|  | //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // BreakCriticalEdges pass - Break all of the critical edges in the CFG by | 
|  | // inserting a dummy basic block.  This pass may be "required" by passes that | 
|  | // cannot deal with critical edges.  For this usage, the structure type is | 
|  | // forward declared.  This pass obviously invalidates the CFG, but can update | 
|  | // dominator trees. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Utils/BreakCriticalEdges.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/BlockFrequencyInfo.h" | 
|  | #include "llvm/Analysis/BranchProbabilityInfo.h" | 
|  | #include "llvm/Analysis/CFG.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/MemorySSAUpdater.h" | 
|  | #include "llvm/Analysis/PostDominators.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Transforms/Utils.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Cloning.h" | 
|  | #include "llvm/Transforms/Utils/ValueMapper.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "break-crit-edges" | 
|  |  | 
|  | STATISTIC(NumBroken, "Number of blocks inserted"); | 
|  |  | 
|  | namespace { | 
|  | struct BreakCriticalEdges : public FunctionPass { | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | BreakCriticalEdges() : FunctionPass(ID) { | 
|  | initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override { | 
|  | auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); | 
|  | auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; | 
|  |  | 
|  | auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>(); | 
|  | auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr; | 
|  |  | 
|  | auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); | 
|  | auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; | 
|  | unsigned N = | 
|  | SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI, nullptr, PDT)); | 
|  | NumBroken += N; | 
|  | return N > 0; | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addPreserved<DominatorTreeWrapperPass>(); | 
|  | AU.addPreserved<LoopInfoWrapperPass>(); | 
|  |  | 
|  | // No loop canonicalization guarantees are broken by this pass. | 
|  | AU.addPreservedID(LoopSimplifyID); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | char BreakCriticalEdges::ID = 0; | 
|  | INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges", | 
|  | "Break critical edges in CFG", false, false) | 
|  |  | 
|  | // Publicly exposed interface to pass... | 
|  | char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID; | 
|  | FunctionPass *llvm::createBreakCriticalEdgesPass() { | 
|  | return new BreakCriticalEdges(); | 
|  | } | 
|  |  | 
|  | PreservedAnalyses BreakCriticalEdgesPass::run(Function &F, | 
|  | FunctionAnalysisManager &AM) { | 
|  | auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F); | 
|  | auto *LI = AM.getCachedResult<LoopAnalysis>(F); | 
|  | unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI)); | 
|  | NumBroken += N; | 
|  | if (N == 0) | 
|  | return PreservedAnalyses::all(); | 
|  | PreservedAnalyses PA; | 
|  | PA.preserve<DominatorTreeAnalysis>(); | 
|  | PA.preserve<LoopAnalysis>(); | 
|  | return PA; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //    Implementation of the external critical edge manipulation functions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// When a loop exit edge is split, LCSSA form may require new PHIs in the new | 
|  | /// exit block. This function inserts the new PHIs, as needed. Preds is a list | 
|  | /// of preds inside the loop, SplitBB is the new loop exit block, and DestBB is | 
|  | /// the old loop exit, now the successor of SplitBB. | 
|  | static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, | 
|  | BasicBlock *SplitBB, | 
|  | BasicBlock *DestBB) { | 
|  | // SplitBB shouldn't have anything non-trivial in it yet. | 
|  | assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() || | 
|  | SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!"); | 
|  |  | 
|  | // For each PHI in the destination block. | 
|  | for (PHINode &PN : DestBB->phis()) { | 
|  | unsigned Idx = PN.getBasicBlockIndex(SplitBB); | 
|  | Value *V = PN.getIncomingValue(Idx); | 
|  |  | 
|  | // If the input is a PHI which already satisfies LCSSA, don't create | 
|  | // a new one. | 
|  | if (const PHINode *VP = dyn_cast<PHINode>(V)) | 
|  | if (VP->getParent() == SplitBB) | 
|  | continue; | 
|  |  | 
|  | // Otherwise a new PHI is needed. Create one and populate it. | 
|  | PHINode *NewPN = PHINode::Create( | 
|  | PN.getType(), Preds.size(), "split", | 
|  | SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator()); | 
|  | for (unsigned i = 0, e = Preds.size(); i != e; ++i) | 
|  | NewPN->addIncoming(V, Preds[i]); | 
|  |  | 
|  | // Update the original PHI. | 
|  | PN.setIncomingValue(Idx, NewPN); | 
|  | } | 
|  | } | 
|  |  | 
|  | BasicBlock * | 
|  | llvm::SplitCriticalEdge(Instruction *TI, unsigned SuccNum, | 
|  | const CriticalEdgeSplittingOptions &Options) { | 
|  | if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges)) | 
|  | return nullptr; | 
|  |  | 
|  | assert(!isa<IndirectBrInst>(TI) && | 
|  | "Cannot split critical edge from IndirectBrInst"); | 
|  |  | 
|  | BasicBlock *TIBB = TI->getParent(); | 
|  | BasicBlock *DestBB = TI->getSuccessor(SuccNum); | 
|  |  | 
|  | // Splitting the critical edge to a pad block is non-trivial. Don't do | 
|  | // it in this generic function. | 
|  | if (DestBB->isEHPad()) return nullptr; | 
|  |  | 
|  | // Don't split the non-fallthrough edge from a callbr. | 
|  | if (isa<CallBrInst>(TI) && SuccNum > 0) | 
|  | return nullptr; | 
|  |  | 
|  | if (Options.IgnoreUnreachableDests && | 
|  | isa<UnreachableInst>(DestBB->getFirstNonPHIOrDbgOrLifetime())) | 
|  | return nullptr; | 
|  |  | 
|  | // Create a new basic block, linking it into the CFG. | 
|  | BasicBlock *NewBB = BasicBlock::Create(TI->getContext(), | 
|  | TIBB->getName() + "." + DestBB->getName() + "_crit_edge"); | 
|  | // Create our unconditional branch. | 
|  | BranchInst *NewBI = BranchInst::Create(DestBB, NewBB); | 
|  | NewBI->setDebugLoc(TI->getDebugLoc()); | 
|  |  | 
|  | // Branch to the new block, breaking the edge. | 
|  | TI->setSuccessor(SuccNum, NewBB); | 
|  |  | 
|  | // Insert the block into the function... right after the block TI lives in. | 
|  | Function &F = *TIBB->getParent(); | 
|  | Function::iterator FBBI = TIBB->getIterator(); | 
|  | F.getBasicBlockList().insert(++FBBI, NewBB); | 
|  |  | 
|  | // If there are any PHI nodes in DestBB, we need to update them so that they | 
|  | // merge incoming values from NewBB instead of from TIBB. | 
|  | { | 
|  | unsigned BBIdx = 0; | 
|  | for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) { | 
|  | // We no longer enter through TIBB, now we come in through NewBB. | 
|  | // Revector exactly one entry in the PHI node that used to come from | 
|  | // TIBB to come from NewBB. | 
|  | PHINode *PN = cast<PHINode>(I); | 
|  |  | 
|  | // Reuse the previous value of BBIdx if it lines up.  In cases where we | 
|  | // have multiple phi nodes with *lots* of predecessors, this is a speed | 
|  | // win because we don't have to scan the PHI looking for TIBB.  This | 
|  | // happens because the BB list of PHI nodes are usually in the same | 
|  | // order. | 
|  | if (PN->getIncomingBlock(BBIdx) != TIBB) | 
|  | BBIdx = PN->getBasicBlockIndex(TIBB); | 
|  | PN->setIncomingBlock(BBIdx, NewBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there are any other edges from TIBB to DestBB, update those to go | 
|  | // through the split block, making those edges non-critical as well (and | 
|  | // reducing the number of phi entries in the DestBB if relevant). | 
|  | if (Options.MergeIdenticalEdges) { | 
|  | for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) { | 
|  | if (TI->getSuccessor(i) != DestBB) continue; | 
|  |  | 
|  | // Remove an entry for TIBB from DestBB phi nodes. | 
|  | DestBB->removePredecessor(TIBB, Options.KeepOneInputPHIs); | 
|  |  | 
|  | // We found another edge to DestBB, go to NewBB instead. | 
|  | TI->setSuccessor(i, NewBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have nothing to update, just return. | 
|  | auto *DT = Options.DT; | 
|  | auto *PDT = Options.PDT; | 
|  | auto *LI = Options.LI; | 
|  | auto *MSSAU = Options.MSSAU; | 
|  | if (MSSAU) | 
|  | MSSAU->wireOldPredecessorsToNewImmediatePredecessor( | 
|  | DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges); | 
|  |  | 
|  | if (!DT && !PDT && !LI) | 
|  | return NewBB; | 
|  |  | 
|  | if (DT || PDT) { | 
|  | // Update the DominatorTree. | 
|  | //       ---> NewBB -----\ | 
|  | //      /                 V | 
|  | //  TIBB -------\\------> DestBB | 
|  | // | 
|  | // First, inform the DT about the new path from TIBB to DestBB via NewBB, | 
|  | // then delete the old edge from TIBB to DestBB. By doing this in that order | 
|  | // DestBB stays reachable in the DT the whole time and its subtree doesn't | 
|  | // get disconnected. | 
|  | SmallVector<DominatorTree::UpdateType, 3> Updates; | 
|  | Updates.push_back({DominatorTree::Insert, TIBB, NewBB}); | 
|  | Updates.push_back({DominatorTree::Insert, NewBB, DestBB}); | 
|  | if (llvm::find(successors(TIBB), DestBB) == succ_end(TIBB)) | 
|  | Updates.push_back({DominatorTree::Delete, TIBB, DestBB}); | 
|  |  | 
|  | if (DT) | 
|  | DT->applyUpdates(Updates); | 
|  | if (PDT) | 
|  | PDT->applyUpdates(Updates); | 
|  | } | 
|  |  | 
|  | // Update LoopInfo if it is around. | 
|  | if (LI) { | 
|  | if (Loop *TIL = LI->getLoopFor(TIBB)) { | 
|  | // If one or the other blocks were not in a loop, the new block is not | 
|  | // either, and thus LI doesn't need to be updated. | 
|  | if (Loop *DestLoop = LI->getLoopFor(DestBB)) { | 
|  | if (TIL == DestLoop) { | 
|  | // Both in the same loop, the NewBB joins loop. | 
|  | DestLoop->addBasicBlockToLoop(NewBB, *LI); | 
|  | } else if (TIL->contains(DestLoop)) { | 
|  | // Edge from an outer loop to an inner loop.  Add to the outer loop. | 
|  | TIL->addBasicBlockToLoop(NewBB, *LI); | 
|  | } else if (DestLoop->contains(TIL)) { | 
|  | // Edge from an inner loop to an outer loop.  Add to the outer loop. | 
|  | DestLoop->addBasicBlockToLoop(NewBB, *LI); | 
|  | } else { | 
|  | // Edge from two loops with no containment relation.  Because these | 
|  | // are natural loops, we know that the destination block must be the | 
|  | // header of its loop (adding a branch into a loop elsewhere would | 
|  | // create an irreducible loop). | 
|  | assert(DestLoop->getHeader() == DestBB && | 
|  | "Should not create irreducible loops!"); | 
|  | if (Loop *P = DestLoop->getParentLoop()) | 
|  | P->addBasicBlockToLoop(NewBB, *LI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If TIBB is in a loop and DestBB is outside of that loop, we may need | 
|  | // to update LoopSimplify form and LCSSA form. | 
|  | if (!TIL->contains(DestBB)) { | 
|  | assert(!TIL->contains(NewBB) && | 
|  | "Split point for loop exit is contained in loop!"); | 
|  |  | 
|  | // Update LCSSA form in the newly created exit block. | 
|  | if (Options.PreserveLCSSA) { | 
|  | createPHIsForSplitLoopExit(TIBB, NewBB, DestBB); | 
|  | } | 
|  |  | 
|  | // The only that we can break LoopSimplify form by splitting a critical | 
|  | // edge is if after the split there exists some edge from TIL to DestBB | 
|  | // *and* the only edge into DestBB from outside of TIL is that of | 
|  | // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB | 
|  | // is the new exit block and it has no non-loop predecessors. If the | 
|  | // second isn't true, then DestBB was not in LoopSimplify form prior to | 
|  | // the split as it had a non-loop predecessor. In both of these cases, | 
|  | // the predecessor must be directly in TIL, not in a subloop, or again | 
|  | // LoopSimplify doesn't hold. | 
|  | SmallVector<BasicBlock *, 4> LoopPreds; | 
|  | for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E; | 
|  | ++I) { | 
|  | BasicBlock *P = *I; | 
|  | if (P == NewBB) | 
|  | continue; // The new block is known. | 
|  | if (LI->getLoopFor(P) != TIL) { | 
|  | // No need to re-simplify, it wasn't to start with. | 
|  | LoopPreds.clear(); | 
|  | break; | 
|  | } | 
|  | LoopPreds.push_back(P); | 
|  | } | 
|  | if (!LoopPreds.empty()) { | 
|  | assert(!DestBB->isEHPad() && "We don't split edges to EH pads!"); | 
|  | BasicBlock *NewExitBB = SplitBlockPredecessors( | 
|  | DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA); | 
|  | if (Options.PreserveLCSSA) | 
|  | createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return NewBB; | 
|  | } | 
|  |  | 
|  | // Return the unique indirectbr predecessor of a block. This may return null | 
|  | // even if such a predecessor exists, if it's not useful for splitting. | 
|  | // If a predecessor is found, OtherPreds will contain all other (non-indirectbr) | 
|  | // predecessors of BB. | 
|  | static BasicBlock * | 
|  | findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) { | 
|  | // If the block doesn't have any PHIs, we don't care about it, since there's | 
|  | // no point in splitting it. | 
|  | PHINode *PN = dyn_cast<PHINode>(BB->begin()); | 
|  | if (!PN) | 
|  | return nullptr; | 
|  |  | 
|  | // Verify we have exactly one IBR predecessor. | 
|  | // Conservatively bail out if one of the other predecessors is not a "regular" | 
|  | // terminator (that is, not a switch or a br). | 
|  | BasicBlock *IBB = nullptr; | 
|  | for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) { | 
|  | BasicBlock *PredBB = PN->getIncomingBlock(Pred); | 
|  | Instruction *PredTerm = PredBB->getTerminator(); | 
|  | switch (PredTerm->getOpcode()) { | 
|  | case Instruction::IndirectBr: | 
|  | if (IBB) | 
|  | return nullptr; | 
|  | IBB = PredBB; | 
|  | break; | 
|  | case Instruction::Br: | 
|  | case Instruction::Switch: | 
|  | OtherPreds.push_back(PredBB); | 
|  | continue; | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | return IBB; | 
|  | } | 
|  |  | 
|  | bool llvm::SplitIndirectBrCriticalEdges(Function &F, | 
|  | BranchProbabilityInfo *BPI, | 
|  | BlockFrequencyInfo *BFI) { | 
|  | // Check whether the function has any indirectbrs, and collect which blocks | 
|  | // they may jump to. Since most functions don't have indirect branches, | 
|  | // this lowers the common case's overhead to O(Blocks) instead of O(Edges). | 
|  | SmallSetVector<BasicBlock *, 16> Targets; | 
|  | for (auto &BB : F) { | 
|  | auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator()); | 
|  | if (!IBI) | 
|  | continue; | 
|  |  | 
|  | for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ) | 
|  | Targets.insert(IBI->getSuccessor(Succ)); | 
|  | } | 
|  |  | 
|  | if (Targets.empty()) | 
|  | return false; | 
|  |  | 
|  | bool ShouldUpdateAnalysis = BPI && BFI; | 
|  | bool Changed = false; | 
|  | for (BasicBlock *Target : Targets) { | 
|  | SmallVector<BasicBlock *, 16> OtherPreds; | 
|  | BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds); | 
|  | // If we did not found an indirectbr, or the indirectbr is the only | 
|  | // incoming edge, this isn't the kind of edge we're looking for. | 
|  | if (!IBRPred || OtherPreds.empty()) | 
|  | continue; | 
|  |  | 
|  | // Don't even think about ehpads/landingpads. | 
|  | Instruction *FirstNonPHI = Target->getFirstNonPHI(); | 
|  | if (FirstNonPHI->isEHPad() || Target->isLandingPad()) | 
|  | continue; | 
|  |  | 
|  | BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split"); | 
|  | if (ShouldUpdateAnalysis) { | 
|  | // Copy the BFI/BPI from Target to BodyBlock. | 
|  | for (unsigned I = 0, E = BodyBlock->getTerminator()->getNumSuccessors(); | 
|  | I < E; ++I) | 
|  | BPI->setEdgeProbability(BodyBlock, I, | 
|  | BPI->getEdgeProbability(Target, I)); | 
|  | BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency()); | 
|  | } | 
|  | // It's possible Target was its own successor through an indirectbr. | 
|  | // In this case, the indirectbr now comes from BodyBlock. | 
|  | if (IBRPred == Target) | 
|  | IBRPred = BodyBlock; | 
|  |  | 
|  | // At this point Target only has PHIs, and BodyBlock has the rest of the | 
|  | // block's body. Create a copy of Target that will be used by the "direct" | 
|  | // preds. | 
|  | ValueToValueMapTy VMap; | 
|  | BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F); | 
|  |  | 
|  | BlockFrequency BlockFreqForDirectSucc; | 
|  | for (BasicBlock *Pred : OtherPreds) { | 
|  | // If the target is a loop to itself, then the terminator of the split | 
|  | // block (BodyBlock) needs to be updated. | 
|  | BasicBlock *Src = Pred != Target ? Pred : BodyBlock; | 
|  | Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc); | 
|  | if (ShouldUpdateAnalysis) | 
|  | BlockFreqForDirectSucc += BFI->getBlockFreq(Src) * | 
|  | BPI->getEdgeProbability(Src, DirectSucc); | 
|  | } | 
|  | if (ShouldUpdateAnalysis) { | 
|  | BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency()); | 
|  | BlockFrequency NewBlockFreqForTarget = | 
|  | BFI->getBlockFreq(Target) - BlockFreqForDirectSucc; | 
|  | BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency()); | 
|  | BPI->eraseBlock(Target); | 
|  | } | 
|  |  | 
|  | // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that | 
|  | // they are clones, so the number of PHIs are the same. | 
|  | // (a) Remove the edge coming from IBRPred from the "Direct" PHI | 
|  | // (b) Leave that as the only edge in the "Indirect" PHI. | 
|  | // (c) Merge the two in the body block. | 
|  | BasicBlock::iterator Indirect = Target->begin(), | 
|  | End = Target->getFirstNonPHI()->getIterator(); | 
|  | BasicBlock::iterator Direct = DirectSucc->begin(); | 
|  | BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt(); | 
|  |  | 
|  | assert(&*End == Target->getTerminator() && | 
|  | "Block was expected to only contain PHIs"); | 
|  |  | 
|  | while (Indirect != End) { | 
|  | PHINode *DirPHI = cast<PHINode>(Direct); | 
|  | PHINode *IndPHI = cast<PHINode>(Indirect); | 
|  |  | 
|  | // Now, clean up - the direct block shouldn't get the indirect value, | 
|  | // and vice versa. | 
|  | DirPHI->removeIncomingValue(IBRPred); | 
|  | Direct++; | 
|  |  | 
|  | // Advance the pointer here, to avoid invalidation issues when the old | 
|  | // PHI is erased. | 
|  | Indirect++; | 
|  |  | 
|  | PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI); | 
|  | NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred), | 
|  | IBRPred); | 
|  |  | 
|  | // Create a PHI in the body block, to merge the direct and indirect | 
|  | // predecessors. | 
|  | PHINode *MergePHI = | 
|  | PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert); | 
|  | MergePHI->addIncoming(NewIndPHI, Target); | 
|  | MergePHI->addIncoming(DirPHI, DirectSucc); | 
|  |  | 
|  | IndPHI->replaceAllUsesWith(MergePHI); | 
|  | IndPHI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } |