|  | //===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This provides C++ code generation targeting the Itanium C++ ABI.  The class | 
|  | // in this file generates structures that follow the Itanium C++ ABI, which is | 
|  | // documented at: | 
|  | //  http://www.codesourcery.com/public/cxx-abi/abi.html | 
|  | //  http://www.codesourcery.com/public/cxx-abi/abi-eh.html | 
|  | // | 
|  | // It also supports the closely-related ARM ABI, documented at: | 
|  | // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "CGCXXABI.h" | 
|  | #include "CGCleanup.h" | 
|  | #include "CGRecordLayout.h" | 
|  | #include "CGVTables.h" | 
|  | #include "CodeGenFunction.h" | 
|  | #include "CodeGenModule.h" | 
|  | #include "TargetInfo.h" | 
|  | #include "clang/CodeGen/ConstantInitBuilder.h" | 
|  | #include "clang/AST/Mangle.h" | 
|  | #include "clang/AST/Type.h" | 
|  | #include "clang/AST/StmtCXX.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/Value.h" | 
|  |  | 
|  | using namespace clang; | 
|  | using namespace CodeGen; | 
|  |  | 
|  | namespace { | 
|  | class ItaniumCXXABI : public CodeGen::CGCXXABI { | 
|  | /// VTables - All the vtables which have been defined. | 
|  | llvm::DenseMap<const CXXRecordDecl *, llvm::GlobalVariable *> VTables; | 
|  |  | 
|  | protected: | 
|  | bool UseARMMethodPtrABI; | 
|  | bool UseARMGuardVarABI; | 
|  | bool Use32BitVTableOffsetABI; | 
|  |  | 
|  | ItaniumMangleContext &getMangleContext() { | 
|  | return cast<ItaniumMangleContext>(CodeGen::CGCXXABI::getMangleContext()); | 
|  | } | 
|  |  | 
|  | public: | 
|  | ItaniumCXXABI(CodeGen::CodeGenModule &CGM, | 
|  | bool UseARMMethodPtrABI = false, | 
|  | bool UseARMGuardVarABI = false) : | 
|  | CGCXXABI(CGM), UseARMMethodPtrABI(UseARMMethodPtrABI), | 
|  | UseARMGuardVarABI(UseARMGuardVarABI), | 
|  | Use32BitVTableOffsetABI(false) { } | 
|  |  | 
|  | bool classifyReturnType(CGFunctionInfo &FI) const override; | 
|  |  | 
|  | RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override { | 
|  | // Structures with either a non-trivial destructor or a non-trivial | 
|  | // copy constructor are always indirect. | 
|  | // FIXME: Use canCopyArgument() when it is fixed to handle lazily declared | 
|  | // special members. | 
|  | if (RD->hasNonTrivialDestructor() || RD->hasNonTrivialCopyConstructor()) | 
|  | return RAA_Indirect; | 
|  | return RAA_Default; | 
|  | } | 
|  |  | 
|  | bool isThisCompleteObject(GlobalDecl GD) const override { | 
|  | // The Itanium ABI has separate complete-object vs.  base-object | 
|  | // variants of both constructors and destructors. | 
|  | if (isa<CXXDestructorDecl>(GD.getDecl())) { | 
|  | switch (GD.getDtorType()) { | 
|  | case Dtor_Complete: | 
|  | case Dtor_Deleting: | 
|  | return true; | 
|  |  | 
|  | case Dtor_Base: | 
|  | return false; | 
|  |  | 
|  | case Dtor_Comdat: | 
|  | llvm_unreachable("emitting dtor comdat as function?"); | 
|  | } | 
|  | llvm_unreachable("bad dtor kind"); | 
|  | } | 
|  | if (isa<CXXConstructorDecl>(GD.getDecl())) { | 
|  | switch (GD.getCtorType()) { | 
|  | case Ctor_Complete: | 
|  | return true; | 
|  |  | 
|  | case Ctor_Base: | 
|  | return false; | 
|  |  | 
|  | case Ctor_CopyingClosure: | 
|  | case Ctor_DefaultClosure: | 
|  | llvm_unreachable("closure ctors in Itanium ABI?"); | 
|  |  | 
|  | case Ctor_Comdat: | 
|  | llvm_unreachable("emitting ctor comdat as function?"); | 
|  | } | 
|  | llvm_unreachable("bad dtor kind"); | 
|  | } | 
|  |  | 
|  | // No other kinds. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool isZeroInitializable(const MemberPointerType *MPT) override; | 
|  |  | 
|  | llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override; | 
|  |  | 
|  | CGCallee | 
|  | EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, | 
|  | const Expr *E, | 
|  | Address This, | 
|  | llvm::Value *&ThisPtrForCall, | 
|  | llvm::Value *MemFnPtr, | 
|  | const MemberPointerType *MPT) override; | 
|  |  | 
|  | llvm::Value * | 
|  | EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E, | 
|  | Address Base, | 
|  | llvm::Value *MemPtr, | 
|  | const MemberPointerType *MPT) override; | 
|  |  | 
|  | llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, | 
|  | const CastExpr *E, | 
|  | llvm::Value *Src) override; | 
|  | llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, | 
|  | llvm::Constant *Src) override; | 
|  |  | 
|  | llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override; | 
|  |  | 
|  | llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override; | 
|  | llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, | 
|  | CharUnits offset) override; | 
|  | llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override; | 
|  | llvm::Constant *BuildMemberPointer(const CXXMethodDecl *MD, | 
|  | CharUnits ThisAdjustment); | 
|  |  | 
|  | llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, | 
|  | llvm::Value *L, llvm::Value *R, | 
|  | const MemberPointerType *MPT, | 
|  | bool Inequality) override; | 
|  |  | 
|  | llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, | 
|  | llvm::Value *Addr, | 
|  | const MemberPointerType *MPT) override; | 
|  |  | 
|  | void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, | 
|  | Address Ptr, QualType ElementType, | 
|  | const CXXDestructorDecl *Dtor) override; | 
|  |  | 
|  | CharUnits getAlignmentOfExnObject() { | 
|  | unsigned Align = CGM.getContext().getTargetInfo().getExnObjectAlignment(); | 
|  | return CGM.getContext().toCharUnitsFromBits(Align); | 
|  | } | 
|  |  | 
|  | void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override; | 
|  | void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override; | 
|  |  | 
|  | void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; | 
|  |  | 
|  | llvm::CallInst * | 
|  | emitTerminateForUnexpectedException(CodeGenFunction &CGF, | 
|  | llvm::Value *Exn) override; | 
|  |  | 
|  | void EmitFundamentalRTTIDescriptor(QualType Type, bool DLLExport); | 
|  | void EmitFundamentalRTTIDescriptors(bool DLLExport); | 
|  | llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override; | 
|  | CatchTypeInfo | 
|  | getAddrOfCXXCatchHandlerType(QualType Ty, | 
|  | QualType CatchHandlerType) override { | 
|  | return CatchTypeInfo{getAddrOfRTTIDescriptor(Ty), 0}; | 
|  | } | 
|  |  | 
|  | bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override; | 
|  | void EmitBadTypeidCall(CodeGenFunction &CGF) override; | 
|  | llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, | 
|  | Address ThisPtr, | 
|  | llvm::Type *StdTypeInfoPtrTy) override; | 
|  |  | 
|  | bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, | 
|  | QualType SrcRecordTy) override; | 
|  |  | 
|  | llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, Address Value, | 
|  | QualType SrcRecordTy, QualType DestTy, | 
|  | QualType DestRecordTy, | 
|  | llvm::BasicBlock *CastEnd) override; | 
|  |  | 
|  | llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, | 
|  | QualType SrcRecordTy, | 
|  | QualType DestTy) override; | 
|  |  | 
|  | bool EmitBadCastCall(CodeGenFunction &CGF) override; | 
|  |  | 
|  | llvm::Value * | 
|  | GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This, | 
|  | const CXXRecordDecl *ClassDecl, | 
|  | const CXXRecordDecl *BaseClassDecl) override; | 
|  |  | 
|  | void EmitCXXConstructors(const CXXConstructorDecl *D) override; | 
|  |  | 
|  | AddedStructorArgs | 
|  | buildStructorSignature(const CXXMethodDecl *MD, StructorType T, | 
|  | SmallVectorImpl<CanQualType> &ArgTys) override; | 
|  |  | 
|  | bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, | 
|  | CXXDtorType DT) const override { | 
|  | // Itanium does not emit any destructor variant as an inline thunk. | 
|  | // Delegating may occur as an optimization, but all variants are either | 
|  | // emitted with external linkage or as linkonce if they are inline and used. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void EmitCXXDestructors(const CXXDestructorDecl *D) override; | 
|  |  | 
|  | void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, | 
|  | FunctionArgList &Params) override; | 
|  |  | 
|  | void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override; | 
|  |  | 
|  | AddedStructorArgs | 
|  | addImplicitConstructorArgs(CodeGenFunction &CGF, const CXXConstructorDecl *D, | 
|  | CXXCtorType Type, bool ForVirtualBase, | 
|  | bool Delegating, CallArgList &Args) override; | 
|  |  | 
|  | void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, | 
|  | CXXDtorType Type, bool ForVirtualBase, | 
|  | bool Delegating, Address This) override; | 
|  |  | 
|  | void emitVTableDefinitions(CodeGenVTables &CGVT, | 
|  | const CXXRecordDecl *RD) override; | 
|  |  | 
|  | bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF, | 
|  | CodeGenFunction::VPtr Vptr) override; | 
|  |  | 
|  | bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | llvm::Constant * | 
|  | getVTableAddressPoint(BaseSubobject Base, | 
|  | const CXXRecordDecl *VTableClass) override; | 
|  |  | 
|  | llvm::Value *getVTableAddressPointInStructor( | 
|  | CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, | 
|  | BaseSubobject Base, const CXXRecordDecl *NearestVBase) override; | 
|  |  | 
|  | llvm::Value *getVTableAddressPointInStructorWithVTT( | 
|  | CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, | 
|  | BaseSubobject Base, const CXXRecordDecl *NearestVBase); | 
|  |  | 
|  | llvm::Constant * | 
|  | getVTableAddressPointForConstExpr(BaseSubobject Base, | 
|  | const CXXRecordDecl *VTableClass) override; | 
|  |  | 
|  | llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, | 
|  | CharUnits VPtrOffset) override; | 
|  |  | 
|  | CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, | 
|  | Address This, llvm::Type *Ty, | 
|  | SourceLocation Loc) override; | 
|  |  | 
|  | llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF, | 
|  | const CXXDestructorDecl *Dtor, | 
|  | CXXDtorType DtorType, | 
|  | Address This, | 
|  | const CXXMemberCallExpr *CE) override; | 
|  |  | 
|  | void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override; | 
|  |  | 
|  | bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override; | 
|  |  | 
|  | void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, GlobalDecl GD, | 
|  | bool ReturnAdjustment) override { | 
|  | // Allow inlining of thunks by emitting them with available_externally | 
|  | // linkage together with vtables when needed. | 
|  | if (ForVTable && !Thunk->hasLocalLinkage()) | 
|  | Thunk->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); | 
|  |  | 
|  | // Propagate dllexport storage, to enable the linker to generate import | 
|  | // thunks as necessary (e.g. when a parent class has a key function and a | 
|  | // child class doesn't, and the construction vtable for the parent in the | 
|  | // child needs to reference the parent's thunks). | 
|  | const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); | 
|  | if (MD->hasAttr<DLLExportAttr>()) | 
|  | Thunk->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); | 
|  | } | 
|  |  | 
|  | llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This, | 
|  | const ThisAdjustment &TA) override; | 
|  |  | 
|  | llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret, | 
|  | const ReturnAdjustment &RA) override; | 
|  |  | 
|  | size_t getSrcArgforCopyCtor(const CXXConstructorDecl *, | 
|  | FunctionArgList &Args) const override { | 
|  | assert(!Args.empty() && "expected the arglist to not be empty!"); | 
|  | return Args.size() - 1; | 
|  | } | 
|  |  | 
|  | StringRef GetPureVirtualCallName() override { return "__cxa_pure_virtual"; } | 
|  | StringRef GetDeletedVirtualCallName() override | 
|  | { return "__cxa_deleted_virtual"; } | 
|  |  | 
|  | CharUnits getArrayCookieSizeImpl(QualType elementType) override; | 
|  | Address InitializeArrayCookie(CodeGenFunction &CGF, | 
|  | Address NewPtr, | 
|  | llvm::Value *NumElements, | 
|  | const CXXNewExpr *expr, | 
|  | QualType ElementType) override; | 
|  | llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, | 
|  | Address allocPtr, | 
|  | CharUnits cookieSize) override; | 
|  |  | 
|  | void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, | 
|  | llvm::GlobalVariable *DeclPtr, | 
|  | bool PerformInit) override; | 
|  | void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, | 
|  | llvm::Constant *dtor, llvm::Constant *addr) override; | 
|  |  | 
|  | llvm::Function *getOrCreateThreadLocalWrapper(const VarDecl *VD, | 
|  | llvm::Value *Val); | 
|  | void EmitThreadLocalInitFuncs( | 
|  | CodeGenModule &CGM, | 
|  | ArrayRef<const VarDecl *> CXXThreadLocals, | 
|  | ArrayRef<llvm::Function *> CXXThreadLocalInits, | 
|  | ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override; | 
|  |  | 
|  | bool usesThreadWrapperFunction() const override { return true; } | 
|  | LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD, | 
|  | QualType LValType) override; | 
|  |  | 
|  | bool NeedsVTTParameter(GlobalDecl GD) override; | 
|  |  | 
|  | /**************************** RTTI Uniqueness ******************************/ | 
|  |  | 
|  | protected: | 
|  | /// Returns true if the ABI requires RTTI type_info objects to be unique | 
|  | /// across a program. | 
|  | virtual bool shouldRTTIBeUnique() const { return true; } | 
|  |  | 
|  | public: | 
|  | /// What sort of unique-RTTI behavior should we use? | 
|  | enum RTTIUniquenessKind { | 
|  | /// We are guaranteeing, or need to guarantee, that the RTTI string | 
|  | /// is unique. | 
|  | RUK_Unique, | 
|  |  | 
|  | /// We are not guaranteeing uniqueness for the RTTI string, so we | 
|  | /// can demote to hidden visibility but must use string comparisons. | 
|  | RUK_NonUniqueHidden, | 
|  |  | 
|  | /// We are not guaranteeing uniqueness for the RTTI string, so we | 
|  | /// have to use string comparisons, but we also have to emit it with | 
|  | /// non-hidden visibility. | 
|  | RUK_NonUniqueVisible | 
|  | }; | 
|  |  | 
|  | /// Return the required visibility status for the given type and linkage in | 
|  | /// the current ABI. | 
|  | RTTIUniquenessKind | 
|  | classifyRTTIUniqueness(QualType CanTy, | 
|  | llvm::GlobalValue::LinkageTypes Linkage) const; | 
|  | friend class ItaniumRTTIBuilder; | 
|  |  | 
|  | void emitCXXStructor(const CXXMethodDecl *MD, StructorType Type) override; | 
|  |  | 
|  | private: | 
|  | bool hasAnyUnusedVirtualInlineFunction(const CXXRecordDecl *RD) const { | 
|  | const auto &VtableLayout = | 
|  | CGM.getItaniumVTableContext().getVTableLayout(RD); | 
|  |  | 
|  | for (const auto &VtableComponent : VtableLayout.vtable_components()) { | 
|  | // Skip empty slot. | 
|  | if (!VtableComponent.isUsedFunctionPointerKind()) | 
|  | continue; | 
|  |  | 
|  | const CXXMethodDecl *Method = VtableComponent.getFunctionDecl(); | 
|  | if (!Method->getCanonicalDecl()->isInlined()) | 
|  | continue; | 
|  |  | 
|  | StringRef Name = CGM.getMangledName(VtableComponent.getGlobalDecl()); | 
|  | auto *Entry = CGM.GetGlobalValue(Name); | 
|  | // This checks if virtual inline function has already been emitted. | 
|  | // Note that it is possible that this inline function would be emitted | 
|  | // after trying to emit vtable speculatively. Because of this we do | 
|  | // an extra pass after emitting all deferred vtables to find and emit | 
|  | // these vtables opportunistically. | 
|  | if (!Entry || Entry->isDeclaration()) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool isVTableHidden(const CXXRecordDecl *RD) const { | 
|  | const auto &VtableLayout = | 
|  | CGM.getItaniumVTableContext().getVTableLayout(RD); | 
|  |  | 
|  | for (const auto &VtableComponent : VtableLayout.vtable_components()) { | 
|  | if (VtableComponent.isRTTIKind()) { | 
|  | const CXXRecordDecl *RTTIDecl = VtableComponent.getRTTIDecl(); | 
|  | if (RTTIDecl->getVisibility() == Visibility::HiddenVisibility) | 
|  | return true; | 
|  | } else if (VtableComponent.isUsedFunctionPointerKind()) { | 
|  | const CXXMethodDecl *Method = VtableComponent.getFunctionDecl(); | 
|  | if (Method->getVisibility() == Visibility::HiddenVisibility && | 
|  | !Method->isDefined()) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class ARMCXXABI : public ItaniumCXXABI { | 
|  | public: | 
|  | ARMCXXABI(CodeGen::CodeGenModule &CGM) : | 
|  | ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true, | 
|  | /* UseARMGuardVarABI = */ true) {} | 
|  |  | 
|  | bool HasThisReturn(GlobalDecl GD) const override { | 
|  | return (isa<CXXConstructorDecl>(GD.getDecl()) || ( | 
|  | isa<CXXDestructorDecl>(GD.getDecl()) && | 
|  | GD.getDtorType() != Dtor_Deleting)); | 
|  | } | 
|  |  | 
|  | void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, | 
|  | QualType ResTy) override; | 
|  |  | 
|  | CharUnits getArrayCookieSizeImpl(QualType elementType) override; | 
|  | Address InitializeArrayCookie(CodeGenFunction &CGF, | 
|  | Address NewPtr, | 
|  | llvm::Value *NumElements, | 
|  | const CXXNewExpr *expr, | 
|  | QualType ElementType) override; | 
|  | llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, Address allocPtr, | 
|  | CharUnits cookieSize) override; | 
|  | }; | 
|  |  | 
|  | class iOS64CXXABI : public ARMCXXABI { | 
|  | public: | 
|  | iOS64CXXABI(CodeGen::CodeGenModule &CGM) : ARMCXXABI(CGM) { | 
|  | Use32BitVTableOffsetABI = true; | 
|  | } | 
|  |  | 
|  | // ARM64 libraries are prepared for non-unique RTTI. | 
|  | bool shouldRTTIBeUnique() const override { return false; } | 
|  | }; | 
|  |  | 
|  | class WebAssemblyCXXABI final : public ItaniumCXXABI { | 
|  | public: | 
|  | explicit WebAssemblyCXXABI(CodeGen::CodeGenModule &CGM) | 
|  | : ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true, | 
|  | /*UseARMGuardVarABI=*/true) {} | 
|  |  | 
|  | private: | 
|  | bool HasThisReturn(GlobalDecl GD) const override { | 
|  | return isa<CXXConstructorDecl>(GD.getDecl()) || | 
|  | (isa<CXXDestructorDecl>(GD.getDecl()) && | 
|  | GD.getDtorType() != Dtor_Deleting); | 
|  | } | 
|  | bool canCallMismatchedFunctionType() const override { return false; } | 
|  | }; | 
|  | } | 
|  |  | 
|  | CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) { | 
|  | switch (CGM.getTarget().getCXXABI().getKind()) { | 
|  | // For IR-generation purposes, there's no significant difference | 
|  | // between the ARM and iOS ABIs. | 
|  | case TargetCXXABI::GenericARM: | 
|  | case TargetCXXABI::iOS: | 
|  | case TargetCXXABI::WatchOS: | 
|  | return new ARMCXXABI(CGM); | 
|  |  | 
|  | case TargetCXXABI::iOS64: | 
|  | return new iOS64CXXABI(CGM); | 
|  |  | 
|  | // Note that AArch64 uses the generic ItaniumCXXABI class since it doesn't | 
|  | // include the other 32-bit ARM oddities: constructor/destructor return values | 
|  | // and array cookies. | 
|  | case TargetCXXABI::GenericAArch64: | 
|  | return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true, | 
|  | /* UseARMGuardVarABI = */ true); | 
|  |  | 
|  | case TargetCXXABI::GenericMIPS: | 
|  | return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true); | 
|  |  | 
|  | case TargetCXXABI::WebAssembly: | 
|  | return new WebAssemblyCXXABI(CGM); | 
|  |  | 
|  | case TargetCXXABI::GenericItanium: | 
|  | if (CGM.getContext().getTargetInfo().getTriple().getArch() | 
|  | == llvm::Triple::le32) { | 
|  | // For PNaCl, use ARM-style method pointers so that PNaCl code | 
|  | // does not assume anything about the alignment of function | 
|  | // pointers. | 
|  | return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true, | 
|  | /* UseARMGuardVarABI = */ false); | 
|  | } | 
|  | return new ItaniumCXXABI(CGM); | 
|  |  | 
|  | case TargetCXXABI::Microsoft: | 
|  | llvm_unreachable("Microsoft ABI is not Itanium-based"); | 
|  | } | 
|  | llvm_unreachable("bad ABI kind"); | 
|  | } | 
|  |  | 
|  | llvm::Type * | 
|  | ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { | 
|  | if (MPT->isMemberDataPointer()) | 
|  | return CGM.PtrDiffTy; | 
|  | return llvm::StructType::get(CGM.PtrDiffTy, CGM.PtrDiffTy); | 
|  | } | 
|  |  | 
|  | /// In the Itanium and ARM ABIs, method pointers have the form: | 
|  | ///   struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr; | 
|  | /// | 
|  | /// In the Itanium ABI: | 
|  | ///  - method pointers are virtual if (memptr.ptr & 1) is nonzero | 
|  | ///  - the this-adjustment is (memptr.adj) | 
|  | ///  - the virtual offset is (memptr.ptr - 1) | 
|  | /// | 
|  | /// In the ARM ABI: | 
|  | ///  - method pointers are virtual if (memptr.adj & 1) is nonzero | 
|  | ///  - the this-adjustment is (memptr.adj >> 1) | 
|  | ///  - the virtual offset is (memptr.ptr) | 
|  | /// ARM uses 'adj' for the virtual flag because Thumb functions | 
|  | /// may be only single-byte aligned. | 
|  | /// | 
|  | /// If the member is virtual, the adjusted 'this' pointer points | 
|  | /// to a vtable pointer from which the virtual offset is applied. | 
|  | /// | 
|  | /// If the member is non-virtual, memptr.ptr is the address of | 
|  | /// the function to call. | 
|  | CGCallee ItaniumCXXABI::EmitLoadOfMemberFunctionPointer( | 
|  | CodeGenFunction &CGF, const Expr *E, Address ThisAddr, | 
|  | llvm::Value *&ThisPtrForCall, | 
|  | llvm::Value *MemFnPtr, const MemberPointerType *MPT) { | 
|  | CGBuilderTy &Builder = CGF.Builder; | 
|  |  | 
|  | const FunctionProtoType *FPT = | 
|  | MPT->getPointeeType()->getAs<FunctionProtoType>(); | 
|  | const CXXRecordDecl *RD = | 
|  | cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); | 
|  |  | 
|  | llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType( | 
|  | CGM.getTypes().arrangeCXXMethodType(RD, FPT, /*FD=*/nullptr)); | 
|  |  | 
|  | llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(CGM.PtrDiffTy, 1); | 
|  |  | 
|  | llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual"); | 
|  | llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual"); | 
|  | llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end"); | 
|  |  | 
|  | // Extract memptr.adj, which is in the second field. | 
|  | llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj"); | 
|  |  | 
|  | // Compute the true adjustment. | 
|  | llvm::Value *Adj = RawAdj; | 
|  | if (UseARMMethodPtrABI) | 
|  | Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted"); | 
|  |  | 
|  | // Apply the adjustment and cast back to the original struct type | 
|  | // for consistency. | 
|  | llvm::Value *This = ThisAddr.getPointer(); | 
|  | llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy()); | 
|  | Ptr = Builder.CreateInBoundsGEP(Ptr, Adj); | 
|  | This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted"); | 
|  | ThisPtrForCall = This; | 
|  |  | 
|  | // Load the function pointer. | 
|  | llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr"); | 
|  |  | 
|  | // If the LSB in the function pointer is 1, the function pointer points to | 
|  | // a virtual function. | 
|  | llvm::Value *IsVirtual; | 
|  | if (UseARMMethodPtrABI) | 
|  | IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1); | 
|  | else | 
|  | IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1); | 
|  | IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual"); | 
|  | Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual); | 
|  |  | 
|  | // In the virtual path, the adjustment left 'This' pointing to the | 
|  | // vtable of the correct base subobject.  The "function pointer" is an | 
|  | // offset within the vtable (+1 for the virtual flag on non-ARM). | 
|  | CGF.EmitBlock(FnVirtual); | 
|  |  | 
|  | // Cast the adjusted this to a pointer to vtable pointer and load. | 
|  | llvm::Type *VTableTy = Builder.getInt8PtrTy(); | 
|  | CharUnits VTablePtrAlign = | 
|  | CGF.CGM.getDynamicOffsetAlignment(ThisAddr.getAlignment(), RD, | 
|  | CGF.getPointerAlign()); | 
|  | llvm::Value *VTable = | 
|  | CGF.GetVTablePtr(Address(This, VTablePtrAlign), VTableTy, RD); | 
|  |  | 
|  | // Apply the offset. | 
|  | // On ARM64, to reserve extra space in virtual member function pointers, | 
|  | // we only pay attention to the low 32 bits of the offset. | 
|  | llvm::Value *VTableOffset = FnAsInt; | 
|  | if (!UseARMMethodPtrABI) | 
|  | VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1); | 
|  | if (Use32BitVTableOffsetABI) { | 
|  | VTableOffset = Builder.CreateTrunc(VTableOffset, CGF.Int32Ty); | 
|  | VTableOffset = Builder.CreateZExt(VTableOffset, CGM.PtrDiffTy); | 
|  | } | 
|  | VTable = Builder.CreateGEP(VTable, VTableOffset); | 
|  |  | 
|  | // Load the virtual function to call. | 
|  | VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo()); | 
|  | llvm::Value *VirtualFn = | 
|  | Builder.CreateAlignedLoad(VTable, CGF.getPointerAlign(), | 
|  | "memptr.virtualfn"); | 
|  | CGF.EmitBranch(FnEnd); | 
|  |  | 
|  | // In the non-virtual path, the function pointer is actually a | 
|  | // function pointer. | 
|  | CGF.EmitBlock(FnNonVirtual); | 
|  | llvm::Value *NonVirtualFn = | 
|  | Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn"); | 
|  |  | 
|  | // We're done. | 
|  | CGF.EmitBlock(FnEnd); | 
|  | llvm::PHINode *CalleePtr = Builder.CreatePHI(FTy->getPointerTo(), 2); | 
|  | CalleePtr->addIncoming(VirtualFn, FnVirtual); | 
|  | CalleePtr->addIncoming(NonVirtualFn, FnNonVirtual); | 
|  |  | 
|  | CGCallee Callee(FPT, CalleePtr); | 
|  | return Callee; | 
|  | } | 
|  |  | 
|  | /// Compute an l-value by applying the given pointer-to-member to a | 
|  | /// base object. | 
|  | llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress( | 
|  | CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr, | 
|  | const MemberPointerType *MPT) { | 
|  | assert(MemPtr->getType() == CGM.PtrDiffTy); | 
|  |  | 
|  | CGBuilderTy &Builder = CGF.Builder; | 
|  |  | 
|  | // Cast to char*. | 
|  | Base = Builder.CreateElementBitCast(Base, CGF.Int8Ty); | 
|  |  | 
|  | // Apply the offset, which we assume is non-null. | 
|  | llvm::Value *Addr = | 
|  | Builder.CreateInBoundsGEP(Base.getPointer(), MemPtr, "memptr.offset"); | 
|  |  | 
|  | // Cast the address to the appropriate pointer type, adopting the | 
|  | // address space of the base pointer. | 
|  | llvm::Type *PType = CGF.ConvertTypeForMem(MPT->getPointeeType()) | 
|  | ->getPointerTo(Base.getAddressSpace()); | 
|  | return Builder.CreateBitCast(Addr, PType); | 
|  | } | 
|  |  | 
|  | /// Perform a bitcast, derived-to-base, or base-to-derived member pointer | 
|  | /// conversion. | 
|  | /// | 
|  | /// Bitcast conversions are always a no-op under Itanium. | 
|  | /// | 
|  | /// Obligatory offset/adjustment diagram: | 
|  | ///         <-- offset -->          <-- adjustment --> | 
|  | ///   |--------------------------|----------------------|--------------------| | 
|  | ///   ^Derived address point     ^Base address point    ^Member address point | 
|  | /// | 
|  | /// So when converting a base member pointer to a derived member pointer, | 
|  | /// we add the offset to the adjustment because the address point has | 
|  | /// decreased;  and conversely, when converting a derived MP to a base MP | 
|  | /// we subtract the offset from the adjustment because the address point | 
|  | /// has increased. | 
|  | /// | 
|  | /// The standard forbids (at compile time) conversion to and from | 
|  | /// virtual bases, which is why we don't have to consider them here. | 
|  | /// | 
|  | /// The standard forbids (at run time) casting a derived MP to a base | 
|  | /// MP when the derived MP does not point to a member of the base. | 
|  | /// This is why -1 is a reasonable choice for null data member | 
|  | /// pointers. | 
|  | llvm::Value * | 
|  | ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, | 
|  | const CastExpr *E, | 
|  | llvm::Value *src) { | 
|  | assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || | 
|  | E->getCastKind() == CK_BaseToDerivedMemberPointer || | 
|  | E->getCastKind() == CK_ReinterpretMemberPointer); | 
|  |  | 
|  | // Under Itanium, reinterprets don't require any additional processing. | 
|  | if (E->getCastKind() == CK_ReinterpretMemberPointer) return src; | 
|  |  | 
|  | // Use constant emission if we can. | 
|  | if (isa<llvm::Constant>(src)) | 
|  | return EmitMemberPointerConversion(E, cast<llvm::Constant>(src)); | 
|  |  | 
|  | llvm::Constant *adj = getMemberPointerAdjustment(E); | 
|  | if (!adj) return src; | 
|  |  | 
|  | CGBuilderTy &Builder = CGF.Builder; | 
|  | bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); | 
|  |  | 
|  | const MemberPointerType *destTy = | 
|  | E->getType()->castAs<MemberPointerType>(); | 
|  |  | 
|  | // For member data pointers, this is just a matter of adding the | 
|  | // offset if the source is non-null. | 
|  | if (destTy->isMemberDataPointer()) { | 
|  | llvm::Value *dst; | 
|  | if (isDerivedToBase) | 
|  | dst = Builder.CreateNSWSub(src, adj, "adj"); | 
|  | else | 
|  | dst = Builder.CreateNSWAdd(src, adj, "adj"); | 
|  |  | 
|  | // Null check. | 
|  | llvm::Value *null = llvm::Constant::getAllOnesValue(src->getType()); | 
|  | llvm::Value *isNull = Builder.CreateICmpEQ(src, null, "memptr.isnull"); | 
|  | return Builder.CreateSelect(isNull, src, dst); | 
|  | } | 
|  |  | 
|  | // The this-adjustment is left-shifted by 1 on ARM. | 
|  | if (UseARMMethodPtrABI) { | 
|  | uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue(); | 
|  | offset <<= 1; | 
|  | adj = llvm::ConstantInt::get(adj->getType(), offset); | 
|  | } | 
|  |  | 
|  | llvm::Value *srcAdj = Builder.CreateExtractValue(src, 1, "src.adj"); | 
|  | llvm::Value *dstAdj; | 
|  | if (isDerivedToBase) | 
|  | dstAdj = Builder.CreateNSWSub(srcAdj, adj, "adj"); | 
|  | else | 
|  | dstAdj = Builder.CreateNSWAdd(srcAdj, adj, "adj"); | 
|  |  | 
|  | return Builder.CreateInsertValue(src, dstAdj, 1); | 
|  | } | 
|  |  | 
|  | llvm::Constant * | 
|  | ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr *E, | 
|  | llvm::Constant *src) { | 
|  | assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || | 
|  | E->getCastKind() == CK_BaseToDerivedMemberPointer || | 
|  | E->getCastKind() == CK_ReinterpretMemberPointer); | 
|  |  | 
|  | // Under Itanium, reinterprets don't require any additional processing. | 
|  | if (E->getCastKind() == CK_ReinterpretMemberPointer) return src; | 
|  |  | 
|  | // If the adjustment is trivial, we don't need to do anything. | 
|  | llvm::Constant *adj = getMemberPointerAdjustment(E); | 
|  | if (!adj) return src; | 
|  |  | 
|  | bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); | 
|  |  | 
|  | const MemberPointerType *destTy = | 
|  | E->getType()->castAs<MemberPointerType>(); | 
|  |  | 
|  | // For member data pointers, this is just a matter of adding the | 
|  | // offset if the source is non-null. | 
|  | if (destTy->isMemberDataPointer()) { | 
|  | // null maps to null. | 
|  | if (src->isAllOnesValue()) return src; | 
|  |  | 
|  | if (isDerivedToBase) | 
|  | return llvm::ConstantExpr::getNSWSub(src, adj); | 
|  | else | 
|  | return llvm::ConstantExpr::getNSWAdd(src, adj); | 
|  | } | 
|  |  | 
|  | // The this-adjustment is left-shifted by 1 on ARM. | 
|  | if (UseARMMethodPtrABI) { | 
|  | uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue(); | 
|  | offset <<= 1; | 
|  | adj = llvm::ConstantInt::get(adj->getType(), offset); | 
|  | } | 
|  |  | 
|  | llvm::Constant *srcAdj = llvm::ConstantExpr::getExtractValue(src, 1); | 
|  | llvm::Constant *dstAdj; | 
|  | if (isDerivedToBase) | 
|  | dstAdj = llvm::ConstantExpr::getNSWSub(srcAdj, adj); | 
|  | else | 
|  | dstAdj = llvm::ConstantExpr::getNSWAdd(srcAdj, adj); | 
|  |  | 
|  | return llvm::ConstantExpr::getInsertValue(src, dstAdj, 1); | 
|  | } | 
|  |  | 
|  | llvm::Constant * | 
|  | ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { | 
|  | // Itanium C++ ABI 2.3: | 
|  | //   A NULL pointer is represented as -1. | 
|  | if (MPT->isMemberDataPointer()) | 
|  | return llvm::ConstantInt::get(CGM.PtrDiffTy, -1ULL, /*isSigned=*/true); | 
|  |  | 
|  | llvm::Constant *Zero = llvm::ConstantInt::get(CGM.PtrDiffTy, 0); | 
|  | llvm::Constant *Values[2] = { Zero, Zero }; | 
|  | return llvm::ConstantStruct::getAnon(Values); | 
|  | } | 
|  |  | 
|  | llvm::Constant * | 
|  | ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, | 
|  | CharUnits offset) { | 
|  | // Itanium C++ ABI 2.3: | 
|  | //   A pointer to data member is an offset from the base address of | 
|  | //   the class object containing it, represented as a ptrdiff_t | 
|  | return llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()); | 
|  | } | 
|  |  | 
|  | llvm::Constant * | 
|  | ItaniumCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) { | 
|  | return BuildMemberPointer(MD, CharUnits::Zero()); | 
|  | } | 
|  |  | 
|  | llvm::Constant *ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl *MD, | 
|  | CharUnits ThisAdjustment) { | 
|  | assert(MD->isInstance() && "Member function must not be static!"); | 
|  | MD = MD->getCanonicalDecl(); | 
|  |  | 
|  | CodeGenTypes &Types = CGM.getTypes(); | 
|  |  | 
|  | // Get the function pointer (or index if this is a virtual function). | 
|  | llvm::Constant *MemPtr[2]; | 
|  | if (MD->isVirtual()) { | 
|  | uint64_t Index = CGM.getItaniumVTableContext().getMethodVTableIndex(MD); | 
|  |  | 
|  | const ASTContext &Context = getContext(); | 
|  | CharUnits PointerWidth = | 
|  | Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); | 
|  | uint64_t VTableOffset = (Index * PointerWidth.getQuantity()); | 
|  |  | 
|  | if (UseARMMethodPtrABI) { | 
|  | // ARM C++ ABI 3.2.1: | 
|  | //   This ABI specifies that adj contains twice the this | 
|  | //   adjustment, plus 1 if the member function is virtual. The | 
|  | //   least significant bit of adj then makes exactly the same | 
|  | //   discrimination as the least significant bit of ptr does for | 
|  | //   Itanium. | 
|  | MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset); | 
|  | MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy, | 
|  | 2 * ThisAdjustment.getQuantity() + 1); | 
|  | } else { | 
|  | // Itanium C++ ABI 2.3: | 
|  | //   For a virtual function, [the pointer field] is 1 plus the | 
|  | //   virtual table offset (in bytes) of the function, | 
|  | //   represented as a ptrdiff_t. | 
|  | MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset + 1); | 
|  | MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy, | 
|  | ThisAdjustment.getQuantity()); | 
|  | } | 
|  | } else { | 
|  | const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); | 
|  | llvm::Type *Ty; | 
|  | // Check whether the function has a computable LLVM signature. | 
|  | if (Types.isFuncTypeConvertible(FPT)) { | 
|  | // The function has a computable LLVM signature; use the correct type. | 
|  | Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); | 
|  | } else { | 
|  | // Use an arbitrary non-function type to tell GetAddrOfFunction that the | 
|  | // function type is incomplete. | 
|  | Ty = CGM.PtrDiffTy; | 
|  | } | 
|  | llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty); | 
|  |  | 
|  | MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, CGM.PtrDiffTy); | 
|  | MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy, | 
|  | (UseARMMethodPtrABI ? 2 : 1) * | 
|  | ThisAdjustment.getQuantity()); | 
|  | } | 
|  |  | 
|  | return llvm::ConstantStruct::getAnon(MemPtr); | 
|  | } | 
|  |  | 
|  | llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const APValue &MP, | 
|  | QualType MPType) { | 
|  | const MemberPointerType *MPT = MPType->castAs<MemberPointerType>(); | 
|  | const ValueDecl *MPD = MP.getMemberPointerDecl(); | 
|  | if (!MPD) | 
|  | return EmitNullMemberPointer(MPT); | 
|  |  | 
|  | CharUnits ThisAdjustment = getMemberPointerPathAdjustment(MP); | 
|  |  | 
|  | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) | 
|  | return BuildMemberPointer(MD, ThisAdjustment); | 
|  |  | 
|  | CharUnits FieldOffset = | 
|  | getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD)); | 
|  | return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset); | 
|  | } | 
|  |  | 
|  | /// The comparison algorithm is pretty easy: the member pointers are | 
|  | /// the same if they're either bitwise identical *or* both null. | 
|  | /// | 
|  | /// ARM is different here only because null-ness is more complicated. | 
|  | llvm::Value * | 
|  | ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, | 
|  | llvm::Value *L, | 
|  | llvm::Value *R, | 
|  | const MemberPointerType *MPT, | 
|  | bool Inequality) { | 
|  | CGBuilderTy &Builder = CGF.Builder; | 
|  |  | 
|  | llvm::ICmpInst::Predicate Eq; | 
|  | llvm::Instruction::BinaryOps And, Or; | 
|  | if (Inequality) { | 
|  | Eq = llvm::ICmpInst::ICMP_NE; | 
|  | And = llvm::Instruction::Or; | 
|  | Or = llvm::Instruction::And; | 
|  | } else { | 
|  | Eq = llvm::ICmpInst::ICMP_EQ; | 
|  | And = llvm::Instruction::And; | 
|  | Or = llvm::Instruction::Or; | 
|  | } | 
|  |  | 
|  | // Member data pointers are easy because there's a unique null | 
|  | // value, so it just comes down to bitwise equality. | 
|  | if (MPT->isMemberDataPointer()) | 
|  | return Builder.CreateICmp(Eq, L, R); | 
|  |  | 
|  | // For member function pointers, the tautologies are more complex. | 
|  | // The Itanium tautology is: | 
|  | //   (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj)) | 
|  | // The ARM tautology is: | 
|  | //   (L == R) <==> (L.ptr == R.ptr && | 
|  | //                  (L.adj == R.adj || | 
|  | //                   (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0))) | 
|  | // The inequality tautologies have exactly the same structure, except | 
|  | // applying De Morgan's laws. | 
|  |  | 
|  | llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr"); | 
|  | llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr"); | 
|  |  | 
|  | // This condition tests whether L.ptr == R.ptr.  This must always be | 
|  | // true for equality to hold. | 
|  | llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr"); | 
|  |  | 
|  | // This condition, together with the assumption that L.ptr == R.ptr, | 
|  | // tests whether the pointers are both null.  ARM imposes an extra | 
|  | // condition. | 
|  | llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType()); | 
|  | llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null"); | 
|  |  | 
|  | // This condition tests whether L.adj == R.adj.  If this isn't | 
|  | // true, the pointers are unequal unless they're both null. | 
|  | llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj"); | 
|  | llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj"); | 
|  | llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj"); | 
|  |  | 
|  | // Null member function pointers on ARM clear the low bit of Adj, | 
|  | // so the zero condition has to check that neither low bit is set. | 
|  | if (UseARMMethodPtrABI) { | 
|  | llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1); | 
|  |  | 
|  | // Compute (l.adj | r.adj) & 1 and test it against zero. | 
|  | llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj"); | 
|  | llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One); | 
|  | llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero, | 
|  | "cmp.or.adj"); | 
|  | EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero); | 
|  | } | 
|  |  | 
|  | // Tie together all our conditions. | 
|  | llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq); | 
|  | Result = Builder.CreateBinOp(And, PtrEq, Result, | 
|  | Inequality ? "memptr.ne" : "memptr.eq"); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | llvm::Value * | 
|  | ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, | 
|  | llvm::Value *MemPtr, | 
|  | const MemberPointerType *MPT) { | 
|  | CGBuilderTy &Builder = CGF.Builder; | 
|  |  | 
|  | /// For member data pointers, this is just a check against -1. | 
|  | if (MPT->isMemberDataPointer()) { | 
|  | assert(MemPtr->getType() == CGM.PtrDiffTy); | 
|  | llvm::Value *NegativeOne = | 
|  | llvm::Constant::getAllOnesValue(MemPtr->getType()); | 
|  | return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool"); | 
|  | } | 
|  |  | 
|  | // In Itanium, a member function pointer is not null if 'ptr' is not null. | 
|  | llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr"); | 
|  |  | 
|  | llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0); | 
|  | llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool"); | 
|  |  | 
|  | // On ARM, a member function pointer is also non-null if the low bit of 'adj' | 
|  | // (the virtual bit) is set. | 
|  | if (UseARMMethodPtrABI) { | 
|  | llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1); | 
|  | llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj"); | 
|  | llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit"); | 
|  | llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero, | 
|  | "memptr.isvirtual"); | 
|  | Result = Builder.CreateOr(Result, IsVirtual); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | bool ItaniumCXXABI::classifyReturnType(CGFunctionInfo &FI) const { | 
|  | const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl(); | 
|  | if (!RD) | 
|  | return false; | 
|  |  | 
|  | // Return indirectly if we have a non-trivial copy ctor or non-trivial dtor. | 
|  | // FIXME: Use canCopyArgument() when it is fixed to handle lazily declared | 
|  | // special members. | 
|  | if (RD->hasNonTrivialDestructor() || RD->hasNonTrivialCopyConstructor()) { | 
|  | auto Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType()); | 
|  | FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// The Itanium ABI requires non-zero initialization only for data | 
|  | /// member pointers, for which '0' is a valid offset. | 
|  | bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) { | 
|  | return MPT->isMemberFunctionPointer(); | 
|  | } | 
|  |  | 
|  | /// The Itanium ABI always places an offset to the complete object | 
|  | /// at entry -2 in the vtable. | 
|  | void ItaniumCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF, | 
|  | const CXXDeleteExpr *DE, | 
|  | Address Ptr, | 
|  | QualType ElementType, | 
|  | const CXXDestructorDecl *Dtor) { | 
|  | bool UseGlobalDelete = DE->isGlobalDelete(); | 
|  | if (UseGlobalDelete) { | 
|  | // Derive the complete-object pointer, which is what we need | 
|  | // to pass to the deallocation function. | 
|  |  | 
|  | // Grab the vtable pointer as an intptr_t*. | 
|  | auto *ClassDecl = | 
|  | cast<CXXRecordDecl>(ElementType->getAs<RecordType>()->getDecl()); | 
|  | llvm::Value *VTable = | 
|  | CGF.GetVTablePtr(Ptr, CGF.IntPtrTy->getPointerTo(), ClassDecl); | 
|  |  | 
|  | // Track back to entry -2 and pull out the offset there. | 
|  | llvm::Value *OffsetPtr = CGF.Builder.CreateConstInBoundsGEP1_64( | 
|  | VTable, -2, "complete-offset.ptr"); | 
|  | llvm::Value *Offset = | 
|  | CGF.Builder.CreateAlignedLoad(OffsetPtr, CGF.getPointerAlign()); | 
|  |  | 
|  | // Apply the offset. | 
|  | llvm::Value *CompletePtr = | 
|  | CGF.Builder.CreateBitCast(Ptr.getPointer(), CGF.Int8PtrTy); | 
|  | CompletePtr = CGF.Builder.CreateInBoundsGEP(CompletePtr, Offset); | 
|  |  | 
|  | // If we're supposed to call the global delete, make sure we do so | 
|  | // even if the destructor throws. | 
|  | CGF.pushCallObjectDeleteCleanup(DE->getOperatorDelete(), CompletePtr, | 
|  | ElementType); | 
|  | } | 
|  |  | 
|  | // FIXME: Provide a source location here even though there's no | 
|  | // CXXMemberCallExpr for dtor call. | 
|  | CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; | 
|  | EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, /*CE=*/nullptr); | 
|  |  | 
|  | if (UseGlobalDelete) | 
|  | CGF.PopCleanupBlock(); | 
|  | } | 
|  |  | 
|  | void ItaniumCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) { | 
|  | // void __cxa_rethrow(); | 
|  |  | 
|  | llvm::FunctionType *FTy = | 
|  | llvm::FunctionType::get(CGM.VoidTy, /*IsVarArgs=*/false); | 
|  |  | 
|  | llvm::Constant *Fn = CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow"); | 
|  |  | 
|  | if (isNoReturn) | 
|  | CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, None); | 
|  | else | 
|  | CGF.EmitRuntimeCallOrInvoke(Fn); | 
|  | } | 
|  |  | 
|  | static llvm::Constant *getAllocateExceptionFn(CodeGenModule &CGM) { | 
|  | // void *__cxa_allocate_exception(size_t thrown_size); | 
|  |  | 
|  | llvm::FunctionType *FTy = | 
|  | llvm::FunctionType::get(CGM.Int8PtrTy, CGM.SizeTy, /*IsVarArgs=*/false); | 
|  |  | 
|  | return CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception"); | 
|  | } | 
|  |  | 
|  | static llvm::Constant *getThrowFn(CodeGenModule &CGM) { | 
|  | // void __cxa_throw(void *thrown_exception, std::type_info *tinfo, | 
|  | //                  void (*dest) (void *)); | 
|  |  | 
|  | llvm::Type *Args[3] = { CGM.Int8PtrTy, CGM.Int8PtrTy, CGM.Int8PtrTy }; | 
|  | llvm::FunctionType *FTy = | 
|  | llvm::FunctionType::get(CGM.VoidTy, Args, /*IsVarArgs=*/false); | 
|  |  | 
|  | return CGM.CreateRuntimeFunction(FTy, "__cxa_throw"); | 
|  | } | 
|  |  | 
|  | void ItaniumCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) { | 
|  | QualType ThrowType = E->getSubExpr()->getType(); | 
|  | // Now allocate the exception object. | 
|  | llvm::Type *SizeTy = CGF.ConvertType(getContext().getSizeType()); | 
|  | uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity(); | 
|  |  | 
|  | llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(CGM); | 
|  | llvm::CallInst *ExceptionPtr = CGF.EmitNounwindRuntimeCall( | 
|  | AllocExceptionFn, llvm::ConstantInt::get(SizeTy, TypeSize), "exception"); | 
|  |  | 
|  | CharUnits ExnAlign = getAlignmentOfExnObject(); | 
|  | CGF.EmitAnyExprToExn(E->getSubExpr(), Address(ExceptionPtr, ExnAlign)); | 
|  |  | 
|  | // Now throw the exception. | 
|  | llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType, | 
|  | /*ForEH=*/true); | 
|  |  | 
|  | // The address of the destructor.  If the exception type has a | 
|  | // trivial destructor (or isn't a record), we just pass null. | 
|  | llvm::Constant *Dtor = nullptr; | 
|  | if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) { | 
|  | CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl()); | 
|  | if (!Record->hasTrivialDestructor()) { | 
|  | CXXDestructorDecl *DtorD = Record->getDestructor(); | 
|  | Dtor = CGM.getAddrOfCXXStructor(DtorD, StructorType::Complete); | 
|  | Dtor = llvm::ConstantExpr::getBitCast(Dtor, CGM.Int8PtrTy); | 
|  | } | 
|  | } | 
|  | if (!Dtor) Dtor = llvm::Constant::getNullValue(CGM.Int8PtrTy); | 
|  |  | 
|  | llvm::Value *args[] = { ExceptionPtr, TypeInfo, Dtor }; | 
|  | CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(CGM), args); | 
|  | } | 
|  |  | 
|  | static llvm::Constant *getItaniumDynamicCastFn(CodeGenFunction &CGF) { | 
|  | // void *__dynamic_cast(const void *sub, | 
|  | //                      const abi::__class_type_info *src, | 
|  | //                      const abi::__class_type_info *dst, | 
|  | //                      std::ptrdiff_t src2dst_offset); | 
|  |  | 
|  | llvm::Type *Int8PtrTy = CGF.Int8PtrTy; | 
|  | llvm::Type *PtrDiffTy = | 
|  | CGF.ConvertType(CGF.getContext().getPointerDiffType()); | 
|  |  | 
|  | llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy }; | 
|  |  | 
|  | llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false); | 
|  |  | 
|  | // Mark the function as nounwind readonly. | 
|  | llvm::Attribute::AttrKind FuncAttrs[] = { llvm::Attribute::NoUnwind, | 
|  | llvm::Attribute::ReadOnly }; | 
|  | llvm::AttributeList Attrs = llvm::AttributeList::get( | 
|  | CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex, FuncAttrs); | 
|  |  | 
|  | return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs); | 
|  | } | 
|  |  | 
|  | static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) { | 
|  | // void __cxa_bad_cast(); | 
|  | llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); | 
|  | return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); | 
|  | } | 
|  |  | 
|  | /// \brief Compute the src2dst_offset hint as described in the | 
|  | /// Itanium C++ ABI [2.9.7] | 
|  | static CharUnits computeOffsetHint(ASTContext &Context, | 
|  | const CXXRecordDecl *Src, | 
|  | const CXXRecordDecl *Dst) { | 
|  | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | 
|  | /*DetectVirtual=*/false); | 
|  |  | 
|  | // If Dst is not derived from Src we can skip the whole computation below and | 
|  | // return that Src is not a public base of Dst.  Record all inheritance paths. | 
|  | if (!Dst->isDerivedFrom(Src, Paths)) | 
|  | return CharUnits::fromQuantity(-2ULL); | 
|  |  | 
|  | unsigned NumPublicPaths = 0; | 
|  | CharUnits Offset; | 
|  |  | 
|  | // Now walk all possible inheritance paths. | 
|  | for (const CXXBasePath &Path : Paths) { | 
|  | if (Path.Access != AS_public)  // Ignore non-public inheritance. | 
|  | continue; | 
|  |  | 
|  | ++NumPublicPaths; | 
|  |  | 
|  | for (const CXXBasePathElement &PathElement : Path) { | 
|  | // If the path contains a virtual base class we can't give any hint. | 
|  | // -1: no hint. | 
|  | if (PathElement.Base->isVirtual()) | 
|  | return CharUnits::fromQuantity(-1ULL); | 
|  |  | 
|  | if (NumPublicPaths > 1) // Won't use offsets, skip computation. | 
|  | continue; | 
|  |  | 
|  | // Accumulate the base class offsets. | 
|  | const ASTRecordLayout &L = Context.getASTRecordLayout(PathElement.Class); | 
|  | Offset += L.getBaseClassOffset( | 
|  | PathElement.Base->getType()->getAsCXXRecordDecl()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // -2: Src is not a public base of Dst. | 
|  | if (NumPublicPaths == 0) | 
|  | return CharUnits::fromQuantity(-2ULL); | 
|  |  | 
|  | // -3: Src is a multiple public base type but never a virtual base type. | 
|  | if (NumPublicPaths > 1) | 
|  | return CharUnits::fromQuantity(-3ULL); | 
|  |  | 
|  | // Otherwise, the Src type is a unique public nonvirtual base type of Dst. | 
|  | // Return the offset of Src from the origin of Dst. | 
|  | return Offset; | 
|  | } | 
|  |  | 
|  | static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) { | 
|  | // void __cxa_bad_typeid(); | 
|  | llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); | 
|  |  | 
|  | return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); | 
|  | } | 
|  |  | 
|  | bool ItaniumCXXABI::shouldTypeidBeNullChecked(bool IsDeref, | 
|  | QualType SrcRecordTy) { | 
|  | return IsDeref; | 
|  | } | 
|  |  | 
|  | void ItaniumCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) { | 
|  | llvm::Value *Fn = getBadTypeidFn(CGF); | 
|  | CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn(); | 
|  | CGF.Builder.CreateUnreachable(); | 
|  | } | 
|  |  | 
|  | llvm::Value *ItaniumCXXABI::EmitTypeid(CodeGenFunction &CGF, | 
|  | QualType SrcRecordTy, | 
|  | Address ThisPtr, | 
|  | llvm::Type *StdTypeInfoPtrTy) { | 
|  | auto *ClassDecl = | 
|  | cast<CXXRecordDecl>(SrcRecordTy->getAs<RecordType>()->getDecl()); | 
|  | llvm::Value *Value = | 
|  | CGF.GetVTablePtr(ThisPtr, StdTypeInfoPtrTy->getPointerTo(), ClassDecl); | 
|  |  | 
|  | // Load the type info. | 
|  | Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL); | 
|  | return CGF.Builder.CreateAlignedLoad(Value, CGF.getPointerAlign()); | 
|  | } | 
|  |  | 
|  | bool ItaniumCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, | 
|  | QualType SrcRecordTy) { | 
|  | return SrcIsPtr; | 
|  | } | 
|  |  | 
|  | llvm::Value *ItaniumCXXABI::EmitDynamicCastCall( | 
|  | CodeGenFunction &CGF, Address ThisAddr, QualType SrcRecordTy, | 
|  | QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) { | 
|  | llvm::Type *PtrDiffLTy = | 
|  | CGF.ConvertType(CGF.getContext().getPointerDiffType()); | 
|  | llvm::Type *DestLTy = CGF.ConvertType(DestTy); | 
|  |  | 
|  | llvm::Value *SrcRTTI = | 
|  | CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); | 
|  | llvm::Value *DestRTTI = | 
|  | CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); | 
|  |  | 
|  | // Compute the offset hint. | 
|  | const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); | 
|  | const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl(); | 
|  | llvm::Value *OffsetHint = llvm::ConstantInt::get( | 
|  | PtrDiffLTy, | 
|  | computeOffsetHint(CGF.getContext(), SrcDecl, DestDecl).getQuantity()); | 
|  |  | 
|  | // Emit the call to __dynamic_cast. | 
|  | llvm::Value *Value = ThisAddr.getPointer(); | 
|  | Value = CGF.EmitCastToVoidPtr(Value); | 
|  |  | 
|  | llvm::Value *args[] = {Value, SrcRTTI, DestRTTI, OffsetHint}; | 
|  | Value = CGF.EmitNounwindRuntimeCall(getItaniumDynamicCastFn(CGF), args); | 
|  | Value = CGF.Builder.CreateBitCast(Value, DestLTy); | 
|  |  | 
|  | /// C++ [expr.dynamic.cast]p9: | 
|  | ///   A failed cast to reference type throws std::bad_cast | 
|  | if (DestTy->isReferenceType()) { | 
|  | llvm::BasicBlock *BadCastBlock = | 
|  | CGF.createBasicBlock("dynamic_cast.bad_cast"); | 
|  |  | 
|  | llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); | 
|  | CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); | 
|  |  | 
|  | CGF.EmitBlock(BadCastBlock); | 
|  | EmitBadCastCall(CGF); | 
|  | } | 
|  |  | 
|  | return Value; | 
|  | } | 
|  |  | 
|  | llvm::Value *ItaniumCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, | 
|  | Address ThisAddr, | 
|  | QualType SrcRecordTy, | 
|  | QualType DestTy) { | 
|  | llvm::Type *PtrDiffLTy = | 
|  | CGF.ConvertType(CGF.getContext().getPointerDiffType()); | 
|  | llvm::Type *DestLTy = CGF.ConvertType(DestTy); | 
|  |  | 
|  | auto *ClassDecl = | 
|  | cast<CXXRecordDecl>(SrcRecordTy->getAs<RecordType>()->getDecl()); | 
|  | // Get the vtable pointer. | 
|  | llvm::Value *VTable = CGF.GetVTablePtr(ThisAddr, PtrDiffLTy->getPointerTo(), | 
|  | ClassDecl); | 
|  |  | 
|  | // Get the offset-to-top from the vtable. | 
|  | llvm::Value *OffsetToTop = | 
|  | CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL); | 
|  | OffsetToTop = | 
|  | CGF.Builder.CreateAlignedLoad(OffsetToTop, CGF.getPointerAlign(), | 
|  | "offset.to.top"); | 
|  |  | 
|  | // Finally, add the offset to the pointer. | 
|  | llvm::Value *Value = ThisAddr.getPointer(); | 
|  | Value = CGF.EmitCastToVoidPtr(Value); | 
|  | Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop); | 
|  |  | 
|  | return CGF.Builder.CreateBitCast(Value, DestLTy); | 
|  | } | 
|  |  | 
|  | bool ItaniumCXXABI::EmitBadCastCall(CodeGenFunction &CGF) { | 
|  | llvm::Value *Fn = getBadCastFn(CGF); | 
|  | CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn(); | 
|  | CGF.Builder.CreateUnreachable(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | llvm::Value * | 
|  | ItaniumCXXABI::GetVirtualBaseClassOffset(CodeGenFunction &CGF, | 
|  | Address This, | 
|  | const CXXRecordDecl *ClassDecl, | 
|  | const CXXRecordDecl *BaseClassDecl) { | 
|  | llvm::Value *VTablePtr = CGF.GetVTablePtr(This, CGM.Int8PtrTy, ClassDecl); | 
|  | CharUnits VBaseOffsetOffset = | 
|  | CGM.getItaniumVTableContext().getVirtualBaseOffsetOffset(ClassDecl, | 
|  | BaseClassDecl); | 
|  |  | 
|  | llvm::Value *VBaseOffsetPtr = | 
|  | CGF.Builder.CreateConstGEP1_64(VTablePtr, VBaseOffsetOffset.getQuantity(), | 
|  | "vbase.offset.ptr"); | 
|  | VBaseOffsetPtr = CGF.Builder.CreateBitCast(VBaseOffsetPtr, | 
|  | CGM.PtrDiffTy->getPointerTo()); | 
|  |  | 
|  | llvm::Value *VBaseOffset = | 
|  | CGF.Builder.CreateAlignedLoad(VBaseOffsetPtr, CGF.getPointerAlign(), | 
|  | "vbase.offset"); | 
|  |  | 
|  | return VBaseOffset; | 
|  | } | 
|  |  | 
|  | void ItaniumCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { | 
|  | // Just make sure we're in sync with TargetCXXABI. | 
|  | assert(CGM.getTarget().getCXXABI().hasConstructorVariants()); | 
|  |  | 
|  | // The constructor used for constructing this as a base class; | 
|  | // ignores virtual bases. | 
|  | CGM.EmitGlobal(GlobalDecl(D, Ctor_Base)); | 
|  |  | 
|  | // The constructor used for constructing this as a complete class; | 
|  | // constructs the virtual bases, then calls the base constructor. | 
|  | if (!D->getParent()->isAbstract()) { | 
|  | // We don't need to emit the complete ctor if the class is abstract. | 
|  | CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete)); | 
|  | } | 
|  | } | 
|  |  | 
|  | CGCXXABI::AddedStructorArgs | 
|  | ItaniumCXXABI::buildStructorSignature(const CXXMethodDecl *MD, StructorType T, | 
|  | SmallVectorImpl<CanQualType> &ArgTys) { | 
|  | ASTContext &Context = getContext(); | 
|  |  | 
|  | // All parameters are already in place except VTT, which goes after 'this'. | 
|  | // These are Clang types, so we don't need to worry about sret yet. | 
|  |  | 
|  | // Check if we need to add a VTT parameter (which has type void **). | 
|  | if (T == StructorType::Base && MD->getParent()->getNumVBases() != 0) { | 
|  | ArgTys.insert(ArgTys.begin() + 1, | 
|  | Context.getPointerType(Context.VoidPtrTy)); | 
|  | return AddedStructorArgs::prefix(1); | 
|  | } | 
|  | return AddedStructorArgs{}; | 
|  | } | 
|  |  | 
|  | void ItaniumCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { | 
|  | // The destructor used for destructing this as a base class; ignores | 
|  | // virtual bases. | 
|  | CGM.EmitGlobal(GlobalDecl(D, Dtor_Base)); | 
|  |  | 
|  | // The destructor used for destructing this as a most-derived class; | 
|  | // call the base destructor and then destructs any virtual bases. | 
|  | CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete)); | 
|  |  | 
|  | // The destructor in a virtual table is always a 'deleting' | 
|  | // destructor, which calls the complete destructor and then uses the | 
|  | // appropriate operator delete. | 
|  | if (D->isVirtual()) | 
|  | CGM.EmitGlobal(GlobalDecl(D, Dtor_Deleting)); | 
|  | } | 
|  |  | 
|  | void ItaniumCXXABI::addImplicitStructorParams(CodeGenFunction &CGF, | 
|  | QualType &ResTy, | 
|  | FunctionArgList &Params) { | 
|  | const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); | 
|  | assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)); | 
|  |  | 
|  | // Check if we need a VTT parameter as well. | 
|  | if (NeedsVTTParameter(CGF.CurGD)) { | 
|  | ASTContext &Context = getContext(); | 
|  |  | 
|  | // FIXME: avoid the fake decl | 
|  | QualType T = Context.getPointerType(Context.VoidPtrTy); | 
|  | auto *VTTDecl = ImplicitParamDecl::Create( | 
|  | Context, /*DC=*/nullptr, MD->getLocation(), &Context.Idents.get("vtt"), | 
|  | T, ImplicitParamDecl::CXXVTT); | 
|  | Params.insert(Params.begin() + 1, VTTDecl); | 
|  | getStructorImplicitParamDecl(CGF) = VTTDecl; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { | 
|  | // Naked functions have no prolog. | 
|  | if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>()) | 
|  | return; | 
|  |  | 
|  | /// Initialize the 'this' slot. | 
|  | EmitThisParam(CGF); | 
|  |  | 
|  | /// Initialize the 'vtt' slot if needed. | 
|  | if (getStructorImplicitParamDecl(CGF)) { | 
|  | getStructorImplicitParamValue(CGF) = CGF.Builder.CreateLoad( | 
|  | CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), "vtt"); | 
|  | } | 
|  |  | 
|  | /// If this is a function that the ABI specifies returns 'this', initialize | 
|  | /// the return slot to 'this' at the start of the function. | 
|  | /// | 
|  | /// Unlike the setting of return types, this is done within the ABI | 
|  | /// implementation instead of by clients of CGCXXABI because: | 
|  | /// 1) getThisValue is currently protected | 
|  | /// 2) in theory, an ABI could implement 'this' returns some other way; | 
|  | ///    HasThisReturn only specifies a contract, not the implementation | 
|  | if (HasThisReturn(CGF.CurGD)) | 
|  | CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); | 
|  | } | 
|  |  | 
|  | CGCXXABI::AddedStructorArgs ItaniumCXXABI::addImplicitConstructorArgs( | 
|  | CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, | 
|  | bool ForVirtualBase, bool Delegating, CallArgList &Args) { | 
|  | if (!NeedsVTTParameter(GlobalDecl(D, Type))) | 
|  | return AddedStructorArgs{}; | 
|  |  | 
|  | // Insert the implicit 'vtt' argument as the second argument. | 
|  | llvm::Value *VTT = | 
|  | CGF.GetVTTParameter(GlobalDecl(D, Type), ForVirtualBase, Delegating); | 
|  | QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy); | 
|  | Args.insert(Args.begin() + 1, | 
|  | CallArg(RValue::get(VTT), VTTTy, /*needscopy=*/false)); | 
|  | return AddedStructorArgs::prefix(1);  // Added one arg. | 
|  | } | 
|  |  | 
|  | void ItaniumCXXABI::EmitDestructorCall(CodeGenFunction &CGF, | 
|  | const CXXDestructorDecl *DD, | 
|  | CXXDtorType Type, bool ForVirtualBase, | 
|  | bool Delegating, Address This) { | 
|  | GlobalDecl GD(DD, Type); | 
|  | llvm::Value *VTT = CGF.GetVTTParameter(GD, ForVirtualBase, Delegating); | 
|  | QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy); | 
|  |  | 
|  | CGCallee Callee; | 
|  | if (getContext().getLangOpts().AppleKext && | 
|  | Type != Dtor_Base && DD->isVirtual()) | 
|  | Callee = CGF.BuildAppleKextVirtualDestructorCall(DD, Type, DD->getParent()); | 
|  | else | 
|  | Callee = | 
|  | CGCallee::forDirect(CGM.getAddrOfCXXStructor(DD, getFromDtorType(Type)), | 
|  | DD); | 
|  |  | 
|  | CGF.EmitCXXMemberOrOperatorCall(DD, Callee, ReturnValueSlot(), | 
|  | This.getPointer(), VTT, VTTTy, | 
|  | nullptr, nullptr); | 
|  | } | 
|  |  | 
|  | void ItaniumCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, | 
|  | const CXXRecordDecl *RD) { | 
|  | llvm::GlobalVariable *VTable = getAddrOfVTable(RD, CharUnits()); | 
|  | if (VTable->hasInitializer()) | 
|  | return; | 
|  |  | 
|  | ItaniumVTableContext &VTContext = CGM.getItaniumVTableContext(); | 
|  | const VTableLayout &VTLayout = VTContext.getVTableLayout(RD); | 
|  | llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); | 
|  | llvm::Constant *RTTI = | 
|  | CGM.GetAddrOfRTTIDescriptor(CGM.getContext().getTagDeclType(RD)); | 
|  |  | 
|  | // Create and set the initializer. | 
|  | ConstantInitBuilder Builder(CGM); | 
|  | auto Components = Builder.beginStruct(); | 
|  | CGVT.createVTableInitializer(Components, VTLayout, RTTI); | 
|  | Components.finishAndSetAsInitializer(VTable); | 
|  |  | 
|  | // Set the correct linkage. | 
|  | VTable->setLinkage(Linkage); | 
|  |  | 
|  | if (CGM.supportsCOMDAT() && VTable->isWeakForLinker()) | 
|  | VTable->setComdat(CGM.getModule().getOrInsertComdat(VTable->getName())); | 
|  |  | 
|  | // Set the right visibility. | 
|  | CGM.setGlobalVisibility(VTable, RD); | 
|  |  | 
|  | // Use pointer alignment for the vtable. Otherwise we would align them based | 
|  | // on the size of the initializer which doesn't make sense as only single | 
|  | // values are read. | 
|  | unsigned PAlign = CGM.getTarget().getPointerAlign(0); | 
|  | VTable->setAlignment(getContext().toCharUnitsFromBits(PAlign).getQuantity()); | 
|  |  | 
|  | // If this is the magic class __cxxabiv1::__fundamental_type_info, | 
|  | // we will emit the typeinfo for the fundamental types. This is the | 
|  | // same behaviour as GCC. | 
|  | const DeclContext *DC = RD->getDeclContext(); | 
|  | if (RD->getIdentifier() && | 
|  | RD->getIdentifier()->isStr("__fundamental_type_info") && | 
|  | isa<NamespaceDecl>(DC) && cast<NamespaceDecl>(DC)->getIdentifier() && | 
|  | cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__cxxabiv1") && | 
|  | DC->getParent()->isTranslationUnit()) | 
|  | EmitFundamentalRTTIDescriptors(RD->hasAttr<DLLExportAttr>()); | 
|  |  | 
|  | if (!VTable->isDeclarationForLinker()) | 
|  | CGM.EmitVTableTypeMetadata(VTable, VTLayout); | 
|  | } | 
|  |  | 
|  | bool ItaniumCXXABI::isVirtualOffsetNeededForVTableField( | 
|  | CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) { | 
|  | if (Vptr.NearestVBase == nullptr) | 
|  | return false; | 
|  | return NeedsVTTParameter(CGF.CurGD); | 
|  | } | 
|  |  | 
|  | llvm::Value *ItaniumCXXABI::getVTableAddressPointInStructor( | 
|  | CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, | 
|  | const CXXRecordDecl *NearestVBase) { | 
|  |  | 
|  | if ((Base.getBase()->getNumVBases() || NearestVBase != nullptr) && | 
|  | NeedsVTTParameter(CGF.CurGD)) { | 
|  | return getVTableAddressPointInStructorWithVTT(CGF, VTableClass, Base, | 
|  | NearestVBase); | 
|  | } | 
|  | return getVTableAddressPoint(Base, VTableClass); | 
|  | } | 
|  |  | 
|  | llvm::Constant * | 
|  | ItaniumCXXABI::getVTableAddressPoint(BaseSubobject Base, | 
|  | const CXXRecordDecl *VTableClass) { | 
|  | llvm::GlobalValue *VTable = getAddrOfVTable(VTableClass, CharUnits()); | 
|  |  | 
|  | // Find the appropriate vtable within the vtable group, and the address point | 
|  | // within that vtable. | 
|  | VTableLayout::AddressPointLocation AddressPoint = | 
|  | CGM.getItaniumVTableContext() | 
|  | .getVTableLayout(VTableClass) | 
|  | .getAddressPoint(Base); | 
|  | llvm::Value *Indices[] = { | 
|  | llvm::ConstantInt::get(CGM.Int32Ty, 0), | 
|  | llvm::ConstantInt::get(CGM.Int32Ty, AddressPoint.VTableIndex), | 
|  | llvm::ConstantInt::get(CGM.Int32Ty, AddressPoint.AddressPointIndex), | 
|  | }; | 
|  |  | 
|  | return llvm::ConstantExpr::getGetElementPtr(VTable->getValueType(), VTable, | 
|  | Indices, /*InBounds=*/true, | 
|  | /*InRangeIndex=*/1); | 
|  | } | 
|  |  | 
|  | llvm::Value *ItaniumCXXABI::getVTableAddressPointInStructorWithVTT( | 
|  | CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, | 
|  | const CXXRecordDecl *NearestVBase) { | 
|  | assert((Base.getBase()->getNumVBases() || NearestVBase != nullptr) && | 
|  | NeedsVTTParameter(CGF.CurGD) && "This class doesn't have VTT"); | 
|  |  | 
|  | // Get the secondary vpointer index. | 
|  | uint64_t VirtualPointerIndex = | 
|  | CGM.getVTables().getSecondaryVirtualPointerIndex(VTableClass, Base); | 
|  |  | 
|  | /// Load the VTT. | 
|  | llvm::Value *VTT = CGF.LoadCXXVTT(); | 
|  | if (VirtualPointerIndex) | 
|  | VTT = CGF.Builder.CreateConstInBoundsGEP1_64(VTT, VirtualPointerIndex); | 
|  |  | 
|  | // And load the address point from the VTT. | 
|  | return CGF.Builder.CreateAlignedLoad(VTT, CGF.getPointerAlign()); | 
|  | } | 
|  |  | 
|  | llvm::Constant *ItaniumCXXABI::getVTableAddressPointForConstExpr( | 
|  | BaseSubobject Base, const CXXRecordDecl *VTableClass) { | 
|  | return getVTableAddressPoint(Base, VTableClass); | 
|  | } | 
|  |  | 
|  | llvm::GlobalVariable *ItaniumCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, | 
|  | CharUnits VPtrOffset) { | 
|  | assert(VPtrOffset.isZero() && "Itanium ABI only supports zero vptr offsets"); | 
|  |  | 
|  | llvm::GlobalVariable *&VTable = VTables[RD]; | 
|  | if (VTable) | 
|  | return VTable; | 
|  |  | 
|  | // Queue up this vtable for possible deferred emission. | 
|  | CGM.addDeferredVTable(RD); | 
|  |  | 
|  | SmallString<256> Name; | 
|  | llvm::raw_svector_ostream Out(Name); | 
|  | getMangleContext().mangleCXXVTable(RD, Out); | 
|  |  | 
|  | const VTableLayout &VTLayout = | 
|  | CGM.getItaniumVTableContext().getVTableLayout(RD); | 
|  | llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout); | 
|  |  | 
|  | VTable = CGM.CreateOrReplaceCXXRuntimeVariable( | 
|  | Name, VTableType, llvm::GlobalValue::ExternalLinkage); | 
|  | VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); | 
|  |  | 
|  | if (RD->hasAttr<DLLImportAttr>()) | 
|  | VTable->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); | 
|  | else if (RD->hasAttr<DLLExportAttr>()) | 
|  | VTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); | 
|  |  | 
|  | return VTable; | 
|  | } | 
|  |  | 
|  | CGCallee ItaniumCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, | 
|  | GlobalDecl GD, | 
|  | Address This, | 
|  | llvm::Type *Ty, | 
|  | SourceLocation Loc) { | 
|  | GD = GD.getCanonicalDecl(); | 
|  | Ty = Ty->getPointerTo()->getPointerTo(); | 
|  | auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl()); | 
|  | llvm::Value *VTable = CGF.GetVTablePtr(This, Ty, MethodDecl->getParent()); | 
|  |  | 
|  | uint64_t VTableIndex = CGM.getItaniumVTableContext().getMethodVTableIndex(GD); | 
|  | llvm::Value *VFunc; | 
|  | if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) { | 
|  | VFunc = CGF.EmitVTableTypeCheckedLoad( | 
|  | MethodDecl->getParent(), VTable, | 
|  | VTableIndex * CGM.getContext().getTargetInfo().getPointerWidth(0) / 8); | 
|  | } else { | 
|  | CGF.EmitTypeMetadataCodeForVCall(MethodDecl->getParent(), VTable, Loc); | 
|  |  | 
|  | llvm::Value *VFuncPtr = | 
|  | CGF.Builder.CreateConstInBoundsGEP1_64(VTable, VTableIndex, "vfn"); | 
|  | auto *VFuncLoad = | 
|  | CGF.Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign()); | 
|  |  | 
|  | // Add !invariant.load md to virtual function load to indicate that | 
|  | // function didn't change inside vtable. | 
|  | // It's safe to add it without -fstrict-vtable-pointers, but it would not | 
|  | // help in devirtualization because it will only matter if we will have 2 | 
|  | // the same virtual function loads from the same vtable load, which won't | 
|  | // happen without enabled devirtualization with -fstrict-vtable-pointers. | 
|  | if (CGM.getCodeGenOpts().OptimizationLevel > 0 && | 
|  | CGM.getCodeGenOpts().StrictVTablePointers) | 
|  | VFuncLoad->setMetadata( | 
|  | llvm::LLVMContext::MD_invariant_load, | 
|  | llvm::MDNode::get(CGM.getLLVMContext(), | 
|  | llvm::ArrayRef<llvm::Metadata *>())); | 
|  | VFunc = VFuncLoad; | 
|  | } | 
|  |  | 
|  | CGCallee Callee(MethodDecl, VFunc); | 
|  | return Callee; | 
|  | } | 
|  |  | 
|  | llvm::Value *ItaniumCXXABI::EmitVirtualDestructorCall( | 
|  | CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, | 
|  | Address This, const CXXMemberCallExpr *CE) { | 
|  | assert(CE == nullptr || CE->arg_begin() == CE->arg_end()); | 
|  | assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); | 
|  |  | 
|  | const CGFunctionInfo *FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( | 
|  | Dtor, getFromDtorType(DtorType)); | 
|  | llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo); | 
|  | CGCallee Callee = | 
|  | getVirtualFunctionPointer(CGF, GlobalDecl(Dtor, DtorType), This, Ty, | 
|  | CE ? CE->getLocStart() : SourceLocation()); | 
|  |  | 
|  | CGF.EmitCXXMemberOrOperatorCall(Dtor, Callee, ReturnValueSlot(), | 
|  | This.getPointer(), /*ImplicitParam=*/nullptr, | 
|  | QualType(), CE, nullptr); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void ItaniumCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { | 
|  | CodeGenVTables &VTables = CGM.getVTables(); | 
|  | llvm::GlobalVariable *VTT = VTables.GetAddrOfVTT(RD); | 
|  | VTables.EmitVTTDefinition(VTT, CGM.getVTableLinkage(RD), RD); | 
|  | } | 
|  |  | 
|  | bool ItaniumCXXABI::canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const { | 
|  | // We don't emit available_externally vtables if we are in -fapple-kext mode | 
|  | // because kext mode does not permit devirtualization. | 
|  | if (CGM.getLangOpts().AppleKext) | 
|  | return false; | 
|  |  | 
|  | // If we don't have any not emitted inline virtual function, and if vtable is | 
|  | // not hidden, then we are safe to emit available_externally copy of vtable. | 
|  | // FIXME we can still emit a copy of the vtable if we | 
|  | // can emit definition of the inline functions. | 
|  | return !hasAnyUnusedVirtualInlineFunction(RD) && !isVTableHidden(RD); | 
|  | } | 
|  | static llvm::Value *performTypeAdjustment(CodeGenFunction &CGF, | 
|  | Address InitialPtr, | 
|  | int64_t NonVirtualAdjustment, | 
|  | int64_t VirtualAdjustment, | 
|  | bool IsReturnAdjustment) { | 
|  | if (!NonVirtualAdjustment && !VirtualAdjustment) | 
|  | return InitialPtr.getPointer(); | 
|  |  | 
|  | Address V = CGF.Builder.CreateElementBitCast(InitialPtr, CGF.Int8Ty); | 
|  |  | 
|  | // In a base-to-derived cast, the non-virtual adjustment is applied first. | 
|  | if (NonVirtualAdjustment && !IsReturnAdjustment) { | 
|  | V = CGF.Builder.CreateConstInBoundsByteGEP(V, | 
|  | CharUnits::fromQuantity(NonVirtualAdjustment)); | 
|  | } | 
|  |  | 
|  | // Perform the virtual adjustment if we have one. | 
|  | llvm::Value *ResultPtr; | 
|  | if (VirtualAdjustment) { | 
|  | llvm::Type *PtrDiffTy = | 
|  | CGF.ConvertType(CGF.getContext().getPointerDiffType()); | 
|  |  | 
|  | Address VTablePtrPtr = CGF.Builder.CreateElementBitCast(V, CGF.Int8PtrTy); | 
|  | llvm::Value *VTablePtr = CGF.Builder.CreateLoad(VTablePtrPtr); | 
|  |  | 
|  | llvm::Value *OffsetPtr = | 
|  | CGF.Builder.CreateConstInBoundsGEP1_64(VTablePtr, VirtualAdjustment); | 
|  |  | 
|  | OffsetPtr = CGF.Builder.CreateBitCast(OffsetPtr, PtrDiffTy->getPointerTo()); | 
|  |  | 
|  | // Load the adjustment offset from the vtable. | 
|  | llvm::Value *Offset = | 
|  | CGF.Builder.CreateAlignedLoad(OffsetPtr, CGF.getPointerAlign()); | 
|  |  | 
|  | // Adjust our pointer. | 
|  | ResultPtr = CGF.Builder.CreateInBoundsGEP(V.getPointer(), Offset); | 
|  | } else { | 
|  | ResultPtr = V.getPointer(); | 
|  | } | 
|  |  | 
|  | // In a derived-to-base conversion, the non-virtual adjustment is | 
|  | // applied second. | 
|  | if (NonVirtualAdjustment && IsReturnAdjustment) { | 
|  | ResultPtr = CGF.Builder.CreateConstInBoundsGEP1_64(ResultPtr, | 
|  | NonVirtualAdjustment); | 
|  | } | 
|  |  | 
|  | // Cast back to the original type. | 
|  | return CGF.Builder.CreateBitCast(ResultPtr, InitialPtr.getType()); | 
|  | } | 
|  |  | 
|  | llvm::Value *ItaniumCXXABI::performThisAdjustment(CodeGenFunction &CGF, | 
|  | Address This, | 
|  | const ThisAdjustment &TA) { | 
|  | return performTypeAdjustment(CGF, This, TA.NonVirtual, | 
|  | TA.Virtual.Itanium.VCallOffsetOffset, | 
|  | /*IsReturnAdjustment=*/false); | 
|  | } | 
|  |  | 
|  | llvm::Value * | 
|  | ItaniumCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret, | 
|  | const ReturnAdjustment &RA) { | 
|  | return performTypeAdjustment(CGF, Ret, RA.NonVirtual, | 
|  | RA.Virtual.Itanium.VBaseOffsetOffset, | 
|  | /*IsReturnAdjustment=*/true); | 
|  | } | 
|  |  | 
|  | void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF, | 
|  | RValue RV, QualType ResultType) { | 
|  | if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl())) | 
|  | return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType); | 
|  |  | 
|  | // Destructor thunks in the ARM ABI have indeterminate results. | 
|  | llvm::Type *T = CGF.ReturnValue.getElementType(); | 
|  | RValue Undef = RValue::get(llvm::UndefValue::get(T)); | 
|  | return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType); | 
|  | } | 
|  |  | 
|  | /************************** Array allocation cookies **************************/ | 
|  |  | 
|  | CharUnits ItaniumCXXABI::getArrayCookieSizeImpl(QualType elementType) { | 
|  | // The array cookie is a size_t; pad that up to the element alignment. | 
|  | // The cookie is actually right-justified in that space. | 
|  | return std::max(CharUnits::fromQuantity(CGM.SizeSizeInBytes), | 
|  | CGM.getContext().getTypeAlignInChars(elementType)); | 
|  | } | 
|  |  | 
|  | Address ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, | 
|  | Address NewPtr, | 
|  | llvm::Value *NumElements, | 
|  | const CXXNewExpr *expr, | 
|  | QualType ElementType) { | 
|  | assert(requiresArrayCookie(expr)); | 
|  |  | 
|  | unsigned AS = NewPtr.getAddressSpace(); | 
|  |  | 
|  | ASTContext &Ctx = getContext(); | 
|  | CharUnits SizeSize = CGF.getSizeSize(); | 
|  |  | 
|  | // The size of the cookie. | 
|  | CharUnits CookieSize = | 
|  | std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType)); | 
|  | assert(CookieSize == getArrayCookieSizeImpl(ElementType)); | 
|  |  | 
|  | // Compute an offset to the cookie. | 
|  | Address CookiePtr = NewPtr; | 
|  | CharUnits CookieOffset = CookieSize - SizeSize; | 
|  | if (!CookieOffset.isZero()) | 
|  | CookiePtr = CGF.Builder.CreateConstInBoundsByteGEP(CookiePtr, CookieOffset); | 
|  |  | 
|  | // Write the number of elements into the appropriate slot. | 
|  | Address NumElementsPtr = | 
|  | CGF.Builder.CreateElementBitCast(CookiePtr, CGF.SizeTy); | 
|  | llvm::Instruction *SI = CGF.Builder.CreateStore(NumElements, NumElementsPtr); | 
|  |  | 
|  | // Handle the array cookie specially in ASan. | 
|  | if (CGM.getLangOpts().Sanitize.has(SanitizerKind::Address) && AS == 0 && | 
|  | expr->getOperatorNew()->isReplaceableGlobalAllocationFunction()) { | 
|  | // The store to the CookiePtr does not need to be instrumented. | 
|  | CGM.getSanitizerMetadata()->disableSanitizerForInstruction(SI); | 
|  | llvm::FunctionType *FTy = | 
|  | llvm::FunctionType::get(CGM.VoidTy, NumElementsPtr.getType(), false); | 
|  | llvm::Constant *F = | 
|  | CGM.CreateRuntimeFunction(FTy, "__asan_poison_cxx_array_cookie"); | 
|  | CGF.Builder.CreateCall(F, NumElementsPtr.getPointer()); | 
|  | } | 
|  |  | 
|  | // Finally, compute a pointer to the actual data buffer by skipping | 
|  | // over the cookie completely. | 
|  | return CGF.Builder.CreateConstInBoundsByteGEP(NewPtr, CookieSize); | 
|  | } | 
|  |  | 
|  | llvm::Value *ItaniumCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, | 
|  | Address allocPtr, | 
|  | CharUnits cookieSize) { | 
|  | // The element size is right-justified in the cookie. | 
|  | Address numElementsPtr = allocPtr; | 
|  | CharUnits numElementsOffset = cookieSize - CGF.getSizeSize(); | 
|  | if (!numElementsOffset.isZero()) | 
|  | numElementsPtr = | 
|  | CGF.Builder.CreateConstInBoundsByteGEP(numElementsPtr, numElementsOffset); | 
|  |  | 
|  | unsigned AS = allocPtr.getAddressSpace(); | 
|  | numElementsPtr = CGF.Builder.CreateElementBitCast(numElementsPtr, CGF.SizeTy); | 
|  | if (!CGM.getLangOpts().Sanitize.has(SanitizerKind::Address) || AS != 0) | 
|  | return CGF.Builder.CreateLoad(numElementsPtr); | 
|  | // In asan mode emit a function call instead of a regular load and let the | 
|  | // run-time deal with it: if the shadow is properly poisoned return the | 
|  | // cookie, otherwise return 0 to avoid an infinite loop calling DTORs. | 
|  | // We can't simply ignore this load using nosanitize metadata because | 
|  | // the metadata may be lost. | 
|  | llvm::FunctionType *FTy = | 
|  | llvm::FunctionType::get(CGF.SizeTy, CGF.SizeTy->getPointerTo(0), false); | 
|  | llvm::Constant *F = | 
|  | CGM.CreateRuntimeFunction(FTy, "__asan_load_cxx_array_cookie"); | 
|  | return CGF.Builder.CreateCall(F, numElementsPtr.getPointer()); | 
|  | } | 
|  |  | 
|  | CharUnits ARMCXXABI::getArrayCookieSizeImpl(QualType elementType) { | 
|  | // ARM says that the cookie is always: | 
|  | //   struct array_cookie { | 
|  | //     std::size_t element_size; // element_size != 0 | 
|  | //     std::size_t element_count; | 
|  | //   }; | 
|  | // But the base ABI doesn't give anything an alignment greater than | 
|  | // 8, so we can dismiss this as typical ABI-author blindness to | 
|  | // actual language complexity and round up to the element alignment. | 
|  | return std::max(CharUnits::fromQuantity(2 * CGM.SizeSizeInBytes), | 
|  | CGM.getContext().getTypeAlignInChars(elementType)); | 
|  | } | 
|  |  | 
|  | Address ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, | 
|  | Address newPtr, | 
|  | llvm::Value *numElements, | 
|  | const CXXNewExpr *expr, | 
|  | QualType elementType) { | 
|  | assert(requiresArrayCookie(expr)); | 
|  |  | 
|  | // The cookie is always at the start of the buffer. | 
|  | Address cookie = newPtr; | 
|  |  | 
|  | // The first element is the element size. | 
|  | cookie = CGF.Builder.CreateElementBitCast(cookie, CGF.SizeTy); | 
|  | llvm::Value *elementSize = llvm::ConstantInt::get(CGF.SizeTy, | 
|  | getContext().getTypeSizeInChars(elementType).getQuantity()); | 
|  | CGF.Builder.CreateStore(elementSize, cookie); | 
|  |  | 
|  | // The second element is the element count. | 
|  | cookie = CGF.Builder.CreateConstInBoundsGEP(cookie, 1, CGF.getSizeSize()); | 
|  | CGF.Builder.CreateStore(numElements, cookie); | 
|  |  | 
|  | // Finally, compute a pointer to the actual data buffer by skipping | 
|  | // over the cookie completely. | 
|  | CharUnits cookieSize = ARMCXXABI::getArrayCookieSizeImpl(elementType); | 
|  | return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize); | 
|  | } | 
|  |  | 
|  | llvm::Value *ARMCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, | 
|  | Address allocPtr, | 
|  | CharUnits cookieSize) { | 
|  | // The number of elements is at offset sizeof(size_t) relative to | 
|  | // the allocated pointer. | 
|  | Address numElementsPtr | 
|  | = CGF.Builder.CreateConstInBoundsByteGEP(allocPtr, CGF.getSizeSize()); | 
|  |  | 
|  | numElementsPtr = CGF.Builder.CreateElementBitCast(numElementsPtr, CGF.SizeTy); | 
|  | return CGF.Builder.CreateLoad(numElementsPtr); | 
|  | } | 
|  |  | 
|  | /*********************** Static local initialization **************************/ | 
|  |  | 
|  | static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM, | 
|  | llvm::PointerType *GuardPtrTy) { | 
|  | // int __cxa_guard_acquire(__guard *guard_object); | 
|  | llvm::FunctionType *FTy = | 
|  | llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy), | 
|  | GuardPtrTy, /*isVarArg=*/false); | 
|  | return CGM.CreateRuntimeFunction( | 
|  | FTy, "__cxa_guard_acquire", | 
|  | llvm::AttributeList::get(CGM.getLLVMContext(), | 
|  | llvm::AttributeList::FunctionIndex, | 
|  | llvm::Attribute::NoUnwind)); | 
|  | } | 
|  |  | 
|  | static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM, | 
|  | llvm::PointerType *GuardPtrTy) { | 
|  | // void __cxa_guard_release(__guard *guard_object); | 
|  | llvm::FunctionType *FTy = | 
|  | llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false); | 
|  | return CGM.CreateRuntimeFunction( | 
|  | FTy, "__cxa_guard_release", | 
|  | llvm::AttributeList::get(CGM.getLLVMContext(), | 
|  | llvm::AttributeList::FunctionIndex, | 
|  | llvm::Attribute::NoUnwind)); | 
|  | } | 
|  |  | 
|  | static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM, | 
|  | llvm::PointerType *GuardPtrTy) { | 
|  | // void __cxa_guard_abort(__guard *guard_object); | 
|  | llvm::FunctionType *FTy = | 
|  | llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false); | 
|  | return CGM.CreateRuntimeFunction( | 
|  | FTy, "__cxa_guard_abort", | 
|  | llvm::AttributeList::get(CGM.getLLVMContext(), | 
|  | llvm::AttributeList::FunctionIndex, | 
|  | llvm::Attribute::NoUnwind)); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct CallGuardAbort final : EHScopeStack::Cleanup { | 
|  | llvm::GlobalVariable *Guard; | 
|  | CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {} | 
|  |  | 
|  | void Emit(CodeGenFunction &CGF, Flags flags) override { | 
|  | CGF.EmitNounwindRuntimeCall(getGuardAbortFn(CGF.CGM, Guard->getType()), | 
|  | Guard); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// The ARM code here follows the Itanium code closely enough that we | 
|  | /// just special-case it at particular places. | 
|  | void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF, | 
|  | const VarDecl &D, | 
|  | llvm::GlobalVariable *var, | 
|  | bool shouldPerformInit) { | 
|  | CGBuilderTy &Builder = CGF.Builder; | 
|  |  | 
|  | // Inline variables that weren't instantiated from variable templates have | 
|  | // partially-ordered initialization within their translation unit. | 
|  | bool NonTemplateInline = | 
|  | D.isInline() && | 
|  | !isTemplateInstantiation(D.getTemplateSpecializationKind()); | 
|  |  | 
|  | // We only need to use thread-safe statics for local non-TLS variables and | 
|  | // inline variables; other global initialization is always single-threaded | 
|  | // or (through lazy dynamic loading in multiple threads) unsequenced. | 
|  | bool threadsafe = getContext().getLangOpts().ThreadsafeStatics && | 
|  | (D.isLocalVarDecl() || NonTemplateInline) && | 
|  | !D.getTLSKind(); | 
|  |  | 
|  | // If we have a global variable with internal linkage and thread-safe statics | 
|  | // are disabled, we can just let the guard variable be of type i8. | 
|  | bool useInt8GuardVariable = !threadsafe && var->hasInternalLinkage(); | 
|  |  | 
|  | llvm::IntegerType *guardTy; | 
|  | CharUnits guardAlignment; | 
|  | if (useInt8GuardVariable) { | 
|  | guardTy = CGF.Int8Ty; | 
|  | guardAlignment = CharUnits::One(); | 
|  | } else { | 
|  | // Guard variables are 64 bits in the generic ABI and size width on ARM | 
|  | // (i.e. 32-bit on AArch32, 64-bit on AArch64). | 
|  | if (UseARMGuardVarABI) { | 
|  | guardTy = CGF.SizeTy; | 
|  | guardAlignment = CGF.getSizeAlign(); | 
|  | } else { | 
|  | guardTy = CGF.Int64Ty; | 
|  | guardAlignment = CharUnits::fromQuantity( | 
|  | CGM.getDataLayout().getABITypeAlignment(guardTy)); | 
|  | } | 
|  | } | 
|  | llvm::PointerType *guardPtrTy = guardTy->getPointerTo(); | 
|  |  | 
|  | // Create the guard variable if we don't already have it (as we | 
|  | // might if we're double-emitting this function body). | 
|  | llvm::GlobalVariable *guard = CGM.getStaticLocalDeclGuardAddress(&D); | 
|  | if (!guard) { | 
|  | // Mangle the name for the guard. | 
|  | SmallString<256> guardName; | 
|  | { | 
|  | llvm::raw_svector_ostream out(guardName); | 
|  | getMangleContext().mangleStaticGuardVariable(&D, out); | 
|  | } | 
|  |  | 
|  | // Create the guard variable with a zero-initializer. | 
|  | // Just absorb linkage and visibility from the guarded variable. | 
|  | guard = new llvm::GlobalVariable(CGM.getModule(), guardTy, | 
|  | false, var->getLinkage(), | 
|  | llvm::ConstantInt::get(guardTy, 0), | 
|  | guardName.str()); | 
|  | guard->setVisibility(var->getVisibility()); | 
|  | // If the variable is thread-local, so is its guard variable. | 
|  | guard->setThreadLocalMode(var->getThreadLocalMode()); | 
|  | guard->setAlignment(guardAlignment.getQuantity()); | 
|  |  | 
|  | // The ABI says: "It is suggested that it be emitted in the same COMDAT | 
|  | // group as the associated data object." In practice, this doesn't work for | 
|  | // non-ELF and non-Wasm object formats, so only do it for ELF and Wasm. | 
|  | llvm::Comdat *C = var->getComdat(); | 
|  | if (!D.isLocalVarDecl() && C && | 
|  | (CGM.getTarget().getTriple().isOSBinFormatELF() || | 
|  | CGM.getTarget().getTriple().isOSBinFormatWasm())) { | 
|  | guard->setComdat(C); | 
|  | // An inline variable's guard function is run from the per-TU | 
|  | // initialization function, not via a dedicated global ctor function, so | 
|  | // we can't put it in a comdat. | 
|  | if (!NonTemplateInline) | 
|  | CGF.CurFn->setComdat(C); | 
|  | } else if (CGM.supportsCOMDAT() && guard->isWeakForLinker()) { | 
|  | guard->setComdat(CGM.getModule().getOrInsertComdat(guard->getName())); | 
|  | } | 
|  |  | 
|  | CGM.setStaticLocalDeclGuardAddress(&D, guard); | 
|  | } | 
|  |  | 
|  | Address guardAddr = Address(guard, guardAlignment); | 
|  |  | 
|  | // Test whether the variable has completed initialization. | 
|  | // | 
|  | // Itanium C++ ABI 3.3.2: | 
|  | //   The following is pseudo-code showing how these functions can be used: | 
|  | //     if (obj_guard.first_byte == 0) { | 
|  | //       if ( __cxa_guard_acquire (&obj_guard) ) { | 
|  | //         try { | 
|  | //           ... initialize the object ...; | 
|  | //         } catch (...) { | 
|  | //            __cxa_guard_abort (&obj_guard); | 
|  | //            throw; | 
|  | //         } | 
|  | //         ... queue object destructor with __cxa_atexit() ...; | 
|  | //         __cxa_guard_release (&obj_guard); | 
|  | //       } | 
|  | //     } | 
|  |  | 
|  | // Load the first byte of the guard variable. | 
|  | llvm::LoadInst *LI = | 
|  | Builder.CreateLoad(Builder.CreateElementBitCast(guardAddr, CGM.Int8Ty)); | 
|  |  | 
|  | // Itanium ABI: | 
|  | //   An implementation supporting thread-safety on multiprocessor | 
|  | //   systems must also guarantee that references to the initialized | 
|  | //   object do not occur before the load of the initialization flag. | 
|  | // | 
|  | // In LLVM, we do this by marking the load Acquire. | 
|  | if (threadsafe) | 
|  | LI->setAtomic(llvm::AtomicOrdering::Acquire); | 
|  |  | 
|  | // For ARM, we should only check the first bit, rather than the entire byte: | 
|  | // | 
|  | // ARM C++ ABI 3.2.3.1: | 
|  | //   To support the potential use of initialization guard variables | 
|  | //   as semaphores that are the target of ARM SWP and LDREX/STREX | 
|  | //   synchronizing instructions we define a static initialization | 
|  | //   guard variable to be a 4-byte aligned, 4-byte word with the | 
|  | //   following inline access protocol. | 
|  | //     #define INITIALIZED 1 | 
|  | //     if ((obj_guard & INITIALIZED) != INITIALIZED) { | 
|  | //       if (__cxa_guard_acquire(&obj_guard)) | 
|  | //         ... | 
|  | //     } | 
|  | // | 
|  | // and similarly for ARM64: | 
|  | // | 
|  | // ARM64 C++ ABI 3.2.2: | 
|  | //   This ABI instead only specifies the value bit 0 of the static guard | 
|  | //   variable; all other bits are platform defined. Bit 0 shall be 0 when the | 
|  | //   variable is not initialized and 1 when it is. | 
|  | llvm::Value *V = | 
|  | (UseARMGuardVarABI && !useInt8GuardVariable) | 
|  | ? Builder.CreateAnd(LI, llvm::ConstantInt::get(CGM.Int8Ty, 1)) | 
|  | : LI; | 
|  | llvm::Value *isInitialized = Builder.CreateIsNull(V, "guard.uninitialized"); | 
|  |  | 
|  | llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check"); | 
|  | llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); | 
|  |  | 
|  | // Check if the first byte of the guard variable is zero. | 
|  | Builder.CreateCondBr(isInitialized, InitCheckBlock, EndBlock); | 
|  |  | 
|  | CGF.EmitBlock(InitCheckBlock); | 
|  |  | 
|  | // Variables used when coping with thread-safe statics and exceptions. | 
|  | if (threadsafe) { | 
|  | // Call __cxa_guard_acquire. | 
|  | llvm::Value *V | 
|  | = CGF.EmitNounwindRuntimeCall(getGuardAcquireFn(CGM, guardPtrTy), guard); | 
|  |  | 
|  | llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); | 
|  |  | 
|  | Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"), | 
|  | InitBlock, EndBlock); | 
|  |  | 
|  | // Call __cxa_guard_abort along the exceptional edge. | 
|  | CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, guard); | 
|  |  | 
|  | CGF.EmitBlock(InitBlock); | 
|  | } | 
|  |  | 
|  | // Emit the initializer and add a global destructor if appropriate. | 
|  | CGF.EmitCXXGlobalVarDeclInit(D, var, shouldPerformInit); | 
|  |  | 
|  | if (threadsafe) { | 
|  | // Pop the guard-abort cleanup if we pushed one. | 
|  | CGF.PopCleanupBlock(); | 
|  |  | 
|  | // Call __cxa_guard_release.  This cannot throw. | 
|  | CGF.EmitNounwindRuntimeCall(getGuardReleaseFn(CGM, guardPtrTy), | 
|  | guardAddr.getPointer()); | 
|  | } else { | 
|  | Builder.CreateStore(llvm::ConstantInt::get(guardTy, 1), guardAddr); | 
|  | } | 
|  |  | 
|  | CGF.EmitBlock(EndBlock); | 
|  | } | 
|  |  | 
|  | /// Register a global destructor using __cxa_atexit. | 
|  | static void emitGlobalDtorWithCXAAtExit(CodeGenFunction &CGF, | 
|  | llvm::Constant *dtor, | 
|  | llvm::Constant *addr, | 
|  | bool TLS) { | 
|  | const char *Name = "__cxa_atexit"; | 
|  | if (TLS) { | 
|  | const llvm::Triple &T = CGF.getTarget().getTriple(); | 
|  | Name = T.isOSDarwin() ?  "_tlv_atexit" : "__cxa_thread_atexit"; | 
|  | } | 
|  |  | 
|  | // We're assuming that the destructor function is something we can | 
|  | // reasonably call with the default CC.  Go ahead and cast it to the | 
|  | // right prototype. | 
|  | llvm::Type *dtorTy = | 
|  | llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, false)->getPointerTo(); | 
|  |  | 
|  | // extern "C" int __cxa_atexit(void (*f)(void *), void *p, void *d); | 
|  | llvm::Type *paramTys[] = { dtorTy, CGF.Int8PtrTy, CGF.Int8PtrTy }; | 
|  | llvm::FunctionType *atexitTy = | 
|  | llvm::FunctionType::get(CGF.IntTy, paramTys, false); | 
|  |  | 
|  | // Fetch the actual function. | 
|  | llvm::Constant *atexit = CGF.CGM.CreateRuntimeFunction(atexitTy, Name); | 
|  | if (llvm::Function *fn = dyn_cast<llvm::Function>(atexit)) | 
|  | fn->setDoesNotThrow(); | 
|  |  | 
|  | // Create a variable that binds the atexit to this shared object. | 
|  | llvm::Constant *handle = | 
|  | CGF.CGM.CreateRuntimeVariable(CGF.Int8Ty, "__dso_handle"); | 
|  | auto *GV = cast<llvm::GlobalValue>(handle->stripPointerCasts()); | 
|  | GV->setVisibility(llvm::GlobalValue::HiddenVisibility); | 
|  |  | 
|  | llvm::Value *args[] = { | 
|  | llvm::ConstantExpr::getBitCast(dtor, dtorTy), | 
|  | llvm::ConstantExpr::getBitCast(addr, CGF.Int8PtrTy), | 
|  | handle | 
|  | }; | 
|  | CGF.EmitNounwindRuntimeCall(atexit, args); | 
|  | } | 
|  |  | 
|  | /// Register a global destructor as best as we know how. | 
|  | void ItaniumCXXABI::registerGlobalDtor(CodeGenFunction &CGF, | 
|  | const VarDecl &D, | 
|  | llvm::Constant *dtor, | 
|  | llvm::Constant *addr) { | 
|  | // Use __cxa_atexit if available. | 
|  | if (CGM.getCodeGenOpts().CXAAtExit) | 
|  | return emitGlobalDtorWithCXAAtExit(CGF, dtor, addr, D.getTLSKind()); | 
|  |  | 
|  | if (D.getTLSKind()) | 
|  | CGM.ErrorUnsupported(&D, "non-trivial TLS destruction"); | 
|  |  | 
|  | // In Apple kexts, we want to add a global destructor entry. | 
|  | // FIXME: shouldn't this be guarded by some variable? | 
|  | if (CGM.getLangOpts().AppleKext) { | 
|  | // Generate a global destructor entry. | 
|  | return CGM.AddCXXDtorEntry(dtor, addr); | 
|  | } | 
|  |  | 
|  | CGF.registerGlobalDtorWithAtExit(D, dtor, addr); | 
|  | } | 
|  |  | 
|  | static bool isThreadWrapperReplaceable(const VarDecl *VD, | 
|  | CodeGen::CodeGenModule &CGM) { | 
|  | assert(!VD->isStaticLocal() && "static local VarDecls don't need wrappers!"); | 
|  | // Darwin prefers to have references to thread local variables to go through | 
|  | // the thread wrapper instead of directly referencing the backing variable. | 
|  | return VD->getTLSKind() == VarDecl::TLS_Dynamic && | 
|  | CGM.getTarget().getTriple().isOSDarwin(); | 
|  | } | 
|  |  | 
|  | /// Get the appropriate linkage for the wrapper function. This is essentially | 
|  | /// the weak form of the variable's linkage; every translation unit which needs | 
|  | /// the wrapper emits a copy, and we want the linker to merge them. | 
|  | static llvm::GlobalValue::LinkageTypes | 
|  | getThreadLocalWrapperLinkage(const VarDecl *VD, CodeGen::CodeGenModule &CGM) { | 
|  | llvm::GlobalValue::LinkageTypes VarLinkage = | 
|  | CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false); | 
|  |  | 
|  | // For internal linkage variables, we don't need an external or weak wrapper. | 
|  | if (llvm::GlobalValue::isLocalLinkage(VarLinkage)) | 
|  | return VarLinkage; | 
|  |  | 
|  | // If the thread wrapper is replaceable, give it appropriate linkage. | 
|  | if (isThreadWrapperReplaceable(VD, CGM)) | 
|  | if (!llvm::GlobalVariable::isLinkOnceLinkage(VarLinkage) && | 
|  | !llvm::GlobalVariable::isWeakODRLinkage(VarLinkage)) | 
|  | return VarLinkage; | 
|  | return llvm::GlobalValue::WeakODRLinkage; | 
|  | } | 
|  |  | 
|  | llvm::Function * | 
|  | ItaniumCXXABI::getOrCreateThreadLocalWrapper(const VarDecl *VD, | 
|  | llvm::Value *Val) { | 
|  | // Mangle the name for the thread_local wrapper function. | 
|  | SmallString<256> WrapperName; | 
|  | { | 
|  | llvm::raw_svector_ostream Out(WrapperName); | 
|  | getMangleContext().mangleItaniumThreadLocalWrapper(VD, Out); | 
|  | } | 
|  |  | 
|  | // FIXME: If VD is a definition, we should regenerate the function attributes | 
|  | // before returning. | 
|  | if (llvm::Value *V = CGM.getModule().getNamedValue(WrapperName)) | 
|  | return cast<llvm::Function>(V); | 
|  |  | 
|  | QualType RetQT = VD->getType(); | 
|  | if (RetQT->isReferenceType()) | 
|  | RetQT = RetQT.getNonReferenceType(); | 
|  |  | 
|  | const CGFunctionInfo &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration( | 
|  | getContext().getPointerType(RetQT), FunctionArgList()); | 
|  |  | 
|  | llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FI); | 
|  | llvm::Function *Wrapper = | 
|  | llvm::Function::Create(FnTy, getThreadLocalWrapperLinkage(VD, CGM), | 
|  | WrapperName.str(), &CGM.getModule()); | 
|  |  | 
|  | CGM.SetLLVMFunctionAttributes(nullptr, FI, Wrapper); | 
|  |  | 
|  | if (VD->hasDefinition()) | 
|  | CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Wrapper); | 
|  |  | 
|  | // Always resolve references to the wrapper at link time. | 
|  | if (!Wrapper->hasLocalLinkage() && !(isThreadWrapperReplaceable(VD, CGM) && | 
|  | !llvm::GlobalVariable::isLinkOnceLinkage(Wrapper->getLinkage()) && | 
|  | !llvm::GlobalVariable::isWeakODRLinkage(Wrapper->getLinkage()))) | 
|  | Wrapper->setVisibility(llvm::GlobalValue::HiddenVisibility); | 
|  |  | 
|  | if (isThreadWrapperReplaceable(VD, CGM)) { | 
|  | Wrapper->setCallingConv(llvm::CallingConv::CXX_FAST_TLS); | 
|  | Wrapper->addFnAttr(llvm::Attribute::NoUnwind); | 
|  | } | 
|  | return Wrapper; | 
|  | } | 
|  |  | 
|  | void ItaniumCXXABI::EmitThreadLocalInitFuncs( | 
|  | CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, | 
|  | ArrayRef<llvm::Function *> CXXThreadLocalInits, | 
|  | ArrayRef<const VarDecl *> CXXThreadLocalInitVars) { | 
|  | llvm::Function *InitFunc = nullptr; | 
|  |  | 
|  | // Separate initializers into those with ordered (or partially-ordered) | 
|  | // initialization and those with unordered initialization. | 
|  | llvm::SmallVector<llvm::Function *, 8> OrderedInits; | 
|  | llvm::SmallDenseMap<const VarDecl *, llvm::Function *> UnorderedInits; | 
|  | for (unsigned I = 0; I != CXXThreadLocalInits.size(); ++I) { | 
|  | if (isTemplateInstantiation( | 
|  | CXXThreadLocalInitVars[I]->getTemplateSpecializationKind())) | 
|  | UnorderedInits[CXXThreadLocalInitVars[I]->getCanonicalDecl()] = | 
|  | CXXThreadLocalInits[I]; | 
|  | else | 
|  | OrderedInits.push_back(CXXThreadLocalInits[I]); | 
|  | } | 
|  |  | 
|  | if (!OrderedInits.empty()) { | 
|  | // Generate a guarded initialization function. | 
|  | llvm::FunctionType *FTy = | 
|  | llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); | 
|  | const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); | 
|  | InitFunc = CGM.CreateGlobalInitOrDestructFunction(FTy, "__tls_init", FI, | 
|  | SourceLocation(), | 
|  | /*TLS=*/true); | 
|  | llvm::GlobalVariable *Guard = new llvm::GlobalVariable( | 
|  | CGM.getModule(), CGM.Int8Ty, /*isConstant=*/false, | 
|  | llvm::GlobalVariable::InternalLinkage, | 
|  | llvm::ConstantInt::get(CGM.Int8Ty, 0), "__tls_guard"); | 
|  | Guard->setThreadLocal(true); | 
|  |  | 
|  | CharUnits GuardAlign = CharUnits::One(); | 
|  | Guard->setAlignment(GuardAlign.getQuantity()); | 
|  |  | 
|  | CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, OrderedInits, | 
|  | Address(Guard, GuardAlign)); | 
|  | // On Darwin platforms, use CXX_FAST_TLS calling convention. | 
|  | if (CGM.getTarget().getTriple().isOSDarwin()) { | 
|  | InitFunc->setCallingConv(llvm::CallingConv::CXX_FAST_TLS); | 
|  | InitFunc->addFnAttr(llvm::Attribute::NoUnwind); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit thread wrappers. | 
|  | for (const VarDecl *VD : CXXThreadLocals) { | 
|  | llvm::GlobalVariable *Var = | 
|  | cast<llvm::GlobalVariable>(CGM.GetGlobalValue(CGM.getMangledName(VD))); | 
|  | llvm::Function *Wrapper = getOrCreateThreadLocalWrapper(VD, Var); | 
|  |  | 
|  | // Some targets require that all access to thread local variables go through | 
|  | // the thread wrapper.  This means that we cannot attempt to create a thread | 
|  | // wrapper or a thread helper. | 
|  | if (isThreadWrapperReplaceable(VD, CGM) && !VD->hasDefinition()) { | 
|  | Wrapper->setLinkage(llvm::Function::ExternalLinkage); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Mangle the name for the thread_local initialization function. | 
|  | SmallString<256> InitFnName; | 
|  | { | 
|  | llvm::raw_svector_ostream Out(InitFnName); | 
|  | getMangleContext().mangleItaniumThreadLocalInit(VD, Out); | 
|  | } | 
|  |  | 
|  | // If we have a definition for the variable, emit the initialization | 
|  | // function as an alias to the global Init function (if any). Otherwise, | 
|  | // produce a declaration of the initialization function. | 
|  | llvm::GlobalValue *Init = nullptr; | 
|  | bool InitIsInitFunc = false; | 
|  | if (VD->hasDefinition()) { | 
|  | InitIsInitFunc = true; | 
|  | llvm::Function *InitFuncToUse = InitFunc; | 
|  | if (isTemplateInstantiation(VD->getTemplateSpecializationKind())) | 
|  | InitFuncToUse = UnorderedInits.lookup(VD->getCanonicalDecl()); | 
|  | if (InitFuncToUse) | 
|  | Init = llvm::GlobalAlias::create(Var->getLinkage(), InitFnName.str(), | 
|  | InitFuncToUse); | 
|  | } else { | 
|  | // Emit a weak global function referring to the initialization function. | 
|  | // This function will not exist if the TU defining the thread_local | 
|  | // variable in question does not need any dynamic initialization for | 
|  | // its thread_local variables. | 
|  | llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, false); | 
|  | Init = llvm::Function::Create(FnTy, | 
|  | llvm::GlobalVariable::ExternalWeakLinkage, | 
|  | InitFnName.str(), &CGM.getModule()); | 
|  | const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); | 
|  | CGM.SetLLVMFunctionAttributes(nullptr, FI, cast<llvm::Function>(Init)); | 
|  | } | 
|  |  | 
|  | if (Init) | 
|  | Init->setVisibility(Var->getVisibility()); | 
|  |  | 
|  | llvm::LLVMContext &Context = CGM.getModule().getContext(); | 
|  | llvm::BasicBlock *Entry = llvm::BasicBlock::Create(Context, "", Wrapper); | 
|  | CGBuilderTy Builder(CGM, Entry); | 
|  | if (InitIsInitFunc) { | 
|  | if (Init) { | 
|  | llvm::CallInst *CallVal = Builder.CreateCall(Init); | 
|  | if (isThreadWrapperReplaceable(VD, CGM)) | 
|  | CallVal->setCallingConv(llvm::CallingConv::CXX_FAST_TLS); | 
|  | } | 
|  | } else { | 
|  | // Don't know whether we have an init function. Call it if it exists. | 
|  | llvm::Value *Have = Builder.CreateIsNotNull(Init); | 
|  | llvm::BasicBlock *InitBB = llvm::BasicBlock::Create(Context, "", Wrapper); | 
|  | llvm::BasicBlock *ExitBB = llvm::BasicBlock::Create(Context, "", Wrapper); | 
|  | Builder.CreateCondBr(Have, InitBB, ExitBB); | 
|  |  | 
|  | Builder.SetInsertPoint(InitBB); | 
|  | Builder.CreateCall(Init); | 
|  | Builder.CreateBr(ExitBB); | 
|  |  | 
|  | Builder.SetInsertPoint(ExitBB); | 
|  | } | 
|  |  | 
|  | // For a reference, the result of the wrapper function is a pointer to | 
|  | // the referenced object. | 
|  | llvm::Value *Val = Var; | 
|  | if (VD->getType()->isReferenceType()) { | 
|  | CharUnits Align = CGM.getContext().getDeclAlign(VD); | 
|  | Val = Builder.CreateAlignedLoad(Val, Align); | 
|  | } | 
|  | if (Val->getType() != Wrapper->getReturnType()) | 
|  | Val = Builder.CreatePointerBitCastOrAddrSpaceCast( | 
|  | Val, Wrapper->getReturnType(), ""); | 
|  | Builder.CreateRet(Val); | 
|  | } | 
|  | } | 
|  |  | 
|  | LValue ItaniumCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, | 
|  | const VarDecl *VD, | 
|  | QualType LValType) { | 
|  | llvm::Value *Val = CGF.CGM.GetAddrOfGlobalVar(VD); | 
|  | llvm::Function *Wrapper = getOrCreateThreadLocalWrapper(VD, Val); | 
|  |  | 
|  | llvm::CallInst *CallVal = CGF.Builder.CreateCall(Wrapper); | 
|  | CallVal->setCallingConv(Wrapper->getCallingConv()); | 
|  |  | 
|  | LValue LV; | 
|  | if (VD->getType()->isReferenceType()) | 
|  | LV = CGF.MakeNaturalAlignAddrLValue(CallVal, LValType); | 
|  | else | 
|  | LV = CGF.MakeAddrLValue(CallVal, LValType, | 
|  | CGF.getContext().getDeclAlign(VD)); | 
|  | // FIXME: need setObjCGCLValueClass? | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | /// Return whether the given global decl needs a VTT parameter, which it does | 
|  | /// if it's a base constructor or destructor with virtual bases. | 
|  | bool ItaniumCXXABI::NeedsVTTParameter(GlobalDecl GD) { | 
|  | const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); | 
|  |  | 
|  | // We don't have any virtual bases, just return early. | 
|  | if (!MD->getParent()->getNumVBases()) | 
|  | return false; | 
|  |  | 
|  | // Check if we have a base constructor. | 
|  | if (isa<CXXConstructorDecl>(MD) && GD.getCtorType() == Ctor_Base) | 
|  | return true; | 
|  |  | 
|  | // Check if we have a base destructor. | 
|  | if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class ItaniumRTTIBuilder { | 
|  | CodeGenModule &CGM;  // Per-module state. | 
|  | llvm::LLVMContext &VMContext; | 
|  | const ItaniumCXXABI &CXXABI;  // Per-module state. | 
|  |  | 
|  | /// Fields - The fields of the RTTI descriptor currently being built. | 
|  | SmallVector<llvm::Constant *, 16> Fields; | 
|  |  | 
|  | /// GetAddrOfTypeName - Returns the mangled type name of the given type. | 
|  | llvm::GlobalVariable * | 
|  | GetAddrOfTypeName(QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage); | 
|  |  | 
|  | /// GetAddrOfExternalRTTIDescriptor - Returns the constant for the RTTI | 
|  | /// descriptor of the given type. | 
|  | llvm::Constant *GetAddrOfExternalRTTIDescriptor(QualType Ty); | 
|  |  | 
|  | /// BuildVTablePointer - Build the vtable pointer for the given type. | 
|  | void BuildVTablePointer(const Type *Ty); | 
|  |  | 
|  | /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single | 
|  | /// inheritance, according to the Itanium C++ ABI, 2.9.5p6b. | 
|  | void BuildSIClassTypeInfo(const CXXRecordDecl *RD); | 
|  |  | 
|  | /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for | 
|  | /// classes with bases that do not satisfy the abi::__si_class_type_info | 
|  | /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c. | 
|  | void BuildVMIClassTypeInfo(const CXXRecordDecl *RD); | 
|  |  | 
|  | /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, used | 
|  | /// for pointer types. | 
|  | void BuildPointerTypeInfo(QualType PointeeTy); | 
|  |  | 
|  | /// BuildObjCObjectTypeInfo - Build the appropriate kind of | 
|  | /// type_info for an object type. | 
|  | void BuildObjCObjectTypeInfo(const ObjCObjectType *Ty); | 
|  |  | 
|  | /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info | 
|  | /// struct, used for member pointer types. | 
|  | void BuildPointerToMemberTypeInfo(const MemberPointerType *Ty); | 
|  |  | 
|  | public: | 
|  | ItaniumRTTIBuilder(const ItaniumCXXABI &ABI) | 
|  | : CGM(ABI.CGM), VMContext(CGM.getModule().getContext()), CXXABI(ABI) {} | 
|  |  | 
|  | // Pointer type info flags. | 
|  | enum { | 
|  | /// PTI_Const - Type has const qualifier. | 
|  | PTI_Const = 0x1, | 
|  |  | 
|  | /// PTI_Volatile - Type has volatile qualifier. | 
|  | PTI_Volatile = 0x2, | 
|  |  | 
|  | /// PTI_Restrict - Type has restrict qualifier. | 
|  | PTI_Restrict = 0x4, | 
|  |  | 
|  | /// PTI_Incomplete - Type is incomplete. | 
|  | PTI_Incomplete = 0x8, | 
|  |  | 
|  | /// PTI_ContainingClassIncomplete - Containing class is incomplete. | 
|  | /// (in pointer to member). | 
|  | PTI_ContainingClassIncomplete = 0x10, | 
|  |  | 
|  | /// PTI_TransactionSafe - Pointee is transaction_safe function (C++ TM TS). | 
|  | //PTI_TransactionSafe = 0x20, | 
|  |  | 
|  | /// PTI_Noexcept - Pointee is noexcept function (C++1z). | 
|  | PTI_Noexcept = 0x40, | 
|  | }; | 
|  |  | 
|  | // VMI type info flags. | 
|  | enum { | 
|  | /// VMI_NonDiamondRepeat - Class has non-diamond repeated inheritance. | 
|  | VMI_NonDiamondRepeat = 0x1, | 
|  |  | 
|  | /// VMI_DiamondShaped - Class is diamond shaped. | 
|  | VMI_DiamondShaped = 0x2 | 
|  | }; | 
|  |  | 
|  | // Base class type info flags. | 
|  | enum { | 
|  | /// BCTI_Virtual - Base class is virtual. | 
|  | BCTI_Virtual = 0x1, | 
|  |  | 
|  | /// BCTI_Public - Base class is public. | 
|  | BCTI_Public = 0x2 | 
|  | }; | 
|  |  | 
|  | /// BuildTypeInfo - Build the RTTI type info struct for the given type. | 
|  | /// | 
|  | /// \param Force - true to force the creation of this RTTI value | 
|  | /// \param DLLExport - true to mark the RTTI value as DLLExport | 
|  | llvm::Constant *BuildTypeInfo(QualType Ty, bool Force = false, | 
|  | bool DLLExport = false); | 
|  | }; | 
|  | } | 
|  |  | 
|  | llvm::GlobalVariable *ItaniumRTTIBuilder::GetAddrOfTypeName( | 
|  | QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage) { | 
|  | SmallString<256> Name; | 
|  | llvm::raw_svector_ostream Out(Name); | 
|  | CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out); | 
|  |  | 
|  | // We know that the mangled name of the type starts at index 4 of the | 
|  | // mangled name of the typename, so we can just index into it in order to | 
|  | // get the mangled name of the type. | 
|  | llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext, | 
|  | Name.substr(4)); | 
|  |  | 
|  | llvm::GlobalVariable *GV = | 
|  | CGM.CreateOrReplaceCXXRuntimeVariable(Name, Init->getType(), Linkage); | 
|  |  | 
|  | GV->setInitializer(Init); | 
|  |  | 
|  | return GV; | 
|  | } | 
|  |  | 
|  | llvm::Constant * | 
|  | ItaniumRTTIBuilder::GetAddrOfExternalRTTIDescriptor(QualType Ty) { | 
|  | // Mangle the RTTI name. | 
|  | SmallString<256> Name; | 
|  | llvm::raw_svector_ostream Out(Name); | 
|  | CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out); | 
|  |  | 
|  | // Look for an existing global. | 
|  | llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name); | 
|  |  | 
|  | if (!GV) { | 
|  | // Create a new global variable. | 
|  | // Note for the future: If we would ever like to do deferred emission of | 
|  | // RTTI, check if emitting vtables opportunistically need any adjustment. | 
|  |  | 
|  | GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy, | 
|  | /*Constant=*/true, | 
|  | llvm::GlobalValue::ExternalLinkage, nullptr, | 
|  | Name); | 
|  | if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) { | 
|  | const CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); | 
|  | if (RD->hasAttr<DLLImportAttr>()) | 
|  | GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); | 
|  | } | 
|  | } | 
|  |  | 
|  | return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy); | 
|  | } | 
|  |  | 
|  | /// TypeInfoIsInStandardLibrary - Given a builtin type, returns whether the type | 
|  | /// info for that type is defined in the standard library. | 
|  | static bool TypeInfoIsInStandardLibrary(const BuiltinType *Ty) { | 
|  | // Itanium C++ ABI 2.9.2: | 
|  | //   Basic type information (e.g. for "int", "bool", etc.) will be kept in | 
|  | //   the run-time support library. Specifically, the run-time support | 
|  | //   library should contain type_info objects for the types X, X* and | 
|  | //   X const*, for every X in: void, std::nullptr_t, bool, wchar_t, char, | 
|  | //   unsigned char, signed char, short, unsigned short, int, unsigned int, | 
|  | //   long, unsigned long, long long, unsigned long long, float, double, | 
|  | //   long double, char16_t, char32_t, and the IEEE 754r decimal and | 
|  | //   half-precision floating point types. | 
|  | // | 
|  | // GCC also emits RTTI for __int128. | 
|  | // FIXME: We do not emit RTTI information for decimal types here. | 
|  |  | 
|  | // Types added here must also be added to EmitFundamentalRTTIDescriptors. | 
|  | switch (Ty->getKind()) { | 
|  | case BuiltinType::Void: | 
|  | case BuiltinType::NullPtr: | 
|  | case BuiltinType::Bool: | 
|  | case BuiltinType::WChar_S: | 
|  | case BuiltinType::WChar_U: | 
|  | case BuiltinType::Char_U: | 
|  | case BuiltinType::Char_S: | 
|  | case BuiltinType::UChar: | 
|  | case BuiltinType::SChar: | 
|  | case BuiltinType::Short: | 
|  | case BuiltinType::UShort: | 
|  | case BuiltinType::Int: | 
|  | case BuiltinType::UInt: | 
|  | case BuiltinType::Long: | 
|  | case BuiltinType::ULong: | 
|  | case BuiltinType::LongLong: | 
|  | case BuiltinType::ULongLong: | 
|  | case BuiltinType::Half: | 
|  | case BuiltinType::Float: | 
|  | case BuiltinType::Double: | 
|  | case BuiltinType::LongDouble: | 
|  | case BuiltinType::Float128: | 
|  | case BuiltinType::Char16: | 
|  | case BuiltinType::Char32: | 
|  | case BuiltinType::Int128: | 
|  | case BuiltinType::UInt128: | 
|  | return true; | 
|  |  | 
|  | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ | 
|  | case BuiltinType::Id: | 
|  | #include "clang/Basic/OpenCLImageTypes.def" | 
|  | case BuiltinType::OCLSampler: | 
|  | case BuiltinType::OCLEvent: | 
|  | case BuiltinType::OCLClkEvent: | 
|  | case BuiltinType::OCLQueue: | 
|  | case BuiltinType::OCLReserveID: | 
|  | return false; | 
|  |  | 
|  | case BuiltinType::Dependent: | 
|  | #define BUILTIN_TYPE(Id, SingletonId) | 
|  | #define PLACEHOLDER_TYPE(Id, SingletonId) \ | 
|  | case BuiltinType::Id: | 
|  | #include "clang/AST/BuiltinTypes.def" | 
|  | llvm_unreachable("asking for RRTI for a placeholder type!"); | 
|  |  | 
|  | case BuiltinType::ObjCId: | 
|  | case BuiltinType::ObjCClass: | 
|  | case BuiltinType::ObjCSel: | 
|  | llvm_unreachable("FIXME: Objective-C types are unsupported!"); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid BuiltinType Kind!"); | 
|  | } | 
|  |  | 
|  | static bool TypeInfoIsInStandardLibrary(const PointerType *PointerTy) { | 
|  | QualType PointeeTy = PointerTy->getPointeeType(); | 
|  | const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(PointeeTy); | 
|  | if (!BuiltinTy) | 
|  | return false; | 
|  |  | 
|  | // Check the qualifiers. | 
|  | Qualifiers Quals = PointeeTy.getQualifiers(); | 
|  | Quals.removeConst(); | 
|  |  | 
|  | if (!Quals.empty()) | 
|  | return false; | 
|  |  | 
|  | return TypeInfoIsInStandardLibrary(BuiltinTy); | 
|  | } | 
|  |  | 
|  | /// IsStandardLibraryRTTIDescriptor - Returns whether the type | 
|  | /// information for the given type exists in the standard library. | 
|  | static bool IsStandardLibraryRTTIDescriptor(QualType Ty) { | 
|  | // Type info for builtin types is defined in the standard library. | 
|  | if (const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(Ty)) | 
|  | return TypeInfoIsInStandardLibrary(BuiltinTy); | 
|  |  | 
|  | // Type info for some pointer types to builtin types is defined in the | 
|  | // standard library. | 
|  | if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty)) | 
|  | return TypeInfoIsInStandardLibrary(PointerTy); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ShouldUseExternalRTTIDescriptor - Returns whether the type information for | 
|  | /// the given type exists somewhere else, and that we should not emit the type | 
|  | /// information in this translation unit.  Assumes that it is not a | 
|  | /// standard-library type. | 
|  | static bool ShouldUseExternalRTTIDescriptor(CodeGenModule &CGM, | 
|  | QualType Ty) { | 
|  | ASTContext &Context = CGM.getContext(); | 
|  |  | 
|  | // If RTTI is disabled, assume it might be disabled in the | 
|  | // translation unit that defines any potential key function, too. | 
|  | if (!Context.getLangOpts().RTTI) return false; | 
|  |  | 
|  | if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) { | 
|  | const CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); | 
|  | if (!RD->hasDefinition()) | 
|  | return false; | 
|  |  | 
|  | if (!RD->isDynamicClass()) | 
|  | return false; | 
|  |  | 
|  | // FIXME: this may need to be reconsidered if the key function | 
|  | // changes. | 
|  | // N.B. We must always emit the RTTI data ourselves if there exists a key | 
|  | // function. | 
|  | bool IsDLLImport = RD->hasAttr<DLLImportAttr>(); | 
|  | if (CGM.getVTables().isVTableExternal(RD)) | 
|  | return IsDLLImport && !CGM.getTriple().isWindowsItaniumEnvironment() | 
|  | ? false | 
|  | : true; | 
|  |  | 
|  | if (IsDLLImport) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// IsIncompleteClassType - Returns whether the given record type is incomplete. | 
|  | static bool IsIncompleteClassType(const RecordType *RecordTy) { | 
|  | return !RecordTy->getDecl()->isCompleteDefinition(); | 
|  | } | 
|  |  | 
|  | /// ContainsIncompleteClassType - Returns whether the given type contains an | 
|  | /// incomplete class type. This is true if | 
|  | /// | 
|  | ///   * The given type is an incomplete class type. | 
|  | ///   * The given type is a pointer type whose pointee type contains an | 
|  | ///     incomplete class type. | 
|  | ///   * The given type is a member pointer type whose class is an incomplete | 
|  | ///     class type. | 
|  | ///   * The given type is a member pointer type whoise pointee type contains an | 
|  | ///     incomplete class type. | 
|  | /// is an indirect or direct pointer to an incomplete class type. | 
|  | static bool ContainsIncompleteClassType(QualType Ty) { | 
|  | if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) { | 
|  | if (IsIncompleteClassType(RecordTy)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty)) | 
|  | return ContainsIncompleteClassType(PointerTy->getPointeeType()); | 
|  |  | 
|  | if (const MemberPointerType *MemberPointerTy = | 
|  | dyn_cast<MemberPointerType>(Ty)) { | 
|  | // Check if the class type is incomplete. | 
|  | const RecordType *ClassType = cast<RecordType>(MemberPointerTy->getClass()); | 
|  | if (IsIncompleteClassType(ClassType)) | 
|  | return true; | 
|  |  | 
|  | return ContainsIncompleteClassType(MemberPointerTy->getPointeeType()); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // CanUseSingleInheritance - Return whether the given record decl has a "single, | 
|  | // public, non-virtual base at offset zero (i.e. the derived class is dynamic | 
|  | // iff the base is)", according to Itanium C++ ABI, 2.95p6b. | 
|  | static bool CanUseSingleInheritance(const CXXRecordDecl *RD) { | 
|  | // Check the number of bases. | 
|  | if (RD->getNumBases() != 1) | 
|  | return false; | 
|  |  | 
|  | // Get the base. | 
|  | CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(); | 
|  |  | 
|  | // Check that the base is not virtual. | 
|  | if (Base->isVirtual()) | 
|  | return false; | 
|  |  | 
|  | // Check that the base is public. | 
|  | if (Base->getAccessSpecifier() != AS_public) | 
|  | return false; | 
|  |  | 
|  | // Check that the class is dynamic iff the base is. | 
|  | const CXXRecordDecl *BaseDecl = | 
|  | cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
|  | if (!BaseDecl->isEmpty() && | 
|  | BaseDecl->isDynamicClass() != RD->isDynamicClass()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void ItaniumRTTIBuilder::BuildVTablePointer(const Type *Ty) { | 
|  | // abi::__class_type_info. | 
|  | static const char * const ClassTypeInfo = | 
|  | "_ZTVN10__cxxabiv117__class_type_infoE"; | 
|  | // abi::__si_class_type_info. | 
|  | static const char * const SIClassTypeInfo = | 
|  | "_ZTVN10__cxxabiv120__si_class_type_infoE"; | 
|  | // abi::__vmi_class_type_info. | 
|  | static const char * const VMIClassTypeInfo = | 
|  | "_ZTVN10__cxxabiv121__vmi_class_type_infoE"; | 
|  |  | 
|  | const char *VTableName = nullptr; | 
|  |  | 
|  | switch (Ty->getTypeClass()) { | 
|  | #define TYPE(Class, Base) | 
|  | #define ABSTRACT_TYPE(Class, Base) | 
|  | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: | 
|  | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: | 
|  | #define DEPENDENT_TYPE(Class, Base) case Type::Class: | 
|  | #include "clang/AST/TypeNodes.def" | 
|  | llvm_unreachable("Non-canonical and dependent types shouldn't get here"); | 
|  |  | 
|  | case Type::LValueReference: | 
|  | case Type::RValueReference: | 
|  | llvm_unreachable("References shouldn't get here"); | 
|  |  | 
|  | case Type::Auto: | 
|  | case Type::DeducedTemplateSpecialization: | 
|  | llvm_unreachable("Undeduced type shouldn't get here"); | 
|  |  | 
|  | case Type::Pipe: | 
|  | llvm_unreachable("Pipe types shouldn't get here"); | 
|  |  | 
|  | case Type::Builtin: | 
|  | // GCC treats vector and complex types as fundamental types. | 
|  | case Type::Vector: | 
|  | case Type::ExtVector: | 
|  | case Type::Complex: | 
|  | case Type::Atomic: | 
|  | // FIXME: GCC treats block pointers as fundamental types?! | 
|  | case Type::BlockPointer: | 
|  | // abi::__fundamental_type_info. | 
|  | VTableName = "_ZTVN10__cxxabiv123__fundamental_type_infoE"; | 
|  | break; | 
|  |  | 
|  | case Type::ConstantArray: | 
|  | case Type::IncompleteArray: | 
|  | case Type::VariableArray: | 
|  | // abi::__array_type_info. | 
|  | VTableName = "_ZTVN10__cxxabiv117__array_type_infoE"; | 
|  | break; | 
|  |  | 
|  | case Type::FunctionNoProto: | 
|  | case Type::FunctionProto: | 
|  | // abi::__function_type_info. | 
|  | VTableName = "_ZTVN10__cxxabiv120__function_type_infoE"; | 
|  | break; | 
|  |  | 
|  | case Type::Enum: | 
|  | // abi::__enum_type_info. | 
|  | VTableName = "_ZTVN10__cxxabiv116__enum_type_infoE"; | 
|  | break; | 
|  |  | 
|  | case Type::Record: { | 
|  | const CXXRecordDecl *RD = | 
|  | cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl()); | 
|  |  | 
|  | if (!RD->hasDefinition() || !RD->getNumBases()) { | 
|  | VTableName = ClassTypeInfo; | 
|  | } else if (CanUseSingleInheritance(RD)) { | 
|  | VTableName = SIClassTypeInfo; | 
|  | } else { | 
|  | VTableName = VMIClassTypeInfo; | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::ObjCObject: | 
|  | // Ignore protocol qualifiers. | 
|  | Ty = cast<ObjCObjectType>(Ty)->getBaseType().getTypePtr(); | 
|  |  | 
|  | // Handle id and Class. | 
|  | if (isa<BuiltinType>(Ty)) { | 
|  | VTableName = ClassTypeInfo; | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert(isa<ObjCInterfaceType>(Ty)); | 
|  | // Fall through. | 
|  |  | 
|  | case Type::ObjCInterface: | 
|  | if (cast<ObjCInterfaceType>(Ty)->getDecl()->getSuperClass()) { | 
|  | VTableName = SIClassTypeInfo; | 
|  | } else { | 
|  | VTableName = ClassTypeInfo; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Type::ObjCObjectPointer: | 
|  | case Type::Pointer: | 
|  | // abi::__pointer_type_info. | 
|  | VTableName = "_ZTVN10__cxxabiv119__pointer_type_infoE"; | 
|  | break; | 
|  |  | 
|  | case Type::MemberPointer: | 
|  | // abi::__pointer_to_member_type_info. | 
|  | VTableName = "_ZTVN10__cxxabiv129__pointer_to_member_type_infoE"; | 
|  | break; | 
|  | } | 
|  |  | 
|  | llvm::Constant *VTable = | 
|  | CGM.getModule().getOrInsertGlobal(VTableName, CGM.Int8PtrTy); | 
|  |  | 
|  | llvm::Type *PtrDiffTy = | 
|  | CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); | 
|  |  | 
|  | // The vtable address point is 2. | 
|  | llvm::Constant *Two = llvm::ConstantInt::get(PtrDiffTy, 2); | 
|  | VTable = | 
|  | llvm::ConstantExpr::getInBoundsGetElementPtr(CGM.Int8PtrTy, VTable, Two); | 
|  | VTable = llvm::ConstantExpr::getBitCast(VTable, CGM.Int8PtrTy); | 
|  |  | 
|  | Fields.push_back(VTable); | 
|  | } | 
|  |  | 
|  | /// \brief Return the linkage that the type info and type info name constants | 
|  | /// should have for the given type. | 
|  | static llvm::GlobalVariable::LinkageTypes getTypeInfoLinkage(CodeGenModule &CGM, | 
|  | QualType Ty) { | 
|  | // Itanium C++ ABI 2.9.5p7: | 
|  | //   In addition, it and all of the intermediate abi::__pointer_type_info | 
|  | //   structs in the chain down to the abi::__class_type_info for the | 
|  | //   incomplete class type must be prevented from resolving to the | 
|  | //   corresponding type_info structs for the complete class type, possibly | 
|  | //   by making them local static objects. Finally, a dummy class RTTI is | 
|  | //   generated for the incomplete type that will not resolve to the final | 
|  | //   complete class RTTI (because the latter need not exist), possibly by | 
|  | //   making it a local static object. | 
|  | if (ContainsIncompleteClassType(Ty)) | 
|  | return llvm::GlobalValue::InternalLinkage; | 
|  |  | 
|  | switch (Ty->getLinkage()) { | 
|  | case NoLinkage: | 
|  | case InternalLinkage: | 
|  | case UniqueExternalLinkage: | 
|  | return llvm::GlobalValue::InternalLinkage; | 
|  |  | 
|  | case VisibleNoLinkage: | 
|  | case ModuleInternalLinkage: | 
|  | case ModuleLinkage: | 
|  | case ExternalLinkage: | 
|  | // RTTI is not enabled, which means that this type info struct is going | 
|  | // to be used for exception handling. Give it linkonce_odr linkage. | 
|  | if (!CGM.getLangOpts().RTTI) | 
|  | return llvm::GlobalValue::LinkOnceODRLinkage; | 
|  |  | 
|  | if (const RecordType *Record = dyn_cast<RecordType>(Ty)) { | 
|  | const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); | 
|  | if (RD->hasAttr<WeakAttr>()) | 
|  | return llvm::GlobalValue::WeakODRLinkage; | 
|  | if (CGM.getTriple().isWindowsItaniumEnvironment()) | 
|  | if (RD->hasAttr<DLLImportAttr>() && | 
|  | ShouldUseExternalRTTIDescriptor(CGM, Ty)) | 
|  | return llvm::GlobalValue::ExternalLinkage; | 
|  | if (RD->isDynamicClass()) { | 
|  | llvm::GlobalValue::LinkageTypes LT = CGM.getVTableLinkage(RD); | 
|  | // MinGW won't export the RTTI information when there is a key function. | 
|  | // Make sure we emit our own copy instead of attempting to dllimport it. | 
|  | if (RD->hasAttr<DLLImportAttr>() && | 
|  | llvm::GlobalValue::isAvailableExternallyLinkage(LT)) | 
|  | LT = llvm::GlobalValue::LinkOnceODRLinkage; | 
|  | return LT; | 
|  | } | 
|  | } | 
|  |  | 
|  | return llvm::GlobalValue::LinkOnceODRLinkage; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid linkage!"); | 
|  | } | 
|  |  | 
|  | llvm::Constant *ItaniumRTTIBuilder::BuildTypeInfo(QualType Ty, bool Force, | 
|  | bool DLLExport) { | 
|  | // We want to operate on the canonical type. | 
|  | Ty = Ty.getCanonicalType(); | 
|  |  | 
|  | // Check if we've already emitted an RTTI descriptor for this type. | 
|  | SmallString<256> Name; | 
|  | llvm::raw_svector_ostream Out(Name); | 
|  | CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out); | 
|  |  | 
|  | llvm::GlobalVariable *OldGV = CGM.getModule().getNamedGlobal(Name); | 
|  | if (OldGV && !OldGV->isDeclaration()) { | 
|  | assert(!OldGV->hasAvailableExternallyLinkage() && | 
|  | "available_externally typeinfos not yet implemented"); | 
|  |  | 
|  | return llvm::ConstantExpr::getBitCast(OldGV, CGM.Int8PtrTy); | 
|  | } | 
|  |  | 
|  | // Check if there is already an external RTTI descriptor for this type. | 
|  | bool IsStdLib = IsStandardLibraryRTTIDescriptor(Ty); | 
|  | if (!Force && (IsStdLib || ShouldUseExternalRTTIDescriptor(CGM, Ty))) | 
|  | return GetAddrOfExternalRTTIDescriptor(Ty); | 
|  |  | 
|  | // Emit the standard library with external linkage. | 
|  | llvm::GlobalVariable::LinkageTypes Linkage; | 
|  | if (IsStdLib) | 
|  | Linkage = llvm::GlobalValue::ExternalLinkage; | 
|  | else | 
|  | Linkage = getTypeInfoLinkage(CGM, Ty); | 
|  |  | 
|  | // Add the vtable pointer. | 
|  | BuildVTablePointer(cast<Type>(Ty)); | 
|  |  | 
|  | // And the name. | 
|  | llvm::GlobalVariable *TypeName = GetAddrOfTypeName(Ty, Linkage); | 
|  | llvm::Constant *TypeNameField; | 
|  |  | 
|  | // If we're supposed to demote the visibility, be sure to set a flag | 
|  | // to use a string comparison for type_info comparisons. | 
|  | ItaniumCXXABI::RTTIUniquenessKind RTTIUniqueness = | 
|  | CXXABI.classifyRTTIUniqueness(Ty, Linkage); | 
|  | if (RTTIUniqueness != ItaniumCXXABI::RUK_Unique) { | 
|  | // The flag is the sign bit, which on ARM64 is defined to be clear | 
|  | // for global pointers.  This is very ARM64-specific. | 
|  | TypeNameField = llvm::ConstantExpr::getPtrToInt(TypeName, CGM.Int64Ty); | 
|  | llvm::Constant *flag = | 
|  | llvm::ConstantInt::get(CGM.Int64Ty, ((uint64_t)1) << 63); | 
|  | TypeNameField = llvm::ConstantExpr::getAdd(TypeNameField, flag); | 
|  | TypeNameField = | 
|  | llvm::ConstantExpr::getIntToPtr(TypeNameField, CGM.Int8PtrTy); | 
|  | } else { | 
|  | TypeNameField = llvm::ConstantExpr::getBitCast(TypeName, CGM.Int8PtrTy); | 
|  | } | 
|  | Fields.push_back(TypeNameField); | 
|  |  | 
|  | switch (Ty->getTypeClass()) { | 
|  | #define TYPE(Class, Base) | 
|  | #define ABSTRACT_TYPE(Class, Base) | 
|  | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: | 
|  | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: | 
|  | #define DEPENDENT_TYPE(Class, Base) case Type::Class: | 
|  | #include "clang/AST/TypeNodes.def" | 
|  | llvm_unreachable("Non-canonical and dependent types shouldn't get here"); | 
|  |  | 
|  | // GCC treats vector types as fundamental types. | 
|  | case Type::Builtin: | 
|  | case Type::Vector: | 
|  | case Type::ExtVector: | 
|  | case Type::Complex: | 
|  | case Type::BlockPointer: | 
|  | // Itanium C++ ABI 2.9.5p4: | 
|  | // abi::__fundamental_type_info adds no data members to std::type_info. | 
|  | break; | 
|  |  | 
|  | case Type::LValueReference: | 
|  | case Type::RValueReference: | 
|  | llvm_unreachable("References shouldn't get here"); | 
|  |  | 
|  | case Type::Auto: | 
|  | case Type::DeducedTemplateSpecialization: | 
|  | llvm_unreachable("Undeduced type shouldn't get here"); | 
|  |  | 
|  | case Type::Pipe: | 
|  | llvm_unreachable("Pipe type shouldn't get here"); | 
|  |  | 
|  | case Type::ConstantArray: | 
|  | case Type::IncompleteArray: | 
|  | case Type::VariableArray: | 
|  | // Itanium C++ ABI 2.9.5p5: | 
|  | // abi::__array_type_info adds no data members to std::type_info. | 
|  | break; | 
|  |  | 
|  | case Type::FunctionNoProto: | 
|  | case Type::FunctionProto: | 
|  | // Itanium C++ ABI 2.9.5p5: | 
|  | // abi::__function_type_info adds no data members to std::type_info. | 
|  | break; | 
|  |  | 
|  | case Type::Enum: | 
|  | // Itanium C++ ABI 2.9.5p5: | 
|  | // abi::__enum_type_info adds no data members to std::type_info. | 
|  | break; | 
|  |  | 
|  | case Type::Record: { | 
|  | const CXXRecordDecl *RD = | 
|  | cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl()); | 
|  | if (!RD->hasDefinition() || !RD->getNumBases()) { | 
|  | // We don't need to emit any fields. | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (CanUseSingleInheritance(RD)) | 
|  | BuildSIClassTypeInfo(RD); | 
|  | else | 
|  | BuildVMIClassTypeInfo(RD); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::ObjCObject: | 
|  | case Type::ObjCInterface: | 
|  | BuildObjCObjectTypeInfo(cast<ObjCObjectType>(Ty)); | 
|  | break; | 
|  |  | 
|  | case Type::ObjCObjectPointer: | 
|  | BuildPointerTypeInfo(cast<ObjCObjectPointerType>(Ty)->getPointeeType()); | 
|  | break; | 
|  |  | 
|  | case Type::Pointer: | 
|  | BuildPointerTypeInfo(cast<PointerType>(Ty)->getPointeeType()); | 
|  | break; | 
|  |  | 
|  | case Type::MemberPointer: | 
|  | BuildPointerToMemberTypeInfo(cast<MemberPointerType>(Ty)); | 
|  | break; | 
|  |  | 
|  | case Type::Atomic: | 
|  | // No fields, at least for the moment. | 
|  | break; | 
|  | } | 
|  |  | 
|  | llvm::Constant *Init = llvm::ConstantStruct::getAnon(Fields); | 
|  |  | 
|  | llvm::Module &M = CGM.getModule(); | 
|  | llvm::GlobalVariable *GV = | 
|  | new llvm::GlobalVariable(M, Init->getType(), | 
|  | /*Constant=*/true, Linkage, Init, Name); | 
|  |  | 
|  | // If there's already an old global variable, replace it with the new one. | 
|  | if (OldGV) { | 
|  | GV->takeName(OldGV); | 
|  | llvm::Constant *NewPtr = | 
|  | llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); | 
|  | OldGV->replaceAllUsesWith(NewPtr); | 
|  | OldGV->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | if (CGM.supportsCOMDAT() && GV->isWeakForLinker()) | 
|  | GV->setComdat(M.getOrInsertComdat(GV->getName())); | 
|  |  | 
|  | // The Itanium ABI specifies that type_info objects must be globally | 
|  | // unique, with one exception: if the type is an incomplete class | 
|  | // type or a (possibly indirect) pointer to one.  That exception | 
|  | // affects the general case of comparing type_info objects produced | 
|  | // by the typeid operator, which is why the comparison operators on | 
|  | // std::type_info generally use the type_info name pointers instead | 
|  | // of the object addresses.  However, the language's built-in uses | 
|  | // of RTTI generally require class types to be complete, even when | 
|  | // manipulating pointers to those class types.  This allows the | 
|  | // implementation of dynamic_cast to rely on address equality tests, | 
|  | // which is much faster. | 
|  |  | 
|  | // All of this is to say that it's important that both the type_info | 
|  | // object and the type_info name be uniqued when weakly emitted. | 
|  |  | 
|  | // Give the type_info object and name the formal visibility of the | 
|  | // type itself. | 
|  | llvm::GlobalValue::VisibilityTypes llvmVisibility; | 
|  | if (llvm::GlobalValue::isLocalLinkage(Linkage)) | 
|  | // If the linkage is local, only default visibility makes sense. | 
|  | llvmVisibility = llvm::GlobalValue::DefaultVisibility; | 
|  | else if (RTTIUniqueness == ItaniumCXXABI::RUK_NonUniqueHidden) | 
|  | llvmVisibility = llvm::GlobalValue::HiddenVisibility; | 
|  | else | 
|  | llvmVisibility = CodeGenModule::GetLLVMVisibility(Ty->getVisibility()); | 
|  |  | 
|  | TypeName->setVisibility(llvmVisibility); | 
|  | GV->setVisibility(llvmVisibility); | 
|  |  | 
|  | if (CGM.getTriple().isWindowsItaniumEnvironment()) { | 
|  | auto RD = Ty->getAsCXXRecordDecl(); | 
|  | if (DLLExport || (RD && RD->hasAttr<DLLExportAttr>())) { | 
|  | TypeName->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); | 
|  | GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); | 
|  | } else if (RD && RD->hasAttr<DLLImportAttr>() && | 
|  | ShouldUseExternalRTTIDescriptor(CGM, Ty)) { | 
|  | TypeName->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); | 
|  | GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); | 
|  |  | 
|  | // Because the typename and the typeinfo are DLL import, convert them to | 
|  | // declarations rather than definitions.  The initializers still need to | 
|  | // be constructed to calculate the type for the declarations. | 
|  | TypeName->setInitializer(nullptr); | 
|  | GV->setInitializer(nullptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy); | 
|  | } | 
|  |  | 
|  | /// BuildObjCObjectTypeInfo - Build the appropriate kind of type_info | 
|  | /// for the given Objective-C object type. | 
|  | void ItaniumRTTIBuilder::BuildObjCObjectTypeInfo(const ObjCObjectType *OT) { | 
|  | // Drop qualifiers. | 
|  | const Type *T = OT->getBaseType().getTypePtr(); | 
|  | assert(isa<BuiltinType>(T) || isa<ObjCInterfaceType>(T)); | 
|  |  | 
|  | // The builtin types are abi::__class_type_infos and don't require | 
|  | // extra fields. | 
|  | if (isa<BuiltinType>(T)) return; | 
|  |  | 
|  | ObjCInterfaceDecl *Class = cast<ObjCInterfaceType>(T)->getDecl(); | 
|  | ObjCInterfaceDecl *Super = Class->getSuperClass(); | 
|  |  | 
|  | // Root classes are also __class_type_info. | 
|  | if (!Super) return; | 
|  |  | 
|  | QualType SuperTy = CGM.getContext().getObjCInterfaceType(Super); | 
|  |  | 
|  | // Everything else is single inheritance. | 
|  | llvm::Constant *BaseTypeInfo = | 
|  | ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(SuperTy); | 
|  | Fields.push_back(BaseTypeInfo); | 
|  | } | 
|  |  | 
|  | /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single | 
|  | /// inheritance, according to the Itanium C++ ABI, 2.95p6b. | 
|  | void ItaniumRTTIBuilder::BuildSIClassTypeInfo(const CXXRecordDecl *RD) { | 
|  | // Itanium C++ ABI 2.9.5p6b: | 
|  | // It adds to abi::__class_type_info a single member pointing to the | 
|  | // type_info structure for the base type, | 
|  | llvm::Constant *BaseTypeInfo = | 
|  | ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(RD->bases_begin()->getType()); | 
|  | Fields.push_back(BaseTypeInfo); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// SeenBases - Contains virtual and non-virtual bases seen when traversing | 
|  | /// a class hierarchy. | 
|  | struct SeenBases { | 
|  | llvm::SmallPtrSet<const CXXRecordDecl *, 16> NonVirtualBases; | 
|  | llvm::SmallPtrSet<const CXXRecordDecl *, 16> VirtualBases; | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// ComputeVMIClassTypeInfoFlags - Compute the value of the flags member in | 
|  | /// abi::__vmi_class_type_info. | 
|  | /// | 
|  | static unsigned ComputeVMIClassTypeInfoFlags(const CXXBaseSpecifier *Base, | 
|  | SeenBases &Bases) { | 
|  |  | 
|  | unsigned Flags = 0; | 
|  |  | 
|  | const CXXRecordDecl *BaseDecl = | 
|  | cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
|  |  | 
|  | if (Base->isVirtual()) { | 
|  | // Mark the virtual base as seen. | 
|  | if (!Bases.VirtualBases.insert(BaseDecl).second) { | 
|  | // If this virtual base has been seen before, then the class is diamond | 
|  | // shaped. | 
|  | Flags |= ItaniumRTTIBuilder::VMI_DiamondShaped; | 
|  | } else { | 
|  | if (Bases.NonVirtualBases.count(BaseDecl)) | 
|  | Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat; | 
|  | } | 
|  | } else { | 
|  | // Mark the non-virtual base as seen. | 
|  | if (!Bases.NonVirtualBases.insert(BaseDecl).second) { | 
|  | // If this non-virtual base has been seen before, then the class has non- | 
|  | // diamond shaped repeated inheritance. | 
|  | Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat; | 
|  | } else { | 
|  | if (Bases.VirtualBases.count(BaseDecl)) | 
|  | Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Walk all bases. | 
|  | for (const auto &I : BaseDecl->bases()) | 
|  | Flags |= ComputeVMIClassTypeInfoFlags(&I, Bases); | 
|  |  | 
|  | return Flags; | 
|  | } | 
|  |  | 
|  | static unsigned ComputeVMIClassTypeInfoFlags(const CXXRecordDecl *RD) { | 
|  | unsigned Flags = 0; | 
|  | SeenBases Bases; | 
|  |  | 
|  | // Walk all bases. | 
|  | for (const auto &I : RD->bases()) | 
|  | Flags |= ComputeVMIClassTypeInfoFlags(&I, Bases); | 
|  |  | 
|  | return Flags; | 
|  | } | 
|  |  | 
|  | /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for | 
|  | /// classes with bases that do not satisfy the abi::__si_class_type_info | 
|  | /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c. | 
|  | void ItaniumRTTIBuilder::BuildVMIClassTypeInfo(const CXXRecordDecl *RD) { | 
|  | llvm::Type *UnsignedIntLTy = | 
|  | CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy); | 
|  |  | 
|  | // Itanium C++ ABI 2.9.5p6c: | 
|  | //   __flags is a word with flags describing details about the class | 
|  | //   structure, which may be referenced by using the __flags_masks | 
|  | //   enumeration. These flags refer to both direct and indirect bases. | 
|  | unsigned Flags = ComputeVMIClassTypeInfoFlags(RD); | 
|  | Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags)); | 
|  |  | 
|  | // Itanium C++ ABI 2.9.5p6c: | 
|  | //   __base_count is a word with the number of direct proper base class | 
|  | //   descriptions that follow. | 
|  | Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, RD->getNumBases())); | 
|  |  | 
|  | if (!RD->getNumBases()) | 
|  | return; | 
|  |  | 
|  | // Now add the base class descriptions. | 
|  |  | 
|  | // Itanium C++ ABI 2.9.5p6c: | 
|  | //   __base_info[] is an array of base class descriptions -- one for every | 
|  | //   direct proper base. Each description is of the type: | 
|  | // | 
|  | //   struct abi::__base_class_type_info { | 
|  | //   public: | 
|  | //     const __class_type_info *__base_type; | 
|  | //     long __offset_flags; | 
|  | // | 
|  | //     enum __offset_flags_masks { | 
|  | //       __virtual_mask = 0x1, | 
|  | //       __public_mask = 0x2, | 
|  | //       __offset_shift = 8 | 
|  | //     }; | 
|  | //   }; | 
|  |  | 
|  | // If we're in mingw and 'long' isn't wide enough for a pointer, use 'long | 
|  | // long' instead of 'long' for __offset_flags. libstdc++abi uses long long on | 
|  | // LLP64 platforms. | 
|  | // FIXME: Consider updating libc++abi to match, and extend this logic to all | 
|  | // LLP64 platforms. | 
|  | QualType OffsetFlagsTy = CGM.getContext().LongTy; | 
|  | const TargetInfo &TI = CGM.getContext().getTargetInfo(); | 
|  | if (TI.getTriple().isOSCygMing() && TI.getPointerWidth(0) > TI.getLongWidth()) | 
|  | OffsetFlagsTy = CGM.getContext().LongLongTy; | 
|  | llvm::Type *OffsetFlagsLTy = | 
|  | CGM.getTypes().ConvertType(OffsetFlagsTy); | 
|  |  | 
|  | for (const auto &Base : RD->bases()) { | 
|  | // The __base_type member points to the RTTI for the base type. | 
|  | Fields.push_back(ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(Base.getType())); | 
|  |  | 
|  | const CXXRecordDecl *BaseDecl = | 
|  | cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); | 
|  |  | 
|  | int64_t OffsetFlags = 0; | 
|  |  | 
|  | // All but the lower 8 bits of __offset_flags are a signed offset. | 
|  | // For a non-virtual base, this is the offset in the object of the base | 
|  | // subobject. For a virtual base, this is the offset in the virtual table of | 
|  | // the virtual base offset for the virtual base referenced (negative). | 
|  | CharUnits Offset; | 
|  | if (Base.isVirtual()) | 
|  | Offset = | 
|  | CGM.getItaniumVTableContext().getVirtualBaseOffsetOffset(RD, BaseDecl); | 
|  | else { | 
|  | const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); | 
|  | Offset = Layout.getBaseClassOffset(BaseDecl); | 
|  | }; | 
|  |  | 
|  | OffsetFlags = uint64_t(Offset.getQuantity()) << 8; | 
|  |  | 
|  | // The low-order byte of __offset_flags contains flags, as given by the | 
|  | // masks from the enumeration __offset_flags_masks. | 
|  | if (Base.isVirtual()) | 
|  | OffsetFlags |= BCTI_Virtual; | 
|  | if (Base.getAccessSpecifier() == AS_public) | 
|  | OffsetFlags |= BCTI_Public; | 
|  |  | 
|  | Fields.push_back(llvm::ConstantInt::get(OffsetFlagsLTy, OffsetFlags)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Compute the flags for a __pbase_type_info, and remove the corresponding | 
|  | /// pieces from \p Type. | 
|  | static unsigned extractPBaseFlags(ASTContext &Ctx, QualType &Type) { | 
|  | unsigned Flags = 0; | 
|  |  | 
|  | if (Type.isConstQualified()) | 
|  | Flags |= ItaniumRTTIBuilder::PTI_Const; | 
|  | if (Type.isVolatileQualified()) | 
|  | Flags |= ItaniumRTTIBuilder::PTI_Volatile; | 
|  | if (Type.isRestrictQualified()) | 
|  | Flags |= ItaniumRTTIBuilder::PTI_Restrict; | 
|  | Type = Type.getUnqualifiedType(); | 
|  |  | 
|  | // Itanium C++ ABI 2.9.5p7: | 
|  | //   When the abi::__pbase_type_info is for a direct or indirect pointer to an | 
|  | //   incomplete class type, the incomplete target type flag is set. | 
|  | if (ContainsIncompleteClassType(Type)) | 
|  | Flags |= ItaniumRTTIBuilder::PTI_Incomplete; | 
|  |  | 
|  | if (auto *Proto = Type->getAs<FunctionProtoType>()) { | 
|  | if (Proto->isNothrow(Ctx)) { | 
|  | Flags |= ItaniumRTTIBuilder::PTI_Noexcept; | 
|  | Type = Ctx.getFunctionType( | 
|  | Proto->getReturnType(), Proto->getParamTypes(), | 
|  | Proto->getExtProtoInfo().withExceptionSpec(EST_None)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Flags; | 
|  | } | 
|  |  | 
|  | /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, | 
|  | /// used for pointer types. | 
|  | void ItaniumRTTIBuilder::BuildPointerTypeInfo(QualType PointeeTy) { | 
|  | // Itanium C++ ABI 2.9.5p7: | 
|  | //   __flags is a flag word describing the cv-qualification and other | 
|  | //   attributes of the type pointed to | 
|  | unsigned Flags = extractPBaseFlags(CGM.getContext(), PointeeTy); | 
|  |  | 
|  | llvm::Type *UnsignedIntLTy = | 
|  | CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy); | 
|  | Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags)); | 
|  |  | 
|  | // Itanium C++ ABI 2.9.5p7: | 
|  | //  __pointee is a pointer to the std::type_info derivation for the | 
|  | //  unqualified type being pointed to. | 
|  | llvm::Constant *PointeeTypeInfo = | 
|  | ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(PointeeTy); | 
|  | Fields.push_back(PointeeTypeInfo); | 
|  | } | 
|  |  | 
|  | /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info | 
|  | /// struct, used for member pointer types. | 
|  | void | 
|  | ItaniumRTTIBuilder::BuildPointerToMemberTypeInfo(const MemberPointerType *Ty) { | 
|  | QualType PointeeTy = Ty->getPointeeType(); | 
|  |  | 
|  | // Itanium C++ ABI 2.9.5p7: | 
|  | //   __flags is a flag word describing the cv-qualification and other | 
|  | //   attributes of the type pointed to. | 
|  | unsigned Flags = extractPBaseFlags(CGM.getContext(), PointeeTy); | 
|  |  | 
|  | const RecordType *ClassType = cast<RecordType>(Ty->getClass()); | 
|  | if (IsIncompleteClassType(ClassType)) | 
|  | Flags |= PTI_ContainingClassIncomplete; | 
|  |  | 
|  | llvm::Type *UnsignedIntLTy = | 
|  | CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy); | 
|  | Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags)); | 
|  |  | 
|  | // Itanium C++ ABI 2.9.5p7: | 
|  | //   __pointee is a pointer to the std::type_info derivation for the | 
|  | //   unqualified type being pointed to. | 
|  | llvm::Constant *PointeeTypeInfo = | 
|  | ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(PointeeTy); | 
|  | Fields.push_back(PointeeTypeInfo); | 
|  |  | 
|  | // Itanium C++ ABI 2.9.5p9: | 
|  | //   __context is a pointer to an abi::__class_type_info corresponding to the | 
|  | //   class type containing the member pointed to | 
|  | //   (e.g., the "A" in "int A::*"). | 
|  | Fields.push_back( | 
|  | ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(QualType(ClassType, 0))); | 
|  | } | 
|  |  | 
|  | llvm::Constant *ItaniumCXXABI::getAddrOfRTTIDescriptor(QualType Ty) { | 
|  | return ItaniumRTTIBuilder(*this).BuildTypeInfo(Ty); | 
|  | } | 
|  |  | 
|  | void ItaniumCXXABI::EmitFundamentalRTTIDescriptor(QualType Type, | 
|  | bool DLLExport) { | 
|  | QualType PointerType = getContext().getPointerType(Type); | 
|  | QualType PointerTypeConst = getContext().getPointerType(Type.withConst()); | 
|  | ItaniumRTTIBuilder(*this).BuildTypeInfo(Type, /*Force=*/true, DLLExport); | 
|  | ItaniumRTTIBuilder(*this).BuildTypeInfo(PointerType, /*Force=*/true, | 
|  | DLLExport); | 
|  | ItaniumRTTIBuilder(*this).BuildTypeInfo(PointerTypeConst, /*Force=*/true, | 
|  | DLLExport); | 
|  | } | 
|  |  | 
|  | void ItaniumCXXABI::EmitFundamentalRTTIDescriptors(bool DLLExport) { | 
|  | // Types added here must also be added to TypeInfoIsInStandardLibrary. | 
|  | QualType FundamentalTypes[] = { | 
|  | getContext().VoidTy,             getContext().NullPtrTy, | 
|  | getContext().BoolTy,             getContext().WCharTy, | 
|  | getContext().CharTy,             getContext().UnsignedCharTy, | 
|  | getContext().SignedCharTy,       getContext().ShortTy, | 
|  | getContext().UnsignedShortTy,    getContext().IntTy, | 
|  | getContext().UnsignedIntTy,      getContext().LongTy, | 
|  | getContext().UnsignedLongTy,     getContext().LongLongTy, | 
|  | getContext().UnsignedLongLongTy, getContext().Int128Ty, | 
|  | getContext().UnsignedInt128Ty,   getContext().HalfTy, | 
|  | getContext().FloatTy,            getContext().DoubleTy, | 
|  | getContext().LongDoubleTy,       getContext().Float128Ty, | 
|  | getContext().Char16Ty,           getContext().Char32Ty | 
|  | }; | 
|  | for (const QualType &FundamentalType : FundamentalTypes) | 
|  | EmitFundamentalRTTIDescriptor(FundamentalType, DLLExport); | 
|  | } | 
|  |  | 
|  | /// What sort of uniqueness rules should we use for the RTTI for the | 
|  | /// given type? | 
|  | ItaniumCXXABI::RTTIUniquenessKind ItaniumCXXABI::classifyRTTIUniqueness( | 
|  | QualType CanTy, llvm::GlobalValue::LinkageTypes Linkage) const { | 
|  | if (shouldRTTIBeUnique()) | 
|  | return RUK_Unique; | 
|  |  | 
|  | // It's only necessary for linkonce_odr or weak_odr linkage. | 
|  | if (Linkage != llvm::GlobalValue::LinkOnceODRLinkage && | 
|  | Linkage != llvm::GlobalValue::WeakODRLinkage) | 
|  | return RUK_Unique; | 
|  |  | 
|  | // It's only necessary with default visibility. | 
|  | if (CanTy->getVisibility() != DefaultVisibility) | 
|  | return RUK_Unique; | 
|  |  | 
|  | // If we're not required to publish this symbol, hide it. | 
|  | if (Linkage == llvm::GlobalValue::LinkOnceODRLinkage) | 
|  | return RUK_NonUniqueHidden; | 
|  |  | 
|  | // If we're required to publish this symbol, as we might be under an | 
|  | // explicit instantiation, leave it with default visibility but | 
|  | // enable string-comparisons. | 
|  | assert(Linkage == llvm::GlobalValue::WeakODRLinkage); | 
|  | return RUK_NonUniqueVisible; | 
|  | } | 
|  |  | 
|  | // Find out how to codegen the complete destructor and constructor | 
|  | namespace { | 
|  | enum class StructorCodegen { Emit, RAUW, Alias, COMDAT }; | 
|  | } | 
|  | static StructorCodegen getCodegenToUse(CodeGenModule &CGM, | 
|  | const CXXMethodDecl *MD) { | 
|  | if (!CGM.getCodeGenOpts().CXXCtorDtorAliases) | 
|  | return StructorCodegen::Emit; | 
|  |  | 
|  | // The complete and base structors are not equivalent if there are any virtual | 
|  | // bases, so emit separate functions. | 
|  | if (MD->getParent()->getNumVBases()) | 
|  | return StructorCodegen::Emit; | 
|  |  | 
|  | GlobalDecl AliasDecl; | 
|  | if (const auto *DD = dyn_cast<CXXDestructorDecl>(MD)) { | 
|  | AliasDecl = GlobalDecl(DD, Dtor_Complete); | 
|  | } else { | 
|  | const auto *CD = cast<CXXConstructorDecl>(MD); | 
|  | AliasDecl = GlobalDecl(CD, Ctor_Complete); | 
|  | } | 
|  | llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage(AliasDecl); | 
|  |  | 
|  | if (llvm::GlobalValue::isDiscardableIfUnused(Linkage)) | 
|  | return StructorCodegen::RAUW; | 
|  |  | 
|  | // FIXME: Should we allow available_externally aliases? | 
|  | if (!llvm::GlobalAlias::isValidLinkage(Linkage)) | 
|  | return StructorCodegen::RAUW; | 
|  |  | 
|  | if (llvm::GlobalValue::isWeakForLinker(Linkage)) { | 
|  | // Only ELF and wasm support COMDATs with arbitrary names (C5/D5). | 
|  | if (CGM.getTarget().getTriple().isOSBinFormatELF() || | 
|  | CGM.getTarget().getTriple().isOSBinFormatWasm()) | 
|  | return StructorCodegen::COMDAT; | 
|  | return StructorCodegen::Emit; | 
|  | } | 
|  |  | 
|  | return StructorCodegen::Alias; | 
|  | } | 
|  |  | 
|  | static void emitConstructorDestructorAlias(CodeGenModule &CGM, | 
|  | GlobalDecl AliasDecl, | 
|  | GlobalDecl TargetDecl) { | 
|  | llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage(AliasDecl); | 
|  |  | 
|  | StringRef MangledName = CGM.getMangledName(AliasDecl); | 
|  | llvm::GlobalValue *Entry = CGM.GetGlobalValue(MangledName); | 
|  | if (Entry && !Entry->isDeclaration()) | 
|  | return; | 
|  |  | 
|  | auto *Aliasee = cast<llvm::GlobalValue>(CGM.GetAddrOfGlobal(TargetDecl)); | 
|  |  | 
|  | // Create the alias with no name. | 
|  | auto *Alias = llvm::GlobalAlias::create(Linkage, "", Aliasee); | 
|  |  | 
|  | // Switch any previous uses to the alias. | 
|  | if (Entry) { | 
|  | assert(Entry->getType() == Aliasee->getType() && | 
|  | "declaration exists with different type"); | 
|  | Alias->takeName(Entry); | 
|  | Entry->replaceAllUsesWith(Alias); | 
|  | Entry->eraseFromParent(); | 
|  | } else { | 
|  | Alias->setName(MangledName); | 
|  | } | 
|  |  | 
|  | // Finally, set up the alias with its proper name and attributes. | 
|  | CGM.setAliasAttributes(cast<NamedDecl>(AliasDecl.getDecl()), Alias); | 
|  | } | 
|  |  | 
|  | void ItaniumCXXABI::emitCXXStructor(const CXXMethodDecl *MD, | 
|  | StructorType Type) { | 
|  | auto *CD = dyn_cast<CXXConstructorDecl>(MD); | 
|  | const CXXDestructorDecl *DD = CD ? nullptr : cast<CXXDestructorDecl>(MD); | 
|  |  | 
|  | StructorCodegen CGType = getCodegenToUse(CGM, MD); | 
|  |  | 
|  | if (Type == StructorType::Complete) { | 
|  | GlobalDecl CompleteDecl; | 
|  | GlobalDecl BaseDecl; | 
|  | if (CD) { | 
|  | CompleteDecl = GlobalDecl(CD, Ctor_Complete); | 
|  | BaseDecl = GlobalDecl(CD, Ctor_Base); | 
|  | } else { | 
|  | CompleteDecl = GlobalDecl(DD, Dtor_Complete); | 
|  | BaseDecl = GlobalDecl(DD, Dtor_Base); | 
|  | } | 
|  |  | 
|  | if (CGType == StructorCodegen::Alias || CGType == StructorCodegen::COMDAT) { | 
|  | emitConstructorDestructorAlias(CGM, CompleteDecl, BaseDecl); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (CGType == StructorCodegen::RAUW) { | 
|  | StringRef MangledName = CGM.getMangledName(CompleteDecl); | 
|  | auto *Aliasee = CGM.GetAddrOfGlobal(BaseDecl); | 
|  | CGM.addReplacement(MangledName, Aliasee); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The base destructor is equivalent to the base destructor of its | 
|  | // base class if there is exactly one non-virtual base class with a | 
|  | // non-trivial destructor, there are no fields with a non-trivial | 
|  | // destructor, and the body of the destructor is trivial. | 
|  | if (DD && Type == StructorType::Base && CGType != StructorCodegen::COMDAT && | 
|  | !CGM.TryEmitBaseDestructorAsAlias(DD)) | 
|  | return; | 
|  |  | 
|  | llvm::Function *Fn = CGM.codegenCXXStructor(MD, Type); | 
|  |  | 
|  | if (CGType == StructorCodegen::COMDAT) { | 
|  | SmallString<256> Buffer; | 
|  | llvm::raw_svector_ostream Out(Buffer); | 
|  | if (DD) | 
|  | getMangleContext().mangleCXXDtorComdat(DD, Out); | 
|  | else | 
|  | getMangleContext().mangleCXXCtorComdat(CD, Out); | 
|  | llvm::Comdat *C = CGM.getModule().getOrInsertComdat(Out.str()); | 
|  | Fn->setComdat(C); | 
|  | } else { | 
|  | CGM.maybeSetTrivialComdat(*MD, *Fn); | 
|  | } | 
|  | } | 
|  |  | 
|  | static llvm::Constant *getBeginCatchFn(CodeGenModule &CGM) { | 
|  | // void *__cxa_begin_catch(void*); | 
|  | llvm::FunctionType *FTy = llvm::FunctionType::get( | 
|  | CGM.Int8PtrTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); | 
|  |  | 
|  | return CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch"); | 
|  | } | 
|  |  | 
|  | static llvm::Constant *getEndCatchFn(CodeGenModule &CGM) { | 
|  | // void __cxa_end_catch(); | 
|  | llvm::FunctionType *FTy = | 
|  | llvm::FunctionType::get(CGM.VoidTy, /*IsVarArgs=*/false); | 
|  |  | 
|  | return CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch"); | 
|  | } | 
|  |  | 
|  | static llvm::Constant *getGetExceptionPtrFn(CodeGenModule &CGM) { | 
|  | // void *__cxa_get_exception_ptr(void*); | 
|  | llvm::FunctionType *FTy = llvm::FunctionType::get( | 
|  | CGM.Int8PtrTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); | 
|  |  | 
|  | return CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr"); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// A cleanup to call __cxa_end_catch.  In many cases, the caught | 
|  | /// exception type lets us state definitively that the thrown exception | 
|  | /// type does not have a destructor.  In particular: | 
|  | ///   - Catch-alls tell us nothing, so we have to conservatively | 
|  | ///     assume that the thrown exception might have a destructor. | 
|  | ///   - Catches by reference behave according to their base types. | 
|  | ///   - Catches of non-record types will only trigger for exceptions | 
|  | ///     of non-record types, which never have destructors. | 
|  | ///   - Catches of record types can trigger for arbitrary subclasses | 
|  | ///     of the caught type, so we have to assume the actual thrown | 
|  | ///     exception type might have a throwing destructor, even if the | 
|  | ///     caught type's destructor is trivial or nothrow. | 
|  | struct CallEndCatch final : EHScopeStack::Cleanup { | 
|  | CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {} | 
|  | bool MightThrow; | 
|  |  | 
|  | void Emit(CodeGenFunction &CGF, Flags flags) override { | 
|  | if (!MightThrow) { | 
|  | CGF.EmitNounwindRuntimeCall(getEndCatchFn(CGF.CGM)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | CGF.EmitRuntimeCallOrInvoke(getEndCatchFn(CGF.CGM)); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// Emits a call to __cxa_begin_catch and enters a cleanup to call | 
|  | /// __cxa_end_catch. | 
|  | /// | 
|  | /// \param EndMightThrow - true if __cxa_end_catch might throw | 
|  | static llvm::Value *CallBeginCatch(CodeGenFunction &CGF, | 
|  | llvm::Value *Exn, | 
|  | bool EndMightThrow) { | 
|  | llvm::CallInst *call = | 
|  | CGF.EmitNounwindRuntimeCall(getBeginCatchFn(CGF.CGM), Exn); | 
|  |  | 
|  | CGF.EHStack.pushCleanup<CallEndCatch>(NormalAndEHCleanup, EndMightThrow); | 
|  |  | 
|  | return call; | 
|  | } | 
|  |  | 
|  | /// A "special initializer" callback for initializing a catch | 
|  | /// parameter during catch initialization. | 
|  | static void InitCatchParam(CodeGenFunction &CGF, | 
|  | const VarDecl &CatchParam, | 
|  | Address ParamAddr, | 
|  | SourceLocation Loc) { | 
|  | // Load the exception from where the landing pad saved it. | 
|  | llvm::Value *Exn = CGF.getExceptionFromSlot(); | 
|  |  | 
|  | CanQualType CatchType = | 
|  | CGF.CGM.getContext().getCanonicalType(CatchParam.getType()); | 
|  | llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType); | 
|  |  | 
|  | // If we're catching by reference, we can just cast the object | 
|  | // pointer to the appropriate pointer. | 
|  | if (isa<ReferenceType>(CatchType)) { | 
|  | QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType(); | 
|  | bool EndCatchMightThrow = CaughtType->isRecordType(); | 
|  |  | 
|  | // __cxa_begin_catch returns the adjusted object pointer. | 
|  | llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow); | 
|  |  | 
|  | // We have no way to tell the personality function that we're | 
|  | // catching by reference, so if we're catching a pointer, | 
|  | // __cxa_begin_catch will actually return that pointer by value. | 
|  | if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) { | 
|  | QualType PointeeType = PT->getPointeeType(); | 
|  |  | 
|  | // When catching by reference, generally we should just ignore | 
|  | // this by-value pointer and use the exception object instead. | 
|  | if (!PointeeType->isRecordType()) { | 
|  |  | 
|  | // Exn points to the struct _Unwind_Exception header, which | 
|  | // we have to skip past in order to reach the exception data. | 
|  | unsigned HeaderSize = | 
|  | CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException(); | 
|  | AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize); | 
|  |  | 
|  | // However, if we're catching a pointer-to-record type that won't | 
|  | // work, because the personality function might have adjusted | 
|  | // the pointer.  There's actually no way for us to fully satisfy | 
|  | // the language/ABI contract here:  we can't use Exn because it | 
|  | // might have the wrong adjustment, but we can't use the by-value | 
|  | // pointer because it's off by a level of abstraction. | 
|  | // | 
|  | // The current solution is to dump the adjusted pointer into an | 
|  | // alloca, which breaks language semantics (because changing the | 
|  | // pointer doesn't change the exception) but at least works. | 
|  | // The better solution would be to filter out non-exact matches | 
|  | // and rethrow them, but this is tricky because the rethrow | 
|  | // really needs to be catchable by other sites at this landing | 
|  | // pad.  The best solution is to fix the personality function. | 
|  | } else { | 
|  | // Pull the pointer for the reference type off. | 
|  | llvm::Type *PtrTy = | 
|  | cast<llvm::PointerType>(LLVMCatchTy)->getElementType(); | 
|  |  | 
|  | // Create the temporary and write the adjusted pointer into it. | 
|  | Address ExnPtrTmp = | 
|  | CGF.CreateTempAlloca(PtrTy, CGF.getPointerAlign(), "exn.byref.tmp"); | 
|  | llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); | 
|  | CGF.Builder.CreateStore(Casted, ExnPtrTmp); | 
|  |  | 
|  | // Bind the reference to the temporary. | 
|  | AdjustedExn = ExnPtrTmp.getPointer(); | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm::Value *ExnCast = | 
|  | CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref"); | 
|  | CGF.Builder.CreateStore(ExnCast, ParamAddr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Scalars and complexes. | 
|  | TypeEvaluationKind TEK = CGF.getEvaluationKind(CatchType); | 
|  | if (TEK != TEK_Aggregate) { | 
|  | llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false); | 
|  |  | 
|  | // If the catch type is a pointer type, __cxa_begin_catch returns | 
|  | // the pointer by value. | 
|  | if (CatchType->hasPointerRepresentation()) { | 
|  | llvm::Value *CastExn = | 
|  | CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted"); | 
|  |  | 
|  | switch (CatchType.getQualifiers().getObjCLifetime()) { | 
|  | case Qualifiers::OCL_Strong: | 
|  | CastExn = CGF.EmitARCRetainNonBlock(CastExn); | 
|  | // fallthrough | 
|  |  | 
|  | case Qualifiers::OCL_None: | 
|  | case Qualifiers::OCL_ExplicitNone: | 
|  | case Qualifiers::OCL_Autoreleasing: | 
|  | CGF.Builder.CreateStore(CastExn, ParamAddr); | 
|  | return; | 
|  |  | 
|  | case Qualifiers::OCL_Weak: | 
|  | CGF.EmitARCInitWeak(ParamAddr, CastExn); | 
|  | return; | 
|  | } | 
|  | llvm_unreachable("bad ownership qualifier!"); | 
|  | } | 
|  |  | 
|  | // Otherwise, it returns a pointer into the exception object. | 
|  |  | 
|  | llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok | 
|  | llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); | 
|  |  | 
|  | LValue srcLV = CGF.MakeNaturalAlignAddrLValue(Cast, CatchType); | 
|  | LValue destLV = CGF.MakeAddrLValue(ParamAddr, CatchType); | 
|  | switch (TEK) { | 
|  | case TEK_Complex: | 
|  | CGF.EmitStoreOfComplex(CGF.EmitLoadOfComplex(srcLV, Loc), destLV, | 
|  | /*init*/ true); | 
|  | return; | 
|  | case TEK_Scalar: { | 
|  | llvm::Value *ExnLoad = CGF.EmitLoadOfScalar(srcLV, Loc); | 
|  | CGF.EmitStoreOfScalar(ExnLoad, destLV, /*init*/ true); | 
|  | return; | 
|  | } | 
|  | case TEK_Aggregate: | 
|  | llvm_unreachable("evaluation kind filtered out!"); | 
|  | } | 
|  | llvm_unreachable("bad evaluation kind"); | 
|  | } | 
|  |  | 
|  | assert(isa<RecordType>(CatchType) && "unexpected catch type!"); | 
|  | auto catchRD = CatchType->getAsCXXRecordDecl(); | 
|  | CharUnits caughtExnAlignment = CGF.CGM.getClassPointerAlignment(catchRD); | 
|  |  | 
|  | llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok | 
|  |  | 
|  | // Check for a copy expression.  If we don't have a copy expression, | 
|  | // that means a trivial copy is okay. | 
|  | const Expr *copyExpr = CatchParam.getInit(); | 
|  | if (!copyExpr) { | 
|  | llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true); | 
|  | Address adjustedExn(CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy), | 
|  | caughtExnAlignment); | 
|  | CGF.EmitAggregateCopy(ParamAddr, adjustedExn, CatchType); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // We have to call __cxa_get_exception_ptr to get the adjusted | 
|  | // pointer before copying. | 
|  | llvm::CallInst *rawAdjustedExn = | 
|  | CGF.EmitNounwindRuntimeCall(getGetExceptionPtrFn(CGF.CGM), Exn); | 
|  |  | 
|  | // Cast that to the appropriate type. | 
|  | Address adjustedExn(CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy), | 
|  | caughtExnAlignment); | 
|  |  | 
|  | // The copy expression is defined in terms of an OpaqueValueExpr. | 
|  | // Find it and map it to the adjusted expression. | 
|  | CodeGenFunction::OpaqueValueMapping | 
|  | opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr), | 
|  | CGF.MakeAddrLValue(adjustedExn, CatchParam.getType())); | 
|  |  | 
|  | // Call the copy ctor in a terminate scope. | 
|  | CGF.EHStack.pushTerminate(); | 
|  |  | 
|  | // Perform the copy construction. | 
|  | CGF.EmitAggExpr(copyExpr, | 
|  | AggValueSlot::forAddr(ParamAddr, Qualifiers(), | 
|  | AggValueSlot::IsNotDestructed, | 
|  | AggValueSlot::DoesNotNeedGCBarriers, | 
|  | AggValueSlot::IsNotAliased)); | 
|  |  | 
|  | // Leave the terminate scope. | 
|  | CGF.EHStack.popTerminate(); | 
|  |  | 
|  | // Undo the opaque value mapping. | 
|  | opaque.pop(); | 
|  |  | 
|  | // Finally we can call __cxa_begin_catch. | 
|  | CallBeginCatch(CGF, Exn, true); | 
|  | } | 
|  |  | 
|  | /// Begins a catch statement by initializing the catch variable and | 
|  | /// calling __cxa_begin_catch. | 
|  | void ItaniumCXXABI::emitBeginCatch(CodeGenFunction &CGF, | 
|  | const CXXCatchStmt *S) { | 
|  | // We have to be very careful with the ordering of cleanups here: | 
|  | //   C++ [except.throw]p4: | 
|  | //     The destruction [of the exception temporary] occurs | 
|  | //     immediately after the destruction of the object declared in | 
|  | //     the exception-declaration in the handler. | 
|  | // | 
|  | // So the precise ordering is: | 
|  | //   1.  Construct catch variable. | 
|  | //   2.  __cxa_begin_catch | 
|  | //   3.  Enter __cxa_end_catch cleanup | 
|  | //   4.  Enter dtor cleanup | 
|  | // | 
|  | // We do this by using a slightly abnormal initialization process. | 
|  | // Delegation sequence: | 
|  | //   - ExitCXXTryStmt opens a RunCleanupsScope | 
|  | //     - EmitAutoVarAlloca creates the variable and debug info | 
|  | //       - InitCatchParam initializes the variable from the exception | 
|  | //       - CallBeginCatch calls __cxa_begin_catch | 
|  | //       - CallBeginCatch enters the __cxa_end_catch cleanup | 
|  | //     - EmitAutoVarCleanups enters the variable destructor cleanup | 
|  | //   - EmitCXXTryStmt emits the code for the catch body | 
|  | //   - EmitCXXTryStmt close the RunCleanupsScope | 
|  |  | 
|  | VarDecl *CatchParam = S->getExceptionDecl(); | 
|  | if (!CatchParam) { | 
|  | llvm::Value *Exn = CGF.getExceptionFromSlot(); | 
|  | CallBeginCatch(CGF, Exn, true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Emit the local. | 
|  | CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); | 
|  | InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF), S->getLocStart()); | 
|  | CGF.EmitAutoVarCleanups(var); | 
|  | } | 
|  |  | 
|  | /// Get or define the following function: | 
|  | ///   void @__clang_call_terminate(i8* %exn) nounwind noreturn | 
|  | /// This code is used only in C++. | 
|  | static llvm::Constant *getClangCallTerminateFn(CodeGenModule &CGM) { | 
|  | llvm::FunctionType *fnTy = | 
|  | llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); | 
|  | llvm::Constant *fnRef = CGM.CreateRuntimeFunction( | 
|  | fnTy, "__clang_call_terminate", llvm::AttributeList(), /*Local=*/true); | 
|  |  | 
|  | llvm::Function *fn = dyn_cast<llvm::Function>(fnRef); | 
|  | if (fn && fn->empty()) { | 
|  | fn->setDoesNotThrow(); | 
|  | fn->setDoesNotReturn(); | 
|  |  | 
|  | // What we really want is to massively penalize inlining without | 
|  | // forbidding it completely.  The difference between that and | 
|  | // 'noinline' is negligible. | 
|  | fn->addFnAttr(llvm::Attribute::NoInline); | 
|  |  | 
|  | // Allow this function to be shared across translation units, but | 
|  | // we don't want it to turn into an exported symbol. | 
|  | fn->setLinkage(llvm::Function::LinkOnceODRLinkage); | 
|  | fn->setVisibility(llvm::Function::HiddenVisibility); | 
|  | if (CGM.supportsCOMDAT()) | 
|  | fn->setComdat(CGM.getModule().getOrInsertComdat(fn->getName())); | 
|  |  | 
|  | // Set up the function. | 
|  | llvm::BasicBlock *entry = | 
|  | llvm::BasicBlock::Create(CGM.getLLVMContext(), "", fn); | 
|  | CGBuilderTy builder(CGM, entry); | 
|  |  | 
|  | // Pull the exception pointer out of the parameter list. | 
|  | llvm::Value *exn = &*fn->arg_begin(); | 
|  |  | 
|  | // Call __cxa_begin_catch(exn). | 
|  | llvm::CallInst *catchCall = builder.CreateCall(getBeginCatchFn(CGM), exn); | 
|  | catchCall->setDoesNotThrow(); | 
|  | catchCall->setCallingConv(CGM.getRuntimeCC()); | 
|  |  | 
|  | // Call std::terminate(). | 
|  | llvm::CallInst *termCall = builder.CreateCall(CGM.getTerminateFn()); | 
|  | termCall->setDoesNotThrow(); | 
|  | termCall->setDoesNotReturn(); | 
|  | termCall->setCallingConv(CGM.getRuntimeCC()); | 
|  |  | 
|  | // std::terminate cannot return. | 
|  | builder.CreateUnreachable(); | 
|  | } | 
|  |  | 
|  | return fnRef; | 
|  | } | 
|  |  | 
|  | llvm::CallInst * | 
|  | ItaniumCXXABI::emitTerminateForUnexpectedException(CodeGenFunction &CGF, | 
|  | llvm::Value *Exn) { | 
|  | // In C++, we want to call __cxa_begin_catch() before terminating. | 
|  | if (Exn) { | 
|  | assert(CGF.CGM.getLangOpts().CPlusPlus); | 
|  | return CGF.EmitNounwindRuntimeCall(getClangCallTerminateFn(CGF.CGM), Exn); | 
|  | } | 
|  | return CGF.EmitNounwindRuntimeCall(CGF.CGM.getTerminateFn()); | 
|  | } |