|  | //===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Run a sanity check on the IR to ensure that Safepoints - if they've been | 
|  | // inserted - were inserted correctly.  In particular, look for use of | 
|  | // non-relocated values after a safepoint.  It's primary use is to check the | 
|  | // correctness of safepoint insertion immediately after insertion, but it can | 
|  | // also be used to verify that later transforms have not found a way to break | 
|  | // safepoint semenatics. | 
|  | // | 
|  | // In its current form, this verify checks a property which is sufficient, but | 
|  | // not neccessary for correctness.  There are some cases where an unrelocated | 
|  | // pointer can be used after the safepoint.  Consider this example: | 
|  | // | 
|  | //    a = ... | 
|  | //    b = ... | 
|  | //    (a',b') = safepoint(a,b) | 
|  | //    c = cmp eq a b | 
|  | //    br c, ..., .... | 
|  | // | 
|  | // Because it is valid to reorder 'c' above the safepoint, this is legal.  In | 
|  | // practice, this is a somewhat uncommon transform, but CodeGenPrep does create | 
|  | // idioms like this.  The verifier knows about these cases and avoids reporting | 
|  | // false positives. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/PostOrderIterator.h" | 
|  | #include "llvm/ADT/SetOperations.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/IR/SafepointIRVerifier.h" | 
|  | #include "llvm/IR/Statepoint.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  |  | 
|  | #define DEBUG_TYPE "safepoint-ir-verifier" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | /// This option is used for writing test cases.  Instead of crashing the program | 
|  | /// when verification fails, report a message to the console (for FileCheck | 
|  | /// usage) and continue execution as if nothing happened. | 
|  | static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only", | 
|  | cl::init(false)); | 
|  |  | 
|  | static void Verify(const Function &F, const DominatorTree &DT); | 
|  |  | 
|  | namespace { | 
|  | struct SafepointIRVerifier : public FunctionPass { | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | DominatorTree DT; | 
|  | SafepointIRVerifier() : FunctionPass(ID) { | 
|  | initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override { | 
|  | DT.recalculate(F); | 
|  | Verify(F, DT); | 
|  | return false; // no modifications | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesAll(); | 
|  | } | 
|  |  | 
|  | StringRef getPassName() const override { return "safepoint verifier"; } | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | void llvm::verifySafepointIR(Function &F) { | 
|  | SafepointIRVerifier pass; | 
|  | pass.runOnFunction(F); | 
|  | } | 
|  |  | 
|  | char SafepointIRVerifier::ID = 0; | 
|  |  | 
|  | FunctionPass *llvm::createSafepointIRVerifierPass() { | 
|  | return new SafepointIRVerifier(); | 
|  | } | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir", | 
|  | "Safepoint IR Verifier", false, true) | 
|  | INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir", | 
|  | "Safepoint IR Verifier", false, true) | 
|  |  | 
|  | static bool isGCPointerType(Type *T) { | 
|  | if (auto *PT = dyn_cast<PointerType>(T)) | 
|  | // For the sake of this example GC, we arbitrarily pick addrspace(1) as our | 
|  | // GC managed heap.  We know that a pointer into this heap needs to be | 
|  | // updated and that no other pointer does. | 
|  | return (1 == PT->getAddressSpace()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool containsGCPtrType(Type *Ty) { | 
|  | if (isGCPointerType(Ty)) | 
|  | return true; | 
|  | if (VectorType *VT = dyn_cast<VectorType>(Ty)) | 
|  | return isGCPointerType(VT->getScalarType()); | 
|  | if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) | 
|  | return containsGCPtrType(AT->getElementType()); | 
|  | if (StructType *ST = dyn_cast<StructType>(Ty)) | 
|  | return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), | 
|  | containsGCPtrType); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Debugging aid -- prints a [Begin, End) range of values. | 
|  | template<typename IteratorTy> | 
|  | static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) { | 
|  | OS << "[ "; | 
|  | while (Begin != End) { | 
|  | OS << **Begin << " "; | 
|  | ++Begin; | 
|  | } | 
|  | OS << "]"; | 
|  | } | 
|  |  | 
|  | /// The verifier algorithm is phrased in terms of availability.  The set of | 
|  | /// values "available" at a given point in the control flow graph is the set of | 
|  | /// correctly relocated value at that point, and is a subset of the set of | 
|  | /// definitions dominating that point. | 
|  |  | 
|  | using AvailableValueSet = DenseSet<const Value *>; | 
|  |  | 
|  | /// State we compute and track per basic block. | 
|  | struct BasicBlockState { | 
|  | // Set of values available coming in, before the phi nodes | 
|  | AvailableValueSet AvailableIn; | 
|  |  | 
|  | // Set of values available going out | 
|  | AvailableValueSet AvailableOut; | 
|  |  | 
|  | // AvailableOut minus AvailableIn. | 
|  | // All elements are Instructions | 
|  | AvailableValueSet Contribution; | 
|  |  | 
|  | // True if this block contains a safepoint and thus AvailableIn does not | 
|  | // contribute to AvailableOut. | 
|  | bool Cleared = false; | 
|  | }; | 
|  |  | 
|  | /// A given derived pointer can have multiple base pointers through phi/selects. | 
|  | /// This type indicates when the base pointer is exclusively constant | 
|  | /// (ExclusivelySomeConstant), and if that constant is proven to be exclusively | 
|  | /// null, we record that as ExclusivelyNull. In all other cases, the BaseType is | 
|  | /// NonConstant. | 
|  | enum BaseType { | 
|  | NonConstant = 1, // Base pointers is not exclusively constant. | 
|  | ExclusivelyNull, | 
|  | ExclusivelySomeConstant // Base pointers for a given derived pointer is from a | 
|  | // set of constants, but they are not exclusively | 
|  | // null. | 
|  | }; | 
|  |  | 
|  | /// Return the baseType for Val which states whether Val is exclusively | 
|  | /// derived from constant/null, or not exclusively derived from constant. | 
|  | /// Val is exclusively derived off a constant base when all operands of phi and | 
|  | /// selects are derived off a constant base. | 
|  | static enum BaseType getBaseType(const Value *Val) { | 
|  |  | 
|  | SmallVector<const Value *, 32> Worklist; | 
|  | DenseSet<const Value *> Visited; | 
|  | bool isExclusivelyDerivedFromNull = true; | 
|  | Worklist.push_back(Val); | 
|  | // Strip through all the bitcasts and geps to get base pointer. Also check for | 
|  | // the exclusive value when there can be multiple base pointers (through phis | 
|  | // or selects). | 
|  | while(!Worklist.empty()) { | 
|  | const Value *V = Worklist.pop_back_val(); | 
|  | if (!Visited.insert(V).second) | 
|  | continue; | 
|  |  | 
|  | if (const auto *CI = dyn_cast<CastInst>(V)) { | 
|  | Worklist.push_back(CI->stripPointerCasts()); | 
|  | continue; | 
|  | } | 
|  | if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) { | 
|  | Worklist.push_back(GEP->getPointerOperand()); | 
|  | continue; | 
|  | } | 
|  | // Push all the incoming values of phi node into the worklist for | 
|  | // processing. | 
|  | if (const auto *PN = dyn_cast<PHINode>(V)) { | 
|  | for (Value *InV: PN->incoming_values()) | 
|  | Worklist.push_back(InV); | 
|  | continue; | 
|  | } | 
|  | if (const auto *SI = dyn_cast<SelectInst>(V)) { | 
|  | // Push in the true and false values | 
|  | Worklist.push_back(SI->getTrueValue()); | 
|  | Worklist.push_back(SI->getFalseValue()); | 
|  | continue; | 
|  | } | 
|  | if (isa<Constant>(V)) { | 
|  | // We found at least one base pointer which is non-null, so this derived | 
|  | // pointer is not exclusively derived from null. | 
|  | if (V != Constant::getNullValue(V->getType())) | 
|  | isExclusivelyDerivedFromNull = false; | 
|  | // Continue processing the remaining values to make sure it's exclusively | 
|  | // constant. | 
|  | continue; | 
|  | } | 
|  | // At this point, we know that the base pointer is not exclusively | 
|  | // constant. | 
|  | return BaseType::NonConstant; | 
|  | } | 
|  | // Now, we know that the base pointer is exclusively constant, but we need to | 
|  | // differentiate between exclusive null constant and non-null constant. | 
|  | return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull | 
|  | : BaseType::ExclusivelySomeConstant; | 
|  | } | 
|  |  | 
|  | static bool isNotExclusivelyConstantDerived(const Value *V) { | 
|  | return getBaseType(V) == BaseType::NonConstant; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class InstructionVerifier; | 
|  |  | 
|  | /// Builds BasicBlockState for each BB of the function. | 
|  | /// It can traverse function for verification and provides all required | 
|  | /// information. | 
|  | /// | 
|  | /// GC pointer may be in one of three states: relocated, unrelocated and | 
|  | /// poisoned. | 
|  | /// Relocated pointer may be used without any restrictions. | 
|  | /// Unrelocated pointer cannot be dereferenced, passed as argument to any call | 
|  | /// or returned. Unrelocated pointer may be safely compared against another | 
|  | /// unrelocated pointer or against a pointer exclusively derived from null. | 
|  | /// Poisoned pointers are produced when we somehow derive pointer from relocated | 
|  | /// and unrelocated pointers (e.g. phi, select). This pointers may be safely | 
|  | /// used in a very limited number of situations. Currently the only way to use | 
|  | /// it is comparison against constant exclusively derived from null. All | 
|  | /// limitations arise due to their undefined state: this pointers should be | 
|  | /// treated as relocated and unrelocated simultaneously. | 
|  | /// Rules of deriving: | 
|  | /// R + U = P - that's where the poisoned pointers come from | 
|  | /// P + X = P | 
|  | /// U + U = U | 
|  | /// R + R = R | 
|  | /// X + C = X | 
|  | /// Where "+" - any operation that somehow derive pointer, U - unrelocated, | 
|  | /// R - relocated and P - poisoned, C - constant, X - U or R or P or C or | 
|  | /// nothing (in case when "+" is unary operation). | 
|  | /// Deriving of pointers by itself is always safe. | 
|  | /// NOTE: when we are making decision on the status of instruction's result: | 
|  | /// a) for phi we need to check status of each input *at the end of | 
|  | ///    corresponding predecessor BB*. | 
|  | /// b) for other instructions we need to check status of each input *at the | 
|  | ///    current point*. | 
|  | /// | 
|  | /// FIXME: This works fairly well except one case | 
|  | ///     bb1: | 
|  | ///     p = *some GC-ptr def* | 
|  | ///     p1 = gep p, offset | 
|  | ///         /     | | 
|  | ///        /      | | 
|  | ///    bb2:       | | 
|  | ///    safepoint  | | 
|  | ///        \      | | 
|  | ///         \     | | 
|  | ///      bb3: | 
|  | ///      p2 = phi [p, bb2] [p1, bb1] | 
|  | ///      p3 = phi [p, bb2] [p, bb1] | 
|  | ///      here p and p1 is unrelocated | 
|  | ///           p2 and p3 is poisoned (though they shouldn't be) | 
|  | /// | 
|  | /// This leads to some weird results: | 
|  | ///      cmp eq p, p2 - illegal instruction (false-positive) | 
|  | ///      cmp eq p1, p2 - illegal instruction (false-positive) | 
|  | ///      cmp eq p, p3 - illegal instruction (false-positive) | 
|  | ///      cmp eq p, p1 - ok | 
|  | /// To fix this we need to introduce conception of generations and be able to | 
|  | /// check if two values belong to one generation or not. This way p2 will be | 
|  | /// considered to be unrelocated and no false alarm will happen. | 
|  | class GCPtrTracker { | 
|  | const Function &F; | 
|  | SpecificBumpPtrAllocator<BasicBlockState> BSAllocator; | 
|  | DenseMap<const BasicBlock *, BasicBlockState *> BlockMap; | 
|  | // This set contains defs of unrelocated pointers that are proved to be legal | 
|  | // and don't need verification. | 
|  | DenseSet<const Instruction *> ValidUnrelocatedDefs; | 
|  | // This set contains poisoned defs. They can be safely ignored during | 
|  | // verification too. | 
|  | DenseSet<const Value *> PoisonedDefs; | 
|  |  | 
|  | public: | 
|  | GCPtrTracker(const Function &F, const DominatorTree &DT); | 
|  |  | 
|  | BasicBlockState *getBasicBlockState(const BasicBlock *BB); | 
|  | const BasicBlockState *getBasicBlockState(const BasicBlock *BB) const; | 
|  |  | 
|  | bool isValuePoisoned(const Value *V) const { return PoisonedDefs.count(V); } | 
|  |  | 
|  | /// Traverse each BB of the function and call | 
|  | /// InstructionVerifier::verifyInstruction for each possibly invalid | 
|  | /// instruction. | 
|  | /// It destructively modifies GCPtrTracker so it's passed via rvalue reference | 
|  | /// in order to prohibit further usages of GCPtrTracker as it'll be in | 
|  | /// inconsistent state. | 
|  | static void verifyFunction(GCPtrTracker &&Tracker, | 
|  | InstructionVerifier &Verifier); | 
|  |  | 
|  | /// Returns true for reachable blocks that are verified, the other blocks are | 
|  | /// ignored. | 
|  | bool isMapped(const BasicBlock *BB) const { | 
|  | return BlockMap.find(BB) != BlockMap.end(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// Returns true if the instruction may be safely skipped during verification. | 
|  | bool instructionMayBeSkipped(const Instruction *I) const; | 
|  |  | 
|  | /// Iterates over all BBs from BlockMap and recalculates AvailableIn/Out for | 
|  | /// each of them until it converges. | 
|  | void recalculateBBsStates(); | 
|  |  | 
|  | /// Remove from Contribution all defs that legally produce unrelocated | 
|  | /// pointers and saves them to ValidUnrelocatedDefs. | 
|  | /// Though Contribution should belong to BBS it is passed separately with | 
|  | /// different const-modifier in order to emphasize (and guarantee) that only | 
|  | /// Contribution will be changed. | 
|  | /// Returns true if Contribution was changed otherwise false. | 
|  | bool removeValidUnrelocatedDefs(const BasicBlock *BB, | 
|  | const BasicBlockState *BBS, | 
|  | AvailableValueSet &Contribution); | 
|  |  | 
|  | /// Gather all the definitions dominating the start of BB into Result. This is | 
|  | /// simply the defs introduced by every dominating basic block and the | 
|  | /// function arguments. | 
|  | void gatherDominatingDefs(const BasicBlock *BB, AvailableValueSet &Result, | 
|  | const DominatorTree &DT); | 
|  |  | 
|  | /// Compute the AvailableOut set for BB, based on the BasicBlockState BBS, | 
|  | /// which is the BasicBlockState for BB. | 
|  | /// ContributionChanged is set when the verifier runs for the first time | 
|  | /// (in this case Contribution was changed from 'empty' to its initial state) | 
|  | /// or when Contribution of this BB was changed since last computation. | 
|  | static void transferBlock(const BasicBlock *BB, BasicBlockState &BBS, | 
|  | bool ContributionChanged); | 
|  |  | 
|  | /// Model the effect of an instruction on the set of available values. | 
|  | static void transferInstruction(const Instruction &I, bool &Cleared, | 
|  | AvailableValueSet &Available); | 
|  | }; | 
|  |  | 
|  | /// It is a visitor for GCPtrTracker::verifyFunction. It decides if the | 
|  | /// instruction (which uses heap reference) is legal or not, given our safepoint | 
|  | /// semantics. | 
|  | class InstructionVerifier { | 
|  | bool AnyInvalidUses = false; | 
|  |  | 
|  | public: | 
|  | void verifyInstruction(const GCPtrTracker *Tracker, const Instruction &I, | 
|  | const AvailableValueSet &AvailableSet); | 
|  |  | 
|  | bool hasAnyInvalidUses() const { return AnyInvalidUses; } | 
|  |  | 
|  | private: | 
|  | void reportInvalidUse(const Value &V, const Instruction &I); | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | GCPtrTracker::GCPtrTracker(const Function &F, const DominatorTree &DT) : F(F) { | 
|  | // First, calculate Contribution of each BB. | 
|  | for (const BasicBlock &BB : F) | 
|  | if (DT.isReachableFromEntry(&BB)) { | 
|  | BasicBlockState *BBS = new (BSAllocator.Allocate()) BasicBlockState; | 
|  | for (const auto &I : BB) | 
|  | transferInstruction(I, BBS->Cleared, BBS->Contribution); | 
|  | BlockMap[&BB] = BBS; | 
|  | } | 
|  |  | 
|  | // Initialize AvailableIn/Out sets of each BB using only information about | 
|  | // dominating BBs. | 
|  | for (auto &BBI : BlockMap) { | 
|  | gatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT); | 
|  | transferBlock(BBI.first, *BBI.second, true); | 
|  | } | 
|  |  | 
|  | // Simulate the flow of defs through the CFG and recalculate AvailableIn/Out | 
|  | // sets of each BB until it converges. If any def is proved to be an | 
|  | // unrelocated pointer, it will be removed from all BBSs. | 
|  | recalculateBBsStates(); | 
|  | } | 
|  |  | 
|  | BasicBlockState *GCPtrTracker::getBasicBlockState(const BasicBlock *BB) { | 
|  | auto it = BlockMap.find(BB); | 
|  | assert(it != BlockMap.end() && | 
|  | "No such BB in BlockMap! Probably BB from another function"); | 
|  | return it->second; | 
|  | } | 
|  |  | 
|  | const BasicBlockState *GCPtrTracker::getBasicBlockState( | 
|  | const BasicBlock *BB) const { | 
|  | return const_cast<GCPtrTracker *>(this)->getBasicBlockState(BB); | 
|  | } | 
|  |  | 
|  | bool GCPtrTracker::instructionMayBeSkipped(const Instruction *I) const { | 
|  | // Poisoned defs are skipped since they are always safe by itself by | 
|  | // definition (for details see comment to this class). | 
|  | return ValidUnrelocatedDefs.count(I) || PoisonedDefs.count(I); | 
|  | } | 
|  |  | 
|  | void GCPtrTracker::verifyFunction(GCPtrTracker &&Tracker, | 
|  | InstructionVerifier &Verifier) { | 
|  | // We need RPO here to a) report always the first error b) report errors in | 
|  | // same order from run to run. | 
|  | ReversePostOrderTraversal<const Function *> RPOT(&Tracker.F); | 
|  | for (const BasicBlock *BB : RPOT) { | 
|  | BasicBlockState *BBS = Tracker.getBasicBlockState(BB); | 
|  | // We destructively modify AvailableIn as we traverse the block instruction | 
|  | // by instruction. | 
|  | AvailableValueSet &AvailableSet = BBS->AvailableIn; | 
|  | for (const Instruction &I : *BB) { | 
|  | if (Tracker.instructionMayBeSkipped(&I)) | 
|  | continue; // This instruction shouldn't be added to AvailableSet. | 
|  |  | 
|  | Verifier.verifyInstruction(&Tracker, I, AvailableSet); | 
|  |  | 
|  | // Model the effect of current instruction on AvailableSet to keep the set | 
|  | // relevant at each point of BB. | 
|  | bool Cleared = false; | 
|  | transferInstruction(I, Cleared, AvailableSet); | 
|  | (void)Cleared; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void GCPtrTracker::recalculateBBsStates() { | 
|  | SetVector<const BasicBlock *> Worklist; | 
|  | // TODO: This order is suboptimal, it's better to replace it with priority | 
|  | // queue where priority is RPO number of BB. | 
|  | for (auto &BBI : BlockMap) | 
|  | Worklist.insert(BBI.first); | 
|  |  | 
|  | // This loop iterates the AvailableIn/Out sets until it converges. | 
|  | // The AvailableIn and AvailableOut sets decrease as we iterate. | 
|  | while (!Worklist.empty()) { | 
|  | const BasicBlock *BB = Worklist.pop_back_val(); | 
|  | BasicBlockState *BBS = BlockMap[BB]; | 
|  |  | 
|  | size_t OldInCount = BBS->AvailableIn.size(); | 
|  | for (const BasicBlock *PBB : predecessors(BB)) | 
|  | if (isMapped(PBB)) | 
|  | set_intersect(BBS->AvailableIn, BlockMap[PBB]->AvailableOut); | 
|  |  | 
|  | assert(OldInCount >= BBS->AvailableIn.size() && "invariant!"); | 
|  |  | 
|  | bool InputsChanged = OldInCount != BBS->AvailableIn.size(); | 
|  | bool ContributionChanged = | 
|  | removeValidUnrelocatedDefs(BB, BBS, BBS->Contribution); | 
|  | if (!InputsChanged && !ContributionChanged) | 
|  | continue; | 
|  |  | 
|  | size_t OldOutCount = BBS->AvailableOut.size(); | 
|  | transferBlock(BB, *BBS, ContributionChanged); | 
|  | if (OldOutCount != BBS->AvailableOut.size()) { | 
|  | assert(OldOutCount > BBS->AvailableOut.size() && "invariant!"); | 
|  | Worklist.insert(succ_begin(BB), succ_end(BB)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool GCPtrTracker::removeValidUnrelocatedDefs(const BasicBlock *BB, | 
|  | const BasicBlockState *BBS, | 
|  | AvailableValueSet &Contribution) { | 
|  | assert(&BBS->Contribution == &Contribution && | 
|  | "Passed Contribution should be from the passed BasicBlockState!"); | 
|  | AvailableValueSet AvailableSet = BBS->AvailableIn; | 
|  | bool ContributionChanged = false; | 
|  | // For explanation why instructions are processed this way see | 
|  | // "Rules of deriving" in the comment to this class. | 
|  | for (const Instruction &I : *BB) { | 
|  | bool ValidUnrelocatedPointerDef = false; | 
|  | bool PoisonedPointerDef = false; | 
|  | // TODO: `select` instructions should be handled here too. | 
|  | if (const PHINode *PN = dyn_cast<PHINode>(&I)) { | 
|  | if (containsGCPtrType(PN->getType())) { | 
|  | // If both is true, output is poisoned. | 
|  | bool HasRelocatedInputs = false; | 
|  | bool HasUnrelocatedInputs = false; | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | const BasicBlock *InBB = PN->getIncomingBlock(i); | 
|  | if (!isMapped(InBB)) | 
|  | continue; | 
|  | const Value *InValue = PN->getIncomingValue(i); | 
|  |  | 
|  | if (isNotExclusivelyConstantDerived(InValue)) { | 
|  | if (isValuePoisoned(InValue)) { | 
|  | // If any of inputs is poisoned, output is always poisoned too. | 
|  | HasRelocatedInputs = true; | 
|  | HasUnrelocatedInputs = true; | 
|  | break; | 
|  | } | 
|  | if (BlockMap[InBB]->AvailableOut.count(InValue)) | 
|  | HasRelocatedInputs = true; | 
|  | else | 
|  | HasUnrelocatedInputs = true; | 
|  | } | 
|  | } | 
|  | if (HasUnrelocatedInputs) { | 
|  | if (HasRelocatedInputs) | 
|  | PoisonedPointerDef = true; | 
|  | else | 
|  | ValidUnrelocatedPointerDef = true; | 
|  | } | 
|  | } | 
|  | } else if ((isa<GetElementPtrInst>(I) || isa<BitCastInst>(I)) && | 
|  | containsGCPtrType(I.getType())) { | 
|  | // GEP/bitcast of unrelocated pointer is legal by itself but this def | 
|  | // shouldn't appear in any AvailableSet. | 
|  | for (const Value *V : I.operands()) | 
|  | if (containsGCPtrType(V->getType()) && | 
|  | isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) { | 
|  | if (isValuePoisoned(V)) | 
|  | PoisonedPointerDef = true; | 
|  | else | 
|  | ValidUnrelocatedPointerDef = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | assert(!(ValidUnrelocatedPointerDef && PoisonedPointerDef) && | 
|  | "Value cannot be both unrelocated and poisoned!"); | 
|  | if (ValidUnrelocatedPointerDef) { | 
|  | // Remove def of unrelocated pointer from Contribution of this BB and | 
|  | // trigger update of all its successors. | 
|  | Contribution.erase(&I); | 
|  | PoisonedDefs.erase(&I); | 
|  | ValidUnrelocatedDefs.insert(&I); | 
|  | LLVM_DEBUG(dbgs() << "Removing urelocated " << I | 
|  | << " from Contribution of " << BB->getName() << "\n"); | 
|  | ContributionChanged = true; | 
|  | } else if (PoisonedPointerDef) { | 
|  | // Mark pointer as poisoned, remove its def from Contribution and trigger | 
|  | // update of all successors. | 
|  | Contribution.erase(&I); | 
|  | PoisonedDefs.insert(&I); | 
|  | LLVM_DEBUG(dbgs() << "Removing poisoned " << I << " from Contribution of " | 
|  | << BB->getName() << "\n"); | 
|  | ContributionChanged = true; | 
|  | } else { | 
|  | bool Cleared = false; | 
|  | transferInstruction(I, Cleared, AvailableSet); | 
|  | (void)Cleared; | 
|  | } | 
|  | } | 
|  | return ContributionChanged; | 
|  | } | 
|  |  | 
|  | void GCPtrTracker::gatherDominatingDefs(const BasicBlock *BB, | 
|  | AvailableValueSet &Result, | 
|  | const DominatorTree &DT) { | 
|  | DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)]; | 
|  |  | 
|  | assert(DTN && "Unreachable blocks are ignored"); | 
|  | while (DTN->getIDom()) { | 
|  | DTN = DTN->getIDom(); | 
|  | const auto &Defs = BlockMap[DTN->getBlock()]->Contribution; | 
|  | Result.insert(Defs.begin(), Defs.end()); | 
|  | // If this block is 'Cleared', then nothing LiveIn to this block can be | 
|  | // available after this block completes.  Note: This turns out to be | 
|  | // really important for reducing memory consuption of the initial available | 
|  | // sets and thus peak memory usage by this verifier. | 
|  | if (BlockMap[DTN->getBlock()]->Cleared) | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (const Argument &A : BB->getParent()->args()) | 
|  | if (containsGCPtrType(A.getType())) | 
|  | Result.insert(&A); | 
|  | } | 
|  |  | 
|  | void GCPtrTracker::transferBlock(const BasicBlock *BB, BasicBlockState &BBS, | 
|  | bool ContributionChanged) { | 
|  | const AvailableValueSet &AvailableIn = BBS.AvailableIn; | 
|  | AvailableValueSet &AvailableOut = BBS.AvailableOut; | 
|  |  | 
|  | if (BBS.Cleared) { | 
|  | // AvailableOut will change only when Contribution changed. | 
|  | if (ContributionChanged) | 
|  | AvailableOut = BBS.Contribution; | 
|  | } else { | 
|  | // Otherwise, we need to reduce the AvailableOut set by things which are no | 
|  | // longer in our AvailableIn | 
|  | AvailableValueSet Temp = BBS.Contribution; | 
|  | set_union(Temp, AvailableIn); | 
|  | AvailableOut = std::move(Temp); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Transfered block " << BB->getName() << " from "; | 
|  | PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end()); | 
|  | dbgs() << " to "; | 
|  | PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end()); | 
|  | dbgs() << "\n";); | 
|  | } | 
|  |  | 
|  | void GCPtrTracker::transferInstruction(const Instruction &I, bool &Cleared, | 
|  | AvailableValueSet &Available) { | 
|  | if (isStatepoint(I)) { | 
|  | Cleared = true; | 
|  | Available.clear(); | 
|  | } else if (containsGCPtrType(I.getType())) | 
|  | Available.insert(&I); | 
|  | } | 
|  |  | 
|  | void InstructionVerifier::verifyInstruction( | 
|  | const GCPtrTracker *Tracker, const Instruction &I, | 
|  | const AvailableValueSet &AvailableSet) { | 
|  | if (const PHINode *PN = dyn_cast<PHINode>(&I)) { | 
|  | if (containsGCPtrType(PN->getType())) | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | const BasicBlock *InBB = PN->getIncomingBlock(i); | 
|  | if (!Tracker->isMapped(InBB)) | 
|  | continue; | 
|  | const Value *InValue = PN->getIncomingValue(i); | 
|  |  | 
|  | if (isNotExclusivelyConstantDerived(InValue) && | 
|  | !Tracker->getBasicBlockState(InBB)->AvailableOut.count(InValue)) | 
|  | reportInvalidUse(*InValue, *PN); | 
|  | } | 
|  | } else if (isa<CmpInst>(I) && | 
|  | containsGCPtrType(I.getOperand(0)->getType())) { | 
|  | Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | 
|  | enum BaseType baseTyLHS = getBaseType(LHS), | 
|  | baseTyRHS = getBaseType(RHS); | 
|  |  | 
|  | // Returns true if LHS and RHS are unrelocated pointers and they are | 
|  | // valid unrelocated uses. | 
|  | auto hasValidUnrelocatedUse = [&AvailableSet, Tracker, baseTyLHS, baseTyRHS, | 
|  | &LHS, &RHS] () { | 
|  | // A cmp instruction has valid unrelocated pointer operands only if | 
|  | // both operands are unrelocated pointers. | 
|  | // In the comparison between two pointers, if one is an unrelocated | 
|  | // use, the other *should be* an unrelocated use, for this | 
|  | // instruction to contain valid unrelocated uses. This unrelocated | 
|  | // use can be a null constant as well, or another unrelocated | 
|  | // pointer. | 
|  | if (AvailableSet.count(LHS) || AvailableSet.count(RHS)) | 
|  | return false; | 
|  | // Constant pointers (that are not exclusively null) may have | 
|  | // meaning in different VMs, so we cannot reorder the compare | 
|  | // against constant pointers before the safepoint. In other words, | 
|  | // comparison of an unrelocated use against a non-null constant | 
|  | // maybe invalid. | 
|  | if ((baseTyLHS == BaseType::ExclusivelySomeConstant && | 
|  | baseTyRHS == BaseType::NonConstant) || | 
|  | (baseTyLHS == BaseType::NonConstant && | 
|  | baseTyRHS == BaseType::ExclusivelySomeConstant)) | 
|  | return false; | 
|  |  | 
|  | // If one of pointers is poisoned and other is not exclusively derived | 
|  | // from null it is an invalid expression: it produces poisoned result | 
|  | // and unless we want to track all defs (not only gc pointers) the only | 
|  | // option is to prohibit such instructions. | 
|  | if ((Tracker->isValuePoisoned(LHS) && baseTyRHS != ExclusivelyNull) || | 
|  | (Tracker->isValuePoisoned(RHS) && baseTyLHS != ExclusivelyNull)) | 
|  | return false; | 
|  |  | 
|  | // All other cases are valid cases enumerated below: | 
|  | // 1. Comparison between an exclusively derived null pointer and a | 
|  | // constant base pointer. | 
|  | // 2. Comparison between an exclusively derived null pointer and a | 
|  | // non-constant unrelocated base pointer. | 
|  | // 3. Comparison between 2 unrelocated pointers. | 
|  | // 4. Comparison between a pointer exclusively derived from null and a | 
|  | // non-constant poisoned pointer. | 
|  | return true; | 
|  | }; | 
|  | if (!hasValidUnrelocatedUse()) { | 
|  | // Print out all non-constant derived pointers that are unrelocated | 
|  | // uses, which are invalid. | 
|  | if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS)) | 
|  | reportInvalidUse(*LHS, I); | 
|  | if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS)) | 
|  | reportInvalidUse(*RHS, I); | 
|  | } | 
|  | } else { | 
|  | for (const Value *V : I.operands()) | 
|  | if (containsGCPtrType(V->getType()) && | 
|  | isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) | 
|  | reportInvalidUse(*V, I); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionVerifier::reportInvalidUse(const Value &V, | 
|  | const Instruction &I) { | 
|  | errs() << "Illegal use of unrelocated value found!\n"; | 
|  | errs() << "Def: " << V << "\n"; | 
|  | errs() << "Use: " << I << "\n"; | 
|  | if (!PrintOnly) | 
|  | abort(); | 
|  | AnyInvalidUses = true; | 
|  | } | 
|  |  | 
|  | static void Verify(const Function &F, const DominatorTree &DT) { | 
|  | LLVM_DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName() | 
|  | << "\n"); | 
|  | if (PrintOnly) | 
|  | dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n"; | 
|  |  | 
|  | GCPtrTracker Tracker(F, DT); | 
|  |  | 
|  | // We now have all the information we need to decide if the use of a heap | 
|  | // reference is legal or not, given our safepoint semantics. | 
|  |  | 
|  | InstructionVerifier Verifier; | 
|  | GCPtrTracker::verifyFunction(std::move(Tracker), Verifier); | 
|  |  | 
|  | if (PrintOnly && !Verifier.hasAnyInvalidUses()) { | 
|  | dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName() | 
|  | << "\n"; | 
|  | } | 
|  | } |