|  | //===- Attributor.cpp - Module-wide attribute deduction -------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements an inter procedural pass that deduces and/or propagating | 
|  | // attributes. This is done in an abstract interpretation style fixpoint | 
|  | // iteration. See the Attributor.h file comment and the class descriptions in | 
|  | // that file for more information. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/IPO/Attributor.h" | 
|  |  | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/CaptureTracking.h" | 
|  | #include "llvm/Analysis/EHPersonalities.h" | 
|  | #include "llvm/Analysis/GlobalsModRef.h" | 
|  | #include "llvm/Analysis/Loads.h" | 
|  | #include "llvm/Analysis/MemoryBuiltins.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/Argument.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/InstIterator.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/InitializePasses.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  |  | 
|  | #include <cassert> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "attributor" | 
|  |  | 
|  | STATISTIC(NumFnWithExactDefinition, | 
|  | "Number of function with exact definitions"); | 
|  | STATISTIC(NumFnWithoutExactDefinition, | 
|  | "Number of function without exact definitions"); | 
|  | STATISTIC(NumAttributesTimedOut, | 
|  | "Number of abstract attributes timed out before fixpoint"); | 
|  | STATISTIC(NumAttributesValidFixpoint, | 
|  | "Number of abstract attributes in a valid fixpoint state"); | 
|  | STATISTIC(NumAttributesManifested, | 
|  | "Number of abstract attributes manifested in IR"); | 
|  | STATISTIC(NumAttributesFixedDueToRequiredDependences, | 
|  | "Number of abstract attributes fixed due to required dependences"); | 
|  |  | 
|  | // Some helper macros to deal with statistics tracking. | 
|  | // | 
|  | // Usage: | 
|  | // For simple IR attribute tracking overload trackStatistics in the abstract | 
|  | // attribute and choose the right STATS_DECLTRACK_********* macro, | 
|  | // e.g.,: | 
|  | //  void trackStatistics() const override { | 
|  | //    STATS_DECLTRACK_ARG_ATTR(returned) | 
|  | //  } | 
|  | // If there is a single "increment" side one can use the macro | 
|  | // STATS_DECLTRACK with a custom message. If there are multiple increment | 
|  | // sides, STATS_DECL and STATS_TRACK can also be used separatly. | 
|  | // | 
|  | #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME)                                     \ | 
|  | ("Number of " #TYPE " marked '" #NAME "'") | 
|  | #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME | 
|  | #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG); | 
|  | #define STATS_DECL(NAME, TYPE, MSG)                                            \ | 
|  | STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG); | 
|  | #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE)); | 
|  | #define STATS_DECLTRACK(NAME, TYPE, MSG)                                       \ | 
|  | {                                                                            \ | 
|  | STATS_DECL(NAME, TYPE, MSG)                                                \ | 
|  | STATS_TRACK(NAME, TYPE)                                                    \ | 
|  | } | 
|  | #define STATS_DECLTRACK_ARG_ATTR(NAME)                                         \ | 
|  | STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME)) | 
|  | #define STATS_DECLTRACK_CSARG_ATTR(NAME)                                       \ | 
|  | STATS_DECLTRACK(NAME, CSArguments,                                           \ | 
|  | BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME)) | 
|  | #define STATS_DECLTRACK_FN_ATTR(NAME)                                          \ | 
|  | STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME)) | 
|  | #define STATS_DECLTRACK_CS_ATTR(NAME)                                          \ | 
|  | STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME)) | 
|  | #define STATS_DECLTRACK_FNRET_ATTR(NAME)                                       \ | 
|  | STATS_DECLTRACK(NAME, FunctionReturn,                                        \ | 
|  | BUILD_STAT_MSG_IR_ATTR(function returns, NAME)) | 
|  | #define STATS_DECLTRACK_CSRET_ATTR(NAME)                                       \ | 
|  | STATS_DECLTRACK(NAME, CSReturn,                                              \ | 
|  | BUILD_STAT_MSG_IR_ATTR(call site returns, NAME)) | 
|  | #define STATS_DECLTRACK_FLOATING_ATTR(NAME)                                    \ | 
|  | STATS_DECLTRACK(NAME, Floating,                                              \ | 
|  | ("Number of floating values known to be '" #NAME "'")) | 
|  |  | 
|  | // TODO: Determine a good default value. | 
|  | // | 
|  | // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads | 
|  | // (when run with the first 5 abstract attributes). The results also indicate | 
|  | // that we never reach 32 iterations but always find a fixpoint sooner. | 
|  | // | 
|  | // This will become more evolved once we perform two interleaved fixpoint | 
|  | // iterations: bottom-up and top-down. | 
|  | static cl::opt<unsigned> | 
|  | MaxFixpointIterations("attributor-max-iterations", cl::Hidden, | 
|  | cl::desc("Maximal number of fixpoint iterations."), | 
|  | cl::init(32)); | 
|  | static cl::opt<bool> VerifyMaxFixpointIterations( | 
|  | "attributor-max-iterations-verify", cl::Hidden, | 
|  | cl::desc("Verify that max-iterations is a tight bound for a fixpoint"), | 
|  | cl::init(false)); | 
|  |  | 
|  | static cl::opt<bool> DisableAttributor( | 
|  | "attributor-disable", cl::Hidden, | 
|  | cl::desc("Disable the attributor inter-procedural deduction pass."), | 
|  | cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> AnnotateDeclarationCallSites( | 
|  | "attributor-annotate-decl-cs", cl::Hidden, | 
|  | cl::desc("Annoate call sites of function declarations."), cl::init(false)); | 
|  |  | 
|  | static cl::opt<bool> ManifestInternal( | 
|  | "attributor-manifest-internal", cl::Hidden, | 
|  | cl::desc("Manifest Attributor internal string attributes."), | 
|  | cl::init(false)); | 
|  |  | 
|  | static cl::opt<unsigned> DepRecInterval( | 
|  | "attributor-dependence-recompute-interval", cl::Hidden, | 
|  | cl::desc("Number of iterations until dependences are recomputed."), | 
|  | cl::init(4)); | 
|  |  | 
|  | static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion", | 
|  | cl::init(true), cl::Hidden); | 
|  |  | 
|  | static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128), | 
|  | cl::Hidden); | 
|  |  | 
|  | /// Logic operators for the change status enum class. | 
|  | /// | 
|  | ///{ | 
|  | ChangeStatus llvm::operator|(ChangeStatus l, ChangeStatus r) { | 
|  | return l == ChangeStatus::CHANGED ? l : r; | 
|  | } | 
|  | ChangeStatus llvm::operator&(ChangeStatus l, ChangeStatus r) { | 
|  | return l == ChangeStatus::UNCHANGED ? l : r; | 
|  | } | 
|  | ///} | 
|  |  | 
|  | /// Recursively visit all values that might become \p IRP at some point. This | 
|  | /// will be done by looking through cast instructions, selects, phis, and calls | 
|  | /// with the "returned" attribute. Once we cannot look through the value any | 
|  | /// further, the callback \p VisitValueCB is invoked and passed the current | 
|  | /// value, the \p State, and a flag to indicate if we stripped anything. To | 
|  | /// limit how much effort is invested, we will never visit more values than | 
|  | /// specified by \p MaxValues. | 
|  | template <typename AAType, typename StateTy> | 
|  | static bool genericValueTraversal( | 
|  | Attributor &A, IRPosition IRP, const AAType &QueryingAA, StateTy &State, | 
|  | const function_ref<bool(Value &, StateTy &, bool)> &VisitValueCB, | 
|  | int MaxValues = 8) { | 
|  |  | 
|  | const AAIsDead *LivenessAA = nullptr; | 
|  | if (IRP.getAnchorScope()) | 
|  | LivenessAA = &A.getAAFor<AAIsDead>( | 
|  | QueryingAA, IRPosition::function(*IRP.getAnchorScope()), | 
|  | /* TrackDependence */ false); | 
|  | bool AnyDead = false; | 
|  |  | 
|  | // TODO: Use Positions here to allow context sensitivity in VisitValueCB | 
|  | SmallPtrSet<Value *, 16> Visited; | 
|  | SmallVector<Value *, 16> Worklist; | 
|  | Worklist.push_back(&IRP.getAssociatedValue()); | 
|  |  | 
|  | int Iteration = 0; | 
|  | do { | 
|  | Value *V = Worklist.pop_back_val(); | 
|  |  | 
|  | // Check if we should process the current value. To prevent endless | 
|  | // recursion keep a record of the values we followed! | 
|  | if (!Visited.insert(V).second) | 
|  | continue; | 
|  |  | 
|  | // Make sure we limit the compile time for complex expressions. | 
|  | if (Iteration++ >= MaxValues) | 
|  | return false; | 
|  |  | 
|  | // Explicitly look through calls with a "returned" attribute if we do | 
|  | // not have a pointer as stripPointerCasts only works on them. | 
|  | Value *NewV = nullptr; | 
|  | if (V->getType()->isPointerTy()) { | 
|  | NewV = V->stripPointerCasts(); | 
|  | } else { | 
|  | CallSite CS(V); | 
|  | if (CS && CS.getCalledFunction()) { | 
|  | for (Argument &Arg : CS.getCalledFunction()->args()) | 
|  | if (Arg.hasReturnedAttr()) { | 
|  | NewV = CS.getArgOperand(Arg.getArgNo()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (NewV && NewV != V) { | 
|  | Worklist.push_back(NewV); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Look through select instructions, visit both potential values. | 
|  | if (auto *SI = dyn_cast<SelectInst>(V)) { | 
|  | Worklist.push_back(SI->getTrueValue()); | 
|  | Worklist.push_back(SI->getFalseValue()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Look through phi nodes, visit all live operands. | 
|  | if (auto *PHI = dyn_cast<PHINode>(V)) { | 
|  | assert(LivenessAA && | 
|  | "Expected liveness in the presence of instructions!"); | 
|  | for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) { | 
|  | const BasicBlock *IncomingBB = PHI->getIncomingBlock(u); | 
|  | if (LivenessAA->isAssumedDead(IncomingBB->getTerminator())) { | 
|  | AnyDead = true; | 
|  | continue; | 
|  | } | 
|  | Worklist.push_back(PHI->getIncomingValue(u)); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Once a leaf is reached we inform the user through the callback. | 
|  | if (!VisitValueCB(*V, State, Iteration > 1)) | 
|  | return false; | 
|  | } while (!Worklist.empty()); | 
|  |  | 
|  | // If we actually used liveness information so we have to record a dependence. | 
|  | if (AnyDead) | 
|  | A.recordDependence(*LivenessAA, QueryingAA, DepClassTy::OPTIONAL); | 
|  |  | 
|  | // All values have been visited. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if \p New is equal or worse than \p Old. | 
|  | static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) { | 
|  | if (!Old.isIntAttribute()) | 
|  | return true; | 
|  |  | 
|  | return Old.getValueAsInt() >= New.getValueAsInt(); | 
|  | } | 
|  |  | 
|  | /// Return true if the information provided by \p Attr was added to the | 
|  | /// attribute list \p Attrs. This is only the case if it was not already present | 
|  | /// in \p Attrs at the position describe by \p PK and \p AttrIdx. | 
|  | static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr, | 
|  | AttributeList &Attrs, int AttrIdx) { | 
|  |  | 
|  | if (Attr.isEnumAttribute()) { | 
|  | Attribute::AttrKind Kind = Attr.getKindAsEnum(); | 
|  | if (Attrs.hasAttribute(AttrIdx, Kind)) | 
|  | if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind))) | 
|  | return false; | 
|  | Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr); | 
|  | return true; | 
|  | } | 
|  | if (Attr.isStringAttribute()) { | 
|  | StringRef Kind = Attr.getKindAsString(); | 
|  | if (Attrs.hasAttribute(AttrIdx, Kind)) | 
|  | if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind))) | 
|  | return false; | 
|  | Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr); | 
|  | return true; | 
|  | } | 
|  | if (Attr.isIntAttribute()) { | 
|  | Attribute::AttrKind Kind = Attr.getKindAsEnum(); | 
|  | if (Attrs.hasAttribute(AttrIdx, Kind)) | 
|  | if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind))) | 
|  | return false; | 
|  | Attrs = Attrs.removeAttribute(Ctx, AttrIdx, Kind); | 
|  | Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Expected enum or string attribute!"); | 
|  | } | 
|  | static const Value *getPointerOperand(const Instruction *I) { | 
|  | if (auto *LI = dyn_cast<LoadInst>(I)) | 
|  | if (!LI->isVolatile()) | 
|  | return LI->getPointerOperand(); | 
|  |  | 
|  | if (auto *SI = dyn_cast<StoreInst>(I)) | 
|  | if (!SI->isVolatile()) | 
|  | return SI->getPointerOperand(); | 
|  |  | 
|  | if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) | 
|  | if (!CXI->isVolatile()) | 
|  | return CXI->getPointerOperand(); | 
|  |  | 
|  | if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) | 
|  | if (!RMWI->isVolatile()) | 
|  | return RMWI->getPointerOperand(); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  | static const Value * | 
|  | getBasePointerOfAccessPointerOperand(const Instruction *I, int64_t &BytesOffset, | 
|  | const DataLayout &DL, | 
|  | bool AllowNonInbounds = false) { | 
|  | const Value *Ptr = getPointerOperand(I); | 
|  | if (!Ptr) | 
|  | return nullptr; | 
|  |  | 
|  | return GetPointerBaseWithConstantOffset(Ptr, BytesOffset, DL, | 
|  | AllowNonInbounds); | 
|  | } | 
|  |  | 
|  | ChangeStatus AbstractAttribute::update(Attributor &A) { | 
|  | ChangeStatus HasChanged = ChangeStatus::UNCHANGED; | 
|  | if (getState().isAtFixpoint()) | 
|  | return HasChanged; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n"); | 
|  |  | 
|  | HasChanged = updateImpl(A); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this | 
|  | << "\n"); | 
|  |  | 
|  | return HasChanged; | 
|  | } | 
|  |  | 
|  | ChangeStatus | 
|  | IRAttributeManifest::manifestAttrs(Attributor &A, const IRPosition &IRP, | 
|  | const ArrayRef<Attribute> &DeducedAttrs) { | 
|  | Function *ScopeFn = IRP.getAssociatedFunction(); | 
|  | IRPosition::Kind PK = IRP.getPositionKind(); | 
|  |  | 
|  | // In the following some generic code that will manifest attributes in | 
|  | // DeducedAttrs if they improve the current IR. Due to the different | 
|  | // annotation positions we use the underlying AttributeList interface. | 
|  |  | 
|  | AttributeList Attrs; | 
|  | switch (PK) { | 
|  | case IRPosition::IRP_INVALID: | 
|  | case IRPosition::IRP_FLOAT: | 
|  | return ChangeStatus::UNCHANGED; | 
|  | case IRPosition::IRP_ARGUMENT: | 
|  | case IRPosition::IRP_FUNCTION: | 
|  | case IRPosition::IRP_RETURNED: | 
|  | Attrs = ScopeFn->getAttributes(); | 
|  | break; | 
|  | case IRPosition::IRP_CALL_SITE: | 
|  | case IRPosition::IRP_CALL_SITE_RETURNED: | 
|  | case IRPosition::IRP_CALL_SITE_ARGUMENT: | 
|  | Attrs = ImmutableCallSite(&IRP.getAnchorValue()).getAttributes(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | ChangeStatus HasChanged = ChangeStatus::UNCHANGED; | 
|  | LLVMContext &Ctx = IRP.getAnchorValue().getContext(); | 
|  | for (const Attribute &Attr : DeducedAttrs) { | 
|  | if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx())) | 
|  | continue; | 
|  |  | 
|  | HasChanged = ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | if (HasChanged == ChangeStatus::UNCHANGED) | 
|  | return HasChanged; | 
|  |  | 
|  | switch (PK) { | 
|  | case IRPosition::IRP_ARGUMENT: | 
|  | case IRPosition::IRP_FUNCTION: | 
|  | case IRPosition::IRP_RETURNED: | 
|  | ScopeFn->setAttributes(Attrs); | 
|  | break; | 
|  | case IRPosition::IRP_CALL_SITE: | 
|  | case IRPosition::IRP_CALL_SITE_RETURNED: | 
|  | case IRPosition::IRP_CALL_SITE_ARGUMENT: | 
|  | CallSite(&IRP.getAnchorValue()).setAttributes(Attrs); | 
|  | break; | 
|  | case IRPosition::IRP_INVALID: | 
|  | case IRPosition::IRP_FLOAT: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return HasChanged; | 
|  | } | 
|  |  | 
|  | const IRPosition IRPosition::EmptyKey(255); | 
|  | const IRPosition IRPosition::TombstoneKey(256); | 
|  |  | 
|  | SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) { | 
|  | IRPositions.emplace_back(IRP); | 
|  |  | 
|  | ImmutableCallSite ICS(&IRP.getAnchorValue()); | 
|  | switch (IRP.getPositionKind()) { | 
|  | case IRPosition::IRP_INVALID: | 
|  | case IRPosition::IRP_FLOAT: | 
|  | case IRPosition::IRP_FUNCTION: | 
|  | return; | 
|  | case IRPosition::IRP_ARGUMENT: | 
|  | case IRPosition::IRP_RETURNED: | 
|  | IRPositions.emplace_back( | 
|  | IRPosition::function(*IRP.getAssociatedFunction())); | 
|  | return; | 
|  | case IRPosition::IRP_CALL_SITE: | 
|  | assert(ICS && "Expected call site!"); | 
|  | // TODO: We need to look at the operand bundles similar to the redirection | 
|  | //       in CallBase. | 
|  | if (!ICS.hasOperandBundles()) | 
|  | if (const Function *Callee = ICS.getCalledFunction()) | 
|  | IRPositions.emplace_back(IRPosition::function(*Callee)); | 
|  | return; | 
|  | case IRPosition::IRP_CALL_SITE_RETURNED: | 
|  | assert(ICS && "Expected call site!"); | 
|  | // TODO: We need to look at the operand bundles similar to the redirection | 
|  | //       in CallBase. | 
|  | if (!ICS.hasOperandBundles()) { | 
|  | if (const Function *Callee = ICS.getCalledFunction()) { | 
|  | IRPositions.emplace_back(IRPosition::returned(*Callee)); | 
|  | IRPositions.emplace_back(IRPosition::function(*Callee)); | 
|  | } | 
|  | } | 
|  | IRPositions.emplace_back( | 
|  | IRPosition::callsite_function(cast<CallBase>(*ICS.getInstruction()))); | 
|  | return; | 
|  | case IRPosition::IRP_CALL_SITE_ARGUMENT: { | 
|  | int ArgNo = IRP.getArgNo(); | 
|  | assert(ICS && ArgNo >= 0 && "Expected call site!"); | 
|  | // TODO: We need to look at the operand bundles similar to the redirection | 
|  | //       in CallBase. | 
|  | if (!ICS.hasOperandBundles()) { | 
|  | const Function *Callee = ICS.getCalledFunction(); | 
|  | if (Callee && Callee->arg_size() > unsigned(ArgNo)) | 
|  | IRPositions.emplace_back(IRPosition::argument(*Callee->getArg(ArgNo))); | 
|  | if (Callee) | 
|  | IRPositions.emplace_back(IRPosition::function(*Callee)); | 
|  | } | 
|  | IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue())); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs, | 
|  | bool IgnoreSubsumingPositions) const { | 
|  | for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) { | 
|  | for (Attribute::AttrKind AK : AKs) | 
|  | if (EquivIRP.getAttr(AK).getKindAsEnum() == AK) | 
|  | return true; | 
|  | // The first position returned by the SubsumingPositionIterator is | 
|  | // always the position itself. If we ignore subsuming positions we | 
|  | // are done after the first iteration. | 
|  | if (IgnoreSubsumingPositions) | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs, | 
|  | SmallVectorImpl<Attribute> &Attrs) const { | 
|  | for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) | 
|  | for (Attribute::AttrKind AK : AKs) { | 
|  | const Attribute &Attr = EquivIRP.getAttr(AK); | 
|  | if (Attr.getKindAsEnum() == AK) | 
|  | Attrs.push_back(Attr); | 
|  | } | 
|  | } | 
|  |  | 
|  | void IRPosition::verify() { | 
|  | switch (KindOrArgNo) { | 
|  | default: | 
|  | assert(KindOrArgNo >= 0 && "Expected argument or call site argument!"); | 
|  | assert((isa<CallBase>(AnchorVal) || isa<Argument>(AnchorVal)) && | 
|  | "Expected call base or argument for positive attribute index!"); | 
|  | if (isa<Argument>(AnchorVal)) { | 
|  | assert(cast<Argument>(AnchorVal)->getArgNo() == unsigned(getArgNo()) && | 
|  | "Argument number mismatch!"); | 
|  | assert(cast<Argument>(AnchorVal) == &getAssociatedValue() && | 
|  | "Associated value mismatch!"); | 
|  | } else { | 
|  | assert(cast<CallBase>(*AnchorVal).arg_size() > unsigned(getArgNo()) && | 
|  | "Call site argument number mismatch!"); | 
|  | assert(cast<CallBase>(*AnchorVal).getArgOperand(getArgNo()) == | 
|  | &getAssociatedValue() && | 
|  | "Associated value mismatch!"); | 
|  | } | 
|  | break; | 
|  | case IRP_INVALID: | 
|  | assert(!AnchorVal && "Expected no value for an invalid position!"); | 
|  | break; | 
|  | case IRP_FLOAT: | 
|  | assert((!isa<CallBase>(&getAssociatedValue()) && | 
|  | !isa<Argument>(&getAssociatedValue())) && | 
|  | "Expected specialized kind for call base and argument values!"); | 
|  | break; | 
|  | case IRP_RETURNED: | 
|  | assert(isa<Function>(AnchorVal) && | 
|  | "Expected function for a 'returned' position!"); | 
|  | assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!"); | 
|  | break; | 
|  | case IRP_CALL_SITE_RETURNED: | 
|  | assert((isa<CallBase>(AnchorVal)) && | 
|  | "Expected call base for 'call site returned' position!"); | 
|  | assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!"); | 
|  | break; | 
|  | case IRP_CALL_SITE: | 
|  | assert((isa<CallBase>(AnchorVal)) && | 
|  | "Expected call base for 'call site function' position!"); | 
|  | assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!"); | 
|  | break; | 
|  | case IRP_FUNCTION: | 
|  | assert(isa<Function>(AnchorVal) && | 
|  | "Expected function for a 'function' position!"); | 
|  | assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!"); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// Helper function to clamp a state \p S of type \p StateType with the | 
|  | /// information in \p R and indicate/return if \p S did change (as-in update is | 
|  | /// required to be run again). | 
|  | template <typename StateType> | 
|  | ChangeStatus clampStateAndIndicateChange(StateType &S, const StateType &R) { | 
|  | auto Assumed = S.getAssumed(); | 
|  | S ^= R; | 
|  | return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED | 
|  | : ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | /// Clamp the information known for all returned values of a function | 
|  | /// (identified by \p QueryingAA) into \p S. | 
|  | template <typename AAType, typename StateType = typename AAType::StateType> | 
|  | static void clampReturnedValueStates(Attributor &A, const AAType &QueryingAA, | 
|  | StateType &S) { | 
|  | LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for " | 
|  | << static_cast<const AbstractAttribute &>(QueryingAA) | 
|  | << " into " << S << "\n"); | 
|  |  | 
|  | assert((QueryingAA.getIRPosition().getPositionKind() == | 
|  | IRPosition::IRP_RETURNED || | 
|  | QueryingAA.getIRPosition().getPositionKind() == | 
|  | IRPosition::IRP_CALL_SITE_RETURNED) && | 
|  | "Can only clamp returned value states for a function returned or call " | 
|  | "site returned position!"); | 
|  |  | 
|  | // Use an optional state as there might not be any return values and we want | 
|  | // to join (IntegerState::operator&) the state of all there are. | 
|  | Optional<StateType> T; | 
|  |  | 
|  | // Callback for each possibly returned value. | 
|  | auto CheckReturnValue = [&](Value &RV) -> bool { | 
|  | const IRPosition &RVPos = IRPosition::value(RV); | 
|  | const AAType &AA = A.getAAFor<AAType>(QueryingAA, RVPos); | 
|  | LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr() | 
|  | << " @ " << RVPos << "\n"); | 
|  | const StateType &AAS = static_cast<const StateType &>(AA.getState()); | 
|  | if (T.hasValue()) | 
|  | *T &= AAS; | 
|  | else | 
|  | T = AAS; | 
|  | LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T | 
|  | << "\n"); | 
|  | return T->isValidState(); | 
|  | }; | 
|  |  | 
|  | if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA)) | 
|  | S.indicatePessimisticFixpoint(); | 
|  | else if (T.hasValue()) | 
|  | S ^= *T; | 
|  | } | 
|  |  | 
|  | /// Helper class to compose two generic deduction | 
|  | template <typename AAType, typename Base, typename StateType, | 
|  | template <typename...> class F, template <typename...> class G> | 
|  | struct AAComposeTwoGenericDeduction | 
|  | : public F<AAType, G<AAType, Base, StateType>, StateType> { | 
|  | AAComposeTwoGenericDeduction(const IRPosition &IRP) | 
|  | : F<AAType, G<AAType, Base, StateType>, StateType>(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | ChangeStatus ChangedF = | 
|  | F<AAType, G<AAType, Base, StateType>, StateType>::updateImpl(A); | 
|  | ChangeStatus ChangedG = G<AAType, Base, StateType>::updateImpl(A); | 
|  | return ChangedF | ChangedG; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Helper class for generic deduction: return value -> returned position. | 
|  | template <typename AAType, typename Base, | 
|  | typename StateType = typename AAType::StateType> | 
|  | struct AAReturnedFromReturnedValues : public Base { | 
|  | AAReturnedFromReturnedValues(const IRPosition &IRP) : Base(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | StateType S; | 
|  | clampReturnedValueStates<AAType, StateType>(A, *this, S); | 
|  | // TODO: If we know we visited all returned values, thus no are assumed | 
|  | // dead, we can take the known information from the state T. | 
|  | return clampStateAndIndicateChange<StateType>(this->getState(), S); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Clamp the information known at all call sites for a given argument | 
|  | /// (identified by \p QueryingAA) into \p S. | 
|  | template <typename AAType, typename StateType = typename AAType::StateType> | 
|  | static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA, | 
|  | StateType &S) { | 
|  | LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for " | 
|  | << static_cast<const AbstractAttribute &>(QueryingAA) | 
|  | << " into " << S << "\n"); | 
|  |  | 
|  | assert(QueryingAA.getIRPosition().getPositionKind() == | 
|  | IRPosition::IRP_ARGUMENT && | 
|  | "Can only clamp call site argument states for an argument position!"); | 
|  |  | 
|  | // Use an optional state as there might not be any return values and we want | 
|  | // to join (IntegerState::operator&) the state of all there are. | 
|  | Optional<StateType> T; | 
|  |  | 
|  | // The argument number which is also the call site argument number. | 
|  | unsigned ArgNo = QueryingAA.getIRPosition().getArgNo(); | 
|  |  | 
|  | auto CallSiteCheck = [&](AbstractCallSite ACS) { | 
|  | const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo); | 
|  | // Check if a coresponding argument was found or if it is on not associated | 
|  | // (which can happen for callback calls). | 
|  | if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID) | 
|  | return false; | 
|  |  | 
|  | const AAType &AA = A.getAAFor<AAType>(QueryingAA, ACSArgPos); | 
|  | LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction() | 
|  | << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n"); | 
|  | const StateType &AAS = static_cast<const StateType &>(AA.getState()); | 
|  | if (T.hasValue()) | 
|  | *T &= AAS; | 
|  | else | 
|  | T = AAS; | 
|  | LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T | 
|  | << "\n"); | 
|  | return T->isValidState(); | 
|  | }; | 
|  |  | 
|  | if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true)) | 
|  | S.indicatePessimisticFixpoint(); | 
|  | else if (T.hasValue()) | 
|  | S ^= *T; | 
|  | } | 
|  |  | 
|  | /// Helper class for generic deduction: call site argument -> argument position. | 
|  | template <typename AAType, typename Base, | 
|  | typename StateType = typename AAType::StateType> | 
|  | struct AAArgumentFromCallSiteArguments : public Base { | 
|  | AAArgumentFromCallSiteArguments(const IRPosition &IRP) : Base(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | StateType S; | 
|  | clampCallSiteArgumentStates<AAType, StateType>(A, *this, S); | 
|  | // TODO: If we know we visited all incoming values, thus no are assumed | 
|  | // dead, we can take the known information from the state T. | 
|  | return clampStateAndIndicateChange<StateType>(this->getState(), S); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Helper class for generic replication: function returned -> cs returned. | 
|  | template <typename AAType, typename Base, | 
|  | typename StateType = typename AAType::StateType> | 
|  | struct AACallSiteReturnedFromReturned : public Base { | 
|  | AACallSiteReturnedFromReturned(const IRPosition &IRP) : Base(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | assert(this->getIRPosition().getPositionKind() == | 
|  | IRPosition::IRP_CALL_SITE_RETURNED && | 
|  | "Can only wrap function returned positions for call site returned " | 
|  | "positions!"); | 
|  | auto &S = this->getState(); | 
|  |  | 
|  | const Function *AssociatedFunction = | 
|  | this->getIRPosition().getAssociatedFunction(); | 
|  | if (!AssociatedFunction) | 
|  | return S.indicatePessimisticFixpoint(); | 
|  |  | 
|  | IRPosition FnPos = IRPosition::returned(*AssociatedFunction); | 
|  | const AAType &AA = A.getAAFor<AAType>(*this, FnPos); | 
|  | return clampStateAndIndicateChange( | 
|  | S, static_cast<const typename AAType::StateType &>(AA.getState())); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Helper class for generic deduction using must-be-executed-context | 
|  | /// Base class is required to have `followUse` method. | 
|  |  | 
|  | /// bool followUse(Attributor &A, const Use *U, const Instruction *I) | 
|  | /// U - Underlying use. | 
|  | /// I - The user of the \p U. | 
|  | /// `followUse` returns true if the value should be tracked transitively. | 
|  |  | 
|  | template <typename AAType, typename Base, | 
|  | typename StateType = typename AAType::StateType> | 
|  | struct AAFromMustBeExecutedContext : public Base { | 
|  | AAFromMustBeExecutedContext(const IRPosition &IRP) : Base(IRP) {} | 
|  |  | 
|  | void initialize(Attributor &A) override { | 
|  | Base::initialize(A); | 
|  | const IRPosition &IRP = this->getIRPosition(); | 
|  | Instruction *CtxI = IRP.getCtxI(); | 
|  |  | 
|  | if (!CtxI) | 
|  | return; | 
|  |  | 
|  | for (const Use &U : IRP.getAssociatedValue().uses()) | 
|  | Uses.insert(&U); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | auto BeforeState = this->getState(); | 
|  | auto &S = this->getState(); | 
|  | Instruction *CtxI = this->getIRPosition().getCtxI(); | 
|  | if (!CtxI) | 
|  | return ChangeStatus::UNCHANGED; | 
|  |  | 
|  | MustBeExecutedContextExplorer &Explorer = | 
|  | A.getInfoCache().getMustBeExecutedContextExplorer(); | 
|  |  | 
|  | auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI); | 
|  | for (unsigned u = 0; u < Uses.size(); ++u) { | 
|  | const Use *U = Uses[u]; | 
|  | if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) { | 
|  | bool Found = Explorer.findInContextOf(UserI, EIt, EEnd); | 
|  | if (Found && Base::followUse(A, U, UserI)) | 
|  | for (const Use &Us : UserI->uses()) | 
|  | Uses.insert(&Us); | 
|  | } | 
|  | } | 
|  |  | 
|  | return BeforeState == S ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// Container for (transitive) uses of the associated value. | 
|  | SetVector<const Use *> Uses; | 
|  | }; | 
|  |  | 
|  | template <typename AAType, typename Base, | 
|  | typename StateType = typename AAType::StateType> | 
|  | using AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext = | 
|  | AAComposeTwoGenericDeduction<AAType, Base, StateType, | 
|  | AAFromMustBeExecutedContext, | 
|  | AAArgumentFromCallSiteArguments>; | 
|  |  | 
|  | template <typename AAType, typename Base, | 
|  | typename StateType = typename AAType::StateType> | 
|  | using AACallSiteReturnedFromReturnedAndMustBeExecutedContext = | 
|  | AAComposeTwoGenericDeduction<AAType, Base, StateType, | 
|  | AAFromMustBeExecutedContext, | 
|  | AACallSiteReturnedFromReturned>; | 
|  |  | 
|  | /// -----------------------NoUnwind Function Attribute-------------------------- | 
|  |  | 
|  | struct AANoUnwindImpl : AANoUnwind { | 
|  | AANoUnwindImpl(const IRPosition &IRP) : AANoUnwind(IRP) {} | 
|  |  | 
|  | const std::string getAsStr() const override { | 
|  | return getAssumed() ? "nounwind" : "may-unwind"; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | auto Opcodes = { | 
|  | (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr, | 
|  | (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet, | 
|  | (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume}; | 
|  |  | 
|  | auto CheckForNoUnwind = [&](Instruction &I) { | 
|  | if (!I.mayThrow()) | 
|  | return true; | 
|  |  | 
|  | if (ImmutableCallSite ICS = ImmutableCallSite(&I)) { | 
|  | const auto &NoUnwindAA = | 
|  | A.getAAFor<AANoUnwind>(*this, IRPosition::callsite_function(ICS)); | 
|  | return NoUnwindAA.isAssumedNoUnwind(); | 
|  | } | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes)) | 
|  | return indicatePessimisticFixpoint(); | 
|  |  | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct AANoUnwindFunction final : public AANoUnwindImpl { | 
|  | AANoUnwindFunction(const IRPosition &IRP) : AANoUnwindImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) } | 
|  | }; | 
|  |  | 
|  | /// NoUnwind attribute deduction for a call sites. | 
|  | struct AANoUnwindCallSite final : AANoUnwindImpl { | 
|  | AANoUnwindCallSite(const IRPosition &IRP) : AANoUnwindImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | AANoUnwindImpl::initialize(A); | 
|  | Function *F = getAssociatedFunction(); | 
|  | if (!F) | 
|  | indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | // TODO: Once we have call site specific value information we can provide | 
|  | //       call site specific liveness information and then it makes | 
|  | //       sense to specialize attributes for call sites arguments instead of | 
|  | //       redirecting requests to the callee argument. | 
|  | Function *F = getAssociatedFunction(); | 
|  | const IRPosition &FnPos = IRPosition::function(*F); | 
|  | auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos); | 
|  | return clampStateAndIndicateChange( | 
|  | getState(), | 
|  | static_cast<const AANoUnwind::StateType &>(FnAA.getState())); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); } | 
|  | }; | 
|  |  | 
|  | /// --------------------- Function Return Values ------------------------------- | 
|  |  | 
|  | /// "Attribute" that collects all potential returned values and the return | 
|  | /// instructions that they arise from. | 
|  | /// | 
|  | /// If there is a unique returned value R, the manifest method will: | 
|  | ///   - mark R with the "returned" attribute, if R is an argument. | 
|  | class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState { | 
|  |  | 
|  | /// Mapping of values potentially returned by the associated function to the | 
|  | /// return instructions that might return them. | 
|  | MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues; | 
|  |  | 
|  | /// Mapping to remember the number of returned values for a call site such | 
|  | /// that we can avoid updates if nothing changed. | 
|  | DenseMap<const CallBase *, unsigned> NumReturnedValuesPerKnownAA; | 
|  |  | 
|  | /// Set of unresolved calls returned by the associated function. | 
|  | SmallSetVector<CallBase *, 4> UnresolvedCalls; | 
|  |  | 
|  | /// State flags | 
|  | /// | 
|  | ///{ | 
|  | bool IsFixed = false; | 
|  | bool IsValidState = true; | 
|  | ///} | 
|  |  | 
|  | public: | 
|  | AAReturnedValuesImpl(const IRPosition &IRP) : AAReturnedValues(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | // Reset the state. | 
|  | IsFixed = false; | 
|  | IsValidState = true; | 
|  | ReturnedValues.clear(); | 
|  |  | 
|  | Function *F = getAssociatedFunction(); | 
|  | if (!F) { | 
|  | indicatePessimisticFixpoint(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The map from instruction opcodes to those instructions in the function. | 
|  | auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F); | 
|  |  | 
|  | // Look through all arguments, if one is marked as returned we are done. | 
|  | for (Argument &Arg : F->args()) { | 
|  | if (Arg.hasReturnedAttr()) { | 
|  | auto &ReturnInstSet = ReturnedValues[&Arg]; | 
|  | for (Instruction *RI : OpcodeInstMap[Instruction::Ret]) | 
|  | ReturnInstSet.insert(cast<ReturnInst>(RI)); | 
|  |  | 
|  | indicateOptimisticFixpoint(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!F->hasExactDefinition()) | 
|  | indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::manifest(...). | 
|  | ChangeStatus manifest(Attributor &A) override; | 
|  |  | 
|  | /// See AbstractAttribute::getState(...). | 
|  | AbstractState &getState() override { return *this; } | 
|  |  | 
|  | /// See AbstractAttribute::getState(...). | 
|  | const AbstractState &getState() const override { return *this; } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(Attributor &A). | 
|  | ChangeStatus updateImpl(Attributor &A) override; | 
|  |  | 
|  | llvm::iterator_range<iterator> returned_values() override { | 
|  | return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end()); | 
|  | } | 
|  |  | 
|  | llvm::iterator_range<const_iterator> returned_values() const override { | 
|  | return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end()); | 
|  | } | 
|  |  | 
|  | const SmallSetVector<CallBase *, 4> &getUnresolvedCalls() const override { | 
|  | return UnresolvedCalls; | 
|  | } | 
|  |  | 
|  | /// Return the number of potential return values, -1 if unknown. | 
|  | size_t getNumReturnValues() const override { | 
|  | return isValidState() ? ReturnedValues.size() : -1; | 
|  | } | 
|  |  | 
|  | /// Return an assumed unique return value if a single candidate is found. If | 
|  | /// there cannot be one, return a nullptr. If it is not clear yet, return the | 
|  | /// Optional::NoneType. | 
|  | Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const; | 
|  |  | 
|  | /// See AbstractState::checkForAllReturnedValues(...). | 
|  | bool checkForAllReturnedValuesAndReturnInsts( | 
|  | const function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> | 
|  | &Pred) const override; | 
|  |  | 
|  | /// Pretty print the attribute similar to the IR representation. | 
|  | const std::string getAsStr() const override; | 
|  |  | 
|  | /// See AbstractState::isAtFixpoint(). | 
|  | bool isAtFixpoint() const override { return IsFixed; } | 
|  |  | 
|  | /// See AbstractState::isValidState(). | 
|  | bool isValidState() const override { return IsValidState; } | 
|  |  | 
|  | /// See AbstractState::indicateOptimisticFixpoint(...). | 
|  | ChangeStatus indicateOptimisticFixpoint() override { | 
|  | IsFixed = true; | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | ChangeStatus indicatePessimisticFixpoint() override { | 
|  | IsFixed = true; | 
|  | IsValidState = false; | 
|  | return ChangeStatus::CHANGED; | 
|  | } | 
|  | }; | 
|  |  | 
|  | ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) { | 
|  | ChangeStatus Changed = ChangeStatus::UNCHANGED; | 
|  |  | 
|  | // Bookkeeping. | 
|  | assert(isValidState()); | 
|  | STATS_DECLTRACK(KnownReturnValues, FunctionReturn, | 
|  | "Number of function with known return values"); | 
|  |  | 
|  | // Check if we have an assumed unique return value that we could manifest. | 
|  | Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A); | 
|  |  | 
|  | if (!UniqueRV.hasValue() || !UniqueRV.getValue()) | 
|  | return Changed; | 
|  |  | 
|  | // Bookkeeping. | 
|  | STATS_DECLTRACK(UniqueReturnValue, FunctionReturn, | 
|  | "Number of function with unique return"); | 
|  |  | 
|  | // Callback to replace the uses of CB with the constant C. | 
|  | auto ReplaceCallSiteUsersWith = [](CallBase &CB, Constant &C) { | 
|  | if (CB.getNumUses() == 0 || CB.isMustTailCall()) | 
|  | return ChangeStatus::UNCHANGED; | 
|  | CB.replaceAllUsesWith(&C); | 
|  | return ChangeStatus::CHANGED; | 
|  | }; | 
|  |  | 
|  | // If the assumed unique return value is an argument, annotate it. | 
|  | if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) { | 
|  | // TODO: This should be handled differently! | 
|  | this->AnchorVal = UniqueRVArg; | 
|  | this->KindOrArgNo = UniqueRVArg->getArgNo(); | 
|  | Changed = IRAttribute::manifest(A); | 
|  | } else if (auto *RVC = dyn_cast<Constant>(UniqueRV.getValue())) { | 
|  | // We can replace the returned value with the unique returned constant. | 
|  | Value &AnchorValue = getAnchorValue(); | 
|  | if (Function *F = dyn_cast<Function>(&AnchorValue)) { | 
|  | for (const Use &U : F->uses()) | 
|  | if (CallBase *CB = dyn_cast<CallBase>(U.getUser())) | 
|  | if (CB->isCallee(&U)) { | 
|  | Constant *RVCCast = | 
|  | CB->getType() == RVC->getType() | 
|  | ? RVC | 
|  | : ConstantExpr::getTruncOrBitCast(RVC, CB->getType()); | 
|  | Changed = ReplaceCallSiteUsersWith(*CB, *RVCCast) | Changed; | 
|  | } | 
|  | } else { | 
|  | assert(isa<CallBase>(AnchorValue) && | 
|  | "Expcected a function or call base anchor!"); | 
|  | Constant *RVCCast = | 
|  | AnchorValue.getType() == RVC->getType() | 
|  | ? RVC | 
|  | : ConstantExpr::getTruncOrBitCast(RVC, AnchorValue.getType()); | 
|  | Changed = ReplaceCallSiteUsersWith(cast<CallBase>(AnchorValue), *RVCCast); | 
|  | } | 
|  | if (Changed == ChangeStatus::CHANGED) | 
|  | STATS_DECLTRACK(UniqueConstantReturnValue, FunctionReturn, | 
|  | "Number of function returns replaced by constant return"); | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | const std::string AAReturnedValuesImpl::getAsStr() const { | 
|  | return (isAtFixpoint() ? "returns(#" : "may-return(#") + | 
|  | (isValidState() ? std::to_string(getNumReturnValues()) : "?") + | 
|  | ")[#UC: " + std::to_string(UnresolvedCalls.size()) + "]"; | 
|  | } | 
|  |  | 
|  | Optional<Value *> | 
|  | AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const { | 
|  | // If checkForAllReturnedValues provides a unique value, ignoring potential | 
|  | // undef values that can also be present, it is assumed to be the actual | 
|  | // return value and forwarded to the caller of this method. If there are | 
|  | // multiple, a nullptr is returned indicating there cannot be a unique | 
|  | // returned value. | 
|  | Optional<Value *> UniqueRV; | 
|  |  | 
|  | auto Pred = [&](Value &RV) -> bool { | 
|  | // If we found a second returned value and neither the current nor the saved | 
|  | // one is an undef, there is no unique returned value. Undefs are special | 
|  | // since we can pretend they have any value. | 
|  | if (UniqueRV.hasValue() && UniqueRV != &RV && | 
|  | !(isa<UndefValue>(RV) || isa<UndefValue>(UniqueRV.getValue()))) { | 
|  | UniqueRV = nullptr; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Do not overwrite a value with an undef. | 
|  | if (!UniqueRV.hasValue() || !isa<UndefValue>(RV)) | 
|  | UniqueRV = &RV; | 
|  |  | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | if (!A.checkForAllReturnedValues(Pred, *this)) | 
|  | UniqueRV = nullptr; | 
|  |  | 
|  | return UniqueRV; | 
|  | } | 
|  |  | 
|  | bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts( | 
|  | const function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> | 
|  | &Pred) const { | 
|  | if (!isValidState()) | 
|  | return false; | 
|  |  | 
|  | // Check all returned values but ignore call sites as long as we have not | 
|  | // encountered an overdefined one during an update. | 
|  | for (auto &It : ReturnedValues) { | 
|  | Value *RV = It.first; | 
|  |  | 
|  | CallBase *CB = dyn_cast<CallBase>(RV); | 
|  | if (CB && !UnresolvedCalls.count(CB)) | 
|  | continue; | 
|  |  | 
|  | if (!Pred(*RV, It.second)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) { | 
|  | size_t NumUnresolvedCalls = UnresolvedCalls.size(); | 
|  | bool Changed = false; | 
|  |  | 
|  | // State used in the value traversals starting in returned values. | 
|  | struct RVState { | 
|  | // The map in which we collect return values -> return instrs. | 
|  | decltype(ReturnedValues) &RetValsMap; | 
|  | // The flag to indicate a change. | 
|  | bool &Changed; | 
|  | // The return instrs we come from. | 
|  | SmallSetVector<ReturnInst *, 4> RetInsts; | 
|  | }; | 
|  |  | 
|  | // Callback for a leaf value returned by the associated function. | 
|  | auto VisitValueCB = [](Value &Val, RVState &RVS, bool) -> bool { | 
|  | auto Size = RVS.RetValsMap[&Val].size(); | 
|  | RVS.RetValsMap[&Val].insert(RVS.RetInsts.begin(), RVS.RetInsts.end()); | 
|  | bool Inserted = RVS.RetValsMap[&Val].size() != Size; | 
|  | RVS.Changed |= Inserted; | 
|  | LLVM_DEBUG({ | 
|  | if (Inserted) | 
|  | dbgs() << "[AAReturnedValues] 1 Add new returned value " << Val | 
|  | << " => " << RVS.RetInsts.size() << "\n"; | 
|  | }); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | // Helper method to invoke the generic value traversal. | 
|  | auto VisitReturnedValue = [&](Value &RV, RVState &RVS) { | 
|  | IRPosition RetValPos = IRPosition::value(RV); | 
|  | return genericValueTraversal<AAReturnedValues, RVState>(A, RetValPos, *this, | 
|  | RVS, VisitValueCB); | 
|  | }; | 
|  |  | 
|  | // Callback for all "return intructions" live in the associated function. | 
|  | auto CheckReturnInst = [this, &VisitReturnedValue, &Changed](Instruction &I) { | 
|  | ReturnInst &Ret = cast<ReturnInst>(I); | 
|  | RVState RVS({ReturnedValues, Changed, {}}); | 
|  | RVS.RetInsts.insert(&Ret); | 
|  | return VisitReturnedValue(*Ret.getReturnValue(), RVS); | 
|  | }; | 
|  |  | 
|  | // Start by discovering returned values from all live returned instructions in | 
|  | // the associated function. | 
|  | if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret})) | 
|  | return indicatePessimisticFixpoint(); | 
|  |  | 
|  | // Once returned values "directly" present in the code are handled we try to | 
|  | // resolve returned calls. | 
|  | decltype(ReturnedValues) NewRVsMap; | 
|  | for (auto &It : ReturnedValues) { | 
|  | LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned value: " << *It.first | 
|  | << " by #" << It.second.size() << " RIs\n"); | 
|  | CallBase *CB = dyn_cast<CallBase>(It.first); | 
|  | if (!CB || UnresolvedCalls.count(CB)) | 
|  | continue; | 
|  |  | 
|  | if (!CB->getCalledFunction()) { | 
|  | LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB | 
|  | << "\n"); | 
|  | UnresolvedCalls.insert(CB); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // TODO: use the function scope once we have call site AAReturnedValues. | 
|  | const auto &RetValAA = A.getAAFor<AAReturnedValues>( | 
|  | *this, IRPosition::function(*CB->getCalledFunction())); | 
|  | LLVM_DEBUG(dbgs() << "[AAReturnedValues] Found another AAReturnedValues: " | 
|  | << static_cast<const AbstractAttribute &>(RetValAA) | 
|  | << "\n"); | 
|  |  | 
|  | // Skip dead ends, thus if we do not know anything about the returned | 
|  | // call we mark it as unresolved and it will stay that way. | 
|  | if (!RetValAA.getState().isValidState()) { | 
|  | LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB | 
|  | << "\n"); | 
|  | UnresolvedCalls.insert(CB); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Do not try to learn partial information. If the callee has unresolved | 
|  | // return values we will treat the call as unresolved/opaque. | 
|  | auto &RetValAAUnresolvedCalls = RetValAA.getUnresolvedCalls(); | 
|  | if (!RetValAAUnresolvedCalls.empty()) { | 
|  | UnresolvedCalls.insert(CB); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Now check if we can track transitively returned values. If possible, thus | 
|  | // if all return value can be represented in the current scope, do so. | 
|  | bool Unresolved = false; | 
|  | for (auto &RetValAAIt : RetValAA.returned_values()) { | 
|  | Value *RetVal = RetValAAIt.first; | 
|  | if (isa<Argument>(RetVal) || isa<CallBase>(RetVal) || | 
|  | isa<Constant>(RetVal)) | 
|  | continue; | 
|  | // Anything that did not fit in the above categories cannot be resolved, | 
|  | // mark the call as unresolved. | 
|  | LLVM_DEBUG(dbgs() << "[AAReturnedValues] transitively returned value " | 
|  | "cannot be translated: " | 
|  | << *RetVal << "\n"); | 
|  | UnresolvedCalls.insert(CB); | 
|  | Unresolved = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (Unresolved) | 
|  | continue; | 
|  |  | 
|  | // Now track transitively returned values. | 
|  | unsigned &NumRetAA = NumReturnedValuesPerKnownAA[CB]; | 
|  | if (NumRetAA == RetValAA.getNumReturnValues()) { | 
|  | LLVM_DEBUG(dbgs() << "[AAReturnedValues] Skip call as it has not " | 
|  | "changed since it was seen last\n"); | 
|  | continue; | 
|  | } | 
|  | NumRetAA = RetValAA.getNumReturnValues(); | 
|  |  | 
|  | for (auto &RetValAAIt : RetValAA.returned_values()) { | 
|  | Value *RetVal = RetValAAIt.first; | 
|  | if (Argument *Arg = dyn_cast<Argument>(RetVal)) { | 
|  | // Arguments are mapped to call site operands and we begin the traversal | 
|  | // again. | 
|  | bool Unused = false; | 
|  | RVState RVS({NewRVsMap, Unused, RetValAAIt.second}); | 
|  | VisitReturnedValue(*CB->getArgOperand(Arg->getArgNo()), RVS); | 
|  | continue; | 
|  | } else if (isa<CallBase>(RetVal)) { | 
|  | // Call sites are resolved by the callee attribute over time, no need to | 
|  | // do anything for us. | 
|  | continue; | 
|  | } else if (isa<Constant>(RetVal)) { | 
|  | // Constants are valid everywhere, we can simply take them. | 
|  | NewRVsMap[RetVal].insert(It.second.begin(), It.second.end()); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // To avoid modifications to the ReturnedValues map while we iterate over it | 
|  | // we kept record of potential new entries in a copy map, NewRVsMap. | 
|  | for (auto &It : NewRVsMap) { | 
|  | assert(!It.second.empty() && "Entry does not add anything."); | 
|  | auto &ReturnInsts = ReturnedValues[It.first]; | 
|  | for (ReturnInst *RI : It.second) | 
|  | if (ReturnInsts.insert(RI)) { | 
|  | LLVM_DEBUG(dbgs() << "[AAReturnedValues] Add new returned value " | 
|  | << *It.first << " => " << *RI << "\n"); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | Changed |= (NumUnresolvedCalls != UnresolvedCalls.size()); | 
|  | return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | struct AAReturnedValuesFunction final : public AAReturnedValuesImpl { | 
|  | AAReturnedValuesFunction(const IRPosition &IRP) : AAReturnedValuesImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) } | 
|  | }; | 
|  |  | 
|  | /// Returned values information for a call sites. | 
|  | struct AAReturnedValuesCallSite final : AAReturnedValuesImpl { | 
|  | AAReturnedValuesCallSite(const IRPosition &IRP) : AAReturnedValuesImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | // TODO: Once we have call site specific value information we can provide | 
|  | //       call site specific liveness information and then it makes | 
|  | //       sense to specialize attributes for call sites instead of | 
|  | //       redirecting requests to the callee. | 
|  | llvm_unreachable("Abstract attributes for returned values are not " | 
|  | "supported for call sites yet!"); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | return indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override {} | 
|  | }; | 
|  |  | 
|  | /// ------------------------ NoSync Function Attribute ------------------------- | 
|  |  | 
|  | struct AANoSyncImpl : AANoSync { | 
|  | AANoSyncImpl(const IRPosition &IRP) : AANoSync(IRP) {} | 
|  |  | 
|  | const std::string getAsStr() const override { | 
|  | return getAssumed() ? "nosync" : "may-sync"; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override; | 
|  |  | 
|  | /// Helper function used to determine whether an instruction is non-relaxed | 
|  | /// atomic. In other words, if an atomic instruction does not have unordered | 
|  | /// or monotonic ordering | 
|  | static bool isNonRelaxedAtomic(Instruction *I); | 
|  |  | 
|  | /// Helper function used to determine whether an instruction is volatile. | 
|  | static bool isVolatile(Instruction *I); | 
|  |  | 
|  | /// Helper function uset to check if intrinsic is volatile (memcpy, memmove, | 
|  | /// memset). | 
|  | static bool isNoSyncIntrinsic(Instruction *I); | 
|  | }; | 
|  |  | 
|  | bool AANoSyncImpl::isNonRelaxedAtomic(Instruction *I) { | 
|  | if (!I->isAtomic()) | 
|  | return false; | 
|  |  | 
|  | AtomicOrdering Ordering; | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::AtomicRMW: | 
|  | Ordering = cast<AtomicRMWInst>(I)->getOrdering(); | 
|  | break; | 
|  | case Instruction::Store: | 
|  | Ordering = cast<StoreInst>(I)->getOrdering(); | 
|  | break; | 
|  | case Instruction::Load: | 
|  | Ordering = cast<LoadInst>(I)->getOrdering(); | 
|  | break; | 
|  | case Instruction::Fence: { | 
|  | auto *FI = cast<FenceInst>(I); | 
|  | if (FI->getSyncScopeID() == SyncScope::SingleThread) | 
|  | return false; | 
|  | Ordering = FI->getOrdering(); | 
|  | break; | 
|  | } | 
|  | case Instruction::AtomicCmpXchg: { | 
|  | AtomicOrdering Success = cast<AtomicCmpXchgInst>(I)->getSuccessOrdering(); | 
|  | AtomicOrdering Failure = cast<AtomicCmpXchgInst>(I)->getFailureOrdering(); | 
|  | // Only if both are relaxed, than it can be treated as relaxed. | 
|  | // Otherwise it is non-relaxed. | 
|  | if (Success != AtomicOrdering::Unordered && | 
|  | Success != AtomicOrdering::Monotonic) | 
|  | return true; | 
|  | if (Failure != AtomicOrdering::Unordered && | 
|  | Failure != AtomicOrdering::Monotonic) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable( | 
|  | "New atomic operations need to be known in the attributor."); | 
|  | } | 
|  |  | 
|  | // Relaxed. | 
|  | if (Ordering == AtomicOrdering::Unordered || | 
|  | Ordering == AtomicOrdering::Monotonic) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Checks if an intrinsic is nosync. Currently only checks mem* intrinsics. | 
|  | /// FIXME: We should ipmrove the handling of intrinsics. | 
|  | bool AANoSyncImpl::isNoSyncIntrinsic(Instruction *I) { | 
|  | if (auto *II = dyn_cast<IntrinsicInst>(I)) { | 
|  | switch (II->getIntrinsicID()) { | 
|  | /// Element wise atomic memory intrinsics are can only be unordered, | 
|  | /// therefore nosync. | 
|  | case Intrinsic::memset_element_unordered_atomic: | 
|  | case Intrinsic::memmove_element_unordered_atomic: | 
|  | case Intrinsic::memcpy_element_unordered_atomic: | 
|  | return true; | 
|  | case Intrinsic::memset: | 
|  | case Intrinsic::memmove: | 
|  | case Intrinsic::memcpy: | 
|  | if (!cast<MemIntrinsic>(II)->isVolatile()) | 
|  | return true; | 
|  | return false; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AANoSyncImpl::isVolatile(Instruction *I) { | 
|  | assert(!ImmutableCallSite(I) && !isa<CallBase>(I) && | 
|  | "Calls should not be checked here"); | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::AtomicRMW: | 
|  | return cast<AtomicRMWInst>(I)->isVolatile(); | 
|  | case Instruction::Store: | 
|  | return cast<StoreInst>(I)->isVolatile(); | 
|  | case Instruction::Load: | 
|  | return cast<LoadInst>(I)->isVolatile(); | 
|  | case Instruction::AtomicCmpXchg: | 
|  | return cast<AtomicCmpXchgInst>(I)->isVolatile(); | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) { | 
|  |  | 
|  | auto CheckRWInstForNoSync = [&](Instruction &I) { | 
|  | /// We are looking for volatile instructions or Non-Relaxed atomics. | 
|  | /// FIXME: We should improve the handling of intrinsics. | 
|  |  | 
|  | if (isa<IntrinsicInst>(&I) && isNoSyncIntrinsic(&I)) | 
|  | return true; | 
|  |  | 
|  | if (ImmutableCallSite ICS = ImmutableCallSite(&I)) { | 
|  | if (ICS.hasFnAttr(Attribute::NoSync)) | 
|  | return true; | 
|  |  | 
|  | const auto &NoSyncAA = | 
|  | A.getAAFor<AANoSync>(*this, IRPosition::callsite_function(ICS)); | 
|  | if (NoSyncAA.isAssumedNoSync()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!isVolatile(&I) && !isNonRelaxedAtomic(&I)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | auto CheckForNoSync = [&](Instruction &I) { | 
|  | // At this point we handled all read/write effects and they are all | 
|  | // nosync, so they can be skipped. | 
|  | if (I.mayReadOrWriteMemory()) | 
|  | return true; | 
|  |  | 
|  | // non-convergent and readnone imply nosync. | 
|  | return !ImmutableCallSite(&I).isConvergent(); | 
|  | }; | 
|  |  | 
|  | if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this) || | 
|  | !A.checkForAllCallLikeInstructions(CheckForNoSync, *this)) | 
|  | return indicatePessimisticFixpoint(); | 
|  |  | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | struct AANoSyncFunction final : public AANoSyncImpl { | 
|  | AANoSyncFunction(const IRPosition &IRP) : AANoSyncImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) } | 
|  | }; | 
|  |  | 
|  | /// NoSync attribute deduction for a call sites. | 
|  | struct AANoSyncCallSite final : AANoSyncImpl { | 
|  | AANoSyncCallSite(const IRPosition &IRP) : AANoSyncImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | AANoSyncImpl::initialize(A); | 
|  | Function *F = getAssociatedFunction(); | 
|  | if (!F) | 
|  | indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | // TODO: Once we have call site specific value information we can provide | 
|  | //       call site specific liveness information and then it makes | 
|  | //       sense to specialize attributes for call sites arguments instead of | 
|  | //       redirecting requests to the callee argument. | 
|  | Function *F = getAssociatedFunction(); | 
|  | const IRPosition &FnPos = IRPosition::function(*F); | 
|  | auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos); | 
|  | return clampStateAndIndicateChange( | 
|  | getState(), static_cast<const AANoSync::StateType &>(FnAA.getState())); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); } | 
|  | }; | 
|  |  | 
|  | /// ------------------------ No-Free Attributes ---------------------------- | 
|  |  | 
|  | struct AANoFreeImpl : public AANoFree { | 
|  | AANoFreeImpl(const IRPosition &IRP) : AANoFree(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | auto CheckForNoFree = [&](Instruction &I) { | 
|  | ImmutableCallSite ICS(&I); | 
|  | if (ICS.hasFnAttr(Attribute::NoFree)) | 
|  | return true; | 
|  |  | 
|  | const auto &NoFreeAA = | 
|  | A.getAAFor<AANoFree>(*this, IRPosition::callsite_function(ICS)); | 
|  | return NoFreeAA.isAssumedNoFree(); | 
|  | }; | 
|  |  | 
|  | if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this)) | 
|  | return indicatePessimisticFixpoint(); | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::getAsStr(). | 
|  | const std::string getAsStr() const override { | 
|  | return getAssumed() ? "nofree" : "may-free"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct AANoFreeFunction final : public AANoFreeImpl { | 
|  | AANoFreeFunction(const IRPosition &IRP) : AANoFreeImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) } | 
|  | }; | 
|  |  | 
|  | /// NoFree attribute deduction for a call sites. | 
|  | struct AANoFreeCallSite final : AANoFreeImpl { | 
|  | AANoFreeCallSite(const IRPosition &IRP) : AANoFreeImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | AANoFreeImpl::initialize(A); | 
|  | Function *F = getAssociatedFunction(); | 
|  | if (!F) | 
|  | indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | // TODO: Once we have call site specific value information we can provide | 
|  | //       call site specific liveness information and then it makes | 
|  | //       sense to specialize attributes for call sites arguments instead of | 
|  | //       redirecting requests to the callee argument. | 
|  | Function *F = getAssociatedFunction(); | 
|  | const IRPosition &FnPos = IRPosition::function(*F); | 
|  | auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos); | 
|  | return clampStateAndIndicateChange( | 
|  | getState(), static_cast<const AANoFree::StateType &>(FnAA.getState())); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); } | 
|  | }; | 
|  |  | 
|  | /// NoFree attribute for floating values. | 
|  | struct AANoFreeFloating : AANoFreeImpl { | 
|  | AANoFreeFloating(const IRPosition &IRP) : AANoFreeImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)} | 
|  |  | 
|  | /// See Abstract Attribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | const IRPosition &IRP = getIRPosition(); | 
|  |  | 
|  | const auto &NoFreeAA = | 
|  | A.getAAFor<AANoFree>(*this, IRPosition::function_scope(IRP)); | 
|  | if (NoFreeAA.isAssumedNoFree()) | 
|  | return ChangeStatus::UNCHANGED; | 
|  |  | 
|  | Value &AssociatedValue = getIRPosition().getAssociatedValue(); | 
|  | auto Pred = [&](const Use &U, bool &Follow) -> bool { | 
|  | Instruction *UserI = cast<Instruction>(U.getUser()); | 
|  | if (auto *CB = dyn_cast<CallBase>(UserI)) { | 
|  | if (CB->isBundleOperand(&U)) | 
|  | return false; | 
|  | if (!CB->isArgOperand(&U)) | 
|  | return true; | 
|  | unsigned ArgNo = CB->getArgOperandNo(&U); | 
|  |  | 
|  | const auto &NoFreeArg = A.getAAFor<AANoFree>( | 
|  | *this, IRPosition::callsite_argument(*CB, ArgNo)); | 
|  | return NoFreeArg.isAssumedNoFree(); | 
|  | } | 
|  |  | 
|  | if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) || | 
|  | isa<PHINode>(UserI) || isa<SelectInst>(UserI)) { | 
|  | Follow = true; | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | // Unknown user. | 
|  | return false; | 
|  | }; | 
|  | if (!A.checkForAllUses(Pred, *this, AssociatedValue)) | 
|  | return indicatePessimisticFixpoint(); | 
|  |  | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// NoFree attribute for a call site argument. | 
|  | struct AANoFreeArgument final : AANoFreeFloating { | 
|  | AANoFreeArgument(const IRPosition &IRP) : AANoFreeFloating(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) } | 
|  | }; | 
|  |  | 
|  | /// NoFree attribute for call site arguments. | 
|  | struct AANoFreeCallSiteArgument final : AANoFreeFloating { | 
|  | AANoFreeCallSiteArgument(const IRPosition &IRP) : AANoFreeFloating(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | // TODO: Once we have call site specific value information we can provide | 
|  | //       call site specific liveness information and then it makes | 
|  | //       sense to specialize attributes for call sites arguments instead of | 
|  | //       redirecting requests to the callee argument. | 
|  | Argument *Arg = getAssociatedArgument(); | 
|  | if (!Arg) | 
|  | return indicatePessimisticFixpoint(); | 
|  | const IRPosition &ArgPos = IRPosition::argument(*Arg); | 
|  | auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos); | 
|  | return clampStateAndIndicateChange( | 
|  | getState(), static_cast<const AANoFree::StateType &>(ArgAA.getState())); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)}; | 
|  | }; | 
|  |  | 
|  | /// NoFree attribute for function return value. | 
|  | struct AANoFreeReturned final : AANoFreeFloating { | 
|  | AANoFreeReturned(const IRPosition &IRP) : AANoFreeFloating(IRP) { | 
|  | llvm_unreachable("NoFree is not applicable to function returns!"); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | llvm_unreachable("NoFree is not applicable to function returns!"); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | llvm_unreachable("NoFree is not applicable to function returns!"); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override {} | 
|  | }; | 
|  |  | 
|  | /// NoFree attribute deduction for a call site return value. | 
|  | struct AANoFreeCallSiteReturned final : AANoFreeFloating { | 
|  | AANoFreeCallSiteReturned(const IRPosition &IRP) : AANoFreeFloating(IRP) {} | 
|  |  | 
|  | ChangeStatus manifest(Attributor &A) override { | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) } | 
|  | }; | 
|  |  | 
|  | /// ------------------------ NonNull Argument Attribute ------------------------ | 
|  | static int64_t getKnownNonNullAndDerefBytesForUse( | 
|  | Attributor &A, AbstractAttribute &QueryingAA, Value &AssociatedValue, | 
|  | const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) { | 
|  | TrackUse = false; | 
|  |  | 
|  | const Value *UseV = U->get(); | 
|  | if (!UseV->getType()->isPointerTy()) | 
|  | return 0; | 
|  |  | 
|  | Type *PtrTy = UseV->getType(); | 
|  | const Function *F = I->getFunction(); | 
|  | bool NullPointerIsDefined = | 
|  | F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true; | 
|  | const DataLayout &DL = A.getInfoCache().getDL(); | 
|  | if (ImmutableCallSite ICS = ImmutableCallSite(I)) { | 
|  | if (ICS.isBundleOperand(U)) | 
|  | return 0; | 
|  |  | 
|  | if (ICS.isCallee(U)) { | 
|  | IsNonNull |= !NullPointerIsDefined; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned ArgNo = ICS.getArgumentNo(U); | 
|  | IRPosition IRP = IRPosition::callsite_argument(ICS, ArgNo); | 
|  | // As long as we only use known information there is no need to track | 
|  | // dependences here. | 
|  | auto &DerefAA = A.getAAFor<AADereferenceable>(QueryingAA, IRP, | 
|  | /* TrackDependence */ false); | 
|  | IsNonNull |= DerefAA.isKnownNonNull(); | 
|  | return DerefAA.getKnownDereferenceableBytes(); | 
|  | } | 
|  |  | 
|  | // We need to follow common pointer manipulation uses to the accesses they | 
|  | // feed into. We can try to be smart to avoid looking through things we do not | 
|  | // like for now, e.g., non-inbounds GEPs. | 
|  | if (isa<CastInst>(I)) { | 
|  | TrackUse = true; | 
|  | return 0; | 
|  | } | 
|  | if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) | 
|  | if (GEP->hasAllConstantIndices()) { | 
|  | TrackUse = true; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int64_t Offset; | 
|  | if (const Value *Base = getBasePointerOfAccessPointerOperand(I, Offset, DL)) { | 
|  | if (Base == &AssociatedValue && getPointerOperand(I) == UseV) { | 
|  | int64_t DerefBytes = | 
|  | (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()) + Offset; | 
|  |  | 
|  | IsNonNull |= !NullPointerIsDefined; | 
|  | return std::max(int64_t(0), DerefBytes); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Corner case when an offset is 0. | 
|  | if (const Value *Base = getBasePointerOfAccessPointerOperand( | 
|  | I, Offset, DL, /*AllowNonInbounds*/ true)) { | 
|  | if (Offset == 0 && Base == &AssociatedValue && | 
|  | getPointerOperand(I) == UseV) { | 
|  | int64_t DerefBytes = | 
|  | (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()); | 
|  | IsNonNull |= !NullPointerIsDefined; | 
|  | return std::max(int64_t(0), DerefBytes); | 
|  | } | 
|  | } | 
|  | if (const Value *Base = | 
|  | GetPointerBaseWithConstantOffset(UseV, Offset, DL, | 
|  | /*AllowNonInbounds*/ false)) { | 
|  | if (Base == &AssociatedValue) { | 
|  | // As long as we only use known information there is no need to track | 
|  | // dependences here. | 
|  | auto &DerefAA = A.getAAFor<AADereferenceable>( | 
|  | QueryingAA, IRPosition::value(*Base), /* TrackDependence */ false); | 
|  | IsNonNull |= (!NullPointerIsDefined && DerefAA.isKnownNonNull()); | 
|  | IsNonNull |= (!NullPointerIsDefined && (Offset != 0)); | 
|  | int64_t DerefBytes = DerefAA.getKnownDereferenceableBytes(); | 
|  | return std::max(int64_t(0), DerefBytes - std::max(int64_t(0), Offset)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct AANonNullImpl : AANonNull { | 
|  | AANonNullImpl(const IRPosition &IRP) | 
|  | : AANonNull(IRP), | 
|  | NullIsDefined(NullPointerIsDefined( | 
|  | getAnchorScope(), | 
|  | getAssociatedValue().getType()->getPointerAddressSpace())) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | if (!NullIsDefined && | 
|  | hasAttr({Attribute::NonNull, Attribute::Dereferenceable})) | 
|  | indicateOptimisticFixpoint(); | 
|  | else if (isa<ConstantPointerNull>(getAssociatedValue())) | 
|  | indicatePessimisticFixpoint(); | 
|  | else | 
|  | AANonNull::initialize(A); | 
|  | } | 
|  |  | 
|  | /// See AAFromMustBeExecutedContext | 
|  | bool followUse(Attributor &A, const Use *U, const Instruction *I) { | 
|  | bool IsNonNull = false; | 
|  | bool TrackUse = false; | 
|  | getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I, | 
|  | IsNonNull, TrackUse); | 
|  | setKnown(IsNonNull); | 
|  | return TrackUse; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::getAsStr(). | 
|  | const std::string getAsStr() const override { | 
|  | return getAssumed() ? "nonnull" : "may-null"; | 
|  | } | 
|  |  | 
|  | /// Flag to determine if the underlying value can be null and still allow | 
|  | /// valid accesses. | 
|  | const bool NullIsDefined; | 
|  | }; | 
|  |  | 
|  | /// NonNull attribute for a floating value. | 
|  | struct AANonNullFloating | 
|  | : AAFromMustBeExecutedContext<AANonNull, AANonNullImpl> { | 
|  | using Base = AAFromMustBeExecutedContext<AANonNull, AANonNullImpl>; | 
|  | AANonNullFloating(const IRPosition &IRP) : Base(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | ChangeStatus Change = Base::updateImpl(A); | 
|  | if (isKnownNonNull()) | 
|  | return Change; | 
|  |  | 
|  | if (!NullIsDefined) { | 
|  | const auto &DerefAA = | 
|  | A.getAAFor<AADereferenceable>(*this, getIRPosition()); | 
|  | if (DerefAA.getAssumedDereferenceableBytes()) | 
|  | return Change; | 
|  | } | 
|  |  | 
|  | const DataLayout &DL = A.getDataLayout(); | 
|  |  | 
|  | DominatorTree *DT = nullptr; | 
|  | InformationCache &InfoCache = A.getInfoCache(); | 
|  | if (const Function *Fn = getAnchorScope()) | 
|  | DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn); | 
|  |  | 
|  | auto VisitValueCB = [&](Value &V, AANonNull::StateType &T, | 
|  | bool Stripped) -> bool { | 
|  | const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V)); | 
|  | if (!Stripped && this == &AA) { | 
|  | if (!isKnownNonZero(&V, DL, 0, /* TODO: AC */ nullptr, getCtxI(), DT)) | 
|  | T.indicatePessimisticFixpoint(); | 
|  | } else { | 
|  | // Use abstract attribute information. | 
|  | const AANonNull::StateType &NS = | 
|  | static_cast<const AANonNull::StateType &>(AA.getState()); | 
|  | T ^= NS; | 
|  | } | 
|  | return T.isValidState(); | 
|  | }; | 
|  |  | 
|  | StateType T; | 
|  | if (!genericValueTraversal<AANonNull, StateType>(A, getIRPosition(), *this, | 
|  | T, VisitValueCB)) | 
|  | return indicatePessimisticFixpoint(); | 
|  |  | 
|  | return clampStateAndIndicateChange(getState(), T); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) } | 
|  | }; | 
|  |  | 
|  | /// NonNull attribute for function return value. | 
|  | struct AANonNullReturned final | 
|  | : AAReturnedFromReturnedValues<AANonNull, AANonNullImpl> { | 
|  | AANonNullReturned(const IRPosition &IRP) | 
|  | : AAReturnedFromReturnedValues<AANonNull, AANonNullImpl>(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) } | 
|  | }; | 
|  |  | 
|  | /// NonNull attribute for function argument. | 
|  | struct AANonNullArgument final | 
|  | : AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<AANonNull, | 
|  | AANonNullImpl> { | 
|  | AANonNullArgument(const IRPosition &IRP) | 
|  | : AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<AANonNull, | 
|  | AANonNullImpl>( | 
|  | IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) } | 
|  | }; | 
|  |  | 
|  | struct AANonNullCallSiteArgument final : AANonNullFloating { | 
|  | AANonNullCallSiteArgument(const IRPosition &IRP) : AANonNullFloating(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) } | 
|  | }; | 
|  |  | 
|  | /// NonNull attribute for a call site return position. | 
|  | struct AANonNullCallSiteReturned final | 
|  | : AACallSiteReturnedFromReturnedAndMustBeExecutedContext<AANonNull, | 
|  | AANonNullImpl> { | 
|  | AANonNullCallSiteReturned(const IRPosition &IRP) | 
|  | : AACallSiteReturnedFromReturnedAndMustBeExecutedContext<AANonNull, | 
|  | AANonNullImpl>( | 
|  | IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) } | 
|  | }; | 
|  |  | 
|  | /// ------------------------ No-Recurse Attributes ---------------------------- | 
|  |  | 
|  | struct AANoRecurseImpl : public AANoRecurse { | 
|  | AANoRecurseImpl(const IRPosition &IRP) : AANoRecurse(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::getAsStr() | 
|  | const std::string getAsStr() const override { | 
|  | return getAssumed() ? "norecurse" : "may-recurse"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct AANoRecurseFunction final : AANoRecurseImpl { | 
|  | AANoRecurseFunction(const IRPosition &IRP) : AANoRecurseImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | AANoRecurseImpl::initialize(A); | 
|  | if (const Function *F = getAnchorScope()) | 
|  | if (A.getInfoCache().getSccSize(*F) == 1) | 
|  | return; | 
|  | indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  |  | 
|  | auto CheckForNoRecurse = [&](Instruction &I) { | 
|  | ImmutableCallSite ICS(&I); | 
|  | if (ICS.hasFnAttr(Attribute::NoRecurse)) | 
|  | return true; | 
|  |  | 
|  | const auto &NoRecurseAA = | 
|  | A.getAAFor<AANoRecurse>(*this, IRPosition::callsite_function(ICS)); | 
|  | if (!NoRecurseAA.isAssumedNoRecurse()) | 
|  | return false; | 
|  |  | 
|  | // Recursion to the same function | 
|  | if (ICS.getCalledFunction() == getAnchorScope()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | if (!A.checkForAllCallLikeInstructions(CheckForNoRecurse, *this)) | 
|  | return indicatePessimisticFixpoint(); | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) } | 
|  | }; | 
|  |  | 
|  | /// NoRecurse attribute deduction for a call sites. | 
|  | struct AANoRecurseCallSite final : AANoRecurseImpl { | 
|  | AANoRecurseCallSite(const IRPosition &IRP) : AANoRecurseImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | AANoRecurseImpl::initialize(A); | 
|  | Function *F = getAssociatedFunction(); | 
|  | if (!F) | 
|  | indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | // TODO: Once we have call site specific value information we can provide | 
|  | //       call site specific liveness information and then it makes | 
|  | //       sense to specialize attributes for call sites arguments instead of | 
|  | //       redirecting requests to the callee argument. | 
|  | Function *F = getAssociatedFunction(); | 
|  | const IRPosition &FnPos = IRPosition::function(*F); | 
|  | auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos); | 
|  | return clampStateAndIndicateChange( | 
|  | getState(), | 
|  | static_cast<const AANoRecurse::StateType &>(FnAA.getState())); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); } | 
|  | }; | 
|  |  | 
|  | /// ------------------------ Will-Return Attributes ---------------------------- | 
|  |  | 
|  | // Helper function that checks whether a function has any cycle. | 
|  | // TODO: Replace with more efficent code | 
|  | static bool containsCycle(Function &F) { | 
|  | SmallPtrSet<BasicBlock *, 32> Visited; | 
|  |  | 
|  | // Traverse BB by dfs and check whether successor is already visited. | 
|  | for (BasicBlock *BB : depth_first(&F)) { | 
|  | Visited.insert(BB); | 
|  | for (auto *SuccBB : successors(BB)) { | 
|  | if (Visited.count(SuccBB)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Helper function that checks the function have a loop which might become an | 
|  | // endless loop | 
|  | // FIXME: Any cycle is regarded as endless loop for now. | 
|  | //        We have to allow some patterns. | 
|  | static bool containsPossiblyEndlessLoop(Function *F) { | 
|  | return !F || !F->hasExactDefinition() || containsCycle(*F); | 
|  | } | 
|  |  | 
|  | struct AAWillReturnImpl : public AAWillReturn { | 
|  | AAWillReturnImpl(const IRPosition &IRP) : AAWillReturn(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | AAWillReturn::initialize(A); | 
|  |  | 
|  | Function *F = getAssociatedFunction(); | 
|  | if (containsPossiblyEndlessLoop(F)) | 
|  | indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | auto CheckForWillReturn = [&](Instruction &I) { | 
|  | IRPosition IPos = IRPosition::callsite_function(ImmutableCallSite(&I)); | 
|  | const auto &WillReturnAA = A.getAAFor<AAWillReturn>(*this, IPos); | 
|  | if (WillReturnAA.isKnownWillReturn()) | 
|  | return true; | 
|  | if (!WillReturnAA.isAssumedWillReturn()) | 
|  | return false; | 
|  | const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(*this, IPos); | 
|  | return NoRecurseAA.isAssumedNoRecurse(); | 
|  | }; | 
|  |  | 
|  | if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this)) | 
|  | return indicatePessimisticFixpoint(); | 
|  |  | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::getAsStr() | 
|  | const std::string getAsStr() const override { | 
|  | return getAssumed() ? "willreturn" : "may-noreturn"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct AAWillReturnFunction final : AAWillReturnImpl { | 
|  | AAWillReturnFunction(const IRPosition &IRP) : AAWillReturnImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) } | 
|  | }; | 
|  |  | 
|  | /// WillReturn attribute deduction for a call sites. | 
|  | struct AAWillReturnCallSite final : AAWillReturnImpl { | 
|  | AAWillReturnCallSite(const IRPosition &IRP) : AAWillReturnImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | AAWillReturnImpl::initialize(A); | 
|  | Function *F = getAssociatedFunction(); | 
|  | if (!F) | 
|  | indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | // TODO: Once we have call site specific value information we can provide | 
|  | //       call site specific liveness information and then it makes | 
|  | //       sense to specialize attributes for call sites arguments instead of | 
|  | //       redirecting requests to the callee argument. | 
|  | Function *F = getAssociatedFunction(); | 
|  | const IRPosition &FnPos = IRPosition::function(*F); | 
|  | auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos); | 
|  | return clampStateAndIndicateChange( | 
|  | getState(), | 
|  | static_cast<const AAWillReturn::StateType &>(FnAA.getState())); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); } | 
|  | }; | 
|  |  | 
|  | /// -------------------AAReachability Attribute-------------------------- | 
|  |  | 
|  | struct AAReachabilityImpl : AAReachability { | 
|  | AAReachabilityImpl(const IRPosition &IRP) : AAReachability(IRP) {} | 
|  |  | 
|  | const std::string getAsStr() const override { | 
|  | // TODO: Return the number of reachable queries. | 
|  | return "reachable"; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | return indicatePessimisticFixpoint(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct AAReachabilityFunction final : public AAReachabilityImpl { | 
|  | AAReachabilityFunction(const IRPosition &IRP) : AAReachabilityImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); } | 
|  | }; | 
|  |  | 
|  | /// ------------------------ NoAlias Argument Attribute ------------------------ | 
|  |  | 
|  | struct AANoAliasImpl : AANoAlias { | 
|  | AANoAliasImpl(const IRPosition &IRP) : AANoAlias(IRP) {} | 
|  |  | 
|  | const std::string getAsStr() const override { | 
|  | return getAssumed() ? "noalias" : "may-alias"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// NoAlias attribute for a floating value. | 
|  | struct AANoAliasFloating final : AANoAliasImpl { | 
|  | AANoAliasFloating(const IRPosition &IRP) : AANoAliasImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | AANoAliasImpl::initialize(A); | 
|  | Value &Val = getAssociatedValue(); | 
|  | if (isa<AllocaInst>(Val)) | 
|  | indicateOptimisticFixpoint(); | 
|  | if (isa<ConstantPointerNull>(Val) && | 
|  | Val.getType()->getPointerAddressSpace() == 0) | 
|  | indicateOptimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | // TODO: Implement this. | 
|  | return indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { | 
|  | STATS_DECLTRACK_FLOATING_ATTR(noalias) | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// NoAlias attribute for an argument. | 
|  | struct AANoAliasArgument final | 
|  | : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> { | 
|  | AANoAliasArgument(const IRPosition &IRP) | 
|  | : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) } | 
|  | }; | 
|  |  | 
|  | struct AANoAliasCallSiteArgument final : AANoAliasImpl { | 
|  | AANoAliasCallSiteArgument(const IRPosition &IRP) : AANoAliasImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | // See callsite argument attribute and callee argument attribute. | 
|  | ImmutableCallSite ICS(&getAnchorValue()); | 
|  | if (ICS.paramHasAttr(getArgNo(), Attribute::NoAlias)) | 
|  | indicateOptimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | // We can deduce "noalias" if the following conditions hold. | 
|  | // (i)   Associated value is assumed to be noalias in the definition. | 
|  | // (ii)  Associated value is assumed to be no-capture in all the uses | 
|  | //       possibly executed before this callsite. | 
|  | // (iii) There is no other pointer argument which could alias with the | 
|  | //       value. | 
|  |  | 
|  | const Value &V = getAssociatedValue(); | 
|  | const IRPosition IRP = IRPosition::value(V); | 
|  |  | 
|  | // (i) Check whether noalias holds in the definition. | 
|  |  | 
|  | auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP); | 
|  |  | 
|  | if (!NoAliasAA.isAssumedNoAlias()) | 
|  | return indicatePessimisticFixpoint(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "[Attributor][AANoAliasCSArg] " << V | 
|  | << " is assumed NoAlias in the definition\n"); | 
|  |  | 
|  | // (ii) Check whether the value is captured in the scope using AANoCapture. | 
|  | //      FIXME: This is conservative though, it is better to look at CFG and | 
|  | //             check only uses possibly executed before this callsite. | 
|  |  | 
|  | auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, IRP); | 
|  | if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "[Attributor][AANoAliasCSArg] " << V | 
|  | << " cannot be noalias as it is potentially captured\n"); | 
|  | return indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | // (iii) Check there is no other pointer argument which could alias with the | 
|  | // value. | 
|  | ImmutableCallSite ICS(&getAnchorValue()); | 
|  | for (unsigned i = 0; i < ICS.getNumArgOperands(); i++) { | 
|  | if (getArgNo() == (int)i) | 
|  | continue; | 
|  | const Value *ArgOp = ICS.getArgOperand(i); | 
|  | if (!ArgOp->getType()->isPointerTy()) | 
|  | continue; | 
|  |  | 
|  | if (const Function *F = getAnchorScope()) { | 
|  | if (AAResults *AAR = A.getInfoCache().getAAResultsForFunction(*F)) { | 
|  | bool IsAliasing = AAR->isNoAlias(&getAssociatedValue(), ArgOp); | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "[Attributor][NoAliasCSArg] Check alias between " | 
|  | "callsite arguments " | 
|  | << AAR->isNoAlias(&getAssociatedValue(), ArgOp) << " " | 
|  | << getAssociatedValue() << " " << *ArgOp << " => " | 
|  | << (IsAliasing ? "" : "no-") << "alias \n"); | 
|  |  | 
|  | if (IsAliasing) | 
|  | continue; | 
|  | } | 
|  | } | 
|  | return indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) } | 
|  | }; | 
|  |  | 
|  | /// NoAlias attribute for function return value. | 
|  | struct AANoAliasReturned final : AANoAliasImpl { | 
|  | AANoAliasReturned(const IRPosition &IRP) : AANoAliasImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | virtual ChangeStatus updateImpl(Attributor &A) override { | 
|  |  | 
|  | auto CheckReturnValue = [&](Value &RV) -> bool { | 
|  | if (Constant *C = dyn_cast<Constant>(&RV)) | 
|  | if (C->isNullValue() || isa<UndefValue>(C)) | 
|  | return true; | 
|  |  | 
|  | /// For now, we can only deduce noalias if we have call sites. | 
|  | /// FIXME: add more support. | 
|  | ImmutableCallSite ICS(&RV); | 
|  | if (!ICS) | 
|  | return false; | 
|  |  | 
|  | const IRPosition &RVPos = IRPosition::value(RV); | 
|  | const auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, RVPos); | 
|  | if (!NoAliasAA.isAssumedNoAlias()) | 
|  | return false; | 
|  |  | 
|  | const auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, RVPos); | 
|  | return NoCaptureAA.isAssumedNoCaptureMaybeReturned(); | 
|  | }; | 
|  |  | 
|  | if (!A.checkForAllReturnedValues(CheckReturnValue, *this)) | 
|  | return indicatePessimisticFixpoint(); | 
|  |  | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) } | 
|  | }; | 
|  |  | 
|  | /// NoAlias attribute deduction for a call site return value. | 
|  | struct AANoAliasCallSiteReturned final : AANoAliasImpl { | 
|  | AANoAliasCallSiteReturned(const IRPosition &IRP) : AANoAliasImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | AANoAliasImpl::initialize(A); | 
|  | Function *F = getAssociatedFunction(); | 
|  | if (!F) | 
|  | indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | // TODO: Once we have call site specific value information we can provide | 
|  | //       call site specific liveness information and then it makes | 
|  | //       sense to specialize attributes for call sites arguments instead of | 
|  | //       redirecting requests to the callee argument. | 
|  | Function *F = getAssociatedFunction(); | 
|  | const IRPosition &FnPos = IRPosition::returned(*F); | 
|  | auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos); | 
|  | return clampStateAndIndicateChange( | 
|  | getState(), static_cast<const AANoAlias::StateType &>(FnAA.getState())); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); } | 
|  | }; | 
|  |  | 
|  | /// -------------------AAIsDead Function Attribute----------------------- | 
|  |  | 
|  | struct AAIsDeadValueImpl : public AAIsDead { | 
|  | AAIsDeadValueImpl(const IRPosition &IRP) : AAIsDead(IRP) {} | 
|  |  | 
|  | /// See AAIsDead::isAssumedDead(). | 
|  | bool isAssumedDead() const override { return getAssumed(); } | 
|  |  | 
|  | /// See AAIsDead::isAssumedDead(BasicBlock *). | 
|  | bool isAssumedDead(const BasicBlock *BB) const override { return false; } | 
|  |  | 
|  | /// See AAIsDead::isKnownDead(BasicBlock *). | 
|  | bool isKnownDead(const BasicBlock *BB) const override { return false; } | 
|  |  | 
|  | /// See AAIsDead::isAssumedDead(Instruction *I). | 
|  | bool isAssumedDead(const Instruction *I) const override { | 
|  | return I == getCtxI() && isAssumedDead(); | 
|  | } | 
|  |  | 
|  | /// See AAIsDead::isKnownDead(Instruction *I). | 
|  | bool isKnownDead(const Instruction *I) const override { | 
|  | return I == getCtxI() && getKnown(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::getAsStr(). | 
|  | const std::string getAsStr() const override { | 
|  | return isAssumedDead() ? "assumed-dead" : "assumed-live"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct AAIsDeadFloating : public AAIsDeadValueImpl { | 
|  | AAIsDeadFloating(const IRPosition &IRP) : AAIsDeadValueImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | if (Instruction *I = dyn_cast<Instruction>(&getAssociatedValue())) | 
|  | if (!wouldInstructionBeTriviallyDead(I)) | 
|  | indicatePessimisticFixpoint(); | 
|  | if (isa<UndefValue>(getAssociatedValue())) | 
|  | indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | auto UsePred = [&](const Use &U, bool &Follow) { | 
|  | Instruction *UserI = cast<Instruction>(U.getUser()); | 
|  | if (CallSite CS = CallSite(UserI)) { | 
|  | if (!CS.isArgOperand(&U)) | 
|  | return false; | 
|  | const IRPosition &CSArgPos = | 
|  | IRPosition::callsite_argument(CS, CS.getArgumentNo(&U)); | 
|  | const auto &CSArgIsDead = A.getAAFor<AAIsDead>(*this, CSArgPos); | 
|  | return CSArgIsDead.isAssumedDead(); | 
|  | } | 
|  | if (ReturnInst *RI = dyn_cast<ReturnInst>(UserI)) { | 
|  | const IRPosition &RetPos = IRPosition::returned(*RI->getFunction()); | 
|  | const auto &RetIsDeadAA = A.getAAFor<AAIsDead>(*this, RetPos); | 
|  | return RetIsDeadAA.isAssumedDead(); | 
|  | } | 
|  | Follow = true; | 
|  | return wouldInstructionBeTriviallyDead(UserI); | 
|  | }; | 
|  |  | 
|  | if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) | 
|  | return indicatePessimisticFixpoint(); | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::manifest(...). | 
|  | ChangeStatus manifest(Attributor &A) override { | 
|  | Value &V = getAssociatedValue(); | 
|  | if (auto *I = dyn_cast<Instruction>(&V)) | 
|  | if (wouldInstructionBeTriviallyDead(I)) { | 
|  | A.deleteAfterManifest(*I); | 
|  | return ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | if (V.use_empty()) | 
|  | return ChangeStatus::UNCHANGED; | 
|  |  | 
|  | UndefValue &UV = *UndefValue::get(V.getType()); | 
|  | bool AnyChange = false; | 
|  | for (Use &U : V.uses()) | 
|  | AnyChange |= A.changeUseAfterManifest(U, UV); | 
|  | return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { | 
|  | STATS_DECLTRACK_FLOATING_ATTR(IsDead) | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct AAIsDeadArgument : public AAIsDeadFloating { | 
|  | AAIsDeadArgument(const IRPosition &IRP) : AAIsDeadFloating(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | if (!getAssociatedFunction()->hasExactDefinition()) | 
|  | indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) } | 
|  | }; | 
|  |  | 
|  | struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl { | 
|  | AAIsDeadCallSiteArgument(const IRPosition &IRP) : AAIsDeadValueImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | if (isa<UndefValue>(getAssociatedValue())) | 
|  | indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | // TODO: Once we have call site specific value information we can provide | 
|  | //       call site specific liveness information and then it makes | 
|  | //       sense to specialize attributes for call sites arguments instead of | 
|  | //       redirecting requests to the callee argument. | 
|  | Argument *Arg = getAssociatedArgument(); | 
|  | if (!Arg) | 
|  | return indicatePessimisticFixpoint(); | 
|  | const IRPosition &ArgPos = IRPosition::argument(*Arg); | 
|  | auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos); | 
|  | return clampStateAndIndicateChange( | 
|  | getState(), static_cast<const AAIsDead::StateType &>(ArgAA.getState())); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::manifest(...). | 
|  | ChangeStatus manifest(Attributor &A) override { | 
|  | CallBase &CB = cast<CallBase>(getAnchorValue()); | 
|  | Use &U = CB.getArgOperandUse(getArgNo()); | 
|  | assert(!isa<UndefValue>(U.get()) && | 
|  | "Expected undef values to be filtered out!"); | 
|  | UndefValue &UV = *UndefValue::get(U->getType()); | 
|  | if (A.changeUseAfterManifest(U, UV)) | 
|  | return ChangeStatus::CHANGED; | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) } | 
|  | }; | 
|  |  | 
|  | struct AAIsDeadReturned : public AAIsDeadValueImpl { | 
|  | AAIsDeadReturned(const IRPosition &IRP) : AAIsDeadValueImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  |  | 
|  | auto PredForCallSite = [&](AbstractCallSite ACS) { | 
|  | if (ACS.isCallbackCall()) | 
|  | return false; | 
|  | const IRPosition &CSRetPos = | 
|  | IRPosition::callsite_returned(ACS.getCallSite()); | 
|  | const auto &RetIsDeadAA = A.getAAFor<AAIsDead>(*this, CSRetPos); | 
|  | return RetIsDeadAA.isAssumedDead(); | 
|  | }; | 
|  |  | 
|  | if (!A.checkForAllCallSites(PredForCallSite, *this, true)) | 
|  | return indicatePessimisticFixpoint(); | 
|  |  | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::manifest(...). | 
|  | ChangeStatus manifest(Attributor &A) override { | 
|  | // TODO: Rewrite the signature to return void? | 
|  | bool AnyChange = false; | 
|  | UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType()); | 
|  | auto RetInstPred = [&](Instruction &I) { | 
|  | ReturnInst &RI = cast<ReturnInst>(I); | 
|  | if (!isa<UndefValue>(RI.getReturnValue())) | 
|  | AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV); | 
|  | return true; | 
|  | }; | 
|  | A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret}); | 
|  | return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) } | 
|  | }; | 
|  |  | 
|  | struct AAIsDeadCallSiteReturned : public AAIsDeadFloating { | 
|  | AAIsDeadCallSiteReturned(const IRPosition &IRP) : AAIsDeadFloating(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(IsDead) } | 
|  | }; | 
|  |  | 
|  | struct AAIsDeadFunction : public AAIsDead { | 
|  | AAIsDeadFunction(const IRPosition &IRP) : AAIsDead(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | const Function *F = getAssociatedFunction(); | 
|  | if (F && !F->isDeclaration()) { | 
|  | ToBeExploredFrom.insert(&F->getEntryBlock().front()); | 
|  | assumeLive(A, F->getEntryBlock()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::getAsStr(). | 
|  | const std::string getAsStr() const override { | 
|  | return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" + | 
|  | std::to_string(getAssociatedFunction()->size()) + "][#TBEP " + | 
|  | std::to_string(ToBeExploredFrom.size()) + "][#KDE " + | 
|  | std::to_string(KnownDeadEnds.size()) + "]"; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::manifest(...). | 
|  | ChangeStatus manifest(Attributor &A) override { | 
|  | assert(getState().isValidState() && | 
|  | "Attempted to manifest an invalid state!"); | 
|  |  | 
|  | ChangeStatus HasChanged = ChangeStatus::UNCHANGED; | 
|  | Function &F = *getAssociatedFunction(); | 
|  |  | 
|  | if (AssumedLiveBlocks.empty()) { | 
|  | A.deleteAfterManifest(F); | 
|  | return ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | // Flag to determine if we can change an invoke to a call assuming the | 
|  | // callee is nounwind. This is not possible if the personality of the | 
|  | // function allows to catch asynchronous exceptions. | 
|  | bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F); | 
|  |  | 
|  | KnownDeadEnds.set_union(ToBeExploredFrom); | 
|  | for (const Instruction *DeadEndI : KnownDeadEnds) { | 
|  | auto *CB = dyn_cast<CallBase>(DeadEndI); | 
|  | if (!CB) | 
|  | continue; | 
|  | const auto &NoReturnAA = | 
|  | A.getAAFor<AANoReturn>(*this, IRPosition::callsite_function(*CB)); | 
|  | bool MayReturn = !NoReturnAA.isAssumedNoReturn(); | 
|  | if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB))) | 
|  | continue; | 
|  | Instruction *I = const_cast<Instruction *>(DeadEndI); | 
|  | BasicBlock *BB = I->getParent(); | 
|  | Instruction *SplitPos = I->getNextNode(); | 
|  | // TODO: mark stuff before unreachable instructions as dead. | 
|  |  | 
|  | if (auto *II = dyn_cast<InvokeInst>(I)) { | 
|  | // If we keep the invoke the split position is at the beginning of the | 
|  | // normal desitination block (it invokes a noreturn function after all). | 
|  | BasicBlock *NormalDestBB = II->getNormalDest(); | 
|  | SplitPos = &NormalDestBB->front(); | 
|  |  | 
|  | /// Invoke is replaced with a call and unreachable is placed after it if | 
|  | /// the callee is nounwind and noreturn. Otherwise, we keep the invoke | 
|  | /// and only place an unreachable in the normal successor. | 
|  | if (Invoke2CallAllowed) { | 
|  | if (II->getCalledFunction()) { | 
|  | const IRPosition &IPos = IRPosition::callsite_function(*II); | 
|  | const auto &AANoUnw = A.getAAFor<AANoUnwind>(*this, IPos); | 
|  | if (AANoUnw.isAssumedNoUnwind()) { | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "[AAIsDead] Replace invoke with call inst\n"); | 
|  | CallInst *CI = createCallMatchingInvoke(II); | 
|  | CI->insertBefore(II); | 
|  | CI->takeName(II); | 
|  | II->replaceAllUsesWith(CI); | 
|  |  | 
|  | // If this is a nounwind + mayreturn invoke we only remove the unwind edge. | 
|  | // This is done by moving the invoke into a new and dead block and connecting | 
|  | // the normal destination of the invoke with a branch that follows the call | 
|  | // replacement we created above. | 
|  | if (MayReturn) { | 
|  | BasicBlock *NewDeadBB = SplitBlock(BB, II, nullptr, nullptr, nullptr, ".i2c"); | 
|  | assert(isa<BranchInst>(BB->getTerminator()) && | 
|  | BB->getTerminator()->getNumSuccessors() == 1 && | 
|  | BB->getTerminator()->getSuccessor(0) == NewDeadBB); | 
|  | new UnreachableInst(I->getContext(), NewDeadBB); | 
|  | BB->getTerminator()->setOperand(0, NormalDestBB); | 
|  | A.deleteAfterManifest(*II); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We do not need an invoke (II) but instead want a call followed | 
|  | // by an unreachable. However, we do not remove II as other | 
|  | // abstract attributes might have it cached as part of their | 
|  | // results. Given that we modify the CFG anyway, we simply keep II | 
|  | // around but in a new dead block. To avoid II being live through | 
|  | // a different edge we have to ensure the block we place it in is | 
|  | // only reached from the current block of II and then not reached | 
|  | // at all when we insert the unreachable. | 
|  | SplitBlockPredecessors(NormalDestBB, {BB}, ".i2c"); | 
|  | SplitPos = CI->getNextNode(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SplitPos == &NormalDestBB->front()) { | 
|  | // If this is an invoke of a noreturn function the edge to the normal | 
|  | // destination block is dead but not necessarily the block itself. | 
|  | // TODO: We need to move to an edge based system during deduction and | 
|  | //       also manifest. | 
|  | assert(!NormalDestBB->isLandingPad() && | 
|  | "Expected the normal destination not to be a landingpad!"); | 
|  | if (NormalDestBB->getUniquePredecessor() == BB) { | 
|  | assumeLive(A, *NormalDestBB); | 
|  | } else { | 
|  | BasicBlock *SplitBB = | 
|  | SplitBlockPredecessors(NormalDestBB, {BB}, ".dead"); | 
|  | // The split block is live even if it contains only an unreachable | 
|  | // instruction at the end. | 
|  | assumeLive(A, *SplitBB); | 
|  | SplitPos = SplitBB->getTerminator(); | 
|  | HasChanged = ChangeStatus::CHANGED; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isa_and_nonnull<UnreachableInst>(SplitPos)) | 
|  | continue; | 
|  |  | 
|  | BB = SplitPos->getParent(); | 
|  | SplitBlock(BB, SplitPos); | 
|  | changeToUnreachable(BB->getTerminator(), /* UseLLVMTrap */ false); | 
|  | HasChanged = ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | for (BasicBlock &BB : F) | 
|  | if (!AssumedLiveBlocks.count(&BB)) | 
|  | A.deleteAfterManifest(BB); | 
|  |  | 
|  | return HasChanged; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override; | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override {} | 
|  |  | 
|  | /// Returns true if the function is assumed dead. | 
|  | bool isAssumedDead() const override { return false; } | 
|  |  | 
|  | /// See AAIsDead::isAssumedDead(BasicBlock *). | 
|  | bool isAssumedDead(const BasicBlock *BB) const override { | 
|  | assert(BB->getParent() == getAssociatedFunction() && | 
|  | "BB must be in the same anchor scope function."); | 
|  |  | 
|  | if (!getAssumed()) | 
|  | return false; | 
|  | return !AssumedLiveBlocks.count(BB); | 
|  | } | 
|  |  | 
|  | /// See AAIsDead::isKnownDead(BasicBlock *). | 
|  | bool isKnownDead(const BasicBlock *BB) const override { | 
|  | return getKnown() && isAssumedDead(BB); | 
|  | } | 
|  |  | 
|  | /// See AAIsDead::isAssumed(Instruction *I). | 
|  | bool isAssumedDead(const Instruction *I) const override { | 
|  | assert(I->getParent()->getParent() == getAssociatedFunction() && | 
|  | "Instruction must be in the same anchor scope function."); | 
|  |  | 
|  | if (!getAssumed()) | 
|  | return false; | 
|  |  | 
|  | // If it is not in AssumedLiveBlocks then it for sure dead. | 
|  | // Otherwise, it can still be after noreturn call in a live block. | 
|  | if (!AssumedLiveBlocks.count(I->getParent())) | 
|  | return true; | 
|  |  | 
|  | // If it is not after a liveness barrier it is live. | 
|  | const Instruction *PrevI = I->getPrevNode(); | 
|  | while (PrevI) { | 
|  | if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI)) | 
|  | return true; | 
|  | PrevI = PrevI->getPrevNode(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// See AAIsDead::isKnownDead(Instruction *I). | 
|  | bool isKnownDead(const Instruction *I) const override { | 
|  | return getKnown() && isAssumedDead(I); | 
|  | } | 
|  |  | 
|  | /// Determine if \p F might catch asynchronous exceptions. | 
|  | static bool mayCatchAsynchronousExceptions(const Function &F) { | 
|  | return F.hasPersonalityFn() && !canSimplifyInvokeNoUnwind(&F); | 
|  | } | 
|  |  | 
|  | /// Assume \p BB is (partially) live now and indicate to the Attributor \p A | 
|  | /// that internal function called from \p BB should now be looked at. | 
|  | bool assumeLive(Attributor &A, const BasicBlock &BB) { | 
|  | if (!AssumedLiveBlocks.insert(&BB).second) | 
|  | return false; | 
|  |  | 
|  | // We assume that all of BB is (probably) live now and if there are calls to | 
|  | // internal functions we will assume that those are now live as well. This | 
|  | // is a performance optimization for blocks with calls to a lot of internal | 
|  | // functions. It can however cause dead functions to be treated as live. | 
|  | for (const Instruction &I : BB) | 
|  | if (ImmutableCallSite ICS = ImmutableCallSite(&I)) | 
|  | if (const Function *F = ICS.getCalledFunction()) | 
|  | if (F->hasLocalLinkage()) | 
|  | A.markLiveInternalFunction(*F); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Collection of instructions that need to be explored again, e.g., we | 
|  | /// did assume they do not transfer control to (one of their) successors. | 
|  | SmallSetVector<const Instruction *, 8> ToBeExploredFrom; | 
|  |  | 
|  | /// Collection of instructions that are known to not transfer control. | 
|  | SmallSetVector<const Instruction *, 8> KnownDeadEnds; | 
|  |  | 
|  | /// Collection of all assumed live BasicBlocks. | 
|  | DenseSet<const BasicBlock *> AssumedLiveBlocks; | 
|  | }; | 
|  |  | 
|  | static bool | 
|  | identifyAliveSuccessors(Attributor &A, const CallBase &CB, | 
|  | AbstractAttribute &AA, | 
|  | SmallVectorImpl<const Instruction *> &AliveSuccessors) { | 
|  | const IRPosition &IPos = IRPosition::callsite_function(CB); | 
|  |  | 
|  | const auto &NoReturnAA = A.getAAFor<AANoReturn>(AA, IPos); | 
|  | if (NoReturnAA.isAssumedNoReturn()) | 
|  | return !NoReturnAA.isKnownNoReturn(); | 
|  | if (CB.isTerminator()) | 
|  | AliveSuccessors.push_back(&CB.getSuccessor(0)->front()); | 
|  | else | 
|  | AliveSuccessors.push_back(CB.getNextNode()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | identifyAliveSuccessors(Attributor &A, const InvokeInst &II, | 
|  | AbstractAttribute &AA, | 
|  | SmallVectorImpl<const Instruction *> &AliveSuccessors) { | 
|  | bool UsedAssumedInformation = | 
|  | identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors); | 
|  |  | 
|  | // First, determine if we can change an invoke to a call assuming the | 
|  | // callee is nounwind. This is not possible if the personality of the | 
|  | // function allows to catch asynchronous exceptions. | 
|  | if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) { | 
|  | AliveSuccessors.push_back(&II.getUnwindDest()->front()); | 
|  | } else { | 
|  | const IRPosition &IPos = IRPosition::callsite_function(II); | 
|  | const auto &AANoUnw = A.getAAFor<AANoUnwind>(AA, IPos); | 
|  | if (AANoUnw.isAssumedNoUnwind()) { | 
|  | UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind(); | 
|  | } else { | 
|  | AliveSuccessors.push_back(&II.getUnwindDest()->front()); | 
|  | } | 
|  | } | 
|  | return UsedAssumedInformation; | 
|  | } | 
|  |  | 
|  | static Optional<ConstantInt *> | 
|  | getAssumedConstant(Attributor &A, const Value &V, AbstractAttribute &AA, | 
|  | bool &UsedAssumedInformation) { | 
|  | const auto &ValueSimplifyAA = | 
|  | A.getAAFor<AAValueSimplify>(AA, IRPosition::value(V)); | 
|  | Optional<Value *> SimplifiedV = ValueSimplifyAA.getAssumedSimplifiedValue(A); | 
|  | UsedAssumedInformation |= !ValueSimplifyAA.isKnown(); | 
|  | if (!SimplifiedV.hasValue()) | 
|  | return llvm::None; | 
|  | if (isa_and_nonnull<UndefValue>(SimplifiedV.getValue())) | 
|  | return llvm::None; | 
|  | return dyn_cast_or_null<ConstantInt>(SimplifiedV.getValue()); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | identifyAliveSuccessors(Attributor &A, const BranchInst &BI, | 
|  | AbstractAttribute &AA, | 
|  | SmallVectorImpl<const Instruction *> &AliveSuccessors) { | 
|  | bool UsedAssumedInformation = false; | 
|  | if (BI.getNumSuccessors() == 1) { | 
|  | AliveSuccessors.push_back(&BI.getSuccessor(0)->front()); | 
|  | } else { | 
|  | Optional<ConstantInt *> CI = | 
|  | getAssumedConstant(A, *BI.getCondition(), AA, UsedAssumedInformation); | 
|  | if (!CI.hasValue()) { | 
|  | // No value yet, assume both edges are dead. | 
|  | } else if (CI.getValue()) { | 
|  | const BasicBlock *SuccBB = | 
|  | BI.getSuccessor(1 - CI.getValue()->getZExtValue()); | 
|  | AliveSuccessors.push_back(&SuccBB->front()); | 
|  | } else { | 
|  | AliveSuccessors.push_back(&BI.getSuccessor(0)->front()); | 
|  | AliveSuccessors.push_back(&BI.getSuccessor(1)->front()); | 
|  | UsedAssumedInformation = false; | 
|  | } | 
|  | } | 
|  | return UsedAssumedInformation; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | identifyAliveSuccessors(Attributor &A, const SwitchInst &SI, | 
|  | AbstractAttribute &AA, | 
|  | SmallVectorImpl<const Instruction *> &AliveSuccessors) { | 
|  | bool UsedAssumedInformation = false; | 
|  | Optional<ConstantInt *> CI = | 
|  | getAssumedConstant(A, *SI.getCondition(), AA, UsedAssumedInformation); | 
|  | if (!CI.hasValue()) { | 
|  | // No value yet, assume all edges are dead. | 
|  | } else if (CI.getValue()) { | 
|  | for (auto &CaseIt : SI.cases()) { | 
|  | if (CaseIt.getCaseValue() == CI.getValue()) { | 
|  | AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front()); | 
|  | return UsedAssumedInformation; | 
|  | } | 
|  | } | 
|  | AliveSuccessors.push_back(&SI.getDefaultDest()->front()); | 
|  | return UsedAssumedInformation; | 
|  | } else { | 
|  | for (const BasicBlock *SuccBB : successors(SI.getParent())) | 
|  | AliveSuccessors.push_back(&SuccBB->front()); | 
|  | } | 
|  | return UsedAssumedInformation; | 
|  | } | 
|  |  | 
|  | ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) { | 
|  | ChangeStatus Change = ChangeStatus::UNCHANGED; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/" | 
|  | << getAssociatedFunction()->size() << "] BBs and " | 
|  | << ToBeExploredFrom.size() << " exploration points and " | 
|  | << KnownDeadEnds.size() << " known dead ends\n"); | 
|  |  | 
|  | // Copy and clear the list of instructions we need to explore from. It is | 
|  | // refilled with instructions the next update has to look at. | 
|  | SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(), | 
|  | ToBeExploredFrom.end()); | 
|  | decltype(ToBeExploredFrom) NewToBeExploredFrom; | 
|  |  | 
|  | SmallVector<const Instruction *, 8> AliveSuccessors; | 
|  | while (!Worklist.empty()) { | 
|  | const Instruction *I = Worklist.pop_back_val(); | 
|  | LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n"); | 
|  |  | 
|  | AliveSuccessors.clear(); | 
|  |  | 
|  | bool UsedAssumedInformation = false; | 
|  | switch (I->getOpcode()) { | 
|  | // TODO: look for (assumed) UB to backwards propagate "deadness". | 
|  | default: | 
|  | if (I->isTerminator()) { | 
|  | for (const BasicBlock *SuccBB : successors(I->getParent())) | 
|  | AliveSuccessors.push_back(&SuccBB->front()); | 
|  | } else { | 
|  | AliveSuccessors.push_back(I->getNextNode()); | 
|  | } | 
|  | break; | 
|  | case Instruction::Call: | 
|  | UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I), | 
|  | *this, AliveSuccessors); | 
|  | break; | 
|  | case Instruction::Invoke: | 
|  | UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I), | 
|  | *this, AliveSuccessors); | 
|  | break; | 
|  | case Instruction::Br: | 
|  | UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I), | 
|  | *this, AliveSuccessors); | 
|  | break; | 
|  | case Instruction::Switch: | 
|  | UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I), | 
|  | *this, AliveSuccessors); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (UsedAssumedInformation) { | 
|  | NewToBeExploredFrom.insert(I); | 
|  | } else { | 
|  | Change = ChangeStatus::CHANGED; | 
|  | if (AliveSuccessors.empty() || | 
|  | (I->isTerminator() && AliveSuccessors.size() < I->getNumSuccessors())) | 
|  | KnownDeadEnds.insert(I); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: " | 
|  | << AliveSuccessors.size() << " UsedAssumedInformation: " | 
|  | << UsedAssumedInformation << "\n"); | 
|  |  | 
|  | for (const Instruction *AliveSuccessor : AliveSuccessors) { | 
|  | if (!I->isTerminator()) { | 
|  | assert(AliveSuccessors.size() == 1 && | 
|  | "Non-terminator expected to have a single successor!"); | 
|  | Worklist.push_back(AliveSuccessor); | 
|  | } else { | 
|  | if (assumeLive(A, *AliveSuccessor->getParent())) | 
|  | Worklist.push_back(AliveSuccessor); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ToBeExploredFrom = std::move(NewToBeExploredFrom); | 
|  |  | 
|  | // If we know everything is live there is no need to query for liveness. | 
|  | // Instead, indicating a pessimistic fixpoint will cause the state to be | 
|  | // "invalid" and all queries to be answered conservatively without lookups. | 
|  | // To be in this state we have to (1) finished the exploration and (3) not | 
|  | // discovered any non-trivial dead end and (2) not ruled unreachable code | 
|  | // dead. | 
|  | if (ToBeExploredFrom.empty() && | 
|  | getAssociatedFunction()->size() == AssumedLiveBlocks.size() && | 
|  | llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) { | 
|  | return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0; | 
|  | })) | 
|  | return indicatePessimisticFixpoint(); | 
|  | return Change; | 
|  | } | 
|  |  | 
|  | /// Liveness information for a call sites. | 
|  | struct AAIsDeadCallSite final : AAIsDeadFunction { | 
|  | AAIsDeadCallSite(const IRPosition &IRP) : AAIsDeadFunction(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | // TODO: Once we have call site specific value information we can provide | 
|  | //       call site specific liveness information and then it makes | 
|  | //       sense to specialize attributes for call sites instead of | 
|  | //       redirecting requests to the callee. | 
|  | llvm_unreachable("Abstract attributes for liveness are not " | 
|  | "supported for call sites yet!"); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | return indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override {} | 
|  | }; | 
|  |  | 
|  | /// -------------------- Dereferenceable Argument Attribute -------------------- | 
|  |  | 
|  | template <> | 
|  | ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S, | 
|  | const DerefState &R) { | 
|  | ChangeStatus CS0 = | 
|  | clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState); | 
|  | ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState); | 
|  | return CS0 | CS1; | 
|  | } | 
|  |  | 
|  | struct AADereferenceableImpl : AADereferenceable { | 
|  | AADereferenceableImpl(const IRPosition &IRP) : AADereferenceable(IRP) {} | 
|  | using StateType = DerefState; | 
|  |  | 
|  | void initialize(Attributor &A) override { | 
|  | SmallVector<Attribute, 4> Attrs; | 
|  | getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull}, | 
|  | Attrs); | 
|  | for (const Attribute &Attr : Attrs) | 
|  | takeKnownDerefBytesMaximum(Attr.getValueAsInt()); | 
|  |  | 
|  | NonNullAA = &A.getAAFor<AANonNull>(*this, getIRPosition()); | 
|  |  | 
|  | const IRPosition &IRP = this->getIRPosition(); | 
|  | bool IsFnInterface = IRP.isFnInterfaceKind(); | 
|  | const Function *FnScope = IRP.getAnchorScope(); | 
|  | if (IsFnInterface && (!FnScope || !FnScope->hasExactDefinition())) | 
|  | indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::getState() | 
|  | /// { | 
|  | StateType &getState() override { return *this; } | 
|  | const StateType &getState() const override { return *this; } | 
|  | /// } | 
|  |  | 
|  | /// Helper function for collecting accessed bytes in must-be-executed-context | 
|  | void addAccessedBytesForUse(Attributor &A, const Use *U, | 
|  | const Instruction *I) { | 
|  | const Value *UseV = U->get(); | 
|  | if (!UseV->getType()->isPointerTy()) | 
|  | return; | 
|  |  | 
|  | Type *PtrTy = UseV->getType(); | 
|  | const DataLayout &DL = A.getDataLayout(); | 
|  | int64_t Offset; | 
|  | if (const Value *Base = getBasePointerOfAccessPointerOperand( | 
|  | I, Offset, DL, /*AllowNonInbounds*/ true)) { | 
|  | if (Base == &getAssociatedValue() && getPointerOperand(I) == UseV) { | 
|  | uint64_t Size = DL.getTypeStoreSize(PtrTy->getPointerElementType()); | 
|  | addAccessedBytes(Offset, Size); | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | /// See AAFromMustBeExecutedContext | 
|  | bool followUse(Attributor &A, const Use *U, const Instruction *I) { | 
|  | bool IsNonNull = false; | 
|  | bool TrackUse = false; | 
|  | int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse( | 
|  | A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse); | 
|  |  | 
|  | addAccessedBytesForUse(A, U, I); | 
|  | takeKnownDerefBytesMaximum(DerefBytes); | 
|  | return TrackUse; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::manifest(...). | 
|  | ChangeStatus manifest(Attributor &A) override { | 
|  | ChangeStatus Change = AADereferenceable::manifest(A); | 
|  | if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) { | 
|  | removeAttrs({Attribute::DereferenceableOrNull}); | 
|  | return ChangeStatus::CHANGED; | 
|  | } | 
|  | return Change; | 
|  | } | 
|  |  | 
|  | void getDeducedAttributes(LLVMContext &Ctx, | 
|  | SmallVectorImpl<Attribute> &Attrs) const override { | 
|  | // TODO: Add *_globally support | 
|  | if (isAssumedNonNull()) | 
|  | Attrs.emplace_back(Attribute::getWithDereferenceableBytes( | 
|  | Ctx, getAssumedDereferenceableBytes())); | 
|  | else | 
|  | Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes( | 
|  | Ctx, getAssumedDereferenceableBytes())); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::getAsStr(). | 
|  | const std::string getAsStr() const override { | 
|  | if (!getAssumedDereferenceableBytes()) | 
|  | return "unknown-dereferenceable"; | 
|  | return std::string("dereferenceable") + | 
|  | (isAssumedNonNull() ? "" : "_or_null") + | 
|  | (isAssumedGlobal() ? "_globally" : "") + "<" + | 
|  | std::to_string(getKnownDereferenceableBytes()) + "-" + | 
|  | std::to_string(getAssumedDereferenceableBytes()) + ">"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Dereferenceable attribute for a floating value. | 
|  | struct AADereferenceableFloating | 
|  | : AAFromMustBeExecutedContext<AADereferenceable, AADereferenceableImpl> { | 
|  | using Base = | 
|  | AAFromMustBeExecutedContext<AADereferenceable, AADereferenceableImpl>; | 
|  | AADereferenceableFloating(const IRPosition &IRP) : Base(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | ChangeStatus Change = Base::updateImpl(A); | 
|  |  | 
|  | const DataLayout &DL = A.getDataLayout(); | 
|  |  | 
|  | auto VisitValueCB = [&](Value &V, DerefState &T, bool Stripped) -> bool { | 
|  | unsigned IdxWidth = | 
|  | DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace()); | 
|  | APInt Offset(IdxWidth, 0); | 
|  | const Value *Base = | 
|  | V.stripAndAccumulateInBoundsConstantOffsets(DL, Offset); | 
|  |  | 
|  | const auto &AA = | 
|  | A.getAAFor<AADereferenceable>(*this, IRPosition::value(*Base)); | 
|  | int64_t DerefBytes = 0; | 
|  | if (!Stripped && this == &AA) { | 
|  | // Use IR information if we did not strip anything. | 
|  | // TODO: track globally. | 
|  | bool CanBeNull; | 
|  | DerefBytes = Base->getPointerDereferenceableBytes(DL, CanBeNull); | 
|  | T.GlobalState.indicatePessimisticFixpoint(); | 
|  | } else { | 
|  | const DerefState &DS = static_cast<const DerefState &>(AA.getState()); | 
|  | DerefBytes = DS.DerefBytesState.getAssumed(); | 
|  | T.GlobalState &= DS.GlobalState; | 
|  | } | 
|  |  | 
|  | // For now we do not try to "increase" dereferenceability due to negative | 
|  | // indices as we first have to come up with code to deal with loops and | 
|  | // for overflows of the dereferenceable bytes. | 
|  | int64_t OffsetSExt = Offset.getSExtValue(); | 
|  | if (OffsetSExt < 0) | 
|  | OffsetSExt = 0; | 
|  |  | 
|  | T.takeAssumedDerefBytesMinimum( | 
|  | std::max(int64_t(0), DerefBytes - OffsetSExt)); | 
|  |  | 
|  | if (this == &AA) { | 
|  | if (!Stripped) { | 
|  | // If nothing was stripped IR information is all we got. | 
|  | T.takeKnownDerefBytesMaximum( | 
|  | std::max(int64_t(0), DerefBytes - OffsetSExt)); | 
|  | T.indicatePessimisticFixpoint(); | 
|  | } else if (OffsetSExt > 0) { | 
|  | // If something was stripped but there is circular reasoning we look | 
|  | // for the offset. If it is positive we basically decrease the | 
|  | // dereferenceable bytes in a circluar loop now, which will simply | 
|  | // drive them down to the known value in a very slow way which we | 
|  | // can accelerate. | 
|  | T.indicatePessimisticFixpoint(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return T.isValidState(); | 
|  | }; | 
|  |  | 
|  | DerefState T; | 
|  | if (!genericValueTraversal<AADereferenceable, DerefState>( | 
|  | A, getIRPosition(), *this, T, VisitValueCB)) | 
|  | return indicatePessimisticFixpoint(); | 
|  |  | 
|  | return Change | clampStateAndIndicateChange(getState(), T); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { | 
|  | STATS_DECLTRACK_FLOATING_ATTR(dereferenceable) | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Dereferenceable attribute for a return value. | 
|  | struct AADereferenceableReturned final | 
|  | : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl, | 
|  | DerefState> { | 
|  | AADereferenceableReturned(const IRPosition &IRP) | 
|  | : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl, | 
|  | DerefState>(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { | 
|  | STATS_DECLTRACK_FNRET_ATTR(dereferenceable) | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Dereferenceable attribute for an argument | 
|  | struct AADereferenceableArgument final | 
|  | : AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext< | 
|  | AADereferenceable, AADereferenceableImpl, DerefState> { | 
|  | using Base = AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext< | 
|  | AADereferenceable, AADereferenceableImpl, DerefState>; | 
|  | AADereferenceableArgument(const IRPosition &IRP) : Base(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { | 
|  | STATS_DECLTRACK_ARG_ATTR(dereferenceable) | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Dereferenceable attribute for a call site argument. | 
|  | struct AADereferenceableCallSiteArgument final : AADereferenceableFloating { | 
|  | AADereferenceableCallSiteArgument(const IRPosition &IRP) | 
|  | : AADereferenceableFloating(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { | 
|  | STATS_DECLTRACK_CSARG_ATTR(dereferenceable) | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Dereferenceable attribute deduction for a call site return value. | 
|  | struct AADereferenceableCallSiteReturned final | 
|  | : AACallSiteReturnedFromReturnedAndMustBeExecutedContext< | 
|  | AADereferenceable, AADereferenceableImpl> { | 
|  | using Base = AACallSiteReturnedFromReturnedAndMustBeExecutedContext< | 
|  | AADereferenceable, AADereferenceableImpl>; | 
|  | AADereferenceableCallSiteReturned(const IRPosition &IRP) : Base(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { | 
|  | STATS_DECLTRACK_CS_ATTR(dereferenceable); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // ------------------------ Align Argument Attribute ------------------------ | 
|  |  | 
|  | static unsigned int getKnownAlignForUse(Attributor &A, | 
|  | AbstractAttribute &QueryingAA, | 
|  | Value &AssociatedValue, const Use *U, | 
|  | const Instruction *I, bool &TrackUse) { | 
|  | // We need to follow common pointer manipulation uses to the accesses they | 
|  | // feed into. | 
|  | if (isa<CastInst>(I)) { | 
|  | TrackUse = true; | 
|  | return 0; | 
|  | } | 
|  | if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { | 
|  | if (GEP->hasAllConstantIndices()) { | 
|  | TrackUse = true; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned Alignment = 0; | 
|  | if (ImmutableCallSite ICS = ImmutableCallSite(I)) { | 
|  | if (ICS.isBundleOperand(U) || ICS.isCallee(U)) | 
|  | return 0; | 
|  |  | 
|  | unsigned ArgNo = ICS.getArgumentNo(U); | 
|  | IRPosition IRP = IRPosition::callsite_argument(ICS, ArgNo); | 
|  | // As long as we only use known information there is no need to track | 
|  | // dependences here. | 
|  | auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, | 
|  | /* TrackDependence */ false); | 
|  | Alignment = AlignAA.getKnownAlign(); | 
|  | } | 
|  |  | 
|  | const Value *UseV = U->get(); | 
|  | if (auto *SI = dyn_cast<StoreInst>(I)) | 
|  | Alignment = SI->getAlignment(); | 
|  | else if (auto *LI = dyn_cast<LoadInst>(I)) | 
|  | Alignment = LI->getAlignment(); | 
|  |  | 
|  | if (Alignment <= 1) | 
|  | return 0; | 
|  |  | 
|  | auto &DL = A.getDataLayout(); | 
|  | int64_t Offset; | 
|  |  | 
|  | if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) { | 
|  | if (Base == &AssociatedValue) { | 
|  | // BasePointerAddr + Offset = Alignment * Q for some integer Q. | 
|  | // So we can say that the maximum power of two which is a divisor of | 
|  | // gcd(Offset, Alignment) is an alignment. | 
|  |  | 
|  | uint32_t gcd = | 
|  | greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment); | 
|  | Alignment = llvm::PowerOf2Floor(gcd); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Alignment; | 
|  | } | 
|  | struct AAAlignImpl : AAAlign { | 
|  | AAAlignImpl(const IRPosition &IRP) : AAAlign(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | SmallVector<Attribute, 4> Attrs; | 
|  | getAttrs({Attribute::Alignment}, Attrs); | 
|  | for (const Attribute &Attr : Attrs) | 
|  | takeKnownMaximum(Attr.getValueAsInt()); | 
|  |  | 
|  | if (getIRPosition().isFnInterfaceKind() && | 
|  | (!getAssociatedFunction() || | 
|  | !getAssociatedFunction()->hasExactDefinition())) | 
|  | indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::manifest(...). | 
|  | ChangeStatus manifest(Attributor &A) override { | 
|  | ChangeStatus Changed = ChangeStatus::UNCHANGED; | 
|  |  | 
|  | // Check for users that allow alignment annotations. | 
|  | Value &AnchorVal = getIRPosition().getAnchorValue(); | 
|  | for (const Use &U : AnchorVal.uses()) { | 
|  | if (auto *SI = dyn_cast<StoreInst>(U.getUser())) { | 
|  | if (SI->getPointerOperand() == &AnchorVal) | 
|  | if (SI->getAlignment() < getAssumedAlign()) { | 
|  | STATS_DECLTRACK(AAAlign, Store, | 
|  | "Number of times alignemnt added to a store"); | 
|  | SI->setAlignment(Align(getAssumedAlign())); | 
|  | Changed = ChangeStatus::CHANGED; | 
|  | } | 
|  | } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) { | 
|  | if (LI->getPointerOperand() == &AnchorVal) | 
|  | if (LI->getAlignment() < getAssumedAlign()) { | 
|  | LI->setAlignment(Align(getAssumedAlign())); | 
|  | STATS_DECLTRACK(AAAlign, Load, | 
|  | "Number of times alignemnt added to a load"); | 
|  | Changed = ChangeStatus::CHANGED; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return AAAlign::manifest(A) | Changed; | 
|  | } | 
|  |  | 
|  | // TODO: Provide a helper to determine the implied ABI alignment and check in | 
|  | //       the existing manifest method and a new one for AAAlignImpl that value | 
|  | //       to avoid making the alignment explicit if it did not improve. | 
|  |  | 
|  | /// See AbstractAttribute::getDeducedAttributes | 
|  | virtual void | 
|  | getDeducedAttributes(LLVMContext &Ctx, | 
|  | SmallVectorImpl<Attribute> &Attrs) const override { | 
|  | if (getAssumedAlign() > 1) | 
|  | Attrs.emplace_back( | 
|  | Attribute::getWithAlignment(Ctx, Align(getAssumedAlign()))); | 
|  | } | 
|  | /// See AAFromMustBeExecutedContext | 
|  | bool followUse(Attributor &A, const Use *U, const Instruction *I) { | 
|  | bool TrackUse = false; | 
|  |  | 
|  | unsigned int KnownAlign = getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse); | 
|  | takeKnownMaximum(KnownAlign); | 
|  |  | 
|  | return TrackUse; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::getAsStr(). | 
|  | const std::string getAsStr() const override { | 
|  | return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) + | 
|  | "-" + std::to_string(getAssumedAlign()) + ">") | 
|  | : "unknown-align"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Align attribute for a floating value. | 
|  | struct AAAlignFloating : AAFromMustBeExecutedContext<AAAlign, AAAlignImpl> { | 
|  | using Base = AAFromMustBeExecutedContext<AAAlign, AAAlignImpl>; | 
|  | AAAlignFloating(const IRPosition &IRP) : Base(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | Base::updateImpl(A); | 
|  |  | 
|  | const DataLayout &DL = A.getDataLayout(); | 
|  |  | 
|  | auto VisitValueCB = [&](Value &V, AAAlign::StateType &T, | 
|  | bool Stripped) -> bool { | 
|  | const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V)); | 
|  | if (!Stripped && this == &AA) { | 
|  | // Use only IR information if we did not strip anything. | 
|  | const MaybeAlign PA = V.getPointerAlignment(DL); | 
|  | T.takeKnownMaximum(PA ? PA->value() : 0); | 
|  | T.indicatePessimisticFixpoint(); | 
|  | } else { | 
|  | // Use abstract attribute information. | 
|  | const AAAlign::StateType &DS = | 
|  | static_cast<const AAAlign::StateType &>(AA.getState()); | 
|  | T ^= DS; | 
|  | } | 
|  | return T.isValidState(); | 
|  | }; | 
|  |  | 
|  | StateType T; | 
|  | if (!genericValueTraversal<AAAlign, StateType>(A, getIRPosition(), *this, T, | 
|  | VisitValueCB)) | 
|  | return indicatePessimisticFixpoint(); | 
|  |  | 
|  | // TODO: If we know we visited all incoming values, thus no are assumed | 
|  | // dead, we can take the known information from the state T. | 
|  | return clampStateAndIndicateChange(getState(), T); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) } | 
|  | }; | 
|  |  | 
|  | /// Align attribute for function return value. | 
|  | struct AAAlignReturned final | 
|  | : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> { | 
|  | AAAlignReturned(const IRPosition &IRP) | 
|  | : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) } | 
|  | }; | 
|  |  | 
|  | /// Align attribute for function argument. | 
|  | struct AAAlignArgument final | 
|  | : AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<AAAlign, | 
|  | AAAlignImpl> { | 
|  | AAAlignArgument(const IRPosition &IRP) | 
|  | : AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<AAAlign, | 
|  | AAAlignImpl>( | 
|  | IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) } | 
|  | }; | 
|  |  | 
|  | struct AAAlignCallSiteArgument final : AAAlignFloating { | 
|  | AAAlignCallSiteArgument(const IRPosition &IRP) : AAAlignFloating(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::manifest(...). | 
|  | ChangeStatus manifest(Attributor &A) override { | 
|  | return AAAlignImpl::manifest(A); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) } | 
|  | }; | 
|  |  | 
|  | /// Align attribute deduction for a call site return value. | 
|  | struct AAAlignCallSiteReturned final | 
|  | : AACallSiteReturnedFromReturnedAndMustBeExecutedContext<AAAlign, | 
|  | AAAlignImpl> { | 
|  | using Base = | 
|  | AACallSiteReturnedFromReturnedAndMustBeExecutedContext<AAAlign, | 
|  | AAAlignImpl>; | 
|  | AAAlignCallSiteReturned(const IRPosition &IRP) : Base(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | Base::initialize(A); | 
|  | Function *F = getAssociatedFunction(); | 
|  | if (!F) | 
|  | indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); } | 
|  | }; | 
|  |  | 
|  | /// ------------------ Function No-Return Attribute ---------------------------- | 
|  | struct AANoReturnImpl : public AANoReturn { | 
|  | AANoReturnImpl(const IRPosition &IRP) : AANoReturn(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | AANoReturn::initialize(A); | 
|  | Function *F = getAssociatedFunction(); | 
|  | if (!F) | 
|  | indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::getAsStr(). | 
|  | const std::string getAsStr() const override { | 
|  | return getAssumed() ? "noreturn" : "may-return"; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(Attributor &A). | 
|  | virtual ChangeStatus updateImpl(Attributor &A) override { | 
|  | auto CheckForNoReturn = [](Instruction &) { return false; }; | 
|  | if (!A.checkForAllInstructions(CheckForNoReturn, *this, | 
|  | {(unsigned)Instruction::Ret})) | 
|  | return indicatePessimisticFixpoint(); | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct AANoReturnFunction final : AANoReturnImpl { | 
|  | AANoReturnFunction(const IRPosition &IRP) : AANoReturnImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) } | 
|  | }; | 
|  |  | 
|  | /// NoReturn attribute deduction for a call sites. | 
|  | struct AANoReturnCallSite final : AANoReturnImpl { | 
|  | AANoReturnCallSite(const IRPosition &IRP) : AANoReturnImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | // TODO: Once we have call site specific value information we can provide | 
|  | //       call site specific liveness information and then it makes | 
|  | //       sense to specialize attributes for call sites arguments instead of | 
|  | //       redirecting requests to the callee argument. | 
|  | Function *F = getAssociatedFunction(); | 
|  | const IRPosition &FnPos = IRPosition::function(*F); | 
|  | auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos); | 
|  | return clampStateAndIndicateChange( | 
|  | getState(), | 
|  | static_cast<const AANoReturn::StateType &>(FnAA.getState())); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); } | 
|  | }; | 
|  |  | 
|  | /// ----------------------- Variable Capturing --------------------------------- | 
|  |  | 
|  | /// A class to hold the state of for no-capture attributes. | 
|  | struct AANoCaptureImpl : public AANoCapture { | 
|  | AANoCaptureImpl(const IRPosition &IRP) : AANoCapture(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) { | 
|  | indicateOptimisticFixpoint(); | 
|  | return; | 
|  | } | 
|  | Function *AnchorScope = getAnchorScope(); | 
|  | if (isFnInterfaceKind() && | 
|  | (!AnchorScope || !AnchorScope->hasExactDefinition())) { | 
|  | indicatePessimisticFixpoint(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // You cannot "capture" null in the default address space. | 
|  | if (isa<ConstantPointerNull>(getAssociatedValue()) && | 
|  | getAssociatedValue().getType()->getPointerAddressSpace() == 0) { | 
|  | indicateOptimisticFixpoint(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const Function *F = getArgNo() >= 0 ? getAssociatedFunction() : AnchorScope; | 
|  |  | 
|  | // Check what state the associated function can actually capture. | 
|  | if (F) | 
|  | determineFunctionCaptureCapabilities(getIRPosition(), *F, *this); | 
|  | else | 
|  | indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override; | 
|  |  | 
|  | /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...). | 
|  | virtual void | 
|  | getDeducedAttributes(LLVMContext &Ctx, | 
|  | SmallVectorImpl<Attribute> &Attrs) const override { | 
|  | if (!isAssumedNoCaptureMaybeReturned()) | 
|  | return; | 
|  |  | 
|  | if (getArgNo() >= 0) { | 
|  | if (isAssumedNoCapture()) | 
|  | Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture)); | 
|  | else if (ManifestInternal) | 
|  | Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned")); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known | 
|  | /// depending on the ability of the function associated with \p IRP to capture | 
|  | /// state in memory and through "returning/throwing", respectively. | 
|  | static void determineFunctionCaptureCapabilities(const IRPosition &IRP, | 
|  | const Function &F, | 
|  | BitIntegerState &State) { | 
|  | // TODO: Once we have memory behavior attributes we should use them here. | 
|  |  | 
|  | // If we know we cannot communicate or write to memory, we do not care about | 
|  | // ptr2int anymore. | 
|  | if (F.onlyReadsMemory() && F.doesNotThrow() && | 
|  | F.getReturnType()->isVoidTy()) { | 
|  | State.addKnownBits(NO_CAPTURE); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // A function cannot capture state in memory if it only reads memory, it can | 
|  | // however return/throw state and the state might be influenced by the | 
|  | // pointer value, e.g., loading from a returned pointer might reveal a bit. | 
|  | if (F.onlyReadsMemory()) | 
|  | State.addKnownBits(NOT_CAPTURED_IN_MEM); | 
|  |  | 
|  | // A function cannot communicate state back if it does not through | 
|  | // exceptions and doesn not return values. | 
|  | if (F.doesNotThrow() && F.getReturnType()->isVoidTy()) | 
|  | State.addKnownBits(NOT_CAPTURED_IN_RET); | 
|  |  | 
|  | // Check existing "returned" attributes. | 
|  | int ArgNo = IRP.getArgNo(); | 
|  | if (F.doesNotThrow() && ArgNo >= 0) { | 
|  | for (unsigned u = 0, e = F.arg_size(); u < e; ++u) | 
|  | if (F.hasParamAttribute(u, Attribute::Returned)) { | 
|  | if (u == unsigned(ArgNo)) | 
|  | State.removeAssumedBits(NOT_CAPTURED_IN_RET); | 
|  | else if (F.onlyReadsMemory()) | 
|  | State.addKnownBits(NO_CAPTURE); | 
|  | else | 
|  | State.addKnownBits(NOT_CAPTURED_IN_RET); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// See AbstractState::getAsStr(). | 
|  | const std::string getAsStr() const override { | 
|  | if (isKnownNoCapture()) | 
|  | return "known not-captured"; | 
|  | if (isAssumedNoCapture()) | 
|  | return "assumed not-captured"; | 
|  | if (isKnownNoCaptureMaybeReturned()) | 
|  | return "known not-captured-maybe-returned"; | 
|  | if (isAssumedNoCaptureMaybeReturned()) | 
|  | return "assumed not-captured-maybe-returned"; | 
|  | return "assumed-captured"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Attributor-aware capture tracker. | 
|  | struct AACaptureUseTracker final : public CaptureTracker { | 
|  |  | 
|  | /// Create a capture tracker that can lookup in-flight abstract attributes | 
|  | /// through the Attributor \p A. | 
|  | /// | 
|  | /// If a use leads to a potential capture, \p CapturedInMemory is set and the | 
|  | /// search is stopped. If a use leads to a return instruction, | 
|  | /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed. | 
|  | /// If a use leads to a ptr2int which may capture the value, | 
|  | /// \p CapturedInInteger is set. If a use is found that is currently assumed | 
|  | /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies | 
|  | /// set. All values in \p PotentialCopies are later tracked as well. For every | 
|  | /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0, | 
|  | /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger | 
|  | /// conservatively set to true. | 
|  | AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA, | 
|  | const AAIsDead &IsDeadAA, AANoCapture::StateType &State, | 
|  | SmallVectorImpl<const Value *> &PotentialCopies, | 
|  | unsigned &RemainingUsesToExplore) | 
|  | : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State), | 
|  | PotentialCopies(PotentialCopies), | 
|  | RemainingUsesToExplore(RemainingUsesToExplore) {} | 
|  |  | 
|  | /// Determine if \p V maybe captured. *Also updates the state!* | 
|  | bool valueMayBeCaptured(const Value *V) { | 
|  | if (V->getType()->isPointerTy()) { | 
|  | PointerMayBeCaptured(V, this); | 
|  | } else { | 
|  | State.indicatePessimisticFixpoint(); | 
|  | } | 
|  | return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED); | 
|  | } | 
|  |  | 
|  | /// See CaptureTracker::tooManyUses(). | 
|  | void tooManyUses() override { | 
|  | State.removeAssumedBits(AANoCapture::NO_CAPTURE); | 
|  | } | 
|  |  | 
|  | bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override { | 
|  | if (CaptureTracker::isDereferenceableOrNull(O, DL)) | 
|  | return true; | 
|  | const auto &DerefAA = | 
|  | A.getAAFor<AADereferenceable>(NoCaptureAA, IRPosition::value(*O)); | 
|  | return DerefAA.getAssumedDereferenceableBytes(); | 
|  | } | 
|  |  | 
|  | /// See CaptureTracker::captured(...). | 
|  | bool captured(const Use *U) override { | 
|  | Instruction *UInst = cast<Instruction>(U->getUser()); | 
|  | LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst | 
|  | << "\n"); | 
|  |  | 
|  | // Because we may reuse the tracker multiple times we keep track of the | 
|  | // number of explored uses ourselves as well. | 
|  | if (RemainingUsesToExplore-- == 0) { | 
|  | LLVM_DEBUG(dbgs() << " - too many uses to explore!\n"); | 
|  | return isCapturedIn(/* Memory */ true, /* Integer */ true, | 
|  | /* Return */ true); | 
|  | } | 
|  |  | 
|  | // Deal with ptr2int by following uses. | 
|  | if (isa<PtrToIntInst>(UInst)) { | 
|  | LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n"); | 
|  | return valueMayBeCaptured(UInst); | 
|  | } | 
|  |  | 
|  | // Explicitly catch return instructions. | 
|  | if (isa<ReturnInst>(UInst)) | 
|  | return isCapturedIn(/* Memory */ false, /* Integer */ false, | 
|  | /* Return */ true); | 
|  |  | 
|  | // For now we only use special logic for call sites. However, the tracker | 
|  | // itself knows about a lot of other non-capturing cases already. | 
|  | CallSite CS(UInst); | 
|  | if (!CS || !CS.isArgOperand(U)) | 
|  | return isCapturedIn(/* Memory */ true, /* Integer */ true, | 
|  | /* Return */ true); | 
|  |  | 
|  | unsigned ArgNo = CS.getArgumentNo(U); | 
|  | const IRPosition &CSArgPos = IRPosition::callsite_argument(CS, ArgNo); | 
|  | // If we have a abstract no-capture attribute for the argument we can use | 
|  | // it to justify a non-capture attribute here. This allows recursion! | 
|  | auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos); | 
|  | if (ArgNoCaptureAA.isAssumedNoCapture()) | 
|  | return isCapturedIn(/* Memory */ false, /* Integer */ false, | 
|  | /* Return */ false); | 
|  | if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) { | 
|  | addPotentialCopy(CS); | 
|  | return isCapturedIn(/* Memory */ false, /* Integer */ false, | 
|  | /* Return */ false); | 
|  | } | 
|  |  | 
|  | // Lastly, we could not find a reason no-capture can be assumed so we don't. | 
|  | return isCapturedIn(/* Memory */ true, /* Integer */ true, | 
|  | /* Return */ true); | 
|  | } | 
|  |  | 
|  | /// Register \p CS as potential copy of the value we are checking. | 
|  | void addPotentialCopy(CallSite CS) { | 
|  | PotentialCopies.push_back(CS.getInstruction()); | 
|  | } | 
|  |  | 
|  | /// See CaptureTracker::shouldExplore(...). | 
|  | bool shouldExplore(const Use *U) override { | 
|  | // Check liveness. | 
|  | return !IsDeadAA.isAssumedDead(cast<Instruction>(U->getUser())); | 
|  | } | 
|  |  | 
|  | /// Update the state according to \p CapturedInMem, \p CapturedInInt, and | 
|  | /// \p CapturedInRet, then return the appropriate value for use in the | 
|  | /// CaptureTracker::captured() interface. | 
|  | bool isCapturedIn(bool CapturedInMem, bool CapturedInInt, | 
|  | bool CapturedInRet) { | 
|  | LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int " | 
|  | << CapturedInInt << "|Ret " << CapturedInRet << "]\n"); | 
|  | if (CapturedInMem) | 
|  | State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM); | 
|  | if (CapturedInInt) | 
|  | State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT); | 
|  | if (CapturedInRet) | 
|  | State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET); | 
|  | return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED); | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// The attributor providing in-flight abstract attributes. | 
|  | Attributor &A; | 
|  |  | 
|  | /// The abstract attribute currently updated. | 
|  | AANoCapture &NoCaptureAA; | 
|  |  | 
|  | /// The abstract liveness state. | 
|  | const AAIsDead &IsDeadAA; | 
|  |  | 
|  | /// The state currently updated. | 
|  | AANoCapture::StateType &State; | 
|  |  | 
|  | /// Set of potential copies of the tracked value. | 
|  | SmallVectorImpl<const Value *> &PotentialCopies; | 
|  |  | 
|  | /// Global counter to limit the number of explored uses. | 
|  | unsigned &RemainingUsesToExplore; | 
|  | }; | 
|  |  | 
|  | ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) { | 
|  | const IRPosition &IRP = getIRPosition(); | 
|  | const Value *V = | 
|  | getArgNo() >= 0 ? IRP.getAssociatedArgument() : &IRP.getAssociatedValue(); | 
|  | if (!V) | 
|  | return indicatePessimisticFixpoint(); | 
|  |  | 
|  | const Function *F = | 
|  | getArgNo() >= 0 ? IRP.getAssociatedFunction() : IRP.getAnchorScope(); | 
|  | assert(F && "Expected a function!"); | 
|  | const IRPosition &FnPos = IRPosition::function(*F); | 
|  | const auto &IsDeadAA = A.getAAFor<AAIsDead>(*this, FnPos); | 
|  |  | 
|  | AANoCapture::StateType T; | 
|  |  | 
|  | // Readonly means we cannot capture through memory. | 
|  | const auto &FnMemAA = A.getAAFor<AAMemoryBehavior>(*this, FnPos); | 
|  | if (FnMemAA.isAssumedReadOnly()) { | 
|  | T.addKnownBits(NOT_CAPTURED_IN_MEM); | 
|  | if (FnMemAA.isKnownReadOnly()) | 
|  | addKnownBits(NOT_CAPTURED_IN_MEM); | 
|  | } | 
|  |  | 
|  | // Make sure all returned values are different than the underlying value. | 
|  | // TODO: we could do this in a more sophisticated way inside | 
|  | //       AAReturnedValues, e.g., track all values that escape through returns | 
|  | //       directly somehow. | 
|  | auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) { | 
|  | bool SeenConstant = false; | 
|  | for (auto &It : RVAA.returned_values()) { | 
|  | if (isa<Constant>(It.first)) { | 
|  | if (SeenConstant) | 
|  | return false; | 
|  | SeenConstant = true; | 
|  | } else if (!isa<Argument>(It.first) || | 
|  | It.first == getAssociatedArgument()) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(*this, FnPos); | 
|  | if (NoUnwindAA.isAssumedNoUnwind()) { | 
|  | bool IsVoidTy = F->getReturnType()->isVoidTy(); | 
|  | const AAReturnedValues *RVAA = | 
|  | IsVoidTy ? nullptr : &A.getAAFor<AAReturnedValues>(*this, FnPos); | 
|  | if (IsVoidTy || CheckReturnedArgs(*RVAA)) { | 
|  | T.addKnownBits(NOT_CAPTURED_IN_RET); | 
|  | if (T.isKnown(NOT_CAPTURED_IN_MEM)) | 
|  | return ChangeStatus::UNCHANGED; | 
|  | if (NoUnwindAA.isKnownNoUnwind() && | 
|  | (IsVoidTy || RVAA->getState().isAtFixpoint())) { | 
|  | addKnownBits(NOT_CAPTURED_IN_RET); | 
|  | if (isKnown(NOT_CAPTURED_IN_MEM)) | 
|  | return indicateOptimisticFixpoint(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Use the CaptureTracker interface and logic with the specialized tracker, | 
|  | // defined in AACaptureUseTracker, that can look at in-flight abstract | 
|  | // attributes and directly updates the assumed state. | 
|  | SmallVector<const Value *, 4> PotentialCopies; | 
|  | unsigned RemainingUsesToExplore = DefaultMaxUsesToExplore; | 
|  | AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies, | 
|  | RemainingUsesToExplore); | 
|  |  | 
|  | // Check all potential copies of the associated value until we can assume | 
|  | // none will be captured or we have to assume at least one might be. | 
|  | unsigned Idx = 0; | 
|  | PotentialCopies.push_back(V); | 
|  | while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size()) | 
|  | Tracker.valueMayBeCaptured(PotentialCopies[Idx++]); | 
|  |  | 
|  | AANoCapture::StateType &S = getState(); | 
|  | auto Assumed = S.getAssumed(); | 
|  | S.intersectAssumedBits(T.getAssumed()); | 
|  | if (!isAssumedNoCaptureMaybeReturned()) | 
|  | return indicatePessimisticFixpoint(); | 
|  | return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED | 
|  | : ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | /// NoCapture attribute for function arguments. | 
|  | struct AANoCaptureArgument final : AANoCaptureImpl { | 
|  | AANoCaptureArgument(const IRPosition &IRP) : AANoCaptureImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) } | 
|  | }; | 
|  |  | 
|  | /// NoCapture attribute for call site arguments. | 
|  | struct AANoCaptureCallSiteArgument final : AANoCaptureImpl { | 
|  | AANoCaptureCallSiteArgument(const IRPosition &IRP) : AANoCaptureImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | // TODO: Once we have call site specific value information we can provide | 
|  | //       call site specific liveness information and then it makes | 
|  | //       sense to specialize attributes for call sites arguments instead of | 
|  | //       redirecting requests to the callee argument. | 
|  | Argument *Arg = getAssociatedArgument(); | 
|  | if (!Arg) | 
|  | return indicatePessimisticFixpoint(); | 
|  | const IRPosition &ArgPos = IRPosition::argument(*Arg); | 
|  | auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos); | 
|  | return clampStateAndIndicateChange( | 
|  | getState(), | 
|  | static_cast<const AANoCapture::StateType &>(ArgAA.getState())); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)}; | 
|  | }; | 
|  |  | 
|  | /// NoCapture attribute for floating values. | 
|  | struct AANoCaptureFloating final : AANoCaptureImpl { | 
|  | AANoCaptureFloating(const IRPosition &IRP) : AANoCaptureImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { | 
|  | STATS_DECLTRACK_FLOATING_ATTR(nocapture) | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// NoCapture attribute for function return value. | 
|  | struct AANoCaptureReturned final : AANoCaptureImpl { | 
|  | AANoCaptureReturned(const IRPosition &IRP) : AANoCaptureImpl(IRP) { | 
|  | llvm_unreachable("NoCapture is not applicable to function returns!"); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | llvm_unreachable("NoCapture is not applicable to function returns!"); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | llvm_unreachable("NoCapture is not applicable to function returns!"); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override {} | 
|  | }; | 
|  |  | 
|  | /// NoCapture attribute deduction for a call site return value. | 
|  | struct AANoCaptureCallSiteReturned final : AANoCaptureImpl { | 
|  | AANoCaptureCallSiteReturned(const IRPosition &IRP) : AANoCaptureImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { | 
|  | STATS_DECLTRACK_CSRET_ATTR(nocapture) | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// ------------------ Value Simplify Attribute ---------------------------- | 
|  | struct AAValueSimplifyImpl : AAValueSimplify { | 
|  | AAValueSimplifyImpl(const IRPosition &IRP) : AAValueSimplify(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::getAsStr(). | 
|  | const std::string getAsStr() const override { | 
|  | return getAssumed() ? (getKnown() ? "simplified" : "maybe-simple") | 
|  | : "not-simple"; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override {} | 
|  |  | 
|  | /// See AAValueSimplify::getAssumedSimplifiedValue() | 
|  | Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override { | 
|  | if (!getAssumed()) | 
|  | return const_cast<Value *>(&getAssociatedValue()); | 
|  | return SimplifiedAssociatedValue; | 
|  | } | 
|  | void initialize(Attributor &A) override {} | 
|  |  | 
|  | /// Helper function for querying AAValueSimplify and updating candicate. | 
|  | /// \param QueryingValue Value trying to unify with SimplifiedValue | 
|  | /// \param AccumulatedSimplifiedValue Current simplification result. | 
|  | static bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA, | 
|  | Value &QueryingValue, | 
|  | Optional<Value *> &AccumulatedSimplifiedValue) { | 
|  | // FIXME: Add a typecast support. | 
|  |  | 
|  | auto &ValueSimpifyAA = A.getAAFor<AAValueSimplify>( | 
|  | QueryingAA, IRPosition::value(QueryingValue)); | 
|  |  | 
|  | Optional<Value *> QueryingValueSimplified = | 
|  | ValueSimpifyAA.getAssumedSimplifiedValue(A); | 
|  |  | 
|  | if (!QueryingValueSimplified.hasValue()) | 
|  | return true; | 
|  |  | 
|  | if (!QueryingValueSimplified.getValue()) | 
|  | return false; | 
|  |  | 
|  | Value &QueryingValueSimplifiedUnwrapped = | 
|  | *QueryingValueSimplified.getValue(); | 
|  |  | 
|  | if (isa<UndefValue>(QueryingValueSimplifiedUnwrapped)) | 
|  | return true; | 
|  |  | 
|  | if (AccumulatedSimplifiedValue.hasValue()) | 
|  | return AccumulatedSimplifiedValue == QueryingValueSimplified; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "[Attributor][ValueSimplify] " << QueryingValue | 
|  | << " is assumed to be " | 
|  | << QueryingValueSimplifiedUnwrapped << "\n"); | 
|  |  | 
|  | AccumulatedSimplifiedValue = QueryingValueSimplified; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::manifest(...). | 
|  | ChangeStatus manifest(Attributor &A) override { | 
|  | ChangeStatus Changed = ChangeStatus::UNCHANGED; | 
|  |  | 
|  | if (!SimplifiedAssociatedValue.hasValue() || | 
|  | !SimplifiedAssociatedValue.getValue()) | 
|  | return Changed; | 
|  |  | 
|  | if (auto *C = dyn_cast<Constant>(SimplifiedAssociatedValue.getValue())) { | 
|  | // We can replace the AssociatedValue with the constant. | 
|  | Value &V = getAssociatedValue(); | 
|  | if (!V.user_empty() && &V != C && V.getType() == C->getType()) { | 
|  | LLVM_DEBUG(dbgs() << "[Attributor][ValueSimplify] " << V << " -> " << *C | 
|  | << "\n"); | 
|  | V.replaceAllUsesWith(C); | 
|  | Changed = ChangeStatus::CHANGED; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed | AAValueSimplify::manifest(A); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | // An assumed simplified value. Initially, it is set to Optional::None, which | 
|  | // means that the value is not clear under current assumption. If in the | 
|  | // pessimistic state, getAssumedSimplifiedValue doesn't return this value but | 
|  | // returns orignal associated value. | 
|  | Optional<Value *> SimplifiedAssociatedValue; | 
|  | }; | 
|  |  | 
|  | struct AAValueSimplifyArgument final : AAValueSimplifyImpl { | 
|  | AAValueSimplifyArgument(const IRPosition &IRP) : AAValueSimplifyImpl(IRP) {} | 
|  |  | 
|  | void initialize(Attributor &A) override { | 
|  | AAValueSimplifyImpl::initialize(A); | 
|  | if (!getAssociatedFunction() || getAssociatedFunction()->isDeclaration()) | 
|  | indicatePessimisticFixpoint(); | 
|  | if (hasAttr({Attribute::InAlloca, Attribute::StructRet, Attribute::Nest}, | 
|  | /* IgnoreSubsumingPositions */ true)) | 
|  | indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | // Byval is only replacable if it is readonly otherwise we would write into | 
|  | // the replaced value and not the copy that byval creates implicitly. | 
|  | Argument *Arg = getAssociatedArgument(); | 
|  | if (Arg->hasByValAttr()) { | 
|  | const auto &MemAA = A.getAAFor<AAMemoryBehavior>(*this, getIRPosition()); | 
|  | if (!MemAA.isAssumedReadOnly()) | 
|  | return indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | bool HasValueBefore = SimplifiedAssociatedValue.hasValue(); | 
|  |  | 
|  | auto PredForCallSite = [&](AbstractCallSite ACS) { | 
|  | // Check if we have an associated argument or not (which can happen for | 
|  | // callback calls). | 
|  | Value *ArgOp = ACS.getCallArgOperand(getArgNo()); | 
|  | if (!ArgOp) | 
|  | return false; | 
|  | // We can only propagate thread independent values through callbacks. | 
|  | // This is different to direct/indirect call sites because for them we | 
|  | // know the thread executing the caller and callee is the same. For | 
|  | // callbacks this is not guaranteed, thus a thread dependent value could | 
|  | // be different for the caller and callee, making it invalid to propagate. | 
|  | if (ACS.isCallbackCall()) | 
|  | if (auto *C =dyn_cast<Constant>(ArgOp)) | 
|  | if (C->isThreadDependent()) | 
|  | return false; | 
|  | return checkAndUpdate(A, *this, *ArgOp, SimplifiedAssociatedValue); | 
|  | }; | 
|  |  | 
|  | if (!A.checkForAllCallSites(PredForCallSite, *this, true)) | 
|  | return indicatePessimisticFixpoint(); | 
|  |  | 
|  | // If a candicate was found in this update, return CHANGED. | 
|  | return HasValueBefore == SimplifiedAssociatedValue.hasValue() | 
|  | ? ChangeStatus::UNCHANGED | 
|  | : ChangeStatus ::CHANGED; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { | 
|  | STATS_DECLTRACK_ARG_ATTR(value_simplify) | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct AAValueSimplifyReturned : AAValueSimplifyImpl { | 
|  | AAValueSimplifyReturned(const IRPosition &IRP) : AAValueSimplifyImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | bool HasValueBefore = SimplifiedAssociatedValue.hasValue(); | 
|  |  | 
|  | auto PredForReturned = [&](Value &V) { | 
|  | return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue); | 
|  | }; | 
|  |  | 
|  | if (!A.checkForAllReturnedValues(PredForReturned, *this)) | 
|  | return indicatePessimisticFixpoint(); | 
|  |  | 
|  | // If a candicate was found in this update, return CHANGED. | 
|  | return HasValueBefore == SimplifiedAssociatedValue.hasValue() | 
|  | ? ChangeStatus::UNCHANGED | 
|  | : ChangeStatus ::CHANGED; | 
|  | } | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { | 
|  | STATS_DECLTRACK_FNRET_ATTR(value_simplify) | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct AAValueSimplifyFloating : AAValueSimplifyImpl { | 
|  | AAValueSimplifyFloating(const IRPosition &IRP) : AAValueSimplifyImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | Value &V = getAnchorValue(); | 
|  |  | 
|  | // TODO: add other stuffs | 
|  | if (isa<Constant>(V) || isa<UndefValue>(V)) | 
|  | indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | bool HasValueBefore = SimplifiedAssociatedValue.hasValue(); | 
|  |  | 
|  | auto VisitValueCB = [&](Value &V, BooleanState, bool Stripped) -> bool { | 
|  | auto &AA = A.getAAFor<AAValueSimplify>(*this, IRPosition::value(V)); | 
|  | if (!Stripped && this == &AA) { | 
|  | // TODO: Look the instruction and check recursively. | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "[Attributor][ValueSimplify] Can't be stripped more : " | 
|  | << V << "\n"); | 
|  | indicatePessimisticFixpoint(); | 
|  | return false; | 
|  | } | 
|  | return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue); | 
|  | }; | 
|  |  | 
|  | if (!genericValueTraversal<AAValueSimplify, BooleanState>( | 
|  | A, getIRPosition(), *this, static_cast<BooleanState &>(*this), | 
|  | VisitValueCB)) | 
|  | return indicatePessimisticFixpoint(); | 
|  |  | 
|  | // If a candicate was found in this update, return CHANGED. | 
|  |  | 
|  | return HasValueBefore == SimplifiedAssociatedValue.hasValue() | 
|  | ? ChangeStatus::UNCHANGED | 
|  | : ChangeStatus ::CHANGED; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { | 
|  | STATS_DECLTRACK_FLOATING_ATTR(value_simplify) | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct AAValueSimplifyFunction : AAValueSimplifyImpl { | 
|  | AAValueSimplifyFunction(const IRPosition &IRP) : AAValueSimplifyImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | SimplifiedAssociatedValue = &getAnchorValue(); | 
|  | indicateOptimisticFixpoint(); | 
|  | } | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | llvm_unreachable( | 
|  | "AAValueSimplify(Function|CallSite)::updateImpl will not be called"); | 
|  | } | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { | 
|  | STATS_DECLTRACK_FN_ATTR(value_simplify) | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct AAValueSimplifyCallSite : AAValueSimplifyFunction { | 
|  | AAValueSimplifyCallSite(const IRPosition &IRP) | 
|  | : AAValueSimplifyFunction(IRP) {} | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { | 
|  | STATS_DECLTRACK_CS_ATTR(value_simplify) | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct AAValueSimplifyCallSiteReturned : AAValueSimplifyReturned { | 
|  | AAValueSimplifyCallSiteReturned(const IRPosition &IRP) | 
|  | : AAValueSimplifyReturned(IRP) {} | 
|  |  | 
|  | void trackStatistics() const override { | 
|  | STATS_DECLTRACK_CSRET_ATTR(value_simplify) | 
|  | } | 
|  | }; | 
|  | struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating { | 
|  | AAValueSimplifyCallSiteArgument(const IRPosition &IRP) | 
|  | : AAValueSimplifyFloating(IRP) {} | 
|  |  | 
|  | void trackStatistics() const override { | 
|  | STATS_DECLTRACK_CSARG_ATTR(value_simplify) | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// ----------------------- Heap-To-Stack Conversion --------------------------- | 
|  | struct AAHeapToStackImpl : public AAHeapToStack { | 
|  | AAHeapToStackImpl(const IRPosition &IRP) : AAHeapToStack(IRP) {} | 
|  |  | 
|  | const std::string getAsStr() const override { | 
|  | return "[H2S] Mallocs: " + std::to_string(MallocCalls.size()); | 
|  | } | 
|  |  | 
|  | ChangeStatus manifest(Attributor &A) override { | 
|  | assert(getState().isValidState() && | 
|  | "Attempted to manifest an invalid state!"); | 
|  |  | 
|  | ChangeStatus HasChanged = ChangeStatus::UNCHANGED; | 
|  | Function *F = getAssociatedFunction(); | 
|  | const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F); | 
|  |  | 
|  | for (Instruction *MallocCall : MallocCalls) { | 
|  | // This malloc cannot be replaced. | 
|  | if (BadMallocCalls.count(MallocCall)) | 
|  | continue; | 
|  |  | 
|  | for (Instruction *FreeCall : FreesForMalloc[MallocCall]) { | 
|  | LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n"); | 
|  | A.deleteAfterManifest(*FreeCall); | 
|  | HasChanged = ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "H2S: Removing malloc call: " << *MallocCall | 
|  | << "\n"); | 
|  |  | 
|  | Constant *Size; | 
|  | if (isCallocLikeFn(MallocCall, TLI)) { | 
|  | auto *Num = cast<ConstantInt>(MallocCall->getOperand(0)); | 
|  | auto *SizeT = dyn_cast<ConstantInt>(MallocCall->getOperand(1)); | 
|  | APInt TotalSize = SizeT->getValue() * Num->getValue(); | 
|  | Size = | 
|  | ConstantInt::get(MallocCall->getOperand(0)->getType(), TotalSize); | 
|  | } else { | 
|  | Size = cast<ConstantInt>(MallocCall->getOperand(0)); | 
|  | } | 
|  |  | 
|  | unsigned AS = cast<PointerType>(MallocCall->getType())->getAddressSpace(); | 
|  | Instruction *AI = new AllocaInst(Type::getInt8Ty(F->getContext()), AS, | 
|  | Size, "", MallocCall->getNextNode()); | 
|  |  | 
|  | if (AI->getType() != MallocCall->getType()) | 
|  | AI = new BitCastInst(AI, MallocCall->getType(), "malloc_bc", | 
|  | AI->getNextNode()); | 
|  |  | 
|  | MallocCall->replaceAllUsesWith(AI); | 
|  |  | 
|  | if (auto *II = dyn_cast<InvokeInst>(MallocCall)) { | 
|  | auto *NBB = II->getNormalDest(); | 
|  | BranchInst::Create(NBB, MallocCall->getParent()); | 
|  | A.deleteAfterManifest(*MallocCall); | 
|  | } else { | 
|  | A.deleteAfterManifest(*MallocCall); | 
|  | } | 
|  |  | 
|  | if (isCallocLikeFn(MallocCall, TLI)) { | 
|  | auto *BI = new BitCastInst(AI, MallocCall->getType(), "calloc_bc", | 
|  | AI->getNextNode()); | 
|  | Value *Ops[] = { | 
|  | BI, ConstantInt::get(F->getContext(), APInt(8, 0, false)), Size, | 
|  | ConstantInt::get(Type::getInt1Ty(F->getContext()), false)}; | 
|  |  | 
|  | Type *Tys[] = {BI->getType(), MallocCall->getOperand(0)->getType()}; | 
|  | Module *M = F->getParent(); | 
|  | Function *Fn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys); | 
|  | CallInst::Create(Fn, Ops, "", BI->getNextNode()); | 
|  | } | 
|  | HasChanged = ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | return HasChanged; | 
|  | } | 
|  |  | 
|  | /// Collection of all malloc calls in a function. | 
|  | SmallSetVector<Instruction *, 4> MallocCalls; | 
|  |  | 
|  | /// Collection of malloc calls that cannot be converted. | 
|  | DenseSet<const Instruction *> BadMallocCalls; | 
|  |  | 
|  | /// A map for each malloc call to the set of associated free calls. | 
|  | DenseMap<Instruction *, SmallPtrSet<Instruction *, 4>> FreesForMalloc; | 
|  |  | 
|  | ChangeStatus updateImpl(Attributor &A) override; | 
|  | }; | 
|  |  | 
|  | ChangeStatus AAHeapToStackImpl::updateImpl(Attributor &A) { | 
|  | const Function *F = getAssociatedFunction(); | 
|  | const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F); | 
|  |  | 
|  | MustBeExecutedContextExplorer &Explorer = | 
|  | A.getInfoCache().getMustBeExecutedContextExplorer(); | 
|  |  | 
|  | auto FreeCheck = [&](Instruction &I) { | 
|  | const auto &Frees = FreesForMalloc.lookup(&I); | 
|  | if (Frees.size() != 1) | 
|  | return false; | 
|  | Instruction *UniqueFree = *Frees.begin(); | 
|  | return Explorer.findInContextOf(UniqueFree, I.getNextNode()); | 
|  | }; | 
|  |  | 
|  | auto UsesCheck = [&](Instruction &I) { | 
|  | bool ValidUsesOnly = true; | 
|  | bool MustUse = true; | 
|  |  | 
|  | SmallPtrSet<const Use *, 8> Visited; | 
|  | SmallVector<const Use *, 8> Worklist; | 
|  |  | 
|  | for (Use &U : I.uses()) | 
|  | Worklist.push_back(&U); | 
|  |  | 
|  | while (!Worklist.empty()) { | 
|  | const Use *U = Worklist.pop_back_val(); | 
|  | if (!Visited.insert(U).second) | 
|  | continue; | 
|  |  | 
|  | auto *UserI = U->getUser(); | 
|  |  | 
|  | if (isa<LoadInst>(UserI)) | 
|  | continue; | 
|  | if (auto *SI = dyn_cast<StoreInst>(UserI)) { | 
|  | if (SI->getValueOperand() == U->get()) { | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "[H2S] escaping store to memory: " << *UserI << "\n"); | 
|  | ValidUsesOnly = false; | 
|  | } else { | 
|  | // A store into the malloc'ed memory is fine. | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (auto *CB = dyn_cast<CallBase>(UserI)) { | 
|  | if (!CB->isArgOperand(U)) | 
|  | continue; | 
|  |  | 
|  | if (CB->isLifetimeStartOrEnd()) | 
|  | continue; | 
|  |  | 
|  | // Record malloc. | 
|  | if (isFreeCall(UserI, TLI)) { | 
|  | if (MustUse) { | 
|  | FreesForMalloc[&I].insert( | 
|  | cast<Instruction>(const_cast<User *>(UserI))); | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() << "[H2S] free potentially on different mallocs: " | 
|  | << *UserI << "\n"); | 
|  | ValidUsesOnly = false; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | unsigned ArgNo = CB->getArgOperandNo(U); | 
|  |  | 
|  | const auto &NoCaptureAA = A.getAAFor<AANoCapture>( | 
|  | *this, IRPosition::callsite_argument(*CB, ArgNo)); | 
|  |  | 
|  | // If a callsite argument use is nofree, we are fine. | 
|  | const auto &ArgNoFreeAA = A.getAAFor<AANoFree>( | 
|  | *this, IRPosition::callsite_argument(*CB, ArgNo)); | 
|  |  | 
|  | if (!NoCaptureAA.isAssumedNoCapture() || !ArgNoFreeAA.isAssumedNoFree()) { | 
|  | LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n"); | 
|  | ValidUsesOnly = false; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) || | 
|  | isa<PHINode>(UserI) || isa<SelectInst>(UserI)) { | 
|  | MustUse &= !(isa<PHINode>(UserI) || isa<SelectInst>(UserI)); | 
|  | for (Use &U : UserI->uses()) | 
|  | Worklist.push_back(&U); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Unknown user for which we can not track uses further (in a way that | 
|  | // makes sense). | 
|  | LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n"); | 
|  | ValidUsesOnly = false; | 
|  | } | 
|  | return ValidUsesOnly; | 
|  | }; | 
|  |  | 
|  | auto MallocCallocCheck = [&](Instruction &I) { | 
|  | if (BadMallocCalls.count(&I)) | 
|  | return true; | 
|  |  | 
|  | bool IsMalloc = isMallocLikeFn(&I, TLI); | 
|  | bool IsCalloc = !IsMalloc && isCallocLikeFn(&I, TLI); | 
|  | if (!IsMalloc && !IsCalloc) { | 
|  | BadMallocCalls.insert(&I); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (IsMalloc) { | 
|  | if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(0))) | 
|  | if (Size->getValue().sle(MaxHeapToStackSize)) | 
|  | if (UsesCheck(I) || FreeCheck(I)) { | 
|  | MallocCalls.insert(&I); | 
|  | return true; | 
|  | } | 
|  | } else if (IsCalloc) { | 
|  | bool Overflow = false; | 
|  | if (auto *Num = dyn_cast<ConstantInt>(I.getOperand(0))) | 
|  | if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(1))) | 
|  | if ((Size->getValue().umul_ov(Num->getValue(), Overflow)) | 
|  | .sle(MaxHeapToStackSize)) | 
|  | if (!Overflow && (UsesCheck(I) || FreeCheck(I))) { | 
|  | MallocCalls.insert(&I); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | BadMallocCalls.insert(&I); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | size_t NumBadMallocs = BadMallocCalls.size(); | 
|  |  | 
|  | A.checkForAllCallLikeInstructions(MallocCallocCheck, *this); | 
|  |  | 
|  | if (NumBadMallocs != BadMallocCalls.size()) | 
|  | return ChangeStatus::CHANGED; | 
|  |  | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | struct AAHeapToStackFunction final : public AAHeapToStackImpl { | 
|  | AAHeapToStackFunction(const IRPosition &IRP) : AAHeapToStackImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { | 
|  | STATS_DECL(MallocCalls, Function, | 
|  | "Number of malloc calls converted to allocas"); | 
|  | for (auto *C : MallocCalls) | 
|  | if (!BadMallocCalls.count(C)) | 
|  | ++BUILD_STAT_NAME(MallocCalls, Function); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// -------------------- Memory Behavior Attributes ---------------------------- | 
|  | /// Includes read-none, read-only, and write-only. | 
|  | /// ---------------------------------------------------------------------------- | 
|  | struct AAMemoryBehaviorImpl : public AAMemoryBehavior { | 
|  | AAMemoryBehaviorImpl(const IRPosition &IRP) : AAMemoryBehavior(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | intersectAssumedBits(BEST_STATE); | 
|  | getKnownStateFromValue(getIRPosition(), getState()); | 
|  | IRAttribute::initialize(A); | 
|  | } | 
|  |  | 
|  | /// Return the memory behavior information encoded in the IR for \p IRP. | 
|  | static void getKnownStateFromValue(const IRPosition &IRP, | 
|  | BitIntegerState &State) { | 
|  | SmallVector<Attribute, 2> Attrs; | 
|  | IRP.getAttrs(AttrKinds, Attrs); | 
|  | for (const Attribute &Attr : Attrs) { | 
|  | switch (Attr.getKindAsEnum()) { | 
|  | case Attribute::ReadNone: | 
|  | State.addKnownBits(NO_ACCESSES); | 
|  | break; | 
|  | case Attribute::ReadOnly: | 
|  | State.addKnownBits(NO_WRITES); | 
|  | break; | 
|  | case Attribute::WriteOnly: | 
|  | State.addKnownBits(NO_READS); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unexpcted attribute!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) { | 
|  | if (!I->mayReadFromMemory()) | 
|  | State.addKnownBits(NO_READS); | 
|  | if (!I->mayWriteToMemory()) | 
|  | State.addKnownBits(NO_WRITES); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::getDeducedAttributes(...). | 
|  | void getDeducedAttributes(LLVMContext &Ctx, | 
|  | SmallVectorImpl<Attribute> &Attrs) const override { | 
|  | assert(Attrs.size() == 0); | 
|  | if (isAssumedReadNone()) | 
|  | Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone)); | 
|  | else if (isAssumedReadOnly()) | 
|  | Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly)); | 
|  | else if (isAssumedWriteOnly()) | 
|  | Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly)); | 
|  | assert(Attrs.size() <= 1); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::manifest(...). | 
|  | ChangeStatus manifest(Attributor &A) override { | 
|  | const IRPosition &IRP = getIRPosition(); | 
|  |  | 
|  | // Check if we would improve the existing attributes first. | 
|  | SmallVector<Attribute, 4> DeducedAttrs; | 
|  | getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs); | 
|  | if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) { | 
|  | return IRP.hasAttr(Attr.getKindAsEnum(), | 
|  | /* IgnoreSubsumingPositions */ true); | 
|  | })) | 
|  | return ChangeStatus::UNCHANGED; | 
|  |  | 
|  | // Clear existing attributes. | 
|  | IRP.removeAttrs(AttrKinds); | 
|  |  | 
|  | // Use the generic manifest method. | 
|  | return IRAttribute::manifest(A); | 
|  | } | 
|  |  | 
|  | /// See AbstractState::getAsStr(). | 
|  | const std::string getAsStr() const override { | 
|  | if (isAssumedReadNone()) | 
|  | return "readnone"; | 
|  | if (isAssumedReadOnly()) | 
|  | return "readonly"; | 
|  | if (isAssumedWriteOnly()) | 
|  | return "writeonly"; | 
|  | return "may-read/write"; | 
|  | } | 
|  |  | 
|  | /// The set of IR attributes AAMemoryBehavior deals with. | 
|  | static const Attribute::AttrKind AttrKinds[3]; | 
|  | }; | 
|  |  | 
|  | const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = { | 
|  | Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly}; | 
|  |  | 
|  | /// Memory behavior attribute for a floating value. | 
|  | struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl { | 
|  | AAMemoryBehaviorFloating(const IRPosition &IRP) : AAMemoryBehaviorImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | AAMemoryBehaviorImpl::initialize(A); | 
|  | // Initialize the use vector with all direct uses of the associated value. | 
|  | for (const Use &U : getAssociatedValue().uses()) | 
|  | Uses.insert(&U); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override; | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { | 
|  | if (isAssumedReadNone()) | 
|  | STATS_DECLTRACK_FLOATING_ATTR(readnone) | 
|  | else if (isAssumedReadOnly()) | 
|  | STATS_DECLTRACK_FLOATING_ATTR(readonly) | 
|  | else if (isAssumedWriteOnly()) | 
|  | STATS_DECLTRACK_FLOATING_ATTR(writeonly) | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// Return true if users of \p UserI might access the underlying | 
|  | /// variable/location described by \p U and should therefore be analyzed. | 
|  | bool followUsersOfUseIn(Attributor &A, const Use *U, | 
|  | const Instruction *UserI); | 
|  |  | 
|  | /// Update the state according to the effect of use \p U in \p UserI. | 
|  | void analyzeUseIn(Attributor &A, const Use *U, const Instruction *UserI); | 
|  |  | 
|  | protected: | 
|  | /// Container for (transitive) uses of the associated argument. | 
|  | SetVector<const Use *> Uses; | 
|  | }; | 
|  |  | 
|  | /// Memory behavior attribute for function argument. | 
|  | struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating { | 
|  | AAMemoryBehaviorArgument(const IRPosition &IRP) | 
|  | : AAMemoryBehaviorFloating(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | AAMemoryBehaviorFloating::initialize(A); | 
|  |  | 
|  | // Initialize the use vector with all direct uses of the associated value. | 
|  | Argument *Arg = getAssociatedArgument(); | 
|  | if (!Arg || !Arg->getParent()->hasExactDefinition()) | 
|  | indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | ChangeStatus manifest(Attributor &A) override { | 
|  | // TODO: From readattrs.ll: "inalloca parameters are always | 
|  | //                           considered written" | 
|  | if (hasAttr({Attribute::InAlloca})) { | 
|  | removeKnownBits(NO_WRITES); | 
|  | removeAssumedBits(NO_WRITES); | 
|  | } | 
|  | return AAMemoryBehaviorFloating::manifest(A); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { | 
|  | if (isAssumedReadNone()) | 
|  | STATS_DECLTRACK_ARG_ATTR(readnone) | 
|  | else if (isAssumedReadOnly()) | 
|  | STATS_DECLTRACK_ARG_ATTR(readonly) | 
|  | else if (isAssumedWriteOnly()) | 
|  | STATS_DECLTRACK_ARG_ATTR(writeonly) | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument { | 
|  | AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP) | 
|  | : AAMemoryBehaviorArgument(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | // TODO: Once we have call site specific value information we can provide | 
|  | //       call site specific liveness liveness information and then it makes | 
|  | //       sense to specialize attributes for call sites arguments instead of | 
|  | //       redirecting requests to the callee argument. | 
|  | Argument *Arg = getAssociatedArgument(); | 
|  | const IRPosition &ArgPos = IRPosition::argument(*Arg); | 
|  | auto &ArgAA = A.getAAFor<AAMemoryBehavior>(*this, ArgPos); | 
|  | return clampStateAndIndicateChange( | 
|  | getState(), | 
|  | static_cast<const AAMemoryBehavior::StateType &>(ArgAA.getState())); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { | 
|  | if (isAssumedReadNone()) | 
|  | STATS_DECLTRACK_CSARG_ATTR(readnone) | 
|  | else if (isAssumedReadOnly()) | 
|  | STATS_DECLTRACK_CSARG_ATTR(readonly) | 
|  | else if (isAssumedWriteOnly()) | 
|  | STATS_DECLTRACK_CSARG_ATTR(writeonly) | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Memory behavior attribute for a call site return position. | 
|  | struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating { | 
|  | AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP) | 
|  | : AAMemoryBehaviorFloating(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::manifest(...). | 
|  | ChangeStatus manifest(Attributor &A) override { | 
|  | // We do not annotate returned values. | 
|  | return ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override {} | 
|  | }; | 
|  |  | 
|  | /// An AA to represent the memory behavior function attributes. | 
|  | struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl { | 
|  | AAMemoryBehaviorFunction(const IRPosition &IRP) : AAMemoryBehaviorImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(Attributor &A). | 
|  | virtual ChangeStatus updateImpl(Attributor &A) override; | 
|  |  | 
|  | /// See AbstractAttribute::manifest(...). | 
|  | ChangeStatus manifest(Attributor &A) override { | 
|  | Function &F = cast<Function>(getAnchorValue()); | 
|  | if (isAssumedReadNone()) { | 
|  | F.removeFnAttr(Attribute::ArgMemOnly); | 
|  | F.removeFnAttr(Attribute::InaccessibleMemOnly); | 
|  | F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly); | 
|  | } | 
|  | return AAMemoryBehaviorImpl::manifest(A); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { | 
|  | if (isAssumedReadNone()) | 
|  | STATS_DECLTRACK_FN_ATTR(readnone) | 
|  | else if (isAssumedReadOnly()) | 
|  | STATS_DECLTRACK_FN_ATTR(readonly) | 
|  | else if (isAssumedWriteOnly()) | 
|  | STATS_DECLTRACK_FN_ATTR(writeonly) | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// AAMemoryBehavior attribute for call sites. | 
|  | struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl { | 
|  | AAMemoryBehaviorCallSite(const IRPosition &IRP) : AAMemoryBehaviorImpl(IRP) {} | 
|  |  | 
|  | /// See AbstractAttribute::initialize(...). | 
|  | void initialize(Attributor &A) override { | 
|  | AAMemoryBehaviorImpl::initialize(A); | 
|  | Function *F = getAssociatedFunction(); | 
|  | if (!F || !F->hasExactDefinition()) | 
|  | indicatePessimisticFixpoint(); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::updateImpl(...). | 
|  | ChangeStatus updateImpl(Attributor &A) override { | 
|  | // TODO: Once we have call site specific value information we can provide | 
|  | //       call site specific liveness liveness information and then it makes | 
|  | //       sense to specialize attributes for call sites arguments instead of | 
|  | //       redirecting requests to the callee argument. | 
|  | Function *F = getAssociatedFunction(); | 
|  | const IRPosition &FnPos = IRPosition::function(*F); | 
|  | auto &FnAA = A.getAAFor<AAMemoryBehavior>(*this, FnPos); | 
|  | return clampStateAndIndicateChange( | 
|  | getState(), | 
|  | static_cast<const AAMemoryBehavior::StateType &>(FnAA.getState())); | 
|  | } | 
|  |  | 
|  | /// See AbstractAttribute::trackStatistics() | 
|  | void trackStatistics() const override { | 
|  | if (isAssumedReadNone()) | 
|  | STATS_DECLTRACK_CS_ATTR(readnone) | 
|  | else if (isAssumedReadOnly()) | 
|  | STATS_DECLTRACK_CS_ATTR(readonly) | 
|  | else if (isAssumedWriteOnly()) | 
|  | STATS_DECLTRACK_CS_ATTR(writeonly) | 
|  | } | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) { | 
|  |  | 
|  | // The current assumed state used to determine a change. | 
|  | auto AssumedState = getAssumed(); | 
|  |  | 
|  | auto CheckRWInst = [&](Instruction &I) { | 
|  | // If the instruction has an own memory behavior state, use it to restrict | 
|  | // the local state. No further analysis is required as the other memory | 
|  | // state is as optimistic as it gets. | 
|  | if (ImmutableCallSite ICS = ImmutableCallSite(&I)) { | 
|  | const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>( | 
|  | *this, IRPosition::callsite_function(ICS)); | 
|  | intersectAssumedBits(MemBehaviorAA.getAssumed()); | 
|  | return !isAtFixpoint(); | 
|  | } | 
|  |  | 
|  | // Remove access kind modifiers if necessary. | 
|  | if (I.mayReadFromMemory()) | 
|  | removeAssumedBits(NO_READS); | 
|  | if (I.mayWriteToMemory()) | 
|  | removeAssumedBits(NO_WRITES); | 
|  | return !isAtFixpoint(); | 
|  | }; | 
|  |  | 
|  | if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this)) | 
|  | return indicatePessimisticFixpoint(); | 
|  |  | 
|  | return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED | 
|  | : ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) { | 
|  |  | 
|  | const IRPosition &IRP = getIRPosition(); | 
|  | const IRPosition &FnPos = IRPosition::function_scope(IRP); | 
|  | AAMemoryBehavior::StateType &S = getState(); | 
|  |  | 
|  | // First, check the function scope. We take the known information and we avoid | 
|  | // work if the assumed information implies the current assumed information for | 
|  | // this attribute. | 
|  | const auto &FnMemAA = A.getAAFor<AAMemoryBehavior>(*this, FnPos); | 
|  | S.addKnownBits(FnMemAA.getKnown()); | 
|  | if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed()) | 
|  | return ChangeStatus::UNCHANGED; | 
|  |  | 
|  | // Make sure the value is not captured (except through "return"), if | 
|  | // it is, any information derived would be irrelevant anyway as we cannot | 
|  | // check the potential aliases introduced by the capture. However, no need | 
|  | // to fall back to anythign less optimistic than the function state. | 
|  | const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(*this, IRP); | 
|  | if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) { | 
|  | S.intersectAssumedBits(FnMemAA.getAssumed()); | 
|  | return ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | // The current assumed state used to determine a change. | 
|  | auto AssumedState = S.getAssumed(); | 
|  |  | 
|  | // Liveness information to exclude dead users. | 
|  | // TODO: Take the FnPos once we have call site specific liveness information. | 
|  | const auto &LivenessAA = A.getAAFor<AAIsDead>( | 
|  | *this, IRPosition::function(*IRP.getAssociatedFunction())); | 
|  |  | 
|  | // Visit and expand uses until all are analyzed or a fixpoint is reached. | 
|  | for (unsigned i = 0; i < Uses.size() && !isAtFixpoint(); i++) { | 
|  | const Use *U = Uses[i]; | 
|  | Instruction *UserI = cast<Instruction>(U->getUser()); | 
|  | LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << **U << " in " << *UserI | 
|  | << " [Dead: " << (LivenessAA.isAssumedDead(UserI)) | 
|  | << "]\n"); | 
|  | if (LivenessAA.isAssumedDead(UserI)) | 
|  | continue; | 
|  |  | 
|  | // Check if the users of UserI should also be visited. | 
|  | if (followUsersOfUseIn(A, U, UserI)) | 
|  | for (const Use &UserIUse : UserI->uses()) | 
|  | Uses.insert(&UserIUse); | 
|  |  | 
|  | // If UserI might touch memory we analyze the use in detail. | 
|  | if (UserI->mayReadOrWriteMemory()) | 
|  | analyzeUseIn(A, U, UserI); | 
|  | } | 
|  |  | 
|  | return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED | 
|  | : ChangeStatus::UNCHANGED; | 
|  | } | 
|  |  | 
|  | bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use *U, | 
|  | const Instruction *UserI) { | 
|  | // The loaded value is unrelated to the pointer argument, no need to | 
|  | // follow the users of the load. | 
|  | if (isa<LoadInst>(UserI)) | 
|  | return false; | 
|  |  | 
|  | // By default we follow all uses assuming UserI might leak information on U, | 
|  | // we have special handling for call sites operands though. | 
|  | ImmutableCallSite ICS(UserI); | 
|  | if (!ICS || !ICS.isArgOperand(U)) | 
|  | return true; | 
|  |  | 
|  | // If the use is a call argument known not to be captured, the users of | 
|  | // the call do not need to be visited because they have to be unrelated to | 
|  | // the input. Note that this check is not trivial even though we disallow | 
|  | // general capturing of the underlying argument. The reason is that the | 
|  | // call might the argument "through return", which we allow and for which we | 
|  | // need to check call users. | 
|  | unsigned ArgNo = ICS.getArgumentNo(U); | 
|  | const auto &ArgNoCaptureAA = | 
|  | A.getAAFor<AANoCapture>(*this, IRPosition::callsite_argument(ICS, ArgNo)); | 
|  | return !ArgNoCaptureAA.isAssumedNoCapture(); | 
|  | } | 
|  |  | 
|  | void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use *U, | 
|  | const Instruction *UserI) { | 
|  | assert(UserI->mayReadOrWriteMemory()); | 
|  |  | 
|  | switch (UserI->getOpcode()) { | 
|  | default: | 
|  | // TODO: Handle all atomics and other side-effect operations we know of. | 
|  | break; | 
|  | case Instruction::Load: | 
|  | // Loads cause the NO_READS property to disappear. | 
|  | removeAssumedBits(NO_READS); | 
|  | return; | 
|  |  | 
|  | case Instruction::Store: | 
|  | // Stores cause the NO_WRITES property to disappear if the use is the | 
|  | // pointer operand. Note that we do assume that capturing was taken care of | 
|  | // somewhere else. | 
|  | if (cast<StoreInst>(UserI)->getPointerOperand() == U->get()) | 
|  | removeAssumedBits(NO_WRITES); | 
|  | return; | 
|  |  | 
|  | case Instruction::Call: | 
|  | case Instruction::CallBr: | 
|  | case Instruction::Invoke: { | 
|  | // For call sites we look at the argument memory behavior attribute (this | 
|  | // could be recursive!) in order to restrict our own state. | 
|  | ImmutableCallSite ICS(UserI); | 
|  |  | 
|  | // Give up on operand bundles. | 
|  | if (ICS.isBundleOperand(U)) { | 
|  | indicatePessimisticFixpoint(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Calling a function does read the function pointer, maybe write it if the | 
|  | // function is self-modifying. | 
|  | if (ICS.isCallee(U)) { | 
|  | removeAssumedBits(NO_READS); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Adjust the possible access behavior based on the information on the | 
|  | // argument. | 
|  | unsigned ArgNo = ICS.getArgumentNo(U); | 
|  | const IRPosition &ArgPos = IRPosition::callsite_argument(ICS, ArgNo); | 
|  | const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(*this, ArgPos); | 
|  | // "assumed" has at most the same bits as the MemBehaviorAA assumed | 
|  | // and at least "known". | 
|  | intersectAssumedBits(MemBehaviorAA.getAssumed()); | 
|  | return; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Generally, look at the "may-properties" and adjust the assumed state if we | 
|  | // did not trigger special handling before. | 
|  | if (UserI->mayReadFromMemory()) | 
|  | removeAssumedBits(NO_READS); | 
|  | if (UserI->mayWriteToMemory()) | 
|  | removeAssumedBits(NO_WRITES); | 
|  | } | 
|  |  | 
|  | /// ---------------------------------------------------------------------------- | 
|  | ///                               Attributor | 
|  | /// ---------------------------------------------------------------------------- | 
|  |  | 
|  | bool Attributor::isAssumedDead(const AbstractAttribute &AA, | 
|  | const AAIsDead *LivenessAA) { | 
|  | const Instruction *CtxI = AA.getIRPosition().getCtxI(); | 
|  | if (!CtxI) | 
|  | return false; | 
|  |  | 
|  | // TODO: Find a good way to utilize fine and coarse grained liveness | 
|  | // information. | 
|  | if (!LivenessAA) | 
|  | LivenessAA = | 
|  | &getAAFor<AAIsDead>(AA, IRPosition::function(*CtxI->getFunction()), | 
|  | /* TrackDependence */ false); | 
|  |  | 
|  | // Don't check liveness for AAIsDead. | 
|  | if (&AA == LivenessAA) | 
|  | return false; | 
|  |  | 
|  | if (!LivenessAA->isAssumedDead(CtxI)) | 
|  | return false; | 
|  |  | 
|  | // We actually used liveness information so we have to record a dependence. | 
|  | recordDependence(*LivenessAA, AA, DepClassTy::OPTIONAL); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Attributor::checkForAllUses( | 
|  | const function_ref<bool(const Use &, bool &)> &Pred, | 
|  | const AbstractAttribute &QueryingAA, const Value &V) { | 
|  | const IRPosition &IRP = QueryingAA.getIRPosition(); | 
|  | SmallVector<const Use *, 16> Worklist; | 
|  | SmallPtrSet<const Use *, 16> Visited; | 
|  |  | 
|  | for (const Use &U : V.uses()) | 
|  | Worklist.push_back(&U); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size() | 
|  | << " initial uses to check\n"); | 
|  |  | 
|  | if (Worklist.empty()) | 
|  | return true; | 
|  |  | 
|  | bool AnyDead = false; | 
|  | const Function *ScopeFn = IRP.getAnchorScope(); | 
|  | const auto *LivenessAA = | 
|  | ScopeFn ? &getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*ScopeFn), | 
|  | /* TrackDependence */ false) | 
|  | : nullptr; | 
|  |  | 
|  | while (!Worklist.empty()) { | 
|  | const Use *U = Worklist.pop_back_val(); | 
|  | if (!Visited.insert(U).second) | 
|  | continue; | 
|  | LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << **U << "\n"); | 
|  | if (Instruction *UserI = dyn_cast<Instruction>(U->getUser())) | 
|  | if (LivenessAA && LivenessAA->isAssumedDead(UserI)) { | 
|  | LLVM_DEBUG(dbgs() << "[Attributor] Dead user: " << *UserI << ": " | 
|  | << static_cast<const AbstractAttribute &>(*LivenessAA) | 
|  | << "\n"); | 
|  | AnyDead = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | bool Follow = false; | 
|  | if (!Pred(*U, Follow)) | 
|  | return false; | 
|  | if (!Follow) | 
|  | continue; | 
|  | for (const Use &UU : U->getUser()->uses()) | 
|  | Worklist.push_back(&UU); | 
|  | } | 
|  |  | 
|  | if (AnyDead) | 
|  | recordDependence(*LivenessAA, QueryingAA, DepClassTy::OPTIONAL); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Attributor::checkForAllCallSites( | 
|  | const function_ref<bool(AbstractCallSite)> &Pred, | 
|  | const AbstractAttribute &QueryingAA, bool RequireAllCallSites) { | 
|  | // We can try to determine information from | 
|  | // the call sites. However, this is only possible all call sites are known, | 
|  | // hence the function has internal linkage. | 
|  | const IRPosition &IRP = QueryingAA.getIRPosition(); | 
|  | const Function *AssociatedFunction = IRP.getAssociatedFunction(); | 
|  | if (!AssociatedFunction) { | 
|  | LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP | 
|  | << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites, | 
|  | &QueryingAA); | 
|  | } | 
|  |  | 
|  | bool Attributor::checkForAllCallSites( | 
|  | const function_ref<bool(AbstractCallSite)> &Pred, const Function &Fn, | 
|  | bool RequireAllCallSites, const AbstractAttribute *QueryingAA) { | 
|  | if (RequireAllCallSites && !Fn.hasLocalLinkage()) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() | 
|  | << "[Attributor] Function " << Fn.getName() | 
|  | << " has no internal linkage, hence not all call sites are known\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (const Use &U : Fn.uses()) { | 
|  | AbstractCallSite ACS(&U); | 
|  | if (!ACS) { | 
|  | LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName() | 
|  | << " has non call site use " << *U.get() << " in " | 
|  | << *U.getUser() << "\n"); | 
|  | // BlockAddress users are allowed. | 
|  | if (isa<BlockAddress>(U.getUser())) | 
|  | continue; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Instruction *I = ACS.getInstruction(); | 
|  | Function *Caller = I->getFunction(); | 
|  |  | 
|  | const auto *LivenessAA = | 
|  | lookupAAFor<AAIsDead>(IRPosition::function(*Caller), QueryingAA, | 
|  | /* TrackDependence */ false); | 
|  |  | 
|  | // Skip dead calls. | 
|  | if (LivenessAA && LivenessAA->isAssumedDead(I)) { | 
|  | // We actually used liveness information so we have to record a | 
|  | // dependence. | 
|  | if (QueryingAA) | 
|  | recordDependence(*LivenessAA, *QueryingAA, DepClassTy::OPTIONAL); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const Use *EffectiveUse = | 
|  | ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U; | 
|  | if (!ACS.isCallee(EffectiveUse)) { | 
|  | if (!RequireAllCallSites) | 
|  | continue; | 
|  | LLVM_DEBUG(dbgs() << "[Attributor] User " << EffectiveUse->getUser() | 
|  | << " is an invalid use of " << Fn.getName() << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Pred(ACS)) | 
|  | continue; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for " | 
|  | << *ACS.getInstruction() << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Attributor::checkForAllReturnedValuesAndReturnInsts( | 
|  | const function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> | 
|  | &Pred, | 
|  | const AbstractAttribute &QueryingAA) { | 
|  |  | 
|  | const IRPosition &IRP = QueryingAA.getIRPosition(); | 
|  | // Since we need to provide return instructions we have to have an exact | 
|  | // definition. | 
|  | const Function *AssociatedFunction = IRP.getAssociatedFunction(); | 
|  | if (!AssociatedFunction) | 
|  | return false; | 
|  |  | 
|  | // If this is a call site query we use the call site specific return values | 
|  | // and liveness information. | 
|  | // TODO: use the function scope once we have call site AAReturnedValues. | 
|  | const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction); | 
|  | const auto &AARetVal = getAAFor<AAReturnedValues>(QueryingAA, QueryIRP); | 
|  | if (!AARetVal.getState().isValidState()) | 
|  | return false; | 
|  |  | 
|  | return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred); | 
|  | } | 
|  |  | 
|  | bool Attributor::checkForAllReturnedValues( | 
|  | const function_ref<bool(Value &)> &Pred, | 
|  | const AbstractAttribute &QueryingAA) { | 
|  |  | 
|  | const IRPosition &IRP = QueryingAA.getIRPosition(); | 
|  | const Function *AssociatedFunction = IRP.getAssociatedFunction(); | 
|  | if (!AssociatedFunction) | 
|  | return false; | 
|  |  | 
|  | // TODO: use the function scope once we have call site AAReturnedValues. | 
|  | const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction); | 
|  | const auto &AARetVal = getAAFor<AAReturnedValues>(QueryingAA, QueryIRP); | 
|  | if (!AARetVal.getState().isValidState()) | 
|  | return false; | 
|  |  | 
|  | return AARetVal.checkForAllReturnedValuesAndReturnInsts( | 
|  | [&](Value &RV, const SmallSetVector<ReturnInst *, 4> &) { | 
|  | return Pred(RV); | 
|  | }); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | checkForAllInstructionsImpl(InformationCache::OpcodeInstMapTy &OpcodeInstMap, | 
|  | const function_ref<bool(Instruction &)> &Pred, | 
|  | const AAIsDead *LivenessAA, bool &AnyDead, | 
|  | const ArrayRef<unsigned> &Opcodes) { | 
|  | for (unsigned Opcode : Opcodes) { | 
|  | for (Instruction *I : OpcodeInstMap[Opcode]) { | 
|  | // Skip dead instructions. | 
|  | if (LivenessAA && LivenessAA->isAssumedDead(I)) { | 
|  | AnyDead = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!Pred(*I)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Attributor::checkForAllInstructions( | 
|  | const llvm::function_ref<bool(Instruction &)> &Pred, | 
|  | const AbstractAttribute &QueryingAA, const ArrayRef<unsigned> &Opcodes) { | 
|  |  | 
|  | const IRPosition &IRP = QueryingAA.getIRPosition(); | 
|  | // Since we need to provide instructions we have to have an exact definition. | 
|  | const Function *AssociatedFunction = IRP.getAssociatedFunction(); | 
|  | if (!AssociatedFunction) | 
|  | return false; | 
|  |  | 
|  | // TODO: use the function scope once we have call site AAReturnedValues. | 
|  | const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction); | 
|  | const auto &LivenessAA = | 
|  | getAAFor<AAIsDead>(QueryingAA, QueryIRP, /* TrackDependence */ false); | 
|  | bool AnyDead = false; | 
|  |  | 
|  | auto &OpcodeInstMap = | 
|  | InfoCache.getOpcodeInstMapForFunction(*AssociatedFunction); | 
|  | if (!checkForAllInstructionsImpl(OpcodeInstMap, Pred, &LivenessAA, AnyDead, | 
|  | Opcodes)) | 
|  | return false; | 
|  |  | 
|  | // If we actually used liveness information so we have to record a dependence. | 
|  | if (AnyDead) | 
|  | recordDependence(LivenessAA, QueryingAA, DepClassTy::OPTIONAL); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Attributor::checkForAllReadWriteInstructions( | 
|  | const llvm::function_ref<bool(Instruction &)> &Pred, | 
|  | AbstractAttribute &QueryingAA) { | 
|  |  | 
|  | const Function *AssociatedFunction = | 
|  | QueryingAA.getIRPosition().getAssociatedFunction(); | 
|  | if (!AssociatedFunction) | 
|  | return false; | 
|  |  | 
|  | // TODO: use the function scope once we have call site AAReturnedValues. | 
|  | const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction); | 
|  | const auto &LivenessAA = | 
|  | getAAFor<AAIsDead>(QueryingAA, QueryIRP, /* TrackDependence */ false); | 
|  | bool AnyDead = false; | 
|  |  | 
|  | for (Instruction *I : | 
|  | InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) { | 
|  | // Skip dead instructions. | 
|  | if (LivenessAA.isAssumedDead(I)) { | 
|  | AnyDead = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!Pred(*I)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we actually used liveness information so we have to record a dependence. | 
|  | if (AnyDead) | 
|  | recordDependence(LivenessAA, QueryingAA, DepClassTy::OPTIONAL); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ChangeStatus Attributor::run(Module &M) { | 
|  | LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized " | 
|  | << AllAbstractAttributes.size() | 
|  | << " abstract attributes.\n"); | 
|  |  | 
|  | // Now that all abstract attributes are collected and initialized we start | 
|  | // the abstract analysis. | 
|  |  | 
|  | unsigned IterationCounter = 1; | 
|  |  | 
|  | SmallVector<AbstractAttribute *, 64> ChangedAAs; | 
|  | SetVector<AbstractAttribute *> Worklist, InvalidAAs; | 
|  | Worklist.insert(AllAbstractAttributes.begin(), AllAbstractAttributes.end()); | 
|  |  | 
|  | bool RecomputeDependences = false; | 
|  |  | 
|  | do { | 
|  | // Remember the size to determine new attributes. | 
|  | size_t NumAAs = AllAbstractAttributes.size(); | 
|  | LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter | 
|  | << ", Worklist size: " << Worklist.size() << "\n"); | 
|  |  | 
|  | // For invalid AAs we can fix dependent AAs that have a required dependence, | 
|  | // thereby folding long dependence chains in a single step without the need | 
|  | // to run updates. | 
|  | for (unsigned u = 0; u < InvalidAAs.size(); ++u) { | 
|  | AbstractAttribute *InvalidAA = InvalidAAs[u]; | 
|  | auto &QuerriedAAs = QueryMap[InvalidAA]; | 
|  | LLVM_DEBUG(dbgs() << "[Attributor] InvalidAA: " << *InvalidAA << " has " | 
|  | << QuerriedAAs.RequiredAAs.size() << "/" | 
|  | << QuerriedAAs.OptionalAAs.size() | 
|  | << " required/optional dependences\n"); | 
|  | for (AbstractAttribute *DepOnInvalidAA : QuerriedAAs.RequiredAAs) { | 
|  | AbstractState &DOIAAState = DepOnInvalidAA->getState(); | 
|  | DOIAAState.indicatePessimisticFixpoint(); | 
|  | ++NumAttributesFixedDueToRequiredDependences; | 
|  | assert(DOIAAState.isAtFixpoint() && "Expected fixpoint state!"); | 
|  | if (!DOIAAState.isValidState()) | 
|  | InvalidAAs.insert(DepOnInvalidAA); | 
|  | } | 
|  | if (!RecomputeDependences) | 
|  | Worklist.insert(QuerriedAAs.OptionalAAs.begin(), | 
|  | QuerriedAAs.OptionalAAs.end()); | 
|  | } | 
|  |  | 
|  | // If dependences (=QueryMap) are recomputed we have to look at all abstract | 
|  | // attributes again, regardless of what changed in the last iteration. | 
|  | if (RecomputeDependences) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "[Attributor] Run all AAs to recompute dependences\n"); | 
|  | QueryMap.clear(); | 
|  | ChangedAAs.clear(); | 
|  | Worklist.insert(AllAbstractAttributes.begin(), | 
|  | AllAbstractAttributes.end()); | 
|  | } | 
|  |  | 
|  | // Add all abstract attributes that are potentially dependent on one that | 
|  | // changed to the work list. | 
|  | for (AbstractAttribute *ChangedAA : ChangedAAs) { | 
|  | auto &QuerriedAAs = QueryMap[ChangedAA]; | 
|  | Worklist.insert(QuerriedAAs.OptionalAAs.begin(), | 
|  | QuerriedAAs.OptionalAAs.end()); | 
|  | Worklist.insert(QuerriedAAs.RequiredAAs.begin(), | 
|  | QuerriedAAs.RequiredAAs.end()); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter | 
|  | << ", Worklist+Dependent size: " << Worklist.size() | 
|  | << "\n"); | 
|  |  | 
|  | // Reset the changed and invalid set. | 
|  | ChangedAAs.clear(); | 
|  | InvalidAAs.clear(); | 
|  |  | 
|  | // Update all abstract attribute in the work list and record the ones that | 
|  | // changed. | 
|  | for (AbstractAttribute *AA : Worklist) | 
|  | if (!AA->getState().isAtFixpoint() && !isAssumedDead(*AA, nullptr)) { | 
|  | QueriedNonFixAA = false; | 
|  | if (AA->update(*this) == ChangeStatus::CHANGED) { | 
|  | ChangedAAs.push_back(AA); | 
|  | if (!AA->getState().isValidState()) | 
|  | InvalidAAs.insert(AA); | 
|  | } else if (!QueriedNonFixAA) { | 
|  | // If the attribute did not query any non-fix information, the state | 
|  | // will not change and we can indicate that right away. | 
|  | AA->getState().indicateOptimisticFixpoint(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if we recompute the dependences in the next iteration. | 
|  | RecomputeDependences = (DepRecomputeInterval > 0 && | 
|  | IterationCounter % DepRecomputeInterval == 0); | 
|  |  | 
|  | // Add attributes to the changed set if they have been created in the last | 
|  | // iteration. | 
|  | ChangedAAs.append(AllAbstractAttributes.begin() + NumAAs, | 
|  | AllAbstractAttributes.end()); | 
|  |  | 
|  | // Reset the work list and repopulate with the changed abstract attributes. | 
|  | // Note that dependent ones are added above. | 
|  | Worklist.clear(); | 
|  | Worklist.insert(ChangedAAs.begin(), ChangedAAs.end()); | 
|  |  | 
|  | } while (!Worklist.empty() && (IterationCounter++ < MaxFixpointIterations || | 
|  | VerifyMaxFixpointIterations)); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: " | 
|  | << IterationCounter << "/" << MaxFixpointIterations | 
|  | << " iterations\n"); | 
|  |  | 
|  | size_t NumFinalAAs = AllAbstractAttributes.size(); | 
|  |  | 
|  | // Reset abstract arguments not settled in a sound fixpoint by now. This | 
|  | // happens when we stopped the fixpoint iteration early. Note that only the | 
|  | // ones marked as "changed" *and* the ones transitively depending on them | 
|  | // need to be reverted to a pessimistic state. Others might not be in a | 
|  | // fixpoint state but we can use the optimistic results for them anyway. | 
|  | SmallPtrSet<AbstractAttribute *, 32> Visited; | 
|  | for (unsigned u = 0; u < ChangedAAs.size(); u++) { | 
|  | AbstractAttribute *ChangedAA = ChangedAAs[u]; | 
|  | if (!Visited.insert(ChangedAA).second) | 
|  | continue; | 
|  |  | 
|  | AbstractState &State = ChangedAA->getState(); | 
|  | if (!State.isAtFixpoint()) { | 
|  | State.indicatePessimisticFixpoint(); | 
|  |  | 
|  | NumAttributesTimedOut++; | 
|  | } | 
|  |  | 
|  | auto &QuerriedAAs = QueryMap[ChangedAA]; | 
|  | ChangedAAs.append(QuerriedAAs.OptionalAAs.begin(), | 
|  | QuerriedAAs.OptionalAAs.end()); | 
|  | ChangedAAs.append(QuerriedAAs.RequiredAAs.begin(), | 
|  | QuerriedAAs.RequiredAAs.end()); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | if (!Visited.empty()) | 
|  | dbgs() << "\n[Attributor] Finalized " << Visited.size() | 
|  | << " abstract attributes.\n"; | 
|  | }); | 
|  |  | 
|  | unsigned NumManifested = 0; | 
|  | unsigned NumAtFixpoint = 0; | 
|  | ChangeStatus ManifestChange = ChangeStatus::UNCHANGED; | 
|  | for (AbstractAttribute *AA : AllAbstractAttributes) { | 
|  | AbstractState &State = AA->getState(); | 
|  |  | 
|  | // If there is not already a fixpoint reached, we can now take the | 
|  | // optimistic state. This is correct because we enforced a pessimistic one | 
|  | // on abstract attributes that were transitively dependent on a changed one | 
|  | // already above. | 
|  | if (!State.isAtFixpoint()) | 
|  | State.indicateOptimisticFixpoint(); | 
|  |  | 
|  | // If the state is invalid, we do not try to manifest it. | 
|  | if (!State.isValidState()) | 
|  | continue; | 
|  |  | 
|  | // Skip dead code. | 
|  | if (isAssumedDead(*AA, nullptr)) | 
|  | continue; | 
|  | // Manifest the state and record if we changed the IR. | 
|  | ChangeStatus LocalChange = AA->manifest(*this); | 
|  | if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled()) | 
|  | AA->trackStatistics(); | 
|  |  | 
|  | ManifestChange = ManifestChange | LocalChange; | 
|  |  | 
|  | NumAtFixpoint++; | 
|  | NumManifested += (LocalChange == ChangeStatus::CHANGED); | 
|  | } | 
|  |  | 
|  | (void)NumManifested; | 
|  | (void)NumAtFixpoint; | 
|  | LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested | 
|  | << " arguments while " << NumAtFixpoint | 
|  | << " were in a valid fixpoint state\n"); | 
|  |  | 
|  | NumAttributesManifested += NumManifested; | 
|  | NumAttributesValidFixpoint += NumAtFixpoint; | 
|  |  | 
|  | (void)NumFinalAAs; | 
|  | assert( | 
|  | NumFinalAAs == AllAbstractAttributes.size() && | 
|  | "Expected the final number of abstract attributes to remain unchanged!"); | 
|  |  | 
|  | // Delete stuff at the end to avoid invalid references and a nice order. | 
|  | { | 
|  | LLVM_DEBUG(dbgs() << "\n[Attributor] Delete at least " | 
|  | << ToBeDeletedFunctions.size() << " functions and " | 
|  | << ToBeDeletedBlocks.size() << " blocks and " | 
|  | << ToBeDeletedInsts.size() << " instructions and " | 
|  | << ToBeChangedUses.size() << " uses\n"); | 
|  |  | 
|  | SmallVector<Instruction *, 32> DeadInsts; | 
|  | SmallVector<Instruction *, 32> TerminatorsToFold; | 
|  | SmallVector<Instruction *, 32> UnreachablesToInsert; | 
|  |  | 
|  | for (auto &It : ToBeChangedUses) { | 
|  | Use *U = It.first; | 
|  | Value *NewV = It.second; | 
|  | Value *OldV = U->get(); | 
|  | LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser() | 
|  | << " instead of " << *OldV << "\n"); | 
|  | U->set(NewV); | 
|  | if (Instruction *I = dyn_cast<Instruction>(OldV)) | 
|  | if (!isa<PHINode>(I) && !ToBeDeletedInsts.count(I) && | 
|  | isInstructionTriviallyDead(I)) { | 
|  | DeadInsts.push_back(I); | 
|  | } | 
|  | if (isa<Constant>(NewV) && isa<BranchInst>(U->getUser())) { | 
|  | Instruction *UserI = cast<Instruction>(U->getUser()); | 
|  | if (isa<UndefValue>(NewV)) { | 
|  | UnreachablesToInsert.push_back(UserI); | 
|  | } else { | 
|  | TerminatorsToFold.push_back(UserI); | 
|  | } | 
|  | } | 
|  | } | 
|  | for (Instruction *I : UnreachablesToInsert) | 
|  | changeToUnreachable(I, /* UseLLVMTrap */ false); | 
|  | for (Instruction *I : TerminatorsToFold) | 
|  | ConstantFoldTerminator(I->getParent()); | 
|  |  | 
|  | for (Instruction *I : ToBeDeletedInsts) { | 
|  | I->replaceAllUsesWith(UndefValue::get(I->getType())); | 
|  | if (!isa<PHINode>(I) && isInstructionTriviallyDead(I)) | 
|  | DeadInsts.push_back(I); | 
|  | else | 
|  | I->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); | 
|  |  | 
|  | if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) { | 
|  | SmallVector<BasicBlock *, 8> ToBeDeletedBBs; | 
|  | ToBeDeletedBBs.reserve(NumDeadBlocks); | 
|  | ToBeDeletedBBs.append(ToBeDeletedBlocks.begin(), ToBeDeletedBlocks.end()); | 
|  | // Actually we do not delete the blocks but squash them into a single | 
|  | // unreachable but untangling branches that jump here is something we need | 
|  | // to do in a more generic way. | 
|  | DetatchDeadBlocks(ToBeDeletedBBs, nullptr); | 
|  | STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted."); | 
|  | BUILD_STAT_NAME(AAIsDead, BasicBlock) += ToBeDeletedBlocks.size(); | 
|  | } | 
|  |  | 
|  | STATS_DECL(AAIsDead, Function, "Number of dead functions deleted."); | 
|  | for (Function *Fn : ToBeDeletedFunctions) { | 
|  | Fn->replaceAllUsesWith(UndefValue::get(Fn->getType())); | 
|  | Fn->eraseFromParent(); | 
|  | STATS_TRACK(AAIsDead, Function); | 
|  | } | 
|  |  | 
|  | // Identify dead internal functions and delete them. This happens outside | 
|  | // the other fixpoint analysis as we might treat potentially dead functions | 
|  | // as live to lower the number of iterations. If they happen to be dead, the | 
|  | // below fixpoint loop will identify and eliminate them. | 
|  | SmallVector<Function *, 8> InternalFns; | 
|  | for (Function &F : M) | 
|  | if (F.hasLocalLinkage()) | 
|  | InternalFns.push_back(&F); | 
|  |  | 
|  | bool FoundDeadFn = true; | 
|  | while (FoundDeadFn) { | 
|  | FoundDeadFn = false; | 
|  | for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) { | 
|  | Function *F = InternalFns[u]; | 
|  | if (!F) | 
|  | continue; | 
|  |  | 
|  | if (!checkForAllCallSites([](AbstractCallSite ACS) { return false; }, | 
|  | *F, true, nullptr)) | 
|  | continue; | 
|  |  | 
|  | STATS_TRACK(AAIsDead, Function); | 
|  | ToBeDeletedFunctions.insert(F); | 
|  | F->deleteBody(); | 
|  | F->replaceAllUsesWith(UndefValue::get(F->getType())); | 
|  | F->eraseFromParent(); | 
|  | InternalFns[u] = nullptr; | 
|  | FoundDeadFn = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VerifyMaxFixpointIterations && | 
|  | IterationCounter != MaxFixpointIterations) { | 
|  | errs() << "\n[Attributor] Fixpoint iteration done after: " | 
|  | << IterationCounter << "/" << MaxFixpointIterations | 
|  | << " iterations\n"; | 
|  | llvm_unreachable("The fixpoint was not reached with exactly the number of " | 
|  | "specified iterations!"); | 
|  | } | 
|  |  | 
|  | return ManifestChange; | 
|  | } | 
|  |  | 
|  | void Attributor::initializeInformationCache(Function &F) { | 
|  |  | 
|  | // Walk all instructions to find interesting instructions that might be | 
|  | // queried by abstract attributes during their initialization or update. | 
|  | // This has to happen before we create attributes. | 
|  | auto &ReadOrWriteInsts = InfoCache.FuncRWInstsMap[&F]; | 
|  | auto &InstOpcodeMap = InfoCache.FuncInstOpcodeMap[&F]; | 
|  |  | 
|  | for (Instruction &I : instructions(&F)) { | 
|  | bool IsInterestingOpcode = false; | 
|  |  | 
|  | // To allow easy access to all instructions in a function with a given | 
|  | // opcode we store them in the InfoCache. As not all opcodes are interesting | 
|  | // to concrete attributes we only cache the ones that are as identified in | 
|  | // the following switch. | 
|  | // Note: There are no concrete attributes now so this is initially empty. | 
|  | switch (I.getOpcode()) { | 
|  | default: | 
|  | assert((!ImmutableCallSite(&I)) && (!isa<CallBase>(&I)) && | 
|  | "New call site/base instruction type needs to be known int the " | 
|  | "Attributor."); | 
|  | break; | 
|  | case Instruction::Load: | 
|  | // The alignment of a pointer is interesting for loads. | 
|  | case Instruction::Store: | 
|  | // The alignment of a pointer is interesting for stores. | 
|  | case Instruction::Call: | 
|  | case Instruction::CallBr: | 
|  | case Instruction::Invoke: | 
|  | case Instruction::CleanupRet: | 
|  | case Instruction::CatchSwitch: | 
|  | case Instruction::Resume: | 
|  | case Instruction::Ret: | 
|  | IsInterestingOpcode = true; | 
|  | } | 
|  | if (IsInterestingOpcode) | 
|  | InstOpcodeMap[I.getOpcode()].push_back(&I); | 
|  | if (I.mayReadOrWriteMemory()) | 
|  | ReadOrWriteInsts.push_back(&I); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Attributor::recordDependence(const AbstractAttribute &FromAA, | 
|  | const AbstractAttribute &ToAA, | 
|  | DepClassTy DepClass) { | 
|  | if (FromAA.getState().isAtFixpoint()) | 
|  | return; | 
|  |  | 
|  | if (DepClass == DepClassTy::REQUIRED) | 
|  | QueryMap[&FromAA].RequiredAAs.insert( | 
|  | const_cast<AbstractAttribute *>(&ToAA)); | 
|  | else | 
|  | QueryMap[&FromAA].OptionalAAs.insert( | 
|  | const_cast<AbstractAttribute *>(&ToAA)); | 
|  | QueriedNonFixAA = true; | 
|  | } | 
|  |  | 
|  | void Attributor::identifyDefaultAbstractAttributes(Function &F) { | 
|  | if (!VisitedFunctions.insert(&F).second) | 
|  | return; | 
|  | if (F.isDeclaration()) | 
|  | return; | 
|  |  | 
|  | IRPosition FPos = IRPosition::function(F); | 
|  |  | 
|  | // Check for dead BasicBlocks in every function. | 
|  | // We need dead instruction detection because we do not want to deal with | 
|  | // broken IR in which SSA rules do not apply. | 
|  | getOrCreateAAFor<AAIsDead>(FPos); | 
|  |  | 
|  | // Every function might be "will-return". | 
|  | getOrCreateAAFor<AAWillReturn>(FPos); | 
|  |  | 
|  | // Every function can be nounwind. | 
|  | getOrCreateAAFor<AANoUnwind>(FPos); | 
|  |  | 
|  | // Every function might be marked "nosync" | 
|  | getOrCreateAAFor<AANoSync>(FPos); | 
|  |  | 
|  | // Every function might be "no-free". | 
|  | getOrCreateAAFor<AANoFree>(FPos); | 
|  |  | 
|  | // Every function might be "no-return". | 
|  | getOrCreateAAFor<AANoReturn>(FPos); | 
|  |  | 
|  | // Every function might be "no-recurse". | 
|  | getOrCreateAAFor<AANoRecurse>(FPos); | 
|  |  | 
|  | // Every function might be "readnone/readonly/writeonly/...". | 
|  | getOrCreateAAFor<AAMemoryBehavior>(FPos); | 
|  |  | 
|  | // Every function might be applicable for Heap-To-Stack conversion. | 
|  | if (EnableHeapToStack) | 
|  | getOrCreateAAFor<AAHeapToStack>(FPos); | 
|  |  | 
|  | // Return attributes are only appropriate if the return type is non void. | 
|  | Type *ReturnType = F.getReturnType(); | 
|  | if (!ReturnType->isVoidTy()) { | 
|  | // Argument attribute "returned" --- Create only one per function even | 
|  | // though it is an argument attribute. | 
|  | getOrCreateAAFor<AAReturnedValues>(FPos); | 
|  |  | 
|  | IRPosition RetPos = IRPosition::returned(F); | 
|  |  | 
|  | // Every returned value might be dead. | 
|  | getOrCreateAAFor<AAIsDead>(RetPos); | 
|  |  | 
|  | // Every function might be simplified. | 
|  | getOrCreateAAFor<AAValueSimplify>(RetPos); | 
|  |  | 
|  | if (ReturnType->isPointerTy()) { | 
|  |  | 
|  | // Every function with pointer return type might be marked align. | 
|  | getOrCreateAAFor<AAAlign>(RetPos); | 
|  |  | 
|  | // Every function with pointer return type might be marked nonnull. | 
|  | getOrCreateAAFor<AANonNull>(RetPos); | 
|  |  | 
|  | // Every function with pointer return type might be marked noalias. | 
|  | getOrCreateAAFor<AANoAlias>(RetPos); | 
|  |  | 
|  | // Every function with pointer return type might be marked | 
|  | // dereferenceable. | 
|  | getOrCreateAAFor<AADereferenceable>(RetPos); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (Argument &Arg : F.args()) { | 
|  | IRPosition ArgPos = IRPosition::argument(Arg); | 
|  |  | 
|  | // Every argument might be simplified. | 
|  | getOrCreateAAFor<AAValueSimplify>(ArgPos); | 
|  |  | 
|  | if (Arg.getType()->isPointerTy()) { | 
|  | // Every argument with pointer type might be marked nonnull. | 
|  | getOrCreateAAFor<AANonNull>(ArgPos); | 
|  |  | 
|  | // Every argument with pointer type might be marked noalias. | 
|  | getOrCreateAAFor<AANoAlias>(ArgPos); | 
|  |  | 
|  | // Every argument with pointer type might be marked dereferenceable. | 
|  | getOrCreateAAFor<AADereferenceable>(ArgPos); | 
|  |  | 
|  | // Every argument with pointer type might be marked align. | 
|  | getOrCreateAAFor<AAAlign>(ArgPos); | 
|  |  | 
|  | // Every argument with pointer type might be marked nocapture. | 
|  | getOrCreateAAFor<AANoCapture>(ArgPos); | 
|  |  | 
|  | // Every argument with pointer type might be marked | 
|  | // "readnone/readonly/writeonly/..." | 
|  | getOrCreateAAFor<AAMemoryBehavior>(ArgPos); | 
|  |  | 
|  | // Every argument with pointer type might be marked nofree. | 
|  | getOrCreateAAFor<AANoFree>(ArgPos); | 
|  | } | 
|  | } | 
|  |  | 
|  | auto CallSitePred = [&](Instruction &I) -> bool { | 
|  | CallSite CS(&I); | 
|  | if (Function *Callee = CS.getCalledFunction()) { | 
|  | // Skip declerations except if annotations on their call sites were | 
|  | // explicitly requested. | 
|  | if (!AnnotateDeclarationCallSites && Callee->isDeclaration()) | 
|  | return true; | 
|  |  | 
|  | if (!Callee->getReturnType()->isVoidTy() && !CS->use_empty()) { | 
|  | IRPosition CSRetPos = IRPosition::callsite_returned(CS); | 
|  |  | 
|  | // Call site return values might be dead. | 
|  | getOrCreateAAFor<AAIsDead>(CSRetPos); | 
|  | } | 
|  |  | 
|  | for (int i = 0, e = Callee->arg_size(); i < e; i++) { | 
|  |  | 
|  | IRPosition CSArgPos = IRPosition::callsite_argument(CS, i); | 
|  |  | 
|  | // Every call site argument might be dead. | 
|  | getOrCreateAAFor<AAIsDead>(CSArgPos); | 
|  |  | 
|  | // Call site argument might be simplified. | 
|  | getOrCreateAAFor<AAValueSimplify>(CSArgPos); | 
|  |  | 
|  | if (!CS.getArgument(i)->getType()->isPointerTy()) | 
|  | continue; | 
|  |  | 
|  | // Call site argument attribute "non-null". | 
|  | getOrCreateAAFor<AANonNull>(CSArgPos); | 
|  |  | 
|  | // Call site argument attribute "no-alias". | 
|  | getOrCreateAAFor<AANoAlias>(CSArgPos); | 
|  |  | 
|  | // Call site argument attribute "dereferenceable". | 
|  | getOrCreateAAFor<AADereferenceable>(CSArgPos); | 
|  |  | 
|  | // Call site argument attribute "align". | 
|  | getOrCreateAAFor<AAAlign>(CSArgPos); | 
|  |  | 
|  | // Call site argument attribute "nofree". | 
|  | getOrCreateAAFor<AANoFree>(CSArgPos); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F); | 
|  | bool Success, AnyDead = false; | 
|  | Success = checkForAllInstructionsImpl( | 
|  | OpcodeInstMap, CallSitePred, nullptr, AnyDead, | 
|  | {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr, | 
|  | (unsigned)Instruction::Call}); | 
|  | (void)Success; | 
|  | assert(Success && !AnyDead && "Expected the check call to be successful!"); | 
|  |  | 
|  | auto LoadStorePred = [&](Instruction &I) -> bool { | 
|  | if (isa<LoadInst>(I)) | 
|  | getOrCreateAAFor<AAAlign>( | 
|  | IRPosition::value(*cast<LoadInst>(I).getPointerOperand())); | 
|  | else | 
|  | getOrCreateAAFor<AAAlign>( | 
|  | IRPosition::value(*cast<StoreInst>(I).getPointerOperand())); | 
|  | return true; | 
|  | }; | 
|  | Success = checkForAllInstructionsImpl( | 
|  | OpcodeInstMap, LoadStorePred, nullptr, AnyDead, | 
|  | {(unsigned)Instruction::Load, (unsigned)Instruction::Store}); | 
|  | (void)Success; | 
|  | assert(Success && !AnyDead && "Expected the check call to be successful!"); | 
|  | } | 
|  |  | 
|  | /// Helpers to ease debugging through output streams and print calls. | 
|  | /// | 
|  | ///{ | 
|  | raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) { | 
|  | return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged"); | 
|  | } | 
|  |  | 
|  | raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) { | 
|  | switch (AP) { | 
|  | case IRPosition::IRP_INVALID: | 
|  | return OS << "inv"; | 
|  | case IRPosition::IRP_FLOAT: | 
|  | return OS << "flt"; | 
|  | case IRPosition::IRP_RETURNED: | 
|  | return OS << "fn_ret"; | 
|  | case IRPosition::IRP_CALL_SITE_RETURNED: | 
|  | return OS << "cs_ret"; | 
|  | case IRPosition::IRP_FUNCTION: | 
|  | return OS << "fn"; | 
|  | case IRPosition::IRP_CALL_SITE: | 
|  | return OS << "cs"; | 
|  | case IRPosition::IRP_ARGUMENT: | 
|  | return OS << "arg"; | 
|  | case IRPosition::IRP_CALL_SITE_ARGUMENT: | 
|  | return OS << "cs_arg"; | 
|  | } | 
|  | llvm_unreachable("Unknown attribute position!"); | 
|  | } | 
|  |  | 
|  | raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) { | 
|  | const Value &AV = Pos.getAssociatedValue(); | 
|  | return OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " [" | 
|  | << Pos.getAnchorValue().getName() << "@" << Pos.getArgNo() << "]}"; | 
|  | } | 
|  |  | 
|  | template <typename base_ty, base_ty BestState, base_ty WorstState> | 
|  | raw_ostream &llvm:: | 
|  | operator<<(raw_ostream &OS, | 
|  | const IntegerStateBase<base_ty, BestState, WorstState> &S) { | 
|  | return OS << "(" << S.getKnown() << "-" << S.getAssumed() << ")" | 
|  | << static_cast<const AbstractState &>(S); | 
|  | } | 
|  |  | 
|  | raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) { | 
|  | return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : "")); | 
|  | } | 
|  |  | 
|  | raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) { | 
|  | AA.print(OS); | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | void AbstractAttribute::print(raw_ostream &OS) const { | 
|  | OS << "[P: " << getIRPosition() << "][" << getAsStr() << "][S: " << getState() | 
|  | << "]"; | 
|  | } | 
|  | ///} | 
|  |  | 
|  | /// ---------------------------------------------------------------------------- | 
|  | ///                       Pass (Manager) Boilerplate | 
|  | /// ---------------------------------------------------------------------------- | 
|  |  | 
|  | static bool runAttributorOnModule(Module &M, AnalysisGetter &AG) { | 
|  | if (DisableAttributor) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "[Attributor] Run on module with " << M.size() | 
|  | << " functions.\n"); | 
|  |  | 
|  | // Create an Attributor and initially empty information cache that is filled | 
|  | // while we identify default attribute opportunities. | 
|  | InformationCache InfoCache(M, AG); | 
|  | Attributor A(InfoCache, DepRecInterval); | 
|  |  | 
|  | for (Function &F : M) | 
|  | A.initializeInformationCache(F); | 
|  |  | 
|  | for (Function &F : M) { | 
|  | if (F.hasExactDefinition()) | 
|  | NumFnWithExactDefinition++; | 
|  | else | 
|  | NumFnWithoutExactDefinition++; | 
|  |  | 
|  | // We look at internal functions only on-demand but if any use is not a | 
|  | // direct call, we have to do it eagerly. | 
|  | if (F.hasLocalLinkage()) { | 
|  | if (llvm::all_of(F.uses(), [](const Use &U) { | 
|  | return ImmutableCallSite(U.getUser()) && | 
|  | ImmutableCallSite(U.getUser()).isCallee(&U); | 
|  | })) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Populate the Attributor with abstract attribute opportunities in the | 
|  | // function and the information cache with IR information. | 
|  | A.identifyDefaultAbstractAttributes(F); | 
|  | } | 
|  |  | 
|  | return A.run(M) == ChangeStatus::CHANGED; | 
|  | } | 
|  |  | 
|  | PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) { | 
|  | AnalysisGetter AG(AM); | 
|  | if (runAttributorOnModule(M, AG)) { | 
|  | // FIXME: Think about passes we will preserve and add them here. | 
|  | return PreservedAnalyses::none(); | 
|  | } | 
|  | return PreservedAnalyses::all(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct AttributorLegacyPass : public ModulePass { | 
|  | static char ID; | 
|  |  | 
|  | AttributorLegacyPass() : ModulePass(ID) { | 
|  | initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnModule(Module &M) override { | 
|  | if (skipModule(M)) | 
|  | return false; | 
|  |  | 
|  | AnalysisGetter AG; | 
|  | return runAttributorOnModule(M, AG); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | // FIXME: Think about passes we will preserve and add them here. | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); } | 
|  |  | 
|  | char AttributorLegacyPass::ID = 0; | 
|  |  | 
|  | const char AAReturnedValues::ID = 0; | 
|  | const char AANoUnwind::ID = 0; | 
|  | const char AANoSync::ID = 0; | 
|  | const char AANoFree::ID = 0; | 
|  | const char AANonNull::ID = 0; | 
|  | const char AANoRecurse::ID = 0; | 
|  | const char AAWillReturn::ID = 0; | 
|  | const char AANoAlias::ID = 0; | 
|  | const char AAReachability::ID = 0; | 
|  | const char AANoReturn::ID = 0; | 
|  | const char AAIsDead::ID = 0; | 
|  | const char AADereferenceable::ID = 0; | 
|  | const char AAAlign::ID = 0; | 
|  | const char AANoCapture::ID = 0; | 
|  | const char AAValueSimplify::ID = 0; | 
|  | const char AAHeapToStack::ID = 0; | 
|  | const char AAMemoryBehavior::ID = 0; | 
|  |  | 
|  | // Macro magic to create the static generator function for attributes that | 
|  | // follow the naming scheme. | 
|  |  | 
|  | #define SWITCH_PK_INV(CLASS, PK, POS_NAME)                                     \ | 
|  | case IRPosition::PK:                                                         \ | 
|  | llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!"); | 
|  |  | 
|  | #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX)                               \ | 
|  | case IRPosition::PK:                                                         \ | 
|  | AA = new CLASS##SUFFIX(IRP);                                               \ | 
|  | break; | 
|  |  | 
|  | #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                 \ | 
|  | CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \ | 
|  | CLASS *AA = nullptr;                                                       \ | 
|  | switch (IRP.getPositionKind()) {                                           \ | 
|  | SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \ | 
|  | SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \ | 
|  | SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \ | 
|  | SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \ | 
|  | SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \ | 
|  | SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \ | 
|  | SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \ | 
|  | SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \ | 
|  | }                                                                          \ | 
|  | return *AA;                                                                \ | 
|  | } | 
|  |  | 
|  | #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                    \ | 
|  | CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \ | 
|  | CLASS *AA = nullptr;                                                       \ | 
|  | switch (IRP.getPositionKind()) {                                           \ | 
|  | SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \ | 
|  | SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function")                           \ | 
|  | SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \ | 
|  | SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \ | 
|  | SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \ | 
|  | SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \ | 
|  | SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \ | 
|  | SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \ | 
|  | }                                                                          \ | 
|  | return *AA;                                                                \ | 
|  | } | 
|  |  | 
|  | #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                      \ | 
|  | CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \ | 
|  | CLASS *AA = nullptr;                                                       \ | 
|  | switch (IRP.getPositionKind()) {                                           \ | 
|  | SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \ | 
|  | SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \ | 
|  | SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \ | 
|  | SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \ | 
|  | SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \ | 
|  | SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \ | 
|  | SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \ | 
|  | SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \ | 
|  | }                                                                          \ | 
|  | return *AA;                                                                \ | 
|  | } | 
|  |  | 
|  | #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)            \ | 
|  | CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \ | 
|  | CLASS *AA = nullptr;                                                       \ | 
|  | switch (IRP.getPositionKind()) {                                           \ | 
|  | SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \ | 
|  | SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \ | 
|  | SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \ | 
|  | SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \ | 
|  | SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \ | 
|  | SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \ | 
|  | SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \ | 
|  | SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \ | 
|  | }                                                                          \ | 
|  | return *AA;                                                                \ | 
|  | } | 
|  |  | 
|  | #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                  \ | 
|  | CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \ | 
|  | CLASS *AA = nullptr;                                                       \ | 
|  | switch (IRP.getPositionKind()) {                                           \ | 
|  | SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \ | 
|  | SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \ | 
|  | SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \ | 
|  | SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \ | 
|  | SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \ | 
|  | SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \ | 
|  | SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \ | 
|  | SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \ | 
|  | }                                                                          \ | 
|  | return *AA;                                                                \ | 
|  | } | 
|  |  | 
|  | CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind) | 
|  | CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync) | 
|  | CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse) | 
|  | CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn) | 
|  | CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn) | 
|  | CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues) | 
|  |  | 
|  | CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull) | 
|  | CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias) | 
|  | CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable) | 
|  | CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign) | 
|  | CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture) | 
|  |  | 
|  | CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify) | 
|  | CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead) | 
|  | CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree) | 
|  |  | 
|  | CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack) | 
|  | CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability) | 
|  |  | 
|  | CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior) | 
|  |  | 
|  | #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION | 
|  | #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION | 
|  | #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION | 
|  | #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION | 
|  | #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION | 
|  | #undef SWITCH_PK_CREATE | 
|  | #undef SWITCH_PK_INV | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor", | 
|  | "Deduce and propagate attributes", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(AttributorLegacyPass, "attributor", | 
|  | "Deduce and propagate attributes", false, false) |