|  | //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file was developed by Chris Lattner and is distributed under | 
|  | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements semantic analysis for declarations. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Sema.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/Decl.h" | 
|  | #include "clang/AST/Type.h" | 
|  | #include "clang/Parse/DeclSpec.h" | 
|  | #include "clang/Parse/Scope.h" | 
|  | #include "clang/Lex/IdentifierTable.h" | 
|  | #include "clang/Basic/LangOptions.h" | 
|  | using namespace llvm; | 
|  | using namespace clang; | 
|  |  | 
|  |  | 
|  | Sema::DeclTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) const { | 
|  | return dyn_cast_or_null<TypeDecl>(II.getFETokenInfo<Decl>()); | 
|  | } | 
|  |  | 
|  | void Sema::PopScope(SourceLocation Loc, Scope *S) { | 
|  | for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end(); | 
|  | I != E; ++I) { | 
|  | Decl *D = static_cast<Decl*>(*I); | 
|  | assert(D && "This decl didn't get pushed??"); | 
|  | IdentifierInfo *II = D->getIdentifier(); | 
|  | if (!II) continue; | 
|  |  | 
|  | // Unlink this decl from the identifier.  Because the scope contains decls | 
|  | // in an unordered collection, and because we have multiple identifier | 
|  | // namespaces (e.g. tag, normal, label),the decl may not be the first entry. | 
|  | if (II->getFETokenInfo<Decl>() == D) { | 
|  | // Normal case, no multiple decls in different namespaces. | 
|  | II->setFETokenInfo(D->getNext()); | 
|  | } else { | 
|  | // Scan ahead.  There are only three namespaces in C, so this loop can | 
|  | // never execute more than 3 times. | 
|  | Decl *SomeDecl = II->getFETokenInfo<Decl>(); | 
|  | while (SomeDecl->getNext() != D) { | 
|  | SomeDecl = SomeDecl->getNext(); | 
|  | assert(SomeDecl && "Didn't find this decl on its identifier's chain!"); | 
|  | } | 
|  | SomeDecl->setNext(D->getNext()); | 
|  | } | 
|  |  | 
|  | // This will have to be revisited for C++: there we want to nest stuff in | 
|  | // namespace decls etc.  Even for C, we might want a top-level translation | 
|  | // unit decl or something. | 
|  | if (!CurFunctionDecl) | 
|  | continue; | 
|  |  | 
|  | // Chain this decl to the containing function, it now owns the memory for | 
|  | // the decl. | 
|  | D->setNext(CurFunctionDecl->getDeclChain()); | 
|  | CurFunctionDecl->setDeclChain(D); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with | 
|  | /// no declarator (e.g. "struct foo;") is parsed. | 
|  | Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) { | 
|  | // TODO: emit error on 'int;' or 'const enum foo;'. | 
|  | // TODO: emit error on 'typedef int;' | 
|  | // if (!DS.isMissingDeclaratorOk()) Diag(...); | 
|  |  | 
|  | // TODO: Register 'struct foo;' with the type system as an opaque struct. | 
|  |  | 
|  | // TODO: Check that we don't already have 'union foo;' or something else | 
|  | // that conflicts. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// LookupScopedDecl - Look up the inner-most declaration in the specified | 
|  | /// namespace. | 
|  | static Decl *LookupScopedDecl(IdentifierInfo *II, Decl::IdentifierNamespace NS){ | 
|  | if (II == 0) return 0; | 
|  |  | 
|  | // Scan up the scope chain looking for a decl that matches this identifier | 
|  | // that is in the appropriate namespace.  This search should not take long, as | 
|  | // shadowing of names is uncommon, and deep shadowing is extremely uncommon. | 
|  | for (Decl *D = II->getFETokenInfo<Decl>(); D; D = D->getNext()) | 
|  | if (D->getIdentifierNamespace() == NS) | 
|  | return D; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | Action::DeclTy * | 
|  | Sema::ParseDeclarator(Scope *S, Declarator &D, ExprTy *Init, | 
|  | DeclTy *LastInGroup) { | 
|  | IdentifierInfo *II = D.getIdentifier(); | 
|  |  | 
|  | if (Decl *PrevDecl = LookupScopedDecl(II, Decl::IDNS_Ordinary)) { | 
|  | // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope. | 
|  | if (S->isDeclScope(PrevDecl)) { | 
|  | // TODO: This is totally simplistic.  It should handle merging functions | 
|  | // together etc, merging extern int X; int X; ... | 
|  | Diag(D.getIdentifierLoc(), diag::err_redefinition, II->getName()); | 
|  | Diag(PrevDecl->getLocation(), diag::err_previous_definition); | 
|  | } | 
|  | } | 
|  |  | 
|  | Decl *New; | 
|  | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) | 
|  | New = ParseTypedefDecl(S, D); | 
|  | else if (D.isFunctionDeclarator()) | 
|  | New = new FunctionDecl(D.getIdentifierLoc(), II, GetTypeForDeclarator(D,S)); | 
|  | else | 
|  | New = new VarDecl(D.getIdentifierLoc(), II, GetTypeForDeclarator(D, S)); | 
|  |  | 
|  | if (!New) return 0; | 
|  |  | 
|  |  | 
|  | // If this has an identifier, add it to the scope stack. | 
|  | if (II) { | 
|  | New->setNext(II->getFETokenInfo<Decl>()); | 
|  | II->setFETokenInfo(New); | 
|  | S->AddDecl(New); | 
|  | } | 
|  |  | 
|  | // If this is a top-level decl that is chained to some other (e.g. int A,B,C;) | 
|  | // remember this in the LastInGroupList list. | 
|  | if (LastInGroup && S->getParent() == 0) | 
|  | LastInGroupList.push_back((Decl*)LastInGroup); | 
|  |  | 
|  | return New; | 
|  | } | 
|  |  | 
|  | VarDecl * | 
|  | Sema::ParseParamDeclarator(DeclaratorChunk &FTI, unsigned ArgNo, | 
|  | Scope *FnScope) { | 
|  | const DeclaratorChunk::ParamInfo &PI = FTI.Fun.ArgInfo[ArgNo]; | 
|  |  | 
|  | IdentifierInfo *II = PI.Ident; | 
|  | // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope. | 
|  | // Can this happen for params?  We already checked that they don't conflict | 
|  | // among each other.  Here they can only shadow globals, which is ok. | 
|  | if (Decl *PrevDecl = LookupScopedDecl(II, Decl::IDNS_Ordinary)) { | 
|  |  | 
|  | } | 
|  |  | 
|  | VarDecl *New = new VarDecl(PI.IdentLoc, II, static_cast<Type*>(PI.TypeInfo)); | 
|  |  | 
|  | // If this has an identifier, add it to the scope stack. | 
|  | if (II) { | 
|  | New->setNext(II->getFETokenInfo<Decl>()); | 
|  | II->setFETokenInfo(New); | 
|  | FnScope->AddDecl(New); | 
|  | } | 
|  |  | 
|  | return New; | 
|  | } | 
|  |  | 
|  |  | 
|  | Sema::DeclTy *Sema::ParseStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) { | 
|  | assert(CurFunctionDecl == 0 && "Function parsing confused"); | 
|  | assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && | 
|  | "Not a function declarator!"); | 
|  | DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; | 
|  |  | 
|  | // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared' | 
|  | // for a K&R function. | 
|  | if (!FTI.hasPrototype) { | 
|  | for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) { | 
|  | if (FTI.ArgInfo[i].TypeInfo == 0) { | 
|  | Diag(FTI.ArgInfo[i].IdentLoc, diag::err_param_not_declared, | 
|  | FTI.ArgInfo[i].Ident->getName()); | 
|  | // Implicitly declare the argument as type 'int' for lack of a better | 
|  | // type. | 
|  | FTI.ArgInfo[i].TypeInfo = Context.IntTy.getAsOpaquePtr(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Since this is a function definition, act as though we have information | 
|  | // about the arguments. | 
|  | FTI.hasPrototype = true; | 
|  | } else { | 
|  | // FIXME: Diagnose arguments without names in C. | 
|  |  | 
|  | } | 
|  |  | 
|  | Scope *GlobalScope = FnBodyScope->getParent(); | 
|  |  | 
|  | FunctionDecl *FD = | 
|  | static_cast<FunctionDecl*>(ParseDeclarator(GlobalScope, D, 0, 0)); | 
|  | CurFunctionDecl = FD; | 
|  |  | 
|  | // Create Decl objects for each parameter, adding them to the FunctionDecl. | 
|  | SmallVector<VarDecl*, 16> Params; | 
|  |  | 
|  | // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes | 
|  | // no arguments, not a function that takes a single void argument. | 
|  | if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && | 
|  | FTI.ArgInfo[0].TypeInfo == Context.VoidTy.getAsOpaquePtr()) { | 
|  | // empty arg list, don't push any params. | 
|  | } else { | 
|  | for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) | 
|  | Params.push_back(ParseParamDeclarator(D.getTypeObject(0), i,FnBodyScope)); | 
|  | } | 
|  |  | 
|  | FD->setParams(&Params[0], Params.size()); | 
|  |  | 
|  | return FD; | 
|  | } | 
|  |  | 
|  | Sema::DeclTy *Sema::ParseFunctionDefBody(DeclTy *D, StmtTy *Body) { | 
|  | FunctionDecl *FD = static_cast<FunctionDecl*>(D); | 
|  | FD->setBody((Stmt*)Body); | 
|  |  | 
|  | assert(FD == CurFunctionDecl && "Function parsing confused"); | 
|  | CurFunctionDecl = 0; | 
|  | return FD; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ImplicitlyDefineFunction - An undeclared identifier was used in a function | 
|  | /// call, forming a call to an implicitly defined function (per C99 6.5.1p2). | 
|  | Decl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II, | 
|  | Scope *S) { | 
|  | if (getLangOptions().C99)  // Extension in C99. | 
|  | Diag(Loc, diag::ext_implicit_function_decl, II.getName()); | 
|  | else  // Legal in C90, but warn about it. | 
|  | Diag(Loc, diag::warn_implicit_function_decl, II.getName()); | 
|  |  | 
|  | // FIXME: handle stuff like: | 
|  | // void foo() { extern float X(); } | 
|  | // void bar() { X(); }  <-- implicit decl for X in another scope. | 
|  |  | 
|  | // Set a Declarator for the implicit definition: int foo(); | 
|  | const char *Dummy; | 
|  | DeclSpec DS; | 
|  | bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy); | 
|  | assert(!Error && "Error setting up implicit decl!"); | 
|  | Declarator D(DS, Declarator::BlockContext); | 
|  | D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc)); | 
|  | D.SetIdentifier(&II, Loc); | 
|  |  | 
|  | Decl *Result = static_cast<Decl*>(ParseDeclarator(S, D, 0, 0)); | 
|  |  | 
|  | // Visit this implicit declaration like any other top-level form. | 
|  | LastInGroupList.push_back(Result); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  |  | 
|  | Decl *Sema::ParseTypedefDecl(Scope *S, Declarator &D) { | 
|  | assert(D.getIdentifier() && "Wrong callback for declspec withotu declarator"); | 
|  |  | 
|  | TypeRef T = GetTypeForDeclarator(D, S); | 
|  | if (T.isNull()) return 0; | 
|  |  | 
|  | // Scope manipulation handled by caller. | 
|  | return new TypedefDecl(D.getIdentifierLoc(), D.getIdentifier(), T); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ParseStructUnionTag - This is invoked when we see 'struct foo' or | 
|  | /// 'struct {'.  In the former case, Name will be non-null.  In the later case, | 
|  | /// Name will be null.  TagType indicates what kind of tag this is. TK indicates | 
|  | /// whether this is a reference/declaration/definition of a tag. | 
|  | Sema::DeclTy *Sema::ParseTag(Scope *S, unsigned TagType, TagKind TK, | 
|  | SourceLocation KWLoc, IdentifierInfo *Name, | 
|  | SourceLocation NameLoc) { | 
|  | // If this is a use of an existing tag, it must have a name. | 
|  | assert((Name != 0 || TK == TK_Definition) && | 
|  | "Nameless record must be a definition!"); | 
|  |  | 
|  | Decl::Kind Kind; | 
|  | switch (TagType) { | 
|  | default: assert(0 && "Unknown tag type!"); | 
|  | case DeclSpec::TST_struct: Kind = Decl::Struct; break; | 
|  | case DeclSpec::TST_union:  Kind = Decl::Union; break; | 
|  | //case DeclSpec::TST_class:  Kind = Decl::Class; break; | 
|  | case DeclSpec::TST_enum:   Kind = Decl::Enum; break; | 
|  | } | 
|  |  | 
|  | // If this is a named struct, check to see if there was a previous forward | 
|  | // declaration or definition. | 
|  | if (TagDecl *PrevDecl = | 
|  | dyn_cast_or_null<TagDecl>(LookupScopedDecl(Name, Decl::IDNS_Tag))) { | 
|  |  | 
|  | // If this is a use of a previous tag, or if the tag is already declared in | 
|  | // the same scope (so that the definition/declaration completes or | 
|  | // rementions the tag), reuse the decl. | 
|  | if (TK == TK_Reference || S->isDeclScope(PrevDecl)) { | 
|  | // Make sure that this wasn't declared as an enum and now used as a struct | 
|  | // or something similar. | 
|  | if (PrevDecl->getKind() != Kind) { | 
|  | Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName()); | 
|  | Diag(PrevDecl->getLocation(), diag::err_previous_use); | 
|  | } | 
|  |  | 
|  | // If this is a use or a forward declaration, we're good. | 
|  | if (TK != TK_Definition) | 
|  | return PrevDecl; | 
|  |  | 
|  | // Diagnose attempts to redefine a tag. | 
|  | if (PrevDecl->isDefinition()) { | 
|  | Diag(NameLoc, diag::err_redefinition, Name->getName()); | 
|  | Diag(PrevDecl->getLocation(), diag::err_previous_definition); | 
|  | // If this is a redefinition, recover by making this struct be | 
|  | // anonymous, which will make any later references get the previous | 
|  | // definition. | 
|  | Name = 0; | 
|  | } else { | 
|  | // Okay, this is definition of a previously declared or referenced tag. | 
|  | // Move the location of the decl to be the definition site. | 
|  | PrevDecl->setLocation(NameLoc); | 
|  | PrevDecl->setDefinition(true); | 
|  | return PrevDecl; | 
|  | } | 
|  | } | 
|  | // If we get here, this is a definition of a new struct type in a nested | 
|  | // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new | 
|  | // type. | 
|  | } | 
|  |  | 
|  | // If there is an identifier, use the location of the identifier as the | 
|  | // location of the decl, otherwise use the location of the struct/union | 
|  | // keyword. | 
|  | SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; | 
|  |  | 
|  | // Otherwise, if this is the first time we've seen this tag, create the decl. | 
|  | TagDecl *New; | 
|  | if (Kind != Decl::Enum) | 
|  | New = new RecordDecl(Kind, Loc, Name); | 
|  | else | 
|  | assert(0 && "Enum tags not implemented yet!"); | 
|  |  | 
|  | if (TK == TK_Definition) | 
|  | New->setDefinition(true); | 
|  |  | 
|  | // If this has an identifier, add it to the scope stack. | 
|  | if (Name) { | 
|  | New->setNext(Name->getFETokenInfo<Decl>()); | 
|  | Name->setFETokenInfo(New); | 
|  | S->AddDecl(New); | 
|  | } | 
|  |  | 
|  | return New; | 
|  | } |