - 1, MVT::i8)) | 
|  | : DAG.getConstant(0, VT); | 
|  |  | 
|  | SDValue Tmp2, Tmp3; | 
|  | if (Op.getOpcode() == ISD::SHL_PARTS) { | 
|  | Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt); | 
|  | Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); | 
|  | } else { | 
|  | Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt); | 
|  | Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt); | 
|  | } | 
|  |  | 
|  | SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt, | 
|  | DAG.getConstant(VTBits, MVT::i8)); | 
|  | SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32, | 
|  | AndNode, DAG.getConstant(0, MVT::i8)); | 
|  |  | 
|  | SDValue Hi, Lo; | 
|  | SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8); | 
|  | SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond }; | 
|  | SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond }; | 
|  |  | 
|  | if (Op.getOpcode() == ISD::SHL_PARTS) { | 
|  | Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4); | 
|  | Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4); | 
|  | } else { | 
|  | Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4); | 
|  | Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4); | 
|  | } | 
|  |  | 
|  | SDValue Ops[2] = { Lo, Hi }; | 
|  | return DAG.getMergeValues(Ops, 2, dl); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT SrcVT = Op.getOperand(0).getValueType(); | 
|  |  | 
|  | if (SrcVT.isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 && | 
|  | "Unknown SINT_TO_FP to lower!"); | 
|  |  | 
|  | // These are really Legal; return the operand so the caller accepts it as | 
|  | // Legal. | 
|  | if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType())) | 
|  | return Op; | 
|  | if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) && | 
|  | Subtarget->is64Bit()) { | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | unsigned Size = SrcVT.getSizeInBits()/8; | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false); | 
|  | SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  | SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), | 
|  | StackSlot, | 
|  | MachinePointerInfo::getFixedStack(SSFI), | 
|  | false, false, 0); | 
|  | return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, | 
|  | SDValue StackSlot, | 
|  | SelectionDAG &DAG) const { | 
|  | // Build the FILD | 
|  | DebugLoc DL = Op.getDebugLoc(); | 
|  | SDVTList Tys; | 
|  | bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType()); | 
|  | if (useSSE) | 
|  | Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue); | 
|  | else | 
|  | Tys = DAG.getVTList(Op.getValueType(), MVT::Other); | 
|  |  | 
|  | unsigned ByteSize = SrcVT.getSizeInBits()/8; | 
|  |  | 
|  | int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex(); | 
|  | MachineMemOperand *MMO = | 
|  | DAG.getMachineFunction() | 
|  | .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), | 
|  | MachineMemOperand::MOLoad, ByteSize, ByteSize); | 
|  |  | 
|  | SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) }; | 
|  | SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG : | 
|  | X86ISD::FILD, DL, | 
|  | Tys, Ops, array_lengthof(Ops), | 
|  | SrcVT, MMO); | 
|  |  | 
|  | if (useSSE) { | 
|  | Chain = Result.getValue(1); | 
|  | SDValue InFlag = Result.getValue(2); | 
|  |  | 
|  | // FIXME: Currently the FST is flagged to the FILD_FLAG. This | 
|  | // shouldn't be necessary except that RFP cannot be live across | 
|  | // multiple blocks. When stackifier is fixed, they can be uncoupled. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | unsigned SSFISize = Op.getValueType().getSizeInBits()/8; | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false); | 
|  | SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  | Tys = DAG.getVTList(MVT::Other); | 
|  | SDValue Ops[] = { | 
|  | Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag | 
|  | }; | 
|  | MachineMemOperand *MMO = | 
|  | DAG.getMachineFunction() | 
|  | .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), | 
|  | MachineMemOperand::MOStore, SSFISize, SSFISize); | 
|  |  | 
|  | Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys, | 
|  | Ops, array_lengthof(Ops), | 
|  | Op.getValueType(), MMO); | 
|  | Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot, | 
|  | MachinePointerInfo::getFixedStack(SSFI), | 
|  | false, false, 0); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion. | 
|  | SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | // This algorithm is not obvious. Here it is in C code, more or less: | 
|  | /* | 
|  | double uint64_to_double( uint32_t hi, uint32_t lo ) { | 
|  | static const __m128i exp = { 0x4330000045300000ULL, 0 }; | 
|  | static const __m128d bias = { 0x1.0p84, 0x1.0p52 }; | 
|  |  | 
|  | // Copy ints to xmm registers. | 
|  | __m128i xh = _mm_cvtsi32_si128( hi ); | 
|  | __m128i xl = _mm_cvtsi32_si128( lo ); | 
|  |  | 
|  | // Combine into low half of a single xmm register. | 
|  | __m128i x = _mm_unpacklo_epi32( xh, xl ); | 
|  | __m128d d; | 
|  | double sd; | 
|  |  | 
|  | // Merge in appropriate exponents to give the integer bits the right | 
|  | // magnitude. | 
|  | x = _mm_unpacklo_epi32( x, exp ); | 
|  |  | 
|  | // Subtract away the biases to deal with the IEEE-754 double precision | 
|  | // implicit 1. | 
|  | d = _mm_sub_pd( (__m128d) x, bias ); | 
|  |  | 
|  | // All conversions up to here are exact. The correctly rounded result is | 
|  | // calculated using the current rounding mode using the following | 
|  | // horizontal add. | 
|  | d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) ); | 
|  | _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this | 
|  | // store doesn't really need to be here (except | 
|  | // maybe to zero the other double) | 
|  | return sd; | 
|  | } | 
|  | */ | 
|  |  | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | LLVMContext *Context = DAG.getContext(); | 
|  |  | 
|  | // Build some magic constants. | 
|  | std::vector<Constant*> CV0; | 
|  | CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000))); | 
|  | CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000))); | 
|  | CV0.push_back(ConstantInt::get(*Context, APInt(32, 0))); | 
|  | CV0.push_back(ConstantInt::get(*Context, APInt(32, 0))); | 
|  | Constant *C0 = ConstantVector::get(CV0); | 
|  | SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16); | 
|  |  | 
|  | std::vector<Constant*> CV1; | 
|  | CV1.push_back( | 
|  | ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL)))); | 
|  | CV1.push_back( | 
|  | ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL)))); | 
|  | Constant *C1 = ConstantVector::get(CV1); | 
|  | SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16); | 
|  |  | 
|  | SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, | 
|  | DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, | 
|  | Op.getOperand(0), | 
|  | DAG.getIntPtrConstant(1))); | 
|  | SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, | 
|  | DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, | 
|  | Op.getOperand(0), | 
|  | DAG.getIntPtrConstant(0))); | 
|  | SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2); | 
|  | SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0, | 
|  | MachinePointerInfo::getConstantPool(), | 
|  | false, false, 16); | 
|  | SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0); | 
|  | SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2); | 
|  | SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1, | 
|  | MachinePointerInfo::getConstantPool(), | 
|  | false, false, 16); | 
|  | SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1); | 
|  |  | 
|  | // Add the halves; easiest way is to swap them into another reg first. | 
|  | int ShufMask[2] = { 1, -1 }; | 
|  | SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub, | 
|  | DAG.getUNDEF(MVT::v2f64), ShufMask); | 
|  | SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } | 
|  |  | 
|  | // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion. | 
|  | SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | // FP constant to bias correct the final result. | 
|  | SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), | 
|  | MVT::f64); | 
|  |  | 
|  | // Load the 32-bit value into an XMM register. | 
|  | SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, | 
|  | DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, | 
|  | Op.getOperand(0), | 
|  | DAG.getIntPtrConstant(0))); | 
|  |  | 
|  | Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, | 
|  | DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load), | 
|  | DAG.getIntPtrConstant(0)); | 
|  |  | 
|  | // Or the load with the bias. | 
|  | SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, | 
|  | DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, | 
|  | DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, | 
|  | MVT::v2f64, Load)), | 
|  | DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, | 
|  | DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, | 
|  | MVT::v2f64, Bias))); | 
|  | Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, | 
|  | DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or), | 
|  | DAG.getIntPtrConstant(0)); | 
|  |  | 
|  | // Subtract the bias. | 
|  | SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias); | 
|  |  | 
|  | // Handle final rounding. | 
|  | EVT DestVT = Op.getValueType(); | 
|  |  | 
|  | if (DestVT.bitsLT(MVT::f64)) { | 
|  | return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } else if (DestVT.bitsGT(MVT::f64)) { | 
|  | return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); | 
|  | } | 
|  |  | 
|  | // Handle final rounding. | 
|  | return Sub; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't | 
|  | // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform | 
|  | // the optimization here. | 
|  | if (DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0); | 
|  |  | 
|  | EVT SrcVT = N0.getValueType(); | 
|  | EVT DstVT = Op.getValueType(); | 
|  | if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64) | 
|  | return LowerUINT_TO_FP_i64(Op, DAG); | 
|  | else if (SrcVT == MVT::i32 && X86ScalarSSEf64) | 
|  | return LowerUINT_TO_FP_i32(Op, DAG); | 
|  |  | 
|  | // Make a 64-bit buffer, and use it to build an FILD. | 
|  | SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64); | 
|  | if (SrcVT == MVT::i32) { | 
|  | SDValue WordOff = DAG.getConstant(4, getPointerTy()); | 
|  | SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl, | 
|  | getPointerTy(), StackSlot, WordOff); | 
|  | SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), | 
|  | StackSlot, MachinePointerInfo(), | 
|  | false, false, 0); | 
|  | SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32), | 
|  | OffsetSlot, MachinePointerInfo(), | 
|  | false, false, 0); | 
|  | SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG); | 
|  | return Fild; | 
|  | } | 
|  |  | 
|  | assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP"); | 
|  | SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), | 
|  | StackSlot, MachinePointerInfo(), | 
|  | false, false, 0); | 
|  | // For i64 source, we need to add the appropriate power of 2 if the input | 
|  | // was negative.  This is the same as the optimization in | 
|  | // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here, | 
|  | // we must be careful to do the computation in x87 extended precision, not | 
|  | // in SSE. (The generic code can't know it's OK to do this, or how to.) | 
|  | int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex(); | 
|  | MachineMemOperand *MMO = | 
|  | DAG.getMachineFunction() | 
|  | .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), | 
|  | MachineMemOperand::MOLoad, 8, 8); | 
|  |  | 
|  | SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other); | 
|  | SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) }; | 
|  | SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3, | 
|  | MVT::i64, MMO); | 
|  |  | 
|  | APInt FF(32, 0x5F800000ULL); | 
|  |  | 
|  | // Check whether the sign bit is set. | 
|  | SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), | 
|  | Op.getOperand(0), DAG.getConstant(0, MVT::i64), | 
|  | ISD::SETLT); | 
|  |  | 
|  | // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits. | 
|  | SDValue FudgePtr = DAG.getConstantPool( | 
|  | ConstantInt::get(*DAG.getContext(), FF.zext(64)), | 
|  | getPointerTy()); | 
|  |  | 
|  | // Get a pointer to FF if the sign bit was set, or to 0 otherwise. | 
|  | SDValue Zero = DAG.getIntPtrConstant(0); | 
|  | SDValue Four = DAG.getIntPtrConstant(4); | 
|  | SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet, | 
|  | Zero, Four); | 
|  | FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset); | 
|  |  | 
|  | // Load the value out, extending it from f32 to f80. | 
|  | // FIXME: Avoid the extend by constructing the right constant pool? | 
|  | SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(), | 
|  | FudgePtr, MachinePointerInfo::getConstantPool(), | 
|  | MVT::f32, false, false, 4); | 
|  | // Extend everything to 80 bits to force it to be done on x87. | 
|  | SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge); | 
|  | return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0)); | 
|  | } | 
|  |  | 
|  | std::pair<SDValue,SDValue> X86TargetLowering:: | 
|  | FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const { | 
|  | DebugLoc DL = Op.getDebugLoc(); | 
|  |  | 
|  | EVT DstTy = Op.getValueType(); | 
|  |  | 
|  | if (!IsSigned) { | 
|  | assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT"); | 
|  | DstTy = MVT::i64; | 
|  | } | 
|  |  | 
|  | assert(DstTy.getSimpleVT() <= MVT::i64 && | 
|  | DstTy.getSimpleVT() >= MVT::i16 && | 
|  | "Unknown FP_TO_SINT to lower!"); | 
|  |  | 
|  | // These are really Legal. | 
|  | if (DstTy == MVT::i32 && | 
|  | isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) | 
|  | return std::make_pair(SDValue(), SDValue()); | 
|  | if (Subtarget->is64Bit() && | 
|  | DstTy == MVT::i64 && | 
|  | isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) | 
|  | return std::make_pair(SDValue(), SDValue()); | 
|  |  | 
|  | // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary | 
|  | // stack slot. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | unsigned MemSize = DstTy.getSizeInBits()/8; | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); | 
|  | SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  |  | 
|  |  | 
|  |  | 
|  | unsigned Opc; | 
|  | switch (DstTy.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Invalid FP_TO_SINT to lower!"); | 
|  | case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; | 
|  | case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; | 
|  | case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; | 
|  | } | 
|  |  | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  | SDValue Value = Op.getOperand(0); | 
|  | EVT TheVT = Op.getOperand(0).getValueType(); | 
|  | if (isScalarFPTypeInSSEReg(TheVT)) { | 
|  | assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!"); | 
|  | Chain = DAG.getStore(Chain, DL, Value, StackSlot, | 
|  | MachinePointerInfo::getFixedStack(SSFI), | 
|  | false, false, 0); | 
|  | SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other); | 
|  | SDValue Ops[] = { | 
|  | Chain, StackSlot, DAG.getValueType(TheVT) | 
|  | }; | 
|  |  | 
|  | MachineMemOperand *MMO = | 
|  | MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), | 
|  | MachineMemOperand::MOLoad, MemSize, MemSize); | 
|  | Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3, | 
|  | DstTy, MMO); | 
|  | Chain = Value.getValue(1); | 
|  | SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); | 
|  | StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  | } | 
|  |  | 
|  | MachineMemOperand *MMO = | 
|  | MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), | 
|  | MachineMemOperand::MOStore, MemSize, MemSize); | 
|  |  | 
|  | // Build the FP_TO_INT*_IN_MEM | 
|  | SDValue Ops[] = { Chain, Value, StackSlot }; | 
|  | SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other), | 
|  | Ops, 3, DstTy, MMO); | 
|  |  | 
|  | return std::make_pair(FIST, StackSlot); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | if (Op.getValueType().isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true); | 
|  | SDValue FIST = Vals.first, StackSlot = Vals.second; | 
|  | // If FP_TO_INTHelper failed, the node is actually supposed to be Legal. | 
|  | if (FIST.getNode() == 0) return Op; | 
|  |  | 
|  | // Load the result. | 
|  | return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(), | 
|  | FIST, StackSlot, MachinePointerInfo(), false, false, 0); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false); | 
|  | SDValue FIST = Vals.first, StackSlot = Vals.second; | 
|  | assert(FIST.getNode() && "Unexpected failure"); | 
|  |  | 
|  | // Load the result. | 
|  | return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(), | 
|  | FIST, StackSlot, MachinePointerInfo(), false, false, 0); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFABS(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | LLVMContext *Context = DAG.getContext(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT EltVT = VT; | 
|  | if (VT.isVector()) | 
|  | EltVT = VT.getVectorElementType(); | 
|  | std::vector<Constant*> CV; | 
|  | if (EltVT == MVT::f64) { | 
|  | Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))); | 
|  | CV.push_back(C); | 
|  | CV.push_back(C); | 
|  | } else { | 
|  | Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))); | 
|  | CV.push_back(C); | 
|  | CV.push_back(C); | 
|  | CV.push_back(C); | 
|  | CV.push_back(C); | 
|  | } | 
|  | Constant *C = ConstantVector::get(CV); | 
|  | SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); | 
|  | SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(), | 
|  | false, false, 16); | 
|  | return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const { | 
|  | LLVMContext *Context = DAG.getContext(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT EltVT = VT; | 
|  | if (VT.isVector()) | 
|  | EltVT = VT.getVectorElementType(); | 
|  | std::vector<Constant*> CV; | 
|  | if (EltVT == MVT::f64) { | 
|  | Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))); | 
|  | CV.push_back(C); | 
|  | CV.push_back(C); | 
|  | } else { | 
|  | Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))); | 
|  | CV.push_back(C); | 
|  | CV.push_back(C); | 
|  | CV.push_back(C); | 
|  | CV.push_back(C); | 
|  | } | 
|  | Constant *C = ConstantVector::get(CV); | 
|  | SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); | 
|  | SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(), | 
|  | false, false, 16); | 
|  | if (VT.isVector()) { | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, | 
|  | DAG.getNode(ISD::XOR, dl, MVT::v2i64, | 
|  | DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, | 
|  | Op.getOperand(0)), | 
|  | DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask))); | 
|  | } else { | 
|  | return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { | 
|  | LLVMContext *Context = DAG.getContext(); | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT SrcVT = Op1.getValueType(); | 
|  |  | 
|  | // If second operand is smaller, extend it first. | 
|  | if (SrcVT.bitsLT(VT)) { | 
|  | Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1); | 
|  | SrcVT = VT; | 
|  | } | 
|  | // And if it is bigger, shrink it first. | 
|  | if (SrcVT.bitsGT(VT)) { | 
|  | Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1)); | 
|  | SrcVT = VT; | 
|  | } | 
|  |  | 
|  | // At this point the operands and the result should have the same | 
|  | // type, and that won't be f80 since that is not custom lowered. | 
|  |  | 
|  | // First get the sign bit of second operand. | 
|  | std::vector<Constant*> CV; | 
|  | if (SrcVT == MVT::f64) { | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)))); | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0)))); | 
|  | } else { | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)))); | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); | 
|  | } | 
|  | Constant *C = ConstantVector::get(CV); | 
|  | SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); | 
|  | SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(), | 
|  | false, false, 16); | 
|  | SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1); | 
|  |  | 
|  | // Shift sign bit right or left if the two operands have different types. | 
|  | if (SrcVT.bitsGT(VT)) { | 
|  | // Op0 is MVT::f32, Op1 is MVT::f64. | 
|  | SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit); | 
|  | SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit, | 
|  | DAG.getConstant(32, MVT::i32)); | 
|  | SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit); | 
|  | SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } | 
|  |  | 
|  | // Clear first operand sign bit. | 
|  | CV.clear(); | 
|  | if (VT == MVT::f64) { | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))))); | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0)))); | 
|  | } else { | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))))); | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); | 
|  | } | 
|  | C = ConstantVector::get(CV); | 
|  | CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); | 
|  | SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(), | 
|  | false, false, 16); | 
|  | SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2); | 
|  |  | 
|  | // Or the value with the sign bit. | 
|  | return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit); | 
|  | } | 
|  |  | 
|  | /// Emit nodes that will be selected as "test Op0,Op0", or something | 
|  | /// equivalent. | 
|  | SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, | 
|  | SelectionDAG &DAG) const { | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | // CF and OF aren't always set the way we want. Determine which | 
|  | // of these we need. | 
|  | bool NeedCF = false; | 
|  | bool NeedOF = false; | 
|  | switch (X86CC) { | 
|  | default: break; | 
|  | case X86::COND_A: case X86::COND_AE: | 
|  | case X86::COND_B: case X86::COND_BE: | 
|  | NeedCF = true; | 
|  | break; | 
|  | case X86::COND_G: case X86::COND_GE: | 
|  | case X86::COND_L: case X86::COND_LE: | 
|  | case X86::COND_O: case X86::COND_NO: | 
|  | NeedOF = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // See if we can use the EFLAGS value from the operand instead of | 
|  | // doing a separate TEST. TEST always sets OF and CF to 0, so unless | 
|  | // we prove that the arithmetic won't overflow, we can't use OF or CF. | 
|  | if (Op.getResNo() != 0 || NeedOF || NeedCF) | 
|  | // Emit a CMP with 0, which is the TEST pattern. | 
|  | return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, | 
|  | DAG.getConstant(0, Op.getValueType())); | 
|  |  | 
|  | unsigned Opcode = 0; | 
|  | unsigned NumOperands = 0; | 
|  | switch (Op.getNode()->getOpcode()) { | 
|  | case ISD::ADD: | 
|  | // Due to an isel shortcoming, be conservative if this add is likely to be | 
|  | // selected as part of a load-modify-store instruction. When the root node | 
|  | // in a match is a store, isel doesn't know how to remap non-chain non-flag | 
|  | // uses of other nodes in the match, such as the ADD in this case. This | 
|  | // leads to the ADD being left around and reselected, with the result being | 
|  | // two adds in the output.  Alas, even if none our users are stores, that | 
|  | // doesn't prove we're O.K.  Ergo, if we have any parents that aren't | 
|  | // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require | 
|  | // climbing the DAG back to the root, and it doesn't seem to be worth the | 
|  | // effort. | 
|  | for (SDNode::use_iterator UI = Op.getNode()->use_begin(), | 
|  | UE = Op.getNode()->use_end(); UI != UE; ++UI) | 
|  | if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC) | 
|  | goto default_case; | 
|  |  | 
|  | if (ConstantSDNode *C = | 
|  | dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) { | 
|  | // An add of one will be selected as an INC. | 
|  | if (C->getAPIntValue() == 1) { | 
|  | Opcode = X86ISD::INC; | 
|  | NumOperands = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // An add of negative one (subtract of one) will be selected as a DEC. | 
|  | if (C->getAPIntValue().isAllOnesValue()) { | 
|  | Opcode = X86ISD::DEC; | 
|  | NumOperands = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise use a regular EFLAGS-setting add. | 
|  | Opcode = X86ISD::ADD; | 
|  | NumOperands = 2; | 
|  | break; | 
|  | case ISD::AND: { | 
|  | // If the primary and result isn't used, don't bother using X86ISD::AND, | 
|  | // because a TEST instruction will be better. | 
|  | bool NonFlagUse = false; | 
|  | for (SDNode::use_iterator UI = Op.getNode()->use_begin(), | 
|  | UE = Op.getNode()->use_end(); UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | unsigned UOpNo = UI.getOperandNo(); | 
|  | if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) { | 
|  | // Look pass truncate. | 
|  | UOpNo = User->use_begin().getOperandNo(); | 
|  | User = *User->use_begin(); | 
|  | } | 
|  |  | 
|  | if (User->getOpcode() != ISD::BRCOND && | 
|  | User->getOpcode() != ISD::SETCC && | 
|  | (User->getOpcode() != ISD::SELECT || UOpNo != 0)) { | 
|  | NonFlagUse = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!NonFlagUse) | 
|  | break; | 
|  | } | 
|  | // FALL THROUGH | 
|  | case ISD::SUB: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | // Due to the ISEL shortcoming noted above, be conservative if this op is | 
|  | // likely to be selected as part of a load-modify-store instruction. | 
|  | for (SDNode::use_iterator UI = Op.getNode()->use_begin(), | 
|  | UE = Op.getNode()->use_end(); UI != UE; ++UI) | 
|  | if (UI->getOpcode() == ISD::STORE) | 
|  | goto default_case; | 
|  |  | 
|  | // Otherwise use a regular EFLAGS-setting instruction. | 
|  | switch (Op.getNode()->getOpcode()) { | 
|  | default: llvm_unreachable("unexpected operator!"); | 
|  | case ISD::SUB: Opcode = X86ISD::SUB; break; | 
|  | case ISD::OR:  Opcode = X86ISD::OR;  break; | 
|  | case ISD::XOR: Opcode = X86ISD::XOR; break; | 
|  | case ISD::AND: Opcode = X86ISD::AND; break; | 
|  | } | 
|  |  | 
|  | NumOperands = 2; | 
|  | break; | 
|  | case X86ISD::ADD: | 
|  | case X86ISD::SUB: | 
|  | case X86ISD::INC: | 
|  | case X86ISD::DEC: | 
|  | case X86ISD::OR: | 
|  | case X86ISD::XOR: | 
|  | case X86ISD::AND: | 
|  | return SDValue(Op.getNode(), 1); | 
|  | default: | 
|  | default_case: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (Opcode == 0) | 
|  | // Emit a CMP with 0, which is the TEST pattern. | 
|  | return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, | 
|  | DAG.getConstant(0, Op.getValueType())); | 
|  |  | 
|  | SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); | 
|  | SmallVector<SDValue, 4> Ops; | 
|  | for (unsigned i = 0; i != NumOperands; ++i) | 
|  | Ops.push_back(Op.getOperand(i)); | 
|  |  | 
|  | SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands); | 
|  | DAG.ReplaceAllUsesWith(Op, New); | 
|  | return SDValue(New.getNode(), 1); | 
|  | } | 
|  |  | 
|  | /// Emit nodes that will be selected as "cmp Op0,Op1", or something | 
|  | /// equivalent. | 
|  | SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, | 
|  | SelectionDAG &DAG) const { | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1)) | 
|  | if (C->getAPIntValue() == 0) | 
|  | return EmitTest(Op0, X86CC, DAG); | 
|  |  | 
|  | DebugLoc dl = Op0.getDebugLoc(); | 
|  | return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1); | 
|  | } | 
|  |  | 
|  | /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node | 
|  | /// if it's possible. | 
|  | SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC, | 
|  | DebugLoc dl, SelectionDAG &DAG) const { | 
|  | SDValue Op0 = And.getOperand(0); | 
|  | SDValue Op1 = And.getOperand(1); | 
|  | if (Op0.getOpcode() == ISD::TRUNCATE) | 
|  | Op0 = Op0.getOperand(0); | 
|  | if (Op1.getOpcode() == ISD::TRUNCATE) | 
|  | Op1 = Op1.getOperand(0); | 
|  |  | 
|  | SDValue LHS, RHS; | 
|  | if (Op1.getOpcode() == ISD::SHL) | 
|  | std::swap(Op0, Op1); | 
|  | if (Op0.getOpcode() == ISD::SHL) { | 
|  | if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0))) | 
|  | if (And00C->getZExtValue() == 1) { | 
|  | // If we looked past a truncate, check that it's only truncating away | 
|  | // known zeros. | 
|  | unsigned BitWidth = Op0.getValueSizeInBits(); | 
|  | unsigned AndBitWidth = And.getValueSizeInBits(); | 
|  | if (BitWidth > AndBitWidth) { | 
|  | APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones; | 
|  | DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones); | 
|  | if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth) | 
|  | return SDValue(); | 
|  | } | 
|  | LHS = Op1; | 
|  | RHS = Op0.getOperand(1); | 
|  | } | 
|  | } else if (Op1.getOpcode() == ISD::Constant) { | 
|  | ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1); | 
|  | SDValue AndLHS = Op0; | 
|  | if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) { | 
|  | LHS = AndLHS.getOperand(0); | 
|  | RHS = AndLHS.getOperand(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LHS.getNode()) { | 
|  | // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT | 
|  | // instruction.  Since the shift amount is in-range-or-undefined, we know | 
|  | // that doing a bittest on the i32 value is ok.  We extend to i32 because | 
|  | // the encoding for the i16 version is larger than the i32 version. | 
|  | // Also promote i16 to i32 for performance / code size reason. | 
|  | if (LHS.getValueType() == MVT::i8 || | 
|  | LHS.getValueType() == MVT::i16) | 
|  | LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS); | 
|  |  | 
|  | // If the operand types disagree, extend the shift amount to match.  Since | 
|  | // BT ignores high bits (like shifts) we can use anyextend. | 
|  | if (LHS.getValueType() != RHS.getValueType()) | 
|  | RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS); | 
|  |  | 
|  | SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS); | 
|  | unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B; | 
|  | return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, | 
|  | DAG.getConstant(Cond, MVT::i8), BT); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { | 
|  | assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer"); | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); | 
|  |  | 
|  | // Optimize to BT if possible. | 
|  | // Lower (X & (1 << N)) == 0 to BT(X, N). | 
|  | // Lower ((X >>u N) & 1) != 0 to BT(X, N). | 
|  | // Lower ((X >>s N) & 1) != 0 to BT(X, N). | 
|  | if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() && | 
|  | Op1.getOpcode() == ISD::Constant && | 
|  | cast<ConstantSDNode>(Op1)->isNullValue() && | 
|  | (CC == ISD::SETEQ || CC == ISD::SETNE)) { | 
|  | SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG); | 
|  | if (NewSetCC.getNode()) | 
|  | return NewSetCC; | 
|  | } | 
|  |  | 
|  | // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of | 
|  | // these. | 
|  | if (Op1.getOpcode() == ISD::Constant && | 
|  | (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 || | 
|  | cast<ConstantSDNode>(Op1)->isNullValue()) && | 
|  | (CC == ISD::SETEQ || CC == ISD::SETNE)) { | 
|  |  | 
|  | // If the input is a setcc, then reuse the input setcc or use a new one with | 
|  | // the inverted condition. | 
|  | if (Op0.getOpcode() == X86ISD::SETCC) { | 
|  | X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0); | 
|  | bool Invert = (CC == ISD::SETNE) ^ | 
|  | cast<ConstantSDNode>(Op1)->isNullValue(); | 
|  | if (!Invert) return Op0; | 
|  |  | 
|  | CCode = X86::GetOppositeBranchCondition(CCode); | 
|  | return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, | 
|  | DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool isFP = Op1.getValueType().isFloatingPoint(); | 
|  | unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG); | 
|  | if (X86CC == X86::COND_INVALID) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG); | 
|  | return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, | 
|  | DAG.getConstant(X86CC, MVT::i8), EFLAGS); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDValue Cond; | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | SDValue CC = Op.getOperand(2); | 
|  | EVT VT = Op.getValueType(); | 
|  | ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); | 
|  | bool isFP = Op.getOperand(1).getValueType().isFloatingPoint(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | if (isFP) { | 
|  | unsigned SSECC = 8; | 
|  | EVT VT0 = Op0.getValueType(); | 
|  | assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64); | 
|  | unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD; | 
|  | bool Swap = false; | 
|  |  | 
|  | switch (SetCCOpcode) { | 
|  | default: break; | 
|  | case ISD::SETOEQ: | 
|  | case ISD::SETEQ:  SSECC = 0; break; | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT: Swap = true; // Fallthrough | 
|  | case ISD::SETLT: | 
|  | case ISD::SETOLT: SSECC = 1; break; | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETGE: Swap = true; // Fallthrough | 
|  | case ISD::SETLE: | 
|  | case ISD::SETOLE: SSECC = 2; break; | 
|  | case ISD::SETUO:  SSECC = 3; break; | 
|  | case ISD::SETUNE: | 
|  | case ISD::SETNE:  SSECC = 4; break; | 
|  | case ISD::SETULE: Swap = true; | 
|  | case ISD::SETUGE: SSECC = 5; break; | 
|  | case ISD::SETULT: Swap = true; | 
|  | case ISD::SETUGT: SSECC = 6; break; | 
|  | case ISD::SETO:   SSECC = 7; break; | 
|  | } | 
|  | if (Swap) | 
|  | std::swap(Op0, Op1); | 
|  |  | 
|  | // In the two special cases we can't handle, emit two comparisons. | 
|  | if (SSECC == 8) { | 
|  | if (SetCCOpcode == ISD::SETUEQ) { | 
|  | SDValue UNORD, EQ; | 
|  | UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8)); | 
|  | EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8)); | 
|  | return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ); | 
|  | } | 
|  | else if (SetCCOpcode == ISD::SETONE) { | 
|  | SDValue ORD, NEQ; | 
|  | ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8)); | 
|  | NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8)); | 
|  | return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ); | 
|  | } | 
|  | llvm_unreachable("Illegal FP comparison"); | 
|  | } | 
|  | // Handle all other FP comparisons here. | 
|  | return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8)); | 
|  | } | 
|  |  | 
|  | // We are handling one of the integer comparisons here.  Since SSE only has | 
|  | // GT and EQ comparisons for integer, swapping operands and multiple | 
|  | // operations may be required for some comparisons. | 
|  | unsigned Opc = 0, EQOpc = 0, GTOpc = 0; | 
|  | bool Swap = false, Invert = false, FlipSigns = false; | 
|  |  | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | default: break; | 
|  | case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break; | 
|  | case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break; | 
|  | case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break; | 
|  | case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break; | 
|  | } | 
|  |  | 
|  | switch (SetCCOpcode) { | 
|  | default: break; | 
|  | case ISD::SETNE:  Invert = true; | 
|  | case ISD::SETEQ:  Opc = EQOpc; break; | 
|  | case ISD::SETLT:  Swap = true; | 
|  | case ISD::SETGT:  Opc = GTOpc; break; | 
|  | case ISD::SETGE:  Swap = true; | 
|  | case ISD::SETLE:  Opc = GTOpc; Invert = true; break; | 
|  | case ISD::SETULT: Swap = true; | 
|  | case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break; | 
|  | case ISD::SETUGE: Swap = true; | 
|  | case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break; | 
|  | } | 
|  | if (Swap) | 
|  | std::swap(Op0, Op1); | 
|  |  | 
|  | // Since SSE has no unsigned integer comparisons, we need to flip  the sign | 
|  | // bits of the inputs before performing those operations. | 
|  | if (FlipSigns) { | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), | 
|  | EltVT); | 
|  | std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit); | 
|  | SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0], | 
|  | SignBits.size()); | 
|  | Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec); | 
|  | Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec); | 
|  | } | 
|  |  | 
|  | SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1); | 
|  |  | 
|  | // If the logical-not of the result is required, perform that now. | 
|  | if (Invert) | 
|  | Result = DAG.getNOT(dl, Result, VT); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // isX86LogicalCmp - Return true if opcode is a X86 logical comparison. | 
|  | static bool isX86LogicalCmp(SDValue Op) { | 
|  | unsigned Opc = Op.getNode()->getOpcode(); | 
|  | if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) | 
|  | return true; | 
|  | if (Op.getResNo() == 1 && | 
|  | (Opc == X86ISD::ADD || | 
|  | Opc == X86ISD::SUB || | 
|  | Opc == X86ISD::ADC || | 
|  | Opc == X86ISD::SBB || | 
|  | Opc == X86ISD::SMUL || | 
|  | Opc == X86ISD::UMUL || | 
|  | Opc == X86ISD::INC || | 
|  | Opc == X86ISD::DEC || | 
|  | Opc == X86ISD::OR || | 
|  | Opc == X86ISD::XOR || | 
|  | Opc == X86ISD::AND)) | 
|  | return true; | 
|  |  | 
|  | if (Op.getResNo() == 2 && Opc == X86ISD::UMUL) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isZero(SDValue V) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(V); | 
|  | return C && C->isNullValue(); | 
|  | } | 
|  |  | 
|  | static bool isAllOnes(SDValue V) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(V); | 
|  | return C && C->isAllOnesValue(); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { | 
|  | bool addTest = true; | 
|  | SDValue Cond  = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | SDValue Op2 = Op.getOperand(2); | 
|  | DebugLoc DL = Op.getDebugLoc(); | 
|  | SDValue CC; | 
|  |  | 
|  | if (Cond.getOpcode() == ISD::SETCC) { | 
|  | SDValue NewCond = LowerSETCC(Cond, DAG); | 
|  | if (NewCond.getNode()) | 
|  | Cond = NewCond; | 
|  | } | 
|  |  | 
|  | // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y | 
|  | // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y | 
|  | // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y | 
|  | // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y | 
|  | if (Cond.getOpcode() == X86ISD::SETCC && | 
|  | Cond.getOperand(1).getOpcode() == X86ISD::CMP && | 
|  | isZero(Cond.getOperand(1).getOperand(1))) { | 
|  | SDValue Cmp = Cond.getOperand(1); | 
|  |  | 
|  | unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue(); | 
|  |  | 
|  | if ((isAllOnes(Op1) || isAllOnes(Op2)) && | 
|  | (CondCode == X86::COND_E || CondCode == X86::COND_NE)) { | 
|  | SDValue Y = isAllOnes(Op2) ? Op1 : Op2; | 
|  |  | 
|  | SDValue CmpOp0 = Cmp.getOperand(0); | 
|  | Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, | 
|  | CmpOp0, DAG.getConstant(1, CmpOp0.getValueType())); | 
|  |  | 
|  | SDValue Res =   // Res = 0 or -1. | 
|  | DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), | 
|  | DAG.getConstant(X86::COND_B, MVT::i8), Cmp); | 
|  |  | 
|  | if (isAllOnes(Op1) != (CondCode == X86::COND_E)) | 
|  | Res = DAG.getNOT(DL, Res, Res.getValueType()); | 
|  |  | 
|  | ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2); | 
|  | if (N2C == 0 || !N2C->isNullValue()) | 
|  | Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y); | 
|  | return Res; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Look past (and (setcc_carry (cmp ...)), 1). | 
|  | if (Cond.getOpcode() == ISD::AND && | 
|  | Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); | 
|  | if (C && C->getAPIntValue() == 1) | 
|  | Cond = Cond.getOperand(0); | 
|  | } | 
|  |  | 
|  | // If condition flag is set by a X86ISD::CMP, then use it as the condition | 
|  | // setting operand in place of the X86ISD::SETCC. | 
|  | if (Cond.getOpcode() == X86ISD::SETCC || | 
|  | Cond.getOpcode() == X86ISD::SETCC_CARRY) { | 
|  | CC = Cond.getOperand(0); | 
|  |  | 
|  | SDValue Cmp = Cond.getOperand(1); | 
|  | unsigned Opc = Cmp.getOpcode(); | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | bool IllegalFPCMov = false; | 
|  | if (VT.isFloatingPoint() && !VT.isVector() && | 
|  | !isScalarFPTypeInSSEReg(VT))  // FPStack? | 
|  | IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue()); | 
|  |  | 
|  | if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) || | 
|  | Opc == X86ISD::BT) { // FIXME | 
|  | Cond = Cmp; | 
|  | addTest = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (addTest) { | 
|  | // Look pass the truncate. | 
|  | if (Cond.getOpcode() == ISD::TRUNCATE) | 
|  | Cond = Cond.getOperand(0); | 
|  |  | 
|  | // We know the result of AND is compared against zero. Try to match | 
|  | // it to BT. | 
|  | if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { | 
|  | SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG); | 
|  | if (NewSetCC.getNode()) { | 
|  | CC = NewSetCC.getOperand(0); | 
|  | Cond = NewSetCC.getOperand(1); | 
|  | addTest = false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (addTest) { | 
|  | CC = DAG.getConstant(X86::COND_NE, MVT::i8); | 
|  | Cond = EmitTest(Cond, X86::COND_NE, DAG); | 
|  | } | 
|  |  | 
|  | // a <  b ? -1 :  0 -> RES = ~setcc_carry | 
|  | // a <  b ?  0 : -1 -> RES = setcc_carry | 
|  | // a >= b ? -1 :  0 -> RES = setcc_carry | 
|  | // a >= b ?  0 : -1 -> RES = ~setcc_carry | 
|  | if (Cond.getOpcode() == X86ISD::CMP) { | 
|  | unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue(); | 
|  |  | 
|  | if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) && | 
|  | (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) { | 
|  | SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), | 
|  | DAG.getConstant(X86::COND_B, MVT::i8), Cond); | 
|  | if (isAllOnes(Op1) != (CondCode == X86::COND_B)) | 
|  | return DAG.getNOT(DL, Res, Res.getValueType()); | 
|  | return Res; | 
|  | } | 
|  | } | 
|  |  | 
|  | // X86ISD::CMOV means set the result (which is operand 1) to the RHS if | 
|  | // condition is true. | 
|  | SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); | 
|  | SDValue Ops[] = { Op2, Op1, CC, Cond }; | 
|  | return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops)); | 
|  | } | 
|  |  | 
|  | // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or | 
|  | // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart | 
|  | // from the AND / OR. | 
|  | static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) { | 
|  | Opc = Op.getOpcode(); | 
|  | if (Opc != ISD::OR && Opc != ISD::AND) | 
|  | return false; | 
|  | return (Op.getOperand(0).getOpcode() == X86ISD::SETCC && | 
|  | Op.getOperand(0).hasOneUse() && | 
|  | Op.getOperand(1).getOpcode() == X86ISD::SETCC && | 
|  | Op.getOperand(1).hasOneUse()); | 
|  | } | 
|  |  | 
|  | // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and | 
|  | // 1 and that the SETCC node has a single use. | 
|  | static bool isXor1OfSetCC(SDValue Op) { | 
|  | if (Op.getOpcode() != ISD::XOR) | 
|  | return false; | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); | 
|  | if (N1C && N1C->getAPIntValue() == 1) { | 
|  | return Op.getOperand(0).getOpcode() == X86ISD::SETCC && | 
|  | Op.getOperand(0).hasOneUse(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { | 
|  | bool addTest = true; | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Cond  = Op.getOperand(1); | 
|  | SDValue Dest  = Op.getOperand(2); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | SDValue CC; | 
|  |  | 
|  | if (Cond.getOpcode() == ISD::SETCC) { | 
|  | SDValue NewCond = LowerSETCC(Cond, DAG); | 
|  | if (NewCond.getNode()) | 
|  | Cond = NewCond; | 
|  | } | 
|  | #if 0 | 
|  | // FIXME: LowerXALUO doesn't handle these!! | 
|  | else if (Cond.getOpcode() == X86ISD::ADD  || | 
|  | Cond.getOpcode() == X86ISD::SUB  || | 
|  | Cond.getOpcode() == X86ISD::SMUL || | 
|  | Cond.getOpcode() == X86ISD::UMUL) | 
|  | Cond = LowerXALUO(Cond, DAG); | 
|  | #endif | 
|  |  | 
|  | // Look pass (and (setcc_carry (cmp ...)), 1). | 
|  | if (Cond.getOpcode() == ISD::AND && | 
|  | Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); | 
|  | if (C && C->getAPIntValue() == 1) | 
|  | Cond = Cond.getOperand(0); | 
|  | } | 
|  |  | 
|  | // If condition flag is set by a X86ISD::CMP, then use it as the condition | 
|  | // setting operand in place of the X86ISD::SETCC. | 
|  | if (Cond.getOpcode() == X86ISD::SETCC || | 
|  | Cond.getOpcode() == X86ISD::SETCC_CARRY) { | 
|  | CC = Cond.getOperand(0); | 
|  |  | 
|  | SDValue Cmp = Cond.getOperand(1); | 
|  | unsigned Opc = Cmp.getOpcode(); | 
|  | // FIXME: WHY THE SPECIAL CASING OF LogicalCmp?? | 
|  | if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) { | 
|  | Cond = Cmp; | 
|  | addTest = false; | 
|  | } else { | 
|  | switch (cast<ConstantSDNode>(CC)->getZExtValue()) { | 
|  | default: break; | 
|  | case X86::COND_O: | 
|  | case X86::COND_B: | 
|  | // These can only come from an arithmetic instruction with overflow, | 
|  | // e.g. SADDO, UADDO. | 
|  | Cond = Cond.getNode()->getOperand(1); | 
|  | addTest = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | unsigned CondOpc; | 
|  | if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) { | 
|  | SDValue Cmp = Cond.getOperand(0).getOperand(1); | 
|  | if (CondOpc == ISD::OR) { | 
|  | // Also, recognize the pattern generated by an FCMP_UNE. We can emit | 
|  | // two branches instead of an explicit OR instruction with a | 
|  | // separate test. | 
|  | if (Cmp == Cond.getOperand(1).getOperand(1) && | 
|  | isX86LogicalCmp(Cmp)) { | 
|  | CC = Cond.getOperand(0).getOperand(0); | 
|  | Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), | 
|  | Chain, Dest, CC, Cmp); | 
|  | CC = Cond.getOperand(1).getOperand(0); | 
|  | Cond = Cmp; | 
|  | addTest = false; | 
|  | } | 
|  | } else { // ISD::AND | 
|  | // Also, recognize the pattern generated by an FCMP_OEQ. We can emit | 
|  | // two branches instead of an explicit AND instruction with a | 
|  | // separate test. However, we only do this if this block doesn't | 
|  | // have a fall-through edge, because this requires an explicit | 
|  | // jmp when the condition is false. | 
|  | if (Cmp == Cond.getOperand(1).getOperand(1) && | 
|  | isX86LogicalCmp(Cmp) && | 
|  | Op.getNode()->hasOneUse()) { | 
|  | X86::CondCode CCode = | 
|  | (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); | 
|  | CCode = X86::GetOppositeBranchCondition(CCode); | 
|  | CC = DAG.getConstant(CCode, MVT::i8); | 
|  | SDNode *User = *Op.getNode()->use_begin(); | 
|  | // Look for an unconditional branch following this conditional branch. | 
|  | // We need this because we need to reverse the successors in order | 
|  | // to implement FCMP_OEQ. | 
|  | if (User->getOpcode() == ISD::BR) { | 
|  | SDValue FalseBB = User->getOperand(1); | 
|  | SDNode *NewBR = | 
|  | DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); | 
|  | assert(NewBR == User); | 
|  | (void)NewBR; | 
|  | Dest = FalseBB; | 
|  |  | 
|  | Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), | 
|  | Chain, Dest, CC, Cmp); | 
|  | X86::CondCode CCode = | 
|  | (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0); | 
|  | CCode = X86::GetOppositeBranchCondition(CCode); | 
|  | CC = DAG.getConstant(CCode, MVT::i8); | 
|  | Cond = Cmp; | 
|  | addTest = false; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) { | 
|  | // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition. | 
|  | // It should be transformed during dag combiner except when the condition | 
|  | // is set by a arithmetics with overflow node. | 
|  | X86::CondCode CCode = | 
|  | (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); | 
|  | CCode = X86::GetOppositeBranchCondition(CCode); | 
|  | CC = DAG.getConstant(CCode, MVT::i8); | 
|  | Cond = Cond.getOperand(0).getOperand(1); | 
|  | addTest = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (addTest) { | 
|  | // Look pass the truncate. | 
|  | if (Cond.getOpcode() == ISD::TRUNCATE) | 
|  | Cond = Cond.getOperand(0); | 
|  |  | 
|  | // We know the result of AND is compared against zero. Try to match | 
|  | // it to BT. | 
|  | if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { | 
|  | SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG); | 
|  | if (NewSetCC.getNode()) { | 
|  | CC = NewSetCC.getOperand(0); | 
|  | Cond = NewSetCC.getOperand(1); | 
|  | addTest = false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (addTest) { | 
|  | CC = DAG.getConstant(X86::COND_NE, MVT::i8); | 
|  | Cond = EmitTest(Cond, X86::COND_NE, DAG); | 
|  | } | 
|  | return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), | 
|  | Chain, Dest, CC, Cond); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets. | 
|  | // Calls to _alloca is needed to probe the stack when allocating more than 4k | 
|  | // bytes in one go. Touching the stack at 4K increments is necessary to ensure | 
|  | // that the guard pages used by the OS virtual memory manager are allocated in | 
|  | // correct sequence. | 
|  | SDValue | 
|  | X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) && | 
|  | "This should be used only on Windows targets"); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | // Get the inputs. | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Size  = Op.getOperand(1); | 
|  | // FIXME: Ensure alignment here | 
|  |  | 
|  | SDValue Flag; | 
|  |  | 
|  | EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32; | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag); | 
|  | Flag = Chain.getValue(1); | 
|  |  | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  |  | 
|  | Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag); | 
|  | Flag = Chain.getValue(1); | 
|  |  | 
|  | Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1); | 
|  |  | 
|  | SDValue Ops1[2] = { Chain.getValue(0), Chain }; | 
|  | return DAG.getMergeValues(Ops1, 2, dl); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); | 
|  |  | 
|  | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | 
|  | DebugLoc DL = Op.getDebugLoc(); | 
|  |  | 
|  | if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) { | 
|  | // vastart just stores the address of the VarArgsFrameIndex slot into the | 
|  | // memory location argument. | 
|  | SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), | 
|  | getPointerTy()); | 
|  | return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), | 
|  | MachinePointerInfo(SV), false, false, 0); | 
|  | } | 
|  |  | 
|  | // __va_list_tag: | 
|  | //   gp_offset         (0 - 6 * 8) | 
|  | //   fp_offset         (48 - 48 + 8 * 16) | 
|  | //   overflow_arg_area (point to parameters coming in memory). | 
|  | //   reg_save_area | 
|  | SmallVector<SDValue, 8> MemOps; | 
|  | SDValue FIN = Op.getOperand(1); | 
|  | // Store gp_offset | 
|  | SDValue Store = DAG.getStore(Op.getOperand(0), DL, | 
|  | DAG.getConstant(FuncInfo->getVarArgsGPOffset(), | 
|  | MVT::i32), | 
|  | FIN, MachinePointerInfo(SV), false, false, 0); | 
|  | MemOps.push_back(Store); | 
|  |  | 
|  | // Store fp_offset | 
|  | FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), | 
|  | FIN, DAG.getIntPtrConstant(4)); | 
|  | Store = DAG.getStore(Op.getOperand(0), DL, | 
|  | DAG.getConstant(FuncInfo->getVarArgsFPOffset(), | 
|  | MVT::i32), | 
|  | FIN, MachinePointerInfo(SV, 4), false, false, 0); | 
|  | MemOps.push_back(Store); | 
|  |  | 
|  | // Store ptr to overflow_arg_area | 
|  | FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), | 
|  | FIN, DAG.getIntPtrConstant(4)); | 
|  | SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), | 
|  | getPointerTy()); | 
|  | Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN, | 
|  | MachinePointerInfo(SV, 8), | 
|  | false, false, 0); | 
|  | MemOps.push_back(Store); | 
|  |  | 
|  | // Store ptr to reg_save_area. | 
|  | FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), | 
|  | FIN, DAG.getIntPtrConstant(8)); | 
|  | SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), | 
|  | getPointerTy()); | 
|  | Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN, | 
|  | MachinePointerInfo(SV, 16), false, false, 0); | 
|  | MemOps.push_back(Store); | 
|  | return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, | 
|  | &MemOps[0], MemOps.size()); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { | 
|  | assert(Subtarget->is64Bit() && | 
|  | "LowerVAARG only handles 64-bit va_arg!"); | 
|  | assert((Subtarget->isTargetLinux() || | 
|  | Subtarget->isTargetDarwin()) && | 
|  | "Unhandled target in LowerVAARG"); | 
|  | assert(Op.getNode()->getNumOperands() == 4); | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue SrcPtr = Op.getOperand(1); | 
|  | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | 
|  | unsigned Align = Op.getConstantOperandVal(3); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | EVT ArgVT = Op.getNode()->getValueType(0); | 
|  | const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); | 
|  | uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy); | 
|  | uint8_t ArgMode; | 
|  |  | 
|  | // Decide which area this value should be read from. | 
|  | // TODO: Implement the AMD64 ABI in its entirety. This simple | 
|  | // selection mechanism works only for the basic types. | 
|  | if (ArgVT == MVT::f80) { | 
|  | llvm_unreachable("va_arg for f80 not yet implemented"); | 
|  | } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) { | 
|  | ArgMode = 2;  // Argument passed in XMM register. Use fp_offset. | 
|  | } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) { | 
|  | ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset. | 
|  | } else { | 
|  | llvm_unreachable("Unhandled argument type in LowerVAARG"); | 
|  | } | 
|  |  | 
|  | if (ArgMode == 2) { | 
|  | // Sanity Check: Make sure using fp_offset makes sense. | 
|  | assert(!UseSoftFloat && | 
|  | !(DAG.getMachineFunction() | 
|  | .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) && | 
|  | Subtarget->hasXMM()); | 
|  | } | 
|  |  | 
|  | // Insert VAARG_64 node into the DAG | 
|  | // VAARG_64 returns two values: Variable Argument Address, Chain | 
|  | SmallVector<SDValue, 11> InstOps; | 
|  | InstOps.push_back(Chain); | 
|  | InstOps.push_back(SrcPtr); | 
|  | InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32)); | 
|  | InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8)); | 
|  | InstOps.push_back(DAG.getConstant(Align, MVT::i32)); | 
|  | SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other); | 
|  | SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl, | 
|  | VTs, &InstOps[0], InstOps.size(), | 
|  | MVT::i64, | 
|  | MachinePointerInfo(SV), | 
|  | /*Align=*/0, | 
|  | /*Volatile=*/false, | 
|  | /*ReadMem=*/true, | 
|  | /*WriteMem=*/true); | 
|  | Chain = VAARG.getValue(1); | 
|  |  | 
|  | // Load the next argument and return it | 
|  | return DAG.getLoad(ArgVT, dl, | 
|  | Chain, | 
|  | VAARG, | 
|  | MachinePointerInfo(), | 
|  | false, false, 0); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { | 
|  | // X86-64 va_list is a struct { i32, i32, i8*, i8* }. | 
|  | assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!"); | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue DstPtr = Op.getOperand(1); | 
|  | SDValue SrcPtr = Op.getOperand(2); | 
|  | const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); | 
|  | const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); | 
|  | DebugLoc DL = Op.getDebugLoc(); | 
|  |  | 
|  | return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, | 
|  | DAG.getIntPtrConstant(24), 8, /*isVolatile*/false, | 
|  | false, | 
|  | MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | switch (IntNo) { | 
|  | default: return SDValue();    // Don't custom lower most intrinsics. | 
|  | // Comparison intrinsics. | 
|  | case Intrinsic::x86_sse_comieq_ss: | 
|  | case Intrinsic::x86_sse_comilt_ss: | 
|  | case Intrinsic::x86_sse_comile_ss: | 
|  | case Intrinsic::x86_sse_comigt_ss: | 
|  | case Intrinsic::x86_sse_comige_ss: | 
|  | case Intrinsic::x86_sse_comineq_ss: | 
|  | case Intrinsic::x86_sse_ucomieq_ss: | 
|  | case Intrinsic::x86_sse_ucomilt_ss: | 
|  | case Intrinsic::x86_sse_ucomile_ss: | 
|  | case Intrinsic::x86_sse_ucomigt_ss: | 
|  | case Intrinsic::x86_sse_ucomige_ss: | 
|  | case Intrinsic::x86_sse_ucomineq_ss: | 
|  | case Intrinsic::x86_sse2_comieq_sd: | 
|  | case Intrinsic::x86_sse2_comilt_sd: | 
|  | case Intrinsic::x86_sse2_comile_sd: | 
|  | case Intrinsic::x86_sse2_comigt_sd: | 
|  | case Intrinsic::x86_sse2_comige_sd: | 
|  | case Intrinsic::x86_sse2_comineq_sd: | 
|  | case Intrinsic::x86_sse2_ucomieq_sd: | 
|  | case Intrinsic::x86_sse2_ucomilt_sd: | 
|  | case Intrinsic::x86_sse2_ucomile_sd: | 
|  | case Intrinsic::x86_sse2_ucomigt_sd: | 
|  | case Intrinsic::x86_sse2_ucomige_sd: | 
|  | case Intrinsic::x86_sse2_ucomineq_sd: { | 
|  | unsigned Opc = 0; | 
|  | ISD::CondCode CC = ISD::SETCC_INVALID; | 
|  | switch (IntNo) { | 
|  | default: break; | 
|  | case Intrinsic::x86_sse_comieq_ss: | 
|  | case Intrinsic::x86_sse2_comieq_sd: | 
|  | Opc = X86ISD::COMI; | 
|  | CC = ISD::SETEQ; | 
|  | break; | 
|  | case Intrinsic::x86_sse_comilt_ss: | 
|  | case Intrinsic::x86_sse2_comilt_sd: | 
|  | Opc = X86ISD::COMI; | 
|  | CC = ISD::SETLT; | 
|  | break; | 
|  | case Intrinsic::x86_sse_comile_ss: | 
|  | case Intrinsic::x86_sse2_comile_sd: | 
|  | Opc = X86ISD::COMI; | 
|  | CC = ISD::SETLE; | 
|  | break; | 
|  | case Intrinsic::x86_sse_comigt_ss: | 
|  | case Intrinsic::x86_sse2_comigt_sd: | 
|  | Opc = X86ISD::COMI; | 
|  | CC = ISD::SETGT; | 
|  | break; | 
|  | case Intrinsic::x86_sse_comige_ss: | 
|  | case Intrinsic::x86_sse2_comige_sd: | 
|  | Opc = X86ISD::COMI; | 
|  | CC = ISD::SETGE; | 
|  | break; | 
|  | case Intrinsic::x86_sse_comineq_ss: | 
|  | case Intrinsic::x86_sse2_comineq_sd: | 
|  | Opc = X86ISD::COMI; | 
|  | CC = ISD::SETNE; | 
|  | break; | 
|  | case Intrinsic::x86_sse_ucomieq_ss: | 
|  | case Intrinsic::x86_sse2_ucomieq_sd: | 
|  | Opc = X86ISD::UCOMI; | 
|  | CC = ISD::SETEQ; | 
|  | break; | 
|  | case Intrinsic::x86_sse_ucomilt_ss: | 
|  | case Intrinsic::x86_sse2_ucomilt_sd: | 
|  | Opc = X86ISD::UCOMI; | 
|  | CC = ISD::SETLT; | 
|  | break; | 
|  | case Intrinsic::x86_sse_ucomile_ss: | 
|  | case Intrinsic::x86_sse2_ucomile_sd: | 
|  | Opc = X86ISD::UCOMI; | 
|  | CC = ISD::SETLE; | 
|  | break; | 
|  | case Intrinsic::x86_sse_ucomigt_ss: | 
|  | case Intrinsic::x86_sse2_ucomigt_sd: | 
|  | Opc = X86ISD::UCOMI; | 
|  | CC = ISD::SETGT; | 
|  | break; | 
|  | case Intrinsic::x86_sse_ucomige_ss: | 
|  | case Intrinsic::x86_sse2_ucomige_sd: | 
|  | Opc = X86ISD::UCOMI; | 
|  | CC = ISD::SETGE; | 
|  | break; | 
|  | case Intrinsic::x86_sse_ucomineq_ss: | 
|  | case Intrinsic::x86_sse2_ucomineq_sd: | 
|  | Opc = X86ISD::UCOMI; | 
|  | CC = ISD::SETNE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue LHS = Op.getOperand(1); | 
|  | SDValue RHS = Op.getOperand(2); | 
|  | unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG); | 
|  | assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!"); | 
|  | SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS); | 
|  | SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, | 
|  | DAG.getConstant(X86CC, MVT::i8), Cond); | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); | 
|  | } | 
|  | // ptest and testp intrinsics. The intrinsic these come from are designed to | 
|  | // return an integer value, not just an instruction so lower it to the ptest | 
|  | // or testp pattern and a setcc for the result. | 
|  | case Intrinsic::x86_sse41_ptestz: | 
|  | case Intrinsic::x86_sse41_ptestc: | 
|  | case Intrinsic::x86_sse41_ptestnzc: | 
|  | case Intrinsic::x86_avx_ptestz_256: | 
|  | case Intrinsic::x86_avx_ptestc_256: | 
|  | case Intrinsic::x86_avx_ptestnzc_256: | 
|  | case Intrinsic::x86_avx_vtestz_ps: | 
|  | case Intrinsic::x86_avx_vtestc_ps: | 
|  | case Intrinsic::x86_avx_vtestnzc_ps: | 
|  | case Intrinsic::x86_avx_vtestz_pd: | 
|  | case Intrinsic::x86_avx_vtestc_pd: | 
|  | case Intrinsic::x86_avx_vtestnzc_pd: | 
|  | case Intrinsic::x86_avx_vtestz_ps_256: | 
|  | case Intrinsic::x86_avx_vtestc_ps_256: | 
|  | case Intrinsic::x86_avx_vtestnzc_ps_256: | 
|  | case Intrinsic::x86_avx_vtestz_pd_256: | 
|  | case Intrinsic::x86_avx_vtestc_pd_256: | 
|  | case Intrinsic::x86_avx_vtestnzc_pd_256: { | 
|  | bool IsTestPacked = false; | 
|  | unsigned X86CC = 0; | 
|  | switch (IntNo) { | 
|  | default: llvm_unreachable("Bad fallthrough in Intrinsic lowering."); | 
|  | case Intrinsic::x86_avx_vtestz_ps: | 
|  | case Intrinsic::x86_avx_vtestz_pd: | 
|  | case Intrinsic::x86_avx_vtestz_ps_256: | 
|  | case Intrinsic::x86_avx_vtestz_pd_256: | 
|  | IsTestPacked = true; // Fallthrough | 
|  | case Intrinsic::x86_sse41_ptestz: | 
|  | case Intrinsic::x86_avx_ptestz_256: | 
|  | // ZF = 1 | 
|  | X86CC = X86::COND_E; | 
|  | break; | 
|  | case Intrinsic::x86_avx_vtestc_ps: | 
|  | case Intrinsic::x86_avx_vtestc_pd: | 
|  | case Intrinsic::x86_avx_vtestc_ps_256: | 
|  | case Intrinsic::x86_avx_vtestc_pd_256: | 
|  | IsTestPacked = true; // Fallthrough | 
|  | case Intrinsic::x86_sse41_ptestc: | 
|  | case Intrinsic::x86_avx_ptestc_256: | 
|  | // CF = 1 | 
|  | X86CC = X86::COND_B; | 
|  | break; | 
|  | case Intrinsic::x86_avx_vtestnzc_ps: | 
|  | case Intrinsic::x86_avx_vtestnzc_pd: | 
|  | case Intrinsic::x86_avx_vtestnzc_ps_256: | 
|  | case Intrinsic::x86_avx_vtestnzc_pd_256: | 
|  | IsTestPacked = true; // Fallthrough | 
|  | case Intrinsic::x86_sse41_ptestnzc: | 
|  | case Intrinsic::x86_avx_ptestnzc_256: | 
|  | // ZF and CF = 0 | 
|  | X86CC = X86::COND_A; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue LHS = Op.getOperand(1); | 
|  | SDValue RHS = Op.getOperand(2); | 
|  | unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST; | 
|  | SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS); | 
|  | SDValue CC = DAG.getConstant(X86CC, MVT::i8); | 
|  | SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test); | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); | 
|  | } | 
|  |  | 
|  | // Fix vector shift instructions where the last operand is a non-immediate | 
|  | // i32 value. | 
|  | case Intrinsic::x86_sse2_pslli_w: | 
|  | case Intrinsic::x86_sse2_pslli_d: | 
|  | case Intrinsic::x86_sse2_pslli_q: | 
|  | case Intrinsic::x86_sse2_psrli_w: | 
|  | case Intrinsic::x86_sse2_psrli_d: | 
|  | case Intrinsic::x86_sse2_psrli_q: | 
|  | case Intrinsic::x86_sse2_psrai_w: | 
|  | case Intrinsic::x86_sse2_psrai_d: | 
|  | case Intrinsic::x86_mmx_pslli_w: | 
|  | case Intrinsic::x86_mmx_pslli_d: | 
|  | case Intrinsic::x86_mmx_pslli_q: | 
|  | case Intrinsic::x86_mmx_psrli_w: | 
|  | case Intrinsic::x86_mmx_psrli_d: | 
|  | case Intrinsic::x86_mmx_psrli_q: | 
|  | case Intrinsic::x86_mmx_psrai_w: | 
|  | case Intrinsic::x86_mmx_psrai_d: { | 
|  | SDValue ShAmt = Op.getOperand(2); | 
|  | if (isa<ConstantSDNode>(ShAmt)) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned NewIntNo = 0; | 
|  | EVT ShAmtVT = MVT::v4i32; | 
|  | switch (IntNo) { | 
|  | case Intrinsic::x86_sse2_pslli_w: | 
|  | NewIntNo = Intrinsic::x86_sse2_psll_w; | 
|  | break; | 
|  | case Intrinsic::x86_sse2_pslli_d: | 
|  | NewIntNo = Intrinsic::x86_sse2_psll_d; | 
|  | break; | 
|  | case Intrinsic::x86_sse2_pslli_q: | 
|  | NewIntNo = Intrinsic::x86_sse2_psll_q; | 
|  | break; | 
|  | case Intrinsic::x86_sse2_psrli_w: | 
|  | NewIntNo = Intrinsic::x86_sse2_psrl_w; | 
|  | break; | 
|  | case Intrinsic::x86_sse2_psrli_d: | 
|  | NewIntNo = Intrinsic::x86_sse2_psrl_d; | 
|  | break; | 
|  | case Intrinsic::x86_sse2_psrli_q: | 
|  | NewIntNo = Intrinsic::x86_sse2_psrl_q; | 
|  | break; | 
|  | case Intrinsic::x86_sse2_psrai_w: | 
|  | NewIntNo = Intrinsic::x86_sse2_psra_w; | 
|  | break; | 
|  | case Intrinsic::x86_sse2_psrai_d: | 
|  | NewIntNo = Intrinsic::x86_sse2_psra_d; | 
|  | break; | 
|  | default: { | 
|  | ShAmtVT = MVT::v2i32; | 
|  | switch (IntNo) { | 
|  | case Intrinsic::x86_mmx_pslli_w: | 
|  | NewIntNo = Intrinsic::x86_mmx_psll_w; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_pslli_d: | 
|  | NewIntNo = Intrinsic::x86_mmx_psll_d; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_pslli_q: | 
|  | NewIntNo = Intrinsic::x86_mmx_psll_q; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_psrli_w: | 
|  | NewIntNo = Intrinsic::x86_mmx_psrl_w; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_psrli_d: | 
|  | NewIntNo = Intrinsic::x86_mmx_psrl_d; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_psrli_q: | 
|  | NewIntNo = Intrinsic::x86_mmx_psrl_q; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_psrai_w: | 
|  | NewIntNo = Intrinsic::x86_mmx_psra_w; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_psrai_d: | 
|  | NewIntNo = Intrinsic::x86_mmx_psra_d; | 
|  | break; | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The vector shift intrinsics with scalars uses 32b shift amounts but | 
|  | // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits | 
|  | // to be zero. | 
|  | SDValue ShOps[4]; | 
|  | ShOps[0] = ShAmt; | 
|  | ShOps[1] = DAG.getConstant(0, MVT::i32); | 
|  | if (ShAmtVT == MVT::v4i32) { | 
|  | ShOps[2] = DAG.getUNDEF(MVT::i32); | 
|  | ShOps[3] = DAG.getUNDEF(MVT::i32); | 
|  | ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4); | 
|  | } else { | 
|  | ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); | 
|  | // FIXME this must be lowered to get rid of the invalid type. | 
|  | } | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt); | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, | 
|  | DAG.getConstant(NewIntNo, MVT::i32), | 
|  | Op.getOperand(1), ShAmt); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | MFI->setReturnAddressIsTaken(true); | 
|  |  | 
|  | unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | if (Depth > 0) { | 
|  | SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); | 
|  | SDValue Offset = | 
|  | DAG.getConstant(TD->getPointerSize(), | 
|  | Subtarget->is64Bit() ? MVT::i64 : MVT::i32); | 
|  | return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), | 
|  | DAG.getNode(ISD::ADD, dl, getPointerTy(), | 
|  | FrameAddr, Offset), | 
|  | MachinePointerInfo(), false, false, 0); | 
|  | } | 
|  |  | 
|  | // Just load the return address. | 
|  | SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); | 
|  | return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), | 
|  | RetAddrFI, MachinePointerInfo(), false, false, 0); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { | 
|  | MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | MFI->setFrameAddressIsTaken(true); | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful | 
|  | unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP; | 
|  | SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); | 
|  | while (Depth--) | 
|  | FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, | 
|  | MachinePointerInfo(), | 
|  | false, false, 0); | 
|  | return FrameAddr; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | return DAG.getIntPtrConstant(2*TD->getPointerSize()); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | SDValue Chain     = Op.getOperand(0); | 
|  | SDValue Offset    = Op.getOperand(1); | 
|  | SDValue Handler   = Op.getOperand(2); | 
|  | DebugLoc dl       = Op.getDebugLoc(); | 
|  |  | 
|  | SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, | 
|  | Subtarget->is64Bit() ? X86::RBP : X86::EBP, | 
|  | getPointerTy()); | 
|  | unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX); | 
|  |  | 
|  | SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame, | 
|  | DAG.getIntPtrConstant(TD->getPointerSize())); | 
|  | StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset); | 
|  | Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(), | 
|  | false, false, 0); | 
|  | Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr); | 
|  | MF.getRegInfo().addLiveOut(StoreAddrReg); | 
|  |  | 
|  | return DAG.getNode(X86ISD::EH_RETURN, dl, | 
|  | MVT::Other, | 
|  | Chain, DAG.getRegister(StoreAddrReg, getPointerTy())); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Root = Op.getOperand(0); | 
|  | SDValue Trmp = Op.getOperand(1); // trampoline | 
|  | SDValue FPtr = Op.getOperand(2); // nested function | 
|  | SDValue Nest = Op.getOperand(3); // 'nest' parameter value | 
|  | DebugLoc dl  = Op.getDebugLoc(); | 
|  |  | 
|  | const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | SDValue OutChains[6]; | 
|  |  | 
|  | // Large code-model. | 
|  | const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode. | 
|  | const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode. | 
|  |  | 
|  | const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10); | 
|  | const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11); | 
|  |  | 
|  | const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix | 
|  |  | 
|  | // Load the pointer to the nested function into R11. | 
|  | unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11 | 
|  | SDValue Addr = Trmp; | 
|  | OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), | 
|  | Addr, MachinePointerInfo(TrmpAddr), | 
|  | false, false, 0); | 
|  |  | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, | 
|  | DAG.getConstant(2, MVT::i64)); | 
|  | OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, | 
|  | MachinePointerInfo(TrmpAddr, 2), | 
|  | false, false, 2); | 
|  |  | 
|  | // Load the 'nest' parameter value into R10. | 
|  | // R10 is specified in X86CallingConv.td | 
|  | OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10 | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, | 
|  | DAG.getConstant(10, MVT::i64)); | 
|  | OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), | 
|  | Addr, MachinePointerInfo(TrmpAddr, 10), | 
|  | false, false, 0); | 
|  |  | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, | 
|  | DAG.getConstant(12, MVT::i64)); | 
|  | OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, | 
|  | MachinePointerInfo(TrmpAddr, 12), | 
|  | false, false, 2); | 
|  |  | 
|  | // Jump to the nested function. | 
|  | OpCode = (JMP64r << 8) | REX_WB; // jmpq *... | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, | 
|  | DAG.getConstant(20, MVT::i64)); | 
|  | OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), | 
|  | Addr, MachinePointerInfo(TrmpAddr, 20), | 
|  | false, false, 0); | 
|  |  | 
|  | unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11 | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, | 
|  | DAG.getConstant(22, MVT::i64)); | 
|  | OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr, | 
|  | MachinePointerInfo(TrmpAddr, 22), | 
|  | false, false, 0); | 
|  |  | 
|  | SDValue Ops[] = | 
|  | { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) }; | 
|  | return DAG.getMergeValues(Ops, 2, dl); | 
|  | } else { | 
|  | const Function *Func = | 
|  | cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue()); | 
|  | CallingConv::ID CC = Func->getCallingConv(); | 
|  | unsigned NestReg; | 
|  |  | 
|  | switch (CC) { | 
|  | default: | 
|  | llvm_unreachable("Unsupported calling convention"); | 
|  | case CallingConv::C: | 
|  | case CallingConv::X86_StdCall: { | 
|  | // Pass 'nest' parameter in ECX. | 
|  | // Must be kept in sync with X86CallingConv.td | 
|  | NestReg = X86::ECX; | 
|  |  | 
|  | // Check that ECX wasn't needed by an 'inreg' parameter. | 
|  | const FunctionType *FTy = Func->getFunctionType(); | 
|  | const AttrListPtr &Attrs = Func->getAttributes(); | 
|  |  | 
|  | if (!Attrs.isEmpty() && !Func->isVarArg()) { | 
|  | unsigned InRegCount = 0; | 
|  | unsigned Idx = 1; | 
|  |  | 
|  | for (FunctionType::param_iterator I = FTy->param_begin(), | 
|  | E = FTy->param_end(); I != E; ++I, ++Idx) | 
|  | if (Attrs.paramHasAttr(Idx, Attribute::InReg)) | 
|  | // FIXME: should only count parameters that are lowered to integers. | 
|  | InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32; | 
|  |  | 
|  | if (InRegCount > 2) { | 
|  | report_fatal_error("Nest register in use - reduce number of inreg" | 
|  | " parameters!"); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case CallingConv::X86_FastCall: | 
|  | case CallingConv::X86_ThisCall: | 
|  | case CallingConv::Fast: | 
|  | // Pass 'nest' parameter in EAX. | 
|  | // Must be kept in sync with X86CallingConv.td | 
|  | NestReg = X86::EAX; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue OutChains[4]; | 
|  | SDValue Addr, Disp; | 
|  |  | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, | 
|  | DAG.getConstant(10, MVT::i32)); | 
|  | Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr); | 
|  |  | 
|  | // This is storing the opcode for MOV32ri. | 
|  | const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte. | 
|  | const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg); | 
|  | OutChains[0] = DAG.getStore(Root, dl, | 
|  | DAG.getConstant(MOV32ri|N86Reg, MVT::i8), | 
|  | Trmp, MachinePointerInfo(TrmpAddr), | 
|  | false, false, 0); | 
|  |  | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, | 
|  | DAG.getConstant(1, MVT::i32)); | 
|  | OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, | 
|  | MachinePointerInfo(TrmpAddr, 1), | 
|  | false, false, 1); | 
|  |  | 
|  | const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode. | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, | 
|  | DAG.getConstant(5, MVT::i32)); | 
|  | OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr, | 
|  | MachinePointerInfo(TrmpAddr, 5), | 
|  | false, false, 1); | 
|  |  | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, | 
|  | DAG.getConstant(6, MVT::i32)); | 
|  | OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, | 
|  | MachinePointerInfo(TrmpAddr, 6), | 
|  | false, false, 1); | 
|  |  | 
|  | SDValue Ops[] = | 
|  | { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) }; | 
|  | return DAG.getMergeValues(Ops, 2, dl); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | /* | 
|  | The rounding mode is in bits 11:10 of FPSR, and has the following | 
|  | settings: | 
|  | 00 Round to nearest | 
|  | 01 Round to -inf | 
|  | 10 Round to +inf | 
|  | 11 Round to 0 | 
|  |  | 
|  | FLT_ROUNDS, on the other hand, expects the following: | 
|  | -1 Undefined | 
|  | 0 Round to 0 | 
|  | 1 Round to nearest | 
|  | 2 Round to +inf | 
|  | 3 Round to -inf | 
|  |  | 
|  | To perform the conversion, we do: | 
|  | (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3) | 
|  | */ | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const TargetMachine &TM = MF.getTarget(); | 
|  | const TargetFrameLowering &TFI = *TM.getFrameLowering(); | 
|  | unsigned StackAlignment = TFI.getStackAlignment(); | 
|  | EVT VT = Op.getValueType(); | 
|  | DebugLoc DL = Op.getDebugLoc(); | 
|  |  | 
|  | // Save FP Control Word to stack slot | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false); | 
|  | SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  |  | 
|  |  | 
|  | MachineMemOperand *MMO = | 
|  | MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), | 
|  | MachineMemOperand::MOStore, 2, 2); | 
|  |  | 
|  | SDValue Ops[] = { DAG.getEntryNode(), StackSlot }; | 
|  | SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL, | 
|  | DAG.getVTList(MVT::Other), | 
|  | Ops, 2, MVT::i16, MMO); | 
|  |  | 
|  | // Load FP Control Word from stack slot | 
|  | SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot, | 
|  | MachinePointerInfo(), false, false, 0); | 
|  |  | 
|  | // Transform as necessary | 
|  | SDValue CWD1 = | 
|  | DAG.getNode(ISD::SRL, DL, MVT::i16, | 
|  | DAG.getNode(ISD::AND, DL, MVT::i16, | 
|  | CWD, DAG.getConstant(0x800, MVT::i16)), | 
|  | DAG.getConstant(11, MVT::i8)); | 
|  | SDValue CWD2 = | 
|  | DAG.getNode(ISD::SRL, DL, MVT::i16, | 
|  | DAG.getNode(ISD::AND, DL, MVT::i16, | 
|  | CWD, DAG.getConstant(0x400, MVT::i16)), | 
|  | DAG.getConstant(9, MVT::i8)); | 
|  |  | 
|  | SDValue RetVal = | 
|  | DAG.getNode(ISD::AND, DL, MVT::i16, | 
|  | DAG.getNode(ISD::ADD, DL, MVT::i16, | 
|  | DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2), | 
|  | DAG.getConstant(1, MVT::i16)), | 
|  | DAG.getConstant(3, MVT::i16)); | 
|  |  | 
|  |  | 
|  | return DAG.getNode((VT.getSizeInBits() < 16 ? | 
|  | ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT OpVT = VT; | 
|  | unsigned NumBits = VT.getSizeInBits(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | Op = Op.getOperand(0); | 
|  | if (VT == MVT::i8) { | 
|  | // Zero extend to i32 since there is not an i8 bsr. | 
|  | OpVT = MVT::i32; | 
|  | Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); | 
|  | } | 
|  |  | 
|  | // Issue a bsr (scan bits in reverse) which also sets EFLAGS. | 
|  | SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); | 
|  | Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op); | 
|  |  | 
|  | // If src is zero (i.e. bsr sets ZF), returns NumBits. | 
|  | SDValue Ops[] = { | 
|  | Op, | 
|  | DAG.getConstant(NumBits+NumBits-1, OpVT), | 
|  | DAG.getConstant(X86::COND_E, MVT::i8), | 
|  | Op.getValue(1) | 
|  | }; | 
|  | Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops)); | 
|  |  | 
|  | // Finally xor with NumBits-1. | 
|  | Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT)); | 
|  |  | 
|  | if (VT == MVT::i8) | 
|  | Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT OpVT = VT; | 
|  | unsigned NumBits = VT.getSizeInBits(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | Op = Op.getOperand(0); | 
|  | if (VT == MVT::i8) { | 
|  | OpVT = MVT::i32; | 
|  | Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); | 
|  | } | 
|  |  | 
|  | // Issue a bsf (scan bits forward) which also sets EFLAGS. | 
|  | SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); | 
|  | Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op); | 
|  |  | 
|  | // If src is zero (i.e. bsf sets ZF), returns NumBits. | 
|  | SDValue Ops[] = { | 
|  | Op, | 
|  | DAG.getConstant(NumBits, OpVT), | 
|  | DAG.getConstant(X86::COND_E, MVT::i8), | 
|  | Op.getValue(1) | 
|  | }; | 
|  | Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops)); | 
|  |  | 
|  | if (VT == MVT::i8) | 
|  | Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply"); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32); | 
|  | //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32); | 
|  | //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b ); | 
|  | //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi ); | 
|  | //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b ); | 
|  | // | 
|  | //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 ); | 
|  | //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 ); | 
|  | //  return AloBlo + AloBhi + AhiBlo; | 
|  |  | 
|  | SDValue A = Op.getOperand(0); | 
|  | SDValue B = Op.getOperand(1); | 
|  |  | 
|  | SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32), | 
|  | A, DAG.getConstant(32, MVT::i32)); | 
|  | SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32), | 
|  | B, DAG.getConstant(32, MVT::i32)); | 
|  | SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32), | 
|  | A, B); | 
|  | SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32), | 
|  | A, Bhi); | 
|  | SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32), | 
|  | Ahi, B); | 
|  | AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32), | 
|  | AloBhi, DAG.getConstant(32, MVT::i32)); | 
|  | AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32), | 
|  | AhiBlo, DAG.getConstant(32, MVT::i32)); | 
|  | SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi); | 
|  | Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | SDValue R = Op.getOperand(0); | 
|  |  | 
|  | LLVMContext *Context = DAG.getContext(); | 
|  |  | 
|  | assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later"); | 
|  |  | 
|  | if (VT == MVT::v4i32) { | 
|  | Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32), | 
|  | Op.getOperand(1), DAG.getConstant(23, MVT::i32)); | 
|  |  | 
|  | ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U)); | 
|  |  | 
|  | std::vector<Constant*> CV(4, CI); | 
|  | Constant *C = ConstantVector::get(CV); | 
|  | SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); | 
|  | SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(), | 
|  | false, false, 16); | 
|  |  | 
|  | Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend); | 
|  | Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op); | 
|  | Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op); | 
|  | return DAG.getNode(ISD::MUL, dl, VT, Op, R); | 
|  | } | 
|  | if (VT == MVT::v16i8) { | 
|  | // a = a << 5; | 
|  | Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), | 
|  | Op.getOperand(1), DAG.getConstant(5, MVT::i32)); | 
|  |  | 
|  | ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15)); | 
|  | ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63)); | 
|  |  | 
|  | std::vector<Constant*> CVM1(16, CM1); | 
|  | std::vector<Constant*> CVM2(16, CM2); | 
|  | Constant *C = ConstantVector::get(CVM1); | 
|  | SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); | 
|  | SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(), | 
|  | false, false, 16); | 
|  |  | 
|  | // r = pblendv(r, psllw(r & (char16)15, 4), a); | 
|  | M = DAG.getNode(ISD::AND, dl, VT, R, M); | 
|  | M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M, | 
|  | DAG.getConstant(4, MVT::i32)); | 
|  | R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op); | 
|  | // a += a | 
|  | Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op); | 
|  |  | 
|  | C = ConstantVector::get(CVM2); | 
|  | CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); | 
|  | M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(), | 
|  | false, false, 16); | 
|  |  | 
|  | // r = pblendv(r, psllw(r & (char16)63, 2), a); | 
|  | M = DAG.getNode(ISD::AND, dl, VT, R, M); | 
|  | M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M, | 
|  | DAG.getConstant(2, MVT::i32)); | 
|  | R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op); | 
|  | // a += a | 
|  | Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op); | 
|  |  | 
|  | // return pblendv(r, r+r, a); | 
|  | R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, | 
|  | R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op); | 
|  | return R; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const { | 
|  | // Lower the "add/sub/mul with overflow" instruction into a regular ins plus | 
|  | // a "setcc" instruction that checks the overflow flag. The "brcond" lowering | 
|  | // looks for this combo and may remove the "setcc" instruction if the "setcc" | 
|  | // has only one use. | 
|  | SDNode *N = Op.getNode(); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | unsigned BaseOp = 0; | 
|  | unsigned Cond = 0; | 
|  | DebugLoc DL = Op.getDebugLoc(); | 
|  | switch (Op.getOpcode()) { | 
|  | default: llvm_unreachable("Unknown ovf instruction!"); | 
|  | case ISD::SADDO: | 
|  | // A subtract of one will be selected as a INC. Note that INC doesn't | 
|  | // set CF, so we can't do this for UADDO. | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) | 
|  | if (C->getAPIntValue() == 1) { | 
|  | BaseOp = X86ISD::INC; | 
|  | Cond = X86::COND_O; | 
|  | break; | 
|  | } | 
|  | BaseOp = X86ISD::ADD; | 
|  | Cond = X86::COND_O; | 
|  | break; | 
|  | case ISD::UADDO: | 
|  | BaseOp = X86ISD::ADD; | 
|  | Cond = X86::COND_B; | 
|  | break; | 
|  | case ISD::SSUBO: | 
|  | // A subtract of one will be selected as a DEC. Note that DEC doesn't | 
|  | // set CF, so we can't do this for USUBO. | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) | 
|  | if (C->getAPIntValue() == 1) { | 
|  | BaseOp = X86ISD::DEC; | 
|  | Cond = X86::COND_O; | 
|  | break; | 
|  | } | 
|  | BaseOp = X86ISD::SUB; | 
|  | Cond = X86::COND_O; | 
|  | break; | 
|  | case ISD::USUBO: | 
|  | BaseOp = X86ISD::SUB; | 
|  | Cond = X86::COND_B; | 
|  | break; | 
|  | case ISD::SMULO: | 
|  | BaseOp = X86ISD::SMUL; | 
|  | Cond = X86::COND_O; | 
|  | break; | 
|  | case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs | 
|  | SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0), | 
|  | MVT::i32); | 
|  | SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS); | 
|  |  | 
|  | SDValue SetCC = | 
|  | DAG.getNode(X86ISD::SETCC, DL, MVT::i8, | 
|  | DAG.getConstant(X86::COND_O, MVT::i32), | 
|  | SDValue(Sum.getNode(), 2)); | 
|  |  | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC); | 
|  | return Sum; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Also sets EFLAGS. | 
|  | SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); | 
|  | SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); | 
|  |  | 
|  | SDValue SetCC = | 
|  | DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1), | 
|  | DAG.getConstant(Cond, MVT::i32), | 
|  | SDValue(Sum.getNode(), 1)); | 
|  |  | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC); | 
|  | return Sum; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{ | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | if (!Subtarget->hasSSE2()) { | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Zero = DAG.getConstant(0, | 
|  | Subtarget->is64Bit() ? MVT::i64 : MVT::i32); | 
|  | SDValue Ops[] = { | 
|  | DAG.getRegister(X86::ESP, MVT::i32), // Base | 
|  | DAG.getTargetConstant(1, MVT::i8),   // Scale | 
|  | DAG.getRegister(0, MVT::i32),        // Index | 
|  | DAG.getTargetConstant(0, MVT::i32),  // Disp | 
|  | DAG.getRegister(0, MVT::i32),        // Segment. | 
|  | Zero, | 
|  | Chain | 
|  | }; | 
|  | SDNode *Res = | 
|  | DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops, | 
|  | array_lengthof(Ops)); | 
|  | return SDValue(Res, 0); | 
|  | } | 
|  |  | 
|  | unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue(); | 
|  | if (!isDev) | 
|  | return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0)); | 
|  |  | 
|  | unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); | 
|  | unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); | 
|  | unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); | 
|  |  | 
|  | // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>; | 
|  | if (!Op1 && !Op2 && !Op3 && Op4) | 
|  | return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0)); | 
|  |  | 
|  | // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>; | 
|  | if (Op1 && !Op2 && !Op3 && !Op4) | 
|  | return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0)); | 
|  |  | 
|  | // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)), | 
|  | //           (MFENCE)>; | 
|  | return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0)); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const { | 
|  | EVT T = Op.getValueType(); | 
|  | DebugLoc DL = Op.getDebugLoc(); | 
|  | unsigned Reg = 0; | 
|  | unsigned size = 0; | 
|  | switch(T.getSimpleVT().SimpleTy) { | 
|  | default: | 
|  | assert(false && "Invalid value type!"); | 
|  | case MVT::i8:  Reg = X86::AL;  size = 1; break; | 
|  | case MVT::i16: Reg = X86::AX;  size = 2; break; | 
|  | case MVT::i32: Reg = X86::EAX; size = 4; break; | 
|  | case MVT::i64: | 
|  | assert(Subtarget->is64Bit() && "Node not type legal!"); | 
|  | Reg = X86::RAX; size = 8; | 
|  | break; | 
|  | } | 
|  | SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg, | 
|  | Op.getOperand(2), SDValue()); | 
|  | SDValue Ops[] = { cpIn.getValue(0), | 
|  | Op.getOperand(1), | 
|  | Op.getOperand(3), | 
|  | DAG.getTargetConstant(size, MVT::i8), | 
|  | cpIn.getValue(1) }; | 
|  | SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand(); | 
|  | SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys, | 
|  | Ops, 5, T, MMO); | 
|  | SDValue cpOut = | 
|  | DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1)); | 
|  | return cpOut; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | assert(Subtarget->is64Bit() && "Result not type legalized?"); | 
|  | SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SDValue TheChain = Op.getOperand(0); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1); | 
|  | SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1)); | 
|  | SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64, | 
|  | rax.getValue(2)); | 
|  | SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx, | 
|  | DAG.getConstant(32, MVT::i8)); | 
|  | SDValue Ops[] = { | 
|  | DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp), | 
|  | rdx.getValue(1) | 
|  | }; | 
|  | return DAG.getMergeValues(Ops, 2, dl); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerBITCAST(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT SrcVT = Op.getOperand(0).getValueType(); | 
|  | EVT DstVT = Op.getValueType(); | 
|  | assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() && | 
|  | Subtarget->hasMMX() && "Unexpected custom BITCAST"); | 
|  | assert((DstVT == MVT::i64 || | 
|  | (DstVT.isVector() && DstVT.getSizeInBits()==64)) && | 
|  | "Unexpected custom BITCAST"); | 
|  | // i64 <=> MMX conversions are Legal. | 
|  | if (SrcVT==MVT::i64 && DstVT.isVector()) | 
|  | return Op; | 
|  | if (DstVT==MVT::i64 && SrcVT.isVector()) | 
|  | return Op; | 
|  | // MMX <=> MMX conversions are Legal. | 
|  | if (SrcVT.isVector() && DstVT.isVector()) | 
|  | return Op; | 
|  | // All other conversions need to be expanded. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDNode *Node = Op.getNode(); | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  | EVT T = Node->getValueType(0); | 
|  | SDValue negOp = DAG.getNode(ISD::SUB, dl, T, | 
|  | DAG.getConstant(0, T), Node->getOperand(2)); | 
|  | return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, | 
|  | cast<AtomicSDNode>(Node)->getMemoryVT(), | 
|  | Node->getOperand(0), | 
|  | Node->getOperand(1), negOp, | 
|  | cast<AtomicSDNode>(Node)->getSrcValue(), | 
|  | cast<AtomicSDNode>(Node)->getAlignment()); | 
|  | } | 
|  |  | 
|  | static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { | 
|  | EVT VT = Op.getNode()->getValueType(0); | 
|  |  | 
|  | // Let legalize expand this if it isn't a legal type yet. | 
|  | if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDVTList VTs = DAG.getVTList(VT, MVT::i32); | 
|  |  | 
|  | unsigned Opc; | 
|  | bool ExtraOp = false; | 
|  | switch (Op.getOpcode()) { | 
|  | default: assert(0 && "Invalid code"); | 
|  | case ISD::ADDC: Opc = X86ISD::ADD; break; | 
|  | case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break; | 
|  | case ISD::SUBC: Opc = X86ISD::SUB; break; | 
|  | case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break; | 
|  | } | 
|  |  | 
|  | if (!ExtraOp) | 
|  | return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0), | 
|  | Op.getOperand(1)); | 
|  | return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0), | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  | } | 
|  |  | 
|  | /// LowerOperation - Provide custom lowering hooks for some operations. | 
|  | /// | 
|  | SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { | 
|  | switch (Op.getOpcode()) { | 
|  | default: llvm_unreachable("Should not custom lower this!"); | 
|  | case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG); | 
|  | case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG); | 
|  | case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG); | 
|  | case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG); | 
|  | case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG); | 
|  | case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG); | 
|  | case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); | 
|  | case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG); | 
|  | case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG); | 
|  | case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG); | 
|  | case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG); | 
|  | case ISD::ConstantPool:       return LowerConstantPool(Op, DAG); | 
|  | case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG); | 
|  | case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG); | 
|  | case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG); | 
|  | case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG); | 
|  | case ISD::SHL_PARTS: | 
|  | case ISD::SRA_PARTS: | 
|  | case ISD::SRL_PARTS:          return LowerShift(Op, DAG); | 
|  | case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG); | 
|  | case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG); | 
|  | case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG); | 
|  | case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG); | 
|  | case ISD::FABS:               return LowerFABS(Op, DAG); | 
|  | case ISD::FNEG:               return LowerFNEG(Op, DAG); | 
|  | case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG); | 
|  | case ISD::SETCC:              return LowerSETCC(Op, DAG); | 
|  | case ISD::VSETCC:             return LowerVSETCC(Op, DAG); | 
|  | case ISD::SELECT:             return LowerSELECT(Op, DAG); | 
|  | case ISD::BRCOND:             return LowerBRCOND(Op, DAG); | 
|  | case ISD::JumpTable:          return LowerJumpTable(Op, DAG); | 
|  | case ISD::VASTART:            return LowerVASTART(Op, DAG); | 
|  | case ISD::VAARG:              return LowerVAARG(Op, DAG); | 
|  | case ISD::VACOPY:             return LowerVACOPY(Op, DAG); | 
|  | case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); | 
|  | case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG); | 
|  | case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG); | 
|  | case ISD::FRAME_TO_ARGS_OFFSET: | 
|  | return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); | 
|  | case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); | 
|  | case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG); | 
|  | case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG); | 
|  | case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG); | 
|  | case ISD::CTLZ:               return LowerCTLZ(Op, DAG); | 
|  | case ISD::CTTZ:               return LowerCTTZ(Op, DAG); | 
|  | case ISD::MUL:                return LowerMUL_V2I64(Op, DAG); | 
|  | case ISD::SHL:                return LowerSHL(Op, DAG); | 
|  | case ISD::SADDO: | 
|  | case ISD::UADDO: | 
|  | case ISD::SSUBO: | 
|  | case ISD::USUBO: | 
|  | case ISD::SMULO: | 
|  | case ISD::UMULO:              return LowerXALUO(Op, DAG); | 
|  | case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG); | 
|  | case ISD::BITCAST:            return LowerBITCAST(Op, DAG); | 
|  | case ISD::ADDC: | 
|  | case ISD::ADDE: | 
|  | case ISD::SUBC: | 
|  | case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86TargetLowering:: | 
|  | ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results, | 
|  | SelectionDAG &DAG, unsigned NewOp) const { | 
|  | EVT T = Node->getValueType(0); | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  | assert (T == MVT::i64 && "Only know how to expand i64 atomics"); | 
|  |  | 
|  | SDValue Chain = Node->getOperand(0); | 
|  | SDValue In1 = Node->getOperand(1); | 
|  | SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, | 
|  | Node->getOperand(2), DAG.getIntPtrConstant(0)); | 
|  | SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, | 
|  | Node->getOperand(2), DAG.getIntPtrConstant(1)); | 
|  | SDValue Ops[] = { Chain, In1, In2L, In2H }; | 
|  | SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); | 
|  | SDValue Result = | 
|  | DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64, | 
|  | cast<MemSDNode>(Node)->getMemOperand()); | 
|  | SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)}; | 
|  | Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2)); | 
|  | Results.push_back(Result.getValue(2)); | 
|  | } | 
|  |  | 
|  | /// ReplaceNodeResults - Replace a node with an illegal result type | 
|  | /// with a new node built out of custom code. | 
|  | void X86TargetLowering::ReplaceNodeResults(SDNode *N, | 
|  | SmallVectorImpl<SDValue>&Results, | 
|  | SelectionDAG &DAG) const { | 
|  | DebugLoc dl = N->getDebugLoc(); | 
|  | switch (N->getOpcode()) { | 
|  | default: | 
|  | assert(false && "Do not know how to custom type legalize this operation!"); | 
|  | return; | 
|  | case ISD::ADDC: | 
|  | case ISD::ADDE: | 
|  | case ISD::SUBC: | 
|  | case ISD::SUBE: | 
|  | // We don't want to expand or promote these. | 
|  | return; | 
|  | case ISD::FP_TO_SINT: { | 
|  | std::pair<SDValue,SDValue> Vals = | 
|  | FP_TO_INTHelper(SDValue(N, 0), DAG, true); | 
|  | SDValue FIST = Vals.first, StackSlot = Vals.second; | 
|  | if (FIST.getNode() != 0) { | 
|  | EVT VT = N->getValueType(0); | 
|  | // Return a load from the stack slot. | 
|  | Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, | 
|  | MachinePointerInfo(), false, false, 0)); | 
|  | } | 
|  | return; | 
|  | } | 
|  | case ISD::READCYCLECOUNTER: { | 
|  | SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SDValue TheChain = N->getOperand(0); | 
|  | SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1); | 
|  | SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32, | 
|  | rd.getValue(1)); | 
|  | SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32, | 
|  | eax.getValue(2)); | 
|  | // Use a buildpair to merge the two 32-bit values into a 64-bit one. | 
|  | SDValue Ops[] = { eax, edx }; | 
|  | Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2)); | 
|  | Results.push_back(edx.getValue(1)); | 
|  | return; | 
|  | } | 
|  | case ISD::ATOMIC_CMP_SWAP: { | 
|  | EVT T = N->getValueType(0); | 
|  | assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap"); | 
|  | SDValue cpInL, cpInH; | 
|  | cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2), | 
|  | DAG.getConstant(0, MVT::i32)); | 
|  | cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2), | 
|  | DAG.getConstant(1, MVT::i32)); | 
|  | cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue()); | 
|  | cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH, | 
|  | cpInL.getValue(1)); | 
|  | SDValue swapInL, swapInH; | 
|  | swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3), | 
|  | DAG.getConstant(0, MVT::i32)); | 
|  | swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3), | 
|  | DAG.getConstant(1, MVT::i32)); | 
|  | swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL, | 
|  | cpInH.getValue(1)); | 
|  | swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH, | 
|  | swapInL.getValue(1)); | 
|  | SDValue Ops[] = { swapInH.getValue(0), | 
|  | N->getOperand(1), | 
|  | swapInH.getValue(1) }; | 
|  | SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); | 
|  | SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, | 
|  | Ops, 3, T, MMO); | 
|  | SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX, | 
|  | MVT::i32, Result.getValue(1)); | 
|  | SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX, | 
|  | MVT::i32, cpOutL.getValue(2)); | 
|  | SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)}; | 
|  | Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2)); | 
|  | Results.push_back(cpOutH.getValue(1)); | 
|  | return; | 
|  | } | 
|  | case ISD::ATOMIC_LOAD_ADD: | 
|  | ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG); | 
|  | return; | 
|  | case ISD::ATOMIC_LOAD_AND: | 
|  | ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG); | 
|  | return; | 
|  | case ISD::ATOMIC_LOAD_NAND: | 
|  | ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG); | 
|  | return; | 
|  | case ISD::ATOMIC_LOAD_OR: | 
|  | ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG); | 
|  | return; | 
|  | case ISD::ATOMIC_LOAD_SUB: | 
|  | ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG); | 
|  | return; | 
|  | case ISD::ATOMIC_LOAD_XOR: | 
|  | ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG); | 
|  | return; | 
|  | case ISD::ATOMIC_SWAP: | 
|  | ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { | 
|  | switch (Opcode) { | 
|  | default: return NULL; | 
|  | case X86ISD::BSF:                return "X86ISD::BSF"; | 
|  | case X86ISD::BSR:                return "X86ISD::BSR"; | 
|  | case X86ISD::SHLD:               return "X86ISD::SHLD"; | 
|  | case X86ISD::SHRD:               return "X86ISD::SHRD"; | 
|  | case X86ISD::FAND:               return "X86ISD::FAND"; | 
|  | case X86ISD::FOR:                return "X86ISD::FOR"; | 
|  | case X86ISD::FXOR:               return "X86ISD::FXOR"; | 
|  | case X86ISD::FSRL:               return "X86ISD::FSRL"; | 
|  | case X86ISD::FILD:               return "X86ISD::FILD"; | 
|  | case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG"; | 
|  | case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; | 
|  | case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; | 
|  | case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; | 
|  | case X86ISD::FLD:                return "X86ISD::FLD"; | 
|  | case X86ISD::FST:                return "X86ISD::FST"; | 
|  | case X86ISD::CALL:               return "X86ISD::CALL"; | 
|  | case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG"; | 
|  | case X86ISD::BT:                 return "X86ISD::BT"; | 
|  | case X86ISD::CMP:                return "X86ISD::CMP"; | 
|  | case X86ISD::COMI:               return "X86ISD::COMI"; | 
|  | case X86ISD::UCOMI:              return "X86ISD::UCOMI"; | 
|  | case X86ISD::SETCC:              return "X86ISD::SETCC"; | 
|  | case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY"; | 
|  | case X86ISD::CMOV:               return "X86ISD::CMOV"; | 
|  | case X86ISD::BRCOND:             return "X86ISD::BRCOND"; | 
|  | case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG"; | 
|  | case X86ISD::REP_STOS:           return "X86ISD::REP_STOS"; | 
|  | case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS"; | 
|  | case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg"; | 
|  | case X86ISD::Wrapper:            return "X86ISD::Wrapper"; | 
|  | case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP"; | 
|  | case X86ISD::PEXTRB:             return "X86ISD::PEXTRB"; | 
|  | case X86ISD::PEXTRW:             return "X86ISD::PEXTRW"; | 
|  | case X86ISD::INSERTPS:           return "X86ISD::INSERTPS"; | 
|  | case X86ISD::PINSRB:             return "X86ISD::PINSRB"; | 
|  | case X86ISD::PINSRW:             return "X86ISD::PINSRW"; | 
|  | case X86ISD::PSHUFB:             return "X86ISD::PSHUFB"; | 
|  | case X86ISD::PANDN:              return "X86ISD::PANDN"; | 
|  | case X86ISD::PSIGNB:             return "X86ISD::PSIGNB"; | 
|  | case X86ISD::PSIGNW:             return "X86ISD::PSIGNW"; | 
|  | case X86ISD::PSIGND:             return "X86ISD::PSIGND"; | 
|  | case X86ISD::PBLENDVB:           return "X86ISD::PBLENDVB"; | 
|  | case X86ISD::FMAX:               return "X86ISD::FMAX"; | 
|  | case X86ISD::FMIN:               return "X86ISD::FMIN"; | 
|  | case X86ISD::FRSQRT:             return "X86ISD::FRSQRT"; | 
|  | case X86ISD::FRCP:               return "X86ISD::FRCP"; | 
|  | case X86ISD::TLSADDR:            return "X86ISD::TLSADDR"; | 
|  | case X86ISD::TLSCALL:            return "X86ISD::TLSCALL"; | 
|  | case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN"; | 
|  | case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN"; | 
|  | case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m"; | 
|  | case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG"; | 
|  | case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG"; | 
|  | case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG"; | 
|  | case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG"; | 
|  | case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG"; | 
|  | case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG"; | 
|  | case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG"; | 
|  | case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG"; | 
|  | case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL"; | 
|  | case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD"; | 
|  | case X86ISD::VSHL:               return "X86ISD::VSHL"; | 
|  | case X86ISD::VSRL:               return "X86ISD::VSRL"; | 
|  | case X86ISD::CMPPD:              return "X86ISD::CMPPD"; | 
|  | case X86ISD::CMPPS:              return "X86ISD::CMPPS"; | 
|  | case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB"; | 
|  | case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW"; | 
|  | case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD"; | 
|  | case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ"; | 
|  | case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB"; | 
|  | case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW"; | 
|  | case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD"; | 
|  | case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ"; | 
|  | case X86ISD::ADD:                return "X86ISD::ADD"; | 
|  | case X86ISD::SUB:                return "X86ISD::SUB"; | 
|  | case X86ISD::ADC:                return "X86ISD::ADC"; | 
|  | case X86ISD::SBB:                return "X86ISD::SBB"; | 
|  | case X86ISD::SMUL:               return "X86ISD::SMUL"; | 
|  | case X86ISD::UMUL:               return "X86ISD::UMUL"; | 
|  | case X86ISD::INC:                return "X86ISD::INC"; | 
|  | case X86ISD::DEC:                return "X86ISD::DEC"; | 
|  | case X86ISD::OR:                 return "X86ISD::OR"; | 
|  | case X86ISD::XOR:                return "X86ISD::XOR"; | 
|  | case X86ISD::AND:                return "X86ISD::AND"; | 
|  | case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM"; | 
|  | case X86ISD::PTEST:              return "X86ISD::PTEST"; | 
|  | case X86ISD::TESTP:              return "X86ISD::TESTP"; | 
|  | case X86ISD::PALIGN:             return "X86ISD::PALIGN"; | 
|  | case X86ISD::PSHUFD:             return "X86ISD::PSHUFD"; | 
|  | case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW"; | 
|  | case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD"; | 
|  | case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW"; | 
|  | case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD"; | 
|  | case X86ISD::SHUFPS:             return "X86ISD::SHUFPS"; | 
|  | case X86ISD::SHUFPD:             return "X86ISD::SHUFPD"; | 
|  | case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS"; | 
|  | case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD"; | 
|  | case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS"; | 
|  | case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD"; | 
|  | case X86ISD::MOVLPS:             return "X86ISD::MOVLPS"; | 
|  | case X86ISD::MOVLPD:             return "X86ISD::MOVLPD"; | 
|  | case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP"; | 
|  | case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP"; | 
|  | case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP"; | 
|  | case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD"; | 
|  | case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD"; | 
|  | case X86ISD::MOVSD:              return "X86ISD::MOVSD"; | 
|  | case X86ISD::MOVSS:              return "X86ISD::MOVSS"; | 
|  | case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS"; | 
|  | case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD"; | 
|  | case X86ISD::VUNPCKLPS:          return "X86ISD::VUNPCKLPS"; | 
|  | case X86ISD::VUNPCKLPD:          return "X86ISD::VUNPCKLPD"; | 
|  | case X86ISD::VUNPCKLPSY:         return "X86ISD::VUNPCKLPSY"; | 
|  | case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY"; | 
|  | case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS"; | 
|  | case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD"; | 
|  | case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW"; | 
|  | case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD"; | 
|  | case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ"; | 
|  | case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ"; | 
|  | case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW"; | 
|  | case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD"; | 
|  | case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ"; | 
|  | case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ"; | 
|  | case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS"; | 
|  | case X86ISD::VAARG_64:           return "X86ISD::VAARG_64"; | 
|  | case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA"; | 
|  | } | 
|  | } | 
|  |  | 
|  | // isLegalAddressingMode - Return true if the addressing mode represented | 
|  | // by AM is legal for this target, for a load/store of the specified type. | 
|  | bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM, | 
|  | const Type *Ty) const { | 
|  | // X86 supports extremely general addressing modes. | 
|  | CodeModel::Model M = getTargetMachine().getCodeModel(); | 
|  | Reloc::Model R = getTargetMachine().getRelocationModel(); | 
|  |  | 
|  | // X86 allows a sign-extended 32-bit immediate field as a displacement. | 
|  | if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL)) | 
|  | return false; | 
|  |  | 
|  | if (AM.BaseGV) { | 
|  | unsigned GVFlags = | 
|  | Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine()); | 
|  |  | 
|  | // If a reference to this global requires an extra load, we can't fold it. | 
|  | if (isGlobalStubReference(GVFlags)) | 
|  | return false; | 
|  |  | 
|  | // If BaseGV requires a register for the PIC base, we cannot also have a | 
|  | // BaseReg specified. | 
|  | if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags)) | 
|  | return false; | 
|  |  | 
|  | // If lower 4G is not available, then we must use rip-relative addressing. | 
|  | if ((M != CodeModel::Small || R != Reloc::Static) && | 
|  | Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | switch (AM.Scale) { | 
|  | case 0: | 
|  | case 1: | 
|  | case 2: | 
|  | case 4: | 
|  | case 8: | 
|  | // These scales always work. | 
|  | break; | 
|  | case 3: | 
|  | case 5: | 
|  | case 9: | 
|  | // These scales are formed with basereg+scalereg.  Only accept if there is | 
|  | // no basereg yet. | 
|  | if (AM.HasBaseReg) | 
|  | return false; | 
|  | break; | 
|  | default:  // Other stuff never works. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const { | 
|  | if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) | 
|  | return false; | 
|  | unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); | 
|  | unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); | 
|  | if (NumBits1 <= NumBits2) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { | 
|  | if (!VT1.isInteger() || !VT2.isInteger()) | 
|  | return false; | 
|  | unsigned NumBits1 = VT1.getSizeInBits(); | 
|  | unsigned NumBits2 = VT2.getSizeInBits(); | 
|  | if (NumBits1 <= NumBits2) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const { | 
|  | // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. | 
|  | return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit(); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { | 
|  | // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. | 
|  | return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit(); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const { | 
|  | // i16 instructions are longer (0x66 prefix) and potentially slower. | 
|  | return !(VT1 == MVT::i32 && VT2 == MVT::i16); | 
|  | } | 
|  |  | 
|  | /// isShuffleMaskLegal - Targets can use this to indicate that they only | 
|  | /// support *some* VECTOR_SHUFFLE operations, those with specific masks. | 
|  | /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values | 
|  | /// are assumed to be legal. | 
|  | bool | 
|  | X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, | 
|  | EVT VT) const { | 
|  | // Very little shuffling can be done for 64-bit vectors right now. | 
|  | if (VT.getSizeInBits() == 64) | 
|  | return isPALIGNRMask(M, VT, Subtarget->hasSSSE3()); | 
|  |  | 
|  | // FIXME: pshufb, blends, shifts. | 
|  | return (VT.getVectorNumElements() == 2 || | 
|  | ShuffleVectorSDNode::isSplatMask(&M[0], VT) || | 
|  | isMOVLMask(M, VT) || | 
|  | isSHUFPMask(M, VT) || | 
|  | isPSHUFDMask(M, VT) || | 
|  | isPSHUFHWMask(M, VT) || | 
|  | isPSHUFLWMask(M, VT) || | 
|  | isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) || | 
|  | isUNPCKLMask(M, VT) || | 
|  | isUNPCKHMask(M, VT) || | 
|  | isUNPCKL_v_undef_Mask(M, VT) || | 
|  | isUNPCKH_v_undef_Mask(M, VT)); | 
|  | } | 
|  |  | 
|  | bool | 
|  | X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask, | 
|  | EVT VT) const { | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | // FIXME: This collection of masks seems suspect. | 
|  | if (NumElts == 2) | 
|  | return true; | 
|  | if (NumElts == 4 && VT.getSizeInBits() == 128) { | 
|  | return (isMOVLMask(Mask, VT)  || | 
|  | isCommutedMOVLMask(Mask, VT, true) || | 
|  | isSHUFPMask(Mask, VT) || | 
|  | isCommutedSHUFPMask(Mask, VT)); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           X86 Scheduler Hooks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // private utility function | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr, | 
|  | MachineBasicBlock *MBB, | 
|  | unsigned regOpc, | 
|  | unsigned immOpc, | 
|  | unsigned LoadOpc, | 
|  | unsigned CXchgOpc, | 
|  | unsigned notOpc, | 
|  | unsigned EAXreg, | 
|  | TargetRegisterClass *RC, | 
|  | bool invSrc) const { | 
|  | // For the atomic bitwise operator, we generate | 
|  | //   thisMBB: | 
|  | //   newMBB: | 
|  | //     ld  t1 = [bitinstr.addr] | 
|  | //     op  t2 = t1, [bitinstr.val] | 
|  | //     mov EAX = t1 | 
|  | //     lcs dest = [bitinstr.addr], t2  [EAX is implicit] | 
|  | //     bz  newMBB | 
|  | //     fallthrough -->nextMBB | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  | const BasicBlock *LLVM_BB = MBB->getBasicBlock(); | 
|  | MachineFunction::iterator MBBIter = MBB; | 
|  | ++MBBIter; | 
|  |  | 
|  | /// First build the CFG | 
|  | MachineFunction *F = MBB->getParent(); | 
|  | MachineBasicBlock *thisMBB = MBB; | 
|  | MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(MBBIter, newMBB); | 
|  | F->insert(MBBIter, nextMBB); | 
|  |  | 
|  | // Transfer the remainder of thisMBB and its successor edges to nextMBB. | 
|  | nextMBB->splice(nextMBB->begin(), thisMBB, | 
|  | llvm::next(MachineBasicBlock::iterator(bInstr)), | 
|  | thisMBB->end()); | 
|  | nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB); | 
|  |  | 
|  | // Update thisMBB to fall through to newMBB | 
|  | thisMBB->addSuccessor(newMBB); | 
|  |  | 
|  | // newMBB jumps to itself and fall through to nextMBB | 
|  | newMBB->addSuccessor(nextMBB); | 
|  | newMBB->addSuccessor(newMBB); | 
|  |  | 
|  | // Insert instructions into newMBB based on incoming instruction | 
|  | assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 && | 
|  | "unexpected number of operands"); | 
|  | DebugLoc dl = bInstr->getDebugLoc(); | 
|  | MachineOperand& destOper = bInstr->getOperand(0); | 
|  | MachineOperand* argOpers[2 + X86::AddrNumOperands]; | 
|  | int numArgs = bInstr->getNumOperands() - 1; | 
|  | for (int i=0; i < numArgs; ++i) | 
|  | argOpers[i] = &bInstr->getOperand(i+1); | 
|  |  | 
|  | // x86 address has 4 operands: base, index, scale, and displacement | 
|  | int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3] | 
|  | int valArgIndx = lastAddrIndx + 1; | 
|  |  | 
|  | unsigned t1 = F->getRegInfo().createVirtualRegister(RC); | 
|  | MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1); | 
|  | for (int i=0; i <= lastAddrIndx; ++i) | 
|  | (*MIB).addOperand(*argOpers[i]); | 
|  |  | 
|  | unsigned tt = F->getRegInfo().createVirtualRegister(RC); | 
|  | if (invSrc) { | 
|  | MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1); | 
|  | } | 
|  | else | 
|  | tt = t1; | 
|  |  | 
|  | unsigned t2 = F->getRegInfo().createVirtualRegister(RC); | 
|  | assert((argOpers[valArgIndx]->isReg() || | 
|  | argOpers[valArgIndx]->isImm()) && | 
|  | "invalid operand"); | 
|  | if (argOpers[valArgIndx]->isReg()) | 
|  | MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2); | 
|  | else | 
|  | MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2); | 
|  | MIB.addReg(tt); | 
|  | (*MIB).addOperand(*argOpers[valArgIndx]); | 
|  |  | 
|  | MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg); | 
|  | MIB.addReg(t1); | 
|  |  | 
|  | MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc)); | 
|  | for (int i=0; i <= lastAddrIndx; ++i) | 
|  | (*MIB).addOperand(*argOpers[i]); | 
|  | MIB.addReg(t2); | 
|  | assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand"); | 
|  | (*MIB).setMemRefs(bInstr->memoperands_begin(), | 
|  | bInstr->memoperands_end()); | 
|  |  | 
|  | MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg()); | 
|  | MIB.addReg(EAXreg); | 
|  |  | 
|  | // insert branch | 
|  | BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB); | 
|  |  | 
|  | bInstr->eraseFromParent();   // The pseudo instruction is gone now. | 
|  | return nextMBB; | 
|  | } | 
|  |  | 
|  | // private utility function:  64 bit atomics on 32 bit host. | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr, | 
|  | MachineBasicBlock *MBB, | 
|  | unsigned regOpcL, | 
|  | unsigned regOpcH, | 
|  | unsigned immOpcL, | 
|  | unsigned immOpcH, | 
|  | bool invSrc) const { | 
|  | // For the atomic bitwise operator, we generate | 
|  | //   thisMBB (instructions are in pairs, except cmpxchg8b) | 
|  | //     ld t1,t2 = [bitinstr.addr] | 
|  | //   newMBB: | 
|  | //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4) | 
|  | //     op  t5, t6 <- out1, out2, [bitinstr.val] | 
|  | //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val]) | 
|  | //     mov ECX, EBX <- t5, t6 | 
|  | //     mov EAX, EDX <- t1, t2 | 
|  | //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit] | 
|  | //     mov t3, t4 <- EAX, EDX | 
|  | //     bz  newMBB | 
|  | //     result in out1, out2 | 
|  | //     fallthrough -->nextMBB | 
|  |  | 
|  | const TargetRegisterClass *RC = X86::GR32RegisterClass; | 
|  | const unsigned LoadOpc = X86::MOV32rm; | 
|  | const unsigned NotOpc = X86::NOT32r; | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  | const BasicBlock *LLVM_BB = MBB->getBasicBlock(); | 
|  | MachineFunction::iterator MBBIter = MBB; | 
|  | ++MBBIter; | 
|  |  | 
|  | /// First build the CFG | 
|  | MachineFunction *F = MBB->getParent(); | 
|  | MachineBasicBlock *thisMBB = MBB; | 
|  | MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(MBBIter, newMBB); | 
|  | F->insert(MBBIter, nextMBB); | 
|  |  | 
|  | // Transfer the remainder of thisMBB and its successor edges to nextMBB. | 
|  | nextMBB->splice(nextMBB->begin(), thisMBB, | 
|  | llvm::next(MachineBasicBlock::iterator(bInstr)), | 
|  | thisMBB->end()); | 
|  | nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB); | 
|  |  | 
|  | // Update thisMBB to fall through to newMBB | 
|  | thisMBB->addSuccessor(newMBB); | 
|  |  | 
|  | // newMBB jumps to itself and fall through to nextMBB | 
|  | newMBB->addSuccessor(nextMBB); | 
|  | newMBB->addSuccessor(newMBB); | 
|  |  | 
|  | DebugLoc dl = bInstr->getDebugLoc(); | 
|  | // Insert instructions into newMBB based on incoming instruction | 
|  | // There are 8 "real" operands plus 9 implicit def/uses, ignored here. | 
|  | assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 && | 
|  | "unexpected number of operands"); | 
|  | MachineOperand& dest1Oper = bInstr->getOperand(0); | 
|  | MachineOperand& dest2Oper = bInstr->getOperand(1); | 
|  | MachineOperand* argOpers[2 + X86::AddrNumOperands]; | 
|  | for (int i=0; i < 2 + X86::AddrNumOperands; ++i) { | 
|  | argOpers[i] = &bInstr->getOperand(i+2); | 
|  |  | 
|  | // We use some of the operands multiple times, so conservatively just | 
|  | // clear any kill flags that might be present. | 
|  | if (argOpers[i]->isReg() && argOpers[i]->isUse()) | 
|  | argOpers[i]->setIsKill(false); | 
|  | } | 
|  |  | 
|  | // x86 address has 5 operands: base, index, scale, displacement, and segment. | 
|  | int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3] | 
|  |  | 
|  | unsigned t1 = F->getRegInfo().createVirtualRegister(RC); | 
|  | MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1); | 
|  | for (int i=0; i <= lastAddrIndx; ++i) | 
|  | (*MIB).addOperand(*argOpers[i]); | 
|  | unsigned t2 = F->getRegInfo().createVirtualRegister(RC); | 
|  | MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2); | 
|  | // add 4 to displacement. | 
|  | for (int i=0; i <= lastAddrIndx-2; ++i) | 
|  | (*MIB).addOperand(*argOpers[i]); | 
|  | MachineOperand newOp3 = *(argOpers[3]); | 
|  | if (newOp3.isImm()) | 
|  | newOp3.setImm(newOp3.getImm()+4); | 
|  | else | 
|  | newOp3.setOffset(newOp3.getOffset()+4); | 
|  | (*MIB).addOperand(newOp3); | 
|  | (*MIB).addOperand(*argOpers[lastAddrIndx]); | 
|  |  | 
|  | // t3/4 are defined later, at the bottom of the loop | 
|  | unsigned t3 = F->getRegInfo().createVirtualRegister(RC); | 
|  | unsigned t4 = F->getRegInfo().createVirtualRegister(RC); | 
|  | BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg()) | 
|  | .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB); | 
|  | BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg()) | 
|  | .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB); | 
|  |  | 
|  | // The subsequent operations should be using the destination registers of | 
|  | //the PHI instructions. | 
|  | if (invSrc) { | 
|  | t1 = F->getRegInfo().createVirtualRegister(RC); | 
|  | t2 = F->getRegInfo().createVirtualRegister(RC); | 
|  | MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg()); | 
|  | MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg()); | 
|  | } else { | 
|  | t1 = dest1Oper.getReg(); | 
|  | t2 = dest2Oper.getReg(); | 
|  | } | 
|  |  | 
|  | int valArgIndx = lastAddrIndx + 1; | 
|  | assert((argOpers[valArgIndx]->isReg() || | 
|  | argOpers[valArgIndx]->isImm()) && | 
|  | "invalid operand"); | 
|  | unsigned t5 = F->getRegInfo().createVirtualRegister(RC); | 
|  | unsigned t6 = F->getRegInfo().createVirtualRegister(RC); | 
|  | if (argOpers[valArgIndx]->isReg()) | 
|  | MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5); | 
|  | else | 
|  | MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5); | 
|  | if (regOpcL != X86::MOV32rr) | 
|  | MIB.addReg(t1); | 
|  | (*MIB).addOperand(*argOpers[valArgIndx]); | 
|  | assert(argOpers[valArgIndx + 1]->isReg() == | 
|  | argOpers[valArgIndx]->isReg()); | 
|  | assert(argOpers[valArgIndx + 1]->isImm() == | 
|  | argOpers[valArgIndx]->isImm()); | 
|  | if (argOpers[valArgIndx + 1]->isReg()) | 
|  | MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6); | 
|  | else | 
|  | MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6); | 
|  | if (regOpcH != X86::MOV32rr) | 
|  | MIB.addReg(t2); | 
|  | (*MIB).addOperand(*argOpers[valArgIndx + 1]); | 
|  |  | 
|  | MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX); | 
|  | MIB.addReg(t1); | 
|  | MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX); | 
|  | MIB.addReg(t2); | 
|  |  | 
|  | MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX); | 
|  | MIB.addReg(t5); | 
|  | MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX); | 
|  | MIB.addReg(t6); | 
|  |  | 
|  | MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B)); | 
|  | for (int i=0; i <= lastAddrIndx; ++i) | 
|  | (*MIB).addOperand(*argOpers[i]); | 
|  |  | 
|  | assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand"); | 
|  | (*MIB).setMemRefs(bInstr->memoperands_begin(), | 
|  | bInstr->memoperands_end()); | 
|  |  | 
|  | MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3); | 
|  | MIB.addReg(X86::EAX); | 
|  | MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4); | 
|  | MIB.addReg(X86::EDX); | 
|  |  | 
|  | // insert branch | 
|  | BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB); | 
|  |  | 
|  | bInstr->eraseFromParent();   // The pseudo instruction is gone now. | 
|  | return nextMBB; | 
|  | } | 
|  |  | 
|  | // private utility function | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr, | 
|  | MachineBasicBlock *MBB, | 
|  | unsigned cmovOpc) const { | 
|  | // For the atomic min/max operator, we generate | 
|  | //   thisMBB: | 
|  | //   newMBB: | 
|  | //     ld t1 = [min/max.addr] | 
|  | //     mov t2 = [min/max.val] | 
|  | //     cmp  t1, t2 | 
|  | //     cmov[cond] t2 = t1 | 
|  | //     mov EAX = t1 | 
|  | //     lcs dest = [bitinstr.addr], t2  [EAX is implicit] | 
|  | //     bz   newMBB | 
|  | //     fallthrough -->nextMBB | 
|  | // | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  | const BasicBlock *LLVM_BB = MBB->getBasicBlock(); | 
|  | MachineFunction::iterator MBBIter = MBB; | 
|  | ++MBBIter; | 
|  |  | 
|  | /// First build the CFG | 
|  | MachineFunction *F = MBB->getParent(); | 
|  | MachineBasicBlock *thisMBB = MBB; | 
|  | MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(MBBIter, newMBB); | 
|  | F->insert(MBBIter, nextMBB); | 
|  |  | 
|  | // Transfer the remainder of thisMBB and its successor edges to nextMBB. | 
|  | nextMBB->splice(nextMBB->begin(), thisMBB, | 
|  | llvm::next(MachineBasicBlock::iterator(mInstr)), | 
|  | thisMBB->end()); | 
|  | nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB); | 
|  |  | 
|  | // Update thisMBB to fall through to newMBB | 
|  | thisMBB->addSuccessor(newMBB); | 
|  |  | 
|  | // newMBB jumps to newMBB and fall through to nextMBB | 
|  | newMBB->addSuccessor(nextMBB); | 
|  | newMBB->addSuccessor(newMBB); | 
|  |  | 
|  | DebugLoc dl = mInstr->getDebugLoc(); | 
|  | // Insert instructions into newMBB based on incoming instruction | 
|  | assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 && | 
|  | "unexpected number of operands"); | 
|  | MachineOperand& destOper = mInstr->getOperand(0); | 
|  | MachineOperand* argOpers[2 + X86::AddrNumOperands]; | 
|  | int numArgs = mInstr->getNumOperands() - 1; | 
|  | for (int i=0; i < numArgs; ++i) | 
|  | argOpers[i] = &mInstr->getOperand(i+1); | 
|  |  | 
|  | // x86 address has 4 operands: base, index, scale, and displacement | 
|  | int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3] | 
|  | int valArgIndx = lastAddrIndx + 1; | 
|  |  | 
|  | unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); | 
|  | MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1); | 
|  | for (int i=0; i <= lastAddrIndx; ++i) | 
|  | (*MIB).addOperand(*argOpers[i]); | 
|  |  | 
|  | // We only support register and immediate values | 
|  | assert((argOpers[valArgIndx]->isReg() || | 
|  | argOpers[valArgIndx]->isImm()) && | 
|  | "invalid operand"); | 
|  |  | 
|  | unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); | 
|  | if (argOpers[valArgIndx]->isReg()) | 
|  | MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2); | 
|  | else | 
|  | MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2); | 
|  | (*MIB).addOperand(*argOpers[valArgIndx]); | 
|  |  | 
|  | MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX); | 
|  | MIB.addReg(t1); | 
|  |  | 
|  | MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr)); | 
|  | MIB.addReg(t1); | 
|  | MIB.addReg(t2); | 
|  |  | 
|  | // Generate movc | 
|  | unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); | 
|  | MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3); | 
|  | MIB.addReg(t2); | 
|  | MIB.addReg(t1); | 
|  |  | 
|  | // Cmp and exchange if none has modified the memory location | 
|  | MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32)); | 
|  | for (int i=0; i <= lastAddrIndx; ++i) | 
|  | (*MIB).addOperand(*argOpers[i]); | 
|  | MIB.addReg(t3); | 
|  | assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand"); | 
|  | (*MIB).setMemRefs(mInstr->memoperands_begin(), | 
|  | mInstr->memoperands_end()); | 
|  |  | 
|  | MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg()); | 
|  | MIB.addReg(X86::EAX); | 
|  |  | 
|  | // insert branch | 
|  | BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB); | 
|  |  | 
|  | mInstr->eraseFromParent();   // The pseudo instruction is gone now. | 
|  | return nextMBB; | 
|  | } | 
|  |  | 
|  | // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8 | 
|  | // or XMM0_V32I8 in AVX all of this code can be replaced with that | 
|  | // in the .td file. | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB, | 
|  | unsigned numArgs, bool memArg) const { | 
|  | assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) && | 
|  | "Target must have SSE4.2 or AVX features enabled"); | 
|  |  | 
|  | DebugLoc dl = MI->getDebugLoc(); | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  | unsigned Opc; | 
|  | if (!Subtarget->hasAVX()) { | 
|  | if (memArg) | 
|  | Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm; | 
|  | else | 
|  | Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr; | 
|  | } else { | 
|  | if (memArg) | 
|  | Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm; | 
|  | else | 
|  | Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr; | 
|  | } | 
|  |  | 
|  | MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc)); | 
|  | for (unsigned i = 0; i < numArgs; ++i) { | 
|  | MachineOperand &Op = MI->getOperand(i+1); | 
|  | if (!(Op.isReg() && Op.isImplicit())) | 
|  | MIB.addOperand(Op); | 
|  | } | 
|  | BuildMI(*BB, MI, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg()) | 
|  | .addReg(X86::XMM0); | 
|  |  | 
|  | MI->eraseFromParent(); | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const { | 
|  | DebugLoc dl = MI->getDebugLoc(); | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  |  | 
|  | // Address into RAX/EAX, other two args into ECX, EDX. | 
|  | unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r; | 
|  | unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; | 
|  | MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg); | 
|  | for (int i = 0; i < X86::AddrNumOperands; ++i) | 
|  | MIB.addOperand(MI->getOperand(i)); | 
|  |  | 
|  | unsigned ValOps = X86::AddrNumOperands; | 
|  | BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX) | 
|  | .addReg(MI->getOperand(ValOps).getReg()); | 
|  | BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX) | 
|  | .addReg(MI->getOperand(ValOps+1).getReg()); | 
|  |  | 
|  | // The instruction doesn't actually take any operands though. | 
|  | BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr)); | 
|  |  | 
|  | MI->eraseFromParent(); // The pseudo is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const { | 
|  | DebugLoc dl = MI->getDebugLoc(); | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  |  | 
|  | // First arg in ECX, the second in EAX. | 
|  | BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX) | 
|  | .addReg(MI->getOperand(0).getReg()); | 
|  | BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX) | 
|  | .addReg(MI->getOperand(1).getReg()); | 
|  |  | 
|  | // The instruction doesn't actually take any operands though. | 
|  | BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr)); | 
|  |  | 
|  | MI->eraseFromParent(); // The pseudo is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitVAARG64WithCustomInserter( | 
|  | MachineInstr *MI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | // Emit va_arg instruction on X86-64. | 
|  |  | 
|  | // Operands to this pseudo-instruction: | 
|  | // 0  ) Output        : destination address (reg) | 
|  | // 1-5) Input         : va_list address (addr, i64mem) | 
|  | // 6  ) ArgSize       : Size (in bytes) of vararg type | 
|  | // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset | 
|  | // 8  ) Align         : Alignment of type | 
|  | // 9  ) EFLAGS (implicit-def) | 
|  |  | 
|  | assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!"); | 
|  | assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands"); | 
|  |  | 
|  | unsigned DestReg = MI->getOperand(0).getReg(); | 
|  | MachineOperand &Base = MI->getOperand(1); | 
|  | MachineOperand &Scale = MI->getOperand(2); | 
|  | MachineOperand &Index = MI->getOperand(3); | 
|  | MachineOperand &Disp = MI->getOperand(4); | 
|  | MachineOperand &Segment = MI->getOperand(5); | 
|  | unsigned ArgSize = MI->getOperand(6).getImm(); | 
|  | unsigned ArgMode = MI->getOperand(7).getImm(); | 
|  | unsigned Align = MI->getOperand(8).getImm(); | 
|  |  | 
|  | // Memory Reference | 
|  | assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand"); | 
|  | MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); | 
|  | MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); | 
|  |  | 
|  | // Machine Information | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  | MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); | 
|  | const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64); | 
|  | const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  |  | 
|  | // struct va_list { | 
|  | //   i32   gp_offset | 
|  | //   i32   fp_offset | 
|  | //   i64   overflow_area (address) | 
|  | //   i64   reg_save_area (address) | 
|  | // } | 
|  | // sizeof(va_list) = 24 | 
|  | // alignment(va_list) = 8 | 
|  |  | 
|  | unsigned TotalNumIntRegs = 6; | 
|  | unsigned TotalNumXMMRegs = 8; | 
|  | bool UseGPOffset = (ArgMode == 1); | 
|  | bool UseFPOffset = (ArgMode == 2); | 
|  | unsigned MaxOffset = TotalNumIntRegs * 8 + | 
|  | (UseFPOffset ? TotalNumXMMRegs * 16 : 0); | 
|  |  | 
|  | /* Align ArgSize to a multiple of 8 */ | 
|  | unsigned ArgSizeA8 = (ArgSize + 7) & ~7; | 
|  | bool NeedsAlign = (Align > 8); | 
|  |  | 
|  | MachineBasicBlock *thisMBB = MBB; | 
|  | MachineBasicBlock *overflowMBB; | 
|  | MachineBasicBlock *offsetMBB; | 
|  | MachineBasicBlock *endMBB; | 
|  |  | 
|  | unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB | 
|  | unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB | 
|  | unsigned OffsetReg = 0; | 
|  |  | 
|  | if (!UseGPOffset && !UseFPOffset) { | 
|  | // If we only pull from the overflow region, we don't create a branch. | 
|  | // We don't need to alter control flow. | 
|  | OffsetDestReg = 0; // unused | 
|  | OverflowDestReg = DestReg; | 
|  |  | 
|  | offsetMBB = NULL; | 
|  | overflowMBB = thisMBB; | 
|  | endMBB = thisMBB; | 
|  | } else { | 
|  | // First emit code to check if gp_offset (or fp_offset) is below the bound. | 
|  | // If so, pull the argument from reg_save_area. (branch to offsetMBB) | 
|  | // If not, pull from overflow_area. (branch to overflowMBB) | 
|  | // | 
|  | //       thisMBB | 
|  | //         |     . | 
|  | //         |        . | 
|  | //     offsetMBB   overflowMBB | 
|  | //         |        . | 
|  | //         |     . | 
|  | //        endMBB | 
|  |  | 
|  | // Registers for the PHI in endMBB | 
|  | OffsetDestReg = MRI.createVirtualRegister(AddrRegClass); | 
|  | OverflowDestReg = MRI.createVirtualRegister(AddrRegClass); | 
|  |  | 
|  | const BasicBlock *LLVM_BB = MBB->getBasicBlock(); | 
|  | MachineFunction *MF = MBB->getParent(); | 
|  | overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
|  | offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
|  | endMBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
|  |  | 
|  | MachineFunction::iterator MBBIter = MBB; | 
|  | ++MBBIter; | 
|  |  | 
|  | // Insert the new basic blocks | 
|  | MF->insert(MBBIter, offsetMBB); | 
|  | MF->insert(MBBIter, overflowMBB); | 
|  | MF->insert(MBBIter, endMBB); | 
|  |  | 
|  | // Transfer the remainder of MBB and its successor edges to endMBB. | 
|  | endMBB->splice(endMBB->begin(), thisMBB, | 
|  | llvm::next(MachineBasicBlock::iterator(MI)), | 
|  | thisMBB->end()); | 
|  | endMBB->transferSuccessorsAndUpdatePHIs(thisMBB); | 
|  |  | 
|  | // Make offsetMBB and overflowMBB successors of thisMBB | 
|  | thisMBB->addSuccessor(offsetMBB); | 
|  | thisMBB->addSuccessor(overflowMBB); | 
|  |  | 
|  | // endMBB is a successor of both offsetMBB and overflowMBB | 
|  | offsetMBB->addSuccessor(endMBB); | 
|  | overflowMBB->addSuccessor(endMBB); | 
|  |  | 
|  | // Load the offset value into a register | 
|  | OffsetReg = MRI.createVirtualRegister(OffsetRegClass); | 
|  | BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg) | 
|  | .addOperand(Base) | 
|  | .addOperand(Scale) | 
|  | .addOperand(Index) | 
|  | .addDisp(Disp, UseFPOffset ? 4 : 0) | 
|  | .addOperand(Segment) | 
|  | .setMemRefs(MMOBegin, MMOEnd); | 
|  |  | 
|  | // Check if there is enough room left to pull this argument. | 
|  | BuildMI(thisMBB, DL, TII->get(X86::CMP32ri)) | 
|  | .addReg(OffsetReg) | 
|  | .addImm(MaxOffset + 8 - ArgSizeA8); | 
|  |  | 
|  | // Branch to "overflowMBB" if offset >= max | 
|  | // Fall through to "offsetMBB" otherwise | 
|  | BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE))) | 
|  | .addMBB(overflowMBB); | 
|  | } | 
|  |  | 
|  | // In offsetMBB, emit code to use the reg_save_area. | 
|  | if (offsetMBB) { | 
|  | assert(OffsetReg != 0); | 
|  |  | 
|  | // Read the reg_save_area address. | 
|  | unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass); | 
|  | BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg) | 
|  | .addOperand(Base) | 
|  | .addOperand(Scale) | 
|  | .addOperand(Index) | 
|  | .addDisp(Disp, 16) | 
|  | .addOperand(Segment) | 
|  | .setMemRefs(MMOBegin, MMOEnd); | 
|  |  | 
|  | // Zero-extend the offset | 
|  | unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass); | 
|  | BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64) | 
|  | .addImm(0) | 
|  | .addReg(OffsetReg) | 
|  | .addImm(X86::sub_32bit); | 
|  |  | 
|  | // Add the offset to the reg_save_area to get the final address. | 
|  | BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg) | 
|  | .addReg(OffsetReg64) | 
|  | .addReg(RegSaveReg); | 
|  |  | 
|  | // Compute the offset for the next argument | 
|  | unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass); | 
|  | BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg) | 
|  | .addReg(OffsetReg) | 
|  | .addImm(UseFPOffset ? 16 : 8); | 
|  |  | 
|  | // Store it back into the va_list. | 
|  | BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr)) | 
|  | .addOperand(Base) | 
|  | .addOperand(Scale) | 
|  | .addOperand(Index) | 
|  | .addDisp(Disp, UseFPOffset ? 4 : 0) | 
|  | .addOperand(Segment) | 
|  | .addReg(NextOffsetReg) | 
|  | .setMemRefs(MMOBegin, MMOEnd); | 
|  |  | 
|  | // Jump to endMBB | 
|  | BuildMI(offsetMBB, DL, TII->get(X86::JMP_4)) | 
|  | .addMBB(endMBB); | 
|  | } | 
|  |  | 
|  | // | 
|  | // Emit code to use overflow area | 
|  | // | 
|  |  | 
|  | // Load the overflow_area address into a register. | 
|  | unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass); | 
|  | BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg) | 
|  | .addOperand(Base) | 
|  | .addOperand(Scale) | 
|  | .addOperand(Index) | 
|  | .addDisp(Disp, 8) | 
|  | .addOperand(Segment) | 
|  | .setMemRefs(MMOBegin, MMOEnd); | 
|  |  | 
|  | // If we need to align it, do so. Otherwise, just copy the address | 
|  | // to OverflowDestReg. | 
|  | if (NeedsAlign) { | 
|  | // Align the overflow address | 
|  | assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2"); | 
|  | unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass); | 
|  |  | 
|  | // aligned_addr = (addr + (align-1)) & ~(align-1) | 
|  | BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg) | 
|  | .addReg(OverflowAddrReg) | 
|  | .addImm(Align-1); | 
|  |  | 
|  | BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg) | 
|  | .addReg(TmpReg) | 
|  | .addImm(~(uint64_t)(Align-1)); | 
|  | } else { | 
|  | BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg) | 
|  | .addReg(OverflowAddrReg); | 
|  | } | 
|  |  | 
|  | // Compute the next overflow address after this argument. | 
|  | // (the overflow address should be kept 8-byte aligned) | 
|  | unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass); | 
|  | BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg) | 
|  | .addReg(OverflowDestReg) | 
|  | .addImm(ArgSizeA8); | 
|  |  | 
|  | // Store the new overflow address. | 
|  | BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr)) | 
|  | .addOperand(Base) | 
|  | .addOperand(Scale) | 
|  | .addOperand(Index) | 
|  | .addDisp(Disp, 8) | 
|  | .addOperand(Segment) | 
|  | .addReg(NextAddrReg) | 
|  | .setMemRefs(MMOBegin, MMOEnd); | 
|  |  | 
|  | // If we branched, emit the PHI to the front of endMBB. | 
|  | if (offsetMBB) { | 
|  | BuildMI(*endMBB, endMBB->begin(), DL, | 
|  | TII->get(X86::PHI), DestReg) | 
|  | .addReg(OffsetDestReg).addMBB(offsetMBB) | 
|  | .addReg(OverflowDestReg).addMBB(overflowMBB); | 
|  | } | 
|  |  | 
|  | // Erase the pseudo instruction | 
|  | MI->eraseFromParent(); | 
|  |  | 
|  | return endMBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter( | 
|  | MachineInstr *MI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | // Emit code to save XMM registers to the stack. The ABI says that the | 
|  | // number of registers to save is given in %al, so it's theoretically | 
|  | // possible to do an indirect jump trick to avoid saving all of them, | 
|  | // however this code takes a simpler approach and just executes all | 
|  | // of the stores if %al is non-zero. It's less code, and it's probably | 
|  | // easier on the hardware branch predictor, and stores aren't all that | 
|  | // expensive anyway. | 
|  |  | 
|  | // Create the new basic blocks. One block contains all the XMM stores, | 
|  | // and one block is the final destination regardless of whether any | 
|  | // stores were performed. | 
|  | const BasicBlock *LLVM_BB = MBB->getBasicBlock(); | 
|  | MachineFunction *F = MBB->getParent(); | 
|  | MachineFunction::iterator MBBIter = MBB; | 
|  | ++MBBIter; | 
|  | MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(MBBIter, XMMSaveMBB); | 
|  | F->insert(MBBIter, EndMBB); | 
|  |  | 
|  | // Transfer the remainder of MBB and its successor edges to EndMBB. | 
|  | EndMBB->splice(EndMBB->begin(), MBB, | 
|  | llvm::next(MachineBasicBlock::iterator(MI)), | 
|  | MBB->end()); | 
|  | EndMBB->transferSuccessorsAndUpdatePHIs(MBB); | 
|  |  | 
|  | // The original block will now fall through to the XMM save block. | 
|  | MBB->addSuccessor(XMMSaveMBB); | 
|  | // The XMMSaveMBB will fall through to the end block. | 
|  | XMMSaveMBB->addSuccessor(EndMBB); | 
|  |  | 
|  | // Now add the instructions. | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  |  | 
|  | unsigned CountReg = MI->getOperand(0).getReg(); | 
|  | int64_t RegSaveFrameIndex = MI->getOperand(1).getImm(); | 
|  | int64_t VarArgsFPOffset = MI->getOperand(2).getImm(); | 
|  |  | 
|  | if (!Subtarget->isTargetWin64()) { | 
|  | // If %al is 0, branch around the XMM save block. | 
|  | BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg); | 
|  | BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB); | 
|  | MBB->addSuccessor(EndMBB); | 
|  | } | 
|  |  | 
|  | // In the XMM save block, save all the XMM argument registers. | 
|  | for (int i = 3, e = MI->getNumOperands(); i != e; ++i) { | 
|  | int64_t Offset = (i - 3) * 16 + VarArgsFPOffset; | 
|  | MachineMemOperand *MMO = | 
|  | F->getMachineMemOperand( | 
|  | MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset), | 
|  | MachineMemOperand::MOStore, | 
|  | /*Size=*/16, /*Align=*/16); | 
|  | BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr)) | 
|  | .addFrameIndex(RegSaveFrameIndex) | 
|  | .addImm(/*Scale=*/1) | 
|  | .addReg(/*IndexReg=*/0) | 
|  | .addImm(/*Disp=*/Offset) | 
|  | .addReg(/*Segment=*/0) | 
|  | .addReg(MI->getOperand(i).getReg()) | 
|  | .addMemOperand(MMO); | 
|  | } | 
|  |  | 
|  | MI->eraseFromParent();   // The pseudo instruction is gone now. | 
|  |  | 
|  | return EndMBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitLoweredSelect(MachineInstr *MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  |  | 
|  | // To "insert" a SELECT_CC instruction, we actually have to insert the | 
|  | // diamond control-flow pattern.  The incoming instruction knows the | 
|  | // destination vreg to set, the condition code register to branch on, the | 
|  | // true/false values to select between, and a branch opcode to use. | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  | MachineFunction::iterator It = BB; | 
|  | ++It; | 
|  |  | 
|  | //  thisMBB: | 
|  | //  ... | 
|  | //   TrueVal = ... | 
|  | //   cmpTY ccX, r1, r2 | 
|  | //   bCC copy1MBB | 
|  | //   fallthrough --> copy0MBB | 
|  | MachineBasicBlock *thisMBB = BB; | 
|  | MachineFunction *F = BB->getParent(); | 
|  | MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(It, copy0MBB); | 
|  | F->insert(It, sinkMBB); | 
|  |  | 
|  | // If the EFLAGS register isn't dead in the terminator, then claim that it's | 
|  | // live into the sink and copy blocks. | 
|  | const MachineFunction *MF = BB->getParent(); | 
|  | const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo(); | 
|  | BitVector ReservedRegs = TRI->getReservedRegs(*MF); | 
|  |  | 
|  | for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) { | 
|  | const MachineOperand &MO = MI->getOperand(I); | 
|  | if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (Reg != X86::EFLAGS) continue; | 
|  | copy0MBB->addLiveIn(Reg); | 
|  | sinkMBB->addLiveIn(Reg); | 
|  | } | 
|  |  | 
|  | // Transfer the remainder of BB and its successor edges to sinkMBB. | 
|  | sinkMBB->splice(sinkMBB->begin(), BB, | 
|  | llvm::next(MachineBasicBlock::iterator(MI)), | 
|  | BB->end()); | 
|  | sinkMBB->transferSuccessorsAndUpdatePHIs(BB); | 
|  |  | 
|  | // Add the true and fallthrough blocks as its successors. | 
|  | BB->addSuccessor(copy0MBB); | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | // Create the conditional branch instruction. | 
|  | unsigned Opc = | 
|  | X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm()); | 
|  | BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB); | 
|  |  | 
|  | //  copy0MBB: | 
|  | //   %FalseValue = ... | 
|  | //   # fallthrough to sinkMBB | 
|  | copy0MBB->addSuccessor(sinkMBB); | 
|  |  | 
|  | //  sinkMBB: | 
|  | //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] | 
|  | //  ... | 
|  | BuildMI(*sinkMBB, sinkMBB->begin(), DL, | 
|  | TII->get(X86::PHI), MI->getOperand(0).getReg()) | 
|  | .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) | 
|  | .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); | 
|  |  | 
|  | MI->eraseFromParent();   // The pseudo instruction is gone now. | 
|  | return sinkMBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  |  | 
|  | // The lowering is pretty easy: we're just emitting the call to _alloca.  The | 
|  | // non-trivial part is impdef of ESP. | 
|  | // FIXME: The code should be tweaked as soon as we'll try to do codegen for | 
|  | // mingw-w64. | 
|  |  | 
|  | const char *StackProbeSymbol = | 
|  | Subtarget->isTargetWindows() ? "_chkstk" : "_alloca"; | 
|  |  | 
|  | BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32)) | 
|  | .addExternalSymbol(StackProbeSymbol) | 
|  | .addReg(X86::EAX, RegState::Implicit) | 
|  | .addReg(X86::ESP, RegState::Implicit) | 
|  | .addReg(X86::EAX, RegState::Define | RegState::Implicit) | 
|  | .addReg(X86::ESP, RegState::Define | RegState::Implicit) | 
|  | .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); | 
|  |  | 
|  | MI->eraseFromParent();   // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | // This is pretty easy.  We're taking the value that we received from | 
|  | // our load from the relocation, sticking it in either RDI (x86-64) | 
|  | // or EAX and doing an indirect call.  The return value will then | 
|  | // be in the normal return register. | 
|  | const X86InstrInfo *TII | 
|  | = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo()); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | MachineFunction *F = BB->getParent(); | 
|  |  | 
|  | assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?"); | 
|  | assert(MI->getOperand(3).isGlobal() && "This should be a global"); | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, | 
|  | TII->get(X86::MOV64rm), X86::RDI) | 
|  | .addReg(X86::RIP) | 
|  | .addImm(0).addReg(0) | 
|  | .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, | 
|  | MI->getOperand(3).getTargetFlags()) | 
|  | .addReg(0); | 
|  | MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m)); | 
|  | addDirectMem(MIB, X86::RDI); | 
|  | } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) { | 
|  | MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, | 
|  | TII->get(X86::MOV32rm), X86::EAX) | 
|  | .addReg(0) | 
|  | .addImm(0).addReg(0) | 
|  | .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, | 
|  | MI->getOperand(3).getTargetFlags()) | 
|  | .addReg(0); | 
|  | MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); | 
|  | addDirectMem(MIB, X86::EAX); | 
|  | } else { | 
|  | MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, | 
|  | TII->get(X86::MOV32rm), X86::EAX) | 
|  | .addReg(TII->getGlobalBaseReg(F)) | 
|  | .addImm(0).addReg(0) | 
|  | .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, | 
|  | MI->getOperand(3).getTargetFlags()) | 
|  | .addReg(0); | 
|  | MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); | 
|  | addDirectMem(MIB, X86::EAX); | 
|  | } | 
|  |  | 
|  | MI->eraseFromParent(); // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | switch (MI->getOpcode()) { | 
|  | default: assert(false && "Unexpected instr type to insert"); | 
|  | case X86::TAILJMPd64: | 
|  | case X86::TAILJMPr64: | 
|  | case X86::TAILJMPm64: | 
|  | assert(!"TAILJMP64 would not be touched here."); | 
|  | case X86::TCRETURNdi64: | 
|  | case X86::TCRETURNri64: | 
|  | case X86::TCRETURNmi64: | 
|  | // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset. | 
|  | // On AMD64, additional defs should be added before register allocation. | 
|  | if (!Subtarget->isTargetWin64()) { | 
|  | MI->addRegisterDefined(X86::RSI); | 
|  | MI->addRegisterDefined(X86::RDI); | 
|  | MI->addRegisterDefined(X86::XMM6); | 
|  | MI->addRegisterDefined(X86::XMM7); | 
|  | MI->addRegisterDefined(X86::XMM8); | 
|  | MI->addRegisterDefined(X86::XMM9); | 
|  | MI->addRegisterDefined(X86::XMM10); | 
|  | MI->addRegisterDefined(X86::XMM11); | 
|  | MI->addRegisterDefined(X86::XMM12); | 
|  | MI->addRegisterDefined(X86::XMM13); | 
|  | MI->addRegisterDefined(X86::XMM14); | 
|  | MI->addRegisterDefined(X86::XMM15); | 
|  | } | 
|  | return BB; | 
|  | case X86::WIN_ALLOCA: | 
|  | return EmitLoweredWinAlloca(MI, BB); | 
|  | case X86::TLSCall_32: | 
|  | case X86::TLSCall_64: | 
|  | return EmitLoweredTLSCall(MI, BB); | 
|  | case X86::CMOV_GR8: | 
|  | case X86::CMOV_FR32: | 
|  | case X86::CMOV_FR64: | 
|  | case X86::CMOV_V4F32: | 
|  | case X86::CMOV_V2F64: | 
|  | case X86::CMOV_V2I64: | 
|  | case X86::CMOV_GR16: | 
|  | case X86::CMOV_GR32: | 
|  | case X86::CMOV_RFP32: | 
|  | case X86::CMOV_RFP64: | 
|  | case X86::CMOV_RFP80: | 
|  | return EmitLoweredSelect(MI, BB); | 
|  |  | 
|  | case X86::FP32_TO_INT16_IN_MEM: | 
|  | case X86::FP32_TO_INT32_IN_MEM: | 
|  | case X86::FP32_TO_INT64_IN_MEM: | 
|  | case X86::FP64_TO_INT16_IN_MEM: | 
|  | case X86::FP64_TO_INT32_IN_MEM: | 
|  | case X86::FP64_TO_INT64_IN_MEM: | 
|  | case X86::FP80_TO_INT16_IN_MEM: | 
|  | case X86::FP80_TO_INT32_IN_MEM: | 
|  | case X86::FP80_TO_INT64_IN_MEM: { | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  |  | 
|  | // Change the floating point control register to use "round towards zero" | 
|  | // mode when truncating to an integer value. | 
|  | MachineFunction *F = BB->getParent(); | 
|  | int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false); | 
|  | addFrameReference(BuildMI(*BB, MI, DL, | 
|  | TII->get(X86::FNSTCW16m)), CWFrameIdx); | 
|  |  | 
|  | // Load the old value of the high byte of the control word... | 
|  | unsigned OldCW = | 
|  | F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass); | 
|  | addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW), | 
|  | CWFrameIdx); | 
|  |  | 
|  | // Set the high part to be round to zero... | 
|  | addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx) | 
|  | .addImm(0xC7F); | 
|  |  | 
|  | // Reload the modified control word now... | 
|  | addFrameReference(BuildMI(*BB, MI, DL, | 
|  | TII->get(X86::FLDCW16m)), CWFrameIdx); | 
|  |  | 
|  | // Restore the memory image of control word to original value | 
|  | addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx) | 
|  | .addReg(OldCW); | 
|  |  | 
|  | // Get the X86 opcode to use. | 
|  | unsigned Opc; | 
|  | switch (MI->getOpcode()) { | 
|  | default: llvm_unreachable("illegal opcode!"); | 
|  | case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break; | 
|  | case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break; | 
|  | case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break; | 
|  | case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break; | 
|  | case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break; | 
|  | case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break; | 
|  | case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break; | 
|  | case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break; | 
|  | case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break; | 
|  | } | 
|  |  | 
|  | X86AddressMode AM; | 
|  | MachineOperand &Op = MI->getOperand(0); | 
|  | if (Op.isReg()) { | 
|  | AM.BaseType = X86AddressMode::RegBase; | 
|  | AM.Base.Reg = Op.getReg(); | 
|  | } else { | 
|  | AM.BaseType = X86AddressMode::FrameIndexBase; | 
|  | AM.Base.FrameIndex = Op.getIndex(); | 
|  | } | 
|  | Op = MI->getOperand(1); | 
|  | if (Op.isImm()) | 
|  | AM.Scale = Op.getImm(); | 
|  | Op = MI->getOperand(2); | 
|  | if (Op.isImm()) | 
|  | AM.IndexReg = Op.getImm(); | 
|  | Op = MI->getOperand(3); | 
|  | if (Op.isGlobal()) { | 
|  | AM.GV = Op.getGlobal(); | 
|  | } else { | 
|  | AM.Disp = Op.getImm(); | 
|  | } | 
|  | addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM) | 
|  | .addReg(MI->getOperand(X86::AddrNumOperands).getReg()); | 
|  |  | 
|  | // Reload the original control word now. | 
|  | addFrameReference(BuildMI(*BB, MI, DL, | 
|  | TII->get(X86::FLDCW16m)), CWFrameIdx); | 
|  |  | 
|  | MI->eraseFromParent();   // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  | // String/text processing lowering. | 
|  | case X86::PCMPISTRM128REG: | 
|  | case X86::VPCMPISTRM128REG: | 
|  | return EmitPCMP(MI, BB, 3, false /* in-mem */); | 
|  | case X86::PCMPISTRM128MEM: | 
|  | case X86::VPCMPISTRM128MEM: | 
|  | return EmitPCMP(MI, BB, 3, true /* in-mem */); | 
|  | case X86::PCMPESTRM128REG: | 
|  | case X86::VPCMPESTRM128REG: | 
|  | return EmitPCMP(MI, BB, 5, false /* in mem */); | 
|  | case X86::PCMPESTRM128MEM: | 
|  | case X86::VPCMPESTRM128MEM: | 
|  | return EmitPCMP(MI, BB, 5, true /* in mem */); | 
|  |  | 
|  | // Thread synchronization. | 
|  | case X86::MONITOR: | 
|  | return EmitMonitor(MI, BB); | 
|  | case X86::MWAIT: | 
|  | return EmitMwait(MI, BB); | 
|  |  | 
|  | // Atomic Lowering. | 
|  | case X86::ATOMAND32: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr, | 
|  | X86::AND32ri, X86::MOV32rm, | 
|  | X86::LCMPXCHG32, | 
|  | X86::NOT32r, X86::EAX, | 
|  | X86::GR32RegisterClass); | 
|  | case X86::ATOMOR32: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr, | 
|  | X86::OR32ri, X86::MOV32rm, | 
|  | X86::LCMPXCHG32, | 
|  | X86::NOT32r, X86::EAX, | 
|  | X86::GR32RegisterClass); | 
|  | case X86::ATOMXOR32: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr, | 
|  | X86::XOR32ri, X86::MOV32rm, | 
|  | X86::LCMPXCHG32, | 
|  | X86::NOT32r, X86::EAX, | 
|  | X86::GR32RegisterClass); | 
|  | case X86::ATOMNAND32: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr, | 
|  | X86::AND32ri, X86::MOV32rm, | 
|  | X86::LCMPXCHG32, | 
|  | X86::NOT32r, X86::EAX, | 
|  | X86::GR32RegisterClass, true); | 
|  | case X86::ATOMMIN32: | 
|  | return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr); | 
|  | case X86::ATOMMAX32: | 
|  | return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr); | 
|  | case X86::ATOMUMIN32: | 
|  | return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr); | 
|  | case X86::ATOMUMAX32: | 
|  | return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr); | 
|  |  | 
|  | case X86::ATOMAND16: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr, | 
|  | X86::AND16ri, X86::MOV16rm, | 
|  | X86::LCMPXCHG16, | 
|  | X86::NOT16r, X86::AX, | 
|  | X86::GR16RegisterClass); | 
|  | case X86::ATOMOR16: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr, | 
|  | X86::OR16ri, X86::MOV16rm, | 
|  | X86::LCMPXCHG16, | 
|  | X86::NOT16r, X86::AX, | 
|  | X86::GR16RegisterClass); | 
|  | case X86::ATOMXOR16: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr, | 
|  | X86::XOR16ri, X86::MOV16rm, | 
|  | X86::LCMPXCHG16, | 
|  | X86::NOT16r, X86::AX, | 
|  | X86::GR16RegisterClass); | 
|  | case X86::ATOMNAND16: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr, | 
|  | X86::AND16ri, X86::MOV16rm, | 
|  | X86::LCMPXCHG16, | 
|  | X86::NOT16r, X86::AX, | 
|  | X86::GR16RegisterClass, true); | 
|  | case X86::ATOMMIN16: | 
|  | return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr); | 
|  | case X86::ATOMMAX16: | 
|  | return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr); | 
|  | case X86::ATOMUMIN16: | 
|  | return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr); | 
|  | case X86::ATOMUMAX16: | 
|  | return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr); | 
|  |  | 
|  | case X86::ATOMAND8: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr, | 
|  | X86::AND8ri, X86::MOV8rm, | 
|  | X86::LCMPXCHG8, | 
|  | X86::NOT8r, X86::AL, | 
|  | X86::GR8RegisterClass); | 
|  | case X86::ATOMOR8: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr, | 
|  | X86::OR8ri, X86::MOV8rm, | 
|  | X86::LCMPXCHG8, | 
|  | X86::NOT8r, X86::AL, | 
|  | X86::GR8RegisterClass); | 
|  | case X86::ATOMXOR8: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr, | 
|  | X86::XOR8ri, X86::MOV8rm, | 
|  | X86::LCMPXCHG8, | 
|  | X86::NOT8r, X86::AL, | 
|  | X86::GR8RegisterClass); | 
|  | case X86::ATOMNAND8: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr, | 
|  | X86::AND8ri, X86::MOV8rm, | 
|  | X86::LCMPXCHG8, | 
|  | X86::NOT8r, X86::AL, | 
|  | X86::GR8RegisterClass, true); | 
|  | // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way. | 
|  | // This group is for 64-bit host. | 
|  | case X86::ATOMAND64: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr, | 
|  | X86::AND64ri32, X86::MOV64rm, | 
|  | X86::LCMPXCHG64, | 
|  | X86::NOT64r, X86::RAX, | 
|  | X86::GR64RegisterClass); | 
|  | case X86::ATOMOR64: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr, | 
|  | X86::OR64ri32, X86::MOV64rm, | 
|  | X86::LCMPXCHG64, | 
|  | X86::NOT64r, X86::RAX, | 
|  | X86::GR64RegisterClass); | 
|  | case X86::ATOMXOR64: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr, | 
|  | X86::XOR64ri32, X86::MOV64rm, | 
|  | X86::LCMPXCHG64, | 
|  | X86::NOT64r, X86::RAX, | 
|  | X86::GR64RegisterClass); | 
|  | case X86::ATOMNAND64: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr, | 
|  | X86::AND64ri32, X86::MOV64rm, | 
|  | X86::LCMPXCHG64, | 
|  | X86::NOT64r, X86::RAX, | 
|  | X86::GR64RegisterClass, true); | 
|  | case X86::ATOMMIN64: | 
|  | return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr); | 
|  | case X86::ATOMMAX64: | 
|  | return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr); | 
|  | case X86::ATOMUMIN64: | 
|  | return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr); | 
|  | case X86::ATOMUMAX64: | 
|  | return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr); | 
|  |  | 
|  | // This group does 64-bit operations on a 32-bit host. | 
|  | case X86::ATOMAND6432: | 
|  | return EmitAtomicBit6432WithCustomInserter(MI, BB, | 
|  | X86::AND32rr, X86::AND32rr, | 
|  | X86::AND32ri, X86::AND32ri, | 
|  | false); | 
|  | case X86::ATOMOR6432: | 
|  | return EmitAtomicBit6432WithCustomInserter(MI, BB, | 
|  | X86::OR32rr, X86::OR32rr, | 
|  | X86::OR32ri, X86::OR32ri, | 
|  | false); | 
|  | case X86::ATOMXOR6432: | 
|  | return EmitAtomicBit6432WithCustomInserter(MI, BB, | 
|  | X86::XOR32rr, X86::XOR32rr, | 
|  | X86::XOR32ri, X86::XOR32ri, | 
|  | false); | 
|  | case X86::ATOMNAND6432: | 
|  | return EmitAtomicBit6432WithCustomInserter(MI, BB, | 
|  | X86::AND32rr, X86::AND32rr, | 
|  | X86::AND32ri, X86::AND32ri, | 
|  | true); | 
|  | case X86::ATOMADD6432: | 
|  | return EmitAtomicBit6432WithCustomInserter(MI, BB, | 
|  | X86::ADD32rr, X86::ADC32rr, | 
|  | X86::ADD32ri, X86::ADC32ri, | 
|  | false); | 
|  | case X86::ATOMSUB6432: | 
|  | return EmitAtomicBit6432WithCustomInserter(MI, BB, | 
|  | X86::SUB32rr, X86::SBB32rr, | 
|  | X86::SUB32ri, X86::SBB32ri, | 
|  | false); | 
|  | case X86::ATOMSWAP6432: | 
|  | return EmitAtomicBit6432WithCustomInserter(MI, BB, | 
|  | X86::MOV32rr, X86::MOV32rr, | 
|  | X86::MOV32ri, X86::MOV32ri, | 
|  | false); | 
|  | case X86::VASTART_SAVE_XMM_REGS: | 
|  | return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB); | 
|  |  | 
|  | case X86::VAARG_64: | 
|  | return EmitVAARG64WithCustomInserter(MI, BB); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           X86 Optimization Hooks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, | 
|  | const APInt &Mask, | 
|  | APInt &KnownZero, | 
|  | APInt &KnownOne, | 
|  | const SelectionDAG &DAG, | 
|  | unsigned Depth) const { | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | assert((Opc >= ISD::BUILTIN_OP_END || | 
|  | Opc == ISD::INTRINSIC_WO_CHAIN || | 
|  | Opc == ISD::INTRINSIC_W_CHAIN || | 
|  | Opc == ISD::INTRINSIC_VOID) && | 
|  | "Should use MaskedValueIsZero if you don't know whether Op" | 
|  | " is a target node!"); | 
|  |  | 
|  | KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything. | 
|  | switch (Opc) { | 
|  | default: break; | 
|  | case X86ISD::ADD: | 
|  | case X86ISD::SUB: | 
|  | case X86ISD::ADC: | 
|  | case X86ISD::SBB: | 
|  | case X86ISD::SMUL: | 
|  | case X86ISD::UMUL: | 
|  | case X86ISD::INC: | 
|  | case X86ISD::DEC: | 
|  | case X86ISD::OR: | 
|  | case X86ISD::XOR: | 
|  | case X86ISD::AND: | 
|  | // These nodes' second result is a boolean. | 
|  | if (Op.getResNo() == 0) | 
|  | break; | 
|  | // Fallthrough | 
|  | case X86ISD::SETCC: | 
|  | KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(), | 
|  | Mask.getBitWidth() - 1); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, | 
|  | unsigned Depth) const { | 
|  | // SETCC_CARRY sets the dest to ~0 for true or 0 for false. | 
|  | if (Op.getOpcode() == X86ISD::SETCC_CARRY) | 
|  | return Op.getValueType().getScalarType().getSizeInBits(); | 
|  |  | 
|  | // Fallback case. | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the | 
|  | /// node is a GlobalAddress + offset. | 
|  | bool X86TargetLowering::isGAPlusOffset(SDNode *N, | 
|  | const GlobalValue* &GA, | 
|  | int64_t &Offset) const { | 
|  | if (N->getOpcode() == X86ISD::Wrapper) { | 
|  | if (isa<GlobalAddressSDNode>(N->getOperand(0))) { | 
|  | GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal(); | 
|  | Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return TargetLowering::isGAPlusOffset(N, GA, Offset); | 
|  | } | 
|  |  | 
|  | /// PerformShuffleCombine - Combine a vector_shuffle that is equal to | 
|  | /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load | 
|  | /// if the load addresses are consecutive, non-overlapping, and in the right | 
|  | /// order. | 
|  | static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI) { | 
|  | DebugLoc dl = N->getDebugLoc(); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (VT.getSizeInBits() != 128) | 
|  | return SDValue(); | 
|  |  | 
|  | // Don't create instructions with illegal types after legalize types has run. | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType())) | 
|  | return SDValue(); | 
|  |  | 
|  | SmallVector<SDValue, 16> Elts; | 
|  | for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) | 
|  | Elts.push_back(getShuffleScalarElt(N, i, DAG, 0)); | 
|  |  | 
|  | return EltsFromConsecutiveLoads(VT, Elts, dl, DAG); | 
|  | } | 
|  |  | 
|  | /// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index | 
|  | /// generation and convert it from being a bunch of shuffles and extracts | 
|  | /// to a simple store and scalar loads to extract the elements. | 
|  | static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI) { | 
|  | SDValue InputVector = N->getOperand(0); | 
|  |  | 
|  | // Only operate on vectors of 4 elements, where the alternative shuffling | 
|  | // gets to be more expensive. | 
|  | if (InputVector.getValueType() != MVT::v4i32) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a | 
|  | // single use which is a sign-extend or zero-extend, and all elements are | 
|  | // used. | 
|  | SmallVector<SDNode *, 4> Uses; | 
|  | unsigned ExtractedElements = 0; | 
|  | for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(), | 
|  | UE = InputVector.getNode()->use_end(); UI != UE; ++UI) { | 
|  | if (UI.getUse().getResNo() != InputVector.getResNo()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDNode *Extract = *UI; | 
|  | if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Extract->getValueType(0) != MVT::i32) | 
|  | return SDValue(); | 
|  | if (!Extract->hasOneUse()) | 
|  | return SDValue(); | 
|  | if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND && | 
|  | Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND) | 
|  | return SDValue(); | 
|  | if (!isa<ConstantSDNode>(Extract->getOperand(1))) | 
|  | return SDValue(); | 
|  |  | 
|  | // Record which element was extracted. | 
|  | ExtractedElements |= | 
|  | 1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue(); | 
|  |  | 
|  | Uses.push_back(Extract); | 
|  | } | 
|  |  | 
|  | // If not all the elements were used, this may not be worthwhile. | 
|  | if (ExtractedElements != 15) | 
|  | return SDValue(); | 
|  |  | 
|  | // Ok, we've now decided to do the transformation. | 
|  | DebugLoc dl = InputVector.getDebugLoc(); | 
|  |  | 
|  | // Store the value to a temporary stack slot. | 
|  | SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType()); | 
|  | SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, | 
|  | MachinePointerInfo(), false, false, 0); | 
|  |  | 
|  | // Replace each use (extract) with a load of the appropriate element. | 
|  | for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(), | 
|  | UE = Uses.end(); UI != UE; ++UI) { | 
|  | SDNode *Extract = *UI; | 
|  |  | 
|  | // Compute the element's address. | 
|  | SDValue Idx = Extract->getOperand(1); | 
|  | unsigned EltSize = | 
|  | InputVector.getValueType().getVectorElementType().getSizeInBits()/8; | 
|  | uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue(); | 
|  | SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy()); | 
|  |  | 
|  | SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), | 
|  | StackPtr, OffsetVal); | 
|  |  | 
|  | // Load the scalar. | 
|  | SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch, | 
|  | ScalarAddr, MachinePointerInfo(), | 
|  | false, false, 0); | 
|  |  | 
|  | // Replace the exact with the load. | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar); | 
|  | } | 
|  |  | 
|  | // The replacement was made in place; don't return anything. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes. | 
|  | static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | DebugLoc DL = N->getDebugLoc(); | 
|  | SDValue Cond = N->getOperand(0); | 
|  | // Get the LHS/RHS of the select. | 
|  | SDValue LHS = N->getOperand(1); | 
|  | SDValue RHS = N->getOperand(2); | 
|  |  | 
|  | // If we have SSE[12] support, try to form min/max nodes. SSE min/max | 
|  | // instructions match the semantics of the common C idiom x<y?x:y but not | 
|  | // x<=y?x:y, because of how they handle negative zero (which can be | 
|  | // ignored in unsafe-math mode). | 
|  | if (Subtarget->hasSSE2() && | 
|  | (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) && | 
|  | Cond.getOpcode() == ISD::SETCC) { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); | 
|  |  | 
|  | unsigned Opcode = 0; | 
|  | // Check for x CC y ? x : y. | 
|  | if (DAG.isEqualTo(LHS, Cond.getOperand(0)) && | 
|  | DAG.isEqualTo(RHS, Cond.getOperand(1))) { | 
|  | switch (CC) { | 
|  | default: break; | 
|  | case ISD::SETULT: | 
|  | // Converting this to a min would handle NaNs incorrectly, and swapping | 
|  | // the operands would cause it to handle comparisons between positive | 
|  | // and negative zero incorrectly. | 
|  | if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) { | 
|  | if (!UnsafeFPMath && | 
|  | !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) | 
|  | break; | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  | Opcode = X86ISD::FMIN; | 
|  | break; | 
|  | case ISD::SETOLE: | 
|  | // Converting this to a min would handle comparisons between positive | 
|  | // and negative zero incorrectly. | 
|  | if (!UnsafeFPMath && | 
|  | !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) | 
|  | break; | 
|  | Opcode = X86ISD::FMIN; | 
|  | break; | 
|  | case ISD::SETULE: | 
|  | // Converting this to a min would handle both negative zeros and NaNs | 
|  | // incorrectly, but we can swap the operands to fix both. | 
|  | std::swap(LHS, RHS); | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETLT: | 
|  | case ISD::SETLE: | 
|  | Opcode = X86ISD::FMIN; | 
|  | break; | 
|  |  | 
|  | case ISD::SETOGE: | 
|  | // Converting this to a max would handle comparisons between positive | 
|  | // and negative zero incorrectly. | 
|  | if (!UnsafeFPMath && | 
|  | !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS)) | 
|  | break; | 
|  | Opcode = X86ISD::FMAX; | 
|  | break; | 
|  | case ISD::SETUGT: | 
|  | // Converting this to a max would handle NaNs incorrectly, and swapping | 
|  | // the operands would cause it to handle comparisons between positive | 
|  | // and negative zero incorrectly. | 
|  | if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) { | 
|  | if (!UnsafeFPMath && | 
|  | !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) | 
|  | break; | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  | Opcode = X86ISD::FMAX; | 
|  | break; | 
|  | case ISD::SETUGE: | 
|  | // Converting this to a max would handle both negative zeros and NaNs | 
|  | // incorrectly, but we can swap the operands to fix both. | 
|  | std::swap(LHS, RHS); | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT: | 
|  | case ISD::SETGE: | 
|  | Opcode = X86ISD::FMAX; | 
|  | break; | 
|  | } | 
|  | // Check for x CC y ? y : x -- a min/max with reversed arms. | 
|  | } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) && | 
|  | DAG.isEqualTo(RHS, Cond.getOperand(0))) { | 
|  | switch (CC) { | 
|  | default: break; | 
|  | case ISD::SETOGE: | 
|  | // Converting this to a min would handle comparisons between positive | 
|  | // and negative zero incorrectly, and swapping the operands would | 
|  | // cause it to handle NaNs incorrectly. | 
|  | if (!UnsafeFPMath && | 
|  | !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) { | 
|  | if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) | 
|  | break; | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  | Opcode = X86ISD::FMIN; | 
|  | break; | 
|  | case ISD::SETUGT: | 
|  | // Converting this to a min would handle NaNs incorrectly. | 
|  | if (!UnsafeFPMath && | 
|  | (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) | 
|  | break; | 
|  | Opcode = X86ISD::FMIN; | 
|  | break; | 
|  | case ISD::SETUGE: | 
|  | // Converting this to a min would handle both negative zeros and NaNs | 
|  | // incorrectly, but we can swap the operands to fix both. | 
|  | std::swap(LHS, RHS); | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT: | 
|  | case ISD::SETGE: | 
|  | Opcode = X86ISD::FMIN; | 
|  | break; | 
|  |  | 
|  | case ISD::SETULT: | 
|  | // Converting this to a max would handle NaNs incorrectly. | 
|  | if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) | 
|  | break; | 
|  | Opcode = X86ISD::FMAX; | 
|  | break; | 
|  | case ISD::SETOLE: | 
|  | // Converting this to a max would handle comparisons between positive | 
|  | // and negative zero incorrectly, and swapping the operands would | 
|  | // cause it to handle NaNs incorrectly. | 
|  | if (!UnsafeFPMath && | 
|  | !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) { | 
|  | if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) | 
|  | break; | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  | Opcode = X86ISD::FMAX; | 
|  | break; | 
|  | case ISD::SETULE: | 
|  | // Converting this to a max would handle both negative zeros and NaNs | 
|  | // incorrectly, but we can swap the operands to fix both. | 
|  | std::swap(LHS, RHS); | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETLT: | 
|  | case ISD::SETLE: | 
|  | Opcode = X86ISD::FMAX; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Opcode) | 
|  | return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS); | 
|  | } | 
|  |  | 
|  | // If this is a select between two integer constants, try to do some | 
|  | // optimizations. | 
|  | if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) { | 
|  | if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS)) | 
|  | // Don't do this for crazy integer types. | 
|  | if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) { | 
|  | // If this is efficiently invertible, canonicalize the LHSC/RHSC values | 
|  | // so that TrueC (the true value) is larger than FalseC. | 
|  | bool NeedsCondInvert = false; | 
|  |  | 
|  | if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) && | 
|  | // Efficiently invertible. | 
|  | (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible. | 
|  | (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible. | 
|  | isa<ConstantSDNode>(Cond.getOperand(1))))) { | 
|  | NeedsCondInvert = true; | 
|  | std::swap(TrueC, FalseC); | 
|  | } | 
|  |  | 
|  | // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0. | 
|  | if (FalseC->getAPIntValue() == 0 && | 
|  | TrueC->getAPIntValue().isPowerOf2()) { | 
|  | if (NeedsCondInvert) // Invert the condition if needed. | 
|  | Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, | 
|  | DAG.getConstant(1, Cond.getValueType())); | 
|  |  | 
|  | // Zero extend the condition if needed. | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond); | 
|  |  | 
|  | unsigned ShAmt = TrueC->getAPIntValue().logBase2(); | 
|  | return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond, | 
|  | DAG.getConstant(ShAmt, MVT::i8)); | 
|  | } | 
|  |  | 
|  | // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. | 
|  | if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { | 
|  | if (NeedsCondInvert) // Invert the condition if needed. | 
|  | Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, | 
|  | DAG.getConstant(1, Cond.getValueType())); | 
|  |  | 
|  | // Zero extend the condition if needed. | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, | 
|  | FalseC->getValueType(0), Cond); | 
|  | return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, | 
|  | SDValue(FalseC, 0)); | 
|  | } | 
|  |  | 
|  | // Optimize cases that will turn into an LEA instruction.  This requires | 
|  | // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). | 
|  | if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { | 
|  | uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); | 
|  | if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; | 
|  |  | 
|  | bool isFastMultiplier = false; | 
|  | if (Diff < 10) { | 
|  | switch ((unsigned char)Diff) { | 
|  | default: break; | 
|  | case 1:  // result = add base, cond | 
|  | case 2:  // result = lea base(    , cond*2) | 
|  | case 3:  // result = lea base(cond, cond*2) | 
|  | case 4:  // result = lea base(    , cond*4) | 
|  | case 5:  // result = lea base(cond, cond*4) | 
|  | case 8:  // result = lea base(    , cond*8) | 
|  | case 9:  // result = lea base(cond, cond*8) | 
|  | isFastMultiplier = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isFastMultiplier) { | 
|  | APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); | 
|  | if (NeedsCondInvert) // Invert the condition if needed. | 
|  | Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, | 
|  | DAG.getConstant(1, Cond.getValueType())); | 
|  |  | 
|  | // Zero extend the condition if needed. | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), | 
|  | Cond); | 
|  | // Scale the condition by the difference. | 
|  | if (Diff != 1) | 
|  | Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, | 
|  | DAG.getConstant(Diff, Cond.getValueType())); | 
|  |  | 
|  | // Add the base if non-zero. | 
|  | if (FalseC->getAPIntValue() != 0) | 
|  | Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, | 
|  | SDValue(FalseC, 0)); | 
|  | return Cond; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL] | 
|  | static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI) { | 
|  | DebugLoc DL = N->getDebugLoc(); | 
|  |  | 
|  | // If the flag operand isn't dead, don't touch this CMOV. | 
|  | if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty()) | 
|  | return SDValue(); | 
|  |  | 
|  | // If this is a select between two integer constants, try to do some | 
|  | // optimizations.  Note that the operands are ordered the opposite of SELECT | 
|  | // operands. | 
|  | if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) { | 
|  | if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) { | 
|  | // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is | 
|  | // larger than FalseC (the false value). | 
|  | X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2); | 
|  |  | 
|  | if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) { | 
|  | CC = X86::GetOppositeBranchCondition(CC); | 
|  | std::swap(TrueC, FalseC); | 
|  | } | 
|  |  | 
|  | // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0. | 
|  | // This is efficient for any integer data type (including i8/i16) and | 
|  | // shift amount. | 
|  | if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) { | 
|  | SDValue Cond = N->getOperand(3); | 
|  | Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, | 
|  | DAG.getConstant(CC, MVT::i8), Cond); | 
|  |  | 
|  | // Zero extend the condition if needed. | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond); | 
|  |  | 
|  | unsigned ShAmt = TrueC->getAPIntValue().logBase2(); | 
|  | Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond, | 
|  | DAG.getConstant(ShAmt, MVT::i8)); | 
|  | if (N->getNumValues() == 2)  // Dead flag value? | 
|  | return DCI.CombineTo(N, Cond, SDValue()); | 
|  | return Cond; | 
|  | } | 
|  |  | 
|  | // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient | 
|  | // for any integer data type, including i8/i16. | 
|  | if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { | 
|  | SDValue Cond = N->getOperand(3); | 
|  | Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, | 
|  | DAG.getConstant(CC, MVT::i8), Cond); | 
|  |  | 
|  | // Zero extend the condition if needed. | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, | 
|  | FalseC->getValueType(0), Cond); | 
|  | Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, | 
|  | SDValue(FalseC, 0)); | 
|  |  | 
|  | if (N->getNumValues() == 2)  // Dead flag value? | 
|  | return DCI.CombineTo(N, Cond, SDValue()); | 
|  | return Cond; | 
|  | } | 
|  |  | 
|  | // Optimize cases that will turn into an LEA instruction.  This requires | 
|  | // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). | 
|  | if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { | 
|  | uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); | 
|  | if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; | 
|  |  | 
|  | bool isFastMultiplier = false; | 
|  | if (Diff < 10) { | 
|  | switch ((unsigned char)Diff) { | 
|  | default: break; | 
|  | case 1:  // result = add base, cond | 
|  | case 2:  // result = lea base(    , cond*2) | 
|  | case 3:  // result = lea base(cond, cond*2) | 
|  | case 4:  // result = lea base(    , cond*4) | 
|  | case 5:  // result = lea base(cond, cond*4) | 
|  | case 8:  // result = lea base(    , cond*8) | 
|  | case 9:  // result = lea base(cond, cond*8) | 
|  | isFastMultiplier = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isFastMultiplier) { | 
|  | APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); | 
|  | SDValue Cond = N->getOperand(3); | 
|  | Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, | 
|  | DAG.getConstant(CC, MVT::i8), Cond); | 
|  | // Zero extend the condition if needed. | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), | 
|  | Cond); | 
|  | // Scale the condition by the difference. | 
|  | if (Diff != 1) | 
|  | Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, | 
|  | DAG.getConstant(Diff, Cond.getValueType())); | 
|  |  | 
|  | // Add the base if non-zero. | 
|  | if (FalseC->getAPIntValue() != 0) | 
|  | Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, | 
|  | SDValue(FalseC, 0)); | 
|  | if (N->getNumValues() == 2)  // Dead flag value? | 
|  | return DCI.CombineTo(N, Cond, SDValue()); | 
|  | return Cond; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// PerformMulCombine - Optimize a single multiply with constant into two | 
|  | /// in order to implement it with two cheaper instructions, e.g. | 
|  | /// LEA + SHL, LEA + LEA. | 
|  | static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI) { | 
|  | if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | if (!C) | 
|  | return SDValue(); | 
|  | uint64_t MulAmt = C->getZExtValue(); | 
|  | if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9) | 
|  | return SDValue(); | 
|  |  | 
|  | uint64_t MulAmt1 = 0; | 
|  | uint64_t MulAmt2 = 0; | 
|  | if ((MulAmt % 9) == 0) { | 
|  | MulAmt1 = 9; | 
|  | MulAmt2 = MulAmt / 9; | 
|  | } else if ((MulAmt % 5) == 0) { | 
|  | MulAmt1 = 5; | 
|  | MulAmt2 = MulAmt / 5; | 
|  | } else if ((MulAmt % 3) == 0) { | 
|  | MulAmt1 = 3; | 
|  | MulAmt2 = MulAmt / 3; | 
|  | } | 
|  | if (MulAmt2 && | 
|  | (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){ | 
|  | DebugLoc DL = N->getDebugLoc(); | 
|  |  | 
|  | if (isPowerOf2_64(MulAmt2) && | 
|  | !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD)) | 
|  | // If second multiplifer is pow2, issue it first. We want the multiply by | 
|  | // 3, 5, or 9 to be folded into the addressing mode unless the lone use | 
|  | // is an add. | 
|  | std::swap(MulAmt1, MulAmt2); | 
|  |  | 
|  | SDValue NewMul; | 
|  | if (isPowerOf2_64(MulAmt1)) | 
|  | NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), | 
|  | DAG.getConstant(Log2_64(MulAmt1), MVT::i8)); | 
|  | else | 
|  | NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0), | 
|  | DAG.getConstant(MulAmt1, VT)); | 
|  |  | 
|  | if (isPowerOf2_64(MulAmt2)) | 
|  | NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul, | 
|  | DAG.getConstant(Log2_64(MulAmt2), MVT::i8)); | 
|  | else | 
|  | NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul, | 
|  | DAG.getConstant(MulAmt2, VT)); | 
|  |  | 
|  | // Do not add new nodes to DAG combiner worklist. | 
|  | DCI.CombineTo(N, NewMul, false); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | EVT VT = N0.getValueType(); | 
|  |  | 
|  | // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2)) | 
|  | // since the result of setcc_c is all zero's or all ones. | 
|  | if (N1C && N0.getOpcode() == ISD::AND && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (N00.getOpcode() == X86ISD::SETCC_CARRY || | 
|  | ((N00.getOpcode() == ISD::ANY_EXTEND || | 
|  | N00.getOpcode() == ISD::ZERO_EXTEND) && | 
|  | N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) { | 
|  | APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | 
|  | APInt ShAmt = N1C->getAPIntValue(); | 
|  | Mask = Mask.shl(ShAmt); | 
|  | if (Mask != 0) | 
|  | return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, | 
|  | N00, DAG.getConstant(Mask, VT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts | 
|  | ///                       when possible. | 
|  | static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | EVT VT = N->getValueType(0); | 
|  | if (!VT.isVector() && VT.isInteger() && | 
|  | N->getOpcode() == ISD::SHL) | 
|  | return PerformSHLCombine(N, DAG); | 
|  |  | 
|  | // On X86 with SSE2 support, we can transform this to a vector shift if | 
|  | // all elements are shifted by the same amount.  We can't do this in legalize | 
|  | // because the a constant vector is typically transformed to a constant pool | 
|  | // so we have no knowledge of the shift amount. | 
|  | if (!Subtarget->hasSSE2()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue ShAmtOp = N->getOperand(1); | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | DebugLoc DL = N->getDebugLoc(); | 
|  | SDValue BaseShAmt = SDValue(); | 
|  | if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) { | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | unsigned i = 0; | 
|  | for (; i != NumElts; ++i) { | 
|  | SDValue Arg = ShAmtOp.getOperand(i); | 
|  | if (Arg.getOpcode() == ISD::UNDEF) continue; | 
|  | BaseShAmt = Arg; | 
|  | break; | 
|  | } | 
|  | for (; i != NumElts; ++i) { | 
|  | SDValue Arg = ShAmtOp.getOperand(i); | 
|  | if (Arg.getOpcode() == ISD::UNDEF) continue; | 
|  | if (Arg != BaseShAmt) { | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  | } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE && | 
|  | cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) { | 
|  | SDValue InVec = ShAmtOp.getOperand(0); | 
|  | if (InVec.getOpcode() == ISD::BUILD_VECTOR) { | 
|  | unsigned NumElts = InVec.getValueType().getVectorNumElements(); | 
|  | unsigned i = 0; | 
|  | for (; i != NumElts; ++i) { | 
|  | SDValue Arg = InVec.getOperand(i); | 
|  | if (Arg.getOpcode() == ISD::UNDEF) continue; | 
|  | BaseShAmt = Arg; | 
|  | break; | 
|  | } | 
|  | } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) { | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) { | 
|  | unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex(); | 
|  | if (C->getZExtValue() == SplatIdx) | 
|  | BaseShAmt = InVec.getOperand(1); | 
|  | } | 
|  | } | 
|  | if (BaseShAmt.getNode() == 0) | 
|  | BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } else | 
|  | return SDValue(); | 
|  |  | 
|  | // The shift amount is an i32. | 
|  | if (EltVT.bitsGT(MVT::i32)) | 
|  | BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt); | 
|  | else if (EltVT.bitsLT(MVT::i32)) | 
|  | BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt); | 
|  |  | 
|  | // The shift amount is identical so we can do a vector shift. | 
|  | SDValue  ValOp = N->getOperand(0); | 
|  | switch (N->getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Unknown shift opcode!"); | 
|  | break; | 
|  | case ISD::SHL: | 
|  | if (VT == MVT::v2i64) | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32), | 
|  | ValOp, BaseShAmt); | 
|  | if (VT == MVT::v4i32) | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32), | 
|  | ValOp, BaseShAmt); | 
|  | if (VT == MVT::v8i16) | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), | 
|  | ValOp, BaseShAmt); | 
|  | break; | 
|  | case ISD::SRA: | 
|  | if (VT == MVT::v4i32) | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32), | 
|  | ValOp, BaseShAmt); | 
|  | if (VT == MVT::v8i16) | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32), | 
|  | ValOp, BaseShAmt); | 
|  | break; | 
|  | case ISD::SRL: | 
|  | if (VT == MVT::v2i64) | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32), | 
|  | ValOp, BaseShAmt); | 
|  | if (VT == MVT::v4i32) | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32), | 
|  | ValOp, BaseShAmt); | 
|  | if (VT ==  MVT::v8i16) | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32), | 
|  | ValOp, BaseShAmt); | 
|  | break; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  |  | 
|  | static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | if (DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Want to form PANDN nodes, in the hopes of then easily combining them with | 
|  | // OR and AND nodes to form PBLEND/PSIGN. | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::v2i64) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | DebugLoc DL = N->getDebugLoc(); | 
|  |  | 
|  | // Check LHS for vnot | 
|  | if (N0.getOpcode() == ISD::XOR && | 
|  | ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode())) | 
|  | return DAG.getNode(X86ISD::PANDN, DL, VT, N0.getOperand(0), N1); | 
|  |  | 
|  | // Check RHS for vnot | 
|  | if (N1.getOpcode() == ISD::XOR && | 
|  | ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode())) | 
|  | return DAG.getNode(X86ISD::PANDN, DL, VT, N1.getOperand(0), N0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | if (DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  |  | 
|  | // look for psign/blend | 
|  | if (Subtarget->hasSSSE3()) { | 
|  | if (VT == MVT::v2i64) { | 
|  | // Canonicalize pandn to RHS | 
|  | if (N0.getOpcode() == X86ISD::PANDN) | 
|  | std::swap(N0, N1); | 
|  | // or (and (m, x), (pandn m, y)) | 
|  | if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::PANDN) { | 
|  | SDValue Mask = N1.getOperand(0); | 
|  | SDValue X    = N1.getOperand(1); | 
|  | SDValue Y; | 
|  | if (N0.getOperand(0) == Mask) | 
|  | Y = N0.getOperand(1); | 
|  | if (N0.getOperand(1) == Mask) | 
|  | Y = N0.getOperand(0); | 
|  |  | 
|  | // Check to see if the mask appeared in both the AND and PANDN and | 
|  | if (!Y.getNode()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them. | 
|  | if (Mask.getOpcode() != ISD::BITCAST || | 
|  | X.getOpcode() != ISD::BITCAST || | 
|  | Y.getOpcode() != ISD::BITCAST) | 
|  | return SDValue(); | 
|  |  | 
|  | // Look through mask bitcast. | 
|  | Mask = Mask.getOperand(0); | 
|  | EVT MaskVT = Mask.getValueType(); | 
|  |  | 
|  | // Validate that the Mask operand is a vector sra node.  The sra node | 
|  | // will be an intrinsic. | 
|  | if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN) | 
|  | return SDValue(); | 
|  |  | 
|  | // FIXME: what to do for bytes, since there is a psignb/pblendvb, but | 
|  | // there is no psrai.b | 
|  | switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) { | 
|  | case Intrinsic::x86_sse2_psrai_w: | 
|  | case Intrinsic::x86_sse2_psrai_d: | 
|  | break; | 
|  | default: return SDValue(); | 
|  | } | 
|  |  | 
|  | // Check that the SRA is all signbits. | 
|  | SDValue SraC = Mask.getOperand(2); | 
|  | unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue(); | 
|  | unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits(); | 
|  | if ((SraAmt + 1) != EltBits) | 
|  | return SDValue(); | 
|  |  | 
|  | DebugLoc DL = N->getDebugLoc(); | 
|  |  | 
|  | // Now we know we at least have a plendvb with the mask val.  See if | 
|  | // we can form a psignb/w/d. | 
|  | // psign = x.type == y.type == mask.type && y = sub(0, x); | 
|  | X = X.getOperand(0); | 
|  | Y = Y.getOperand(0); | 
|  | if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X && | 
|  | ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) && | 
|  | X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){ | 
|  | unsigned Opc = 0; | 
|  | switch (EltBits) { | 
|  | case 8: Opc = X86ISD::PSIGNB; break; | 
|  | case 16: Opc = X86ISD::PSIGNW; break; | 
|  | case 32: Opc = X86ISD::PSIGND; break; | 
|  | default: break; | 
|  | } | 
|  | if (Opc) { | 
|  | SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1)); | 
|  | return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign); | 
|  | } | 
|  | } | 
|  | // PBLENDVB only available on SSE 4.1 | 
|  | if (!Subtarget->hasSSE41()) | 
|  | return SDValue(); | 
|  |  | 
|  | X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X); | 
|  | Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y); | 
|  | Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask); | 
|  | Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask); | 
|  | return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c) | 
|  | if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) | 
|  | std::swap(N0, N1); | 
|  | if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) | 
|  | return SDValue(); | 
|  | if (!N0.hasOneUse() || !N1.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue ShAmt0 = N0.getOperand(1); | 
|  | if (ShAmt0.getValueType() != MVT::i8) | 
|  | return SDValue(); | 
|  | SDValue ShAmt1 = N1.getOperand(1); | 
|  | if (ShAmt1.getValueType() != MVT::i8) | 
|  | return SDValue(); | 
|  | if (ShAmt0.getOpcode() == ISD::TRUNCATE) | 
|  | ShAmt0 = ShAmt0.getOperand(0); | 
|  | if (ShAmt1.getOpcode() == ISD::TRUNCATE) | 
|  | ShAmt1 = ShAmt1.getOperand(0); | 
|  |  | 
|  | DebugLoc DL = N->getDebugLoc(); | 
|  | unsigned Opc = X86ISD::SHLD; | 
|  | SDValue Op0 = N0.getOperand(0); | 
|  | SDValue Op1 = N1.getOperand(0); | 
|  | if (ShAmt0.getOpcode() == ISD::SUB) { | 
|  | Opc = X86ISD::SHRD; | 
|  | std::swap(Op0, Op1); | 
|  | std::swap(ShAmt0, ShAmt1); | 
|  | } | 
|  |  | 
|  | unsigned Bits = VT.getSizeInBits(); | 
|  | if (ShAmt1.getOpcode() == ISD::SUB) { | 
|  | SDValue Sum = ShAmt1.getOperand(0); | 
|  | if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) { | 
|  | SDValue ShAmt1Op1 = ShAmt1.getOperand(1); | 
|  | if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE) | 
|  | ShAmt1Op1 = ShAmt1Op1.getOperand(0); | 
|  | if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0) | 
|  | return DAG.getNode(Opc, DL, VT, | 
|  | Op0, Op1, | 
|  | DAG.getNode(ISD::TRUNCATE, DL, | 
|  | MVT::i8, ShAmt0)); | 
|  | } | 
|  | } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) { | 
|  | ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0); | 
|  | if (ShAmt0C && | 
|  | ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits) | 
|  | return DAG.getNode(Opc, DL, VT, | 
|  | N0.getOperand(0), N1.getOperand(0), | 
|  | DAG.getNode(ISD::TRUNCATE, DL, | 
|  | MVT::i8, ShAmt0)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// PerformSTORECombine - Do target-specific dag combines on STORE nodes. | 
|  | static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering | 
|  | // the FP state in cases where an emms may be missing. | 
|  | // A preferable solution to the general problem is to figure out the right | 
|  | // places to insert EMMS.  This qualifies as a quick hack. | 
|  |  | 
|  | // Similarly, turn load->store of i64 into double load/stores in 32-bit mode. | 
|  | StoreSDNode *St = cast<StoreSDNode>(N); | 
|  | EVT VT = St->getValue().getValueType(); | 
|  | if (VT.getSizeInBits() != 64) | 
|  | return SDValue(); | 
|  |  | 
|  | const Function *F = DAG.getMachineFunction().getFunction(); | 
|  | bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat); | 
|  | bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps | 
|  | && Subtarget->hasSSE2(); | 
|  | if ((VT.isVector() || | 
|  | (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) && | 
|  | isa<LoadSDNode>(St->getValue()) && | 
|  | !cast<LoadSDNode>(St->getValue())->isVolatile() && | 
|  | St->getChain().hasOneUse() && !St->isVolatile()) { | 
|  | SDNode* LdVal = St->getValue().getNode(); | 
|  | LoadSDNode *Ld = 0; | 
|  | int TokenFactorIndex = -1; | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | SDNode* ChainVal = St->getChain().getNode(); | 
|  | // Must be a store of a load.  We currently handle two cases:  the load | 
|  | // is a direct child, and it's under an intervening TokenFactor.  It is | 
|  | // possible to dig deeper under nested TokenFactors. | 
|  | if (ChainVal == LdVal) | 
|  | Ld = cast<LoadSDNode>(St->getChain()); | 
|  | else if (St->getValue().hasOneUse() && | 
|  | ChainVal->getOpcode() == ISD::TokenFactor) { | 
|  | for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) { | 
|  | if (ChainVal->getOperand(i).getNode() == LdVal) { | 
|  | TokenFactorIndex = i; | 
|  | Ld = cast<LoadSDNode>(St->getValue()); | 
|  | } else | 
|  | Ops.push_back(ChainVal->getOperand(i)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Ld || !ISD::isNormalLoad(Ld)) | 
|  | return SDValue(); | 
|  |  | 
|  | // If this is not the MMX case, i.e. we are just turning i64 load/store | 
|  | // into f64 load/store, avoid the transformation if there are multiple | 
|  | // uses of the loaded value. | 
|  | if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0)) | 
|  | return SDValue(); | 
|  |  | 
|  | DebugLoc LdDL = Ld->getDebugLoc(); | 
|  | DebugLoc StDL = N->getDebugLoc(); | 
|  | // If we are a 64-bit capable x86, lower to a single movq load/store pair. | 
|  | // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store | 
|  | // pair instead. | 
|  | if (Subtarget->is64Bit() || F64IsLegal) { | 
|  | EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64; | 
|  | SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(), | 
|  | Ld->getPointerInfo(), Ld->isVolatile(), | 
|  | Ld->isNonTemporal(), Ld->getAlignment()); | 
|  | SDValue NewChain = NewLd.getValue(1); | 
|  | if (TokenFactorIndex != -1) { | 
|  | Ops.push_back(NewChain); | 
|  | NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0], | 
|  | Ops.size()); | 
|  | } | 
|  | return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(), | 
|  | St->getPointerInfo(), | 
|  | St->isVolatile(), St->isNonTemporal(), | 
|  | St->getAlignment()); | 
|  | } | 
|  |  | 
|  | // Otherwise, lower to two pairs of 32-bit loads / stores. | 
|  | SDValue LoAddr = Ld->getBasePtr(); | 
|  | SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr, | 
|  | DAG.getConstant(4, MVT::i32)); | 
|  |  | 
|  | SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr, | 
|  | Ld->getPointerInfo(), | 
|  | Ld->isVolatile(), Ld->isNonTemporal(), | 
|  | Ld->getAlignment()); | 
|  | SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr, | 
|  | Ld->getPointerInfo().getWithOffset(4), | 
|  | Ld->isVolatile(), Ld->isNonTemporal(), | 
|  | MinAlign(Ld->getAlignment(), 4)); | 
|  |  | 
|  | SDValue NewChain = LoLd.getValue(1); | 
|  | if (TokenFactorIndex != -1) { | 
|  | Ops.push_back(LoLd); | 
|  | Ops.push_back(HiLd); | 
|  | NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0], | 
|  | Ops.size()); | 
|  | } | 
|  |  | 
|  | LoAddr = St->getBasePtr(); | 
|  | HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr, | 
|  | DAG.getConstant(4, MVT::i32)); | 
|  |  | 
|  | SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr, | 
|  | St->getPointerInfo(), | 
|  | St->isVolatile(), St->isNonTemporal(), | 
|  | St->getAlignment()); | 
|  | SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr, | 
|  | St->getPointerInfo().getWithOffset(4), | 
|  | St->isVolatile(), | 
|  | St->isNonTemporal(), | 
|  | MinAlign(St->getAlignment(), 4)); | 
|  | return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and | 
|  | /// X86ISD::FXOR nodes. | 
|  | static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR); | 
|  | // F[X]OR(0.0, x) -> x | 
|  | // F[X]OR(x, 0.0) -> x | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) | 
|  | if (C->getValueAPF().isPosZero()) | 
|  | return N->getOperand(1); | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) | 
|  | if (C->getValueAPF().isPosZero()) | 
|  | return N->getOperand(0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes. | 
|  | static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | // FAND(0.0, x) -> 0.0 | 
|  | // FAND(x, 0.0) -> 0.0 | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) | 
|  | if (C->getValueAPF().isPosZero()) | 
|  | return N->getOperand(0); | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) | 
|  | if (C->getValueAPF().isPosZero()) | 
|  | return N->getOperand(1); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformBTCombine(SDNode *N, | 
|  | SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI) { | 
|  | // BT ignores high bits in the bit index operand. | 
|  | SDValue Op1 = N->getOperand(1); | 
|  | if (Op1.hasOneUse()) { | 
|  | unsigned BitWidth = Op1.getValueSizeInBits(); | 
|  | APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth)); | 
|  | APInt KnownZero, KnownOne; | 
|  | TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), | 
|  | !DCI.isBeforeLegalizeOps()); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) || | 
|  | TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO)) | 
|  | DCI.CommitTargetLoweringOpt(TLO); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | SDValue Op = N->getOperand(0); | 
|  | if (Op.getOpcode() == ISD::BITCAST) | 
|  | Op = Op.getOperand(0); | 
|  | EVT VT = N->getValueType(0), OpVT = Op.getValueType(); | 
|  | if (Op.getOpcode() == X86ISD::VZEXT_LOAD && | 
|  | VT.getVectorElementType().getSizeInBits() == | 
|  | OpVT.getVectorElementType().getSizeInBits()) { | 
|  | return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | // (i32 zext (and (i8  x86isd::setcc_carry), 1)) -> | 
|  | //           (and (i32 x86isd::setcc_carry), 1) | 
|  | // This eliminates the zext. This transformation is necessary because | 
|  | // ISD::SETCC is always legalized to i8. | 
|  | DebugLoc dl = N->getDebugLoc(); | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  | if (N0.getOpcode() == ISD::AND && | 
|  | N0.hasOneUse() && | 
|  | N0.getOperand(0).hasOneUse()) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (N00.getOpcode() != X86ISD::SETCC_CARRY) | 
|  | return SDValue(); | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (!C || C->getZExtValue() != 1) | 
|  | return SDValue(); | 
|  | return DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNode(X86ISD::SETCC_CARRY, dl, VT, | 
|  | N00.getOperand(0), N00.getOperand(1)), | 
|  | DAG.getConstant(1, VT)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT | 
|  | static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | unsigned X86CC = N->getConstantOperandVal(0); | 
|  | SDValue EFLAG = N->getOperand(1); | 
|  | DebugLoc DL = N->getDebugLoc(); | 
|  |  | 
|  | // Materialize "setb reg" as "sbb reg,reg", since it can be extended without | 
|  | // a zext and produces an all-ones bit which is more useful than 0/1 in some | 
|  | // cases. | 
|  | if (X86CC == X86::COND_B) | 
|  | return DAG.getNode(ISD::AND, DL, MVT::i8, | 
|  | DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8, | 
|  | DAG.getConstant(X86CC, MVT::i8), EFLAG), | 
|  | DAG.getConstant(1, MVT::i8)); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS | 
|  | static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG, | 
|  | X86TargetLowering::DAGCombinerInfo &DCI) { | 
|  | // If the LHS and RHS of the ADC node are zero, then it can't overflow and | 
|  | // the result is either zero or one (depending on the input carry bit). | 
|  | // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1. | 
|  | if (X86::isZeroNode(N->getOperand(0)) && | 
|  | X86::isZeroNode(N->getOperand(1)) && | 
|  | // We don't have a good way to replace an EFLAGS use, so only do this when | 
|  | // dead right now. | 
|  | SDValue(N, 1).use_empty()) { | 
|  | DebugLoc DL = N->getDebugLoc(); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue CarryOut = DAG.getConstant(0, N->getValueType(1)); | 
|  | SDValue Res1 = DAG.getNode(ISD::AND, DL, VT, | 
|  | DAG.getNode(X86ISD::SETCC_CARRY, DL, VT, | 
|  | DAG.getConstant(X86::COND_B,MVT::i8), | 
|  | N->getOperand(2)), | 
|  | DAG.getConstant(1, VT)); | 
|  | return DCI.CombineTo(N, Res1, CarryOut); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // fold (add Y, (sete  X, 0)) -> adc  0, Y | 
|  | //      (add Y, (setne X, 0)) -> sbb -1, Y | 
|  | //      (sub (sete  X, 0), Y) -> sbb  0, Y | 
|  | //      (sub (setne X, 0), Y) -> adc -1, Y | 
|  | static SDValue OptimizeConditonalInDecrement(SDNode *N, SelectionDAG &DAG) { | 
|  | DebugLoc DL = N->getDebugLoc(); | 
|  |  | 
|  | // Look through ZExts. | 
|  | SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0); | 
|  | if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue SetCC = Ext.getOperand(0); | 
|  | if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0); | 
|  | if (CC != X86::COND_E && CC != X86::COND_NE) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Cmp = SetCC.getOperand(1); | 
|  | if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() || | 
|  | !X86::isZeroNode(Cmp.getOperand(1)) || | 
|  | !Cmp.getOperand(0).getValueType().isInteger()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue CmpOp0 = Cmp.getOperand(0); | 
|  | SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0, | 
|  | DAG.getConstant(1, CmpOp0.getValueType())); | 
|  |  | 
|  | SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1); | 
|  | if (CC == X86::COND_NE) | 
|  | return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB, | 
|  | DL, OtherVal.getValueType(), OtherVal, | 
|  | DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp); | 
|  | return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC, | 
|  | DL, OtherVal.getValueType(), OtherVal, | 
|  | DAG.getConstant(0, OtherVal.getValueType()), NewCmp); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::PerformDAGCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::EXTRACT_VECTOR_ELT: | 
|  | return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this); | 
|  | case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget); | 
|  | case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI); | 
|  | case ISD::ADD: | 
|  | case ISD::SUB:            return OptimizeConditonalInDecrement(N, DAG); | 
|  | case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI); | 
|  | case ISD::MUL:            return PerformMulCombine(N, DAG, DCI); | 
|  | case ISD::SHL: | 
|  | case ISD::SRA: | 
|  | case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget); | 
|  | case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget); | 
|  | case X86ISD::FXOR: | 
|  | case X86ISD::FOR:         return PerformFORCombine(N, DAG); | 
|  | case X86ISD::FAND:        return PerformFANDCombine(N, DAG); | 
|  | case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI); | 
|  | case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG); | 
|  | case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG); | 
|  | case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG); | 
|  | case X86ISD::SHUFPS:      // Handle all target specific shuffles | 
|  | case X86ISD::SHUFPD: | 
|  | case X86ISD::PALIGN: | 
|  | case X86ISD::PUNPCKHBW: | 
|  | case X86ISD::PUNPCKHWD: | 
|  | case X86ISD::PUNPCKHDQ: | 
|  | case X86ISD::PUNPCKHQDQ: | 
|  | case X86ISD::UNPCKHPS: | 
|  | case X86ISD::UNPCKHPD: | 
|  | case X86ISD::PUNPCKLBW: | 
|  | case X86ISD::PUNPCKLWD: | 
|  | case X86ISD::PUNPCKLDQ: | 
|  | case X86ISD::PUNPCKLQDQ: | 
|  | case X86ISD::UNPCKLPS: | 
|  | case X86ISD::UNPCKLPD: | 
|  | case X86ISD::VUNPCKLPS: | 
|  | case X86ISD::VUNPCKLPD: | 
|  | case X86ISD::VUNPCKLPSY: | 
|  | case X86ISD::VUNPCKLPDY: | 
|  | case X86ISD::MOVHLPS: | 
|  | case X86ISD::MOVLHPS: | 
|  | case X86ISD::PSHUFD: | 
|  | case X86ISD::PSHUFHW: | 
|  | case X86ISD::PSHUFLW: | 
|  | case X86ISD::MOVSS: | 
|  | case X86ISD::MOVSD: | 
|  | case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// isTypeDesirableForOp - Return true if the target has native support for | 
|  | /// the specified value type and it is 'desirable' to use the type for the | 
|  | /// given node type. e.g. On x86 i16 is legal, but undesirable since i16 | 
|  | /// instruction encodings are longer and some i16 instructions are slow. | 
|  | bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const { | 
|  | if (!isTypeLegal(VT)) | 
|  | return false; | 
|  | if (VT != MVT::i16) | 
|  | return true; | 
|  |  | 
|  | switch (Opc) { | 
|  | default: | 
|  | return true; | 
|  | case ISD::LOAD: | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::ANY_EXTEND: | 
|  | case ISD::SHL: | 
|  | case ISD::SRL: | 
|  | case ISD::SUB: | 
|  | case ISD::ADD: | 
|  | case ISD::MUL: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// IsDesirableToPromoteOp - This method query the target whether it is | 
|  | /// beneficial for dag combiner to promote the specified node. If true, it | 
|  | /// should return the desired promotion type by reference. | 
|  | bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | if (VT != MVT::i16) | 
|  | return false; | 
|  |  | 
|  | bool Promote = false; | 
|  | bool Commute = false; | 
|  | switch (Op.getOpcode()) { | 
|  | default: break; | 
|  | case ISD::LOAD: { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Op); | 
|  | // If the non-extending load has a single use and it's not live out, then it | 
|  | // might be folded. | 
|  | if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&& | 
|  | Op.hasOneUse()*/) { | 
|  | for (SDNode::use_iterator UI = Op.getNode()->use_begin(), | 
|  | UE = Op.getNode()->use_end(); UI != UE; ++UI) { | 
|  | // The only case where we'd want to promote LOAD (rather then it being | 
|  | // promoted as an operand is when it's only use is liveout. | 
|  | if (UI->getOpcode() != ISD::CopyToReg) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | Promote = true; | 
|  | break; | 
|  | } | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::ANY_EXTEND: | 
|  | Promote = true; | 
|  | break; | 
|  | case ISD::SHL: | 
|  | case ISD::SRL: { | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | // Look out for (store (shl (load), x)). | 
|  | if (MayFoldLoad(N0) && MayFoldIntoStore(Op)) | 
|  | return false; | 
|  | Promote = true; | 
|  | break; | 
|  | } | 
|  | case ISD::ADD: | 
|  | case ISD::MUL: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | Commute = true; | 
|  | // fallthrough | 
|  | case ISD::SUB: { | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | SDValue N1 = Op.getOperand(1); | 
|  | if (!Commute && MayFoldLoad(N1)) | 
|  | return false; | 
|  | // Avoid disabling potential load folding opportunities. | 
|  | if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op))) | 
|  | return false; | 
|  | if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op))) | 
|  | return false; | 
|  | Promote = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | PVT = MVT::i32; | 
|  | return Promote; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           X86 Inline Assembly Support | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const { | 
|  | InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue()); | 
|  |  | 
|  | std::string AsmStr = IA->getAsmString(); | 
|  |  | 
|  | // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a" | 
|  | SmallVector<StringRef, 4> AsmPieces; | 
|  | SplitString(AsmStr, AsmPieces, ";\n"); | 
|  |  | 
|  | switch (AsmPieces.size()) { | 
|  | default: return false; | 
|  | case 1: | 
|  | AsmStr = AsmPieces[0]; | 
|  | AsmPieces.clear(); | 
|  | SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace. | 
|  |  | 
|  | // FIXME: this should verify that we are targetting a 486 or better.  If not, | 
|  | // we will turn this bswap into something that will be lowered to logical ops | 
|  | // instead of emitting the bswap asm.  For now, we don't support 486 or lower | 
|  | // so don't worry about this. | 
|  | // bswap $0 | 
|  | if (AsmPieces.size() == 2 && | 
|  | (AsmPieces[0] == "bswap" || | 
|  | AsmPieces[0] == "bswapq" || | 
|  | AsmPieces[0] == "bswapl") && | 
|  | (AsmPieces[1] == "$0" || | 
|  | AsmPieces[1] == "${0:q}")) { | 
|  | // No need to check constraints, nothing other than the equivalent of | 
|  | // "=r,0" would be valid here. | 
|  | const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType()); | 
|  | if (!Ty || Ty->getBitWidth() % 16 != 0) | 
|  | return false; | 
|  | return IntrinsicLowering::LowerToByteSwap(CI); | 
|  | } | 
|  | // rorw $$8, ${0:w}  -->  llvm.bswap.i16 | 
|  | if (CI->getType()->isIntegerTy(16) && | 
|  | AsmPieces.size() == 3 && | 
|  | (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") && | 
|  | AsmPieces[1] == "$$8," && | 
|  | AsmPieces[2] == "${0:w}" && | 
|  | IA->getConstraintString().compare(0, 5, "=r,0,") == 0) { | 
|  | AsmPieces.clear(); | 
|  | const std::string &ConstraintsStr = IA->getConstraintString(); | 
|  | SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ","); | 
|  | std::sort(AsmPieces.begin(), AsmPieces.end()); | 
|  | if (AsmPieces.size() == 4 && | 
|  | AsmPieces[0] == "~{cc}" && | 
|  | AsmPieces[1] == "~{dirflag}" && | 
|  | AsmPieces[2] == "~{flags}" && | 
|  | AsmPieces[3] == "~{fpsr}") { | 
|  | const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType()); | 
|  | if (!Ty || Ty->getBitWidth() % 16 != 0) | 
|  | return false; | 
|  | return IntrinsicLowering::LowerToByteSwap(CI); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 3: | 
|  | if (CI->getType()->isIntegerTy(32) && | 
|  | IA->getConstraintString().compare(0, 5, "=r,0,") == 0) { | 
|  | SmallVector<StringRef, 4> Words; | 
|  | SplitString(AsmPieces[0], Words, " \t,"); | 
|  | if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" && | 
|  | Words[2] == "${0:w}") { | 
|  | Words.clear(); | 
|  | SplitString(AsmPieces[1], Words, " \t,"); | 
|  | if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" && | 
|  | Words[2] == "$0") { | 
|  | Words.clear(); | 
|  | SplitString(AsmPieces[2], Words, " \t,"); | 
|  | if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" && | 
|  | Words[2] == "${0:w}") { | 
|  | AsmPieces.clear(); | 
|  | const std::string &ConstraintsStr = IA->getConstraintString(); | 
|  | SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ","); | 
|  | std::sort(AsmPieces.begin(), AsmPieces.end()); | 
|  | if (AsmPieces.size() == 4 && | 
|  | AsmPieces[0] == "~{cc}" && | 
|  | AsmPieces[1] == "~{dirflag}" && | 
|  | AsmPieces[2] == "~{flags}" && | 
|  | AsmPieces[3] == "~{fpsr}") { | 
|  | const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType()); | 
|  | if (!Ty || Ty->getBitWidth() % 16 != 0) | 
|  | return false; | 
|  | return IntrinsicLowering::LowerToByteSwap(CI); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CI->getType()->isIntegerTy(64)) { | 
|  | InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); | 
|  | if (Constraints.size() >= 2 && | 
|  | Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" && | 
|  | Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") { | 
|  | // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64 | 
|  | SmallVector<StringRef, 4> Words; | 
|  | SplitString(AsmPieces[0], Words, " \t"); | 
|  | if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") { | 
|  | Words.clear(); | 
|  | SplitString(AsmPieces[1], Words, " \t"); | 
|  | if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") { | 
|  | Words.clear(); | 
|  | SplitString(AsmPieces[2], Words, " \t,"); | 
|  | if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" && | 
|  | Words[2] == "%edx") { | 
|  | const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType()); | 
|  | if (!Ty || Ty->getBitWidth() % 16 != 0) | 
|  | return false; | 
|  | return IntrinsicLowering::LowerToByteSwap(CI); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /// getConstraintType - Given a constraint letter, return the type of | 
|  | /// constraint it is for this target. | 
|  | X86TargetLowering::ConstraintType | 
|  | X86TargetLowering::getConstraintType(const std::string &Constraint) const { | 
|  | if (Constraint.size() == 1) { | 
|  | switch (Constraint[0]) { | 
|  | case 'R': | 
|  | case 'q': | 
|  | case 'Q': | 
|  | case 'f': | 
|  | case 't': | 
|  | case 'u': | 
|  | case 'y': | 
|  | case 'x': | 
|  | case 'Y': | 
|  | return C_RegisterClass; | 
|  | case 'a': | 
|  | case 'b': | 
|  | case 'c': | 
|  | case 'd': | 
|  | case 'S': | 
|  | case 'D': | 
|  | case 'A': | 
|  | return C_Register; | 
|  | case 'I': | 
|  | case 'J': | 
|  | case 'K': | 
|  | case 'L': | 
|  | case 'M': | 
|  | case 'N': | 
|  | case 'G': | 
|  | case 'C': | 
|  | case 'e': | 
|  | case 'Z': | 
|  | return C_Other; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | return TargetLowering::getConstraintType(Constraint); | 
|  | } | 
|  |  | 
|  | /// Examine constraint type and operand type and determine a weight value. | 
|  | /// This object must already have been set up with the operand type | 
|  | /// and the current alternative constraint selected. | 
|  | TargetLowering::ConstraintWeight | 
|  | X86TargetLowering::getSingleConstraintMatchWeight( | 
|  | AsmOperandInfo &info, const char *constraint) const { | 
|  | ConstraintWeight weight = CW_Invalid; | 
|  | Value *CallOperandVal = info.CallOperandVal; | 
|  | // If we don't have a value, we can't do a match, | 
|  | // but allow it at the lowest weight. | 
|  | if (CallOperandVal == NULL) | 
|  | return CW_Default; | 
|  | const Type *type = CallOperandVal->getType(); | 
|  | // Look at the constraint type. | 
|  | switch (*constraint) { | 
|  | default: | 
|  | weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); | 
|  | case 'R': | 
|  | case 'q': | 
|  | case 'Q': | 
|  | case 'a': | 
|  | case 'b': | 
|  | case 'c': | 
|  | case 'd': | 
|  | case 'S': | 
|  | case 'D': | 
|  | case 'A': | 
|  | if (CallOperandVal->getType()->isIntegerTy()) | 
|  | weight = CW_SpecificReg; | 
|  | break; | 
|  | case 'f': | 
|  | case 't': | 
|  | case 'u': | 
|  | if (type->isFloatingPointTy()) | 
|  | weight = CW_SpecificReg; | 
|  | break; | 
|  | case 'y': | 
|  | if (type->isX86_MMXTy() && Subtarget->hasMMX()) | 
|  | weight = CW_SpecificReg; | 
|  | break; | 
|  | case 'x': | 
|  | case 'Y': | 
|  | if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM()) | 
|  | weight = CW_Register; | 
|  | break; | 
|  | case 'I': | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) { | 
|  | if (C->getZExtValue() <= 31) | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | case 'J': | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if (C->getZExtValue() <= 63) | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | case 'K': | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f)) | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | case 'L': | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff)) | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | case 'M': | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if (C->getZExtValue() <= 3) | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | case 'N': | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if (C->getZExtValue() <= 0xff) | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | case 'G': | 
|  | case 'C': | 
|  | if (dyn_cast<ConstantFP>(CallOperandVal)) { | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | case 'e': | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if ((C->getSExtValue() >= -0x80000000LL) && | 
|  | (C->getSExtValue() <= 0x7fffffffLL)) | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | case 'Z': | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if (C->getZExtValue() <= 0xffffffff) | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | } | 
|  | return weight; | 
|  | } | 
|  |  | 
|  | /// LowerXConstraint - try to replace an X constraint, which matches anything, | 
|  | /// with another that has more specific requirements based on the type of the | 
|  | /// corresponding operand. | 
|  | const char *X86TargetLowering:: | 
|  | LowerXConstraint(EVT ConstraintVT) const { | 
|  | // FP X constraints get lowered to SSE1/2 registers if available, otherwise | 
|  | // 'f' like normal targets. | 
|  | if (ConstraintVT.isFloatingPoint()) { | 
|  | if (Subtarget->hasXMMInt()) | 
|  | return "Y"; | 
|  | if (Subtarget->hasXMM()) | 
|  | return "x"; | 
|  | } | 
|  |  | 
|  | return TargetLowering::LowerXConstraint(ConstraintVT); | 
|  | } | 
|  |  | 
|  | /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops | 
|  | /// vector.  If it is invalid, don't add anything to Ops. | 
|  | void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op, | 
|  | char Constraint, | 
|  | std::vector<SDValue>&Ops, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Result(0, 0); | 
|  |  | 
|  | switch (Constraint) { | 
|  | default: break; | 
|  | case 'I': | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if (C->getZExtValue() <= 31) { | 
|  | Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'J': | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if (C->getZExtValue() <= 63) { | 
|  | Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'K': | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if ((int8_t)C->getSExtValue() == C->getSExtValue()) { | 
|  | Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'N': | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if (C->getZExtValue() <= 255) { | 
|  | Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'e': { | 
|  | // 32-bit signed value | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), | 
|  | C->getSExtValue())) { | 
|  | // Widen to 64 bits here to get it sign extended. | 
|  | Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64); | 
|  | break; | 
|  | } | 
|  | // FIXME gcc accepts some relocatable values here too, but only in certain | 
|  | // memory models; it's complicated. | 
|  | } | 
|  | return; | 
|  | } | 
|  | case 'Z': { | 
|  | // 32-bit unsigned value | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), | 
|  | C->getZExtValue())) { | 
|  | Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | // FIXME gcc accepts some relocatable values here too, but only in certain | 
|  | // memory models; it's complicated. | 
|  | return; | 
|  | } | 
|  | case 'i': { | 
|  | // Literal immediates are always ok. | 
|  | if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) { | 
|  | // Widen to 64 bits here to get it sign extended. | 
|  | Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // In any sort of PIC mode addresses need to be computed at runtime by | 
|  | // adding in a register or some sort of table lookup.  These can't | 
|  | // be used as immediates. | 
|  | if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC()) | 
|  | return; | 
|  |  | 
|  | // If we are in non-pic codegen mode, we allow the address of a global (with | 
|  | // an optional displacement) to be used with 'i'. | 
|  | GlobalAddressSDNode *GA = 0; | 
|  | int64_t Offset = 0; | 
|  |  | 
|  | // Match either (GA), (GA+C), (GA+C1+C2), etc. | 
|  | while (1) { | 
|  | if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) { | 
|  | Offset += GA->getOffset(); | 
|  | break; | 
|  | } else if (Op.getOpcode() == ISD::ADD) { | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | Offset += C->getZExtValue(); | 
|  | Op = Op.getOperand(0); | 
|  | continue; | 
|  | } | 
|  | } else if (Op.getOpcode() == ISD::SUB) { | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | Offset += -C->getZExtValue(); | 
|  | Op = Op.getOperand(0); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, this isn't something we can handle, reject it. | 
|  | return; | 
|  | } | 
|  |  | 
|  | const GlobalValue *GV = GA->getGlobal(); | 
|  | // If we require an extra load to get this address, as in PIC mode, we | 
|  | // can't accept it. | 
|  | if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV, | 
|  | getTargetMachine()))) | 
|  | return; | 
|  |  | 
|  | Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(), | 
|  | GA->getValueType(0), Offset); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Result.getNode()) { | 
|  | Ops.push_back(Result); | 
|  | return; | 
|  | } | 
|  | return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); | 
|  | } | 
|  |  | 
|  | std::vector<unsigned> X86TargetLowering:: | 
|  | getRegClassForInlineAsmConstraint(const std::string &Constraint, | 
|  | EVT VT) const { | 
|  | if (Constraint.size() == 1) { | 
|  | // FIXME: not handling fp-stack yet! | 
|  | switch (Constraint[0]) {      // GCC X86 Constraint Letters | 
|  | default: break;  // Unknown constraint letter | 
|  | case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode. | 
|  | if (Subtarget->is64Bit()) { | 
|  | if (VT == MVT::i32) | 
|  | return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, | 
|  | X86::ESI, X86::EDI, X86::R8D, X86::R9D, | 
|  | X86::R10D,X86::R11D,X86::R12D, | 
|  | X86::R13D,X86::R14D,X86::R15D, | 
|  | X86::EBP, X86::ESP, 0); | 
|  | else if (VT == MVT::i16) | 
|  | return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX, | 
|  | X86::SI,  X86::DI,  X86::R8W,X86::R9W, | 
|  | X86::R10W,X86::R11W,X86::R12W, | 
|  | X86::R13W,X86::R14W,X86::R15W, | 
|  | X86::BP,  X86::SP, 0); | 
|  | else if (VT == MVT::i8) | 
|  | return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL, | 
|  | X86::SIL, X86::DIL, X86::R8B,X86::R9B, | 
|  | X86::R10B,X86::R11B,X86::R12B, | 
|  | X86::R13B,X86::R14B,X86::R15B, | 
|  | X86::BPL, X86::SPL, 0); | 
|  |  | 
|  | else if (VT == MVT::i64) | 
|  | return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, | 
|  | X86::RSI, X86::RDI, X86::R8,  X86::R9, | 
|  | X86::R10, X86::R11, X86::R12, | 
|  | X86::R13, X86::R14, X86::R15, | 
|  | X86::RBP, X86::RSP, 0); | 
|  |  | 
|  | break; | 
|  | } | 
|  | // 32-bit fallthrough | 
|  | case 'Q':   // Q_REGS | 
|  | if (VT == MVT::i32) | 
|  | return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0); | 
|  | else if (VT == MVT::i16) | 
|  | return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0); | 
|  | else if (VT == MVT::i8) | 
|  | return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0); | 
|  | else if (VT == MVT::i64) | 
|  | return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return std::vector<unsigned>(); | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass*> | 
|  | X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, | 
|  | EVT VT) const { | 
|  | // First, see if this is a constraint that directly corresponds to an LLVM | 
|  | // register class. | 
|  | if (Constraint.size() == 1) { | 
|  | // GCC Constraint Letters | 
|  | switch (Constraint[0]) { | 
|  | default: break; | 
|  | case 'r':   // GENERAL_REGS | 
|  | case 'l':   // INDEX_REGS | 
|  | if (VT == MVT::i8) | 
|  | return std::make_pair(0U, X86::GR8RegisterClass); | 
|  | if (VT == MVT::i16) | 
|  | return std::make_pair(0U, X86::GR16RegisterClass); | 
|  | if (VT == MVT::i32 || !Subtarget->is64Bit()) | 
|  | return std::make_pair(0U, X86::GR32RegisterClass); | 
|  | return std::make_pair(0U, X86::GR64RegisterClass); | 
|  | case 'R':   // LEGACY_REGS | 
|  | if (VT == MVT::i8) | 
|  | return std::make_pair(0U, X86::GR8_NOREXRegisterClass); | 
|  | if (VT == MVT::i16) | 
|  | return std::make_pair(0U, X86::GR16_NOREXRegisterClass); | 
|  | if (VT == MVT::i32 || !Subtarget->is64Bit()) | 
|  | return std::make_pair(0U, X86::GR32_NOREXRegisterClass); | 
|  | return std::make_pair(0U, X86::GR64_NOREXRegisterClass); | 
|  | case 'f':  // FP Stack registers. | 
|  | // If SSE is enabled for this VT, use f80 to ensure the isel moves the | 
|  | // value to the correct fpstack register class. | 
|  | if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT)) | 
|  | return std::make_pair(0U, X86::RFP32RegisterClass); | 
|  | if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT)) | 
|  | return std::make_pair(0U, X86::RFP64RegisterClass); | 
|  | return std::make_pair(0U, X86::RFP80RegisterClass); | 
|  | case 'y':   // MMX_REGS if MMX allowed. | 
|  | if (!Subtarget->hasMMX()) break; | 
|  | return std::make_pair(0U, X86::VR64RegisterClass); | 
|  | case 'Y':   // SSE_REGS if SSE2 allowed | 
|  | if (!Subtarget->hasXMMInt()) break; | 
|  | // FALL THROUGH. | 
|  | case 'x':   // SSE_REGS if SSE1 allowed | 
|  | if (!Subtarget->hasXMM()) break; | 
|  |  | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | default: break; | 
|  | // Scalar SSE types. | 
|  | case MVT::f32: | 
|  | case MVT::i32: | 
|  | return std::make_pair(0U, X86::FR32RegisterClass); | 
|  | case MVT::f64: | 
|  | case MVT::i64: | 
|  | return std::make_pair(0U, X86::FR64RegisterClass); | 
|  | // Vector types. | 
|  | case MVT::v16i8: | 
|  | case MVT::v8i16: | 
|  | case MVT::v4i32: | 
|  | case MVT::v2i64: | 
|  | case MVT::v4f32: | 
|  | case MVT::v2f64: | 
|  | return std::make_pair(0U, X86::VR128RegisterClass); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Use the default implementation in TargetLowering to convert the register | 
|  | // constraint into a member of a register class. | 
|  | std::pair<unsigned, const TargetRegisterClass*> Res; | 
|  | Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); | 
|  |  | 
|  | // Not found as a standard register? | 
|  | if (Res.second == 0) { | 
|  | // Map st(0) -> st(7) -> ST0 | 
|  | if (Constraint.size() == 7 && Constraint[0] == '{' && | 
|  | tolower(Constraint[1]) == 's' && | 
|  | tolower(Constraint[2]) == 't' && | 
|  | Constraint[3] == '(' && | 
|  | (Constraint[4] >= '0' && Constraint[4] <= '7') && | 
|  | Constraint[5] == ')' && | 
|  | Constraint[6] == '}') { | 
|  |  | 
|  | Res.first = X86::ST0+Constraint[4]-'0'; | 
|  | Res.second = X86::RFP80RegisterClass; | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // GCC allows "st(0)" to be called just plain "st". | 
|  | if (StringRef("{st}").equals_lower(Constraint)) { | 
|  | Res.first = X86::ST0; | 
|  | Res.second = X86::RFP80RegisterClass; | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // flags -> EFLAGS | 
|  | if (StringRef("{flags}").equals_lower(Constraint)) { | 
|  | Res.first = X86::EFLAGS; | 
|  | Res.second = X86::CCRRegisterClass; | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // 'A' means EAX + EDX. | 
|  | if (Constraint == "A") { | 
|  | Res.first = X86::EAX; | 
|  | Res.second = X86::GR32_ADRegisterClass; | 
|  | return Res; | 
|  | } | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // Otherwise, check to see if this is a register class of the wrong value | 
|  | // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to | 
|  | // turn into {ax},{dx}. | 
|  | if (Res.second->hasType(VT)) | 
|  | return Res;   // Correct type already, nothing to do. | 
|  |  | 
|  | // All of the single-register GCC register classes map their values onto | 
|  | // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we | 
|  | // really want an 8-bit or 32-bit register, map to the appropriate register | 
|  | // class and return the appropriate register. | 
|  | if (Res.second == X86::GR16RegisterClass) { | 
|  | if (VT == MVT::i8) { | 
|  | unsigned DestReg = 0; | 
|  | switch (Res.first) { | 
|  | default: break; | 
|  | case X86::AX: DestReg = X86::AL; break; | 
|  | case X86::DX: DestReg = X86::DL; break; | 
|  | case X86::CX: DestReg = X86::CL; break; | 
|  | case X86::BX: DestReg = X86::BL; break; | 
|  | } | 
|  | if (DestReg) { | 
|  | Res.first = DestReg; | 
|  | Res.second = X86::GR8RegisterClass; | 
|  | } | 
|  | } else if (VT == MVT::i32) { | 
|  | unsigned DestReg = 0; | 
|  | switch (Res.first) { | 
|  | default: break; | 
|  | case X86::AX: DestReg = X86::EAX; break; | 
|  | case X86::DX: DestReg = X86::EDX; break; | 
|  | case X86::CX: DestReg = X86::ECX; break; | 
|  | case X86::BX: DestReg = X86::EBX; break; | 
|  | case X86::SI: DestReg = X86::ESI; break; | 
|  | case X86::DI: DestReg = X86::EDI; break; | 
|  | case X86::BP: DestReg = X86::EBP; break; | 
|  | case X86::SP: DestReg = X86::ESP; break; | 
|  | } | 
|  | if (DestReg) { | 
|  | Res.first = DestReg; | 
|  | Res.second = X86::GR32RegisterClass; | 
|  | } | 
|  | } else if (VT == MVT::i64) { | 
|  | unsigned DestReg = 0; | 
|  | switch (Res.first) { | 
|  | default: break; | 
|  | case X86::AX: DestReg = X86::RAX; break; | 
|  | case X86::DX: DestReg = X86::RDX; break; | 
|  | case X86::CX: DestReg = X86::RCX; break; | 
|  | case X86::BX: DestReg = X86::RBX; break; | 
|  | case X86::SI: DestReg = X86::RSI; break; | 
|  | case X86::DI: DestReg = X86::RDI; break; | 
|  | case X86::BP: DestReg = X86::RBP; break; | 
|  | case X86::SP: DestReg = X86::RSP; break; | 
|  | } | 
|  | if (DestReg) { | 
|  | Res.first = DestReg; | 
|  | Res.second = X86::GR64RegisterClass; | 
|  | } | 
|  | } | 
|  | } else if (Res.second == X86::FR32RegisterClass || | 
|  | Res.second == X86::FR64RegisterClass || | 
|  | Res.second == X86::VR128RegisterClass) { | 
|  | // Handle references to XMM physical registers that got mapped into the | 
|  | // wrong class.  This can happen with constraints like {xmm0} where the | 
|  | // target independent register mapper will just pick the first match it can | 
|  | // find, ignoring the required type. | 
|  | if (VT == MVT::f32) | 
|  | Res.second = X86::FR32RegisterClass; | 
|  | else if (VT == MVT::f64) | 
|  | Res.second = X86::FR64RegisterClass; | 
|  | else if (X86::VR128RegisterClass->hasType(VT)) | 
|  | Res.second = X86::VR128RegisterClass; | 
|  | } | 
|  |  | 
|  | return Res; | 
|  | } |