|  | //===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This provides a class for CUDA code generation targeting the NVIDIA CUDA | 
|  | // runtime library. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "CGCUDARuntime.h" | 
|  | #include "CodeGenFunction.h" | 
|  | #include "CodeGenModule.h" | 
|  | #include "clang/AST/Decl.h" | 
|  | #include "clang/Basic/Cuda.h" | 
|  | #include "clang/CodeGen/CodeGenABITypes.h" | 
|  | #include "clang/CodeGen/ConstantInitBuilder.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/Support/Format.h" | 
|  |  | 
|  | using namespace clang; | 
|  | using namespace CodeGen; | 
|  |  | 
|  | namespace { | 
|  | constexpr unsigned CudaFatMagic = 0x466243b1; | 
|  | constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF" | 
|  |  | 
|  | class CGNVCUDARuntime : public CGCUDARuntime { | 
|  |  | 
|  | private: | 
|  | llvm::IntegerType *IntTy, *SizeTy; | 
|  | llvm::Type *VoidTy; | 
|  | llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy; | 
|  |  | 
|  | /// Convenience reference to LLVM Context | 
|  | llvm::LLVMContext &Context; | 
|  | /// Convenience reference to the current module | 
|  | llvm::Module &TheModule; | 
|  | /// Keeps track of kernel launch stubs emitted in this module | 
|  | struct KernelInfo { | 
|  | llvm::Function *Kernel; | 
|  | const Decl *D; | 
|  | }; | 
|  | llvm::SmallVector<KernelInfo, 16> EmittedKernels; | 
|  | struct VarInfo { | 
|  | llvm::GlobalVariable *Var; | 
|  | const VarDecl *D; | 
|  | unsigned Flag; | 
|  | }; | 
|  | llvm::SmallVector<VarInfo, 16> DeviceVars; | 
|  | /// Keeps track of variable containing handle of GPU binary. Populated by | 
|  | /// ModuleCtorFunction() and used to create corresponding cleanup calls in | 
|  | /// ModuleDtorFunction() | 
|  | llvm::GlobalVariable *GpuBinaryHandle = nullptr; | 
|  | /// Whether we generate relocatable device code. | 
|  | bool RelocatableDeviceCode; | 
|  | /// Mangle context for device. | 
|  | std::unique_ptr<MangleContext> DeviceMC; | 
|  |  | 
|  | llvm::FunctionCallee getSetupArgumentFn() const; | 
|  | llvm::FunctionCallee getLaunchFn() const; | 
|  |  | 
|  | llvm::FunctionType *getRegisterGlobalsFnTy() const; | 
|  | llvm::FunctionType *getCallbackFnTy() const; | 
|  | llvm::FunctionType *getRegisterLinkedBinaryFnTy() const; | 
|  | std::string addPrefixToName(StringRef FuncName) const; | 
|  | std::string addUnderscoredPrefixToName(StringRef FuncName) const; | 
|  |  | 
|  | /// Creates a function to register all kernel stubs generated in this module. | 
|  | llvm::Function *makeRegisterGlobalsFn(); | 
|  |  | 
|  | /// Helper function that generates a constant string and returns a pointer to | 
|  | /// the start of the string.  The result of this function can be used anywhere | 
|  | /// where the C code specifies const char*. | 
|  | llvm::Constant *makeConstantString(const std::string &Str, | 
|  | const std::string &Name = "", | 
|  | const std::string &SectionName = "", | 
|  | unsigned Alignment = 0) { | 
|  | llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0), | 
|  | llvm::ConstantInt::get(SizeTy, 0)}; | 
|  | auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str()); | 
|  | llvm::GlobalVariable *GV = | 
|  | cast<llvm::GlobalVariable>(ConstStr.getPointer()); | 
|  | if (!SectionName.empty()) { | 
|  | GV->setSection(SectionName); | 
|  | // Mark the address as used which make sure that this section isn't | 
|  | // merged and we will really have it in the object file. | 
|  | GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); | 
|  | } | 
|  | if (Alignment) | 
|  | GV->setAlignment(Alignment); | 
|  |  | 
|  | return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(), | 
|  | ConstStr.getPointer(), Zeros); | 
|  | } | 
|  |  | 
|  | /// Helper function that generates an empty dummy function returning void. | 
|  | llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) { | 
|  | assert(FnTy->getReturnType()->isVoidTy() && | 
|  | "Can only generate dummy functions returning void!"); | 
|  | llvm::Function *DummyFunc = llvm::Function::Create( | 
|  | FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule); | 
|  |  | 
|  | llvm::BasicBlock *DummyBlock = | 
|  | llvm::BasicBlock::Create(Context, "", DummyFunc); | 
|  | CGBuilderTy FuncBuilder(CGM, Context); | 
|  | FuncBuilder.SetInsertPoint(DummyBlock); | 
|  | FuncBuilder.CreateRetVoid(); | 
|  |  | 
|  | return DummyFunc; | 
|  | } | 
|  |  | 
|  | void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args); | 
|  | void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args); | 
|  | std::string getDeviceSideName(const Decl *ND); | 
|  |  | 
|  | public: | 
|  | CGNVCUDARuntime(CodeGenModule &CGM); | 
|  |  | 
|  | void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override; | 
|  | void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var, | 
|  | unsigned Flags) override { | 
|  | DeviceVars.push_back({&Var, VD, Flags}); | 
|  | } | 
|  |  | 
|  | /// Creates module constructor function | 
|  | llvm::Function *makeModuleCtorFunction() override; | 
|  | /// Creates module destructor function | 
|  | llvm::Function *makeModuleDtorFunction() override; | 
|  | /// Construct and return the stub name of a kernel. | 
|  | std::string getDeviceStubName(llvm::StringRef Name) const override; | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const { | 
|  | if (CGM.getLangOpts().HIP) | 
|  | return ((Twine("hip") + Twine(FuncName)).str()); | 
|  | return ((Twine("cuda") + Twine(FuncName)).str()); | 
|  | } | 
|  | std::string | 
|  | CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const { | 
|  | if (CGM.getLangOpts().HIP) | 
|  | return ((Twine("__hip") + Twine(FuncName)).str()); | 
|  | return ((Twine("__cuda") + Twine(FuncName)).str()); | 
|  | } | 
|  |  | 
|  | CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM) | 
|  | : CGCUDARuntime(CGM), Context(CGM.getLLVMContext()), | 
|  | TheModule(CGM.getModule()), | 
|  | RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode), | 
|  | DeviceMC(CGM.getContext().createMangleContext( | 
|  | CGM.getContext().getAuxTargetInfo())) { | 
|  | CodeGen::CodeGenTypes &Types = CGM.getTypes(); | 
|  | ASTContext &Ctx = CGM.getContext(); | 
|  |  | 
|  | IntTy = CGM.IntTy; | 
|  | SizeTy = CGM.SizeTy; | 
|  | VoidTy = CGM.VoidTy; | 
|  |  | 
|  | CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy)); | 
|  | VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy)); | 
|  | VoidPtrPtrTy = VoidPtrTy->getPointerTo(); | 
|  | } | 
|  |  | 
|  | llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const { | 
|  | // cudaError_t cudaSetupArgument(void *, size_t, size_t) | 
|  | llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy}; | 
|  | return CGM.CreateRuntimeFunction( | 
|  | llvm::FunctionType::get(IntTy, Params, false), | 
|  | addPrefixToName("SetupArgument")); | 
|  | } | 
|  |  | 
|  | llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const { | 
|  | if (CGM.getLangOpts().HIP) { | 
|  | // hipError_t hipLaunchByPtr(char *); | 
|  | return CGM.CreateRuntimeFunction( | 
|  | llvm::FunctionType::get(IntTy, CharPtrTy, false), "hipLaunchByPtr"); | 
|  | } else { | 
|  | // cudaError_t cudaLaunch(char *); | 
|  | return CGM.CreateRuntimeFunction( | 
|  | llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch"); | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const { | 
|  | return llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false); | 
|  | } | 
|  |  | 
|  | llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const { | 
|  | return llvm::FunctionType::get(VoidTy, VoidPtrTy, false); | 
|  | } | 
|  |  | 
|  | llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const { | 
|  | auto CallbackFnTy = getCallbackFnTy(); | 
|  | auto RegisterGlobalsFnTy = getRegisterGlobalsFnTy(); | 
|  | llvm::Type *Params[] = {RegisterGlobalsFnTy->getPointerTo(), VoidPtrTy, | 
|  | VoidPtrTy, CallbackFnTy->getPointerTo()}; | 
|  | return llvm::FunctionType::get(VoidTy, Params, false); | 
|  | } | 
|  |  | 
|  | std::string CGNVCUDARuntime::getDeviceSideName(const Decl *D) { | 
|  | auto *ND = cast<const NamedDecl>(D); | 
|  | std::string DeviceSideName; | 
|  | if (DeviceMC->shouldMangleDeclName(ND)) { | 
|  | SmallString<256> Buffer; | 
|  | llvm::raw_svector_ostream Out(Buffer); | 
|  | DeviceMC->mangleName(ND, Out); | 
|  | DeviceSideName = Out.str(); | 
|  | } else | 
|  | DeviceSideName = ND->getIdentifier()->getName(); | 
|  | return DeviceSideName; | 
|  | } | 
|  |  | 
|  | void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF, | 
|  | FunctionArgList &Args) { | 
|  | // Ensure either we have different ABIs between host and device compilations, | 
|  | // says host compilation following MSVC ABI but device compilation follows | 
|  | // Itanium C++ ABI or, if they follow the same ABI, kernel names after | 
|  | // mangling should be the same after name stubbing. The later checking is | 
|  | // very important as the device kernel name being mangled in host-compilation | 
|  | // is used to resolve the device binaries to be executed. Inconsistent naming | 
|  | // result in undefined behavior. Even though we cannot check that naming | 
|  | // directly between host- and device-compilations, the host- and | 
|  | // device-mangling in host compilation could help catching certain ones. | 
|  | assert((CGF.CGM.getContext().getAuxTargetInfo() && | 
|  | (CGF.CGM.getContext().getAuxTargetInfo()->getCXXABI() != | 
|  | CGF.CGM.getContext().getTargetInfo().getCXXABI())) || | 
|  | getDeviceStubName(getDeviceSideName(CGF.CurFuncDecl)) == | 
|  | CGF.CurFn->getName()); | 
|  |  | 
|  | EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl}); | 
|  | if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(), | 
|  | CudaFeature::CUDA_USES_NEW_LAUNCH)) | 
|  | emitDeviceStubBodyNew(CGF, Args); | 
|  | else | 
|  | emitDeviceStubBodyLegacy(CGF, Args); | 
|  | } | 
|  |  | 
|  | // CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local | 
|  | // array and kernels are launched using cudaLaunchKernel(). | 
|  | void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF, | 
|  | FunctionArgList &Args) { | 
|  | // Build the shadow stack entry at the very start of the function. | 
|  |  | 
|  | // Calculate amount of space we will need for all arguments.  If we have no | 
|  | // args, allocate a single pointer so we still have a valid pointer to the | 
|  | // argument array that we can pass to runtime, even if it will be unused. | 
|  | Address KernelArgs = CGF.CreateTempAlloca( | 
|  | VoidPtrTy, CharUnits::fromQuantity(16), "kernel_args", | 
|  | llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size()))); | 
|  | // Store pointers to the arguments in a locally allocated launch_args. | 
|  | for (unsigned i = 0; i < Args.size(); ++i) { | 
|  | llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer(); | 
|  | llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, VoidPtrTy); | 
|  | CGF.Builder.CreateDefaultAlignedStore( | 
|  | VoidVarPtr, CGF.Builder.CreateConstGEP1_32(KernelArgs.getPointer(), i)); | 
|  | } | 
|  |  | 
|  | llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end"); | 
|  |  | 
|  | // Lookup cudaLaunchKernel function. | 
|  | // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim, | 
|  | //                              void **args, size_t sharedMem, | 
|  | //                              cudaStream_t stream); | 
|  | TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); | 
|  | DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); | 
|  | IdentifierInfo &cudaLaunchKernelII = | 
|  | CGM.getContext().Idents.get("cudaLaunchKernel"); | 
|  | FunctionDecl *cudaLaunchKernelFD = nullptr; | 
|  | for (const auto &Result : DC->lookup(&cudaLaunchKernelII)) { | 
|  | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result)) | 
|  | cudaLaunchKernelFD = FD; | 
|  | } | 
|  |  | 
|  | if (cudaLaunchKernelFD == nullptr) { | 
|  | CGM.Error(CGF.CurFuncDecl->getLocation(), | 
|  | "Can't find declaration for cudaLaunchKernel()"); | 
|  | return; | 
|  | } | 
|  | // Create temporary dim3 grid_dim, block_dim. | 
|  | ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1); | 
|  | QualType Dim3Ty = GridDimParam->getType(); | 
|  | Address GridDim = | 
|  | CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim"); | 
|  | Address BlockDim = | 
|  | CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim"); | 
|  | Address ShmemSize = | 
|  | CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size"); | 
|  | Address Stream = | 
|  | CGF.CreateTempAlloca(VoidPtrTy, CGM.getPointerAlign(), "stream"); | 
|  | llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction( | 
|  | llvm::FunctionType::get(IntTy, | 
|  | {/*gridDim=*/GridDim.getType(), | 
|  | /*blockDim=*/BlockDim.getType(), | 
|  | /*ShmemSize=*/ShmemSize.getType(), | 
|  | /*Stream=*/Stream.getType()}, | 
|  | /*isVarArg=*/false), | 
|  | "__cudaPopCallConfiguration"); | 
|  |  | 
|  | CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn, | 
|  | {GridDim.getPointer(), BlockDim.getPointer(), | 
|  | ShmemSize.getPointer(), Stream.getPointer()}); | 
|  |  | 
|  | // Emit the call to cudaLaunch | 
|  | llvm::Value *Kernel = CGF.Builder.CreatePointerCast(CGF.CurFn, VoidPtrTy); | 
|  | CallArgList LaunchKernelArgs; | 
|  | LaunchKernelArgs.add(RValue::get(Kernel), | 
|  | cudaLaunchKernelFD->getParamDecl(0)->getType()); | 
|  | LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty); | 
|  | LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty); | 
|  | LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()), | 
|  | cudaLaunchKernelFD->getParamDecl(3)->getType()); | 
|  | LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)), | 
|  | cudaLaunchKernelFD->getParamDecl(4)->getType()); | 
|  | LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)), | 
|  | cudaLaunchKernelFD->getParamDecl(5)->getType()); | 
|  |  | 
|  | QualType QT = cudaLaunchKernelFD->getType(); | 
|  | QualType CQT = QT.getCanonicalType(); | 
|  | llvm::Type *Ty = CGM.getTypes().ConvertType(CQT); | 
|  | llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(Ty); | 
|  |  | 
|  | const CGFunctionInfo &FI = | 
|  | CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD); | 
|  | llvm::FunctionCallee cudaLaunchKernelFn = | 
|  | CGM.CreateRuntimeFunction(FTy, "cudaLaunchKernel"); | 
|  | CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(), | 
|  | LaunchKernelArgs); | 
|  | CGF.EmitBranch(EndBlock); | 
|  |  | 
|  | CGF.EmitBlock(EndBlock); | 
|  | } | 
|  |  | 
|  | void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF, | 
|  | FunctionArgList &Args) { | 
|  | // Emit a call to cudaSetupArgument for each arg in Args. | 
|  | llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn(); | 
|  | llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end"); | 
|  | CharUnits Offset = CharUnits::Zero(); | 
|  | for (const VarDecl *A : Args) { | 
|  | CharUnits TyWidth, TyAlign; | 
|  | std::tie(TyWidth, TyAlign) = | 
|  | CGM.getContext().getTypeInfoInChars(A->getType()); | 
|  | Offset = Offset.alignTo(TyAlign); | 
|  | llvm::Value *Args[] = { | 
|  | CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(), | 
|  | VoidPtrTy), | 
|  | llvm::ConstantInt::get(SizeTy, TyWidth.getQuantity()), | 
|  | llvm::ConstantInt::get(SizeTy, Offset.getQuantity()), | 
|  | }; | 
|  | llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args); | 
|  | llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0); | 
|  | llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero); | 
|  | llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next"); | 
|  | CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock); | 
|  | CGF.EmitBlock(NextBlock); | 
|  | Offset += TyWidth; | 
|  | } | 
|  |  | 
|  | // Emit the call to cudaLaunch | 
|  | llvm::FunctionCallee cudaLaunchFn = getLaunchFn(); | 
|  | llvm::Value *Arg = CGF.Builder.CreatePointerCast(CGF.CurFn, CharPtrTy); | 
|  | CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg); | 
|  | CGF.EmitBranch(EndBlock); | 
|  |  | 
|  | CGF.EmitBlock(EndBlock); | 
|  | } | 
|  |  | 
|  | /// Creates a function that sets up state on the host side for CUDA objects that | 
|  | /// have a presence on both the host and device sides. Specifically, registers | 
|  | /// the host side of kernel functions and device global variables with the CUDA | 
|  | /// runtime. | 
|  | /// \code | 
|  | /// void __cuda_register_globals(void** GpuBinaryHandle) { | 
|  | ///    __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...); | 
|  | ///    ... | 
|  | ///    __cudaRegisterFunction(GpuBinaryHandle,KernelM,...); | 
|  | ///    __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...); | 
|  | ///    ... | 
|  | ///    __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...); | 
|  | /// } | 
|  | /// \endcode | 
|  | llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() { | 
|  | // No need to register anything | 
|  | if (EmittedKernels.empty() && DeviceVars.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | llvm::Function *RegisterKernelsFunc = llvm::Function::Create( | 
|  | getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage, | 
|  | addUnderscoredPrefixToName("_register_globals"), &TheModule); | 
|  | llvm::BasicBlock *EntryBB = | 
|  | llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc); | 
|  | CGBuilderTy Builder(CGM, Context); | 
|  | Builder.SetInsertPoint(EntryBB); | 
|  |  | 
|  | // void __cudaRegisterFunction(void **, const char *, char *, const char *, | 
|  | //                             int, uint3*, uint3*, dim3*, dim3*, int*) | 
|  | llvm::Type *RegisterFuncParams[] = { | 
|  | VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy, | 
|  | VoidPtrTy,    VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()}; | 
|  | llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction( | 
|  | llvm::FunctionType::get(IntTy, RegisterFuncParams, false), | 
|  | addUnderscoredPrefixToName("RegisterFunction")); | 
|  |  | 
|  | // Extract GpuBinaryHandle passed as the first argument passed to | 
|  | // __cuda_register_globals() and generate __cudaRegisterFunction() call for | 
|  | // each emitted kernel. | 
|  | llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin(); | 
|  | for (auto &&I : EmittedKernels) { | 
|  | llvm::Constant *KernelName = makeConstantString(getDeviceSideName(I.D)); | 
|  | llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy); | 
|  | llvm::Value *Args[] = { | 
|  | &GpuBinaryHandlePtr, | 
|  | Builder.CreateBitCast(I.Kernel, VoidPtrTy), | 
|  | KernelName, | 
|  | KernelName, | 
|  | llvm::ConstantInt::get(IntTy, -1), | 
|  | NullPtr, | 
|  | NullPtr, | 
|  | NullPtr, | 
|  | NullPtr, | 
|  | llvm::ConstantPointerNull::get(IntTy->getPointerTo())}; | 
|  | Builder.CreateCall(RegisterFunc, Args); | 
|  | } | 
|  |  | 
|  | // void __cudaRegisterVar(void **, char *, char *, const char *, | 
|  | //                        int, int, int, int) | 
|  | llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy, | 
|  | CharPtrTy,    IntTy,     IntTy, | 
|  | IntTy,        IntTy}; | 
|  | llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction( | 
|  | llvm::FunctionType::get(IntTy, RegisterVarParams, false), | 
|  | addUnderscoredPrefixToName("RegisterVar")); | 
|  | for (auto &&Info : DeviceVars) { | 
|  | llvm::GlobalVariable *Var = Info.Var; | 
|  | unsigned Flags = Info.Flag; | 
|  | llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D)); | 
|  | uint64_t VarSize = | 
|  | CGM.getDataLayout().getTypeAllocSize(Var->getValueType()); | 
|  | llvm::Value *Args[] = { | 
|  | &GpuBinaryHandlePtr, | 
|  | Builder.CreateBitCast(Var, VoidPtrTy), | 
|  | VarName, | 
|  | VarName, | 
|  | llvm::ConstantInt::get(IntTy, (Flags & ExternDeviceVar) ? 1 : 0), | 
|  | llvm::ConstantInt::get(IntTy, VarSize), | 
|  | llvm::ConstantInt::get(IntTy, (Flags & ConstantDeviceVar) ? 1 : 0), | 
|  | llvm::ConstantInt::get(IntTy, 0)}; | 
|  | Builder.CreateCall(RegisterVar, Args); | 
|  | } | 
|  |  | 
|  | Builder.CreateRetVoid(); | 
|  | return RegisterKernelsFunc; | 
|  | } | 
|  |  | 
|  | /// Creates a global constructor function for the module: | 
|  | /// | 
|  | /// For CUDA: | 
|  | /// \code | 
|  | /// void __cuda_module_ctor(void*) { | 
|  | ///     Handle = __cudaRegisterFatBinary(GpuBinaryBlob); | 
|  | ///     __cuda_register_globals(Handle); | 
|  | /// } | 
|  | /// \endcode | 
|  | /// | 
|  | /// For HIP: | 
|  | /// \code | 
|  | /// void __hip_module_ctor(void*) { | 
|  | ///     if (__hip_gpubin_handle == 0) { | 
|  | ///         __hip_gpubin_handle  = __hipRegisterFatBinary(GpuBinaryBlob); | 
|  | ///         __hip_register_globals(__hip_gpubin_handle); | 
|  | ///     } | 
|  | /// } | 
|  | /// \endcode | 
|  | llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() { | 
|  | bool IsHIP = CGM.getLangOpts().HIP; | 
|  | bool IsCUDA = CGM.getLangOpts().CUDA; | 
|  | // No need to generate ctors/dtors if there is no GPU binary. | 
|  | StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName; | 
|  | if (CudaGpuBinaryFileName.empty() && !IsHIP) | 
|  | return nullptr; | 
|  | if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() && | 
|  | DeviceVars.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | // void __{cuda|hip}_register_globals(void* handle); | 
|  | llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn(); | 
|  | // We always need a function to pass in as callback. Create a dummy | 
|  | // implementation if we don't need to register anything. | 
|  | if (RelocatableDeviceCode && !RegisterGlobalsFunc) | 
|  | RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy()); | 
|  |  | 
|  | // void ** __{cuda|hip}RegisterFatBinary(void *); | 
|  | llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction( | 
|  | llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false), | 
|  | addUnderscoredPrefixToName("RegisterFatBinary")); | 
|  | // struct { int magic, int version, void * gpu_binary, void * dont_care }; | 
|  | llvm::StructType *FatbinWrapperTy = | 
|  | llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy); | 
|  |  | 
|  | // Register GPU binary with the CUDA runtime, store returned handle in a | 
|  | // global variable and save a reference in GpuBinaryHandle to be cleaned up | 
|  | // in destructor on exit. Then associate all known kernels with the GPU binary | 
|  | // handle so CUDA runtime can figure out what to call on the GPU side. | 
|  | std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr; | 
|  | if (!CudaGpuBinaryFileName.empty()) { | 
|  | llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CudaGpuBinaryOrErr = | 
|  | llvm::MemoryBuffer::getFileOrSTDIN(CudaGpuBinaryFileName); | 
|  | if (std::error_code EC = CudaGpuBinaryOrErr.getError()) { | 
|  | CGM.getDiags().Report(diag::err_cannot_open_file) | 
|  | << CudaGpuBinaryFileName << EC.message(); | 
|  | return nullptr; | 
|  | } | 
|  | CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get()); | 
|  | } | 
|  |  | 
|  | llvm::Function *ModuleCtorFunc = llvm::Function::Create( | 
|  | llvm::FunctionType::get(VoidTy, VoidPtrTy, false), | 
|  | llvm::GlobalValue::InternalLinkage, | 
|  | addUnderscoredPrefixToName("_module_ctor"), &TheModule); | 
|  | llvm::BasicBlock *CtorEntryBB = | 
|  | llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc); | 
|  | CGBuilderTy CtorBuilder(CGM, Context); | 
|  |  | 
|  | CtorBuilder.SetInsertPoint(CtorEntryBB); | 
|  |  | 
|  | const char *FatbinConstantName; | 
|  | const char *FatbinSectionName; | 
|  | const char *ModuleIDSectionName; | 
|  | StringRef ModuleIDPrefix; | 
|  | llvm::Constant *FatBinStr; | 
|  | unsigned FatMagic; | 
|  | if (IsHIP) { | 
|  | FatbinConstantName = ".hip_fatbin"; | 
|  | FatbinSectionName = ".hipFatBinSegment"; | 
|  |  | 
|  | ModuleIDSectionName = "__hip_module_id"; | 
|  | ModuleIDPrefix = "__hip_"; | 
|  |  | 
|  | if (CudaGpuBinary) { | 
|  | // If fatbin is available from early finalization, create a string | 
|  | // literal containing the fat binary loaded from the given file. | 
|  | FatBinStr = makeConstantString(CudaGpuBinary->getBuffer(), "", | 
|  | FatbinConstantName, 8); | 
|  | } else { | 
|  | // If fatbin is not available, create an external symbol | 
|  | // __hip_fatbin in section .hip_fatbin. The external symbol is supposed | 
|  | // to contain the fat binary but will be populated somewhere else, | 
|  | // e.g. by lld through link script. | 
|  | FatBinStr = new llvm::GlobalVariable( | 
|  | CGM.getModule(), CGM.Int8Ty, | 
|  | /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr, | 
|  | "__hip_fatbin", nullptr, | 
|  | llvm::GlobalVariable::NotThreadLocal); | 
|  | cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName); | 
|  | } | 
|  |  | 
|  | FatMagic = HIPFatMagic; | 
|  | } else { | 
|  | if (RelocatableDeviceCode) | 
|  | FatbinConstantName = CGM.getTriple().isMacOSX() | 
|  | ? "__NV_CUDA,__nv_relfatbin" | 
|  | : "__nv_relfatbin"; | 
|  | else | 
|  | FatbinConstantName = | 
|  | CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin"; | 
|  | // NVIDIA's cuobjdump looks for fatbins in this section. | 
|  | FatbinSectionName = | 
|  | CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment"; | 
|  |  | 
|  | ModuleIDSectionName = CGM.getTriple().isMacOSX() | 
|  | ? "__NV_CUDA,__nv_module_id" | 
|  | : "__nv_module_id"; | 
|  | ModuleIDPrefix = "__nv_"; | 
|  |  | 
|  | // For CUDA, create a string literal containing the fat binary loaded from | 
|  | // the given file. | 
|  | FatBinStr = makeConstantString(CudaGpuBinary->getBuffer(), "", | 
|  | FatbinConstantName, 8); | 
|  | FatMagic = CudaFatMagic; | 
|  | } | 
|  |  | 
|  | // Create initialized wrapper structure that points to the loaded GPU binary | 
|  | ConstantInitBuilder Builder(CGM); | 
|  | auto Values = Builder.beginStruct(FatbinWrapperTy); | 
|  | // Fatbin wrapper magic. | 
|  | Values.addInt(IntTy, FatMagic); | 
|  | // Fatbin version. | 
|  | Values.addInt(IntTy, 1); | 
|  | // Data. | 
|  | Values.add(FatBinStr); | 
|  | // Unused in fatbin v1. | 
|  | Values.add(llvm::ConstantPointerNull::get(VoidPtrTy)); | 
|  | llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal( | 
|  | addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(), | 
|  | /*constant*/ true); | 
|  | FatbinWrapper->setSection(FatbinSectionName); | 
|  |  | 
|  | // There is only one HIP fat binary per linked module, however there are | 
|  | // multiple constructor functions. Make sure the fat binary is registered | 
|  | // only once. The constructor functions are executed by the dynamic loader | 
|  | // before the program gains control. The dynamic loader cannot execute the | 
|  | // constructor functions concurrently since doing that would not guarantee | 
|  | // thread safety of the loaded program. Therefore we can assume sequential | 
|  | // execution of constructor functions here. | 
|  | if (IsHIP) { | 
|  | auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage : | 
|  | llvm::GlobalValue::LinkOnceAnyLinkage; | 
|  | llvm::BasicBlock *IfBlock = | 
|  | llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc); | 
|  | llvm::BasicBlock *ExitBlock = | 
|  | llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc); | 
|  | // The name, size, and initialization pattern of this variable is part | 
|  | // of HIP ABI. | 
|  | GpuBinaryHandle = new llvm::GlobalVariable( | 
|  | TheModule, VoidPtrPtrTy, /*isConstant=*/false, | 
|  | Linkage, | 
|  | /*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy), | 
|  | "__hip_gpubin_handle"); | 
|  | GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getQuantity()); | 
|  | // Prevent the weak symbol in different shared libraries being merged. | 
|  | if (Linkage != llvm::GlobalValue::InternalLinkage) | 
|  | GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility); | 
|  | Address GpuBinaryAddr( | 
|  | GpuBinaryHandle, | 
|  | CharUnits::fromQuantity(GpuBinaryHandle->getAlignment())); | 
|  | { | 
|  | auto HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr); | 
|  | llvm::Constant *Zero = | 
|  | llvm::Constant::getNullValue(HandleValue->getType()); | 
|  | llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero); | 
|  | CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock); | 
|  | } | 
|  | { | 
|  | CtorBuilder.SetInsertPoint(IfBlock); | 
|  | // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper); | 
|  | llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall( | 
|  | RegisterFatbinFunc, | 
|  | CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy)); | 
|  | CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr); | 
|  | CtorBuilder.CreateBr(ExitBlock); | 
|  | } | 
|  | { | 
|  | CtorBuilder.SetInsertPoint(ExitBlock); | 
|  | // Call __hip_register_globals(GpuBinaryHandle); | 
|  | if (RegisterGlobalsFunc) { | 
|  | auto HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr); | 
|  | CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue); | 
|  | } | 
|  | } | 
|  | } else if (!RelocatableDeviceCode) { | 
|  | // Register binary with CUDA runtime. This is substantially different in | 
|  | // default mode vs. separate compilation! | 
|  | // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper); | 
|  | llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall( | 
|  | RegisterFatbinFunc, | 
|  | CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy)); | 
|  | GpuBinaryHandle = new llvm::GlobalVariable( | 
|  | TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage, | 
|  | llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle"); | 
|  | GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getQuantity()); | 
|  | CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle, | 
|  | CGM.getPointerAlign()); | 
|  |  | 
|  | // Call __cuda_register_globals(GpuBinaryHandle); | 
|  | if (RegisterGlobalsFunc) | 
|  | CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall); | 
|  |  | 
|  | // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it. | 
|  | if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(), | 
|  | CudaFeature::CUDA_USES_FATBIN_REGISTER_END)) { | 
|  | // void __cudaRegisterFatBinaryEnd(void **); | 
|  | llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction( | 
|  | llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false), | 
|  | "__cudaRegisterFatBinaryEnd"); | 
|  | CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall); | 
|  | } | 
|  | } else { | 
|  | // Generate a unique module ID. | 
|  | SmallString<64> ModuleID; | 
|  | llvm::raw_svector_ostream OS(ModuleID); | 
|  | OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID()); | 
|  | llvm::Constant *ModuleIDConstant = | 
|  | makeConstantString(ModuleID.str(), "", ModuleIDSectionName, 32); | 
|  |  | 
|  | // Create an alias for the FatbinWrapper that nvcc will look for. | 
|  | llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage, | 
|  | Twine("__fatbinwrap") + ModuleID, FatbinWrapper); | 
|  |  | 
|  | // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *, | 
|  | // void *, void (*)(void **)) | 
|  | SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary"); | 
|  | RegisterLinkedBinaryName += ModuleID; | 
|  | llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction( | 
|  | getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName); | 
|  |  | 
|  | assert(RegisterGlobalsFunc && "Expecting at least dummy function!"); | 
|  | llvm::Value *Args[] = {RegisterGlobalsFunc, | 
|  | CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy), | 
|  | ModuleIDConstant, | 
|  | makeDummyFunction(getCallbackFnTy())}; | 
|  | CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args); | 
|  | } | 
|  |  | 
|  | // Create destructor and register it with atexit() the way NVCC does it. Doing | 
|  | // it during regular destructor phase worked in CUDA before 9.2 but results in | 
|  | // double-free in 9.2. | 
|  | if (llvm::Function *CleanupFn = makeModuleDtorFunction()) { | 
|  | // extern "C" int atexit(void (*f)(void)); | 
|  | llvm::FunctionType *AtExitTy = | 
|  | llvm::FunctionType::get(IntTy, CleanupFn->getType(), false); | 
|  | llvm::FunctionCallee AtExitFunc = | 
|  | CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(), | 
|  | /*Local=*/true); | 
|  | CtorBuilder.CreateCall(AtExitFunc, CleanupFn); | 
|  | } | 
|  |  | 
|  | CtorBuilder.CreateRetVoid(); | 
|  | return ModuleCtorFunc; | 
|  | } | 
|  |  | 
|  | /// Creates a global destructor function that unregisters the GPU code blob | 
|  | /// registered by constructor. | 
|  | /// | 
|  | /// For CUDA: | 
|  | /// \code | 
|  | /// void __cuda_module_dtor(void*) { | 
|  | ///     __cudaUnregisterFatBinary(Handle); | 
|  | /// } | 
|  | /// \endcode | 
|  | /// | 
|  | /// For HIP: | 
|  | /// \code | 
|  | /// void __hip_module_dtor(void*) { | 
|  | ///     if (__hip_gpubin_handle) { | 
|  | ///         __hipUnregisterFatBinary(__hip_gpubin_handle); | 
|  | ///         __hip_gpubin_handle = 0; | 
|  | ///     } | 
|  | /// } | 
|  | /// \endcode | 
|  | llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() { | 
|  | // No need for destructor if we don't have a handle to unregister. | 
|  | if (!GpuBinaryHandle) | 
|  | return nullptr; | 
|  |  | 
|  | // void __cudaUnregisterFatBinary(void ** handle); | 
|  | llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction( | 
|  | llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false), | 
|  | addUnderscoredPrefixToName("UnregisterFatBinary")); | 
|  |  | 
|  | llvm::Function *ModuleDtorFunc = llvm::Function::Create( | 
|  | llvm::FunctionType::get(VoidTy, VoidPtrTy, false), | 
|  | llvm::GlobalValue::InternalLinkage, | 
|  | addUnderscoredPrefixToName("_module_dtor"), &TheModule); | 
|  |  | 
|  | llvm::BasicBlock *DtorEntryBB = | 
|  | llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc); | 
|  | CGBuilderTy DtorBuilder(CGM, Context); | 
|  | DtorBuilder.SetInsertPoint(DtorEntryBB); | 
|  |  | 
|  | Address GpuBinaryAddr(GpuBinaryHandle, CharUnits::fromQuantity( | 
|  | GpuBinaryHandle->getAlignment())); | 
|  | auto HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr); | 
|  | // There is only one HIP fat binary per linked module, however there are | 
|  | // multiple destructor functions. Make sure the fat binary is unregistered | 
|  | // only once. | 
|  | if (CGM.getLangOpts().HIP) { | 
|  | llvm::BasicBlock *IfBlock = | 
|  | llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc); | 
|  | llvm::BasicBlock *ExitBlock = | 
|  | llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc); | 
|  | llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType()); | 
|  | llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero); | 
|  | DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock); | 
|  |  | 
|  | DtorBuilder.SetInsertPoint(IfBlock); | 
|  | DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue); | 
|  | DtorBuilder.CreateStore(Zero, GpuBinaryAddr); | 
|  | DtorBuilder.CreateBr(ExitBlock); | 
|  |  | 
|  | DtorBuilder.SetInsertPoint(ExitBlock); | 
|  | } else { | 
|  | DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue); | 
|  | } | 
|  | DtorBuilder.CreateRetVoid(); | 
|  | return ModuleDtorFunc; | 
|  | } | 
|  |  | 
|  | std::string CGNVCUDARuntime::getDeviceStubName(llvm::StringRef Name) const { | 
|  | if (!CGM.getLangOpts().HIP) | 
|  | return Name; | 
|  | return (Name + ".stub").str(); | 
|  | } | 
|  |  | 
|  | CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) { | 
|  | return new CGNVCUDARuntime(CGM); | 
|  | } |