|  | //===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // These classes wrap the information about a call or function | 
|  | // definition used to handle ABI compliancy. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "CGCall.h" | 
|  | #include "CodeGenFunction.h" | 
|  | #include "CodeGenModule.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/AST/Decl.h" | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/CodeGen/CodeGenOptions.h" | 
|  | #include "llvm/Attributes.h" | 
|  | #include "llvm/Support/CallSite.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  |  | 
|  | #include "ABIInfo.h" | 
|  |  | 
|  | using namespace clang; | 
|  | using namespace CodeGen; | 
|  |  | 
|  | /***/ | 
|  |  | 
|  | // FIXME: Use iterator and sidestep silly type array creation. | 
|  |  | 
|  | const | 
|  | CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionNoProtoType *FTNP) { | 
|  | // FIXME: Set calling convention correctly, it needs to be associated with the | 
|  | // type somehow. | 
|  | return getFunctionInfo(FTNP->getResultType(), | 
|  | llvm::SmallVector<QualType, 16>(), 0); | 
|  | } | 
|  |  | 
|  | const | 
|  | CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionProtoType *FTP) { | 
|  | llvm::SmallVector<QualType, 16> ArgTys; | 
|  | // FIXME: Kill copy. | 
|  | for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) | 
|  | ArgTys.push_back(FTP->getArgType(i)); | 
|  | // FIXME: Set calling convention correctly, it needs to be associated with the | 
|  | // type somehow. | 
|  | return getFunctionInfo(FTP->getResultType(), ArgTys, 0); | 
|  | } | 
|  |  | 
|  | static unsigned getCallingConventionForDecl(const Decl *D) { | 
|  | // Set the appropriate calling convention for the Function. | 
|  | if (D->hasAttr<StdCallAttr>()) | 
|  | return llvm::CallingConv::X86_StdCall; | 
|  |  | 
|  | if (D->hasAttr<FastCallAttr>()) | 
|  | return llvm::CallingConv::X86_FastCall; | 
|  |  | 
|  | return llvm::CallingConv::C; | 
|  | } | 
|  |  | 
|  | const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXRecordDecl *RD, | 
|  | const FunctionProtoType *FTP) { | 
|  | llvm::SmallVector<QualType, 16> ArgTys; | 
|  |  | 
|  | // Add the 'this' pointer. | 
|  | ArgTys.push_back(Context.getPointerType(Context.getTagDeclType(RD))); | 
|  |  | 
|  | for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) | 
|  | ArgTys.push_back(FTP->getArgType(i)); | 
|  |  | 
|  | // FIXME: Set calling convention correctly, it needs to be associated with the | 
|  | // type somehow. | 
|  | return getFunctionInfo(FTP->getResultType(), ArgTys, 0); | 
|  | } | 
|  |  | 
|  | const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXMethodDecl *MD) { | 
|  | llvm::SmallVector<QualType, 16> ArgTys; | 
|  | // Add the 'this' pointer unless this is a static method. | 
|  | if (MD->isInstance()) | 
|  | ArgTys.push_back(MD->getThisType(Context)); | 
|  |  | 
|  | const FunctionProtoType *FTP = MD->getType()->getAs<FunctionProtoType>(); | 
|  | for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) | 
|  | ArgTys.push_back(FTP->getArgType(i)); | 
|  | return getFunctionInfo(FTP->getResultType(), ArgTys, | 
|  | getCallingConventionForDecl(MD)); | 
|  | } | 
|  |  | 
|  | const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionDecl *FD) { | 
|  | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) | 
|  | if (MD->isInstance()) | 
|  | return getFunctionInfo(MD); | 
|  |  | 
|  | unsigned CallingConvention = getCallingConventionForDecl(FD); | 
|  | const FunctionType *FTy = FD->getType()->getAs<FunctionType>(); | 
|  | if (const FunctionNoProtoType *FNTP = dyn_cast<FunctionNoProtoType>(FTy)) | 
|  | return getFunctionInfo(FNTP->getResultType(), | 
|  | llvm::SmallVector<QualType, 16>(), | 
|  | CallingConvention); | 
|  |  | 
|  | const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy); | 
|  | llvm::SmallVector<QualType, 16> ArgTys; | 
|  | // FIXME: Kill copy. | 
|  | for (unsigned i = 0, e = FPT->getNumArgs(); i != e; ++i) | 
|  | ArgTys.push_back(FPT->getArgType(i)); | 
|  | return getFunctionInfo(FPT->getResultType(), ArgTys, CallingConvention); | 
|  | } | 
|  |  | 
|  | const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const ObjCMethodDecl *MD) { | 
|  | llvm::SmallVector<QualType, 16> ArgTys; | 
|  | ArgTys.push_back(MD->getSelfDecl()->getType()); | 
|  | ArgTys.push_back(Context.getObjCSelType()); | 
|  | // FIXME: Kill copy? | 
|  | for (ObjCMethodDecl::param_iterator i = MD->param_begin(), | 
|  | e = MD->param_end(); i != e; ++i) | 
|  | ArgTys.push_back((*i)->getType()); | 
|  | return getFunctionInfo(MD->getResultType(), ArgTys, | 
|  | getCallingConventionForDecl(MD)); | 
|  | } | 
|  |  | 
|  | const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy, | 
|  | const CallArgList &Args, | 
|  | unsigned CallingConvention){ | 
|  | // FIXME: Kill copy. | 
|  | llvm::SmallVector<QualType, 16> ArgTys; | 
|  | for (CallArgList::const_iterator i = Args.begin(), e = Args.end(); | 
|  | i != e; ++i) | 
|  | ArgTys.push_back(i->second); | 
|  | return getFunctionInfo(ResTy, ArgTys, CallingConvention); | 
|  | } | 
|  |  | 
|  | const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy, | 
|  | const FunctionArgList &Args, | 
|  | unsigned CallingConvention){ | 
|  | // FIXME: Kill copy. | 
|  | llvm::SmallVector<QualType, 16> ArgTys; | 
|  | for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); | 
|  | i != e; ++i) | 
|  | ArgTys.push_back(i->second); | 
|  | return getFunctionInfo(ResTy, ArgTys, CallingConvention); | 
|  | } | 
|  |  | 
|  | const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy, | 
|  | const llvm::SmallVector<QualType, 16> &ArgTys, | 
|  | unsigned CallingConvention){ | 
|  | // Lookup or create unique function info. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | CGFunctionInfo::Profile(ID, CallingConvention, ResTy, | 
|  | ArgTys.begin(), ArgTys.end()); | 
|  |  | 
|  | void *InsertPos = 0; | 
|  | CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (FI) | 
|  | return *FI; | 
|  |  | 
|  | // Construct the function info. | 
|  | FI = new CGFunctionInfo(CallingConvention, ResTy, ArgTys); | 
|  | FunctionInfos.InsertNode(FI, InsertPos); | 
|  |  | 
|  | // Compute ABI information. | 
|  | getABIInfo().computeInfo(*FI, getContext(), TheModule.getContext()); | 
|  |  | 
|  | return *FI; | 
|  | } | 
|  |  | 
|  | CGFunctionInfo::CGFunctionInfo(unsigned _CallingConvention, | 
|  | QualType ResTy, | 
|  | const llvm::SmallVector<QualType, 16> &ArgTys) | 
|  | : CallingConvention(_CallingConvention), | 
|  | EffectiveCallingConvention(_CallingConvention) | 
|  | { | 
|  | NumArgs = ArgTys.size(); | 
|  | Args = new ArgInfo[1 + NumArgs]; | 
|  | Args[0].type = ResTy; | 
|  | for (unsigned i = 0; i < NumArgs; ++i) | 
|  | Args[1 + i].type = ArgTys[i]; | 
|  | } | 
|  |  | 
|  | /***/ | 
|  |  | 
|  | void CodeGenTypes::GetExpandedTypes(QualType Ty, | 
|  | std::vector<const llvm::Type*> &ArgTys) { | 
|  | const RecordType *RT = Ty->getAsStructureType(); | 
|  | assert(RT && "Can only expand structure types."); | 
|  | const RecordDecl *RD = RT->getDecl(); | 
|  | assert(!RD->hasFlexibleArrayMember() && | 
|  | "Cannot expand structure with flexible array."); | 
|  |  | 
|  | for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); | 
|  | i != e; ++i) { | 
|  | const FieldDecl *FD = *i; | 
|  | assert(!FD->isBitField() && | 
|  | "Cannot expand structure with bit-field members."); | 
|  |  | 
|  | QualType FT = FD->getType(); | 
|  | if (CodeGenFunction::hasAggregateLLVMType(FT)) { | 
|  | GetExpandedTypes(FT, ArgTys); | 
|  | } else { | 
|  | ArgTys.push_back(ConvertType(FT)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm::Function::arg_iterator | 
|  | CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, | 
|  | llvm::Function::arg_iterator AI) { | 
|  | const RecordType *RT = Ty->getAsStructureType(); | 
|  | assert(RT && "Can only expand structure types."); | 
|  |  | 
|  | RecordDecl *RD = RT->getDecl(); | 
|  | assert(LV.isSimple() && | 
|  | "Unexpected non-simple lvalue during struct expansion."); | 
|  | llvm::Value *Addr = LV.getAddress(); | 
|  | for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); | 
|  | i != e; ++i) { | 
|  | FieldDecl *FD = *i; | 
|  | QualType FT = FD->getType(); | 
|  |  | 
|  | // FIXME: What are the right qualifiers here? | 
|  | LValue LV = EmitLValueForField(Addr, FD, false, 0); | 
|  | if (CodeGenFunction::hasAggregateLLVMType(FT)) { | 
|  | AI = ExpandTypeFromArgs(FT, LV, AI); | 
|  | } else { | 
|  | EmitStoreThroughLValue(RValue::get(AI), LV, FT); | 
|  | ++AI; | 
|  | } | 
|  | } | 
|  |  | 
|  | return AI; | 
|  | } | 
|  |  | 
|  | void | 
|  | CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV, | 
|  | llvm::SmallVector<llvm::Value*, 16> &Args) { | 
|  | const RecordType *RT = Ty->getAsStructureType(); | 
|  | assert(RT && "Can only expand structure types."); | 
|  |  | 
|  | RecordDecl *RD = RT->getDecl(); | 
|  | assert(RV.isAggregate() && "Unexpected rvalue during struct expansion"); | 
|  | llvm::Value *Addr = RV.getAggregateAddr(); | 
|  | for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); | 
|  | i != e; ++i) { | 
|  | FieldDecl *FD = *i; | 
|  | QualType FT = FD->getType(); | 
|  |  | 
|  | // FIXME: What are the right qualifiers here? | 
|  | LValue LV = EmitLValueForField(Addr, FD, false, 0); | 
|  | if (CodeGenFunction::hasAggregateLLVMType(FT)) { | 
|  | ExpandTypeToArgs(FT, RValue::getAggregate(LV.getAddress()), Args); | 
|  | } else { | 
|  | RValue RV = EmitLoadOfLValue(LV, FT); | 
|  | assert(RV.isScalar() && | 
|  | "Unexpected non-scalar rvalue during struct expansion."); | 
|  | Args.push_back(RV.getScalarVal()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as | 
|  | /// a pointer to an object of type \arg Ty. | 
|  | /// | 
|  | /// This safely handles the case when the src type is smaller than the | 
|  | /// destination type; in this situation the values of bits which not | 
|  | /// present in the src are undefined. | 
|  | static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr, | 
|  | const llvm::Type *Ty, | 
|  | CodeGenFunction &CGF) { | 
|  | const llvm::Type *SrcTy = | 
|  | cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); | 
|  | uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); | 
|  | uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty); | 
|  |  | 
|  | // If load is legal, just bitcast the src pointer. | 
|  | if (SrcSize >= DstSize) { | 
|  | // Generally SrcSize is never greater than DstSize, since this means we are | 
|  | // losing bits. However, this can happen in cases where the structure has | 
|  | // additional padding, for example due to a user specified alignment. | 
|  | // | 
|  | // FIXME: Assert that we aren't truncating non-padding bits when have access | 
|  | // to that information. | 
|  | llvm::Value *Casted = | 
|  | CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty)); | 
|  | llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); | 
|  | // FIXME: Use better alignment / avoid requiring aligned load. | 
|  | Load->setAlignment(1); | 
|  | return Load; | 
|  | } else { | 
|  | // Otherwise do coercion through memory. This is stupid, but | 
|  | // simple. | 
|  | llvm::Value *Tmp = CGF.CreateTempAlloca(Ty); | 
|  | llvm::Value *Casted = | 
|  | CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy)); | 
|  | llvm::StoreInst *Store = | 
|  | CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted); | 
|  | // FIXME: Use better alignment / avoid requiring aligned store. | 
|  | Store->setAlignment(1); | 
|  | return CGF.Builder.CreateLoad(Tmp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, | 
|  | /// where the source and destination may have different types. | 
|  | /// | 
|  | /// This safely handles the case when the src type is larger than the | 
|  | /// destination type; the upper bits of the src will be lost. | 
|  | static void CreateCoercedStore(llvm::Value *Src, | 
|  | llvm::Value *DstPtr, | 
|  | CodeGenFunction &CGF) { | 
|  | const llvm::Type *SrcTy = Src->getType(); | 
|  | const llvm::Type *DstTy = | 
|  | cast<llvm::PointerType>(DstPtr->getType())->getElementType(); | 
|  |  | 
|  | uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); | 
|  | uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy); | 
|  |  | 
|  | // If store is legal, just bitcast the src pointer. | 
|  | if (SrcSize <= DstSize) { | 
|  | llvm::Value *Casted = | 
|  | CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy)); | 
|  | // FIXME: Use better alignment / avoid requiring aligned store. | 
|  | CGF.Builder.CreateStore(Src, Casted)->setAlignment(1); | 
|  | } else { | 
|  | // Otherwise do coercion through memory. This is stupid, but | 
|  | // simple. | 
|  |  | 
|  | // Generally SrcSize is never greater than DstSize, since this means we are | 
|  | // losing bits. However, this can happen in cases where the structure has | 
|  | // additional padding, for example due to a user specified alignment. | 
|  | // | 
|  | // FIXME: Assert that we aren't truncating non-padding bits when have access | 
|  | // to that information. | 
|  | llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy); | 
|  | CGF.Builder.CreateStore(Src, Tmp); | 
|  | llvm::Value *Casted = | 
|  | CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy)); | 
|  | llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); | 
|  | // FIXME: Use better alignment / avoid requiring aligned load. | 
|  | Load->setAlignment(1); | 
|  | CGF.Builder.CreateStore(Load, DstPtr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /***/ | 
|  |  | 
|  | bool CodeGenModule::ReturnTypeUsesSret(const CGFunctionInfo &FI) { | 
|  | return FI.getReturnInfo().isIndirect(); | 
|  | } | 
|  |  | 
|  | const llvm::FunctionType * | 
|  | CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool IsVariadic) { | 
|  | std::vector<const llvm::Type*> ArgTys; | 
|  |  | 
|  | const llvm::Type *ResultType = 0; | 
|  |  | 
|  | QualType RetTy = FI.getReturnType(); | 
|  | const ABIArgInfo &RetAI = FI.getReturnInfo(); | 
|  | switch (RetAI.getKind()) { | 
|  | case ABIArgInfo::Expand: | 
|  | assert(0 && "Invalid ABI kind for return argument"); | 
|  |  | 
|  | case ABIArgInfo::Extend: | 
|  | case ABIArgInfo::Direct: | 
|  | ResultType = ConvertType(RetTy); | 
|  | break; | 
|  |  | 
|  | case ABIArgInfo::Indirect: { | 
|  | assert(!RetAI.getIndirectAlign() && "Align unused on indirect return."); | 
|  | ResultType = llvm::Type::getVoidTy(getLLVMContext()); | 
|  | const llvm::Type *STy = ConvertType(RetTy); | 
|  | ArgTys.push_back(llvm::PointerType::get(STy, RetTy.getAddressSpace())); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ABIArgInfo::Ignore: | 
|  | ResultType = llvm::Type::getVoidTy(getLLVMContext()); | 
|  | break; | 
|  |  | 
|  | case ABIArgInfo::Coerce: | 
|  | ResultType = RetAI.getCoerceToType(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), | 
|  | ie = FI.arg_end(); it != ie; ++it) { | 
|  | const ABIArgInfo &AI = it->info; | 
|  |  | 
|  | switch (AI.getKind()) { | 
|  | case ABIArgInfo::Ignore: | 
|  | break; | 
|  |  | 
|  | case ABIArgInfo::Coerce: | 
|  | ArgTys.push_back(AI.getCoerceToType()); | 
|  | break; | 
|  |  | 
|  | case ABIArgInfo::Indirect: { | 
|  | // indirect arguments are always on the stack, which is addr space #0. | 
|  | const llvm::Type *LTy = ConvertTypeForMem(it->type); | 
|  | ArgTys.push_back(llvm::PointerType::getUnqual(LTy)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ABIArgInfo::Extend: | 
|  | case ABIArgInfo::Direct: | 
|  | ArgTys.push_back(ConvertType(it->type)); | 
|  | break; | 
|  |  | 
|  | case ABIArgInfo::Expand: | 
|  | GetExpandedTypes(it->type, ArgTys); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return llvm::FunctionType::get(ResultType, ArgTys, IsVariadic); | 
|  | } | 
|  |  | 
|  | static bool HasIncompleteReturnTypeOrArgumentTypes(const FunctionProtoType *T) { | 
|  | if (const TagType *TT = T->getResultType()->getAs<TagType>()) { | 
|  | if (!TT->getDecl()->isDefinition()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = T->getNumArgs(); i != e; ++i) { | 
|  | if (const TagType *TT = T->getArgType(i)->getAs<TagType>()) { | 
|  | if (!TT->getDecl()->isDefinition()) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const llvm::Type * | 
|  | CodeGenTypes::GetFunctionTypeForVtable(const CXXMethodDecl *MD) { | 
|  | const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); | 
|  |  | 
|  | if (!HasIncompleteReturnTypeOrArgumentTypes(FPT)) | 
|  | return GetFunctionType(getFunctionInfo(MD), FPT->isVariadic()); | 
|  |  | 
|  | return llvm::OpaqueType::get(getLLVMContext()); | 
|  | } | 
|  |  | 
|  | void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, | 
|  | const Decl *TargetDecl, | 
|  | AttributeListType &PAL, | 
|  | unsigned &CallingConv) { | 
|  | unsigned FuncAttrs = 0; | 
|  | unsigned RetAttrs = 0; | 
|  |  | 
|  | CallingConv = FI.getEffectiveCallingConvention(); | 
|  |  | 
|  | // FIXME: handle sseregparm someday... | 
|  | if (TargetDecl) { | 
|  | if (TargetDecl->hasAttr<NoThrowAttr>()) | 
|  | FuncAttrs |= llvm::Attribute::NoUnwind; | 
|  | if (TargetDecl->hasAttr<NoReturnAttr>()) | 
|  | FuncAttrs |= llvm::Attribute::NoReturn; | 
|  | if (TargetDecl->hasAttr<ConstAttr>()) | 
|  | FuncAttrs |= llvm::Attribute::ReadNone; | 
|  | else if (TargetDecl->hasAttr<PureAttr>()) | 
|  | FuncAttrs |= llvm::Attribute::ReadOnly; | 
|  | if (TargetDecl->hasAttr<MallocAttr>()) | 
|  | RetAttrs |= llvm::Attribute::NoAlias; | 
|  | } | 
|  |  | 
|  | if (CodeGenOpts.OptimizeSize) | 
|  | FuncAttrs |= llvm::Attribute::OptimizeForSize; | 
|  | if (CodeGenOpts.DisableRedZone) | 
|  | FuncAttrs |= llvm::Attribute::NoRedZone; | 
|  | if (CodeGenOpts.NoImplicitFloat) | 
|  | FuncAttrs |= llvm::Attribute::NoImplicitFloat; | 
|  |  | 
|  | QualType RetTy = FI.getReturnType(); | 
|  | unsigned Index = 1; | 
|  | const ABIArgInfo &RetAI = FI.getReturnInfo(); | 
|  | switch (RetAI.getKind()) { | 
|  | case ABIArgInfo::Extend: | 
|  | if (RetTy->isSignedIntegerType()) { | 
|  | RetAttrs |= llvm::Attribute::SExt; | 
|  | } else if (RetTy->isUnsignedIntegerType()) { | 
|  | RetAttrs |= llvm::Attribute::ZExt; | 
|  | } | 
|  | // FALLTHROUGH | 
|  | case ABIArgInfo::Direct: | 
|  | break; | 
|  |  | 
|  | case ABIArgInfo::Indirect: | 
|  | PAL.push_back(llvm::AttributeWithIndex::get(Index, | 
|  | llvm::Attribute::StructRet | | 
|  | llvm::Attribute::NoAlias)); | 
|  | ++Index; | 
|  | // sret disables readnone and readonly | 
|  | FuncAttrs &= ~(llvm::Attribute::ReadOnly | | 
|  | llvm::Attribute::ReadNone); | 
|  | break; | 
|  |  | 
|  | case ABIArgInfo::Ignore: | 
|  | case ABIArgInfo::Coerce: | 
|  | break; | 
|  |  | 
|  | case ABIArgInfo::Expand: | 
|  | assert(0 && "Invalid ABI kind for return argument"); | 
|  | } | 
|  |  | 
|  | if (RetAttrs) | 
|  | PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs)); | 
|  |  | 
|  | // FIXME: we need to honour command line settings also... | 
|  | // FIXME: RegParm should be reduced in case of nested functions and/or global | 
|  | // register variable. | 
|  | signed RegParm = 0; | 
|  | if (TargetDecl) | 
|  | if (const RegparmAttr *RegParmAttr | 
|  | = TargetDecl->getAttr<RegparmAttr>()) | 
|  | RegParm = RegParmAttr->getNumParams(); | 
|  |  | 
|  | unsigned PointerWidth = getContext().Target.getPointerWidth(0); | 
|  | for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), | 
|  | ie = FI.arg_end(); it != ie; ++it) { | 
|  | QualType ParamType = it->type; | 
|  | const ABIArgInfo &AI = it->info; | 
|  | unsigned Attributes = 0; | 
|  |  | 
|  | switch (AI.getKind()) { | 
|  | case ABIArgInfo::Coerce: | 
|  | break; | 
|  |  | 
|  | case ABIArgInfo::Indirect: | 
|  | if (AI.getIndirectByVal()) | 
|  | Attributes |= llvm::Attribute::ByVal; | 
|  |  | 
|  | Attributes |= | 
|  | llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign()); | 
|  | // byval disables readnone and readonly. | 
|  | FuncAttrs &= ~(llvm::Attribute::ReadOnly | | 
|  | llvm::Attribute::ReadNone); | 
|  | break; | 
|  |  | 
|  | case ABIArgInfo::Extend: | 
|  | if (ParamType->isSignedIntegerType()) { | 
|  | Attributes |= llvm::Attribute::SExt; | 
|  | } else if (ParamType->isUnsignedIntegerType()) { | 
|  | Attributes |= llvm::Attribute::ZExt; | 
|  | } | 
|  | // FALLS THROUGH | 
|  | case ABIArgInfo::Direct: | 
|  | if (RegParm > 0 && | 
|  | (ParamType->isIntegerType() || ParamType->isPointerType())) { | 
|  | RegParm -= | 
|  | (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth; | 
|  | if (RegParm >= 0) | 
|  | Attributes |= llvm::Attribute::InReg; | 
|  | } | 
|  | // FIXME: handle sseregparm someday... | 
|  | break; | 
|  |  | 
|  | case ABIArgInfo::Ignore: | 
|  | // Skip increment, no matching LLVM parameter. | 
|  | continue; | 
|  |  | 
|  | case ABIArgInfo::Expand: { | 
|  | std::vector<const llvm::Type*> Tys; | 
|  | // FIXME: This is rather inefficient. Do we ever actually need to do | 
|  | // anything here? The result should be just reconstructed on the other | 
|  | // side, so extension should be a non-issue. | 
|  | getTypes().GetExpandedTypes(ParamType, Tys); | 
|  | Index += Tys.size(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Attributes) | 
|  | PAL.push_back(llvm::AttributeWithIndex::get(Index, Attributes)); | 
|  | ++Index; | 
|  | } | 
|  | if (FuncAttrs) | 
|  | PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs)); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, | 
|  | llvm::Function *Fn, | 
|  | const FunctionArgList &Args) { | 
|  | // If this is an implicit-return-zero function, go ahead and | 
|  | // initialize the return value.  TODO: it might be nice to have | 
|  | // a more general mechanism for this that didn't require synthesized | 
|  | // return statements. | 
|  | if (const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { | 
|  | if (FD->hasImplicitReturnZero()) { | 
|  | QualType RetTy = FD->getResultType().getUnqualifiedType(); | 
|  | const llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); | 
|  | llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); | 
|  | Builder.CreateStore(Zero, ReturnValue); | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: We no longer need the types from FunctionArgList; lift up and | 
|  | // simplify. | 
|  |  | 
|  | // Emit allocs for param decls.  Give the LLVM Argument nodes names. | 
|  | llvm::Function::arg_iterator AI = Fn->arg_begin(); | 
|  |  | 
|  | // Name the struct return argument. | 
|  | if (CGM.ReturnTypeUsesSret(FI)) { | 
|  | AI->setName("agg.result"); | 
|  | ++AI; | 
|  | } | 
|  |  | 
|  | assert(FI.arg_size() == Args.size() && | 
|  | "Mismatch between function signature & arguments."); | 
|  | CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); | 
|  | for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); | 
|  | i != e; ++i, ++info_it) { | 
|  | const VarDecl *Arg = i->first; | 
|  | QualType Ty = info_it->type; | 
|  | const ABIArgInfo &ArgI = info_it->info; | 
|  |  | 
|  | switch (ArgI.getKind()) { | 
|  | case ABIArgInfo::Indirect: { | 
|  | llvm::Value* V = AI; | 
|  | if (hasAggregateLLVMType(Ty)) { | 
|  | // Do nothing, aggregates and complex variables are accessed by | 
|  | // reference. | 
|  | } else { | 
|  | // Load scalar value from indirect argument. | 
|  | V = EmitLoadOfScalar(V, false, Ty); | 
|  | if (!getContext().typesAreCompatible(Ty, Arg->getType())) { | 
|  | // This must be a promotion, for something like | 
|  | // "void a(x) short x; {..." | 
|  | V = EmitScalarConversion(V, Ty, Arg->getType()); | 
|  | } | 
|  | } | 
|  | EmitParmDecl(*Arg, V); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ABIArgInfo::Extend: | 
|  | case ABIArgInfo::Direct: { | 
|  | assert(AI != Fn->arg_end() && "Argument mismatch!"); | 
|  | llvm::Value* V = AI; | 
|  | if (hasAggregateLLVMType(Ty)) { | 
|  | // Create a temporary alloca to hold the argument; the rest of | 
|  | // codegen expects to access aggregates & complex values by | 
|  | // reference. | 
|  | V = CreateTempAlloca(ConvertTypeForMem(Ty)); | 
|  | Builder.CreateStore(AI, V); | 
|  | } else { | 
|  | if (!getContext().typesAreCompatible(Ty, Arg->getType())) { | 
|  | // This must be a promotion, for something like | 
|  | // "void a(x) short x; {..." | 
|  | V = EmitScalarConversion(V, Ty, Arg->getType()); | 
|  | } | 
|  | } | 
|  | EmitParmDecl(*Arg, V); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ABIArgInfo::Expand: { | 
|  | // If this structure was expanded into multiple arguments then | 
|  | // we need to create a temporary and reconstruct it from the | 
|  | // arguments. | 
|  | llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(Ty), | 
|  | Arg->getName() + ".addr"); | 
|  | // FIXME: What are the right qualifiers here? | 
|  | llvm::Function::arg_iterator End = | 
|  | ExpandTypeFromArgs(Ty, LValue::MakeAddr(Temp, Qualifiers()), AI); | 
|  | EmitParmDecl(*Arg, Temp); | 
|  |  | 
|  | // Name the arguments used in expansion and increment AI. | 
|  | unsigned Index = 0; | 
|  | for (; AI != End; ++AI, ++Index) | 
|  | AI->setName(Arg->getName() + "." + llvm::Twine(Index)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case ABIArgInfo::Ignore: | 
|  | // Initialize the local variable appropriately. | 
|  | if (hasAggregateLLVMType(Ty)) { | 
|  | EmitParmDecl(*Arg, CreateTempAlloca(ConvertTypeForMem(Ty))); | 
|  | } else { | 
|  | EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType()))); | 
|  | } | 
|  |  | 
|  | // Skip increment, no matching LLVM parameter. | 
|  | continue; | 
|  |  | 
|  | case ABIArgInfo::Coerce: { | 
|  | assert(AI != Fn->arg_end() && "Argument mismatch!"); | 
|  | // FIXME: This is very wasteful; EmitParmDecl is just going to drop the | 
|  | // result in a new alloca anyway, so we could just store into that | 
|  | // directly if we broke the abstraction down more. | 
|  | llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(Ty), "coerce"); | 
|  | CreateCoercedStore(AI, V, *this); | 
|  | // Match to what EmitParmDecl is expecting for this type. | 
|  | if (!CodeGenFunction::hasAggregateLLVMType(Ty)) { | 
|  | V = EmitLoadOfScalar(V, false, Ty); | 
|  | if (!getContext().typesAreCompatible(Ty, Arg->getType())) { | 
|  | // This must be a promotion, for something like | 
|  | // "void a(x) short x; {..." | 
|  | V = EmitScalarConversion(V, Ty, Arg->getType()); | 
|  | } | 
|  | } | 
|  | EmitParmDecl(*Arg, V); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | ++AI; | 
|  | } | 
|  | assert(AI == Fn->arg_end() && "Argument mismatch!"); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, | 
|  | llvm::Value *ReturnValue) { | 
|  | llvm::Value *RV = 0; | 
|  |  | 
|  | // Functions with no result always return void. | 
|  | if (ReturnValue) { | 
|  | QualType RetTy = FI.getReturnType(); | 
|  | const ABIArgInfo &RetAI = FI.getReturnInfo(); | 
|  |  | 
|  | switch (RetAI.getKind()) { | 
|  | case ABIArgInfo::Indirect: | 
|  | if (RetTy->isAnyComplexType()) { | 
|  | ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false); | 
|  | StoreComplexToAddr(RT, CurFn->arg_begin(), false); | 
|  | } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { | 
|  | EmitAggregateCopy(CurFn->arg_begin(), ReturnValue, RetTy); | 
|  | } else { | 
|  | EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(), | 
|  | false, RetTy); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ABIArgInfo::Extend: | 
|  | case ABIArgInfo::Direct: | 
|  | // The internal return value temp always will have | 
|  | // pointer-to-return-type type. | 
|  | RV = Builder.CreateLoad(ReturnValue); | 
|  | break; | 
|  |  | 
|  | case ABIArgInfo::Ignore: | 
|  | break; | 
|  |  | 
|  | case ABIArgInfo::Coerce: | 
|  | RV = CreateCoercedLoad(ReturnValue, RetAI.getCoerceToType(), *this); | 
|  | break; | 
|  |  | 
|  | case ABIArgInfo::Expand: | 
|  | assert(0 && "Invalid ABI kind for return argument"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (RV) { | 
|  | Builder.CreateRet(RV); | 
|  | } else { | 
|  | Builder.CreateRetVoid(); | 
|  | } | 
|  | } | 
|  |  | 
|  | RValue CodeGenFunction::EmitCallArg(const Expr *E, QualType ArgType) { | 
|  | if (ArgType->isReferenceType()) | 
|  | return EmitReferenceBindingToExpr(E, ArgType); | 
|  |  | 
|  | return EmitAnyExprToTemp(E); | 
|  | } | 
|  |  | 
|  | RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, | 
|  | llvm::Value *Callee, | 
|  | const CallArgList &CallArgs, | 
|  | const Decl *TargetDecl) { | 
|  | // FIXME: We no longer need the types from CallArgs; lift up and simplify. | 
|  | llvm::SmallVector<llvm::Value*, 16> Args; | 
|  |  | 
|  | // Handle struct-return functions by passing a pointer to the | 
|  | // location that we would like to return into. | 
|  | QualType RetTy = CallInfo.getReturnType(); | 
|  | const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); | 
|  |  | 
|  |  | 
|  | // If the call returns a temporary with struct return, create a temporary | 
|  | // alloca to hold the result. | 
|  | if (CGM.ReturnTypeUsesSret(CallInfo)) | 
|  | Args.push_back(CreateTempAlloca(ConvertTypeForMem(RetTy))); | 
|  |  | 
|  | assert(CallInfo.arg_size() == CallArgs.size() && | 
|  | "Mismatch between function signature & arguments."); | 
|  | CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); | 
|  | for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); | 
|  | I != E; ++I, ++info_it) { | 
|  | const ABIArgInfo &ArgInfo = info_it->info; | 
|  | RValue RV = I->first; | 
|  |  | 
|  | switch (ArgInfo.getKind()) { | 
|  | case ABIArgInfo::Indirect: | 
|  | if (RV.isScalar() || RV.isComplex()) { | 
|  | // Make a temporary alloca to pass the argument. | 
|  | Args.push_back(CreateTempAlloca(ConvertTypeForMem(I->second))); | 
|  | if (RV.isScalar()) | 
|  | EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false, I->second); | 
|  | else | 
|  | StoreComplexToAddr(RV.getComplexVal(), Args.back(), false); | 
|  | } else { | 
|  | Args.push_back(RV.getAggregateAddr()); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ABIArgInfo::Extend: | 
|  | case ABIArgInfo::Direct: | 
|  | if (RV.isScalar()) { | 
|  | Args.push_back(RV.getScalarVal()); | 
|  | } else if (RV.isComplex()) { | 
|  | llvm::Value *Tmp = llvm::UndefValue::get(ConvertType(I->second)); | 
|  | Tmp = Builder.CreateInsertValue(Tmp, RV.getComplexVal().first, 0); | 
|  | Tmp = Builder.CreateInsertValue(Tmp, RV.getComplexVal().second, 1); | 
|  | Args.push_back(Tmp); | 
|  | } else { | 
|  | Args.push_back(Builder.CreateLoad(RV.getAggregateAddr())); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ABIArgInfo::Ignore: | 
|  | break; | 
|  |  | 
|  | case ABIArgInfo::Coerce: { | 
|  | // FIXME: Avoid the conversion through memory if possible. | 
|  | llvm::Value *SrcPtr; | 
|  | if (RV.isScalar()) { | 
|  | SrcPtr = CreateTempAlloca(ConvertTypeForMem(I->second), "coerce"); | 
|  | EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, I->second); | 
|  | } else if (RV.isComplex()) { | 
|  | SrcPtr = CreateTempAlloca(ConvertTypeForMem(I->second), "coerce"); | 
|  | StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false); | 
|  | } else | 
|  | SrcPtr = RV.getAggregateAddr(); | 
|  | Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), | 
|  | *this)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ABIArgInfo::Expand: | 
|  | ExpandTypeToArgs(I->second, RV, Args); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the callee is a bitcast of a function to a varargs pointer to function | 
|  | // type, check to see if we can remove the bitcast.  This handles some cases | 
|  | // with unprototyped functions. | 
|  | if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) | 
|  | if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { | 
|  | const llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); | 
|  | const llvm::FunctionType *CurFT = | 
|  | cast<llvm::FunctionType>(CurPT->getElementType()); | 
|  | const llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); | 
|  |  | 
|  | if (CE->getOpcode() == llvm::Instruction::BitCast && | 
|  | ActualFT->getReturnType() == CurFT->getReturnType() && | 
|  | ActualFT->getNumParams() == CurFT->getNumParams() && | 
|  | ActualFT->getNumParams() == Args.size()) { | 
|  | bool ArgsMatch = true; | 
|  | for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) | 
|  | if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { | 
|  | ArgsMatch = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Strip the cast if we can get away with it.  This is a nice cleanup, | 
|  | // but also allows us to inline the function at -O0 if it is marked | 
|  | // always_inline. | 
|  | if (ArgsMatch) | 
|  | Callee = CalleeF; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | llvm::BasicBlock *InvokeDest = getInvokeDest(); | 
|  | unsigned CallingConv; | 
|  | CodeGen::AttributeListType AttributeList; | 
|  | CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv); | 
|  | llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(), | 
|  | AttributeList.end()); | 
|  |  | 
|  | llvm::CallSite CS; | 
|  | if (!InvokeDest || (Attrs.getFnAttributes() & llvm::Attribute::NoUnwind)) { | 
|  | CS = Builder.CreateCall(Callee, Args.data(), Args.data()+Args.size()); | 
|  | } else { | 
|  | llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); | 
|  | CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, | 
|  | Args.data(), Args.data()+Args.size()); | 
|  | EmitBlock(Cont); | 
|  | } | 
|  |  | 
|  | CS.setAttributes(Attrs); | 
|  | CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); | 
|  |  | 
|  | // If the call doesn't return, finish the basic block and clear the | 
|  | // insertion point; this allows the rest of IRgen to discard | 
|  | // unreachable code. | 
|  | if (CS.doesNotReturn()) { | 
|  | Builder.CreateUnreachable(); | 
|  | Builder.ClearInsertionPoint(); | 
|  |  | 
|  | // FIXME: For now, emit a dummy basic block because expr emitters in | 
|  | // generally are not ready to handle emitting expressions at unreachable | 
|  | // points. | 
|  | EnsureInsertPoint(); | 
|  |  | 
|  | // Return a reasonable RValue. | 
|  | return GetUndefRValue(RetTy); | 
|  | } | 
|  |  | 
|  | llvm::Instruction *CI = CS.getInstruction(); | 
|  | if (Builder.isNamePreserving() && !CI->getType()->isVoidTy()) | 
|  | CI->setName("call"); | 
|  |  | 
|  | switch (RetAI.getKind()) { | 
|  | case ABIArgInfo::Indirect: | 
|  | if (RetTy->isAnyComplexType()) | 
|  | return RValue::getComplex(LoadComplexFromAddr(Args[0], false)); | 
|  | if (CodeGenFunction::hasAggregateLLVMType(RetTy)) | 
|  | return RValue::getAggregate(Args[0]); | 
|  | return RValue::get(EmitLoadOfScalar(Args[0], false, RetTy)); | 
|  |  | 
|  | case ABIArgInfo::Extend: | 
|  | case ABIArgInfo::Direct: | 
|  | if (RetTy->isAnyComplexType()) { | 
|  | llvm::Value *Real = Builder.CreateExtractValue(CI, 0); | 
|  | llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); | 
|  | return RValue::getComplex(std::make_pair(Real, Imag)); | 
|  | } | 
|  | if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { | 
|  | llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(RetTy), "agg.tmp"); | 
|  | Builder.CreateStore(CI, V); | 
|  | return RValue::getAggregate(V); | 
|  | } | 
|  | return RValue::get(CI); | 
|  |  | 
|  | case ABIArgInfo::Ignore: | 
|  | // If we are ignoring an argument that had a result, make sure to | 
|  | // construct the appropriate return value for our caller. | 
|  | return GetUndefRValue(RetTy); | 
|  |  | 
|  | case ABIArgInfo::Coerce: { | 
|  | // FIXME: Avoid the conversion through memory if possible. | 
|  | llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(RetTy), "coerce"); | 
|  | CreateCoercedStore(CI, V, *this); | 
|  | if (RetTy->isAnyComplexType()) | 
|  | return RValue::getComplex(LoadComplexFromAddr(V, false)); | 
|  | if (CodeGenFunction::hasAggregateLLVMType(RetTy)) | 
|  | return RValue::getAggregate(V); | 
|  | return RValue::get(EmitLoadOfScalar(V, false, RetTy)); | 
|  | } | 
|  |  | 
|  | case ABIArgInfo::Expand: | 
|  | assert(0 && "Invalid ABI kind for return argument"); | 
|  | } | 
|  |  | 
|  | assert(0 && "Unhandled ABIArgInfo::Kind"); | 
|  | return RValue::get(0); | 
|  | } | 
|  |  | 
|  | /* VarArg handling */ | 
|  |  | 
|  | llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) { | 
|  | return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this); | 
|  | } |