|  | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" | 
|  | "http://www.w3.org/TR/html4/strict.dtd"> | 
|  |  | 
|  | <html> | 
|  | <head> | 
|  | <title>Kaleidoscope: Implementing code generation to LLVM IR</title> | 
|  | <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> | 
|  | <meta name="author" content="Chris Lattner"> | 
|  | <meta name="author" content="Erick Tryzelaar"> | 
|  | <link rel="stylesheet" href="../llvm.css" type="text/css"> | 
|  | </head> | 
|  |  | 
|  | <body> | 
|  |  | 
|  | <div class="doc_title">Kaleidoscope: Code generation to LLVM IR</div> | 
|  |  | 
|  | <ul> | 
|  | <li><a href="index.html">Up to Tutorial Index</a></li> | 
|  | <li>Chapter 3 | 
|  | <ol> | 
|  | <li><a href="#intro">Chapter 3 Introduction</a></li> | 
|  | <li><a href="#basics">Code Generation Setup</a></li> | 
|  | <li><a href="#exprs">Expression Code Generation</a></li> | 
|  | <li><a href="#funcs">Function Code Generation</a></li> | 
|  | <li><a href="#driver">Driver Changes and Closing Thoughts</a></li> | 
|  | <li><a href="#code">Full Code Listing</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="LangImpl4.html">Chapter 4</a>: Adding JIT and Optimizer | 
|  | Support</li> | 
|  | </ul> | 
|  |  | 
|  | <div class="doc_author"> | 
|  | <p> | 
|  | Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> | 
|  | and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a> | 
|  | </p> | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="intro">Chapter 3 Introduction</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>Welcome to Chapter 3 of the "<a href="index.html">Implementing a language | 
|  | with LLVM</a>" tutorial.  This chapter shows you how to transform the <a | 
|  | href="OCamlLangImpl2.html">Abstract Syntax Tree</a>, built in Chapter 2, into | 
|  | LLVM IR.  This will teach you a little bit about how LLVM does things, as well | 
|  | as demonstrate how easy it is to use.  It's much more work to build a lexer and | 
|  | parser than it is to generate LLVM IR code. :) | 
|  | </p> | 
|  |  | 
|  | <p><b>Please note</b>: the code in this chapter and later require LLVM 2.3 or | 
|  | LLVM SVN to work.  LLVM 2.2 and before will not work with it.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="basics">Code Generation Setup</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p> | 
|  | In order to generate LLVM IR, we want some simple setup to get started.  First | 
|  | we define virtual code generation (codegen) methods in each AST class:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | let rec codegen_expr = function | 
|  | | Ast.Number n -> ... | 
|  | | Ast.Variable name -> ... | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>The <tt>Codegen.codegen_expr</tt> function says to emit IR for that AST node | 
|  | along with all the things it depends on, and they all return an LLVM Value | 
|  | object.  "Value" is the class used to represent a "<a | 
|  | href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single | 
|  | Assignment (SSA)</a> register" or "SSA value" in LLVM.  The most distinct aspect | 
|  | of SSA values is that their value is computed as the related instruction | 
|  | executes, and it does not get a new value until (and if) the instruction | 
|  | re-executes.  In other words, there is no way to "change" an SSA value.  For | 
|  | more information, please read up on <a | 
|  | href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single | 
|  | Assignment</a> - the concepts are really quite natural once you grok them.</p> | 
|  |  | 
|  | <p>The | 
|  | second thing we want is an "Error" exception like we used for the parser, which | 
|  | will be used to report errors found during code generation (for example, use of | 
|  | an undeclared parameter):</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | exception Error of string | 
|  |  | 
|  | let the_module = create_module "my cool jit" | 
|  | let builder = builder () | 
|  | let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10 | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>The static variables will be used during code generation. | 
|  | <tt>Codgen.the_module</tt> is the LLVM construct that contains all of the | 
|  | functions and global variables in a chunk of code.  In many ways, it is the | 
|  | top-level structure that the LLVM IR uses to contain code.</p> | 
|  |  | 
|  | <p>The <tt>Codegen.builder</tt> object is a helper object that makes it easy to | 
|  | generate LLVM instructions.  Instances of the <a | 
|  | href="http://llvm.org/doxygen/IRBuilder_8h-source.html"><tt>IRBuilder</tt></a> | 
|  | class keep track of the current place to insert instructions and has methods to | 
|  | create new instructions.</p> | 
|  |  | 
|  | <p>The <tt>Codegen.named_values</tt> map keeps track of which values are defined | 
|  | in the current scope and what their LLVM representation is.  (In other words, it | 
|  | is a symbol table for the code).  In this form of Kaleidoscope, the only things | 
|  | that can be referenced are function parameters.  As such, function parameters | 
|  | will be in this map when generating code for their function body.</p> | 
|  |  | 
|  | <p> | 
|  | With these basics in place, we can start talking about how to generate code for | 
|  | each expression.  Note that this assumes that the <tt>Codgen.builder</tt> has | 
|  | been set up to generate code <em>into</em> something.  For now, we'll assume | 
|  | that this has already been done, and we'll just use it to emit code.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="exprs">Expression Code Generation</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>Generating LLVM code for expression nodes is very straightforward: less | 
|  | than 30 lines of commented code for all four of our expression nodes.  First | 
|  | we'll do numeric literals:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | | Ast.Number n -> const_float double_type n | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>In the LLVM IR, numeric constants are represented with the | 
|  | <tt>ConstantFP</tt> class, which holds the numeric value in an <tt>APFloat</tt> | 
|  | internally (<tt>APFloat</tt> has the capability of holding floating point | 
|  | constants of <em>A</em>rbitrary <em>P</em>recision).  This code basically just | 
|  | creates and returns a <tt>ConstantFP</tt>.  Note that in the LLVM IR | 
|  | that constants are all uniqued together and shared.  For this reason, the API | 
|  | uses "the foo::get(..)" idiom instead of "new foo(..)" or "foo::Create(..)".</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | | Ast.Variable name -> | 
|  | (try Hashtbl.find named_values name with | 
|  | | Not_found -> raise (Error "unknown variable name")) | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>References to variables are also quite simple using LLVM.  In the simple | 
|  | version of Kaleidoscope, we assume that the variable has already been emited | 
|  | somewhere and its value is available.  In practice, the only values that can be | 
|  | in the <tt>Codegen.named_values</tt> map are function arguments.  This code | 
|  | simply checks to see that the specified name is in the map (if not, an unknown | 
|  | variable is being referenced) and returns the value for it.  In future chapters, | 
|  | we'll add support for <a href="LangImpl5.html#for">loop induction variables</a> | 
|  | in the symbol table, and for <a href="LangImpl7.html#localvars">local | 
|  | variables</a>.</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | | Ast.Binary (op, lhs, rhs) -> | 
|  | let lhs_val = codegen_expr lhs in | 
|  | let rhs_val = codegen_expr rhs in | 
|  | begin | 
|  | match op with | 
|  | | '+' -> build_add lhs_val rhs_val "addtmp" builder | 
|  | | '-' -> build_sub lhs_val rhs_val "subtmp" builder | 
|  | | '*' -> build_mul lhs_val rhs_val "multmp" builder | 
|  | | '<' -> | 
|  | (* Convert bool 0/1 to double 0.0 or 1.0 *) | 
|  | let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in | 
|  | build_uitofp i double_type "booltmp" builder | 
|  | | _ -> raise (Error "invalid binary operator") | 
|  | end | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Binary operators start to get more interesting.  The basic idea here is that | 
|  | we recursively emit code for the left-hand side of the expression, then the | 
|  | right-hand side, then we compute the result of the binary expression.  In this | 
|  | code, we do a simple switch on the opcode to create the right LLVM instruction. | 
|  | </p> | 
|  |  | 
|  | <p>In the example above, the LLVM builder class is starting to show its value. | 
|  | IRBuilder knows where to insert the newly created instruction, all you have to | 
|  | do is specify what instruction to create (e.g. with <tt>Llvm.create_add</tt>), | 
|  | which operands to use (<tt>lhs</tt> and <tt>rhs</tt> here) and optionally | 
|  | provide a name for the generated instruction.</p> | 
|  |  | 
|  | <p>One nice thing about LLVM is that the name is just a hint.  For instance, if | 
|  | the code above emits multiple "addtmp" variables, LLVM will automatically | 
|  | provide each one with an increasing, unique numeric suffix.  Local value names | 
|  | for instructions are purely optional, but it makes it much easier to read the | 
|  | IR dumps.</p> | 
|  |  | 
|  | <p><a href="../LangRef.html#instref">LLVM instructions</a> are constrained by | 
|  | strict rules: for example, the Left and Right operators of | 
|  | an <a href="../LangRef.html#i_add">add instruction</a> must have the same | 
|  | type, and the result type of the add must match the operand types.  Because | 
|  | all values in Kaleidoscope are doubles, this makes for very simple code for add, | 
|  | sub and mul.</p> | 
|  |  | 
|  | <p>On the other hand, LLVM specifies that the <a | 
|  | href="../LangRef.html#i_fcmp">fcmp instruction</a> always returns an 'i1' value | 
|  | (a one bit integer).  The problem with this is that Kaleidoscope wants the value to be a 0.0 or 1.0 value.  In order to get these semantics, we combine the fcmp instruction with | 
|  | a <a href="../LangRef.html#i_uitofp">uitofp instruction</a>.  This instruction | 
|  | converts its input integer into a floating point value by treating the input | 
|  | as an unsigned value.  In contrast, if we used the <a | 
|  | href="../LangRef.html#i_sitofp">sitofp instruction</a>, the Kaleidoscope '<' | 
|  | operator would return 0.0 and -1.0, depending on the input value.</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | | Ast.Call (callee, args) -> | 
|  | (* Look up the name in the module table. *) | 
|  | let callee = | 
|  | match lookup_function callee the_module with | 
|  | | Some callee -> callee | 
|  | | None -> raise (Error "unknown function referenced") | 
|  | in | 
|  | let params = params callee in | 
|  |  | 
|  | (* If argument mismatch error. *) | 
|  | if Array.length params == Array.length args then () else | 
|  | raise (Error "incorrect # arguments passed"); | 
|  | let args = Array.map codegen_expr args in | 
|  | build_call callee args "calltmp" builder | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Code generation for function calls is quite straightforward with LLVM.  The | 
|  | code above initially does a function name lookup in the LLVM Module's symbol | 
|  | table.  Recall that the LLVM Module is the container that holds all of the | 
|  | functions we are JIT'ing.  By giving each function the same name as what the | 
|  | user specifies, we can use the LLVM symbol table to resolve function names for | 
|  | us.</p> | 
|  |  | 
|  | <p>Once we have the function to call, we recursively codegen each argument that | 
|  | is to be passed in, and create an LLVM <a href="../LangRef.html#i_call">call | 
|  | instruction</a>.  Note that LLVM uses the native C calling conventions by | 
|  | default, allowing these calls to also call into standard library functions like | 
|  | "sin" and "cos", with no additional effort.</p> | 
|  |  | 
|  | <p>This wraps up our handling of the four basic expressions that we have so far | 
|  | in Kaleidoscope.  Feel free to go in and add some more.  For example, by | 
|  | browsing the <a href="../LangRef.html">LLVM language reference</a> you'll find | 
|  | several other interesting instructions that are really easy to plug into our | 
|  | basic framework.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="funcs">Function Code Generation</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p>Code generation for prototypes and functions must handle a number of | 
|  | details, which make their code less beautiful than expression code | 
|  | generation, but allows us to illustrate some important points.  First, lets | 
|  | talk about code generation for prototypes: they are used both for function | 
|  | bodies and external function declarations.  The code starts with:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | let codegen_proto = function | 
|  | | Ast.Prototype (name, args) -> | 
|  | (* Make the function type: double(double,double) etc. *) | 
|  | let doubles = Array.make (Array.length args) double_type in | 
|  | let ft = function_type double_type doubles in | 
|  | let f = | 
|  | match lookup_function name the_module with | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>This code packs a lot of power into a few lines.  Note first that this | 
|  | function returns a "Function*" instead of a "Value*" (although at the moment | 
|  | they both are modeled by <tt>llvalue</tt> in ocaml).  Because a "prototype" | 
|  | really talks about the external interface for a function (not the value computed | 
|  | by an expression), it makes sense for it to return the LLVM Function it | 
|  | corresponds to when codegen'd.</p> | 
|  |  | 
|  | <p>The call to <tt>Llvm.function_type</tt> creates the <tt>Llvm.llvalue</tt> | 
|  | that should be used for a given Prototype.  Since all function arguments in | 
|  | Kaleidoscope are of type double, the first line creates a vector of "N" LLVM | 
|  | double types.  It then uses the <tt>Llvm.function_type</tt> method to create a | 
|  | function type that takes "N" doubles as arguments, returns one double as a | 
|  | result, and that is not vararg (that uses the function | 
|  | <tt>Llvm.var_arg_function_type</tt>).  Note that Types in LLVM are uniqued just | 
|  | like <tt>Constant</tt>s are, so you don't "new" a type, you "get" it.</p> | 
|  |  | 
|  | <p>The final line above checks if the function has already been defined in | 
|  | <tt>Codegen.the_module</tt>. If not, we will create it.</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | | None -> declare_function name ft the_module | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>This indicates the type and name to use, as well as which module to insert | 
|  | into.  By default we assume a function has | 
|  | <tt>Llvm.Linkage.ExternalLinkage</tt>.  "<a href="LangRef.html#linkage">external | 
|  | linkage</a>" means that the function may be defined outside the current module | 
|  | and/or that it is callable by functions outside the module.  The "<tt>name</tt>" | 
|  | passed in is the name the user specified: this name is registered in | 
|  | "<tt>Codegen.the_module</tt>"s symbol table, which is used by the function call | 
|  | code above.</p> | 
|  |  | 
|  | <p>In Kaleidoscope, I choose to allow redefinitions of functions in two cases: | 
|  | first, we want to allow 'extern'ing a function more than once, as long as the | 
|  | prototypes for the externs match (since all arguments have the same type, we | 
|  | just have to check that the number of arguments match).  Second, we want to | 
|  | allow 'extern'ing a function and then definining a body for it.  This is useful | 
|  | when defining mutually recursive functions.</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | (* If 'f' conflicted, there was already something named 'name'. If it | 
|  | * has a body, don't allow redefinition or reextern. *) | 
|  | | Some f -> | 
|  | (* If 'f' already has a body, reject this. *) | 
|  | if Array.length (basic_blocks f) == 0 then () else | 
|  | raise (Error "redefinition of function"); | 
|  |  | 
|  | (* If 'f' took a different number of arguments, reject. *) | 
|  | if Array.length (params f) == Array.length args then () else | 
|  | raise (Error "redefinition of function with different # args"); | 
|  | f | 
|  | in | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>In order to verify the logic above, we first check to see if the pre-existing | 
|  | function is "empty".  In this case, empty means that it has no basic blocks in | 
|  | it, which means it has no body.  If it has no body, it is a forward | 
|  | declaration.  Since we don't allow anything after a full definition of the | 
|  | function, the code rejects this case.  If the previous reference to a function | 
|  | was an 'extern', we simply verify that the number of arguments for that | 
|  | definition and this one match up.  If not, we emit an error.</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | (* Set names for all arguments. *) | 
|  | Array.iteri (fun i a -> | 
|  | let n = args.(i) in | 
|  | set_value_name n a; | 
|  | Hashtbl.add named_values n a; | 
|  | ) (params f); | 
|  | f | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>The last bit of code for prototypes loops over all of the arguments in the | 
|  | function, setting the name of the LLVM Argument objects to match, and registering | 
|  | the arguments in the <tt>Codegen.named_values</tt> map for future use by the | 
|  | <tt>Ast.Variable</tt> variant.  Once this is set up, it returns the Function | 
|  | object to the caller.  Note that we don't check for conflicting | 
|  | argument names here (e.g. "extern foo(a b a)").  Doing so would be very | 
|  | straight-forward with the mechanics we have already used above.</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | let codegen_func = function | 
|  | | Ast.Function (proto, body) -> | 
|  | Hashtbl.clear named_values; | 
|  | let the_function = codegen_proto proto in | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Code generation for function definitions starts out simply enough: we just | 
|  | codegen the prototype (Proto) and verify that it is ok.  We then clear out the | 
|  | <tt>Codegen.named_values</tt> map to make sure that there isn't anything in it | 
|  | from the last function we compiled.  Code generation of the prototype ensures | 
|  | that there is an LLVM Function object that is ready to go for us.</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | (* Create a new basic block to start insertion into. *) | 
|  | let bb = append_block "entry" the_function in | 
|  | position_at_end bb builder; | 
|  |  | 
|  | try | 
|  | let ret_val = codegen_expr body in | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Now we get to the point where the <tt>Codegen.builder</tt> is set up.  The | 
|  | first line creates a new | 
|  | <a href="http://en.wikipedia.org/wiki/Basic_block">basic block</a> (named | 
|  | "entry"), which is inserted into <tt>the_function</tt>.  The second line then | 
|  | tells the builder that new instructions should be inserted into the end of the | 
|  | new basic block.  Basic blocks in LLVM are an important part of functions that | 
|  | define the <a | 
|  | href="http://en.wikipedia.org/wiki/Control_flow_graph">Control Flow Graph</a>. | 
|  | Since we don't have any control flow, our functions will only contain one | 
|  | block at this point.  We'll fix this in <a href="OCamlLangImpl5.html">Chapter | 
|  | 5</a> :).</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | let ret_val = codegen_expr body in | 
|  |  | 
|  | (* Finish off the function. *) | 
|  | let _ = build_ret ret_val builder in | 
|  |  | 
|  | (* Validate the generated code, checking for consistency. *) | 
|  | Llvm_analysis.assert_valid_function the_function; | 
|  |  | 
|  | the_function | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Once the insertion point is set up, we call the <tt>Codegen.codegen_func</tt> | 
|  | method for the root expression of the function.  If no error happens, this emits | 
|  | code to compute the expression into the entry block and returns the value that | 
|  | was computed.  Assuming no error, we then create an LLVM <a | 
|  | href="../LangRef.html#i_ret">ret instruction</a>, which completes the function. | 
|  | Once the function is built, we call | 
|  | <tt>Llvm_analysis.assert_valid_function</tt>, which is provided by LLVM.  This | 
|  | function does a variety of consistency checks on the generated code, to | 
|  | determine if our compiler is doing everything right.  Using this is important: | 
|  | it can catch a lot of bugs.  Once the function is finished and validated, we | 
|  | return it.</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | with e -> | 
|  | delete_function the_function; | 
|  | raise e | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>The only piece left here is handling of the error case.  For simplicity, we | 
|  | handle this by merely deleting the function we produced with the | 
|  | <tt>Llvm.delete_function</tt> method.  This allows the user to redefine a | 
|  | function that they incorrectly typed in before: if we didn't delete it, it | 
|  | would live in the symbol table, with a body, preventing future redefinition.</p> | 
|  |  | 
|  | <p>This code does have a bug, though.  Since the <tt>Codegen.codegen_proto</tt> | 
|  | can return a previously defined forward declaration, our code can actually delete | 
|  | a forward declaration.  There are a number of ways to fix this bug, see what you | 
|  | can come up with!  Here is a testcase:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | extern foo(a b);     # ok, defines foo. | 
|  | def foo(a b) c;      # error, 'c' is invalid. | 
|  | def bar() foo(1, 2); # error, unknown function "foo" | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="driver">Driver Changes and | 
|  | Closing Thoughts</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p> | 
|  | For now, code generation to LLVM doesn't really get us much, except that we can | 
|  | look at the pretty IR calls.  The sample code inserts calls to Codegen into the | 
|  | "<tt>Toplevel.main_loop</tt>", and then dumps out the LLVM IR.  This gives a | 
|  | nice way to look at the LLVM IR for simple functions.  For example: | 
|  | </p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | ready> <b>4+5</b>; | 
|  | Read top-level expression: | 
|  | define double @""() { | 
|  | entry: | 
|  | %addtmp = add double 4.000000e+00, 5.000000e+00 | 
|  | ret double %addtmp | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Note how the parser turns the top-level expression into anonymous functions | 
|  | for us.  This will be handy when we add <a href="LangImpl4.html#jit">JIT | 
|  | support</a> in the next chapter.  Also note that the code is very literally | 
|  | transcribed, no optimizations are being performed.  We will | 
|  | <a href="OCamlLangImpl4.html#trivialconstfold">add optimizations</a> explicitly | 
|  | in the next chapter.</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | ready> <b>def foo(a b) a*a + 2*a*b + b*b;</b> | 
|  | Read function definition: | 
|  | define double @foo(double %a, double %b) { | 
|  | entry: | 
|  | %multmp = mul double %a, %a | 
|  | %multmp1 = mul double 2.000000e+00, %a | 
|  | %multmp2 = mul double %multmp1, %b | 
|  | %addtmp = add double %multmp, %multmp2 | 
|  | %multmp3 = mul double %b, %b | 
|  | %addtmp4 = add double %addtmp, %multmp3 | 
|  | ret double %addtmp4 | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>This shows some simple arithmetic. Notice the striking similarity to the | 
|  | LLVM builder calls that we use to create the instructions.</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | ready> <b>def bar(a) foo(a, 4.0) + bar(31337);</b> | 
|  | Read function definition: | 
|  | define double @bar(double %a) { | 
|  | entry: | 
|  | %calltmp = call double @foo( double %a, double 4.000000e+00 ) | 
|  | %calltmp1 = call double @bar( double 3.133700e+04 ) | 
|  | %addtmp = add double %calltmp, %calltmp1 | 
|  | ret double %addtmp | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>This shows some function calls.  Note that this function will take a long | 
|  | time to execute if you call it.  In the future we'll add conditional control | 
|  | flow to actually make recursion useful :).</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | ready> <b>extern cos(x);</b> | 
|  | Read extern: | 
|  | declare double @cos(double) | 
|  |  | 
|  | ready> <b>cos(1.234);</b> | 
|  | Read top-level expression: | 
|  | define double @""() { | 
|  | entry: | 
|  | %calltmp = call double @cos( double 1.234000e+00 ) | 
|  | ret double %calltmp | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>This shows an extern for the libm "cos" function, and a call to it.</p> | 
|  |  | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | ready> <b>^D</b> | 
|  | ; ModuleID = 'my cool jit' | 
|  |  | 
|  | define double @""() { | 
|  | entry: | 
|  | %addtmp = add double 4.000000e+00, 5.000000e+00 | 
|  | ret double %addtmp | 
|  | } | 
|  |  | 
|  | define double @foo(double %a, double %b) { | 
|  | entry: | 
|  | %multmp = mul double %a, %a | 
|  | %multmp1 = mul double 2.000000e+00, %a | 
|  | %multmp2 = mul double %multmp1, %b | 
|  | %addtmp = add double %multmp, %multmp2 | 
|  | %multmp3 = mul double %b, %b | 
|  | %addtmp4 = add double %addtmp, %multmp3 | 
|  | ret double %addtmp4 | 
|  | } | 
|  |  | 
|  | define double @bar(double %a) { | 
|  | entry: | 
|  | %calltmp = call double @foo( double %a, double 4.000000e+00 ) | 
|  | %calltmp1 = call double @bar( double 3.133700e+04 ) | 
|  | %addtmp = add double %calltmp, %calltmp1 | 
|  | ret double %addtmp | 
|  | } | 
|  |  | 
|  | declare double @cos(double) | 
|  |  | 
|  | define double @""() { | 
|  | entry: | 
|  | %calltmp = call double @cos( double 1.234000e+00 ) | 
|  | ret double %calltmp | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>When you quit the current demo, it dumps out the IR for the entire module | 
|  | generated.  Here you can see the big picture with all the functions referencing | 
|  | each other.</p> | 
|  |  | 
|  | <p>This wraps up the third chapter of the Kaleidoscope tutorial.  Up next, we'll | 
|  | describe how to <a href="LangImpl4.html">add JIT codegen and optimizer | 
|  | support</a> to this so we can actually start running code!</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <div class="doc_section"><a name="code">Full Code Listing</a></div> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div class="doc_text"> | 
|  |  | 
|  | <p> | 
|  | Here is the complete code listing for our running example, enhanced with the | 
|  | LLVM code generator.    Because this uses the LLVM libraries, we need to link | 
|  | them in.  To do this, we use the <a | 
|  | href="http://llvm.org/cmds/llvm-config.html">llvm-config</a> tool to inform | 
|  | our makefile/command line about which options to use:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | # Compile | 
|  | ocamlbuild toy.byte | 
|  | # Run | 
|  | ./toy.byte | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Here is the code:</p> | 
|  |  | 
|  | <dl> | 
|  | <dt>_tags:</dt> | 
|  | <dd class="doc_code"> | 
|  | <pre> | 
|  | <{lexer,parser}.ml>: use_camlp4, pp(camlp4of) | 
|  | <*.{byte,native}>: g++, use_llvm, use_llvm_analysis | 
|  | </pre> | 
|  | </dd> | 
|  |  | 
|  | <dt>myocamlbuild.ml:</dt> | 
|  | <dd class="doc_code"> | 
|  | <pre> | 
|  | open Ocamlbuild_plugin;; | 
|  |  | 
|  | ocaml_lib ~extern:true "llvm";; | 
|  | ocaml_lib ~extern:true "llvm_analysis";; | 
|  |  | 
|  | flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);; | 
|  | </pre> | 
|  | </dd> | 
|  |  | 
|  | <dt>token.ml:</dt> | 
|  | <dd class="doc_code"> | 
|  | <pre> | 
|  | (*===----------------------------------------------------------------------=== | 
|  | * Lexer Tokens | 
|  | *===----------------------------------------------------------------------===*) | 
|  |  | 
|  | (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of | 
|  | * these others for known things. *) | 
|  | type token = | 
|  | (* commands *) | 
|  | | Def | Extern | 
|  |  | 
|  | (* primary *) | 
|  | | Ident of string | Number of float | 
|  |  | 
|  | (* unknown *) | 
|  | | Kwd of char | 
|  | </pre> | 
|  | </dd> | 
|  |  | 
|  | <dt>lexer.ml:</dt> | 
|  | <dd class="doc_code"> | 
|  | <pre> | 
|  | (*===----------------------------------------------------------------------=== | 
|  | * Lexer | 
|  | *===----------------------------------------------------------------------===*) | 
|  |  | 
|  | let rec lex = parser | 
|  | (* Skip any whitespace. *) | 
|  | | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream | 
|  |  | 
|  | (* identifier: [a-zA-Z][a-zA-Z0-9] *) | 
|  | | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] -> | 
|  | let buffer = Buffer.create 1 in | 
|  | Buffer.add_char buffer c; | 
|  | lex_ident buffer stream | 
|  |  | 
|  | (* number: [0-9.]+ *) | 
|  | | [< ' ('0' .. '9' as c); stream >] -> | 
|  | let buffer = Buffer.create 1 in | 
|  | Buffer.add_char buffer c; | 
|  | lex_number buffer stream | 
|  |  | 
|  | (* Comment until end of line. *) | 
|  | | [< ' ('#'); stream >] -> | 
|  | lex_comment stream | 
|  |  | 
|  | (* Otherwise, just return the character as its ascii value. *) | 
|  | | [< 'c; stream >] -> | 
|  | [< 'Token.Kwd c; lex stream >] | 
|  |  | 
|  | (* end of stream. *) | 
|  | | [< >] -> [< >] | 
|  |  | 
|  | and lex_number buffer = parser | 
|  | | [< ' ('0' .. '9' | '.' as c); stream >] -> | 
|  | Buffer.add_char buffer c; | 
|  | lex_number buffer stream | 
|  | | [< stream=lex >] -> | 
|  | [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >] | 
|  |  | 
|  | and lex_ident buffer = parser | 
|  | | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] -> | 
|  | Buffer.add_char buffer c; | 
|  | lex_ident buffer stream | 
|  | | [< stream=lex >] -> | 
|  | match Buffer.contents buffer with | 
|  | | "def" -> [< 'Token.Def; stream >] | 
|  | | "extern" -> [< 'Token.Extern; stream >] | 
|  | | id -> [< 'Token.Ident id; stream >] | 
|  |  | 
|  | and lex_comment = parser | 
|  | | [< ' ('\n'); stream=lex >] -> stream | 
|  | | [< 'c; e=lex_comment >] -> e | 
|  | | [< >] -> [< >] | 
|  | </pre> | 
|  | </dd> | 
|  |  | 
|  | <dt>ast.ml:</dt> | 
|  | <dd class="doc_code"> | 
|  | <pre> | 
|  | (*===----------------------------------------------------------------------=== | 
|  | * Abstract Syntax Tree (aka Parse Tree) | 
|  | *===----------------------------------------------------------------------===*) | 
|  |  | 
|  | (* expr - Base type for all expression nodes. *) | 
|  | type expr = | 
|  | (* variant for numeric literals like "1.0". *) | 
|  | | Number of float | 
|  |  | 
|  | (* variant for referencing a variable, like "a". *) | 
|  | | Variable of string | 
|  |  | 
|  | (* variant for a binary operator. *) | 
|  | | Binary of char * expr * expr | 
|  |  | 
|  | (* variant for function calls. *) | 
|  | | Call of string * expr array | 
|  |  | 
|  | (* proto - This type represents the "prototype" for a function, which captures | 
|  | * its name, and its argument names (thus implicitly the number of arguments the | 
|  | * function takes). *) | 
|  | type proto = Prototype of string * string array | 
|  |  | 
|  | (* func - This type represents a function definition itself. *) | 
|  | type func = Function of proto * expr | 
|  | </pre> | 
|  | </dd> | 
|  |  | 
|  | <dt>parser.ml:</dt> | 
|  | <dd class="doc_code"> | 
|  | <pre> | 
|  | (*===---------------------------------------------------------------------=== | 
|  | * Parser | 
|  | *===---------------------------------------------------------------------===*) | 
|  |  | 
|  | (* binop_precedence - This holds the precedence for each binary operator that is | 
|  | * defined *) | 
|  | let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10 | 
|  |  | 
|  | (* precedence - Get the precedence of the pending binary operator token. *) | 
|  | let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1 | 
|  |  | 
|  | (* primary | 
|  | *   ::= identifier | 
|  | *   ::= numberexpr | 
|  | *   ::= parenexpr *) | 
|  | let rec parse_primary = parser | 
|  | (* numberexpr ::= number *) | 
|  | | [< 'Token.Number n >] -> Ast.Number n | 
|  |  | 
|  | (* parenexpr ::= '(' expression ')' *) | 
|  | | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e | 
|  |  | 
|  | (* identifierexpr | 
|  | *   ::= identifier | 
|  | *   ::= identifier '(' argumentexpr ')' *) | 
|  | | [< 'Token.Ident id; stream >] -> | 
|  | let rec parse_args accumulator = parser | 
|  | | [< e=parse_expr; stream >] -> | 
|  | begin parser | 
|  | | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e | 
|  | | [< >] -> e :: accumulator | 
|  | end stream | 
|  | | [< >] -> accumulator | 
|  | in | 
|  | let rec parse_ident id = parser | 
|  | (* Call. *) | 
|  | | [< 'Token.Kwd '('; | 
|  | args=parse_args []; | 
|  | 'Token.Kwd ')' ?? "expected ')'">] -> | 
|  | Ast.Call (id, Array.of_list (List.rev args)) | 
|  |  | 
|  | (* Simple variable ref. *) | 
|  | | [< >] -> Ast.Variable id | 
|  | in | 
|  | parse_ident id stream | 
|  |  | 
|  | | [< >] -> raise (Stream.Error "unknown token when expecting an expression.") | 
|  |  | 
|  | (* binoprhs | 
|  | *   ::= ('+' primary)* *) | 
|  | and parse_bin_rhs expr_prec lhs stream = | 
|  | match Stream.peek stream with | 
|  | (* If this is a binop, find its precedence. *) | 
|  | | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -> | 
|  | let token_prec = precedence c in | 
|  |  | 
|  | (* If this is a binop that binds at least as tightly as the current binop, | 
|  | * consume it, otherwise we are done. *) | 
|  | if token_prec < expr_prec then lhs else begin | 
|  | (* Eat the binop. *) | 
|  | Stream.junk stream; | 
|  |  | 
|  | (* Parse the primary expression after the binary operator. *) | 
|  | let rhs = parse_primary stream in | 
|  |  | 
|  | (* Okay, we know this is a binop. *) | 
|  | let rhs = | 
|  | match Stream.peek stream with | 
|  | | Some (Token.Kwd c2) -> | 
|  | (* If BinOp binds less tightly with rhs than the operator after | 
|  | * rhs, let the pending operator take rhs as its lhs. *) | 
|  | let next_prec = precedence c2 in | 
|  | if token_prec < next_prec | 
|  | then parse_bin_rhs (token_prec + 1) rhs stream | 
|  | else rhs | 
|  | | _ -> rhs | 
|  | in | 
|  |  | 
|  | (* Merge lhs/rhs. *) | 
|  | let lhs = Ast.Binary (c, lhs, rhs) in | 
|  | parse_bin_rhs expr_prec lhs stream | 
|  | end | 
|  | | _ -> lhs | 
|  |  | 
|  | (* expression | 
|  | *   ::= primary binoprhs *) | 
|  | and parse_expr = parser | 
|  | | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream | 
|  |  | 
|  | (* prototype | 
|  | *   ::= id '(' id* ')' *) | 
|  | let parse_prototype = | 
|  | let rec parse_args accumulator = parser | 
|  | | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e | 
|  | | [< >] -> accumulator | 
|  | in | 
|  |  | 
|  | parser | 
|  | | [< 'Token.Ident id; | 
|  | 'Token.Kwd '(' ?? "expected '(' in prototype"; | 
|  | args=parse_args []; | 
|  | 'Token.Kwd ')' ?? "expected ')' in prototype" >] -> | 
|  | (* success. *) | 
|  | Ast.Prototype (id, Array.of_list (List.rev args)) | 
|  |  | 
|  | | [< >] -> | 
|  | raise (Stream.Error "expected function name in prototype") | 
|  |  | 
|  | (* definition ::= 'def' prototype expression *) | 
|  | let parse_definition = parser | 
|  | | [< 'Token.Def; p=parse_prototype; e=parse_expr >] -> | 
|  | Ast.Function (p, e) | 
|  |  | 
|  | (* toplevelexpr ::= expression *) | 
|  | let parse_toplevel = parser | 
|  | | [< e=parse_expr >] -> | 
|  | (* Make an anonymous proto. *) | 
|  | Ast.Function (Ast.Prototype ("", [||]), e) | 
|  |  | 
|  | (*  external ::= 'extern' prototype *) | 
|  | let parse_extern = parser | 
|  | | [< 'Token.Extern; e=parse_prototype >] -> e | 
|  | </pre> | 
|  | </dd> | 
|  |  | 
|  | <dt>codegen.ml:</dt> | 
|  | <dd class="doc_code"> | 
|  | <pre> | 
|  | (*===----------------------------------------------------------------------=== | 
|  | * Code Generation | 
|  | *===----------------------------------------------------------------------===*) | 
|  |  | 
|  | open Llvm | 
|  |  | 
|  | exception Error of string | 
|  |  | 
|  | let the_module = create_module "my cool jit" | 
|  | let builder = builder () | 
|  | let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10 | 
|  |  | 
|  | let rec codegen_expr = function | 
|  | | Ast.Number n -> const_float double_type n | 
|  | | Ast.Variable name -> | 
|  | (try Hashtbl.find named_values name with | 
|  | | Not_found -> raise (Error "unknown variable name")) | 
|  | | Ast.Binary (op, lhs, rhs) -> | 
|  | let lhs_val = codegen_expr lhs in | 
|  | let rhs_val = codegen_expr rhs in | 
|  | begin | 
|  | match op with | 
|  | | '+' -> build_add lhs_val rhs_val "addtmp" builder | 
|  | | '-' -> build_sub lhs_val rhs_val "subtmp" builder | 
|  | | '*' -> build_mul lhs_val rhs_val "multmp" builder | 
|  | | '<' -> | 
|  | (* Convert bool 0/1 to double 0.0 or 1.0 *) | 
|  | let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in | 
|  | build_uitofp i double_type "booltmp" builder | 
|  | | _ -> raise (Error "invalid binary operator") | 
|  | end | 
|  | | Ast.Call (callee, args) -> | 
|  | (* Look up the name in the module table. *) | 
|  | let callee = | 
|  | match lookup_function callee the_module with | 
|  | | Some callee -> callee | 
|  | | None -> raise (Error "unknown function referenced") | 
|  | in | 
|  | let params = params callee in | 
|  |  | 
|  | (* If argument mismatch error. *) | 
|  | if Array.length params == Array.length args then () else | 
|  | raise (Error "incorrect # arguments passed"); | 
|  | let args = Array.map codegen_expr args in | 
|  | build_call callee args "calltmp" builder | 
|  |  | 
|  | let codegen_proto = function | 
|  | | Ast.Prototype (name, args) -> | 
|  | (* Make the function type: double(double,double) etc. *) | 
|  | let doubles = Array.make (Array.length args) double_type in | 
|  | let ft = function_type double_type doubles in | 
|  | let f = | 
|  | match lookup_function name the_module with | 
|  | | None -> declare_function name ft the_module | 
|  |  | 
|  | (* If 'f' conflicted, there was already something named 'name'. If it | 
|  | * has a body, don't allow redefinition or reextern. *) | 
|  | | Some f -> | 
|  | (* If 'f' already has a body, reject this. *) | 
|  | if block_begin f <> At_end f then | 
|  | raise (Error "redefinition of function"); | 
|  |  | 
|  | (* If 'f' took a different number of arguments, reject. *) | 
|  | if element_type (type_of f) <> ft then | 
|  | raise (Error "redefinition of function with different # args"); | 
|  | f | 
|  | in | 
|  |  | 
|  | (* Set names for all arguments. *) | 
|  | Array.iteri (fun i a -> | 
|  | let n = args.(i) in | 
|  | set_value_name n a; | 
|  | Hashtbl.add named_values n a; | 
|  | ) (params f); | 
|  | f | 
|  |  | 
|  | let codegen_func = function | 
|  | | Ast.Function (proto, body) -> | 
|  | Hashtbl.clear named_values; | 
|  | let the_function = codegen_proto proto in | 
|  |  | 
|  | (* Create a new basic block to start insertion into. *) | 
|  | let bb = append_block "entry" the_function in | 
|  | position_at_end bb builder; | 
|  |  | 
|  | try | 
|  | let ret_val = codegen_expr body in | 
|  |  | 
|  | (* Finish off the function. *) | 
|  | let _ = build_ret ret_val builder in | 
|  |  | 
|  | (* Validate the generated code, checking for consistency. *) | 
|  | Llvm_analysis.assert_valid_function the_function; | 
|  |  | 
|  | the_function | 
|  | with e -> | 
|  | delete_function the_function; | 
|  | raise e | 
|  | </pre> | 
|  | </dd> | 
|  |  | 
|  | <dt>toplevel.ml:</dt> | 
|  | <dd class="doc_code"> | 
|  | <pre> | 
|  | (*===----------------------------------------------------------------------=== | 
|  | * Top-Level parsing and JIT Driver | 
|  | *===----------------------------------------------------------------------===*) | 
|  |  | 
|  | open Llvm | 
|  |  | 
|  | (* top ::= definition | external | expression | ';' *) | 
|  | let rec main_loop stream = | 
|  | match Stream.peek stream with | 
|  | | None -> () | 
|  |  | 
|  | (* ignore top-level semicolons. *) | 
|  | | Some (Token.Kwd ';') -> | 
|  | Stream.junk stream; | 
|  | main_loop stream | 
|  |  | 
|  | | Some token -> | 
|  | begin | 
|  | try match token with | 
|  | | Token.Def -> | 
|  | let e = Parser.parse_definition stream in | 
|  | print_endline "parsed a function definition."; | 
|  | dump_value (Codegen.codegen_func e); | 
|  | | Token.Extern -> | 
|  | let e = Parser.parse_extern stream in | 
|  | print_endline "parsed an extern."; | 
|  | dump_value (Codegen.codegen_proto e); | 
|  | | _ -> | 
|  | (* Evaluate a top-level expression into an anonymous function. *) | 
|  | let e = Parser.parse_toplevel stream in | 
|  | print_endline "parsed a top-level expr"; | 
|  | dump_value (Codegen.codegen_func e); | 
|  | with Stream.Error s | Codegen.Error s -> | 
|  | (* Skip token for error recovery. *) | 
|  | Stream.junk stream; | 
|  | print_endline s; | 
|  | end; | 
|  | print_string "ready> "; flush stdout; | 
|  | main_loop stream | 
|  | </pre> | 
|  | </dd> | 
|  |  | 
|  | <dt>toy.ml:</dt> | 
|  | <dd class="doc_code"> | 
|  | <pre> | 
|  | (*===----------------------------------------------------------------------=== | 
|  | * Main driver code. | 
|  | *===----------------------------------------------------------------------===*) | 
|  |  | 
|  | open Llvm | 
|  |  | 
|  | let main () = | 
|  | (* Install standard binary operators. | 
|  | * 1 is the lowest precedence. *) | 
|  | Hashtbl.add Parser.binop_precedence '<' 10; | 
|  | Hashtbl.add Parser.binop_precedence '+' 20; | 
|  | Hashtbl.add Parser.binop_precedence '-' 20; | 
|  | Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *) | 
|  |  | 
|  | (* Prime the first token. *) | 
|  | print_string "ready> "; flush stdout; | 
|  | let stream = Lexer.lex (Stream.of_channel stdin) in | 
|  |  | 
|  | (* Run the main "interpreter loop" now. *) | 
|  | Toplevel.main_loop stream; | 
|  |  | 
|  | (* Print out all the generated code. *) | 
|  | dump_module Codegen.the_module | 
|  | ;; | 
|  |  | 
|  | main () | 
|  | </pre> | 
|  | </dd> | 
|  | </dl> | 
|  |  | 
|  | <a href="OCamlLangImpl4.html">Next: Adding JIT and Optimizer Support</a> | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <hr> | 
|  | <address> | 
|  | <a href="http://jigsaw.w3.org/css-validator/check/referer"><img | 
|  | src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> | 
|  | <a href="http://validator.w3.org/check/referer"><img | 
|  | src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> | 
|  |  | 
|  | <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> | 
|  | <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a><br> | 
|  | <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br> | 
|  | Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $ | 
|  | </address> | 
|  | </body> | 
|  | </html> |