|  | //===- Float2Int.cpp - Demote floating point ops to work on integers ------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the Float2Int pass, which aims to demote floating | 
|  | // point operations to work on integers, where that is losslessly possible. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "float2int" | 
|  |  | 
|  | #include "llvm/Transforms/Scalar/Float2Int.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/APSInt.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/GlobalsModRef.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InstIterator.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include <deque> | 
|  | #include <functional> // For std::function | 
|  | using namespace llvm; | 
|  |  | 
|  | // The algorithm is simple. Start at instructions that convert from the | 
|  | // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use | 
|  | // graph, using an equivalence datastructure to unify graphs that interfere. | 
|  | // | 
|  | // Mappable instructions are those with an integer corrollary that, given | 
|  | // integer domain inputs, produce an integer output; fadd, for example. | 
|  | // | 
|  | // If a non-mappable instruction is seen, this entire def-use graph is marked | 
|  | // as non-transformable. If we see an instruction that converts from the | 
|  | // integer domain to FP domain (uitofp,sitofp), we terminate our walk. | 
|  |  | 
|  | /// The largest integer type worth dealing with. | 
|  | static cl::opt<unsigned> | 
|  | MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden, | 
|  | cl::desc("Max integer bitwidth to consider in float2int" | 
|  | "(default=64)")); | 
|  |  | 
|  | namespace { | 
|  | struct Float2IntLegacyPass : public FunctionPass { | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | Float2IntLegacyPass() : FunctionPass(ID) { | 
|  | initializeFloat2IntLegacyPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override { | 
|  | if (skipFunction(F)) | 
|  | return false; | 
|  |  | 
|  | return Impl.runImpl(F); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addPreserved<GlobalsAAWrapperPass>(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | Float2IntPass Impl; | 
|  | }; | 
|  | } | 
|  |  | 
|  | char Float2IntLegacyPass::ID = 0; | 
|  | INITIALIZE_PASS(Float2IntLegacyPass, "float2int", "Float to int", false, false) | 
|  |  | 
|  | // Given a FCmp predicate, return a matching ICmp predicate if one | 
|  | // exists, otherwise return BAD_ICMP_PREDICATE. | 
|  | static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) { | 
|  | switch (P) { | 
|  | case CmpInst::FCMP_OEQ: | 
|  | case CmpInst::FCMP_UEQ: | 
|  | return CmpInst::ICMP_EQ; | 
|  | case CmpInst::FCMP_OGT: | 
|  | case CmpInst::FCMP_UGT: | 
|  | return CmpInst::ICMP_SGT; | 
|  | case CmpInst::FCMP_OGE: | 
|  | case CmpInst::FCMP_UGE: | 
|  | return CmpInst::ICMP_SGE; | 
|  | case CmpInst::FCMP_OLT: | 
|  | case CmpInst::FCMP_ULT: | 
|  | return CmpInst::ICMP_SLT; | 
|  | case CmpInst::FCMP_OLE: | 
|  | case CmpInst::FCMP_ULE: | 
|  | return CmpInst::ICMP_SLE; | 
|  | case CmpInst::FCMP_ONE: | 
|  | case CmpInst::FCMP_UNE: | 
|  | return CmpInst::ICMP_NE; | 
|  | default: | 
|  | return CmpInst::BAD_ICMP_PREDICATE; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Given a floating point binary operator, return the matching | 
|  | // integer version. | 
|  | static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) { | 
|  | switch (Opcode) { | 
|  | default: llvm_unreachable("Unhandled opcode!"); | 
|  | case Instruction::FAdd: return Instruction::Add; | 
|  | case Instruction::FSub: return Instruction::Sub; | 
|  | case Instruction::FMul: return Instruction::Mul; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Find the roots - instructions that convert from the FP domain to | 
|  | // integer domain. | 
|  | void Float2IntPass::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) { | 
|  | for (auto &I : instructions(F)) { | 
|  | if (isa<VectorType>(I.getType())) | 
|  | continue; | 
|  | switch (I.getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | Roots.insert(&I); | 
|  | break; | 
|  | case Instruction::FCmp: | 
|  | if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) != | 
|  | CmpInst::BAD_ICMP_PREDICATE) | 
|  | Roots.insert(&I); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Helper - mark I as having been traversed, having range R. | 
|  | void Float2IntPass::seen(Instruction *I, ConstantRange R) { | 
|  | LLVM_DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n"); | 
|  | auto IT = SeenInsts.find(I); | 
|  | if (IT != SeenInsts.end()) | 
|  | IT->second = std::move(R); | 
|  | else | 
|  | SeenInsts.insert(std::make_pair(I, std::move(R))); | 
|  | } | 
|  |  | 
|  | // Helper - get a range representing a poison value. | 
|  | ConstantRange Float2IntPass::badRange() { | 
|  | return ConstantRange(MaxIntegerBW + 1, true); | 
|  | } | 
|  | ConstantRange Float2IntPass::unknownRange() { | 
|  | return ConstantRange(MaxIntegerBW + 1, false); | 
|  | } | 
|  | ConstantRange Float2IntPass::validateRange(ConstantRange R) { | 
|  | if (R.getBitWidth() > MaxIntegerBW + 1) | 
|  | return badRange(); | 
|  | return R; | 
|  | } | 
|  |  | 
|  | // The most obvious way to structure the search is a depth-first, eager | 
|  | // search from each root. However, that require direct recursion and so | 
|  | // can only handle small instruction sequences. Instead, we split the search | 
|  | // up into two phases: | 
|  | //   - walkBackwards:  A breadth-first walk of the use-def graph starting from | 
|  | //                     the roots. Populate "SeenInsts" with interesting | 
|  | //                     instructions and poison values if they're obvious and | 
|  | //                     cheap to compute. Calculate the equivalance set structure | 
|  | //                     while we're here too. | 
|  | //   - walkForwards:  Iterate over SeenInsts in reverse order, so we visit | 
|  | //                     defs before their uses. Calculate the real range info. | 
|  |  | 
|  | // Breadth-first walk of the use-def graph; determine the set of nodes | 
|  | // we care about and eagerly determine if some of them are poisonous. | 
|  | void Float2IntPass::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) { | 
|  | std::deque<Instruction*> Worklist(Roots.begin(), Roots.end()); | 
|  | while (!Worklist.empty()) { | 
|  | Instruction *I = Worklist.back(); | 
|  | Worklist.pop_back(); | 
|  |  | 
|  | if (SeenInsts.find(I) != SeenInsts.end()) | 
|  | // Seen already. | 
|  | continue; | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | // FIXME: Handle select and phi nodes. | 
|  | default: | 
|  | // Path terminated uncleanly. | 
|  | seen(I, badRange()); | 
|  | break; | 
|  |  | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: { | 
|  | // Path terminated cleanly - use the type of the integer input to seed | 
|  | // the analysis. | 
|  | unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits(); | 
|  | auto Input = ConstantRange(BW, true); | 
|  | auto CastOp = (Instruction::CastOps)I->getOpcode(); | 
|  | seen(I, validateRange(Input.castOp(CastOp, MaxIntegerBW+1))); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case Instruction::FAdd: | 
|  | case Instruction::FSub: | 
|  | case Instruction::FMul: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | case Instruction::FCmp: | 
|  | seen(I, unknownRange()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | for (Value *O : I->operands()) { | 
|  | if (Instruction *OI = dyn_cast<Instruction>(O)) { | 
|  | // Unify def-use chains if they interfere. | 
|  | ECs.unionSets(I, OI); | 
|  | if (SeenInsts.find(I)->second != badRange()) | 
|  | Worklist.push_back(OI); | 
|  | } else if (!isa<ConstantFP>(O)) { | 
|  | // Not an instruction or ConstantFP? we can't do anything. | 
|  | seen(I, badRange()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Walk forwards down the list of seen instructions, so we visit defs before | 
|  | // uses. | 
|  | void Float2IntPass::walkForwards() { | 
|  | for (auto &It : reverse(SeenInsts)) { | 
|  | if (It.second != unknownRange()) | 
|  | continue; | 
|  |  | 
|  | Instruction *I = It.first; | 
|  | std::function<ConstantRange(ArrayRef<ConstantRange>)> Op; | 
|  | switch (I->getOpcode()) { | 
|  | // FIXME: Handle select and phi nodes. | 
|  | default: | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | llvm_unreachable("Should have been handled in walkForwards!"); | 
|  |  | 
|  | case Instruction::FAdd: | 
|  | case Instruction::FSub: | 
|  | case Instruction::FMul: | 
|  | Op = [I](ArrayRef<ConstantRange> Ops) { | 
|  | assert(Ops.size() == 2 && "its a binary operator!"); | 
|  | auto BinOp = (Instruction::BinaryOps) I->getOpcode(); | 
|  | return Ops[0].binaryOp(BinOp, Ops[1]); | 
|  | }; | 
|  | break; | 
|  |  | 
|  | // | 
|  | // Root-only instructions - we'll only see these if they're the | 
|  | //                          first node in a walk. | 
|  | // | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | Op = [I](ArrayRef<ConstantRange> Ops) { | 
|  | assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!"); | 
|  | // Note: We're ignoring the casts output size here as that's what the | 
|  | // caller expects. | 
|  | auto CastOp = (Instruction::CastOps)I->getOpcode(); | 
|  | return Ops[0].castOp(CastOp, MaxIntegerBW+1); | 
|  | }; | 
|  | break; | 
|  |  | 
|  | case Instruction::FCmp: | 
|  | Op = [](ArrayRef<ConstantRange> Ops) { | 
|  | assert(Ops.size() == 2 && "FCmp is a binary operator!"); | 
|  | return Ops[0].unionWith(Ops[1]); | 
|  | }; | 
|  | break; | 
|  | } | 
|  |  | 
|  | bool Abort = false; | 
|  | SmallVector<ConstantRange,4> OpRanges; | 
|  | for (Value *O : I->operands()) { | 
|  | if (Instruction *OI = dyn_cast<Instruction>(O)) { | 
|  | assert(SeenInsts.find(OI) != SeenInsts.end() && | 
|  | "def not seen before use!"); | 
|  | OpRanges.push_back(SeenInsts.find(OI)->second); | 
|  | } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) { | 
|  | // Work out if the floating point number can be losslessly represented | 
|  | // as an integer. | 
|  | // APFloat::convertToInteger(&Exact) purports to do what we want, but | 
|  | // the exactness can be too precise. For example, negative zero can | 
|  | // never be exactly converted to an integer. | 
|  | // | 
|  | // Instead, we ask APFloat to round itself to an integral value - this | 
|  | // preserves sign-of-zero - then compare the result with the original. | 
|  | // | 
|  | const APFloat &F = CF->getValueAPF(); | 
|  |  | 
|  | // First, weed out obviously incorrect values. Non-finite numbers | 
|  | // can't be represented and neither can negative zero, unless | 
|  | // we're in fast math mode. | 
|  | if (!F.isFinite() || | 
|  | (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) && | 
|  | !I->hasNoSignedZeros())) { | 
|  | seen(I, badRange()); | 
|  | Abort = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | APFloat NewF = F; | 
|  | auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven); | 
|  | if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) { | 
|  | seen(I, badRange()); | 
|  | Abort = true; | 
|  | break; | 
|  | } | 
|  | // OK, it's representable. Now get it. | 
|  | APSInt Int(MaxIntegerBW+1, false); | 
|  | bool Exact; | 
|  | CF->getValueAPF().convertToInteger(Int, | 
|  | APFloat::rmNearestTiesToEven, | 
|  | &Exact); | 
|  | OpRanges.push_back(ConstantRange(Int)); | 
|  | } else { | 
|  | llvm_unreachable("Should have already marked this as badRange!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Reduce the operands' ranges to a single range and return. | 
|  | if (!Abort) | 
|  | seen(I, Op(OpRanges)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there is a valid transform to be done, do it. | 
|  | bool Float2IntPass::validateAndTransform() { | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // Iterate over every disjoint partition of the def-use graph. | 
|  | for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) { | 
|  | ConstantRange R(MaxIntegerBW + 1, false); | 
|  | bool Fail = false; | 
|  | Type *ConvertedToTy = nullptr; | 
|  |  | 
|  | // For every member of the partition, union all the ranges together. | 
|  | for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); | 
|  | MI != ME; ++MI) { | 
|  | Instruction *I = *MI; | 
|  | auto SeenI = SeenInsts.find(I); | 
|  | if (SeenI == SeenInsts.end()) | 
|  | continue; | 
|  |  | 
|  | R = R.unionWith(SeenI->second); | 
|  | // We need to ensure I has no users that have not been seen. | 
|  | // If it does, transformation would be illegal. | 
|  | // | 
|  | // Don't count the roots, as they terminate the graphs. | 
|  | if (Roots.count(I) == 0) { | 
|  | // Set the type of the conversion while we're here. | 
|  | if (!ConvertedToTy) | 
|  | ConvertedToTy = I->getType(); | 
|  | for (User *U : I->users()) { | 
|  | Instruction *UI = dyn_cast<Instruction>(U); | 
|  | if (!UI || SeenInsts.find(UI) == SeenInsts.end()) { | 
|  | LLVM_DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n"); | 
|  | Fail = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (Fail) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If the set was empty, or we failed, or the range is poisonous, | 
|  | // bail out. | 
|  | if (ECs.member_begin(It) == ECs.member_end() || Fail || | 
|  | R.isFullSet() || R.isSignWrappedSet()) | 
|  | continue; | 
|  | assert(ConvertedToTy && "Must have set the convertedtoty by this point!"); | 
|  |  | 
|  | // The number of bits required is the maximum of the upper and | 
|  | // lower limits, plus one so it can be signed. | 
|  | unsigned MinBW = std::max(R.getLower().getMinSignedBits(), | 
|  | R.getUpper().getMinSignedBits()) + 1; | 
|  | LLVM_DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n"); | 
|  |  | 
|  | // If we've run off the realms of the exactly representable integers, | 
|  | // the floating point result will differ from an integer approximation. | 
|  |  | 
|  | // Do we need more bits than are in the mantissa of the type we converted | 
|  | // to? semanticsPrecision returns the number of mantissa bits plus one | 
|  | // for the sign bit. | 
|  | unsigned MaxRepresentableBits | 
|  | = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1; | 
|  | if (MinBW > MaxRepresentableBits) { | 
|  | LLVM_DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n"); | 
|  | continue; | 
|  | } | 
|  | if (MinBW > 64) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "F2I: Value requires more than 64 bits to represent!\n"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // OK, R is known to be representable. Now pick a type for it. | 
|  | // FIXME: Pick the smallest legal type that will fit. | 
|  | Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx); | 
|  |  | 
|  | for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); | 
|  | MI != ME; ++MI) | 
|  | convert(*MI, Ty); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | Value *Float2IntPass::convert(Instruction *I, Type *ToTy) { | 
|  | if (ConvertedInsts.find(I) != ConvertedInsts.end()) | 
|  | // Already converted this instruction. | 
|  | return ConvertedInsts[I]; | 
|  |  | 
|  | SmallVector<Value*,4> NewOperands; | 
|  | for (Value *V : I->operands()) { | 
|  | // Don't recurse if we're an instruction that terminates the path. | 
|  | if (I->getOpcode() == Instruction::UIToFP || | 
|  | I->getOpcode() == Instruction::SIToFP) { | 
|  | NewOperands.push_back(V); | 
|  | } else if (Instruction *VI = dyn_cast<Instruction>(V)) { | 
|  | NewOperands.push_back(convert(VI, ToTy)); | 
|  | } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) { | 
|  | APSInt Val(ToTy->getPrimitiveSizeInBits(), /*IsUnsigned=*/false); | 
|  | bool Exact; | 
|  | CF->getValueAPF().convertToInteger(Val, | 
|  | APFloat::rmNearestTiesToEven, | 
|  | &Exact); | 
|  | NewOperands.push_back(ConstantInt::get(ToTy, Val)); | 
|  | } else { | 
|  | llvm_unreachable("Unhandled operand type?"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now create a new instruction. | 
|  | IRBuilder<> IRB(I); | 
|  | Value *NewV = nullptr; | 
|  | switch (I->getOpcode()) { | 
|  | default: llvm_unreachable("Unhandled instruction!"); | 
|  |  | 
|  | case Instruction::FPToUI: | 
|  | NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType()); | 
|  | break; | 
|  |  | 
|  | case Instruction::FPToSI: | 
|  | NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType()); | 
|  | break; | 
|  |  | 
|  | case Instruction::FCmp: { | 
|  | CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate()); | 
|  | assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!"); | 
|  | NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::UIToFP: | 
|  | NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy); | 
|  | break; | 
|  |  | 
|  | case Instruction::SIToFP: | 
|  | NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy); | 
|  | break; | 
|  |  | 
|  | case Instruction::FAdd: | 
|  | case Instruction::FSub: | 
|  | case Instruction::FMul: | 
|  | NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()), | 
|  | NewOperands[0], NewOperands[1], | 
|  | I->getName()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we're a root instruction, RAUW. | 
|  | if (Roots.count(I)) | 
|  | I->replaceAllUsesWith(NewV); | 
|  |  | 
|  | ConvertedInsts[I] = NewV; | 
|  | return NewV; | 
|  | } | 
|  |  | 
|  | // Perform dead code elimination on the instructions we just modified. | 
|  | void Float2IntPass::cleanup() { | 
|  | for (auto &I : reverse(ConvertedInsts)) | 
|  | I.first->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | bool Float2IntPass::runImpl(Function &F) { | 
|  | LLVM_DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n"); | 
|  | // Clear out all state. | 
|  | ECs = EquivalenceClasses<Instruction*>(); | 
|  | SeenInsts.clear(); | 
|  | ConvertedInsts.clear(); | 
|  | Roots.clear(); | 
|  |  | 
|  | Ctx = &F.getParent()->getContext(); | 
|  |  | 
|  | findRoots(F, Roots); | 
|  |  | 
|  | walkBackwards(Roots); | 
|  | walkForwards(); | 
|  |  | 
|  | bool Modified = validateAndTransform(); | 
|  | if (Modified) | 
|  | cleanup(); | 
|  | return Modified; | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  | FunctionPass *createFloat2IntPass() { return new Float2IntLegacyPass(); } | 
|  |  | 
|  | PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &) { | 
|  | if (!runImpl(F)) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | PreservedAnalyses PA; | 
|  | PA.preserveSet<CFGAnalyses>(); | 
|  | PA.preserve<GlobalsAA>(); | 
|  | return PA; | 
|  | } | 
|  | } // End namespace llvm |