|  | //===- LoadValueNumbering.cpp - Load Value #'ing Implementation -*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file was developed by the LLVM research group and is distributed under | 
|  | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements a value numbering pass that value numbers load and call | 
|  | // instructions.  To do this, it finds lexically identical load instructions, | 
|  | // and uses alias analysis to determine which loads are guaranteed to produce | 
|  | // the same value.  To value number call instructions, it looks for calls to | 
|  | // functions that do not write to memory which do not have intervening | 
|  | // instructions that clobber the memory that is read from. | 
|  | // | 
|  | // This pass builds off of another value numbering pass to implement value | 
|  | // numbering for non-load and non-call instructions.  It uses Alias Analysis so | 
|  | // that it can disambiguate the load instructions.  The more powerful these base | 
|  | // analyses are, the more powerful the resultant value numbering will be. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/LoadValueNumbering.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Type.h" | 
|  | #include "llvm/Analysis/ValueNumbering.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/Dominators.h" | 
|  | #include "llvm/Support/CFG.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include <set> | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  | // FIXME: This should not be a FunctionPass. | 
|  | struct LoadVN : public FunctionPass, public ValueNumbering { | 
|  |  | 
|  | /// Pass Implementation stuff.  This doesn't do any analysis. | 
|  | /// | 
|  | bool runOnFunction(Function &) { return false; } | 
|  |  | 
|  | /// getAnalysisUsage - Does not modify anything.  It uses Value Numbering | 
|  | /// and Alias Analysis. | 
|  | /// | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const; | 
|  |  | 
|  | /// getEqualNumberNodes - Return nodes with the same value number as the | 
|  | /// specified Value.  This fills in the argument vector with any equal | 
|  | /// values. | 
|  | /// | 
|  | virtual void getEqualNumberNodes(Value *V1, | 
|  | std::vector<Value*> &RetVals) const; | 
|  |  | 
|  | /// deleteValue - This method should be called whenever an LLVM Value is | 
|  | /// deleted from the program, for example when an instruction is found to be | 
|  | /// redundant and is eliminated. | 
|  | /// | 
|  | virtual void deleteValue(Value *V) { | 
|  | getAnalysis<AliasAnalysis>().deleteValue(V); | 
|  | } | 
|  |  | 
|  | /// copyValue - This method should be used whenever a preexisting value in | 
|  | /// the program is copied or cloned, introducing a new value.  Note that | 
|  | /// analysis implementations should tolerate clients that use this method to | 
|  | /// introduce the same value multiple times: if the analysis already knows | 
|  | /// about a value, it should ignore the request. | 
|  | /// | 
|  | virtual void copyValue(Value *From, Value *To) { | 
|  | getAnalysis<AliasAnalysis>().copyValue(From, To); | 
|  | } | 
|  |  | 
|  | /// getCallEqualNumberNodes - Given a call instruction, find other calls | 
|  | /// that have the same value number. | 
|  | void getCallEqualNumberNodes(CallInst *CI, | 
|  | std::vector<Value*> &RetVals) const; | 
|  | }; | 
|  |  | 
|  | // Register this pass... | 
|  | RegisterOpt<LoadVN> X("load-vn", "Load Value Numbering"); | 
|  |  | 
|  | // Declare that we implement the ValueNumbering interface | 
|  | RegisterAnalysisGroup<ValueNumbering, LoadVN> Y; | 
|  | } | 
|  |  | 
|  | FunctionPass *llvm::createLoadValueNumberingPass() { return new LoadVN(); } | 
|  |  | 
|  |  | 
|  | /// getAnalysisUsage - Does not modify anything.  It uses Value Numbering and | 
|  | /// Alias Analysis. | 
|  | /// | 
|  | void LoadVN::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesAll(); | 
|  | AU.addRequired<AliasAnalysis>(); | 
|  | AU.addRequired<ValueNumbering>(); | 
|  | AU.addRequired<DominatorSet>(); | 
|  | AU.addRequired<TargetData>(); | 
|  | } | 
|  |  | 
|  | static bool isPathTransparentTo(BasicBlock *CurBlock, BasicBlock *Dom, | 
|  | Value *Ptr, unsigned Size, AliasAnalysis &AA, | 
|  | std::set<BasicBlock*> &Visited, | 
|  | std::map<BasicBlock*, bool> &TransparentBlocks){ | 
|  | // If we have already checked out this path, or if we reached our destination, | 
|  | // stop searching, returning success. | 
|  | if (CurBlock == Dom || !Visited.insert(CurBlock).second) | 
|  | return true; | 
|  |  | 
|  | // Check whether this block is known transparent or not. | 
|  | std::map<BasicBlock*, bool>::iterator TBI = | 
|  | TransparentBlocks.lower_bound(CurBlock); | 
|  |  | 
|  | if (TBI == TransparentBlocks.end() || TBI->first != CurBlock) { | 
|  | // If this basic block can modify the memory location, then the path is not | 
|  | // transparent! | 
|  | if (AA.canBasicBlockModify(*CurBlock, Ptr, Size)) { | 
|  | TransparentBlocks.insert(TBI, std::make_pair(CurBlock, false)); | 
|  | return false; | 
|  | } | 
|  | TransparentBlocks.insert(TBI, std::make_pair(CurBlock, true)); | 
|  | } else if (!TBI->second) | 
|  | // This block is known non-transparent, so that path can't be either. | 
|  | return false; | 
|  |  | 
|  | // The current block is known to be transparent.  The entire path is | 
|  | // transparent if all of the predecessors paths to the parent is also | 
|  | // transparent to the memory location. | 
|  | for (pred_iterator PI = pred_begin(CurBlock), E = pred_end(CurBlock); | 
|  | PI != E; ++PI) | 
|  | if (!isPathTransparentTo(*PI, Dom, Ptr, Size, AA, Visited, | 
|  | TransparentBlocks)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// getCallEqualNumberNodes - Given a call instruction, find other calls that | 
|  | /// have the same value number. | 
|  | void LoadVN::getCallEqualNumberNodes(CallInst *CI, | 
|  | std::vector<Value*> &RetVals) const { | 
|  | Function *CF = CI->getCalledFunction(); | 
|  | if (CF == 0) return;  // Indirect call. | 
|  | AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); | 
|  | AliasAnalysis::ModRefBehavior MRB = AA.getModRefBehavior(CF, CI); | 
|  | if (MRB != AliasAnalysis::DoesNotAccessMemory && | 
|  | MRB != AliasAnalysis::OnlyReadsMemory) | 
|  | return;  // Nothing we can do for now. | 
|  |  | 
|  | // Scan all of the arguments of the function, looking for one that is not | 
|  | // global.  In particular, we would prefer to have an argument or instruction | 
|  | // operand to chase the def-use chains of. | 
|  | Value *Op = CF; | 
|  | for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i) | 
|  | if (isa<Argument>(CI->getOperand(i)) || | 
|  | isa<Instruction>(CI->getOperand(i))) { | 
|  | Op = CI->getOperand(i); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Identify all lexically identical calls in this function. | 
|  | std::vector<CallInst*> IdenticalCalls; | 
|  |  | 
|  | Function *CIFunc = CI->getParent()->getParent(); | 
|  | for (Value::use_iterator UI = Op->use_begin(), E = Op->use_end(); UI != E; | 
|  | ++UI) | 
|  | if (CallInst *C = dyn_cast<CallInst>(*UI)) | 
|  | if (C->getNumOperands() == CI->getNumOperands() && | 
|  | C->getOperand(0) == CI->getOperand(0) && | 
|  | C->getParent()->getParent() == CIFunc && C != CI) { | 
|  | bool AllOperandsEqual = true; | 
|  | for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i) | 
|  | if (C->getOperand(i) != CI->getOperand(i)) { | 
|  | AllOperandsEqual = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (AllOperandsEqual) | 
|  | IdenticalCalls.push_back(C); | 
|  | } | 
|  |  | 
|  | if (IdenticalCalls.empty()) return; | 
|  |  | 
|  | // Eliminate duplicates, which could occur if we chose a value that is passed | 
|  | // into a call site multiple times. | 
|  | std::sort(IdenticalCalls.begin(), IdenticalCalls.end()); | 
|  | IdenticalCalls.erase(std::unique(IdenticalCalls.begin(),IdenticalCalls.end()), | 
|  | IdenticalCalls.end()); | 
|  |  | 
|  | // If the call reads memory, we must make sure that there are no stores | 
|  | // between the calls in question. | 
|  | // | 
|  | // FIXME: This should use mod/ref information.  What we really care about it | 
|  | // whether an intervening instruction could modify memory that is read, not | 
|  | // ANY memory. | 
|  | // | 
|  | if (MRB == AliasAnalysis::OnlyReadsMemory) { | 
|  | DominatorSet &DomSetInfo = getAnalysis<DominatorSet>(); | 
|  | BasicBlock *CIBB = CI->getParent(); | 
|  | for (unsigned i = 0; i != IdenticalCalls.size(); ++i) { | 
|  | CallInst *C = IdenticalCalls[i]; | 
|  | bool CantEqual = false; | 
|  |  | 
|  | if (DomSetInfo.dominates(CIBB, C->getParent())) { | 
|  | // FIXME: we currently only handle the case where both calls are in the | 
|  | // same basic block. | 
|  | if (CIBB != C->getParent()) { | 
|  | CantEqual = true; | 
|  | } else { | 
|  | Instruction *First = CI, *Second = C; | 
|  | if (!DomSetInfo.dominates(CI, C)) | 
|  | std::swap(First, Second); | 
|  |  | 
|  | // Scan the instructions between the calls, checking for stores or | 
|  | // calls to dangerous functions. | 
|  | BasicBlock::iterator I = First; | 
|  | for (++First; I != BasicBlock::iterator(Second); ++I) { | 
|  | if (isa<StoreInst>(I)) { | 
|  | // FIXME: We could use mod/ref information to make this much | 
|  | // better! | 
|  | CantEqual = true; | 
|  | break; | 
|  | } else if (CallInst *CI = dyn_cast<CallInst>(I)) { | 
|  | if (CI->getCalledFunction() == 0 || | 
|  | !AA.onlyReadsMemory(CI->getCalledFunction())) { | 
|  | CantEqual = true; | 
|  | break; | 
|  | } | 
|  | } else if (I->mayWriteToMemory()) { | 
|  | CantEqual = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | } else if (DomSetInfo.dominates(C->getParent(), CIBB)) { | 
|  | // FIXME: We could implement this, but we don't for now. | 
|  | CantEqual = true; | 
|  | } else { | 
|  | // FIXME: if one doesn't dominate the other, we can't tell yet. | 
|  | CantEqual = true; | 
|  | } | 
|  |  | 
|  |  | 
|  | if (CantEqual) { | 
|  | // This call does not produce the same value as the one in the query. | 
|  | std::swap(IdenticalCalls[i--], IdenticalCalls.back()); | 
|  | IdenticalCalls.pop_back(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Any calls that are identical and not destroyed will produce equal values! | 
|  | for (unsigned i = 0, e = IdenticalCalls.size(); i != e; ++i) | 
|  | RetVals.push_back(IdenticalCalls[i]); | 
|  | } | 
|  |  | 
|  | // getEqualNumberNodes - Return nodes with the same value number as the | 
|  | // specified Value.  This fills in the argument vector with any equal values. | 
|  | // | 
|  | void LoadVN::getEqualNumberNodes(Value *V, | 
|  | std::vector<Value*> &RetVals) const { | 
|  | // If the alias analysis has any must alias information to share with us, we | 
|  | // can definitely use it. | 
|  | if (isa<PointerType>(V->getType())) | 
|  | getAnalysis<AliasAnalysis>().getMustAliases(V, RetVals); | 
|  |  | 
|  | if (!isa<LoadInst>(V)) { | 
|  | if (CallInst *CI = dyn_cast<CallInst>(V)) | 
|  | getCallEqualNumberNodes(CI, RetVals); | 
|  |  | 
|  | // Not a load instruction?  Just chain to the base value numbering | 
|  | // implementation to satisfy the request... | 
|  | assert(&getAnalysis<ValueNumbering>() != (ValueNumbering*)this && | 
|  | "getAnalysis() returned this!"); | 
|  |  | 
|  | return getAnalysis<ValueNumbering>().getEqualNumberNodes(V, RetVals); | 
|  | } | 
|  |  | 
|  | // Volatile loads cannot be replaced with the value of other loads. | 
|  | LoadInst *LI = cast<LoadInst>(V); | 
|  | if (LI->isVolatile()) | 
|  | return getAnalysis<ValueNumbering>().getEqualNumberNodes(V, RetVals); | 
|  |  | 
|  | Value *LoadPtr = LI->getOperand(0); | 
|  | BasicBlock *LoadBB = LI->getParent(); | 
|  | Function *F = LoadBB->getParent(); | 
|  |  | 
|  | // Find out how many bytes of memory are loaded by the load instruction... | 
|  | unsigned LoadSize = getAnalysis<TargetData>().getTypeSize(LI->getType()); | 
|  | AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); | 
|  |  | 
|  | // Figure out if the load is invalidated from the entry of the block it is in | 
|  | // until the actual instruction.  This scans the block backwards from LI.  If | 
|  | // we see any candidate load or store instructions, then we know that the | 
|  | // candidates have the same value # as LI. | 
|  | bool LoadInvalidatedInBBBefore = false; | 
|  | for (BasicBlock::iterator I = LI; I != LoadBB->begin(); ) { | 
|  | --I; | 
|  | if (I == LoadPtr) { | 
|  | // If we run into an allocation of the value being loaded, then the | 
|  | // contents are not initialized. | 
|  | if (isa<AllocationInst>(I)) | 
|  | RetVals.push_back(UndefValue::get(LI->getType())); | 
|  |  | 
|  | // Otherwise, since this is the definition of what we are loading, this | 
|  | // loaded value cannot occur before this block. | 
|  | LoadInvalidatedInBBBefore = true; | 
|  | break; | 
|  | } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) { | 
|  | // If this instruction is a candidate load before LI, we know there are no | 
|  | // invalidating instructions between it and LI, so they have the same | 
|  | // value number. | 
|  | if (LI->getOperand(0) == LoadPtr && !LI->isVolatile()) | 
|  | RetVals.push_back(I); | 
|  | } | 
|  |  | 
|  | if (AA.getModRefInfo(I, LoadPtr, LoadSize) & AliasAnalysis::Mod) { | 
|  | // If the invalidating instruction is a store, and its in our candidate | 
|  | // set, then we can do store-load forwarding: the load has the same value | 
|  | // # as the stored value. | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(I)) | 
|  | if (SI->getOperand(1) == LoadPtr) | 
|  | RetVals.push_back(I->getOperand(0)); | 
|  |  | 
|  | LoadInvalidatedInBBBefore = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Figure out if the load is invalidated between the load and the exit of the | 
|  | // block it is defined in.  While we are scanning the current basic block, if | 
|  | // we see any candidate loads, then we know they have the same value # as LI. | 
|  | // | 
|  | bool LoadInvalidatedInBBAfter = false; | 
|  | for (BasicBlock::iterator I = LI->getNext(); I != LoadBB->end(); ++I) { | 
|  | // If this instruction is a load, then this instruction returns the same | 
|  | // value as LI. | 
|  | if (isa<LoadInst>(I) && cast<LoadInst>(I)->getOperand(0) == LoadPtr) | 
|  | RetVals.push_back(I); | 
|  |  | 
|  | if (AA.getModRefInfo(I, LoadPtr, LoadSize) & AliasAnalysis::Mod) { | 
|  | LoadInvalidatedInBBAfter = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the pointer is clobbered on entry and on exit to the function, there is | 
|  | // no need to do any global analysis at all. | 
|  | if (LoadInvalidatedInBBBefore && LoadInvalidatedInBBAfter) | 
|  | return; | 
|  |  | 
|  | // Now that we know the value is not neccesarily killed on entry or exit to | 
|  | // the BB, find out how many load and store instructions (to this location) | 
|  | // live in each BB in the function. | 
|  | // | 
|  | std::map<BasicBlock*, unsigned>  CandidateLoads; | 
|  | std::set<BasicBlock*> CandidateStores; | 
|  |  | 
|  | for (Value::use_iterator UI = LoadPtr->use_begin(), UE = LoadPtr->use_end(); | 
|  | UI != UE; ++UI) | 
|  | if (LoadInst *Cand = dyn_cast<LoadInst>(*UI)) {// Is a load of source? | 
|  | if (Cand->getParent()->getParent() == F &&   // In the same function? | 
|  | // Not in LI's block? | 
|  | Cand->getParent() != LoadBB && !Cand->isVolatile()) | 
|  | ++CandidateLoads[Cand->getParent()];       // Got one. | 
|  | } else if (StoreInst *Cand = dyn_cast<StoreInst>(*UI)) { | 
|  | if (Cand->getParent()->getParent() == F && !Cand->isVolatile() && | 
|  | Cand->getOperand(1) == LoadPtr) // It's a store THROUGH the ptr. | 
|  | CandidateStores.insert(Cand->getParent()); | 
|  | } | 
|  |  | 
|  | // Get dominators. | 
|  | DominatorSet &DomSetInfo = getAnalysis<DominatorSet>(); | 
|  |  | 
|  | // TransparentBlocks - For each basic block the load/store is alive across, | 
|  | // figure out if the pointer is invalidated or not.  If it is invalidated, the | 
|  | // boolean is set to false, if it's not it is set to true.  If we don't know | 
|  | // yet, the entry is not in the map. | 
|  | std::map<BasicBlock*, bool> TransparentBlocks; | 
|  |  | 
|  | // Loop over all of the basic blocks that also load the value.  If the value | 
|  | // is live across the CFG from the source to destination blocks, and if the | 
|  | // value is not invalidated in either the source or destination blocks, add it | 
|  | // to the equivalence sets. | 
|  | for (std::map<BasicBlock*, unsigned>::iterator | 
|  | I = CandidateLoads.begin(), E = CandidateLoads.end(); I != E; ++I) { | 
|  | bool CantEqual = false; | 
|  |  | 
|  | // Right now we only can handle cases where one load dominates the other. | 
|  | // FIXME: generalize this! | 
|  | BasicBlock *BB1 = I->first, *BB2 = LoadBB; | 
|  | if (DomSetInfo.dominates(BB1, BB2)) { | 
|  | // The other load dominates LI.  If the loaded value is killed entering | 
|  | // the LoadBB block, we know the load is not live. | 
|  | if (LoadInvalidatedInBBBefore) | 
|  | CantEqual = true; | 
|  | } else if (DomSetInfo.dominates(BB2, BB1)) { | 
|  | std::swap(BB1, BB2);          // Canonicalize | 
|  | // LI dominates the other load.  If the loaded value is killed exiting | 
|  | // the LoadBB block, we know the load is not live. | 
|  | if (LoadInvalidatedInBBAfter) | 
|  | CantEqual = true; | 
|  | } else { | 
|  | // None of these loads can VN the same. | 
|  | CantEqual = true; | 
|  | } | 
|  |  | 
|  | if (!CantEqual) { | 
|  | // Ok, at this point, we know that BB1 dominates BB2, and that there is | 
|  | // nothing in the LI block that kills the loaded value.  Check to see if | 
|  | // the value is live across the CFG. | 
|  | std::set<BasicBlock*> Visited; | 
|  | for (pred_iterator PI = pred_begin(BB2), E = pred_end(BB2); PI!=E; ++PI) | 
|  | if (!isPathTransparentTo(*PI, BB1, LoadPtr, LoadSize, AA, | 
|  | Visited, TransparentBlocks)) { | 
|  | // None of these loads can VN the same. | 
|  | CantEqual = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the loads can equal so far, scan the basic block that contains the | 
|  | // loads under consideration to see if they are invalidated in the block. | 
|  | // For any loads that are not invalidated, add them to the equivalence | 
|  | // set! | 
|  | if (!CantEqual) { | 
|  | unsigned NumLoads = I->second; | 
|  | if (BB1 == LoadBB) { | 
|  | // If LI dominates the block in question, check to see if any of the | 
|  | // loads in this block are invalidated before they are reached. | 
|  | for (BasicBlock::iterator BBI = I->first->begin(); ; ++BBI) { | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { | 
|  | if (LI->getOperand(0) == LoadPtr && !LI->isVolatile()) { | 
|  | // The load is in the set! | 
|  | RetVals.push_back(BBI); | 
|  | if (--NumLoads == 0) break;  // Found last load to check. | 
|  | } | 
|  | } else if (AA.getModRefInfo(BBI, LoadPtr, LoadSize) | 
|  | & AliasAnalysis::Mod) { | 
|  | // If there is a modifying instruction, nothing below it will value | 
|  | // # the same. | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // If the block dominates LI, make sure that the loads in the block are | 
|  | // not invalidated before the block ends. | 
|  | BasicBlock::iterator BBI = I->first->end(); | 
|  | while (1) { | 
|  | --BBI; | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { | 
|  | if (LI->getOperand(0) == LoadPtr && !LI->isVolatile()) { | 
|  | // The load is the same as this load! | 
|  | RetVals.push_back(BBI); | 
|  | if (--NumLoads == 0) break;  // Found all of the laods. | 
|  | } | 
|  | } else if (AA.getModRefInfo(BBI, LoadPtr, LoadSize) | 
|  | & AliasAnalysis::Mod) { | 
|  | // If there is a modifying instruction, nothing above it will value | 
|  | // # the same. | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle candidate stores.  If the loaded location is clobbered on entrance | 
|  | // to the LoadBB, no store outside of the LoadBB can value number equal, so | 
|  | // quick exit. | 
|  | if (LoadInvalidatedInBBBefore) | 
|  | return; | 
|  |  | 
|  | // Stores in the load-bb are handled above. | 
|  | CandidateStores.erase(LoadBB); | 
|  |  | 
|  | for (std::set<BasicBlock*>::iterator I = CandidateStores.begin(), | 
|  | E = CandidateStores.end(); I != E; ++I) | 
|  | if (DomSetInfo.dominates(*I, LoadBB)) { | 
|  | BasicBlock *StoreBB = *I; | 
|  |  | 
|  | // Check to see if the path from the store to the load is transparent | 
|  | // w.r.t. the memory location. | 
|  | bool CantEqual = false; | 
|  | std::set<BasicBlock*> Visited; | 
|  | for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); | 
|  | PI != E; ++PI) | 
|  | if (!isPathTransparentTo(*PI, StoreBB, LoadPtr, LoadSize, AA, | 
|  | Visited, TransparentBlocks)) { | 
|  | // None of these stores can VN the same. | 
|  | CantEqual = true; | 
|  | break; | 
|  | } | 
|  | Visited.clear(); | 
|  | if (!CantEqual) { | 
|  | // Okay, the path from the store block to the load block is clear, and | 
|  | // we know that there are no invalidating instructions from the start | 
|  | // of the load block to the load itself.  Now we just scan the store | 
|  | // block. | 
|  |  | 
|  | BasicBlock::iterator BBI = StoreBB->end(); | 
|  | while (1) { | 
|  | assert(BBI != StoreBB->begin() && | 
|  | "There is a store in this block of the pointer, but the store" | 
|  | " doesn't mod the address being stored to??  Must be a bug in" | 
|  | " the alias analysis implementation!"); | 
|  | --BBI; | 
|  | if (AA.getModRefInfo(BBI, LoadPtr, LoadSize) & AliasAnalysis::Mod) { | 
|  | // If the invalidating instruction is one of the candidates, | 
|  | // then it provides the value the load loads. | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) | 
|  | if (SI->getOperand(1) == LoadPtr) | 
|  | RetVals.push_back(SI->getOperand(0)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } |