blob: f710202ee11d24da239ddf0e80e79b791ce80c0e [file] [log] [blame]
//===- lib/ReaderWriter/ELF/ReaderELF.cpp ---------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Defines the ELF Reader and all helper sub classes to consume an ELF
/// file and produces atoms out of it.
///
//===----------------------------------------------------------------------===//
#include "lld/ReaderWriter/ReaderELF.h"
#include "lld/ReaderWriter/ReaderArchive.h"
#include "lld/Core/File.h"
#include "lld/Core/Reference.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Object/ELF.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/system_error.h"
#include <map>
#include <vector>
using namespace lld;
using llvm::object::Elf_Sym_Impl;
using llvm::support::endianness;
namespace {
/// \brief Relocation References: Defined Atoms may contain references that will
/// need to be patched before the executable is written.
template <endianness target_endianness, bool is64Bits>
class ELFReference final : public Reference {
typedef llvm::object::Elf_Rel_Impl
<target_endianness, is64Bits, false> Elf_Rel;
typedef llvm::object::Elf_Rel_Impl
<target_endianness, is64Bits, true> Elf_Rela;
public:
ELFReference(const Elf_Rela *rela, uint64_t offset, const Atom *target)
: _target(target)
, _targetSymbolIndex(rela->getSymbol())
, _offsetInAtom(offset)
, _addend(rela->r_addend)
, _kind(rela->getType()) {}
ELFReference(const Elf_Rel *rel, uint64_t offset, const Atom *target)
: _target(target)
, _targetSymbolIndex(rel->getSymbol())
, _offsetInAtom(offset)
, _addend(0)
, _kind(rel->getType()) {}
virtual uint64_t offsetInAtom() const {
return _offsetInAtom;
}
virtual Kind kind() const {
return _kind;
}
virtual void setKind(Kind kind) {
_kind = kind;
}
virtual const Atom *target() const {
return _target;
}
/// \brief The symbol table index that contains the target reference.
uint64_t targetSymbolIndex() const {
return _targetSymbolIndex;
}
virtual Addend addend() const {
return _addend;
}
virtual void setAddend(Addend A) {
_addend = A;
}
virtual void setTarget(const Atom *newAtom) {
_target = newAtom;
}
private:
const Atom *_target;
uint64_t _targetSymbolIndex;
uint64_t _offsetInAtom;
Addend _addend;
Kind _kind;
};
/// \brief These atoms store symbols that are fixed to a particular address.
/// This atom has no content its address will be used by the writer to fixup
/// references that point to it.
template<endianness target_endianness, bool is64Bits>
class ELFAbsoluteAtom final : public AbsoluteAtom {
typedef llvm::object::Elf_Sym_Impl<target_endianness, is64Bits> Elf_Sym;
public:
ELFAbsoluteAtom(const File &file,
llvm::StringRef name,
const Elf_Sym *symbol,
uint64_t value)
: _owningFile(file)
, _name(name)
, _symbol(symbol)
, _value(value)
{}
virtual const class File &file() const {
return _owningFile;
}
virtual Scope scope() const {
if (_symbol->st_other == llvm::ELF::STV_HIDDEN)
return scopeLinkageUnit;
if (_symbol->getBinding() == llvm::ELF::STB_LOCAL)
return scopeTranslationUnit;
else
return scopeGlobal;
}
virtual llvm::StringRef name() const {
return _name;
}
virtual uint64_t value() const {
return _value;
}
private:
const File &_owningFile;
llvm::StringRef _name;
const Elf_Sym *_symbol;
uint64_t _value;
};
/// \brief ELFUndefinedAtom: These atoms store undefined symbols and are place
/// holders that will be replaced by defined atoms later in the linking process.
template<endianness target_endianness, bool is64Bits>
class ELFUndefinedAtom final: public UndefinedAtom {
typedef llvm::object::Elf_Sym_Impl<target_endianness, is64Bits> Elf_Sym;
public:
ELFUndefinedAtom(const File &file,
llvm::StringRef name,
const Elf_Sym *symbol)
: _owningFile(file)
, _name(name)
, _symbol(symbol)
{}
virtual const class File &file() const {
return _owningFile;
}
virtual llvm::StringRef name() const {
return _name;
}
// FIXME: What distinguishes a symbol in ELF that can help decide if the
// symbol is undefined only during build and not runtime? This will make us
// choose canBeNullAtBuildtime and canBeNullAtRuntime.
virtual CanBeNull canBeNull() const {
if (_symbol->getBinding() == llvm::ELF::STB_WEAK)
return CanBeNull::canBeNullAtBuildtime;
else
return CanBeNull::canBeNullNever;
}
private:
const File &_owningFile;
llvm::StringRef _name;
const Elf_Sym *_symbol;
};
/// \brief This atom stores defined symbols and will contain either data or
/// code.
template<endianness target_endianness, bool is64Bits>
class ELFDefinedAtom final: public DefinedAtom {
typedef llvm::object::Elf_Sym_Impl<target_endianness, is64Bits> Elf_Sym;
typedef llvm::object::Elf_Shdr_Impl<target_endianness, is64Bits> Elf_Shdr;
public:
ELFDefinedAtom(const File &file,
llvm::StringRef symbolName,
llvm::StringRef sectionName,
const Elf_Sym *symbol,
const Elf_Shdr *section,
llvm::ArrayRef<uint8_t> contentData,
unsigned int referenceStart,
unsigned int referenceEnd,
std::vector<ELFReference
<target_endianness, is64Bits> *> &referenceList)
: _owningFile(file)
, _symbolName(symbolName)
, _sectionName(sectionName)
, _symbol(symbol)
, _section(section)
, _contentData(contentData)
, _referenceStartIndex(referenceStart)
, _referenceEndIndex(referenceEnd)
, _referenceList(referenceList) {
static uint64_t orderNumber = 0;
_ordinal = ++orderNumber;
}
virtual const class File &file() const {
return _owningFile;
}
virtual llvm::StringRef name() const {
return _symbolName;
}
virtual uint64_t ordinal() const {
return _ordinal;
}
virtual uint64_t size() const {
// Common symbols are not allocated in object files,
// so use st_size to tell how many bytes are required.
if ((_symbol->getType() == llvm::ELF::STT_COMMON)
|| _symbol->st_shndx == llvm::ELF::SHN_COMMON)
return (uint64_t)_symbol->st_size;
return _contentData.size();
}
virtual Scope scope() const {
if (_symbol->st_other == llvm::ELF::STV_HIDDEN)
return scopeLinkageUnit;
else if (_symbol->getBinding() != llvm::ELF::STB_LOCAL)
return scopeGlobal;
else
return scopeTranslationUnit;
}
// FIXME: Need to revisit this in future.
virtual Interposable interposable() const {
return interposeNo;
}
// FIXME: What ways can we determine this in ELF?
virtual Merge merge() const {
if (_symbol->getBinding() == llvm::ELF::STB_WEAK)
return mergeAsWeak;
if ((_symbol->getType() == llvm::ELF::STT_COMMON)
|| _symbol->st_shndx == llvm::ELF::SHN_COMMON)
return mergeAsTentative;
return mergeNo;
}
virtual ContentType contentType() const {
ContentType ret = typeUnknown;
switch (_section->sh_type) {
case llvm::ELF::SHT_PROGBITS:
case llvm::ELF::SHT_DYNAMIC:
switch (_section->sh_flags) {
case (llvm::ELF::SHF_ALLOC | llvm::ELF::SHF_EXECINSTR
| llvm::ELF::SHF_WRITE):
ret = typeCode;
break;
case (llvm::ELF::SHF_ALLOC | llvm::ELF::SHF_EXECINSTR):
ret = typeCode;
break;
case (llvm::ELF::SHF_ALLOC | llvm::ELF::SHF_WRITE):
ret = typeData;
break;
case llvm::ELF::SHF_ALLOC:
case (llvm::ELF::SHF_ALLOC | llvm::ELF::SHF_MERGE):
case (llvm::ELF::SHF_ALLOC | llvm::ELF::SHF_MERGE |
llvm::ELF::SHF_STRINGS):
ret = typeConstant;
break;
}
break;
case llvm::ELF::SHT_NOBITS:
ret = typeZeroFill;
break;
case llvm::ELF::SHT_NULL:
if ((_symbol->getType() == llvm::ELF::STT_COMMON)
|| _symbol->st_shndx == llvm::ELF::SHN_COMMON)
ret = typeZeroFill;
break;
}
return ret;
}
virtual Alignment alignment() const {
// Unallocated common symbols specify their alignment constraints in
// st_value.
if ((_symbol->getType() == llvm::ELF::STT_COMMON)
|| _symbol->st_shndx == llvm::ELF::SHN_COMMON) {
return Alignment(llvm::Log2_64(_symbol->st_value));
}
return Alignment(llvm::Log2_64(_section->sh_addralign));
}
// Do we have a choice for ELF? All symbols live in explicit sections.
virtual SectionChoice sectionChoice() const {
if (_symbol->st_shndx > llvm::ELF::SHN_LORESERVE)
return sectionBasedOnContent;
return sectionCustomRequired;
}
virtual llvm::StringRef customSectionName() const {
return _sectionName;
}
// It isn't clear that __attribute__((used)) is transmitted to the ELF object
// file.
virtual DeadStripKind deadStrip() const {
return deadStripNormal;
}
virtual ContentPermissions permissions() const {
switch (_section->sh_type) {
// permRW_L is for sections modified by the runtime loader.
case llvm::ELF::SHT_REL:
case llvm::ELF::SHT_RELA:
return permRW_L;
case llvm::ELF::SHT_DYNAMIC:
case llvm::ELF::SHT_PROGBITS:
switch (_section->sh_flags) {
case (llvm::ELF::SHF_ALLOC | llvm::ELF::SHF_EXECINSTR):
return permR_X;
case (llvm::ELF::SHF_ALLOC | llvm::ELF::SHF_WRITE):
return permRW_;
case llvm::ELF::SHF_ALLOC:
case (llvm::ELF::SHF_ALLOC | llvm::ELF::SHF_MERGE):
case (llvm::ELF::SHF_ALLOC | llvm::ELF::SHF_MERGE
| llvm::ELF::SHF_STRINGS):
return permR__;
}
default:
return perm___;
}
}
// Many non ARM architectures use ELF file format This not really a place to
// put a architecture specific method in an atom. A better approach is needed.
virtual bool isThumb() const {
return false;
}
// FIXME: Not Sure if ELF supports alias atoms. Find out more.
virtual bool isAlias() const {
return false;
}
virtual llvm::ArrayRef<uint8_t> rawContent() const {
return _contentData;
}
DefinedAtom::reference_iterator begin() const {
uintptr_t index = _referenceStartIndex;
const void *it = reinterpret_cast<const void*>(index);
return reference_iterator(*this, it);
}
DefinedAtom::reference_iterator end() const {
uintptr_t index = _referenceEndIndex;
const void *it = reinterpret_cast<const void*>(index);
return reference_iterator(*this, it);
}
const Reference *derefIterator(const void *It) const {
uintptr_t index = reinterpret_cast<uintptr_t>(It);
assert(index >= _referenceStartIndex);
assert(index < _referenceEndIndex);
return ((_referenceList)[index]);
}
void incrementIterator(const void*& It) const {
uintptr_t index = reinterpret_cast<uintptr_t>(It);
++index;
It = reinterpret_cast<const void*>(index);
}
private:
const File &_owningFile;
llvm::StringRef _symbolName;
llvm::StringRef _sectionName;
const Elf_Sym *_symbol;
const Elf_Shdr *_section;
/// \brief Holds the bits that make up the atom.
llvm::ArrayRef<uint8_t> _contentData;
uint64_t _ordinal;
unsigned int _referenceStartIndex;
unsigned int _referenceEndIndex;
std::vector<ELFReference<target_endianness, is64Bits> *> &_referenceList;
};
// \brief Read a binary, find out based on the symbol table contents what kind
// of symbol it is and create corresponding atoms for it
template<endianness target_endianness, bool is64Bits>
class FileELF: public File {
typedef llvm::object::Elf_Sym_Impl
<target_endianness, is64Bits> Elf_Sym;
typedef llvm::object::Elf_Shdr_Impl
<target_endianness, is64Bits> Elf_Shdr;
typedef llvm::object::Elf_Rel_Impl
<target_endianness, is64Bits, false> Elf_Rel;
typedef llvm::object::Elf_Rel_Impl
<target_endianness, is64Bits, true> Elf_Rela;
public:
FileELF(std::unique_ptr<llvm::MemoryBuffer> MB, llvm::error_code &EC)
: File(MB->getBufferIdentifier()) {
llvm::OwningPtr<llvm::object::Binary> binaryFile;
EC = llvm::object::createBinary(MB.release(), binaryFile);
if (EC)
return;
// Point Obj to correct class and bitwidth ELF object
_objFile.reset(llvm::dyn_cast<llvm::object::ELFObjectFile<target_endianness,
is64Bits> >(binaryFile.get()));
if (!_objFile) {
EC = make_error_code(llvm::object::object_error::invalid_file_type);
return;
}
binaryFile.take();
std::map< const Elf_Shdr *, std::vector<const Elf_Sym *>> sectionSymbols;
// Handle: SHT_REL and SHT_RELA sections:
// Increment over the sections, when REL/RELA section types are found add
// the contents to the RelocationReferences map.
llvm::object::section_iterator sit(_objFile->begin_sections());
llvm::object::section_iterator sie(_objFile->end_sections());
for (; sit != sie; sit.increment(EC)) {
if (EC)
return;
const Elf_Shdr *section = _objFile->getElfSection(sit);
if (section->sh_type == llvm::ELF::SHT_RELA) {
llvm::StringRef sectionName;
if ((EC = _objFile->getSectionName(section, sectionName)))
return;
// Get rid of the leading .rela so Atoms can use their own section
// name to find the relocs.
sectionName = sectionName.drop_front(5);
auto rai(_objFile->beginELFRela(section));
auto rae(_objFile->endELFRela(section));
auto &Ref = _relocationAddendRefences[sectionName];
for (; rai != rae; rai++) {
Ref.push_back(&*rai);
}
}
if (section->sh_type == llvm::ELF::SHT_REL) {
llvm::StringRef sectionName;
if ((EC = _objFile->getSectionName(section, sectionName)))
return;
// Get rid of the leading .rel so Atoms can use their own section
// name to find the relocs.
sectionName = sectionName.drop_front(4);
auto ri(_objFile->beginELFRel(section));
auto re(_objFile->endELFRel(section));
auto &Ref = _relocationReferences[sectionName];
for (; ri != re; ri++) {
Ref.push_back(&*ri);
}
}
}
// Increment over all the symbols collecting atoms and symbol names for
// later use.
llvm::object::symbol_iterator it(_objFile->begin_symbols());
llvm::object::symbol_iterator ie(_objFile->end_symbols());
for (; it != ie; it.increment(EC)) {
if (EC)
return;
if ((EC = it->getSection(sit)))
return;
const Elf_Shdr *section = _objFile->getElfSection(sit);
const Elf_Sym *symbol = _objFile->getElfSymbol(it);
llvm::StringRef symbolName;
if ((EC = _objFile->getSymbolName(section, symbol, symbolName)))
return;
if (symbol->st_shndx == llvm::ELF::SHN_ABS) {
// Create an absolute atom.
auto *newAtom = new (_readerStorage.Allocate
<ELFAbsoluteAtom<target_endianness, is64Bits> > ())
ELFAbsoluteAtom<target_endianness, is64Bits>
(*this, symbolName, symbol, symbol->st_value);
_absoluteAtoms._atoms.push_back(newAtom);
_symbolToAtomMapping.insert(std::make_pair(symbol, newAtom));
} else if (symbol->st_shndx == llvm::ELF::SHN_UNDEF) {
// Create an undefined atom.
auto *newAtom = new (_readerStorage.Allocate
<ELFUndefinedAtom<target_endianness, is64Bits> > ())
ELFUndefinedAtom<target_endianness, is64Bits>
(*this, symbolName, symbol);
_undefinedAtoms._atoms.push_back(newAtom);
_symbolToAtomMapping.insert(std::make_pair(symbol, newAtom));
} else {
// This is actually a defined symbol. Add it to its section's list of
// symbols.
if (symbol->getType() == llvm::ELF::STT_NOTYPE
|| symbol->getType() == llvm::ELF::STT_OBJECT
|| symbol->getType() == llvm::ELF::STT_FUNC
|| symbol->getType() == llvm::ELF::STT_SECTION
|| symbol->getType() == llvm::ELF::STT_FILE
|| symbol->getType() == llvm::ELF::STT_TLS
|| symbol->getType() == llvm::ELF::STT_COMMON
|| symbol->st_shndx == llvm::ELF::SHN_COMMON) {
sectionSymbols[section].push_back(symbol);
} else {
llvm::errs() << "Unable to create atom for: " << symbolName << "\n";
EC = llvm::object::object_error::parse_failed;
return;
}
}
}
for (auto &i : sectionSymbols) {
auto &symbols = i.second;
llvm::StringRef symbolName;
llvm::StringRef sectionName;
// Sort symbols by position.
std::stable_sort(symbols.begin(), symbols.end(),
[](const Elf_Sym *A, const Elf_Sym *B) {
return A->st_value < B->st_value;
});
// i.first is the section the symbol lives in
for (auto si = symbols.begin(), se = symbols.end(); si != se; ++si) {
StringRef symbolContents;
if ((EC = _objFile->getSectionContents(i.first, symbolContents)))
return;
if ((EC = _objFile->getSymbolName(i.first, *si, symbolName)))
return;
if ((EC = _objFile->getSectionName(i.first, sectionName)))
return;
bool isCommon = false;
if (((*si)->getType() == llvm::ELF::STT_COMMON)
|| (*si)->st_shndx == llvm::ELF::SHN_COMMON)
isCommon = true;
// Get the symbol's content:
llvm::ArrayRef<uint8_t> symbolData;
uint64_t contentSize;
if (si + 1 == se) {
// if this is the last symbol, take up the remaining data.
contentSize = (isCommon) ? 0
: ((i.first)->sh_size - (*si)->st_value);
}
else {
contentSize = (isCommon) ? 0
: (*(si + 1))->st_value - (*si)->st_value;
}
symbolData = llvm::ArrayRef<uint8_t>((uint8_t *)symbolContents.data()
+ (*si)->st_value, contentSize);
unsigned int referenceStart = _references.size();
// Only relocations that are inside the domain of the atom are added.
// Add Rela (those with r_addend) references:
for (auto &rai : _relocationAddendRefences[sectionName]) {
if ((rai->r_offset >= (*si)->st_value) &&
(rai->r_offset < (*si)->st_value+contentSize)) {
auto *ERef = new (_readerStorage.Allocate
<ELFReference<target_endianness, is64Bits> > ())
ELFReference<target_endianness, is64Bits> (
rai, rai->r_offset-(*si)->st_value, nullptr);
_references.push_back(ERef);
}
}
// Add Rel references.
for (auto &ri : _relocationReferences[sectionName]) {
if (((ri)->r_offset >= (*si)->st_value) &&
((ri)->r_offset < (*si)->st_value+contentSize)) {
auto *ERef = new (_readerStorage.Allocate
<ELFReference<target_endianness, is64Bits> > ())
ELFReference<target_endianness, is64Bits> (
(ri), (ri)->r_offset-(*si)->st_value, nullptr);
_references.push_back(ERef);
}
}
// Create the DefinedAtom and add it to the list of DefinedAtoms.
auto *newAtom = new (_readerStorage.Allocate
<ELFDefinedAtom<target_endianness, is64Bits> > ())
ELFDefinedAtom<target_endianness, is64Bits>
(*this, symbolName, sectionName,
*si, i.first, symbolData,
referenceStart, _references.size(), _references);
_definedAtoms._atoms.push_back(newAtom);
_symbolToAtomMapping.insert(std::make_pair((*si), newAtom));
}
}
// All the Atoms and References are created. Now update each Reference's
// target with the Atom pointer it refers to.
for (auto &ri : _references) {
const Elf_Sym *Symbol = _objFile->getElfSymbol(ri->targetSymbolIndex());
ri->setTarget(findAtom (Symbol));
}
}
virtual void addAtom(const Atom&) {
llvm_unreachable("cannot add atoms to native .o files");
}
virtual const atom_collection<DefinedAtom> &defined() const {
return _definedAtoms;
}
virtual const atom_collection<UndefinedAtom> &undefined() const {
return _undefinedAtoms;
}
virtual const atom_collection<SharedLibraryAtom> &sharedLibrary() const {
return _sharedLibraryAtoms;
}
virtual const atom_collection<AbsoluteAtom> &absolute() const {
return _absoluteAtoms;
}
Atom *findAtom(const Elf_Sym *symbol) {
return (_symbolToAtomMapping.lookup(symbol));
}
private:
std::unique_ptr<llvm::object::ELFObjectFile<target_endianness, is64Bits> >
_objFile;
atom_collection_vector<DefinedAtom> _definedAtoms;
atom_collection_vector<UndefinedAtom> _undefinedAtoms;
atom_collection_vector<SharedLibraryAtom> _sharedLibraryAtoms;
atom_collection_vector<AbsoluteAtom> _absoluteAtoms;
/// \brief _relocationAddendRefences and _relocationReferences contain the
/// list of relocations references. In ELF, if a section named, ".text" has
/// relocations will also have a section named ".rel.text" or ".rela.text"
/// which will hold the entries. -- .rel or .rela is prepended to create
/// the SHT_REL(A) section name.
std::map<llvm::StringRef, std::vector<const Elf_Rela *> >
_relocationAddendRefences;
std::map<llvm::StringRef, std::vector<const Elf_Rel *> >
_relocationReferences;
std::vector<ELFReference<target_endianness, is64Bits> *> _references;
llvm::DenseMap<const Elf_Sym *, Atom *> _symbolToAtomMapping;
llvm::BumpPtrAllocator _readerStorage;
};
// \brief A reader object that will instantiate correct FileELF by examining the
// memory buffer for ELF class and bitwidth
class ReaderELF: public Reader {
public:
ReaderELF(const ReaderOptionsELF &,
ReaderOptionsArchive &readerOptionsArchive)
: _readerOptionsArchive(readerOptionsArchive)
, _readerArchive(_readerOptionsArchive) {
_readerOptionsArchive.setReader(this);
}
error_code parseFile(std::unique_ptr<MemoryBuffer> mb, std::vector<
std::unique_ptr<File> > &result) {
llvm::error_code ec;
std::unique_ptr<File> f;
std::pair<unsigned char, unsigned char> Ident;
llvm::sys::LLVMFileType fileType =
llvm::sys::IdentifyFileType(mb->getBufferStart(),
static_cast<unsigned>(mb->getBufferSize()));
switch (fileType) {
case llvm::sys::ELF_Relocatable_FileType:
Ident = llvm::object::getElfArchType(&*mb);
// Instantiate the correct FileELF template instance based on the Ident
// pair. Once the File is created we push the file to the vector of files
// already created during parser's life.
if (Ident.first == llvm::ELF::ELFCLASS32 && Ident.second
== llvm::ELF::ELFDATA2LSB) {
f.reset(new FileELF<llvm::support::little, false>(std::move(mb), ec));
} else if (Ident.first == llvm::ELF::ELFCLASS32 && Ident.second
== llvm::ELF::ELFDATA2MSB) {
f.reset(new FileELF<llvm::support::big, false> (std::move(mb), ec));
} else if (Ident.first == llvm::ELF::ELFCLASS64 && Ident.second
== llvm::ELF::ELFDATA2MSB) {
f.reset(new FileELF<llvm::support::big, true> (std::move(mb), ec));
} else if (Ident.first == llvm::ELF::ELFCLASS64 && Ident.second
== llvm::ELF::ELFDATA2LSB) {
f.reset(new FileELF<llvm::support::little, true> (std::move(mb), ec));
}
if (!ec)
result.push_back(std::move(f));
break;
case llvm::sys::Archive_FileType:
ec = _readerArchive.parseFile(std::move(mb), result);
break;
default:
llvm_unreachable("not supported format");
break;
}
if (ec)
return ec;
return error_code::success();
}
private:
ReaderOptionsArchive &_readerOptionsArchive;
ReaderArchive _readerArchive;
};
} // end anon namespace.
namespace lld {
ReaderOptionsELF::ReaderOptionsELF() {
}
ReaderOptionsELF::~ReaderOptionsELF() {
}
Reader *createReaderELF(const ReaderOptionsELF &options,
ReaderOptionsArchive &optionsArchive) {
return new ReaderELF(options, optionsArchive);
}
} // end namespace lld