|  | //===----- lib/fp_add_impl.inc - floaing point addition -----------*- C -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is dual licensed under the MIT and the University of Illinois Open | 
|  | // Source Licenses. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements soft-float addition with the IEEE-754 default rounding | 
|  | // (to nearest, ties to even). | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "fp_lib.h" | 
|  |  | 
|  | static __inline fp_t __addXf3__(fp_t a, fp_t b) { | 
|  | rep_t aRep = toRep(a); | 
|  | rep_t bRep = toRep(b); | 
|  | const rep_t aAbs = aRep & absMask; | 
|  | const rep_t bAbs = bRep & absMask; | 
|  |  | 
|  | // Detect if a or b is zero, infinity, or NaN. | 
|  | if (aAbs - REP_C(1) >= infRep - REP_C(1) || | 
|  | bAbs - REP_C(1) >= infRep - REP_C(1)) { | 
|  | // NaN + anything = qNaN | 
|  | if (aAbs > infRep) return fromRep(toRep(a) | quietBit); | 
|  | // anything + NaN = qNaN | 
|  | if (bAbs > infRep) return fromRep(toRep(b) | quietBit); | 
|  |  | 
|  | if (aAbs == infRep) { | 
|  | // +/-infinity + -/+infinity = qNaN | 
|  | if ((toRep(a) ^ toRep(b)) == signBit) return fromRep(qnanRep); | 
|  | // +/-infinity + anything remaining = +/- infinity | 
|  | else return a; | 
|  | } | 
|  |  | 
|  | // anything remaining + +/-infinity = +/-infinity | 
|  | if (bAbs == infRep) return b; | 
|  |  | 
|  | // zero + anything = anything | 
|  | if (!aAbs) { | 
|  | // but we need to get the sign right for zero + zero | 
|  | if (!bAbs) return fromRep(toRep(a) & toRep(b)); | 
|  | else return b; | 
|  | } | 
|  |  | 
|  | // anything + zero = anything | 
|  | if (!bAbs) return a; | 
|  | } | 
|  |  | 
|  | // Swap a and b if necessary so that a has the larger absolute value. | 
|  | if (bAbs > aAbs) { | 
|  | const rep_t temp = aRep; | 
|  | aRep = bRep; | 
|  | bRep = temp; | 
|  | } | 
|  |  | 
|  | // Extract the exponent and significand from the (possibly swapped) a and b. | 
|  | int aExponent = aRep >> significandBits & maxExponent; | 
|  | int bExponent = bRep >> significandBits & maxExponent; | 
|  | rep_t aSignificand = aRep & significandMask; | 
|  | rep_t bSignificand = bRep & significandMask; | 
|  |  | 
|  | // Normalize any denormals, and adjust the exponent accordingly. | 
|  | if (aExponent == 0) aExponent = normalize(&aSignificand); | 
|  | if (bExponent == 0) bExponent = normalize(&bSignificand); | 
|  |  | 
|  | // The sign of the result is the sign of the larger operand, a.  If they | 
|  | // have opposite signs, we are performing a subtraction; otherwise addition. | 
|  | const rep_t resultSign = aRep & signBit; | 
|  | const bool subtraction = (aRep ^ bRep) & signBit; | 
|  |  | 
|  | // Shift the significands to give us round, guard and sticky, and or in the | 
|  | // implicit significand bit.  (If we fell through from the denormal path it | 
|  | // was already set by normalize( ), but setting it twice won't hurt | 
|  | // anything.) | 
|  | aSignificand = (aSignificand | implicitBit) << 3; | 
|  | bSignificand = (bSignificand | implicitBit) << 3; | 
|  |  | 
|  | // Shift the significand of b by the difference in exponents, with a sticky | 
|  | // bottom bit to get rounding correct. | 
|  | const unsigned int align = aExponent - bExponent; | 
|  | if (align) { | 
|  | if (align < typeWidth) { | 
|  | const bool sticky = bSignificand << (typeWidth - align); | 
|  | bSignificand = bSignificand >> align | sticky; | 
|  | } else { | 
|  | bSignificand = 1; // sticky; b is known to be non-zero. | 
|  | } | 
|  | } | 
|  | if (subtraction) { | 
|  | aSignificand -= bSignificand; | 
|  | // If a == -b, return +zero. | 
|  | if (aSignificand == 0) return fromRep(0); | 
|  |  | 
|  | // If partial cancellation occured, we need to left-shift the result | 
|  | // and adjust the exponent: | 
|  | if (aSignificand < implicitBit << 3) { | 
|  | const int shift = rep_clz(aSignificand) - rep_clz(implicitBit << 3); | 
|  | aSignificand <<= shift; | 
|  | aExponent -= shift; | 
|  | } | 
|  | } | 
|  | else /* addition */ { | 
|  | aSignificand += bSignificand; | 
|  |  | 
|  | // If the addition carried up, we need to right-shift the result and | 
|  | // adjust the exponent: | 
|  | if (aSignificand & implicitBit << 4) { | 
|  | const bool sticky = aSignificand & 1; | 
|  | aSignificand = aSignificand >> 1 | sticky; | 
|  | aExponent += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have overflowed the type, return +/- infinity: | 
|  | if (aExponent >= maxExponent) return fromRep(infRep | resultSign); | 
|  |  | 
|  | if (aExponent <= 0) { | 
|  | // Result is denormal before rounding; the exponent is zero and we | 
|  | // need to shift the significand. | 
|  | const int shift = 1 - aExponent; | 
|  | const bool sticky = aSignificand << (typeWidth - shift); | 
|  | aSignificand = aSignificand >> shift | sticky; | 
|  | aExponent = 0; | 
|  | } | 
|  |  | 
|  | // Low three bits are round, guard, and sticky. | 
|  | const int roundGuardSticky = aSignificand & 0x7; | 
|  |  | 
|  | // Shift the significand into place, and mask off the implicit bit. | 
|  | rep_t result = aSignificand >> 3 & significandMask; | 
|  |  | 
|  | // Insert the exponent and sign. | 
|  | result |= (rep_t)aExponent << significandBits; | 
|  | result |= resultSign; | 
|  |  | 
|  | // Final rounding.  The result may overflow to infinity, but that is the | 
|  | // correct result in that case. | 
|  | if (roundGuardSticky > 0x4) result++; | 
|  | if (roundGuardSticky == 0x4) result += result & 1; | 
|  | return fromRep(result); | 
|  | } |