|  | //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the SelectionDAG::Legalize method. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SelectionDAGNodes.h" | 
|  | #include "llvm/IR/CallingConv.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DebugInfo.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetFrameLowering.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetSubtargetInfo.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "legalizedag" | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct FloatSignAsInt; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | /// This takes an arbitrary SelectionDAG as input and | 
|  | /// hacks on it until the target machine can handle it.  This involves | 
|  | /// eliminating value sizes the machine cannot handle (promoting small sizes to | 
|  | /// large sizes or splitting up large values into small values) as well as | 
|  | /// eliminating operations the machine cannot handle. | 
|  | /// | 
|  | /// This code also does a small amount of optimization and recognition of idioms | 
|  | /// as part of its processing.  For example, if a target does not support a | 
|  | /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this | 
|  | /// will attempt merge setcc and brc instructions into brcc's. | 
|  | /// | 
|  | class SelectionDAGLegalize { | 
|  | const TargetMachine &TM; | 
|  | const TargetLowering &TLI; | 
|  | SelectionDAG &DAG; | 
|  |  | 
|  | /// \brief The set of nodes which have already been legalized. We hold a | 
|  | /// reference to it in order to update as necessary on node deletion. | 
|  | SmallPtrSetImpl<SDNode *> &LegalizedNodes; | 
|  |  | 
|  | /// \brief A set of all the nodes updated during legalization. | 
|  | SmallSetVector<SDNode *, 16> *UpdatedNodes; | 
|  |  | 
|  | EVT getSetCCResultType(EVT VT) const { | 
|  | return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); | 
|  | } | 
|  |  | 
|  | // Libcall insertion helpers. | 
|  |  | 
|  | public: | 
|  | SelectionDAGLegalize(SelectionDAG &DAG, | 
|  | SmallPtrSetImpl<SDNode *> &LegalizedNodes, | 
|  | SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) | 
|  | : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), | 
|  | LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} | 
|  |  | 
|  | /// \brief Legalizes the given operation. | 
|  | void LegalizeOp(SDNode *Node); | 
|  |  | 
|  | private: | 
|  | SDValue OptimizeFloatStore(StoreSDNode *ST); | 
|  |  | 
|  | void LegalizeLoadOps(SDNode *Node); | 
|  | void LegalizeStoreOps(SDNode *Node); | 
|  |  | 
|  | /// Some targets cannot handle a variable | 
|  | /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it | 
|  | /// is necessary to spill the vector being inserted into to memory, perform | 
|  | /// the insert there, and then read the result back. | 
|  | SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, | 
|  | const SDLoc &dl); | 
|  | SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, | 
|  | const SDLoc &dl); | 
|  |  | 
|  | /// Return a vector shuffle operation which | 
|  | /// performs the same shuffe in terms of order or result bytes, but on a type | 
|  | /// whose vector element type is narrower than the original shuffle type. | 
|  | /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> | 
|  | SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, | 
|  | SDValue N1, SDValue N2, | 
|  | ArrayRef<int> Mask) const; | 
|  |  | 
|  | bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, | 
|  | bool &NeedInvert, const SDLoc &dl); | 
|  |  | 
|  | SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); | 
|  | SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, | 
|  | unsigned NumOps, bool isSigned, const SDLoc &dl); | 
|  |  | 
|  | std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, | 
|  | SDNode *Node, bool isSigned); | 
|  | SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, | 
|  | RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, | 
|  | RTLIB::Libcall Call_F128, | 
|  | RTLIB::Libcall Call_PPCF128); | 
|  | SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, | 
|  | RTLIB::Libcall Call_I8, | 
|  | RTLIB::Libcall Call_I16, | 
|  | RTLIB::Libcall Call_I32, | 
|  | RTLIB::Libcall Call_I64, | 
|  | RTLIB::Libcall Call_I128); | 
|  | void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); | 
|  | void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); | 
|  |  | 
|  | SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, | 
|  | const SDLoc &dl); | 
|  | SDValue ExpandBUILD_VECTOR(SDNode *Node); | 
|  | SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); | 
|  | void ExpandDYNAMIC_STACKALLOC(SDNode *Node, | 
|  | SmallVectorImpl<SDValue> &Results); | 
|  | void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, | 
|  | SDValue Value) const; | 
|  | SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, | 
|  | SDValue NewIntValue) const; | 
|  | SDValue ExpandFCOPYSIGN(SDNode *Node) const; | 
|  | SDValue ExpandFABS(SDNode *Node) const; | 
|  | SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT, | 
|  | const SDLoc &dl); | 
|  | SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, | 
|  | const SDLoc &dl); | 
|  | SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, | 
|  | const SDLoc &dl); | 
|  |  | 
|  | SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl); | 
|  | SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl); | 
|  | SDValue ExpandBitCount(unsigned Opc, SDValue Op, const SDLoc &dl); | 
|  |  | 
|  | SDValue ExpandExtractFromVectorThroughStack(SDValue Op); | 
|  | SDValue ExpandInsertToVectorThroughStack(SDValue Op); | 
|  | SDValue ExpandVectorBuildThroughStack(SDNode* Node); | 
|  |  | 
|  | SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); | 
|  | SDValue ExpandConstant(ConstantSDNode *CP); | 
|  |  | 
|  | // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall | 
|  | bool ExpandNode(SDNode *Node); | 
|  | void ConvertNodeToLibcall(SDNode *Node); | 
|  | void PromoteNode(SDNode *Node); | 
|  |  | 
|  | public: | 
|  | // Node replacement helpers | 
|  | void ReplacedNode(SDNode *N) { | 
|  | LegalizedNodes.erase(N); | 
|  | if (UpdatedNodes) | 
|  | UpdatedNodes->insert(N); | 
|  | } | 
|  | void ReplaceNode(SDNode *Old, SDNode *New) { | 
|  | DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); | 
|  | dbgs() << "     with:      "; New->dump(&DAG)); | 
|  |  | 
|  | assert(Old->getNumValues() == New->getNumValues() && | 
|  | "Replacing one node with another that produces a different number " | 
|  | "of values!"); | 
|  | DAG.ReplaceAllUsesWith(Old, New); | 
|  | if (UpdatedNodes) | 
|  | UpdatedNodes->insert(New); | 
|  | ReplacedNode(Old); | 
|  | } | 
|  | void ReplaceNode(SDValue Old, SDValue New) { | 
|  | DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); | 
|  | dbgs() << "     with:      "; New->dump(&DAG)); | 
|  |  | 
|  | DAG.ReplaceAllUsesWith(Old, New); | 
|  | if (UpdatedNodes) | 
|  | UpdatedNodes->insert(New.getNode()); | 
|  | ReplacedNode(Old.getNode()); | 
|  | } | 
|  | void ReplaceNode(SDNode *Old, const SDValue *New) { | 
|  | DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); | 
|  |  | 
|  | DAG.ReplaceAllUsesWith(Old, New); | 
|  | for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { | 
|  | DEBUG(dbgs() << (i == 0 ? "     with:      " | 
|  | : "      and:      "); | 
|  | New[i]->dump(&DAG)); | 
|  | if (UpdatedNodes) | 
|  | UpdatedNodes->insert(New[i].getNode()); | 
|  | } | 
|  | ReplacedNode(Old); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// Return a vector shuffle operation which | 
|  | /// performs the same shuffe in terms of order or result bytes, but on a type | 
|  | /// whose vector element type is narrower than the original shuffle type. | 
|  | /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> | 
|  | SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( | 
|  | EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, | 
|  | ArrayRef<int> Mask) const { | 
|  | unsigned NumMaskElts = VT.getVectorNumElements(); | 
|  | unsigned NumDestElts = NVT.getVectorNumElements(); | 
|  | unsigned NumEltsGrowth = NumDestElts / NumMaskElts; | 
|  |  | 
|  | assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); | 
|  |  | 
|  | if (NumEltsGrowth == 1) | 
|  | return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); | 
|  |  | 
|  | SmallVector<int, 8> NewMask; | 
|  | for (unsigned i = 0; i != NumMaskElts; ++i) { | 
|  | int Idx = Mask[i]; | 
|  | for (unsigned j = 0; j != NumEltsGrowth; ++j) { | 
|  | if (Idx < 0) | 
|  | NewMask.push_back(-1); | 
|  | else | 
|  | NewMask.push_back(Idx * NumEltsGrowth + j); | 
|  | } | 
|  | } | 
|  | assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); | 
|  | assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); | 
|  | return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); | 
|  | } | 
|  |  | 
|  | /// Expands the ConstantFP node to an integer constant or | 
|  | /// a load from the constant pool. | 
|  | SDValue | 
|  | SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { | 
|  | bool Extend = false; | 
|  | SDLoc dl(CFP); | 
|  |  | 
|  | // If a FP immediate is precise when represented as a float and if the | 
|  | // target can do an extending load from float to double, we put it into | 
|  | // the constant pool as a float, even if it's is statically typed as a | 
|  | // double.  This shrinks FP constants and canonicalizes them for targets where | 
|  | // an FP extending load is the same cost as a normal load (such as on the x87 | 
|  | // fp stack or PPC FP unit). | 
|  | EVT VT = CFP->getValueType(0); | 
|  | ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); | 
|  | if (!UseCP) { | 
|  | assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); | 
|  | return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, | 
|  | (VT == MVT::f64) ? MVT::i64 : MVT::i32); | 
|  | } | 
|  |  | 
|  | APFloat APF = CFP->getValueAPF(); | 
|  | EVT OrigVT = VT; | 
|  | EVT SVT = VT; | 
|  |  | 
|  | // We don't want to shrink SNaNs. Converting the SNaN back to its real type | 
|  | // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). | 
|  | if (!APF.isSignaling()) { | 
|  | while (SVT != MVT::f32 && SVT != MVT::f16) { | 
|  | SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); | 
|  | if (ConstantFPSDNode::isValueValidForType(SVT, APF) && | 
|  | // Only do this if the target has a native EXTLOAD instruction from | 
|  | // smaller type. | 
|  | TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && | 
|  | TLI.ShouldShrinkFPConstant(OrigVT)) { | 
|  | Type *SType = SVT.getTypeForEVT(*DAG.getContext()); | 
|  | LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); | 
|  | VT = SVT; | 
|  | Extend = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue CPIdx = | 
|  | DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); | 
|  | unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); | 
|  | if (Extend) { | 
|  | SDValue Result = DAG.getExtLoad( | 
|  | ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, | 
|  | Alignment); | 
|  | return Result; | 
|  | } | 
|  | SDValue Result = DAG.getLoad( | 
|  | OrigVT, dl, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// Expands the Constant node to a load from the constant pool. | 
|  | SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { | 
|  | SDLoc dl(CP); | 
|  | EVT VT = CP->getValueType(0); | 
|  | SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), | 
|  | TLI.getPointerTy(DAG.getDataLayout())); | 
|  | unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); | 
|  | SDValue Result = DAG.getLoad( | 
|  | VT, dl, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// Some target cannot handle a variable insertion index for the | 
|  | /// INSERT_VECTOR_ELT instruction.  In this case, it | 
|  | /// is necessary to spill the vector being inserted into to memory, perform | 
|  | /// the insert there, and then read the result back. | 
|  | SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, | 
|  | SDValue Val, | 
|  | SDValue Idx, | 
|  | const SDLoc &dl) { | 
|  | SDValue Tmp1 = Vec; | 
|  | SDValue Tmp2 = Val; | 
|  | SDValue Tmp3 = Idx; | 
|  |  | 
|  | // If the target doesn't support this, we have to spill the input vector | 
|  | // to a temporary stack slot, update the element, then reload it.  This is | 
|  | // badness.  We could also load the value into a vector register (either | 
|  | // with a "move to register" or "extload into register" instruction, then | 
|  | // permute it into place, if the idx is a constant and if the idx is | 
|  | // supported by the target. | 
|  | EVT VT    = Tmp1.getValueType(); | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | SDValue StackPtr = DAG.CreateStackTemporary(VT); | 
|  |  | 
|  | int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); | 
|  |  | 
|  | // Store the vector. | 
|  | SDValue Ch = DAG.getStore( | 
|  | DAG.getEntryNode(), dl, Tmp1, StackPtr, | 
|  | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); | 
|  |  | 
|  | SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); | 
|  |  | 
|  | // Store the scalar value. | 
|  | Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT); | 
|  | // Load the updated vector. | 
|  | return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( | 
|  | DAG.getMachineFunction(), SPFI)); | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, | 
|  | SDValue Idx, | 
|  | const SDLoc &dl) { | 
|  | if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { | 
|  | // SCALAR_TO_VECTOR requires that the type of the value being inserted | 
|  | // match the element type of the vector being created, except for | 
|  | // integers in which case the inserted value can be over width. | 
|  | EVT EltVT = Vec.getValueType().getVectorElementType(); | 
|  | if (Val.getValueType() == EltVT || | 
|  | (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { | 
|  | SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, | 
|  | Vec.getValueType(), Val); | 
|  |  | 
|  | unsigned NumElts = Vec.getValueType().getVectorNumElements(); | 
|  | // We generate a shuffle of InVec and ScVec, so the shuffle mask | 
|  | // should be 0,1,2,3,4,5... with the appropriate element replaced with | 
|  | // elt 0 of the RHS. | 
|  | SmallVector<int, 8> ShufOps; | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); | 
|  |  | 
|  | return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); | 
|  | } | 
|  | } | 
|  | return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { | 
|  | // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' | 
|  | // FIXME: We shouldn't do this for TargetConstantFP's. | 
|  | // FIXME: move this to the DAG Combiner!  Note that we can't regress due | 
|  | // to phase ordering between legalized code and the dag combiner.  This | 
|  | // probably means that we need to integrate dag combiner and legalizer | 
|  | // together. | 
|  | // We generally can't do this one for long doubles. | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue Ptr = ST->getBasePtr(); | 
|  | unsigned Alignment = ST->getAlignment(); | 
|  | MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); | 
|  | AAMDNodes AAInfo = ST->getAAInfo(); | 
|  | SDLoc dl(ST); | 
|  | if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { | 
|  | if (CFP->getValueType(0) == MVT::f32 && | 
|  | TLI.isTypeLegal(MVT::i32)) { | 
|  | SDValue Con = DAG.getConstant(CFP->getValueAPF(). | 
|  | bitcastToAPInt().zextOrTrunc(32), | 
|  | SDLoc(CFP), MVT::i32); | 
|  | return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment, | 
|  | MMOFlags, AAInfo); | 
|  | } | 
|  |  | 
|  | if (CFP->getValueType(0) == MVT::f64) { | 
|  | // If this target supports 64-bit registers, do a single 64-bit store. | 
|  | if (TLI.isTypeLegal(MVT::i64)) { | 
|  | SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). | 
|  | zextOrTrunc(64), SDLoc(CFP), MVT::i64); | 
|  | return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), | 
|  | Alignment, MMOFlags, AAInfo); | 
|  | } | 
|  |  | 
|  | if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { | 
|  | // Otherwise, if the target supports 32-bit registers, use 2 32-bit | 
|  | // stores.  If the target supports neither 32- nor 64-bits, this | 
|  | // xform is certainly not worth it. | 
|  | const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); | 
|  | SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); | 
|  | SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); | 
|  | if (DAG.getDataLayout().isBigEndian()) | 
|  | std::swap(Lo, Hi); | 
|  |  | 
|  | Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment, | 
|  | MMOFlags, AAInfo); | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, | 
|  | DAG.getConstant(4, dl, Ptr.getValueType())); | 
|  | Hi = DAG.getStore(Chain, dl, Hi, Ptr, | 
|  | ST->getPointerInfo().getWithOffset(4), | 
|  | MinAlign(Alignment, 4U), MMOFlags, AAInfo); | 
|  |  | 
|  | return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); | 
|  | } | 
|  | } | 
|  | } | 
|  | return SDValue(nullptr, 0); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { | 
|  | StoreSDNode *ST = cast<StoreSDNode>(Node); | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue Ptr = ST->getBasePtr(); | 
|  | SDLoc dl(Node); | 
|  |  | 
|  | unsigned Alignment = ST->getAlignment(); | 
|  | MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); | 
|  | AAMDNodes AAInfo = ST->getAAInfo(); | 
|  |  | 
|  | if (!ST->isTruncatingStore()) { | 
|  | if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { | 
|  | ReplaceNode(ST, OptStore); | 
|  | return; | 
|  | } | 
|  |  | 
|  | { | 
|  | SDValue Value = ST->getValue(); | 
|  | MVT VT = Value.getSimpleValueType(); | 
|  | switch (TLI.getOperationAction(ISD::STORE, VT)) { | 
|  | default: llvm_unreachable("This action is not supported yet!"); | 
|  | case TargetLowering::Legal: { | 
|  | // If this is an unaligned store and the target doesn't support it, | 
|  | // expand it. | 
|  | EVT MemVT = ST->getMemoryVT(); | 
|  | unsigned AS = ST->getAddressSpace(); | 
|  | unsigned Align = ST->getAlignment(); | 
|  | const DataLayout &DL = DAG.getDataLayout(); | 
|  | if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { | 
|  | SDValue Result = TLI.expandUnalignedStore(ST, DAG); | 
|  | ReplaceNode(SDValue(ST, 0), Result); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case TargetLowering::Custom: { | 
|  | SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); | 
|  | if (Res && Res != SDValue(Node, 0)) | 
|  | ReplaceNode(SDValue(Node, 0), Res); | 
|  | return; | 
|  | } | 
|  | case TargetLowering::Promote: { | 
|  | MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); | 
|  | assert(NVT.getSizeInBits() == VT.getSizeInBits() && | 
|  | "Can only promote stores to same size type"); | 
|  | Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); | 
|  | SDValue Result = | 
|  | DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), | 
|  | Alignment, MMOFlags, AAInfo); | 
|  | ReplaceNode(SDValue(Node, 0), Result); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | SDValue Value = ST->getValue(); | 
|  |  | 
|  | EVT StVT = ST->getMemoryVT(); | 
|  | unsigned StWidth = StVT.getSizeInBits(); | 
|  | auto &DL = DAG.getDataLayout(); | 
|  |  | 
|  | if (StWidth != StVT.getStoreSizeInBits()) { | 
|  | // Promote to a byte-sized store with upper bits zero if not | 
|  | // storing an integral number of bytes.  For example, promote | 
|  | // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) | 
|  | EVT NVT = EVT::getIntegerVT(*DAG.getContext(), | 
|  | StVT.getStoreSizeInBits()); | 
|  | Value = DAG.getZeroExtendInReg(Value, dl, StVT); | 
|  | SDValue Result = | 
|  | DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, | 
|  | Alignment, MMOFlags, AAInfo); | 
|  | ReplaceNode(SDValue(Node, 0), Result); | 
|  | } else if (StWidth & (StWidth - 1)) { | 
|  | // If not storing a power-of-2 number of bits, expand as two stores. | 
|  | assert(!StVT.isVector() && "Unsupported truncstore!"); | 
|  | unsigned RoundWidth = 1 << Log2_32(StWidth); | 
|  | assert(RoundWidth < StWidth); | 
|  | unsigned ExtraWidth = StWidth - RoundWidth; | 
|  | assert(ExtraWidth < RoundWidth); | 
|  | assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && | 
|  | "Store size not an integral number of bytes!"); | 
|  | EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); | 
|  | EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); | 
|  | SDValue Lo, Hi; | 
|  | unsigned IncrementSize; | 
|  |  | 
|  | if (DL.isLittleEndian()) { | 
|  | // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) | 
|  | // Store the bottom RoundWidth bits. | 
|  | Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), | 
|  | RoundVT, Alignment, MMOFlags, AAInfo); | 
|  |  | 
|  | // Store the remaining ExtraWidth bits. | 
|  | IncrementSize = RoundWidth / 8; | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, | 
|  | DAG.getConstant(IncrementSize, dl, | 
|  | Ptr.getValueType())); | 
|  | Hi = DAG.getNode( | 
|  | ISD::SRL, dl, Value.getValueType(), Value, | 
|  | DAG.getConstant(RoundWidth, dl, | 
|  | TLI.getShiftAmountTy(Value.getValueType(), DL))); | 
|  | Hi = DAG.getTruncStore( | 
|  | Chain, dl, Hi, Ptr, | 
|  | ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, | 
|  | MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); | 
|  | } else { | 
|  | // Big endian - avoid unaligned stores. | 
|  | // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X | 
|  | // Store the top RoundWidth bits. | 
|  | Hi = DAG.getNode( | 
|  | ISD::SRL, dl, Value.getValueType(), Value, | 
|  | DAG.getConstant(ExtraWidth, dl, | 
|  | TLI.getShiftAmountTy(Value.getValueType(), DL))); | 
|  | Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), | 
|  | RoundVT, Alignment, MMOFlags, AAInfo); | 
|  |  | 
|  | // Store the remaining ExtraWidth bits. | 
|  | IncrementSize = RoundWidth / 8; | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, | 
|  | DAG.getConstant(IncrementSize, dl, | 
|  | Ptr.getValueType())); | 
|  | Lo = DAG.getTruncStore( | 
|  | Chain, dl, Value, Ptr, | 
|  | ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, | 
|  | MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); | 
|  | } | 
|  |  | 
|  | // The order of the stores doesn't matter. | 
|  | SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); | 
|  | ReplaceNode(SDValue(Node, 0), Result); | 
|  | } else { | 
|  | switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { | 
|  | default: llvm_unreachable("This action is not supported yet!"); | 
|  | case TargetLowering::Legal: { | 
|  | EVT MemVT = ST->getMemoryVT(); | 
|  | unsigned AS = ST->getAddressSpace(); | 
|  | unsigned Align = ST->getAlignment(); | 
|  | // If this is an unaligned store and the target doesn't support it, | 
|  | // expand it. | 
|  | if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { | 
|  | SDValue Result = TLI.expandUnalignedStore(ST, DAG); | 
|  | ReplaceNode(SDValue(ST, 0), Result); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case TargetLowering::Custom: { | 
|  | SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); | 
|  | if (Res && Res != SDValue(Node, 0)) | 
|  | ReplaceNode(SDValue(Node, 0), Res); | 
|  | return; | 
|  | } | 
|  | case TargetLowering::Expand: | 
|  | assert(!StVT.isVector() && | 
|  | "Vector Stores are handled in LegalizeVectorOps"); | 
|  |  | 
|  | // TRUNCSTORE:i16 i32 -> STORE i16 | 
|  | assert(TLI.isTypeLegal(StVT) && | 
|  | "Do not know how to expand this store!"); | 
|  | Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); | 
|  | SDValue Result = | 
|  | DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), | 
|  | Alignment, MMOFlags, AAInfo); | 
|  | ReplaceNode(SDValue(Node, 0), Result); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Node); | 
|  | SDValue Chain = LD->getChain();  // The chain. | 
|  | SDValue Ptr = LD->getBasePtr();  // The base pointer. | 
|  | SDValue Value;                   // The value returned by the load op. | 
|  | SDLoc dl(Node); | 
|  |  | 
|  | ISD::LoadExtType ExtType = LD->getExtensionType(); | 
|  | if (ExtType == ISD::NON_EXTLOAD) { | 
|  | MVT VT = Node->getSimpleValueType(0); | 
|  | SDValue RVal = SDValue(Node, 0); | 
|  | SDValue RChain = SDValue(Node, 1); | 
|  |  | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), VT)) { | 
|  | default: llvm_unreachable("This action is not supported yet!"); | 
|  | case TargetLowering::Legal: { | 
|  | EVT MemVT = LD->getMemoryVT(); | 
|  | unsigned AS = LD->getAddressSpace(); | 
|  | unsigned Align = LD->getAlignment(); | 
|  | const DataLayout &DL = DAG.getDataLayout(); | 
|  | // If this is an unaligned load and the target doesn't support it, | 
|  | // expand it. | 
|  | if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { | 
|  | std::tie(RVal, RChain) =  TLI.expandUnalignedLoad(LD, DAG); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case TargetLowering::Custom: { | 
|  | if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { | 
|  | RVal = Res; | 
|  | RChain = Res.getValue(1); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case TargetLowering::Promote: { | 
|  | MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); | 
|  | assert(NVT.getSizeInBits() == VT.getSizeInBits() && | 
|  | "Can only promote loads to same size type"); | 
|  |  | 
|  | SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); | 
|  | RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); | 
|  | RChain = Res.getValue(1); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (RChain.getNode() != Node) { | 
|  | assert(RVal.getNode() != Node && "Load must be completely replaced"); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); | 
|  | if (UpdatedNodes) { | 
|  | UpdatedNodes->insert(RVal.getNode()); | 
|  | UpdatedNodes->insert(RChain.getNode()); | 
|  | } | 
|  | ReplacedNode(Node); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | EVT SrcVT = LD->getMemoryVT(); | 
|  | unsigned SrcWidth = SrcVT.getSizeInBits(); | 
|  | unsigned Alignment = LD->getAlignment(); | 
|  | MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); | 
|  | AAMDNodes AAInfo = LD->getAAInfo(); | 
|  |  | 
|  | if (SrcWidth != SrcVT.getStoreSizeInBits() && | 
|  | // Some targets pretend to have an i1 loading operation, and actually | 
|  | // load an i8.  This trick is correct for ZEXTLOAD because the top 7 | 
|  | // bits are guaranteed to be zero; it helps the optimizers understand | 
|  | // that these bits are zero.  It is also useful for EXTLOAD, since it | 
|  | // tells the optimizers that those bits are undefined.  It would be | 
|  | // nice to have an effective generic way of getting these benefits... | 
|  | // Until such a way is found, don't insist on promoting i1 here. | 
|  | (SrcVT != MVT::i1 || | 
|  | TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == | 
|  | TargetLowering::Promote)) { | 
|  | // Promote to a byte-sized load if not loading an integral number of | 
|  | // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24. | 
|  | unsigned NewWidth = SrcVT.getStoreSizeInBits(); | 
|  | EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); | 
|  | SDValue Ch; | 
|  |  | 
|  | // The extra bits are guaranteed to be zero, since we stored them that | 
|  | // way.  A zext load from NVT thus automatically gives zext from SrcVT. | 
|  |  | 
|  | ISD::LoadExtType NewExtType = | 
|  | ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; | 
|  |  | 
|  | SDValue Result = | 
|  | DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr, | 
|  | LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo); | 
|  |  | 
|  | Ch = Result.getValue(1); // The chain. | 
|  |  | 
|  | if (ExtType == ISD::SEXTLOAD) | 
|  | // Having the top bits zero doesn't help when sign extending. | 
|  | Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, | 
|  | Result.getValueType(), | 
|  | Result, DAG.getValueType(SrcVT)); | 
|  | else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) | 
|  | // All the top bits are guaranteed to be zero - inform the optimizers. | 
|  | Result = DAG.getNode(ISD::AssertZext, dl, | 
|  | Result.getValueType(), Result, | 
|  | DAG.getValueType(SrcVT)); | 
|  |  | 
|  | Value = Result; | 
|  | Chain = Ch; | 
|  | } else if (SrcWidth & (SrcWidth - 1)) { | 
|  | // If not loading a power-of-2 number of bits, expand as two loads. | 
|  | assert(!SrcVT.isVector() && "Unsupported extload!"); | 
|  | unsigned RoundWidth = 1 << Log2_32(SrcWidth); | 
|  | assert(RoundWidth < SrcWidth); | 
|  | unsigned ExtraWidth = SrcWidth - RoundWidth; | 
|  | assert(ExtraWidth < RoundWidth); | 
|  | assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && | 
|  | "Load size not an integral number of bytes!"); | 
|  | EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); | 
|  | EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); | 
|  | SDValue Lo, Hi, Ch; | 
|  | unsigned IncrementSize; | 
|  | auto &DL = DAG.getDataLayout(); | 
|  |  | 
|  | if (DL.isLittleEndian()) { | 
|  | // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) | 
|  | // Load the bottom RoundWidth bits. | 
|  | Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, | 
|  | LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, | 
|  | AAInfo); | 
|  |  | 
|  | // Load the remaining ExtraWidth bits. | 
|  | IncrementSize = RoundWidth / 8; | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, | 
|  | DAG.getConstant(IncrementSize, dl, | 
|  | Ptr.getValueType())); | 
|  | Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, | 
|  | LD->getPointerInfo().getWithOffset(IncrementSize), | 
|  | ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, | 
|  | AAInfo); | 
|  |  | 
|  | // Build a factor node to remember that this load is independent of | 
|  | // the other one. | 
|  | Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), | 
|  | Hi.getValue(1)); | 
|  |  | 
|  | // Move the top bits to the right place. | 
|  | Hi = DAG.getNode( | 
|  | ISD::SHL, dl, Hi.getValueType(), Hi, | 
|  | DAG.getConstant(RoundWidth, dl, | 
|  | TLI.getShiftAmountTy(Hi.getValueType(), DL))); | 
|  |  | 
|  | // Join the hi and lo parts. | 
|  | Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); | 
|  | } else { | 
|  | // Big endian - avoid unaligned loads. | 
|  | // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 | 
|  | // Load the top RoundWidth bits. | 
|  | Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, | 
|  | LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, | 
|  | AAInfo); | 
|  |  | 
|  | // Load the remaining ExtraWidth bits. | 
|  | IncrementSize = RoundWidth / 8; | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, | 
|  | DAG.getConstant(IncrementSize, dl, | 
|  | Ptr.getValueType())); | 
|  | Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, | 
|  | LD->getPointerInfo().getWithOffset(IncrementSize), | 
|  | ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, | 
|  | AAInfo); | 
|  |  | 
|  | // Build a factor node to remember that this load is independent of | 
|  | // the other one. | 
|  | Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), | 
|  | Hi.getValue(1)); | 
|  |  | 
|  | // Move the top bits to the right place. | 
|  | Hi = DAG.getNode( | 
|  | ISD::SHL, dl, Hi.getValueType(), Hi, | 
|  | DAG.getConstant(ExtraWidth, dl, | 
|  | TLI.getShiftAmountTy(Hi.getValueType(), DL))); | 
|  |  | 
|  | // Join the hi and lo parts. | 
|  | Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); | 
|  | } | 
|  |  | 
|  | Chain = Ch; | 
|  | } else { | 
|  | bool isCustom = false; | 
|  | switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), | 
|  | SrcVT.getSimpleVT())) { | 
|  | default: llvm_unreachable("This action is not supported yet!"); | 
|  | case TargetLowering::Custom: | 
|  | isCustom = true; | 
|  | LLVM_FALLTHROUGH; | 
|  | case TargetLowering::Legal: { | 
|  | Value = SDValue(Node, 0); | 
|  | Chain = SDValue(Node, 1); | 
|  |  | 
|  | if (isCustom) { | 
|  | if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { | 
|  | Value = Res; | 
|  | Chain = Res.getValue(1); | 
|  | } | 
|  | } else { | 
|  | // If this is an unaligned load and the target doesn't support it, | 
|  | // expand it. | 
|  | EVT MemVT = LD->getMemoryVT(); | 
|  | unsigned AS = LD->getAddressSpace(); | 
|  | unsigned Align = LD->getAlignment(); | 
|  | const DataLayout &DL = DAG.getDataLayout(); | 
|  | if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { | 
|  | std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case TargetLowering::Expand: | 
|  | EVT DestVT = Node->getValueType(0); | 
|  | if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { | 
|  | // If the source type is not legal, see if there is a legal extload to | 
|  | // an intermediate type that we can then extend further. | 
|  | EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); | 
|  | if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? | 
|  | TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { | 
|  | // If we are loading a legal type, this is a non-extload followed by a | 
|  | // full extend. | 
|  | ISD::LoadExtType MidExtType = | 
|  | (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; | 
|  |  | 
|  | SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, | 
|  | SrcVT, LD->getMemOperand()); | 
|  | unsigned ExtendOp = | 
|  | ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); | 
|  | Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); | 
|  | Chain = Load.getValue(1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Handle the special case of fp16 extloads. EXTLOAD doesn't have the | 
|  | // normal undefined upper bits behavior to allow using an in-reg extend | 
|  | // with the illegal FP type, so load as an integer and do the | 
|  | // from-integer conversion. | 
|  | if (SrcVT.getScalarType() == MVT::f16) { | 
|  | EVT ISrcVT = SrcVT.changeTypeToInteger(); | 
|  | EVT IDestVT = DestVT.changeTypeToInteger(); | 
|  | EVT LoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); | 
|  |  | 
|  | SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, LoadVT, | 
|  | Chain, Ptr, ISrcVT, | 
|  | LD->getMemOperand()); | 
|  | Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); | 
|  | Chain = Result.getValue(1); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(!SrcVT.isVector() && | 
|  | "Vector Loads are handled in LegalizeVectorOps"); | 
|  |  | 
|  | // FIXME: This does not work for vectors on most targets.  Sign- | 
|  | // and zero-extend operations are currently folded into extending | 
|  | // loads, whether they are legal or not, and then we end up here | 
|  | // without any support for legalizing them. | 
|  | assert(ExtType != ISD::EXTLOAD && | 
|  | "EXTLOAD should always be supported!"); | 
|  | // Turn the unsupported load into an EXTLOAD followed by an | 
|  | // explicit zero/sign extend inreg. | 
|  | SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, | 
|  | Node->getValueType(0), | 
|  | Chain, Ptr, SrcVT, | 
|  | LD->getMemOperand()); | 
|  | SDValue ValRes; | 
|  | if (ExtType == ISD::SEXTLOAD) | 
|  | ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, | 
|  | Result.getValueType(), | 
|  | Result, DAG.getValueType(SrcVT)); | 
|  | else | 
|  | ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); | 
|  | Value = ValRes; | 
|  | Chain = Result.getValue(1); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Since loads produce two values, make sure to remember that we legalized | 
|  | // both of them. | 
|  | if (Chain.getNode() != Node) { | 
|  | assert(Value.getNode() != Node && "Load must be completely replaced"); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); | 
|  | if (UpdatedNodes) { | 
|  | UpdatedNodes->insert(Value.getNode()); | 
|  | UpdatedNodes->insert(Chain.getNode()); | 
|  | } | 
|  | ReplacedNode(Node); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return a legal replacement for the given operation, with all legal operands. | 
|  | void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { | 
|  | DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); | 
|  |  | 
|  | if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. | 
|  | return; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) | 
|  | assert((TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == | 
|  | TargetLowering::TypeLegal || | 
|  | TLI.isTypeLegal(Node->getValueType(i))) && | 
|  | "Unexpected illegal type!"); | 
|  |  | 
|  | for (const SDValue &Op : Node->op_values()) | 
|  | assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == | 
|  | TargetLowering::TypeLegal || | 
|  | TLI.isTypeLegal(Op.getValueType()) || | 
|  | Op.getOpcode() == ISD::TargetConstant) && | 
|  | "Unexpected illegal type!"); | 
|  | #endif | 
|  |  | 
|  | // Figure out the correct action; the way to query this varies by opcode | 
|  | TargetLowering::LegalizeAction Action = TargetLowering::Legal; | 
|  | bool SimpleFinishLegalizing = true; | 
|  | switch (Node->getOpcode()) { | 
|  | case ISD::INTRINSIC_W_CHAIN: | 
|  | case ISD::INTRINSIC_WO_CHAIN: | 
|  | case ISD::INTRINSIC_VOID: | 
|  | case ISD::STACKSAVE: | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); | 
|  | break; | 
|  | case ISD::GET_DYNAMIC_AREA_OFFSET: | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), | 
|  | Node->getValueType(0)); | 
|  | break; | 
|  | case ISD::VAARG: | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), | 
|  | Node->getValueType(0)); | 
|  | if (Action != TargetLowering::Promote) | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); | 
|  | break; | 
|  | case ISD::FP_TO_FP16: | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP: | 
|  | case ISD::EXTRACT_VECTOR_ELT: | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), | 
|  | Node->getOperand(0).getValueType()); | 
|  | break; | 
|  | case ISD::FP_ROUND_INREG: | 
|  | case ISD::SIGN_EXTEND_INREG: { | 
|  | EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), InnerType); | 
|  | break; | 
|  | } | 
|  | case ISD::ATOMIC_STORE: { | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), | 
|  | Node->getOperand(2).getValueType()); | 
|  | break; | 
|  | } | 
|  | case ISD::SELECT_CC: | 
|  | case ISD::SETCC: | 
|  | case ISD::BR_CC: { | 
|  | unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : | 
|  | Node->getOpcode() == ISD::SETCC ? 2 : | 
|  | Node->getOpcode() == ISD::SETCCE ? 3 : 1; | 
|  | unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; | 
|  | MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); | 
|  | ISD::CondCode CCCode = | 
|  | cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); | 
|  | Action = TLI.getCondCodeAction(CCCode, OpVT); | 
|  | if (Action == TargetLowering::Legal) { | 
|  | if (Node->getOpcode() == ISD::SELECT_CC) | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), | 
|  | Node->getValueType(0)); | 
|  | else | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), OpVT); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::LOAD: | 
|  | case ISD::STORE: | 
|  | // FIXME: Model these properly.  LOAD and STORE are complicated, and | 
|  | // STORE expects the unlegalized operand in some cases. | 
|  | SimpleFinishLegalizing = false; | 
|  | break; | 
|  | case ISD::CALLSEQ_START: | 
|  | case ISD::CALLSEQ_END: | 
|  | // FIXME: This shouldn't be necessary.  These nodes have special properties | 
|  | // dealing with the recursive nature of legalization.  Removing this | 
|  | // special case should be done as part of making LegalizeDAG non-recursive. | 
|  | SimpleFinishLegalizing = false; | 
|  | break; | 
|  | case ISD::EXTRACT_ELEMENT: | 
|  | case ISD::FLT_ROUNDS_: | 
|  | case ISD::FPOWI: | 
|  | case ISD::MERGE_VALUES: | 
|  | case ISD::EH_RETURN: | 
|  | case ISD::FRAME_TO_ARGS_OFFSET: | 
|  | case ISD::EH_DWARF_CFA: | 
|  | case ISD::EH_SJLJ_SETJMP: | 
|  | case ISD::EH_SJLJ_LONGJMP: | 
|  | case ISD::EH_SJLJ_SETUP_DISPATCH: | 
|  | // These operations lie about being legal: when they claim to be legal, | 
|  | // they should actually be expanded. | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); | 
|  | if (Action == TargetLowering::Legal) | 
|  | Action = TargetLowering::Expand; | 
|  | break; | 
|  | case ISD::INIT_TRAMPOLINE: | 
|  | case ISD::ADJUST_TRAMPOLINE: | 
|  | case ISD::FRAMEADDR: | 
|  | case ISD::RETURNADDR: | 
|  | case ISD::ADDROFRETURNADDR: | 
|  | // These operations lie about being legal: when they claim to be legal, | 
|  | // they should actually be custom-lowered. | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); | 
|  | if (Action == TargetLowering::Legal) | 
|  | Action = TargetLowering::Custom; | 
|  | break; | 
|  | case ISD::READCYCLECOUNTER: | 
|  | // READCYCLECOUNTER returns an i64, even if type legalization might have | 
|  | // expanded that to several smaller types. | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); | 
|  | break; | 
|  | case ISD::READ_REGISTER: | 
|  | case ISD::WRITE_REGISTER: | 
|  | // Named register is legal in the DAG, but blocked by register name | 
|  | // selection if not implemented by target (to chose the correct register) | 
|  | // They'll be converted to Copy(To/From)Reg. | 
|  | Action = TargetLowering::Legal; | 
|  | break; | 
|  | case ISD::DEBUGTRAP: | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); | 
|  | if (Action == TargetLowering::Expand) { | 
|  | // replace ISD::DEBUGTRAP with ISD::TRAP | 
|  | SDValue NewVal; | 
|  | NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), | 
|  | Node->getOperand(0)); | 
|  | ReplaceNode(Node, NewVal.getNode()); | 
|  | LegalizeOp(NewVal.getNode()); | 
|  | return; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { | 
|  | Action = TargetLowering::Legal; | 
|  | } else { | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (SimpleFinishLegalizing) { | 
|  | SDNode *NewNode = Node; | 
|  | switch (Node->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::SHL: | 
|  | case ISD::SRL: | 
|  | case ISD::SRA: | 
|  | case ISD::ROTL: | 
|  | case ISD::ROTR: { | 
|  | // Legalizing shifts/rotates requires adjusting the shift amount | 
|  | // to the appropriate width. | 
|  | SDValue Op0 = Node->getOperand(0); | 
|  | SDValue Op1 = Node->getOperand(1); | 
|  | if (!Op1.getValueType().isVector()) { | 
|  | SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); | 
|  | // The getShiftAmountOperand() may create a new operand node or | 
|  | // return the existing one. If new operand is created we need | 
|  | // to update the parent node. | 
|  | // Do not try to legalize SAO here! It will be automatically legalized | 
|  | // in the next round. | 
|  | if (SAO != Op1) | 
|  | NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::SRL_PARTS: | 
|  | case ISD::SRA_PARTS: | 
|  | case ISD::SHL_PARTS: { | 
|  | // Legalizing shifts/rotates requires adjusting the shift amount | 
|  | // to the appropriate width. | 
|  | SDValue Op0 = Node->getOperand(0); | 
|  | SDValue Op1 = Node->getOperand(1); | 
|  | SDValue Op2 = Node->getOperand(2); | 
|  | if (!Op2.getValueType().isVector()) { | 
|  | SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); | 
|  | // The getShiftAmountOperand() may create a new operand node or | 
|  | // return the existing one. If new operand is created we need | 
|  | // to update the parent node. | 
|  | if (SAO != Op2) | 
|  | NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (NewNode != Node) { | 
|  | ReplaceNode(Node, NewNode); | 
|  | Node = NewNode; | 
|  | } | 
|  | switch (Action) { | 
|  | case TargetLowering::Legal: | 
|  | return; | 
|  | case TargetLowering::Custom: { | 
|  | // FIXME: The handling for custom lowering with multiple results is | 
|  | // a complete mess. | 
|  | if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { | 
|  | if (!(Res.getNode() != Node || Res.getResNo() != 0)) | 
|  | return; | 
|  |  | 
|  | if (Node->getNumValues() == 1) { | 
|  | // We can just directly replace this node with the lowered value. | 
|  | ReplaceNode(SDValue(Node, 0), Res); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 8> ResultVals; | 
|  | for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) | 
|  | ResultVals.push_back(Res.getValue(i)); | 
|  | ReplaceNode(Node, ResultVals.data()); | 
|  | return; | 
|  | } | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | case TargetLowering::Expand: | 
|  | if (ExpandNode(Node)) | 
|  | return; | 
|  | LLVM_FALLTHROUGH; | 
|  | case TargetLowering::LibCall: | 
|  | ConvertNodeToLibcall(Node); | 
|  | return; | 
|  | case TargetLowering::Promote: | 
|  | PromoteNode(Node); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (Node->getOpcode()) { | 
|  | default: | 
|  | #ifndef NDEBUG | 
|  | dbgs() << "NODE: "; | 
|  | Node->dump( &DAG); | 
|  | dbgs() << "\n"; | 
|  | #endif | 
|  | llvm_unreachable("Do not know how to legalize this operator!"); | 
|  |  | 
|  | case ISD::CALLSEQ_START: | 
|  | case ISD::CALLSEQ_END: | 
|  | break; | 
|  | case ISD::LOAD: { | 
|  | return LegalizeLoadOps(Node); | 
|  | } | 
|  | case ISD::STORE: { | 
|  | return LegalizeStoreOps(Node); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | SDValue Idx = Op.getOperand(1); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | // Before we generate a new store to a temporary stack slot, see if there is | 
|  | // already one that we can use. There often is because when we scalarize | 
|  | // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole | 
|  | // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in | 
|  | // the vector. If all are expanded here, we don't want one store per vector | 
|  | // element. | 
|  |  | 
|  | // Caches for hasPredecessorHelper | 
|  | SmallPtrSet<const SDNode *, 32> Visited; | 
|  | SmallVector<const SDNode *, 16> Worklist; | 
|  | Worklist.push_back(Idx.getNode()); | 
|  | SDValue StackPtr, Ch; | 
|  | for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), | 
|  | UE = Vec.getNode()->use_end(); UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { | 
|  | if (ST->isIndexed() || ST->isTruncatingStore() || | 
|  | ST->getValue() != Vec) | 
|  | continue; | 
|  |  | 
|  | // Make sure that nothing else could have stored into the destination of | 
|  | // this store. | 
|  | if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) | 
|  | continue; | 
|  |  | 
|  | // If the index is dependent on the store we will introduce a cycle when | 
|  | // creating the load (the load uses the index, and by replacing the chain | 
|  | // we will make the index dependent on the load). Also, the store might be | 
|  | // dependent on the extractelement and introduce a cycle when creating | 
|  | // the load. | 
|  | if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || | 
|  | ST->hasPredecessor(Op.getNode())) | 
|  | continue; | 
|  |  | 
|  | StackPtr = ST->getBasePtr(); | 
|  | Ch = SDValue(ST, 0); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | EVT VecVT = Vec.getValueType(); | 
|  |  | 
|  | if (!Ch.getNode()) { | 
|  | // Store the value to a temporary stack slot, then LOAD the returned part. | 
|  | StackPtr = DAG.CreateStackTemporary(VecVT); | 
|  | Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, | 
|  | MachinePointerInfo()); | 
|  | } | 
|  |  | 
|  | StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); | 
|  |  | 
|  | SDValue NewLoad; | 
|  |  | 
|  | if (Op.getValueType().isVector()) | 
|  | NewLoad = | 
|  | DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); | 
|  | else | 
|  | NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, | 
|  | MachinePointerInfo(), | 
|  | VecVT.getVectorElementType()); | 
|  |  | 
|  | // Replace the chain going out of the store, by the one out of the load. | 
|  | DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); | 
|  |  | 
|  | // We introduced a cycle though, so update the loads operands, making sure | 
|  | // to use the original store's chain as an incoming chain. | 
|  | SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), | 
|  | NewLoad->op_end()); | 
|  | NewLoadOperands[0] = Ch; | 
|  | NewLoad = | 
|  | SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); | 
|  | return NewLoad; | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { | 
|  | assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); | 
|  |  | 
|  | SDValue Vec  = Op.getOperand(0); | 
|  | SDValue Part = Op.getOperand(1); | 
|  | SDValue Idx  = Op.getOperand(2); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | // Store the value to a temporary stack slot, then LOAD the returned part. | 
|  | EVT VecVT = Vec.getValueType(); | 
|  | SDValue StackPtr = DAG.CreateStackTemporary(VecVT); | 
|  | int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); | 
|  | MachinePointerInfo PtrInfo = | 
|  | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); | 
|  |  | 
|  | // First store the whole vector. | 
|  | SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); | 
|  |  | 
|  | // Then store the inserted part. | 
|  | SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); | 
|  |  | 
|  | // Store the subvector. | 
|  | Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo()); | 
|  |  | 
|  | // Finally, load the updated vector. | 
|  | return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { | 
|  | // We can't handle this case efficiently.  Allocate a sufficiently | 
|  | // aligned object on the stack, store each element into it, then load | 
|  | // the result as a vector. | 
|  | // Create the stack frame object. | 
|  | EVT VT = Node->getValueType(0); | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | SDLoc dl(Node); | 
|  | SDValue FIPtr = DAG.CreateStackTemporary(VT); | 
|  | int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); | 
|  | MachinePointerInfo PtrInfo = | 
|  | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); | 
|  |  | 
|  | // Emit a store of each element to the stack slot. | 
|  | SmallVector<SDValue, 8> Stores; | 
|  | unsigned TypeByteSize = EltVT.getSizeInBits() / 8; | 
|  | // Store (in the right endianness) the elements to memory. | 
|  | for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { | 
|  | // Ignore undef elements. | 
|  | if (Node->getOperand(i).isUndef()) continue; | 
|  |  | 
|  | unsigned Offset = TypeByteSize*i; | 
|  |  | 
|  | SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType()); | 
|  | Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); | 
|  |  | 
|  | // If the destination vector element type is narrower than the source | 
|  | // element type, only store the bits necessary. | 
|  | if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { | 
|  | Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, | 
|  | Node->getOperand(i), Idx, | 
|  | PtrInfo.getWithOffset(Offset), EltVT)); | 
|  | } else | 
|  | Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), | 
|  | Idx, PtrInfo.getWithOffset(Offset))); | 
|  | } | 
|  |  | 
|  | SDValue StoreChain; | 
|  | if (!Stores.empty())    // Not all undef elements? | 
|  | StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); | 
|  | else | 
|  | StoreChain = DAG.getEntryNode(); | 
|  |  | 
|  | // Result is a load from the stack slot. | 
|  | return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// Keeps track of state when getting the sign of a floating-point value as an | 
|  | /// integer. | 
|  | struct FloatSignAsInt { | 
|  | EVT FloatVT; | 
|  | SDValue Chain; | 
|  | SDValue FloatPtr; | 
|  | SDValue IntPtr; | 
|  | MachinePointerInfo IntPointerInfo; | 
|  | MachinePointerInfo FloatPointerInfo; | 
|  | SDValue IntValue; | 
|  | APInt SignMask; | 
|  | uint8_t SignBit; | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// Bitcast a floating-point value to an integer value. Only bitcast the part | 
|  | /// containing the sign bit if the target has no integer value capable of | 
|  | /// holding all bits of the floating-point value. | 
|  | void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, | 
|  | const SDLoc &DL, | 
|  | SDValue Value) const { | 
|  | EVT FloatVT = Value.getValueType(); | 
|  | unsigned NumBits = FloatVT.getSizeInBits(); | 
|  | State.FloatVT = FloatVT; | 
|  | EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); | 
|  | // Convert to an integer of the same size. | 
|  | if (TLI.isTypeLegal(IVT)) { | 
|  | State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); | 
|  | State.SignMask = APInt::getSignMask(NumBits); | 
|  | State.SignBit = NumBits - 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | auto &DataLayout = DAG.getDataLayout(); | 
|  | // Store the float to memory, then load the sign part out as an integer. | 
|  | MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); | 
|  | // First create a temporary that is aligned for both the load and store. | 
|  | SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); | 
|  | int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); | 
|  | // Then store the float to it. | 
|  | State.FloatPtr = StackPtr; | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); | 
|  | State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, | 
|  | State.FloatPointerInfo); | 
|  |  | 
|  | SDValue IntPtr; | 
|  | if (DataLayout.isBigEndian()) { | 
|  | assert(FloatVT.isByteSized() && "Unsupported floating point type!"); | 
|  | // Load out a legal integer with the same sign bit as the float. | 
|  | IntPtr = StackPtr; | 
|  | State.IntPointerInfo = State.FloatPointerInfo; | 
|  | } else { | 
|  | // Advance the pointer so that the loaded byte will contain the sign bit. | 
|  | unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1; | 
|  | IntPtr = DAG.getNode(ISD::ADD, DL, StackPtr.getValueType(), StackPtr, | 
|  | DAG.getConstant(ByteOffset, DL, StackPtr.getValueType())); | 
|  | State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, | 
|  | ByteOffset); | 
|  | } | 
|  |  | 
|  | State.IntPtr = IntPtr; | 
|  | State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, | 
|  | State.IntPointerInfo, MVT::i8); | 
|  | State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7); | 
|  | State.SignBit = 7; | 
|  | } | 
|  |  | 
|  | /// Replace the integer value produced by getSignAsIntValue() with a new value | 
|  | /// and cast the result back to a floating-point type. | 
|  | SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, | 
|  | const SDLoc &DL, | 
|  | SDValue NewIntValue) const { | 
|  | if (!State.Chain) | 
|  | return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); | 
|  |  | 
|  | // Override the part containing the sign bit in the value stored on the stack. | 
|  | SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, | 
|  | State.IntPointerInfo, MVT::i8); | 
|  | return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, | 
|  | State.FloatPointerInfo); | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { | 
|  | SDLoc DL(Node); | 
|  | SDValue Mag = Node->getOperand(0); | 
|  | SDValue Sign = Node->getOperand(1); | 
|  |  | 
|  | // Get sign bit into an integer value. | 
|  | FloatSignAsInt SignAsInt; | 
|  | getSignAsIntValue(SignAsInt, DL, Sign); | 
|  |  | 
|  | EVT IntVT = SignAsInt.IntValue.getValueType(); | 
|  | SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); | 
|  | SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, | 
|  | SignMask); | 
|  |  | 
|  | // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) | 
|  | EVT FloatVT = Mag.getValueType(); | 
|  | if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { | 
|  | SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); | 
|  | SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); | 
|  | SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, | 
|  | DAG.getConstant(0, DL, IntVT), ISD::SETNE); | 
|  | return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); | 
|  | } | 
|  |  | 
|  | // Transform Mag value to integer, and clear the sign bit. | 
|  | FloatSignAsInt MagAsInt; | 
|  | getSignAsIntValue(MagAsInt, DL, Mag); | 
|  | EVT MagVT = MagAsInt.IntValue.getValueType(); | 
|  | SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); | 
|  | SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, | 
|  | ClearSignMask); | 
|  |  | 
|  | // Get the signbit at the right position for MagAsInt. | 
|  | int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; | 
|  | if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) { | 
|  | if (ShiftAmount > 0) { | 
|  | SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, IntVT); | 
|  | SignBit = DAG.getNode(ISD::SRL, DL, IntVT, SignBit, ShiftCnst); | 
|  | } else if (ShiftAmount < 0) { | 
|  | SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, IntVT); | 
|  | SignBit = DAG.getNode(ISD::SHL, DL, IntVT, SignBit, ShiftCnst); | 
|  | } | 
|  | SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); | 
|  | } else if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) { | 
|  | SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); | 
|  | if (ShiftAmount > 0) { | 
|  | SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, MagVT); | 
|  | SignBit = DAG.getNode(ISD::SRL, DL, MagVT, SignBit, ShiftCnst); | 
|  | } else if (ShiftAmount < 0) { | 
|  | SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, MagVT); | 
|  | SignBit = DAG.getNode(ISD::SHL, DL, MagVT, SignBit, ShiftCnst); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Store the part with the modified sign and convert back to float. | 
|  | SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); | 
|  | return modifySignAsInt(MagAsInt, DL, CopiedSign); | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { | 
|  | SDLoc DL(Node); | 
|  | SDValue Value = Node->getOperand(0); | 
|  |  | 
|  | // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. | 
|  | EVT FloatVT = Value.getValueType(); | 
|  | if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { | 
|  | SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); | 
|  | return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); | 
|  | } | 
|  |  | 
|  | // Transform value to integer, clear the sign bit and transform back. | 
|  | FloatSignAsInt ValueAsInt; | 
|  | getSignAsIntValue(ValueAsInt, DL, Value); | 
|  | EVT IntVT = ValueAsInt.IntValue.getValueType(); | 
|  | SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); | 
|  | SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, | 
|  | ClearSignMask); | 
|  | return modifySignAsInt(ValueAsInt, DL, ClearedSign); | 
|  | } | 
|  |  | 
|  | void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, | 
|  | SmallVectorImpl<SDValue> &Results) { | 
|  | unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); | 
|  | assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" | 
|  | " not tell us which reg is the stack pointer!"); | 
|  | SDLoc dl(Node); | 
|  | EVT VT = Node->getValueType(0); | 
|  | SDValue Tmp1 = SDValue(Node, 0); | 
|  | SDValue Tmp2 = SDValue(Node, 1); | 
|  | SDValue Tmp3 = Node->getOperand(2); | 
|  | SDValue Chain = Tmp1.getOperand(0); | 
|  |  | 
|  | // Chain the dynamic stack allocation so that it doesn't modify the stack | 
|  | // pointer when other instructions are using the stack. | 
|  | Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, dl, true), dl); | 
|  |  | 
|  | SDValue Size  = Tmp2.getOperand(1); | 
|  | SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); | 
|  | Chain = SP.getValue(1); | 
|  | unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); | 
|  | unsigned StackAlign = | 
|  | DAG.getSubtarget().getFrameLowering()->getStackAlignment(); | 
|  | Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value | 
|  | if (Align > StackAlign) | 
|  | Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, | 
|  | DAG.getConstant(-(uint64_t)Align, dl, VT)); | 
|  | Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain | 
|  |  | 
|  | Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), | 
|  | DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); | 
|  |  | 
|  | Results.push_back(Tmp1); | 
|  | Results.push_back(Tmp2); | 
|  | } | 
|  |  | 
|  | /// Legalize a SETCC with given LHS and RHS and condition code CC on the current | 
|  | /// target. | 
|  | /// | 
|  | /// If the SETCC has been legalized using AND / OR, then the legalized node | 
|  | /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert | 
|  | /// will be set to false. | 
|  | /// | 
|  | /// If the SETCC has been legalized by using getSetCCSwappedOperands(), | 
|  | /// then the values of LHS and RHS will be swapped, CC will be set to the | 
|  | /// new condition, and NeedInvert will be set to false. | 
|  | /// | 
|  | /// If the SETCC has been legalized using the inverse condcode, then LHS and | 
|  | /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert | 
|  | /// will be set to true. The caller must invert the result of the SETCC with | 
|  | /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect | 
|  | /// of a true/false result. | 
|  | /// | 
|  | /// \returns true if the SetCC has been legalized, false if it hasn't. | 
|  | bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, SDValue &LHS, | 
|  | SDValue &RHS, SDValue &CC, | 
|  | bool &NeedInvert, | 
|  | const SDLoc &dl) { | 
|  | MVT OpVT = LHS.getSimpleValueType(); | 
|  | ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); | 
|  | NeedInvert = false; | 
|  | switch (TLI.getCondCodeAction(CCCode, OpVT)) { | 
|  | default: llvm_unreachable("Unknown condition code action!"); | 
|  | case TargetLowering::Legal: | 
|  | // Nothing to do. | 
|  | break; | 
|  | case TargetLowering::Expand: { | 
|  | ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); | 
|  | if (TLI.isCondCodeLegal(InvCC, OpVT)) { | 
|  | std::swap(LHS, RHS); | 
|  | CC = DAG.getCondCode(InvCC); | 
|  | return true; | 
|  | } | 
|  | ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; | 
|  | unsigned Opc = 0; | 
|  | switch (CCCode) { | 
|  | default: llvm_unreachable("Don't know how to expand this condition!"); | 
|  | case ISD::SETO: | 
|  | assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT) | 
|  | == TargetLowering::Legal | 
|  | && "If SETO is expanded, SETOEQ must be legal!"); | 
|  | CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; | 
|  | case ISD::SETUO: | 
|  | assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT) | 
|  | == TargetLowering::Legal | 
|  | && "If SETUO is expanded, SETUNE must be legal!"); | 
|  | CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR;  break; | 
|  | case ISD::SETOEQ: | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETOLE: | 
|  | case ISD::SETONE: | 
|  | case ISD::SETUEQ: | 
|  | case ISD::SETUNE: | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETULT: | 
|  | case ISD::SETULE: | 
|  | // If we are floating point, assign and break, otherwise fall through. | 
|  | if (!OpVT.isInteger()) { | 
|  | // We can use the 4th bit to tell if we are the unordered | 
|  | // or ordered version of the opcode. | 
|  | CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; | 
|  | Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; | 
|  | CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); | 
|  | break; | 
|  | } | 
|  | // Fallthrough if we are unsigned integer. | 
|  | LLVM_FALLTHROUGH; | 
|  | case ISD::SETLE: | 
|  | case ISD::SETGT: | 
|  | case ISD::SETGE: | 
|  | case ISD::SETLT: | 
|  | // We only support using the inverted operation, which is computed above | 
|  | // and not a different manner of supporting expanding these cases. | 
|  | llvm_unreachable("Don't know how to expand this condition!"); | 
|  | case ISD::SETNE: | 
|  | case ISD::SETEQ: | 
|  | // Try inverting the result of the inverse condition. | 
|  | InvCC = CCCode == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ; | 
|  | if (TLI.isCondCodeLegal(InvCC, OpVT)) { | 
|  | CC = DAG.getCondCode(InvCC); | 
|  | NeedInvert = true; | 
|  | return true; | 
|  | } | 
|  | // If inverting the condition didn't work then we have no means to expand | 
|  | // the condition. | 
|  | llvm_unreachable("Don't know how to expand this condition!"); | 
|  | } | 
|  |  | 
|  | SDValue SetCC1, SetCC2; | 
|  | if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { | 
|  | // If we aren't the ordered or unorder operation, | 
|  | // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). | 
|  | SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); | 
|  | SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); | 
|  | } else { | 
|  | // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) | 
|  | SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1); | 
|  | SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2); | 
|  | } | 
|  | LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); | 
|  | RHS = SDValue(); | 
|  | CC  = SDValue(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Emit a store/load combination to the stack.  This stores | 
|  | /// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does | 
|  | /// a load from the stack slot to DestVT, extending it if needed. | 
|  | /// The resultant code need not be legal. | 
|  | SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, | 
|  | EVT DestVT, const SDLoc &dl) { | 
|  | // Create the stack frame object. | 
|  | unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment( | 
|  | SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); | 
|  | SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); | 
|  |  | 
|  | FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); | 
|  | int SPFI = StackPtrFI->getIndex(); | 
|  | MachinePointerInfo PtrInfo = | 
|  | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); | 
|  |  | 
|  | unsigned SrcSize = SrcOp.getValueSizeInBits(); | 
|  | unsigned SlotSize = SlotVT.getSizeInBits(); | 
|  | unsigned DestSize = DestVT.getSizeInBits(); | 
|  | Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); | 
|  | unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType); | 
|  |  | 
|  | // Emit a store to the stack slot.  Use a truncstore if the input value is | 
|  | // later than DestVT. | 
|  | SDValue Store; | 
|  |  | 
|  | if (SrcSize > SlotSize) | 
|  | Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, | 
|  | SlotVT, SrcAlign); | 
|  | else { | 
|  | assert(SrcSize == SlotSize && "Invalid store"); | 
|  | Store = | 
|  | DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, SrcAlign); | 
|  | } | 
|  |  | 
|  | // Result is a load from the stack slot. | 
|  | if (SlotSize == DestSize) | 
|  | return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); | 
|  |  | 
|  | assert(SlotSize < DestSize && "Unknown extension!"); | 
|  | return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, | 
|  | DestAlign); | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { | 
|  | SDLoc dl(Node); | 
|  | // Create a vector sized/aligned stack slot, store the value to element #0, | 
|  | // then load the whole vector back out. | 
|  | SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); | 
|  |  | 
|  | FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); | 
|  | int SPFI = StackPtrFI->getIndex(); | 
|  |  | 
|  | SDValue Ch = DAG.getTruncStore( | 
|  | DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, | 
|  | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), | 
|  | Node->getValueType(0).getVectorElementType()); | 
|  | return DAG.getLoad( | 
|  | Node->getValueType(0), dl, Ch, StackPtr, | 
|  | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI, SDValue &Res) { | 
|  | unsigned NumElems = Node->getNumOperands(); | 
|  | SDLoc dl(Node); | 
|  | EVT VT = Node->getValueType(0); | 
|  |  | 
|  | // Try to group the scalars into pairs, shuffle the pairs together, then | 
|  | // shuffle the pairs of pairs together, etc. until the vector has | 
|  | // been built. This will work only if all of the necessary shuffle masks | 
|  | // are legal. | 
|  |  | 
|  | // We do this in two phases; first to check the legality of the shuffles, | 
|  | // and next, assuming that all shuffles are legal, to create the new nodes. | 
|  | for (int Phase = 0; Phase < 2; ++Phase) { | 
|  | SmallVector<std::pair<SDValue, SmallVector<int, 16> >, 16> IntermedVals, | 
|  | NewIntermedVals; | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | SDValue V = Node->getOperand(i); | 
|  | if (V.isUndef()) | 
|  | continue; | 
|  |  | 
|  | SDValue Vec; | 
|  | if (Phase) | 
|  | Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); | 
|  | IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); | 
|  | } | 
|  |  | 
|  | while (IntermedVals.size() > 2) { | 
|  | NewIntermedVals.clear(); | 
|  | for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { | 
|  | // This vector and the next vector are shuffled together (simply to | 
|  | // append the one to the other). | 
|  | SmallVector<int, 16> ShuffleVec(NumElems, -1); | 
|  |  | 
|  | SmallVector<int, 16> FinalIndices; | 
|  | FinalIndices.reserve(IntermedVals[i].second.size() + | 
|  | IntermedVals[i+1].second.size()); | 
|  |  | 
|  | int k = 0; | 
|  | for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; | 
|  | ++j, ++k) { | 
|  | ShuffleVec[k] = j; | 
|  | FinalIndices.push_back(IntermedVals[i].second[j]); | 
|  | } | 
|  | for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; | 
|  | ++j, ++k) { | 
|  | ShuffleVec[k] = NumElems + j; | 
|  | FinalIndices.push_back(IntermedVals[i+1].second[j]); | 
|  | } | 
|  |  | 
|  | SDValue Shuffle; | 
|  | if (Phase) | 
|  | Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, | 
|  | IntermedVals[i+1].first, | 
|  | ShuffleVec); | 
|  | else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) | 
|  | return false; | 
|  | NewIntermedVals.push_back( | 
|  | std::make_pair(Shuffle, std::move(FinalIndices))); | 
|  | } | 
|  |  | 
|  | // If we had an odd number of defined values, then append the last | 
|  | // element to the array of new vectors. | 
|  | if ((IntermedVals.size() & 1) != 0) | 
|  | NewIntermedVals.push_back(IntermedVals.back()); | 
|  |  | 
|  | IntermedVals.swap(NewIntermedVals); | 
|  | } | 
|  |  | 
|  | assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && | 
|  | "Invalid number of intermediate vectors"); | 
|  | SDValue Vec1 = IntermedVals[0].first; | 
|  | SDValue Vec2; | 
|  | if (IntermedVals.size() > 1) | 
|  | Vec2 = IntermedVals[1].first; | 
|  | else if (Phase) | 
|  | Vec2 = DAG.getUNDEF(VT); | 
|  |  | 
|  | SmallVector<int, 16> ShuffleVec(NumElems, -1); | 
|  | for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) | 
|  | ShuffleVec[IntermedVals[0].second[i]] = i; | 
|  | for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) | 
|  | ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; | 
|  |  | 
|  | if (Phase) | 
|  | Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); | 
|  | else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Expand a BUILD_VECTOR node on targets that don't | 
|  | /// support the operation, but do support the resultant vector type. | 
|  | SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { | 
|  | unsigned NumElems = Node->getNumOperands(); | 
|  | SDValue Value1, Value2; | 
|  | SDLoc dl(Node); | 
|  | EVT VT = Node->getValueType(0); | 
|  | EVT OpVT = Node->getOperand(0).getValueType(); | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  |  | 
|  | // If the only non-undef value is the low element, turn this into a | 
|  | // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X. | 
|  | bool isOnlyLowElement = true; | 
|  | bool MoreThanTwoValues = false; | 
|  | bool isConstant = true; | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | SDValue V = Node->getOperand(i); | 
|  | if (V.isUndef()) | 
|  | continue; | 
|  | if (i > 0) | 
|  | isOnlyLowElement = false; | 
|  | if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) | 
|  | isConstant = false; | 
|  |  | 
|  | if (!Value1.getNode()) { | 
|  | Value1 = V; | 
|  | } else if (!Value2.getNode()) { | 
|  | if (V != Value1) | 
|  | Value2 = V; | 
|  | } else if (V != Value1 && V != Value2) { | 
|  | MoreThanTwoValues = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Value1.getNode()) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | if (isOnlyLowElement) | 
|  | return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); | 
|  |  | 
|  | // If all elements are constants, create a load from the constant pool. | 
|  | if (isConstant) { | 
|  | SmallVector<Constant*, 16> CV; | 
|  | for (unsigned i = 0, e = NumElems; i != e; ++i) { | 
|  | if (ConstantFPSDNode *V = | 
|  | dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { | 
|  | CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); | 
|  | } else if (ConstantSDNode *V = | 
|  | dyn_cast<ConstantSDNode>(Node->getOperand(i))) { | 
|  | if (OpVT==EltVT) | 
|  | CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); | 
|  | else { | 
|  | // If OpVT and EltVT don't match, EltVT is not legal and the | 
|  | // element values have been promoted/truncated earlier.  Undo this; | 
|  | // we don't want a v16i8 to become a v16i32 for example. | 
|  | const ConstantInt *CI = V->getConstantIntValue(); | 
|  | CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), | 
|  | CI->getZExtValue())); | 
|  | } | 
|  | } else { | 
|  | assert(Node->getOperand(i).isUndef()); | 
|  | Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); | 
|  | CV.push_back(UndefValue::get(OpNTy)); | 
|  | } | 
|  | } | 
|  | Constant *CP = ConstantVector::get(CV); | 
|  | SDValue CPIdx = | 
|  | DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); | 
|  | unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); | 
|  | return DAG.getLoad( | 
|  | VT, dl, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), | 
|  | Alignment); | 
|  | } | 
|  |  | 
|  | SmallSet<SDValue, 16> DefinedValues; | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | if (Node->getOperand(i).isUndef()) | 
|  | continue; | 
|  | DefinedValues.insert(Node->getOperand(i)); | 
|  | } | 
|  |  | 
|  | if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { | 
|  | if (!MoreThanTwoValues) { | 
|  | SmallVector<int, 8> ShuffleVec(NumElems, -1); | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | SDValue V = Node->getOperand(i); | 
|  | if (V.isUndef()) | 
|  | continue; | 
|  | ShuffleVec[i] = V == Value1 ? 0 : NumElems; | 
|  | } | 
|  | if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { | 
|  | // Get the splatted value into the low element of a vector register. | 
|  | SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); | 
|  | SDValue Vec2; | 
|  | if (Value2.getNode()) | 
|  | Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); | 
|  | else | 
|  | Vec2 = DAG.getUNDEF(VT); | 
|  |  | 
|  | // Return shuffle(LowValVec, undef, <0,0,0,0>) | 
|  | return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); | 
|  | } | 
|  | } else { | 
|  | SDValue Res; | 
|  | if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) | 
|  | return Res; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we can't handle this case efficiently. | 
|  | return ExpandVectorBuildThroughStack(Node); | 
|  | } | 
|  |  | 
|  | // Expand a node into a call to a libcall.  If the result value | 
|  | // does not fit into a register, return the lo part and set the hi part to the | 
|  | // by-reg argument.  If it does fit into a single register, return the result | 
|  | // and leave the Hi part unset. | 
|  | SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, | 
|  | bool isSigned) { | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | for (const SDValue &Op : Node->op_values()) { | 
|  | EVT ArgVT = Op.getValueType(); | 
|  | Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); | 
|  | Entry.Node = Op; | 
|  | Entry.Ty = ArgTy; | 
|  | Entry.IsSExt = isSigned; | 
|  | Entry.IsZExt = !isSigned; | 
|  | Args.push_back(Entry); | 
|  | } | 
|  | SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), | 
|  | TLI.getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); | 
|  |  | 
|  | // By default, the input chain to this libcall is the entry node of the | 
|  | // function. If the libcall is going to be emitted as a tail call then | 
|  | // TLI.isUsedByReturnOnly will change it to the right chain if the return | 
|  | // node which is being folded has a non-entry input chain. | 
|  | SDValue InChain = DAG.getEntryNode(); | 
|  |  | 
|  | // isTailCall may be true since the callee does not reference caller stack | 
|  | // frame. Check if it's in the right position and that the return types match. | 
|  | SDValue TCChain = InChain; | 
|  | const Function *F = DAG.getMachineFunction().getFunction(); | 
|  | bool isTailCall = | 
|  | TLI.isInTailCallPosition(DAG, Node, TCChain) && | 
|  | (RetTy == F->getReturnType() || F->getReturnType()->isVoidTy()); | 
|  | if (isTailCall) | 
|  | InChain = TCChain; | 
|  |  | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | CLI.setDebugLoc(SDLoc(Node)) | 
|  | .setChain(InChain) | 
|  | .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, | 
|  | std::move(Args)) | 
|  | .setTailCall(isTailCall) | 
|  | .setSExtResult(isSigned) | 
|  | .setZExtResult(!isSigned); | 
|  |  | 
|  | std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); | 
|  |  | 
|  | if (!CallInfo.second.getNode()) | 
|  | // It's a tailcall, return the chain (which is the DAG root). | 
|  | return DAG.getRoot(); | 
|  |  | 
|  | return CallInfo.first; | 
|  | } | 
|  |  | 
|  | /// Generate a libcall taking the given operands as arguments | 
|  | /// and returning a result of type RetVT. | 
|  | SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, | 
|  | const SDValue *Ops, unsigned NumOps, | 
|  | bool isSigned, const SDLoc &dl) { | 
|  | TargetLowering::ArgListTy Args; | 
|  | Args.reserve(NumOps); | 
|  |  | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | for (unsigned i = 0; i != NumOps; ++i) { | 
|  | Entry.Node = Ops[i]; | 
|  | Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); | 
|  | Entry.IsSExt = isSigned; | 
|  | Entry.IsZExt = !isSigned; | 
|  | Args.push_back(Entry); | 
|  | } | 
|  | SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), | 
|  | TLI.getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); | 
|  |  | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | CLI.setDebugLoc(dl) | 
|  | .setChain(DAG.getEntryNode()) | 
|  | .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, | 
|  | std::move(Args)) | 
|  | .setSExtResult(isSigned) | 
|  | .setZExtResult(!isSigned); | 
|  |  | 
|  | std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI); | 
|  |  | 
|  | return CallInfo.first; | 
|  | } | 
|  |  | 
|  | // Expand a node into a call to a libcall. Similar to | 
|  | // ExpandLibCall except that the first operand is the in-chain. | 
|  | std::pair<SDValue, SDValue> | 
|  | SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, | 
|  | SDNode *Node, | 
|  | bool isSigned) { | 
|  | SDValue InChain = Node->getOperand(0); | 
|  |  | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { | 
|  | EVT ArgVT = Node->getOperand(i).getValueType(); | 
|  | Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); | 
|  | Entry.Node = Node->getOperand(i); | 
|  | Entry.Ty = ArgTy; | 
|  | Entry.IsSExt = isSigned; | 
|  | Entry.IsZExt = !isSigned; | 
|  | Args.push_back(Entry); | 
|  | } | 
|  | SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), | 
|  | TLI.getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); | 
|  |  | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | CLI.setDebugLoc(SDLoc(Node)) | 
|  | .setChain(InChain) | 
|  | .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, | 
|  | std::move(Args)) | 
|  | .setSExtResult(isSigned) | 
|  | .setZExtResult(!isSigned); | 
|  |  | 
|  | std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); | 
|  |  | 
|  | return CallInfo; | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, | 
|  | RTLIB::Libcall Call_F32, | 
|  | RTLIB::Libcall Call_F64, | 
|  | RTLIB::Libcall Call_F80, | 
|  | RTLIB::Libcall Call_F128, | 
|  | RTLIB::Libcall Call_PPCF128) { | 
|  | RTLIB::Libcall LC; | 
|  | switch (Node->getSimpleValueType(0).SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected request for libcall!"); | 
|  | case MVT::f32: LC = Call_F32; break; | 
|  | case MVT::f64: LC = Call_F64; break; | 
|  | case MVT::f80: LC = Call_F80; break; | 
|  | case MVT::f128: LC = Call_F128; break; | 
|  | case MVT::ppcf128: LC = Call_PPCF128; break; | 
|  | } | 
|  | return ExpandLibCall(LC, Node, false); | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, | 
|  | RTLIB::Libcall Call_I8, | 
|  | RTLIB::Libcall Call_I16, | 
|  | RTLIB::Libcall Call_I32, | 
|  | RTLIB::Libcall Call_I64, | 
|  | RTLIB::Libcall Call_I128) { | 
|  | RTLIB::Libcall LC; | 
|  | switch (Node->getSimpleValueType(0).SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected request for libcall!"); | 
|  | case MVT::i8:   LC = Call_I8; break; | 
|  | case MVT::i16:  LC = Call_I16; break; | 
|  | case MVT::i32:  LC = Call_I32; break; | 
|  | case MVT::i64:  LC = Call_I64; break; | 
|  | case MVT::i128: LC = Call_I128; break; | 
|  | } | 
|  | return ExpandLibCall(LC, Node, isSigned); | 
|  | } | 
|  |  | 
|  | /// Issue libcalls to __{u}divmod to compute div / rem pairs. | 
|  | void | 
|  | SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, | 
|  | SmallVectorImpl<SDValue> &Results) { | 
|  | unsigned Opcode = Node->getOpcode(); | 
|  | bool isSigned = Opcode == ISD::SDIVREM; | 
|  |  | 
|  | RTLIB::Libcall LC; | 
|  | switch (Node->getSimpleValueType(0).SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected request for libcall!"); | 
|  | case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break; | 
|  | case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; | 
|  | case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; | 
|  | case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; | 
|  | case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; | 
|  | } | 
|  |  | 
|  | // The input chain to this libcall is the entry node of the function. | 
|  | // Legalizing the call will automatically add the previous call to the | 
|  | // dependence. | 
|  | SDValue InChain = DAG.getEntryNode(); | 
|  |  | 
|  | EVT RetVT = Node->getValueType(0); | 
|  | Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); | 
|  |  | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | for (const SDValue &Op : Node->op_values()) { | 
|  | EVT ArgVT = Op.getValueType(); | 
|  | Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); | 
|  | Entry.Node = Op; | 
|  | Entry.Ty = ArgTy; | 
|  | Entry.IsSExt = isSigned; | 
|  | Entry.IsZExt = !isSigned; | 
|  | Args.push_back(Entry); | 
|  | } | 
|  |  | 
|  | // Also pass the return address of the remainder. | 
|  | SDValue FIPtr = DAG.CreateStackTemporary(RetVT); | 
|  | Entry.Node = FIPtr; | 
|  | Entry.Ty = RetTy->getPointerTo(); | 
|  | Entry.IsSExt = isSigned; | 
|  | Entry.IsZExt = !isSigned; | 
|  | Args.push_back(Entry); | 
|  |  | 
|  | SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), | 
|  | TLI.getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | SDLoc dl(Node); | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | CLI.setDebugLoc(dl) | 
|  | .setChain(InChain) | 
|  | .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, | 
|  | std::move(Args)) | 
|  | .setSExtResult(isSigned) | 
|  | .setZExtResult(!isSigned); | 
|  |  | 
|  | std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); | 
|  |  | 
|  | // Remainder is loaded back from the stack frame. | 
|  | SDValue Rem = | 
|  | DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); | 
|  | Results.push_back(CallInfo.first); | 
|  | Results.push_back(Rem); | 
|  | } | 
|  |  | 
|  | /// Return true if sincos libcall is available. | 
|  | static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { | 
|  | RTLIB::Libcall LC; | 
|  | switch (Node->getSimpleValueType(0).SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected request for libcall!"); | 
|  | case MVT::f32:     LC = RTLIB::SINCOS_F32; break; | 
|  | case MVT::f64:     LC = RTLIB::SINCOS_F64; break; | 
|  | case MVT::f80:     LC = RTLIB::SINCOS_F80; break; | 
|  | case MVT::f128:    LC = RTLIB::SINCOS_F128; break; | 
|  | case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; | 
|  | } | 
|  | return TLI.getLibcallName(LC) != nullptr; | 
|  | } | 
|  |  | 
|  | /// Return true if sincos libcall is available and can be used to combine sin | 
|  | /// and cos. | 
|  | static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI, | 
|  | const TargetMachine &TM) { | 
|  | if (!isSinCosLibcallAvailable(Node, TLI)) | 
|  | return false; | 
|  | // GNU sin/cos functions set errno while sincos does not. Therefore | 
|  | // combining sin and cos is only safe if unsafe-fpmath is enabled. | 
|  | if (TM.getTargetTriple().isGNUEnvironment() && !TM.Options.UnsafeFPMath) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Only issue sincos libcall if both sin and cos are needed. | 
|  | static bool useSinCos(SDNode *Node) { | 
|  | unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN | 
|  | ? ISD::FCOS : ISD::FSIN; | 
|  |  | 
|  | SDValue Op0 = Node->getOperand(0); | 
|  | for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), | 
|  | UE = Op0.getNode()->use_end(); UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | if (User == Node) | 
|  | continue; | 
|  | // The other user might have been turned into sincos already. | 
|  | if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Issue libcalls to sincos to compute sin / cos pairs. | 
|  | void | 
|  | SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, | 
|  | SmallVectorImpl<SDValue> &Results) { | 
|  | RTLIB::Libcall LC; | 
|  | switch (Node->getSimpleValueType(0).SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected request for libcall!"); | 
|  | case MVT::f32:     LC = RTLIB::SINCOS_F32; break; | 
|  | case MVT::f64:     LC = RTLIB::SINCOS_F64; break; | 
|  | case MVT::f80:     LC = RTLIB::SINCOS_F80; break; | 
|  | case MVT::f128:    LC = RTLIB::SINCOS_F128; break; | 
|  | case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; | 
|  | } | 
|  |  | 
|  | // The input chain to this libcall is the entry node of the function. | 
|  | // Legalizing the call will automatically add the previous call to the | 
|  | // dependence. | 
|  | SDValue InChain = DAG.getEntryNode(); | 
|  |  | 
|  | EVT RetVT = Node->getValueType(0); | 
|  | Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); | 
|  |  | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering::ArgListEntry Entry; | 
|  |  | 
|  | // Pass the argument. | 
|  | Entry.Node = Node->getOperand(0); | 
|  | Entry.Ty = RetTy; | 
|  | Entry.IsSExt = false; | 
|  | Entry.IsZExt = false; | 
|  | Args.push_back(Entry); | 
|  |  | 
|  | // Pass the return address of sin. | 
|  | SDValue SinPtr = DAG.CreateStackTemporary(RetVT); | 
|  | Entry.Node = SinPtr; | 
|  | Entry.Ty = RetTy->getPointerTo(); | 
|  | Entry.IsSExt = false; | 
|  | Entry.IsZExt = false; | 
|  | Args.push_back(Entry); | 
|  |  | 
|  | // Also pass the return address of the cos. | 
|  | SDValue CosPtr = DAG.CreateStackTemporary(RetVT); | 
|  | Entry.Node = CosPtr; | 
|  | Entry.Ty = RetTy->getPointerTo(); | 
|  | Entry.IsSExt = false; | 
|  | Entry.IsZExt = false; | 
|  | Args.push_back(Entry); | 
|  |  | 
|  | SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), | 
|  | TLI.getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | SDLoc dl(Node); | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( | 
|  | TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, | 
|  | std::move(Args)); | 
|  |  | 
|  | std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); | 
|  |  | 
|  | Results.push_back( | 
|  | DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); | 
|  | Results.push_back( | 
|  | DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); | 
|  | } | 
|  |  | 
|  | /// This function is responsible for legalizing a | 
|  | /// INT_TO_FP operation of the specified operand when the target requests that | 
|  | /// we expand it.  At this point, we know that the result and operand types are | 
|  | /// legal for the target. | 
|  | SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, | 
|  | EVT DestVT, | 
|  | const SDLoc &dl) { | 
|  | // TODO: Should any fast-math-flags be set for the created nodes? | 
|  |  | 
|  | if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { | 
|  | // simple 32-bit [signed|unsigned] integer to float/double expansion | 
|  |  | 
|  | // Get the stack frame index of a 8 byte buffer. | 
|  | SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); | 
|  |  | 
|  | // word offset constant for Hi/Lo address computation | 
|  | SDValue WordOff = DAG.getConstant(sizeof(int), dl, | 
|  | StackSlot.getValueType()); | 
|  | // set up Hi and Lo (into buffer) address based on endian | 
|  | SDValue Hi = StackSlot; | 
|  | SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(), | 
|  | StackSlot, WordOff); | 
|  | if (DAG.getDataLayout().isLittleEndian()) | 
|  | std::swap(Hi, Lo); | 
|  |  | 
|  | // if signed map to unsigned space | 
|  | SDValue Op0Mapped; | 
|  | if (isSigned) { | 
|  | // constant used to invert sign bit (signed to unsigned mapping) | 
|  | SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32); | 
|  | Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); | 
|  | } else { | 
|  | Op0Mapped = Op0; | 
|  | } | 
|  | // store the lo of the constructed double - based on integer input | 
|  | SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo, | 
|  | MachinePointerInfo()); | 
|  | // initial hi portion of constructed double | 
|  | SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32); | 
|  | // store the hi of the constructed double - biased exponent | 
|  | SDValue Store2 = | 
|  | DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo()); | 
|  | // load the constructed double | 
|  | SDValue Load = | 
|  | DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo()); | 
|  | // FP constant to bias correct the final result | 
|  | SDValue Bias = DAG.getConstantFP(isSigned ? | 
|  | BitsToDouble(0x4330000080000000ULL) : | 
|  | BitsToDouble(0x4330000000000000ULL), | 
|  | dl, MVT::f64); | 
|  | // subtract the bias | 
|  | SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); | 
|  | // final result | 
|  | SDValue Result; | 
|  | // handle final rounding | 
|  | if (DestVT == MVT::f64) { | 
|  | // do nothing | 
|  | Result = Sub; | 
|  | } else if (DestVT.bitsLT(MVT::f64)) { | 
|  | Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | } else if (DestVT.bitsGT(MVT::f64)) { | 
|  | Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  | assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); | 
|  | // Code below here assumes !isSigned without checking again. | 
|  |  | 
|  | // Implementation of unsigned i64 to f64 following the algorithm in | 
|  | // __floatundidf in compiler_rt. This implementation has the advantage | 
|  | // of performing rounding correctly, both in the default rounding mode | 
|  | // and in all alternate rounding modes. | 
|  | // TODO: Generalize this for use with other types. | 
|  | if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) { | 
|  | SDValue TwoP52 = | 
|  | DAG.getConstant(UINT64_C(0x4330000000000000), dl, MVT::i64); | 
|  | SDValue TwoP84PlusTwoP52 = | 
|  | DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), dl, | 
|  | MVT::f64); | 
|  | SDValue TwoP84 = | 
|  | DAG.getConstant(UINT64_C(0x4530000000000000), dl, MVT::i64); | 
|  |  | 
|  | SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32); | 
|  | SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, | 
|  | DAG.getConstant(32, dl, MVT::i64)); | 
|  | SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52); | 
|  | SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84); | 
|  | SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr); | 
|  | SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr); | 
|  | SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, | 
|  | TwoP84PlusTwoP52); | 
|  | return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub); | 
|  | } | 
|  |  | 
|  | // Implementation of unsigned i64 to f32. | 
|  | // TODO: Generalize this for use with other types. | 
|  | if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) { | 
|  | // For unsigned conversions, convert them to signed conversions using the | 
|  | // algorithm from the x86_64 __floatundidf in compiler_rt. | 
|  | if (!isSigned) { | 
|  | SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0); | 
|  |  | 
|  | SDValue ShiftConst = DAG.getConstant( | 
|  | 1, dl, TLI.getShiftAmountTy(Op0.getValueType(), DAG.getDataLayout())); | 
|  | SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst); | 
|  | SDValue AndConst = DAG.getConstant(1, dl, MVT::i64); | 
|  | SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst); | 
|  | SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr); | 
|  |  | 
|  | SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or); | 
|  | SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt); | 
|  |  | 
|  | // TODO: This really should be implemented using a branch rather than a | 
|  | // select.  We happen to get lucky and machinesink does the right | 
|  | // thing most of the time.  This would be a good candidate for a | 
|  | //pseudo-op, or, even better, for whole-function isel. | 
|  | SDValue SignBitTest = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), | 
|  | Op0, DAG.getConstant(0, dl, MVT::i64), ISD::SETLT); | 
|  | return DAG.getSelect(dl, MVT::f32, SignBitTest, Slow, Fast); | 
|  | } | 
|  |  | 
|  | // Otherwise, implement the fully general conversion. | 
|  |  | 
|  | SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, | 
|  | DAG.getConstant(UINT64_C(0xfffffffffffff800), dl, MVT::i64)); | 
|  | SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, | 
|  | DAG.getConstant(UINT64_C(0x800), dl, MVT::i64)); | 
|  | SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, | 
|  | DAG.getConstant(UINT64_C(0x7ff), dl, MVT::i64)); | 
|  | SDValue Ne = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), And2, | 
|  | DAG.getConstant(UINT64_C(0), dl, MVT::i64), | 
|  | ISD::SETNE); | 
|  | SDValue Sel = DAG.getSelect(dl, MVT::i64, Ne, Or, Op0); | 
|  | SDValue Ge = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), Op0, | 
|  | DAG.getConstant(UINT64_C(0x0020000000000000), dl, | 
|  | MVT::i64), | 
|  | ISD::SETUGE); | 
|  | SDValue Sel2 = DAG.getSelect(dl, MVT::i64, Ge, Sel, Op0); | 
|  | EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType(), DAG.getDataLayout()); | 
|  |  | 
|  | SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2, | 
|  | DAG.getConstant(32, dl, SHVT)); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh); | 
|  | SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc); | 
|  | SDValue TwoP32 = | 
|  | DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), dl, | 
|  | MVT::f64); | 
|  | SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt); | 
|  | SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2); | 
|  | SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo); | 
|  | SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2); | 
|  | return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd, | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | } | 
|  |  | 
|  | SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); | 
|  |  | 
|  | SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(Op0.getValueType()), | 
|  | Op0, | 
|  | DAG.getConstant(0, dl, Op0.getValueType()), | 
|  | ISD::SETLT); | 
|  | SDValue Zero = DAG.getIntPtrConstant(0, dl), | 
|  | Four = DAG.getIntPtrConstant(4, dl); | 
|  | SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), | 
|  | SignSet, Four, Zero); | 
|  |  | 
|  | // If the sign bit of the integer is set, the large number will be treated | 
|  | // as a negative number.  To counteract this, the dynamic code adds an | 
|  | // offset depending on the data type. | 
|  | uint64_t FF; | 
|  | switch (Op0.getSimpleValueType().SimpleTy) { | 
|  | default: llvm_unreachable("Unsupported integer type!"); | 
|  | case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float) | 
|  | case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float) | 
|  | case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float) | 
|  | case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float) | 
|  | } | 
|  | if (DAG.getDataLayout().isLittleEndian()) | 
|  | FF <<= 32; | 
|  | Constant *FudgeFactor = ConstantInt::get( | 
|  | Type::getInt64Ty(*DAG.getContext()), FF); | 
|  |  | 
|  | SDValue CPIdx = | 
|  | DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); | 
|  | unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); | 
|  | CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); | 
|  | Alignment = std::min(Alignment, 4u); | 
|  | SDValue FudgeInReg; | 
|  | if (DestVT == MVT::f32) | 
|  | FudgeInReg = DAG.getLoad( | 
|  | MVT::f32, dl, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), | 
|  | Alignment); | 
|  | else { | 
|  | SDValue Load = DAG.getExtLoad( | 
|  | ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, | 
|  | Alignment); | 
|  | HandleSDNode Handle(Load); | 
|  | LegalizeOp(Load.getNode()); | 
|  | FudgeInReg = Handle.getValue(); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); | 
|  | } | 
|  |  | 
|  | /// This function is responsible for legalizing a | 
|  | /// *INT_TO_FP operation of the specified operand when the target requests that | 
|  | /// we promote it.  At this point, we know that the result and operand types are | 
|  | /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP | 
|  | /// operation that takes a larger input. | 
|  | SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, | 
|  | bool isSigned, | 
|  | const SDLoc &dl) { | 
|  | // First step, figure out the appropriate *INT_TO_FP operation to use. | 
|  | EVT NewInTy = LegalOp.getValueType(); | 
|  |  | 
|  | unsigned OpToUse = 0; | 
|  |  | 
|  | // Scan for the appropriate larger type to use. | 
|  | while (1) { | 
|  | NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); | 
|  | assert(NewInTy.isInteger() && "Ran out of possibilities!"); | 
|  |  | 
|  | // If the target supports SINT_TO_FP of this type, use it. | 
|  | if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { | 
|  | OpToUse = ISD::SINT_TO_FP; | 
|  | break; | 
|  | } | 
|  | if (isSigned) continue; | 
|  |  | 
|  | // If the target supports UINT_TO_FP of this type, use it. | 
|  | if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { | 
|  | OpToUse = ISD::UINT_TO_FP; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Otherwise, try a larger type. | 
|  | } | 
|  |  | 
|  | // Okay, we found the operation and type to use.  Zero extend our input to the | 
|  | // desired type then run the operation on it. | 
|  | return DAG.getNode(OpToUse, dl, DestVT, | 
|  | DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, | 
|  | dl, NewInTy, LegalOp)); | 
|  | } | 
|  |  | 
|  | /// This function is responsible for legalizing a | 
|  | /// FP_TO_*INT operation of the specified operand when the target requests that | 
|  | /// we promote it.  At this point, we know that the result and operand types are | 
|  | /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT | 
|  | /// operation that returns a larger result. | 
|  | SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, | 
|  | bool isSigned, | 
|  | const SDLoc &dl) { | 
|  | // First step, figure out the appropriate FP_TO*INT operation to use. | 
|  | EVT NewOutTy = DestVT; | 
|  |  | 
|  | unsigned OpToUse = 0; | 
|  |  | 
|  | // Scan for the appropriate larger type to use. | 
|  | while (1) { | 
|  | NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); | 
|  | assert(NewOutTy.isInteger() && "Ran out of possibilities!"); | 
|  |  | 
|  | // A larger signed type can hold all unsigned values of the requested type, | 
|  | // so using FP_TO_SINT is valid | 
|  | if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { | 
|  | OpToUse = ISD::FP_TO_SINT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. | 
|  | if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { | 
|  | OpToUse = ISD::FP_TO_UINT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Otherwise, try a larger type. | 
|  | } | 
|  |  | 
|  |  | 
|  | // Okay, we found the operation and type to use. | 
|  | SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); | 
|  |  | 
|  | // Truncate the result of the extended FP_TO_*INT operation to the desired | 
|  | // size. | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); | 
|  | } | 
|  |  | 
|  | /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts. | 
|  | SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) { | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); | 
|  | unsigned Sz = VT.getScalarSizeInBits(); | 
|  |  | 
|  | SDValue Tmp, Tmp2, Tmp3; | 
|  |  | 
|  | // If we can, perform BSWAP first and then the mask+swap the i4, then i2 | 
|  | // and finally the i1 pairs. | 
|  | // TODO: We can easily support i4/i2 legal types if any target ever does. | 
|  | if (Sz >= 8 && isPowerOf2_32(Sz)) { | 
|  | // Create the masks - repeating the pattern every byte. | 
|  | APInt MaskHi4(Sz, 0), MaskHi2(Sz, 0), MaskHi1(Sz, 0); | 
|  | APInt MaskLo4(Sz, 0), MaskLo2(Sz, 0), MaskLo1(Sz, 0); | 
|  | for (unsigned J = 0; J != Sz; J += 8) { | 
|  | MaskHi4 = MaskHi4 | (0xF0ull << J); | 
|  | MaskLo4 = MaskLo4 | (0x0Full << J); | 
|  | MaskHi2 = MaskHi2 | (0xCCull << J); | 
|  | MaskLo2 = MaskLo2 | (0x33ull << J); | 
|  | MaskHi1 = MaskHi1 | (0xAAull << J); | 
|  | MaskLo1 = MaskLo1 | (0x55ull << J); | 
|  | } | 
|  |  | 
|  | // BSWAP if the type is wider than a single byte. | 
|  | Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); | 
|  |  | 
|  | // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) | 
|  | Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); | 
|  | Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); | 
|  | Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, VT)); | 
|  | Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, VT)); | 
|  | Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); | 
|  |  | 
|  | // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) | 
|  | Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); | 
|  | Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); | 
|  | Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, VT)); | 
|  | Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, VT)); | 
|  | Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); | 
|  |  | 
|  | // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) | 
|  | Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); | 
|  | Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); | 
|  | Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, VT)); | 
|  | Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, VT)); | 
|  | Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); | 
|  | return Tmp; | 
|  | } | 
|  |  | 
|  | Tmp = DAG.getConstant(0, dl, VT); | 
|  | for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { | 
|  | if (I < J) | 
|  | Tmp2 = | 
|  | DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); | 
|  | else | 
|  | Tmp2 = | 
|  | DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); | 
|  |  | 
|  | APInt Shift(Sz, 1); | 
|  | Shift <<= J; | 
|  | Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); | 
|  | Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); | 
|  | } | 
|  |  | 
|  | return Tmp; | 
|  | } | 
|  |  | 
|  | /// Open code the operations for BSWAP of the specified operation. | 
|  | SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) { | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); | 
|  | SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; | 
|  | switch (VT.getSimpleVT().getScalarType().SimpleTy) { | 
|  | default: llvm_unreachable("Unhandled Expand type in BSWAP!"); | 
|  | case MVT::i16: | 
|  | Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); | 
|  | Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); | 
|  | return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); | 
|  | case MVT::i32: | 
|  | Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); | 
|  | Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); | 
|  | Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); | 
|  | Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); | 
|  | Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, | 
|  | DAG.getConstant(0xFF0000, dl, VT)); | 
|  | Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); | 
|  | Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); | 
|  | Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); | 
|  | return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); | 
|  | case MVT::i64: | 
|  | Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); | 
|  | Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); | 
|  | Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); | 
|  | Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); | 
|  | Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); | 
|  | Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); | 
|  | Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); | 
|  | Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); | 
|  | Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, | 
|  | DAG.getConstant(255ULL<<48, dl, VT)); | 
|  | Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, | 
|  | DAG.getConstant(255ULL<<40, dl, VT)); | 
|  | Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, | 
|  | DAG.getConstant(255ULL<<32, dl, VT)); | 
|  | Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, | 
|  | DAG.getConstant(255ULL<<24, dl, VT)); | 
|  | Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, | 
|  | DAG.getConstant(255ULL<<16, dl, VT)); | 
|  | Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, | 
|  | DAG.getConstant(255ULL<<8 , dl, VT)); | 
|  | Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); | 
|  | Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); | 
|  | Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); | 
|  | Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); | 
|  | Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); | 
|  | Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); | 
|  | return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Expand the specified bitcount instruction into operations. | 
|  | SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, | 
|  | const SDLoc &dl) { | 
|  | switch (Opc) { | 
|  | default: llvm_unreachable("Cannot expand this yet!"); | 
|  | case ISD::CTPOP: { | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); | 
|  | unsigned Len = VT.getSizeInBits(); | 
|  |  | 
|  | assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 && | 
|  | "CTPOP not implemented for this type."); | 
|  |  | 
|  | // This is the "best" algorithm from | 
|  | // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel | 
|  |  | 
|  | SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), | 
|  | dl, VT); | 
|  | SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), | 
|  | dl, VT); | 
|  | SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), | 
|  | dl, VT); | 
|  | SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), | 
|  | dl, VT); | 
|  |  | 
|  | // v = v - ((v >> 1) & 0x55555555...) | 
|  | Op = DAG.getNode(ISD::SUB, dl, VT, Op, | 
|  | DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNode(ISD::SRL, dl, VT, Op, | 
|  | DAG.getConstant(1, dl, ShVT)), | 
|  | Mask55)); | 
|  | // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) | 
|  | Op = DAG.getNode(ISD::ADD, dl, VT, | 
|  | DAG.getNode(ISD::AND, dl, VT, Op, Mask33), | 
|  | DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNode(ISD::SRL, dl, VT, Op, | 
|  | DAG.getConstant(2, dl, ShVT)), | 
|  | Mask33)); | 
|  | // v = (v + (v >> 4)) & 0x0F0F0F0F... | 
|  | Op = DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNode(ISD::ADD, dl, VT, Op, | 
|  | DAG.getNode(ISD::SRL, dl, VT, Op, | 
|  | DAG.getConstant(4, dl, ShVT))), | 
|  | Mask0F); | 
|  | // v = (v * 0x01010101...) >> (Len - 8) | 
|  | Op = DAG.getNode(ISD::SRL, dl, VT, | 
|  | DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), | 
|  | DAG.getConstant(Len - 8, dl, ShVT)); | 
|  |  | 
|  | return Op; | 
|  | } | 
|  | case ISD::CTLZ_ZERO_UNDEF: | 
|  | // This trivially expands to CTLZ. | 
|  | return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op); | 
|  | case ISD::CTLZ: { | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned len = VT.getSizeInBits(); | 
|  |  | 
|  | if (TLI.isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { | 
|  | EVT SetCCVT = getSetCCResultType(VT); | 
|  | SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); | 
|  | SDValue Zero = DAG.getConstant(0, dl, VT); | 
|  | SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); | 
|  | return DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, | 
|  | DAG.getConstant(len, dl, VT), CTLZ); | 
|  | } | 
|  |  | 
|  | // for now, we do this: | 
|  | // x = x | (x >> 1); | 
|  | // x = x | (x >> 2); | 
|  | // ... | 
|  | // x = x | (x >>16); | 
|  | // x = x | (x >>32); // for 64-bit input | 
|  | // return popcount(~x); | 
|  | // | 
|  | // Ref: "Hacker's Delight" by Henry Warren | 
|  | EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); | 
|  | for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { | 
|  | SDValue Tmp3 = DAG.getConstant(1ULL << i, dl, ShVT); | 
|  | Op = DAG.getNode(ISD::OR, dl, VT, Op, | 
|  | DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); | 
|  | } | 
|  | Op = DAG.getNOT(dl, Op, VT); | 
|  | return DAG.getNode(ISD::CTPOP, dl, VT, Op); | 
|  | } | 
|  | case ISD::CTTZ_ZERO_UNDEF: | 
|  | // This trivially expands to CTTZ. | 
|  | return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op); | 
|  | case ISD::CTTZ: { | 
|  | // for now, we use: { return popcount(~x & (x - 1)); } | 
|  | // unless the target has ctlz but not ctpop, in which case we use: | 
|  | // { return 32 - nlz(~x & (x-1)); } | 
|  | // Ref: "Hacker's Delight" by Henry Warren | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNOT(dl, Op, VT), | 
|  | DAG.getNode(ISD::SUB, dl, VT, Op, | 
|  | DAG.getConstant(1, dl, VT))); | 
|  | // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. | 
|  | if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) | 
|  | return DAG.getNode(ISD::SUB, dl, VT, | 
|  | DAG.getConstant(VT.getSizeInBits(), dl, VT), | 
|  | DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); | 
|  | return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { | 
|  | SmallVector<SDValue, 8> Results; | 
|  | SDLoc dl(Node); | 
|  | SDValue Tmp1, Tmp2, Tmp3, Tmp4; | 
|  | bool NeedInvert; | 
|  | switch (Node->getOpcode()) { | 
|  | case ISD::CTPOP: | 
|  | case ISD::CTLZ: | 
|  | case ISD::CTLZ_ZERO_UNDEF: | 
|  | case ISD::CTTZ: | 
|  | case ISD::CTTZ_ZERO_UNDEF: | 
|  | Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | case ISD::BITREVERSE: | 
|  | Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); | 
|  | break; | 
|  | case ISD::BSWAP: | 
|  | Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); | 
|  | break; | 
|  | case ISD::FRAMEADDR: | 
|  | case ISD::RETURNADDR: | 
|  | case ISD::FRAME_TO_ARGS_OFFSET: | 
|  | Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); | 
|  | break; | 
|  | case ISD::EH_DWARF_CFA: { | 
|  | SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, | 
|  | TLI.getPointerTy(DAG.getDataLayout())); | 
|  | SDValue Offset = DAG.getNode(ISD::ADD, dl, | 
|  | CfaArg.getValueType(), | 
|  | DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, | 
|  | CfaArg.getValueType()), | 
|  | CfaArg); | 
|  | SDValue FA = DAG.getNode( | 
|  | ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), | 
|  | DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); | 
|  | Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), | 
|  | FA, Offset)); | 
|  | break; | 
|  | } | 
|  | case ISD::FLT_ROUNDS_: | 
|  | Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); | 
|  | break; | 
|  | case ISD::EH_RETURN: | 
|  | case ISD::EH_LABEL: | 
|  | case ISD::PREFETCH: | 
|  | case ISD::VAEND: | 
|  | case ISD::EH_SJLJ_LONGJMP: | 
|  | // If the target didn't expand these, there's nothing to do, so just | 
|  | // preserve the chain and be done. | 
|  | Results.push_back(Node->getOperand(0)); | 
|  | break; | 
|  | case ISD::READCYCLECOUNTER: | 
|  | // If the target didn't expand this, just return 'zero' and preserve the | 
|  | // chain. | 
|  | Results.append(Node->getNumValues() - 1, | 
|  | DAG.getConstant(0, dl, Node->getValueType(0))); | 
|  | Results.push_back(Node->getOperand(0)); | 
|  | break; | 
|  | case ISD::EH_SJLJ_SETJMP: | 
|  | // If the target didn't expand this, just return 'zero' and preserve the | 
|  | // chain. | 
|  | Results.push_back(DAG.getConstant(0, dl, MVT::i32)); | 
|  | Results.push_back(Node->getOperand(0)); | 
|  | break; | 
|  | case ISD::ATOMIC_LOAD: { | 
|  | // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. | 
|  | SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); | 
|  | SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); | 
|  | SDValue Swap = DAG.getAtomicCmpSwap( | 
|  | ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, | 
|  | Node->getOperand(0), Node->getOperand(1), Zero, Zero, | 
|  | cast<AtomicSDNode>(Node)->getMemOperand()); | 
|  | Results.push_back(Swap.getValue(0)); | 
|  | Results.push_back(Swap.getValue(1)); | 
|  | break; | 
|  | } | 
|  | case ISD::ATOMIC_STORE: { | 
|  | // There is no libcall for atomic store; fake it with ATOMIC_SWAP. | 
|  | SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, | 
|  | cast<AtomicSDNode>(Node)->getMemoryVT(), | 
|  | Node->getOperand(0), | 
|  | Node->getOperand(1), Node->getOperand(2), | 
|  | cast<AtomicSDNode>(Node)->getMemOperand()); | 
|  | Results.push_back(Swap.getValue(1)); | 
|  | break; | 
|  | } | 
|  | case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { | 
|  | // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and | 
|  | // splits out the success value as a comparison. Expanding the resulting | 
|  | // ATOMIC_CMP_SWAP will produce a libcall. | 
|  | SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); | 
|  | SDValue Res = DAG.getAtomicCmpSwap( | 
|  | ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, | 
|  | Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), | 
|  | Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); | 
|  |  | 
|  | SDValue ExtRes = Res; | 
|  | SDValue LHS = Res; | 
|  | SDValue RHS = Node->getOperand(1); | 
|  |  | 
|  | EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); | 
|  | EVT OuterType = Node->getValueType(0); | 
|  | switch (TLI.getExtendForAtomicOps()) { | 
|  | case ISD::SIGN_EXTEND: | 
|  | LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, | 
|  | DAG.getValueType(AtomicType)); | 
|  | RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, | 
|  | Node->getOperand(2), DAG.getValueType(AtomicType)); | 
|  | ExtRes = LHS; | 
|  | break; | 
|  | case ISD::ZERO_EXTEND: | 
|  | LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, | 
|  | DAG.getValueType(AtomicType)); | 
|  | RHS = DAG.getNode(ISD::ZERO_EXTEND, dl, OuterType, Node->getOperand(2)); | 
|  | ExtRes = LHS; | 
|  | break; | 
|  | case ISD::ANY_EXTEND: | 
|  | LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); | 
|  | RHS = DAG.getNode(ISD::ZERO_EXTEND, dl, OuterType, Node->getOperand(2)); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Invalid atomic op extension"); | 
|  | } | 
|  |  | 
|  | SDValue Success = | 
|  | DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); | 
|  |  | 
|  | Results.push_back(ExtRes.getValue(0)); | 
|  | Results.push_back(Success); | 
|  | Results.push_back(Res.getValue(1)); | 
|  | break; | 
|  | } | 
|  | case ISD::DYNAMIC_STACKALLOC: | 
|  | ExpandDYNAMIC_STACKALLOC(Node, Results); | 
|  | break; | 
|  | case ISD::MERGE_VALUES: | 
|  | for (unsigned i = 0; i < Node->getNumValues(); i++) | 
|  | Results.push_back(Node->getOperand(i)); | 
|  | break; | 
|  | case ISD::UNDEF: { | 
|  | EVT VT = Node->getValueType(0); | 
|  | if (VT.isInteger()) | 
|  | Results.push_back(DAG.getConstant(0, dl, VT)); | 
|  | else { | 
|  | assert(VT.isFloatingPoint() && "Unknown value type!"); | 
|  | Results.push_back(DAG.getConstantFP(0, dl, VT)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::FP_ROUND: | 
|  | case ISD::BITCAST: | 
|  | Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), | 
|  | Node->getValueType(0), dl); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | case ISD::FP_EXTEND: | 
|  | Tmp1 = EmitStackConvert(Node->getOperand(0), | 
|  | Node->getOperand(0).getValueType(), | 
|  | Node->getValueType(0), dl); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | case ISD::SIGN_EXTEND_INREG: { | 
|  | EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); | 
|  | EVT VT = Node->getValueType(0); | 
|  |  | 
|  | // An in-register sign-extend of a boolean is a negation: | 
|  | // 'true' (1) sign-extended is -1. | 
|  | // 'false' (0) sign-extended is 0. | 
|  | // However, we must mask the high bits of the source operand because the | 
|  | // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. | 
|  |  | 
|  | // TODO: Do this for vectors too? | 
|  | if (ExtraVT.getSizeInBits() == 1) { | 
|  | SDValue One = DAG.getConstant(1, dl, VT); | 
|  | SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); | 
|  | SDValue Zero = DAG.getConstant(0, dl, VT); | 
|  | SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); | 
|  | Results.push_back(Neg); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // NOTE: we could fall back on load/store here too for targets without | 
|  | // SRA.  However, it is doubtful that any exist. | 
|  | EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); | 
|  | if (VT.isVector()) | 
|  | ShiftAmountTy = VT; | 
|  | unsigned BitsDiff = VT.getScalarSizeInBits() - | 
|  | ExtraVT.getScalarSizeInBits(); | 
|  | SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); | 
|  | Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), | 
|  | Node->getOperand(0), ShiftCst); | 
|  | Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::FP_ROUND_INREG: { | 
|  | // The only way we can lower this is to turn it into a TRUNCSTORE, | 
|  | // EXTLOAD pair, targeting a temporary location (a stack slot). | 
|  |  | 
|  | // NOTE: there is a choice here between constantly creating new stack | 
|  | // slots and always reusing the same one.  We currently always create | 
|  | // new ones, as reuse may inhibit scheduling. | 
|  | EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); | 
|  | Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, | 
|  | Node->getValueType(0), dl); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP: | 
|  | Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, | 
|  | Node->getOperand(0), Node->getValueType(0), dl); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | case ISD::FP_TO_SINT: | 
|  | if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | case ISD::FP_TO_UINT: { | 
|  | SDValue True, False; | 
|  | EVT VT =  Node->getOperand(0).getValueType(); | 
|  | EVT NVT = Node->getValueType(0); | 
|  | APFloat apf(DAG.EVTToAPFloatSemantics(VT), | 
|  | APInt::getNullValue(VT.getSizeInBits())); | 
|  | APInt x = APInt::getSignMask(NVT.getSizeInBits()); | 
|  | (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); | 
|  | Tmp1 = DAG.getConstantFP(apf, dl, VT); | 
|  | Tmp2 = DAG.getSetCC(dl, getSetCCResultType(VT), | 
|  | Node->getOperand(0), | 
|  | Tmp1, ISD::SETLT); | 
|  | True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); | 
|  | // TODO: Should any fast-math-flags be set for the FSUB? | 
|  | False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, | 
|  | DAG.getNode(ISD::FSUB, dl, VT, | 
|  | Node->getOperand(0), Tmp1)); | 
|  | False = DAG.getNode(ISD::XOR, dl, NVT, False, | 
|  | DAG.getConstant(x, dl, NVT)); | 
|  | Tmp1 = DAG.getSelect(dl, NVT, Tmp2, True, False); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::VAARG: | 
|  | Results.push_back(DAG.expandVAArg(Node)); | 
|  | Results.push_back(Results[0].getValue(1)); | 
|  | break; | 
|  | case ISD::VACOPY: | 
|  | Results.push_back(DAG.expandVACopy(Node)); | 
|  | break; | 
|  | case ISD::EXTRACT_VECTOR_ELT: | 
|  | if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) | 
|  | // This must be an access of the only element.  Return it. | 
|  | Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), | 
|  | Node->getOperand(0)); | 
|  | else | 
|  | Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | case ISD::EXTRACT_SUBVECTOR: | 
|  | Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); | 
|  | break; | 
|  | case ISD::INSERT_SUBVECTOR: | 
|  | Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); | 
|  | break; | 
|  | case ISD::CONCAT_VECTORS: { | 
|  | Results.push_back(ExpandVectorBuildThroughStack(Node)); | 
|  | break; | 
|  | } | 
|  | case ISD::SCALAR_TO_VECTOR: | 
|  | Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); | 
|  | break; | 
|  | case ISD::INSERT_VECTOR_ELT: | 
|  | Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), | 
|  | Node->getOperand(1), | 
|  | Node->getOperand(2), dl)); | 
|  | break; | 
|  | case ISD::VECTOR_SHUFFLE: { | 
|  | SmallVector<int, 32> NewMask; | 
|  | ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); | 
|  |  | 
|  | EVT VT = Node->getValueType(0); | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | SDValue Op0 = Node->getOperand(0); | 
|  | SDValue Op1 = Node->getOperand(1); | 
|  | if (!TLI.isTypeLegal(EltVT)) { | 
|  |  | 
|  | EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); | 
|  |  | 
|  | // BUILD_VECTOR operands are allowed to be wider than the element type. | 
|  | // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept | 
|  | // it. | 
|  | if (NewEltVT.bitsLT(EltVT)) { | 
|  |  | 
|  | // Convert shuffle node. | 
|  | // If original node was v4i64 and the new EltVT is i32, | 
|  | // cast operands to v8i32 and re-build the mask. | 
|  |  | 
|  | // Calculate new VT, the size of the new VT should be equal to original. | 
|  | EVT NewVT = | 
|  | EVT::getVectorVT(*DAG.getContext(), NewEltVT, | 
|  | VT.getSizeInBits() / NewEltVT.getSizeInBits()); | 
|  | assert(NewVT.bitsEq(VT)); | 
|  |  | 
|  | // cast operands to new VT | 
|  | Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); | 
|  | Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); | 
|  |  | 
|  | // Convert the shuffle mask | 
|  | unsigned int factor = | 
|  | NewVT.getVectorNumElements()/VT.getVectorNumElements(); | 
|  |  | 
|  | // EltVT gets smaller | 
|  | assert(factor > 0); | 
|  |  | 
|  | for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { | 
|  | if (Mask[i] < 0) { | 
|  | for (unsigned fi = 0; fi < factor; ++fi) | 
|  | NewMask.push_back(Mask[i]); | 
|  | } | 
|  | else { | 
|  | for (unsigned fi = 0; fi < factor; ++fi) | 
|  | NewMask.push_back(Mask[i]*factor+fi); | 
|  | } | 
|  | } | 
|  | Mask = NewMask; | 
|  | VT = NewVT; | 
|  | } | 
|  | EltVT = NewEltVT; | 
|  | } | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SmallVector<SDValue, 16> Ops; | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | if (Mask[i] < 0) { | 
|  | Ops.push_back(DAG.getUNDEF(EltVT)); | 
|  | continue; | 
|  | } | 
|  | unsigned Idx = Mask[i]; | 
|  | if (Idx < NumElems) | 
|  | Ops.push_back(DAG.getNode( | 
|  | ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, | 
|  | DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())))); | 
|  | else | 
|  | Ops.push_back(DAG.getNode( | 
|  | ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, | 
|  | DAG.getConstant(Idx - NumElems, dl, | 
|  | TLI.getVectorIdxTy(DAG.getDataLayout())))); | 
|  | } | 
|  |  | 
|  | Tmp1 = DAG.getBuildVector(VT, dl, Ops); | 
|  | // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. | 
|  | Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::EXTRACT_ELEMENT: { | 
|  | EVT OpTy = Node->getOperand(0).getValueType(); | 
|  | if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { | 
|  | // 1 -> Hi | 
|  | Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), | 
|  | DAG.getConstant(OpTy.getSizeInBits() / 2, dl, | 
|  | TLI.getShiftAmountTy( | 
|  | Node->getOperand(0).getValueType(), | 
|  | DAG.getDataLayout()))); | 
|  | Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); | 
|  | } else { | 
|  | // 0 -> Lo | 
|  | Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), | 
|  | Node->getOperand(0)); | 
|  | } | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::STACKSAVE: | 
|  | // Expand to CopyFromReg if the target set | 
|  | // StackPointerRegisterToSaveRestore. | 
|  | if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { | 
|  | Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, | 
|  | Node->getValueType(0))); | 
|  | Results.push_back(Results[0].getValue(1)); | 
|  | } else { | 
|  | Results.push_back(DAG.getUNDEF(Node->getValueType(0))); | 
|  | Results.push_back(Node->getOperand(0)); | 
|  | } | 
|  | break; | 
|  | case ISD::STACKRESTORE: | 
|  | // Expand to CopyToReg if the target set | 
|  | // StackPointerRegisterToSaveRestore. | 
|  | if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { | 
|  | Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, | 
|  | Node->getOperand(1))); | 
|  | } else { | 
|  | Results.push_back(Node->getOperand(0)); | 
|  | } | 
|  | break; | 
|  | case ISD::GET_DYNAMIC_AREA_OFFSET: | 
|  | Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); | 
|  | Results.push_back(Results[0].getValue(0)); | 
|  | break; | 
|  | case ISD::FCOPYSIGN: | 
|  | Results.push_back(ExpandFCOPYSIGN(Node)); | 
|  | break; | 
|  | case ISD::FNEG: | 
|  | // Expand Y = FNEG(X) ->  Y = SUB -0.0, X | 
|  | Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0)); | 
|  | // TODO: If FNEG has fast-math-flags, propagate them to the FSUB. | 
|  | Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, | 
|  | Node->getOperand(0)); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | case ISD::FABS: | 
|  | Results.push_back(ExpandFABS(Node)); | 
|  | break; | 
|  | case ISD::SMIN: | 
|  | case ISD::SMAX: | 
|  | case ISD::UMIN: | 
|  | case ISD::UMAX: { | 
|  | // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B | 
|  | ISD::CondCode Pred; | 
|  | switch (Node->getOpcode()) { | 
|  | default: llvm_unreachable("How did we get here?"); | 
|  | case ISD::SMAX: Pred = ISD::SETGT; break; | 
|  | case ISD::SMIN: Pred = ISD::SETLT; break; | 
|  | case ISD::UMAX: Pred = ISD::SETUGT; break; | 
|  | case ISD::UMIN: Pred = ISD::SETULT; break; | 
|  | } | 
|  | Tmp1 = Node->getOperand(0); | 
|  | Tmp2 = Node->getOperand(1); | 
|  | Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::FSIN: | 
|  | case ISD::FCOS: { | 
|  | EVT VT = Node->getValueType(0); | 
|  | // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / | 
|  | // fcos which share the same operand and both are used. | 
|  | if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || | 
|  | canCombineSinCosLibcall(Node, TLI, TM)) | 
|  | && useSinCos(Node)) { | 
|  | SDVTList VTs = DAG.getVTList(VT, VT); | 
|  | Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); | 
|  | if (Node->getOpcode() == ISD::FCOS) | 
|  | Tmp1 = Tmp1.getValue(1); | 
|  | Results.push_back(Tmp1); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::FMAD: | 
|  | llvm_unreachable("Illegal fmad should never be formed"); | 
|  |  | 
|  | case ISD::FP16_TO_FP: | 
|  | if (Node->getValueType(0) != MVT::f32) { | 
|  | // We can extend to types bigger than f32 in two steps without changing | 
|  | // the result. Since "f16 -> f32" is much more commonly available, give | 
|  | // CodeGen the option of emitting that before resorting to a libcall. | 
|  | SDValue Res = | 
|  | DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); | 
|  | Results.push_back( | 
|  | DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); | 
|  | } | 
|  | break; | 
|  | case ISD::FP_TO_FP16: | 
|  | if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { | 
|  | SDValue Op = Node->getOperand(0); | 
|  | MVT SVT = Op.getSimpleValueType(); | 
|  | if ((SVT == MVT::f64 || SVT == MVT::f80) && | 
|  | TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { | 
|  | // Under fastmath, we can expand this node into a fround followed by | 
|  | // a float-half conversion. | 
|  | SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | Results.push_back( | 
|  | DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::ConstantFP: { | 
|  | ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); | 
|  | // Check to see if this FP immediate is already legal. | 
|  | // If this is a legal constant, turn it into a TargetConstantFP node. | 
|  | if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) | 
|  | Results.push_back(ExpandConstantFP(CFP, true)); | 
|  | break; | 
|  | } | 
|  | case ISD::Constant: { | 
|  | ConstantSDNode *CP = cast<ConstantSDNode>(Node); | 
|  | Results.push_back(ExpandConstant(CP)); | 
|  | break; | 
|  | } | 
|  | case ISD::FSUB: { | 
|  | EVT VT = Node->getValueType(0); | 
|  | if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { | 
|  | const SDNodeFlags Flags = Node->getFlags(); | 
|  | Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); | 
|  | Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); | 
|  | Results.push_back(Tmp1); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::SUB: { | 
|  | EVT VT = Node->getValueType(0); | 
|  | assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::XOR, VT) && | 
|  | "Don't know how to expand this subtraction!"); | 
|  | Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), | 
|  | DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, | 
|  | VT)); | 
|  | Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); | 
|  | Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); | 
|  | break; | 
|  | } | 
|  | case ISD::UREM: | 
|  | case ISD::SREM: { | 
|  | EVT VT = Node->getValueType(0); | 
|  | bool isSigned = Node->getOpcode() == ISD::SREM; | 
|  | unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; | 
|  | unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; | 
|  | Tmp2 = Node->getOperand(0); | 
|  | Tmp3 = Node->getOperand(1); | 
|  | if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { | 
|  | SDVTList VTs = DAG.getVTList(VT, VT); | 
|  | Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); | 
|  | Results.push_back(Tmp1); | 
|  | } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { | 
|  | // X % Y -> X-X/Y*Y | 
|  | Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); | 
|  | Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); | 
|  | Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); | 
|  | Results.push_back(Tmp1); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::UDIV: | 
|  | case ISD::SDIV: { | 
|  | bool isSigned = Node->getOpcode() == ISD::SDIV; | 
|  | unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; | 
|  | EVT VT = Node->getValueType(0); | 
|  | if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { | 
|  | SDVTList VTs = DAG.getVTList(VT, VT); | 
|  | Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), | 
|  | Node->getOperand(1)); | 
|  | Results.push_back(Tmp1); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::MULHU: | 
|  | case ISD::MULHS: { | 
|  | unsigned ExpandOpcode = | 
|  | Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; | 
|  | EVT VT = Node->getValueType(0); | 
|  | SDVTList VTs = DAG.getVTList(VT, VT); | 
|  |  | 
|  | Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), | 
|  | Node->getOperand(1)); | 
|  | Results.push_back(Tmp1.getValue(1)); | 
|  | break; | 
|  | } | 
|  | case ISD::UMUL_LOHI: | 
|  | case ISD::SMUL_LOHI: { | 
|  | SDValue LHS = Node->getOperand(0); | 
|  | SDValue RHS = Node->getOperand(1); | 
|  | MVT VT = LHS.getSimpleValueType(); | 
|  | unsigned MULHOpcode = | 
|  | Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; | 
|  |  | 
|  | if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { | 
|  | Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); | 
|  | Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 4> Halves; | 
|  | EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); | 
|  | assert(TLI.isTypeLegal(HalfType)); | 
|  | if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves, | 
|  | HalfType, DAG, | 
|  | TargetLowering::MulExpansionKind::Always)) { | 
|  | for (unsigned i = 0; i < 2; ++i) { | 
|  | SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); | 
|  | SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); | 
|  | SDValue Shift = DAG.getConstant( | 
|  | HalfType.getScalarSizeInBits(), dl, | 
|  | TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); | 
|  | Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); | 
|  | Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::MUL: { | 
|  | EVT VT = Node->getValueType(0); | 
|  | SDVTList VTs = DAG.getVTList(VT, VT); | 
|  | // See if multiply or divide can be lowered using two-result operations. | 
|  | // We just need the low half of the multiply; try both the signed | 
|  | // and unsigned forms. If the target supports both SMUL_LOHI and | 
|  | // UMUL_LOHI, form a preference by checking which forms of plain | 
|  | // MULH it supports. | 
|  | bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); | 
|  | bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); | 
|  | bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); | 
|  | bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); | 
|  | unsigned OpToUse = 0; | 
|  | if (HasSMUL_LOHI && !HasMULHS) { | 
|  | OpToUse = ISD::SMUL_LOHI; | 
|  | } else if (HasUMUL_LOHI && !HasMULHU) { | 
|  | OpToUse = ISD::UMUL_LOHI; | 
|  | } else if (HasSMUL_LOHI) { | 
|  | OpToUse = ISD::SMUL_LOHI; | 
|  | } else if (HasUMUL_LOHI) { | 
|  | OpToUse = ISD::UMUL_LOHI; | 
|  | } | 
|  | if (OpToUse) { | 
|  | Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), | 
|  | Node->getOperand(1))); | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue Lo, Hi; | 
|  | EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); | 
|  | if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::SHL, VT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::OR, VT) && | 
|  | TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, | 
|  | TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { | 
|  | Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); | 
|  | Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); | 
|  | SDValue Shift = | 
|  | DAG.getConstant(HalfType.getSizeInBits(), dl, | 
|  | TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); | 
|  | Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); | 
|  | Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::SADDO: | 
|  | case ISD::SSUBO: { | 
|  | SDValue LHS = Node->getOperand(0); | 
|  | SDValue RHS = Node->getOperand(1); | 
|  | SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? | 
|  | ISD::ADD : ISD::SUB, dl, LHS.getValueType(), | 
|  | LHS, RHS); | 
|  | Results.push_back(Sum); | 
|  | EVT ResultType = Node->getValueType(1); | 
|  | EVT OType = getSetCCResultType(Node->getValueType(0)); | 
|  |  | 
|  | SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); | 
|  |  | 
|  | //   LHSSign -> LHS >= 0 | 
|  | //   RHSSign -> RHS >= 0 | 
|  | //   SumSign -> Sum >= 0 | 
|  | // | 
|  | //   Add: | 
|  | //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) | 
|  | //   Sub: | 
|  | //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) | 
|  | // | 
|  | SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); | 
|  | SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); | 
|  | SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, | 
|  | Node->getOpcode() == ISD::SADDO ? | 
|  | ISD::SETEQ : ISD::SETNE); | 
|  |  | 
|  | SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); | 
|  | SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); | 
|  |  | 
|  | SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); | 
|  | Results.push_back(DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType)); | 
|  | break; | 
|  | } | 
|  | case ISD::UADDO: | 
|  | case ISD::USUBO: { | 
|  | SDValue LHS = Node->getOperand(0); | 
|  | SDValue RHS = Node->getOperand(1); | 
|  | SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? | 
|  | ISD::ADD : ISD::SUB, dl, LHS.getValueType(), | 
|  | LHS, RHS); | 
|  | Results.push_back(Sum); | 
|  |  | 
|  | EVT ResultType = Node->getValueType(1); | 
|  | EVT SetCCType = getSetCCResultType(Node->getValueType(0)); | 
|  | ISD::CondCode CC | 
|  | = Node->getOpcode() == ISD::UADDO ? ISD::SETULT : ISD::SETUGT; | 
|  | SDValue SetCC = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); | 
|  |  | 
|  | Results.push_back(DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType)); | 
|  | break; | 
|  | } | 
|  | case ISD::UMULO: | 
|  | case ISD::SMULO: { | 
|  | EVT VT = Node->getValueType(0); | 
|  | EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); | 
|  | SDValue LHS = Node->getOperand(0); | 
|  | SDValue RHS = Node->getOperand(1); | 
|  | SDValue BottomHalf; | 
|  | SDValue TopHalf; | 
|  | static const unsigned Ops[2][3] = | 
|  | { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, | 
|  | { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; | 
|  | bool isSigned = Node->getOpcode() == ISD::SMULO; | 
|  | if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { | 
|  | BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); | 
|  | TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); | 
|  | } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { | 
|  | BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, | 
|  | RHS); | 
|  | TopHalf = BottomHalf.getValue(1); | 
|  | } else if (TLI.isTypeLegal(WideVT)) { | 
|  | LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); | 
|  | RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); | 
|  | Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); | 
|  | BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, | 
|  | DAG.getIntPtrConstant(1, dl)); | 
|  | } else { | 
|  | // We can fall back to a libcall with an illegal type for the MUL if we | 
|  | // have a libcall big enough. | 
|  | // Also, we can fall back to a division in some cases, but that's a big | 
|  | // performance hit in the general case. | 
|  | RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; | 
|  | if (WideVT == MVT::i16) | 
|  | LC = RTLIB::MUL_I16; | 
|  | else if (WideVT == MVT::i32) | 
|  | LC = RTLIB::MUL_I32; | 
|  | else if (WideVT == MVT::i64) | 
|  | LC = RTLIB::MUL_I64; | 
|  | else if (WideVT == MVT::i128) | 
|  | LC = RTLIB::MUL_I128; | 
|  | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); | 
|  |  | 
|  | // The high part is obtained by SRA'ing all but one of the bits of low | 
|  | // part. | 
|  | unsigned LoSize = VT.getSizeInBits(); | 
|  | SDValue HiLHS = | 
|  | DAG.getNode(ISD::SRA, dl, VT, LHS, | 
|  | DAG.getConstant(LoSize - 1, dl, | 
|  | TLI.getPointerTy(DAG.getDataLayout()))); | 
|  | SDValue HiRHS = | 
|  | DAG.getNode(ISD::SRA, dl, VT, RHS, | 
|  | DAG.getConstant(LoSize - 1, dl, | 
|  | TLI.getPointerTy(DAG.getDataLayout()))); | 
|  |  | 
|  | // Here we're passing the 2 arguments explicitly as 4 arguments that are | 
|  | // pre-lowered to the correct types. This all depends upon WideVT not | 
|  | // being a legal type for the architecture and thus has to be split to | 
|  | // two arguments. | 
|  | SDValue Ret; | 
|  | if(DAG.getDataLayout().isLittleEndian()) { | 
|  | // Halves of WideVT are packed into registers in different order | 
|  | // depending on platform endianness. This is usually handled by | 
|  | // the C calling convention, but we can't defer to it in | 
|  | // the legalizer. | 
|  | SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; | 
|  | Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); | 
|  | } else { | 
|  | SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; | 
|  | Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); | 
|  | } | 
|  | BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, | 
|  | DAG.getIntPtrConstant(1, dl)); | 
|  | // Ret is a node with an illegal type. Because such things are not | 
|  | // generally permitted during this phase of legalization, make sure the | 
|  | // node has no more uses. The above EXTRACT_ELEMENT nodes should have been | 
|  | // folded. | 
|  | assert(Ret->use_empty() && | 
|  | "Unexpected uses of illegally type from expanded lib call."); | 
|  | } | 
|  |  | 
|  | if (isSigned) { | 
|  | Tmp1 = DAG.getConstant( | 
|  | VT.getSizeInBits() - 1, dl, | 
|  | TLI.getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); | 
|  | Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); | 
|  | TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, Tmp1, | 
|  | ISD::SETNE); | 
|  | } else { | 
|  | TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, | 
|  | DAG.getConstant(0, dl, VT), ISD::SETNE); | 
|  | } | 
|  |  | 
|  | // Truncate the result if SetCC returns a larger type than needed. | 
|  | EVT RType = Node->getValueType(1); | 
|  | if (RType.getSizeInBits() < TopHalf.getValueSizeInBits()) | 
|  | TopHalf = DAG.getNode(ISD::TRUNCATE, dl, RType, TopHalf); | 
|  |  | 
|  | assert(RType.getSizeInBits() == TopHalf.getValueSizeInBits() && | 
|  | "Unexpected result type for S/UMULO legalization"); | 
|  |  | 
|  | Results.push_back(BottomHalf); | 
|  | Results.push_back(TopHalf); | 
|  | break; | 
|  | } | 
|  | case ISD::BUILD_PAIR: { | 
|  | EVT PairTy = Node->getValueType(0); | 
|  | Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); | 
|  | Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); | 
|  | Tmp2 = DAG.getNode( | 
|  | ISD::SHL, dl, PairTy, Tmp2, | 
|  | DAG.getConstant(PairTy.getSizeInBits() / 2, dl, | 
|  | TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); | 
|  | Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); | 
|  | break; | 
|  | } | 
|  | case ISD::SELECT: | 
|  | Tmp1 = Node->getOperand(0); | 
|  | Tmp2 = Node->getOperand(1); | 
|  | Tmp3 = Node->getOperand(2); | 
|  | if (Tmp1.getOpcode() == ISD::SETCC) { | 
|  | Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), | 
|  | Tmp2, Tmp3, | 
|  | cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); | 
|  | } else { | 
|  | Tmp1 = DAG.getSelectCC(dl, Tmp1, | 
|  | DAG.getConstant(0, dl, Tmp1.getValueType()), | 
|  | Tmp2, Tmp3, ISD::SETNE); | 
|  | } | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | case ISD::BR_JT: { | 
|  | SDValue Chain = Node->getOperand(0); | 
|  | SDValue Table = Node->getOperand(1); | 
|  | SDValue Index = Node->getOperand(2); | 
|  |  | 
|  | const DataLayout &TD = DAG.getDataLayout(); | 
|  | EVT PTy = TLI.getPointerTy(TD); | 
|  |  | 
|  | unsigned EntrySize = | 
|  | DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); | 
|  |  | 
|  | Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, | 
|  | DAG.getConstant(EntrySize, dl, Index.getValueType())); | 
|  | SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), | 
|  | Index, Table); | 
|  |  | 
|  | EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); | 
|  | SDValue LD = DAG.getExtLoad( | 
|  | ISD::SEXTLOAD, dl, PTy, Chain, Addr, | 
|  | MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); | 
|  | Addr = LD; | 
|  | if (TLI.isJumpTableRelative()) { | 
|  | // For PIC, the sequence is: | 
|  | // BRIND(load(Jumptable + index) + RelocBase) | 
|  | // RelocBase can be JumpTable, GOT or some sort of global base. | 
|  | Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, | 
|  | TLI.getPICJumpTableRelocBase(Table, DAG)); | 
|  | } | 
|  | Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::BRCOND: | 
|  | // Expand brcond's setcc into its constituent parts and create a BR_CC | 
|  | // Node. | 
|  | Tmp1 = Node->getOperand(0); | 
|  | Tmp2 = Node->getOperand(1); | 
|  | if (Tmp2.getOpcode() == ISD::SETCC) { | 
|  | Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, | 
|  | Tmp1, Tmp2.getOperand(2), | 
|  | Tmp2.getOperand(0), Tmp2.getOperand(1), | 
|  | Node->getOperand(2)); | 
|  | } else { | 
|  | // We test only the i1 bit.  Skip the AND if UNDEF. | 
|  | Tmp3 = (Tmp2.isUndef()) ? Tmp2 : | 
|  | DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, | 
|  | DAG.getConstant(1, dl, Tmp2.getValueType())); | 
|  | Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, | 
|  | DAG.getCondCode(ISD::SETNE), Tmp3, | 
|  | DAG.getConstant(0, dl, Tmp3.getValueType()), | 
|  | Node->getOperand(2)); | 
|  | } | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | case ISD::SETCC: { | 
|  | Tmp1 = Node->getOperand(0); | 
|  | Tmp2 = Node->getOperand(1); | 
|  | Tmp3 = Node->getOperand(2); | 
|  | bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, | 
|  | Tmp3, NeedInvert, dl); | 
|  |  | 
|  | if (Legalized) { | 
|  | // If we expanded the SETCC by swapping LHS and RHS, or by inverting the | 
|  | // condition code, create a new SETCC node. | 
|  | if (Tmp3.getNode()) | 
|  | Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), | 
|  | Tmp1, Tmp2, Tmp3); | 
|  |  | 
|  | // If we expanded the SETCC by inverting the condition code, then wrap | 
|  | // the existing SETCC in a NOT to restore the intended condition. | 
|  | if (NeedInvert) | 
|  | Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); | 
|  |  | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Otherwise, SETCC for the given comparison type must be completely | 
|  | // illegal; expand it into a SELECT_CC. | 
|  | EVT VT = Node->getValueType(0); | 
|  | int TrueValue; | 
|  | switch (TLI.getBooleanContents(Tmp1->getValueType(0))) { | 
|  | case TargetLowering::ZeroOrOneBooleanContent: | 
|  | case TargetLowering::UndefinedBooleanContent: | 
|  | TrueValue = 1; | 
|  | break; | 
|  | case TargetLowering::ZeroOrNegativeOneBooleanContent: | 
|  | TrueValue = -1; | 
|  | break; | 
|  | } | 
|  | Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, | 
|  | DAG.getConstant(TrueValue, dl, VT), | 
|  | DAG.getConstant(0, dl, VT), | 
|  | Tmp3); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::SELECT_CC: { | 
|  | Tmp1 = Node->getOperand(0);   // LHS | 
|  | Tmp2 = Node->getOperand(1);   // RHS | 
|  | Tmp3 = Node->getOperand(2);   // True | 
|  | Tmp4 = Node->getOperand(3);   // False | 
|  | EVT VT = Node->getValueType(0); | 
|  | SDValue CC = Node->getOperand(4); | 
|  | ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); | 
|  |  | 
|  | if (TLI.isCondCodeLegal(CCOp, Tmp1.getSimpleValueType())) { | 
|  | // If the condition code is legal, then we need to expand this | 
|  | // node using SETCC and SELECT. | 
|  | EVT CmpVT = Tmp1.getValueType(); | 
|  | assert(!TLI.isOperationExpand(ISD::SELECT, VT) && | 
|  | "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " | 
|  | "expanded."); | 
|  | EVT CCVT = | 
|  | TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT); | 
|  | SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC); | 
|  | Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // SELECT_CC is legal, so the condition code must not be. | 
|  | bool Legalized = false; | 
|  | // Try to legalize by inverting the condition.  This is for targets that | 
|  | // might support an ordered version of a condition, but not the unordered | 
|  | // version (or vice versa). | 
|  | ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, | 
|  | Tmp1.getValueType().isInteger()); | 
|  | if (TLI.isCondCodeLegal(InvCC, Tmp1.getSimpleValueType())) { | 
|  | // Use the new condition code and swap true and false | 
|  | Legalized = true; | 
|  | Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); | 
|  | } else { | 
|  | // If The inverse is not legal, then try to swap the arguments using | 
|  | // the inverse condition code. | 
|  | ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); | 
|  | if (TLI.isCondCodeLegal(SwapInvCC, Tmp1.getSimpleValueType())) { | 
|  | // The swapped inverse condition is legal, so swap true and false, | 
|  | // lhs and rhs. | 
|  | Legalized = true; | 
|  | Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Legalized) { | 
|  | Legalized = LegalizeSetCCCondCode( | 
|  | getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert, | 
|  | dl); | 
|  |  | 
|  | assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); | 
|  |  | 
|  | // If we expanded the SETCC by inverting the condition code, then swap | 
|  | // the True/False operands to match. | 
|  | if (NeedInvert) | 
|  | std::swap(Tmp3, Tmp4); | 
|  |  | 
|  | // If we expanded the SETCC by swapping LHS and RHS, or by inverting the | 
|  | // condition code, create a new SELECT_CC node. | 
|  | if (CC.getNode()) { | 
|  | Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), | 
|  | Tmp1, Tmp2, Tmp3, Tmp4, CC); | 
|  | } else { | 
|  | Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); | 
|  | CC = DAG.getCondCode(ISD::SETNE); | 
|  | Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, | 
|  | Tmp2, Tmp3, Tmp4, CC); | 
|  | } | 
|  | } | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::BR_CC: { | 
|  | Tmp1 = Node->getOperand(0);              // Chain | 
|  | Tmp2 = Node->getOperand(2);              // LHS | 
|  | Tmp3 = Node->getOperand(3);              // RHS | 
|  | Tmp4 = Node->getOperand(1);              // CC | 
|  |  | 
|  | bool Legalized = LegalizeSetCCCondCode(getSetCCResultType( | 
|  | Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl); | 
|  | (void)Legalized; | 
|  | assert(Legalized && "Can't legalize BR_CC with legal condition!"); | 
|  |  | 
|  | // If we expanded the SETCC by inverting the condition code, then wrap | 
|  | // the existing SETCC in a NOT to restore the intended condition. | 
|  | if (NeedInvert) | 
|  | Tmp4 = DAG.getNOT(dl, Tmp4, Tmp4->getValueType(0)); | 
|  |  | 
|  | // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC | 
|  | // node. | 
|  | if (Tmp4.getNode()) { | 
|  | Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, | 
|  | Tmp4, Tmp2, Tmp3, Node->getOperand(4)); | 
|  | } else { | 
|  | Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); | 
|  | Tmp4 = DAG.getCondCode(ISD::SETNE); | 
|  | Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, | 
|  | Tmp2, Tmp3, Node->getOperand(4)); | 
|  | } | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::BUILD_VECTOR: | 
|  | Results.push_back(ExpandBUILD_VECTOR(Node)); | 
|  | break; | 
|  | case ISD::SRA: | 
|  | case ISD::SRL: | 
|  | case ISD::SHL: { | 
|  | // Scalarize vector SRA/SRL/SHL. | 
|  | EVT VT = Node->getValueType(0); | 
|  | assert(VT.isVector() && "Unable to legalize non-vector shift"); | 
|  | assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); | 
|  | unsigned NumElem = VT.getVectorNumElements(); | 
|  |  | 
|  | SmallVector<SDValue, 8> Scalars; | 
|  | for (unsigned Idx = 0; Idx < NumElem; Idx++) { | 
|  | SDValue Ex = DAG.getNode( | 
|  | ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0), | 
|  | DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); | 
|  | SDValue Sh = DAG.getNode( | 
|  | ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1), | 
|  | DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); | 
|  | Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, | 
|  | VT.getScalarType(), Ex, Sh)); | 
|  | } | 
|  |  | 
|  | SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); | 
|  | ReplaceNode(SDValue(Node, 0), Result); | 
|  | break; | 
|  | } | 
|  | case ISD::GLOBAL_OFFSET_TABLE: | 
|  | case ISD::GlobalAddress: | 
|  | case ISD::GlobalTLSAddress: | 
|  | case ISD::ExternalSymbol: | 
|  | case ISD::ConstantPool: | 
|  | case ISD::JumpTable: | 
|  | case ISD::INTRINSIC_W_CHAIN: | 
|  | case ISD::INTRINSIC_WO_CHAIN: | 
|  | case ISD::INTRINSIC_VOID: | 
|  | // FIXME: Custom lowering for these operations shouldn't return null! | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Replace the original node with the legalized result. | 
|  | if (Results.empty()) | 
|  | return false; | 
|  |  | 
|  | ReplaceNode(Node, Results.data()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { | 
|  | SmallVector<SDValue, 8> Results; | 
|  | SDLoc dl(Node); | 
|  | SDValue Tmp1, Tmp2, Tmp3, Tmp4; | 
|  | unsigned Opc = Node->getOpcode(); | 
|  | switch (Opc) { | 
|  | case ISD::ATOMIC_FENCE: { | 
|  | // If the target didn't lower this, lower it to '__sync_synchronize()' call | 
|  | // FIXME: handle "fence singlethread" more efficiently. | 
|  | TargetLowering::ArgListTy Args; | 
|  |  | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | CLI.setDebugLoc(dl) | 
|  | .setChain(Node->getOperand(0)) | 
|  | .setLibCallee( | 
|  | CallingConv::C, Type::getVoidTy(*DAG.getContext()), | 
|  | DAG.getExternalSymbol("__sync_synchronize", | 
|  | TLI.getPointerTy(DAG.getDataLayout())), | 
|  | std::move(Args)); | 
|  |  | 
|  | std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); | 
|  |  | 
|  | Results.push_back(CallResult.second); | 
|  | break; | 
|  | } | 
|  | // By default, atomic intrinsics are marked Legal and lowered. Targets | 
|  | // which don't support them directly, however, may want libcalls, in which | 
|  | // case they mark them Expand, and we get here. | 
|  | case ISD::ATOMIC_SWAP: | 
|  | case ISD::ATOMIC_LOAD_ADD: | 
|  | case ISD::ATOMIC_LOAD_SUB: | 
|  | case ISD::ATOMIC_LOAD_AND: | 
|  | case ISD::ATOMIC_LOAD_OR: | 
|  | case ISD::ATOMIC_LOAD_XOR: | 
|  | case ISD::ATOMIC_LOAD_NAND: | 
|  | case ISD::ATOMIC_LOAD_MIN: | 
|  | case ISD::ATOMIC_LOAD_MAX: | 
|  | case ISD::ATOMIC_LOAD_UMIN: | 
|  | case ISD::ATOMIC_LOAD_UMAX: | 
|  | case ISD::ATOMIC_CMP_SWAP: { | 
|  | MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); | 
|  | RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT); | 
|  | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); | 
|  |  | 
|  | std::pair<SDValue, SDValue> Tmp = ExpandChainLibCall(LC, Node, false); | 
|  | Results.push_back(Tmp.first); | 
|  | Results.push_back(Tmp.second); | 
|  | break; | 
|  | } | 
|  | case ISD::TRAP: { | 
|  | // If this operation is not supported, lower it to 'abort()' call | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | CLI.setDebugLoc(dl) | 
|  | .setChain(Node->getOperand(0)) | 
|  | .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), | 
|  | DAG.getExternalSymbol( | 
|  | "abort", TLI.getPointerTy(DAG.getDataLayout())), | 
|  | std::move(Args)); | 
|  | std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); | 
|  |  | 
|  | Results.push_back(CallResult.second); | 
|  | break; | 
|  | } | 
|  | case ISD::FMINNUM: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, | 
|  | RTLIB::FMIN_F80, RTLIB::FMIN_F128, | 
|  | RTLIB::FMIN_PPCF128)); | 
|  | break; | 
|  | case ISD::FMAXNUM: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, | 
|  | RTLIB::FMAX_F80, RTLIB::FMAX_F128, | 
|  | RTLIB::FMAX_PPCF128)); | 
|  | break; | 
|  | case ISD::FSQRT: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, | 
|  | RTLIB::SQRT_F80, RTLIB::SQRT_F128, | 
|  | RTLIB::SQRT_PPCF128)); | 
|  | break; | 
|  | case ISD::FSIN: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, | 
|  | RTLIB::SIN_F80, RTLIB::SIN_F128, | 
|  | RTLIB::SIN_PPCF128)); | 
|  | break; | 
|  | case ISD::FCOS: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, | 
|  | RTLIB::COS_F80, RTLIB::COS_F128, | 
|  | RTLIB::COS_PPCF128)); | 
|  | break; | 
|  | case ISD::FSINCOS: | 
|  | // Expand into sincos libcall. | 
|  | ExpandSinCosLibCall(Node, Results); | 
|  | break; | 
|  | case ISD::FLOG: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, | 
|  | RTLIB::LOG_F80, RTLIB::LOG_F128, | 
|  | RTLIB::LOG_PPCF128)); | 
|  | break; | 
|  | case ISD::FLOG2: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, | 
|  | RTLIB::LOG2_F80, RTLIB::LOG2_F128, | 
|  | RTLIB::LOG2_PPCF128)); | 
|  | break; | 
|  | case ISD::FLOG10: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, | 
|  | RTLIB::LOG10_F80, RTLIB::LOG10_F128, | 
|  | RTLIB::LOG10_PPCF128)); | 
|  | break; | 
|  | case ISD::FEXP: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, | 
|  | RTLIB::EXP_F80, RTLIB::EXP_F128, | 
|  | RTLIB::EXP_PPCF128)); | 
|  | break; | 
|  | case ISD::FEXP2: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, | 
|  | RTLIB::EXP2_F80, RTLIB::EXP2_F128, | 
|  | RTLIB::EXP2_PPCF128)); | 
|  | break; | 
|  | case ISD::FTRUNC: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, | 
|  | RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, | 
|  | RTLIB::TRUNC_PPCF128)); | 
|  | break; | 
|  | case ISD::FFLOOR: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, | 
|  | RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, | 
|  | RTLIB::FLOOR_PPCF128)); | 
|  | break; | 
|  | case ISD::FCEIL: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, | 
|  | RTLIB::CEIL_F80, RTLIB::CEIL_F128, | 
|  | RTLIB::CEIL_PPCF128)); | 
|  | break; | 
|  | case ISD::FRINT: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, | 
|  | RTLIB::RINT_F80, RTLIB::RINT_F128, | 
|  | RTLIB::RINT_PPCF128)); | 
|  | break; | 
|  | case ISD::FNEARBYINT: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, | 
|  | RTLIB::NEARBYINT_F64, | 
|  | RTLIB::NEARBYINT_F80, | 
|  | RTLIB::NEARBYINT_F128, | 
|  | RTLIB::NEARBYINT_PPCF128)); | 
|  | break; | 
|  | case ISD::FROUND: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32, | 
|  | RTLIB::ROUND_F64, | 
|  | RTLIB::ROUND_F80, | 
|  | RTLIB::ROUND_F128, | 
|  | RTLIB::ROUND_PPCF128)); | 
|  | break; | 
|  | case ISD::FPOWI: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, | 
|  | RTLIB::POWI_F80, RTLIB::POWI_F128, | 
|  | RTLIB::POWI_PPCF128)); | 
|  | break; | 
|  | case ISD::FPOW: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, | 
|  | RTLIB::POW_F80, RTLIB::POW_F128, | 
|  | RTLIB::POW_PPCF128)); | 
|  | break; | 
|  | case ISD::FDIV: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, | 
|  | RTLIB::DIV_F80, RTLIB::DIV_F128, | 
|  | RTLIB::DIV_PPCF128)); | 
|  | break; | 
|  | case ISD::FREM: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, | 
|  | RTLIB::REM_F80, RTLIB::REM_F128, | 
|  | RTLIB::REM_PPCF128)); | 
|  | break; | 
|  | case ISD::FMA: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, | 
|  | RTLIB::FMA_F80, RTLIB::FMA_F128, | 
|  | RTLIB::FMA_PPCF128)); | 
|  | break; | 
|  | case ISD::FADD: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, | 
|  | RTLIB::ADD_F80, RTLIB::ADD_F128, | 
|  | RTLIB::ADD_PPCF128)); | 
|  | break; | 
|  | case ISD::FMUL: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, | 
|  | RTLIB::MUL_F80, RTLIB::MUL_F128, | 
|  | RTLIB::MUL_PPCF128)); | 
|  | break; | 
|  | case ISD::FP16_TO_FP: | 
|  | if (Node->getValueType(0) == MVT::f32) { | 
|  | Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); | 
|  | } | 
|  | break; | 
|  | case ISD::FP_TO_FP16: { | 
|  | RTLIB::Libcall LC = | 
|  | RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); | 
|  | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); | 
|  | Results.push_back(ExpandLibCall(LC, Node, false)); | 
|  | break; | 
|  | } | 
|  | case ISD::FSUB: | 
|  | Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, | 
|  | RTLIB::SUB_F80, RTLIB::SUB_F128, | 
|  | RTLIB::SUB_PPCF128)); | 
|  | break; | 
|  | case ISD::SREM: | 
|  | Results.push_back(ExpandIntLibCall(Node, true, | 
|  | RTLIB::SREM_I8, | 
|  | RTLIB::SREM_I16, RTLIB::SREM_I32, | 
|  | RTLIB::SREM_I64, RTLIB::SREM_I128)); | 
|  | break; | 
|  | case ISD::UREM: | 
|  | Results.push_back(ExpandIntLibCall(Node, false, | 
|  | RTLIB::UREM_I8, | 
|  | RTLIB::UREM_I16, RTLIB::UREM_I32, | 
|  | RTLIB::UREM_I64, RTLIB::UREM_I128)); | 
|  | break; | 
|  | case ISD::SDIV: | 
|  | Results.push_back(ExpandIntLibCall(Node, true, | 
|  | RTLIB::SDIV_I8, | 
|  | RTLIB::SDIV_I16, RTLIB::SDIV_I32, | 
|  | RTLIB::SDIV_I64, RTLIB::SDIV_I128)); | 
|  | break; | 
|  | case ISD::UDIV: | 
|  | Results.push_back(ExpandIntLibCall(Node, false, | 
|  | RTLIB::UDIV_I8, | 
|  | RTLIB::UDIV_I16, RTLIB::UDIV_I32, | 
|  | RTLIB::UDIV_I64, RTLIB::UDIV_I128)); | 
|  | break; | 
|  | case ISD::SDIVREM: | 
|  | case ISD::UDIVREM: | 
|  | // Expand into divrem libcall | 
|  | ExpandDivRemLibCall(Node, Results); | 
|  | break; | 
|  | case ISD::MUL: | 
|  | Results.push_back(ExpandIntLibCall(Node, false, | 
|  | RTLIB::MUL_I8, | 
|  | RTLIB::MUL_I16, RTLIB::MUL_I32, | 
|  | RTLIB::MUL_I64, RTLIB::MUL_I128)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Replace the original node with the legalized result. | 
|  | if (!Results.empty()) | 
|  | ReplaceNode(Node, Results.data()); | 
|  | } | 
|  |  | 
|  | // Determine the vector type to use in place of an original scalar element when | 
|  | // promoting equally sized vectors. | 
|  | static MVT getPromotedVectorElementType(const TargetLowering &TLI, | 
|  | MVT EltVT, MVT NewEltVT) { | 
|  | unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); | 
|  | MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); | 
|  | assert(TLI.isTypeLegal(MidVT) && "unexpected"); | 
|  | return MidVT; | 
|  | } | 
|  |  | 
|  | void SelectionDAGLegalize::PromoteNode(SDNode *Node) { | 
|  | SmallVector<SDValue, 8> Results; | 
|  | MVT OVT = Node->getSimpleValueType(0); | 
|  | if (Node->getOpcode() == ISD::UINT_TO_FP || | 
|  | Node->getOpcode() == ISD::SINT_TO_FP || | 
|  | Node->getOpcode() == ISD::SETCC || | 
|  | Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || | 
|  | Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { | 
|  | OVT = Node->getOperand(0).getSimpleValueType(); | 
|  | } | 
|  | if (Node->getOpcode() == ISD::BR_CC) | 
|  | OVT = Node->getOperand(2).getSimpleValueType(); | 
|  | MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); | 
|  | SDLoc dl(Node); | 
|  | SDValue Tmp1, Tmp2, Tmp3; | 
|  | switch (Node->getOpcode()) { | 
|  | case ISD::CTTZ: | 
|  | case ISD::CTTZ_ZERO_UNDEF: | 
|  | case ISD::CTLZ: | 
|  | case ISD::CTLZ_ZERO_UNDEF: | 
|  | case ISD::CTPOP: | 
|  | // Zero extend the argument. | 
|  | Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); | 
|  | if (Node->getOpcode() == ISD::CTTZ) { | 
|  | // The count is the same in the promoted type except if the original | 
|  | // value was zero.  This can be handled by setting the bit just off | 
|  | // the top of the original type. | 
|  | auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), | 
|  | OVT.getSizeInBits()); | 
|  | Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, | 
|  | DAG.getConstant(TopBit, dl, NVT)); | 
|  | } | 
|  | // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is | 
|  | // already the correct result. | 
|  | Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); | 
|  | if (Node->getOpcode() == ISD::CTLZ || | 
|  | Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { | 
|  | // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) | 
|  | Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, | 
|  | DAG.getConstant(NVT.getSizeInBits() - | 
|  | OVT.getSizeInBits(), dl, NVT)); | 
|  | } | 
|  | Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); | 
|  | break; | 
|  | case ISD::BITREVERSE: | 
|  | case ISD::BSWAP: { | 
|  | unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); | 
|  | Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); | 
|  | Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); | 
|  | Tmp1 = DAG.getNode( | 
|  | ISD::SRL, dl, NVT, Tmp1, | 
|  | DAG.getConstant(DiffBits, dl, | 
|  | TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::FP_TO_UINT: | 
|  | case ISD::FP_TO_SINT: | 
|  | Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), | 
|  | Node->getOpcode() == ISD::FP_TO_SINT, dl); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | case ISD::UINT_TO_FP: | 
|  | case ISD::SINT_TO_FP: | 
|  | Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), | 
|  | Node->getOpcode() == ISD::SINT_TO_FP, dl); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | case ISD::VAARG: { | 
|  | SDValue Chain = Node->getOperand(0); // Get the chain. | 
|  | SDValue Ptr = Node->getOperand(1); // Get the pointer. | 
|  |  | 
|  | unsigned TruncOp; | 
|  | if (OVT.isVector()) { | 
|  | TruncOp = ISD::BITCAST; | 
|  | } else { | 
|  | assert(OVT.isInteger() | 
|  | && "VAARG promotion is supported only for vectors or integer types"); | 
|  | TruncOp = ISD::TRUNCATE; | 
|  | } | 
|  |  | 
|  | // Perform the larger operation, then convert back | 
|  | Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), | 
|  | Node->getConstantOperandVal(3)); | 
|  | Chain = Tmp1.getValue(1); | 
|  |  | 
|  | Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); | 
|  |  | 
|  | // Modified the chain result - switch anything that used the old chain to | 
|  | // use the new one. | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); | 
|  | if (UpdatedNodes) { | 
|  | UpdatedNodes->insert(Tmp2.getNode()); | 
|  | UpdatedNodes->insert(Chain.getNode()); | 
|  | } | 
|  | ReplacedNode(Node); | 
|  | break; | 
|  | } | 
|  | case ISD::SDIV: | 
|  | case ISD::SREM: | 
|  | case ISD::UDIV: | 
|  | case ISD::UREM: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: { | 
|  | unsigned ExtOp, TruncOp; | 
|  | if (OVT.isVector()) { | 
|  | ExtOp   = ISD::BITCAST; | 
|  | TruncOp = ISD::BITCAST; | 
|  | } else { | 
|  | assert(OVT.isInteger() && "Cannot promote logic operation"); | 
|  |  | 
|  | switch (Node->getOpcode()) { | 
|  | default: | 
|  | ExtOp = ISD::ANY_EXTEND; | 
|  | break; | 
|  | case ISD::SDIV: | 
|  | case ISD::SREM: | 
|  | ExtOp = ISD::SIGN_EXTEND; | 
|  | break; | 
|  | case ISD::UDIV: | 
|  | case ISD::UREM: | 
|  | ExtOp = ISD::ZERO_EXTEND; | 
|  | break; | 
|  | } | 
|  | TruncOp = ISD::TRUNCATE; | 
|  | } | 
|  | // Promote each of the values to the new type. | 
|  | Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); | 
|  | Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); | 
|  | // Perform the larger operation, then convert back | 
|  | Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); | 
|  | Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); | 
|  | break; | 
|  | } | 
|  | case ISD::UMUL_LOHI: | 
|  | case ISD::SMUL_LOHI: { | 
|  | // Promote to a multiply in a wider integer type. | 
|  | unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND | 
|  | : ISD::SIGN_EXTEND; | 
|  | Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); | 
|  | Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); | 
|  | Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); | 
|  |  | 
|  | auto &DL = DAG.getDataLayout(); | 
|  | unsigned OriginalSize = OVT.getScalarSizeInBits(); | 
|  | Tmp2 = DAG.getNode( | 
|  | ISD::SRL, dl, NVT, Tmp1, | 
|  | DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); | 
|  | Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); | 
|  | Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); | 
|  | break; | 
|  | } | 
|  | case ISD::SELECT: { | 
|  | unsigned ExtOp, TruncOp; | 
|  | if (Node->getValueType(0).isVector() || | 
|  | Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { | 
|  | ExtOp   = ISD::BITCAST; | 
|  | TruncOp = ISD::BITCAST; | 
|  | } else if (Node->getValueType(0).isInteger()) { | 
|  | ExtOp   = ISD::ANY_EXTEND; | 
|  | TruncOp = ISD::TRUNCATE; | 
|  | } else { | 
|  | ExtOp   = ISD::FP_EXTEND; | 
|  | TruncOp = ISD::FP_ROUND; | 
|  | } | 
|  | Tmp1 = Node->getOperand(0); | 
|  | // Promote each of the values to the new type. | 
|  | Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); | 
|  | Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); | 
|  | // Perform the larger operation, then round down. | 
|  | Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); | 
|  | if (TruncOp != ISD::FP_ROUND) | 
|  | Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); | 
|  | else | 
|  | Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, | 
|  | DAG.getIntPtrConstant(0, dl)); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::VECTOR_SHUFFLE: { | 
|  | ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); | 
|  |  | 
|  | // Cast the two input vectors. | 
|  | Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); | 
|  | Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); | 
|  |  | 
|  | // Convert the shuffle mask to the right # elements. | 
|  | Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); | 
|  | Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); | 
|  | Results.push_back(Tmp1); | 
|  | break; | 
|  | } | 
|  | case ISD::SETCC: { | 
|  | unsigned ExtOp = ISD::FP_EXTEND; | 
|  | if (NVT.isInteger()) { | 
|  | ISD::CondCode CCCode = | 
|  | cast<CondCodeSDNode>(Node->getOperand(2))->get(); | 
|  | ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | 
|  | } | 
|  | Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); | 
|  | Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); | 
|  | Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), | 
|  | Tmp1, Tmp2, Node->getOperand(2))); | 
|  | break; | 
|  | } | 
|  | case ISD::BR_CC: { | 
|  | unsigned ExtOp = ISD::FP_EXTEND; | 
|  | if (NVT.isInteger()) { | 
|  | ISD::CondCode CCCode = | 
|  | cast<CondCodeSDNode>(Node->getOperand(1))->get(); | 
|  | ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | 
|  | } | 
|  | Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); | 
|  | Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); | 
|  | Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), | 
|  | Node->getOperand(0), Node->getOperand(1), | 
|  | Tmp1, Tmp2, Node->getOperand(4))); | 
|  | break; | 
|  | } | 
|  | case ISD::FADD: | 
|  | case ISD::FSUB: | 
|  | case ISD::FMUL: | 
|  | case ISD::FDIV: | 
|  | case ISD::FREM: | 
|  | case ISD::FMINNUM: | 
|  | case ISD::FMAXNUM: | 
|  | case ISD::FPOW: { | 
|  | Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); | 
|  | Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); | 
|  | Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, | 
|  | Node->getFlags()); | 
|  | Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, | 
|  | Tmp3, DAG.getIntPtrConstant(0, dl))); | 
|  | break; | 
|  | } | 
|  | case ISD::FMA: { | 
|  | Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); | 
|  | Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); | 
|  | Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); | 
|  | Results.push_back( | 
|  | DAG.getNode(ISD::FP_ROUND, dl, OVT, | 
|  | DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), | 
|  | DAG.getIntPtrConstant(0, dl))); | 
|  | break; | 
|  | } | 
|  | case ISD::FCOPYSIGN: | 
|  | case ISD::FPOWI: { | 
|  | Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); | 
|  | Tmp2 = Node->getOperand(1); | 
|  | Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); | 
|  |  | 
|  | // fcopysign doesn't change anything but the sign bit, so | 
|  | //   (fp_round (fcopysign (fpext a), b)) | 
|  | // is as precise as | 
|  | //   (fp_round (fpext a)) | 
|  | // which is a no-op. Mark it as a TRUNCating FP_ROUND. | 
|  | const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); | 
|  | Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, | 
|  | Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); | 
|  | break; | 
|  | } | 
|  | case ISD::FFLOOR: | 
|  | case ISD::FCEIL: | 
|  | case ISD::FRINT: | 
|  | case ISD::FNEARBYINT: | 
|  | case ISD::FROUND: | 
|  | case ISD::FTRUNC: | 
|  | case ISD::FNEG: | 
|  | case ISD::FSQRT: | 
|  | case ISD::FSIN: | 
|  | case ISD::FCOS: | 
|  | case ISD::FLOG: | 
|  | case ISD::FLOG2: | 
|  | case ISD::FLOG10: | 
|  | case ISD::FABS: | 
|  | case ISD::FEXP: | 
|  | case ISD::FEXP2: { | 
|  | Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); | 
|  | Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); | 
|  | Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, | 
|  | Tmp2, DAG.getIntPtrConstant(0, dl))); | 
|  | break; | 
|  | } | 
|  | case ISD::BUILD_VECTOR: { | 
|  | MVT EltVT = OVT.getVectorElementType(); | 
|  | MVT NewEltVT = NVT.getVectorElementType(); | 
|  |  | 
|  | // Handle bitcasts to a different vector type with the same total bit size | 
|  | // | 
|  | // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 | 
|  | //  => | 
|  | //  v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) | 
|  |  | 
|  | assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && | 
|  | "Invalid promote type for build_vector"); | 
|  | assert(NewEltVT.bitsLT(EltVT) && "not handled"); | 
|  |  | 
|  | MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); | 
|  |  | 
|  | SmallVector<SDValue, 8> NewOps; | 
|  | for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { | 
|  | SDValue Op = Node->getOperand(I); | 
|  | NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); | 
|  | } | 
|  |  | 
|  | SDLoc SL(Node); | 
|  | SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); | 
|  | SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); | 
|  | Results.push_back(CvtVec); | 
|  | break; | 
|  | } | 
|  | case ISD::EXTRACT_VECTOR_ELT: { | 
|  | MVT EltVT = OVT.getVectorElementType(); | 
|  | MVT NewEltVT = NVT.getVectorElementType(); | 
|  |  | 
|  | // Handle bitcasts to a different vector type with the same total bit size. | 
|  | // | 
|  | // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 | 
|  | //  => | 
|  | //  v4i32:castx = bitcast x:v2i64 | 
|  | // | 
|  | // i64 = bitcast | 
|  | //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), | 
|  | //                       (i32 (extract_vector_elt castx, (2 * y + 1))) | 
|  | // | 
|  |  | 
|  | assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && | 
|  | "Invalid promote type for extract_vector_elt"); | 
|  | assert(NewEltVT.bitsLT(EltVT) && "not handled"); | 
|  |  | 
|  | MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); | 
|  | unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); | 
|  |  | 
|  | SDValue Idx = Node->getOperand(1); | 
|  | EVT IdxVT = Idx.getValueType(); | 
|  | SDLoc SL(Node); | 
|  | SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); | 
|  | SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); | 
|  |  | 
|  | SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); | 
|  |  | 
|  | SmallVector<SDValue, 8> NewOps; | 
|  | for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { | 
|  | SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); | 
|  | SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); | 
|  |  | 
|  | SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, | 
|  | CastVec, TmpIdx); | 
|  | NewOps.push_back(Elt); | 
|  | } | 
|  |  | 
|  | SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); | 
|  | Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); | 
|  | break; | 
|  | } | 
|  | case ISD::INSERT_VECTOR_ELT: { | 
|  | MVT EltVT = OVT.getVectorElementType(); | 
|  | MVT NewEltVT = NVT.getVectorElementType(); | 
|  |  | 
|  | // Handle bitcasts to a different vector type with the same total bit size | 
|  | // | 
|  | // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 | 
|  | //  => | 
|  | //  v4i32:castx = bitcast x:v2i64 | 
|  | //  v2i32:casty = bitcast y:i64 | 
|  | // | 
|  | // v2i64 = bitcast | 
|  | //   (v4i32 insert_vector_elt | 
|  | //       (v4i32 insert_vector_elt v4i32:castx, | 
|  | //                                (extract_vector_elt casty, 0), 2 * z), | 
|  | //        (extract_vector_elt casty, 1), (2 * z + 1)) | 
|  |  | 
|  | assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && | 
|  | "Invalid promote type for insert_vector_elt"); | 
|  | assert(NewEltVT.bitsLT(EltVT) && "not handled"); | 
|  |  | 
|  | MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); | 
|  | unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); | 
|  |  | 
|  | SDValue Val = Node->getOperand(1); | 
|  | SDValue Idx = Node->getOperand(2); | 
|  | EVT IdxVT = Idx.getValueType(); | 
|  | SDLoc SL(Node); | 
|  |  | 
|  | SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); | 
|  | SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); | 
|  |  | 
|  | SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); | 
|  | SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); | 
|  |  | 
|  | SDValue NewVec = CastVec; | 
|  | for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { | 
|  | SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); | 
|  | SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); | 
|  |  | 
|  | SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, | 
|  | CastVal, IdxOffset); | 
|  |  | 
|  | NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, | 
|  | NewVec, Elt, InEltIdx); | 
|  | } | 
|  |  | 
|  | Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); | 
|  | break; | 
|  | } | 
|  | case ISD::SCALAR_TO_VECTOR: { | 
|  | MVT EltVT = OVT.getVectorElementType(); | 
|  | MVT NewEltVT = NVT.getVectorElementType(); | 
|  |  | 
|  | // Handle bitcasts to different vector type with the same total bit size. | 
|  | // | 
|  | // e.g. v2i64 = scalar_to_vector x:i64 | 
|  | //   => | 
|  | //  concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) | 
|  | // | 
|  |  | 
|  | MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); | 
|  | SDValue Val = Node->getOperand(0); | 
|  | SDLoc SL(Node); | 
|  |  | 
|  | SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); | 
|  | SDValue Undef = DAG.getUNDEF(MidVT); | 
|  |  | 
|  | SmallVector<SDValue, 8> NewElts; | 
|  | NewElts.push_back(CastVal); | 
|  | for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) | 
|  | NewElts.push_back(Undef); | 
|  |  | 
|  | SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); | 
|  | SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); | 
|  | Results.push_back(CvtVec); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Replace the original node with the legalized result. | 
|  | if (!Results.empty()) | 
|  | ReplaceNode(Node, Results.data()); | 
|  | } | 
|  |  | 
|  | /// This is the entry point for the file. | 
|  | void SelectionDAG::Legalize() { | 
|  | AssignTopologicalOrder(); | 
|  |  | 
|  | SmallPtrSet<SDNode *, 16> LegalizedNodes; | 
|  | SelectionDAGLegalize Legalizer(*this, LegalizedNodes); | 
|  |  | 
|  | // Visit all the nodes. We start in topological order, so that we see | 
|  | // nodes with their original operands intact. Legalization can produce | 
|  | // new nodes which may themselves need to be legalized. Iterate until all | 
|  | // nodes have been legalized. | 
|  | for (;;) { | 
|  | bool AnyLegalized = false; | 
|  | for (auto NI = allnodes_end(); NI != allnodes_begin();) { | 
|  | --NI; | 
|  |  | 
|  | SDNode *N = &*NI; | 
|  | if (N->use_empty() && N != getRoot().getNode()) { | 
|  | ++NI; | 
|  | DeleteNode(N); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (LegalizedNodes.insert(N).second) { | 
|  | AnyLegalized = true; | 
|  | Legalizer.LegalizeOp(N); | 
|  |  | 
|  | if (N->use_empty() && N != getRoot().getNode()) { | 
|  | ++NI; | 
|  | DeleteNode(N); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!AnyLegalized) | 
|  | break; | 
|  |  | 
|  | } | 
|  |  | 
|  | // Remove dead nodes now. | 
|  | RemoveDeadNodes(); | 
|  | } | 
|  |  | 
|  | bool SelectionDAG::LegalizeOp(SDNode *N, | 
|  | SmallSetVector<SDNode *, 16> &UpdatedNodes) { | 
|  | SmallPtrSet<SDNode *, 16> LegalizedNodes; | 
|  | SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); | 
|  |  | 
|  | // Directly insert the node in question, and legalize it. This will recurse | 
|  | // as needed through operands. | 
|  | LegalizedNodes.insert(N); | 
|  | Legalizer.LegalizeOp(N); | 
|  |  | 
|  | return LegalizedNodes.count(N); | 
|  | } |