|  | //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder  ----*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Builder implementation for CGRecordLayout objects. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "CGRecordLayout.h" | 
|  | #include "CGCXXABI.h" | 
|  | #include "CodeGenTypes.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/Attr.h" | 
|  | #include "clang/AST/CXXInheritance.h" | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/RecordLayout.h" | 
|  | #include "clang/Frontend/CodeGenOptions.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | using namespace clang; | 
|  | using namespace CodeGen; | 
|  |  | 
|  | namespace { | 
|  | /// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an | 
|  | /// llvm::Type.  Some of the lowering is straightforward, some is not.  Here we | 
|  | /// detail some of the complexities and weirdnesses here. | 
|  | /// * LLVM does not have unions - Unions can, in theory be represented by any | 
|  | ///   llvm::Type with correct size.  We choose a field via a specific heuristic | 
|  | ///   and add padding if necessary. | 
|  | /// * LLVM does not have bitfields - Bitfields are collected into contiguous | 
|  | ///   runs and allocated as a single storage type for the run.  ASTRecordLayout | 
|  | ///   contains enough information to determine where the runs break.  Microsoft | 
|  | ///   and Itanium follow different rules and use different codepaths. | 
|  | /// * It is desired that, when possible, bitfields use the appropriate iN type | 
|  | ///   when lowered to llvm types.  For example unsigned x : 24 gets lowered to | 
|  | ///   i24.  This isn't always possible because i24 has storage size of 32 bit | 
|  | ///   and if it is possible to use that extra byte of padding we must use | 
|  | ///   [i8 x 3] instead of i24.  The function clipTailPadding does this. | 
|  | ///   C++ examples that require clipping: | 
|  | ///   struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3 | 
|  | ///   struct A { int a : 24; }; // a must be clipped because a struct like B | 
|  | //    could exist: struct B : A { char b; }; // b goes at offset 3 | 
|  | /// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized | 
|  | ///   fields.  The existing asserts suggest that LLVM assumes that *every* field | 
|  | ///   has an underlying storage type.  Therefore empty structures containing | 
|  | ///   zero sized subobjects such as empty records or zero sized arrays still get | 
|  | ///   a zero sized (empty struct) storage type. | 
|  | /// * Clang reads the complete type rather than the base type when generating | 
|  | ///   code to access fields.  Bitfields in tail position with tail padding may | 
|  | ///   be clipped in the base class but not the complete class (we may discover | 
|  | ///   that the tail padding is not used in the complete class.) However, | 
|  | ///   because LLVM reads from the complete type it can generate incorrect code | 
|  | ///   if we do not clip the tail padding off of the bitfield in the complete | 
|  | ///   layout.  This introduces a somewhat awkward extra unnecessary clip stage. | 
|  | ///   The location of the clip is stored internally as a sentinal of type | 
|  | ///   SCISSOR.  If LLVM were updated to read base types (which it probably | 
|  | ///   should because locations of things such as VBases are bogus in the llvm | 
|  | ///   type anyway) then we could eliminate the SCISSOR. | 
|  | /// * Itanium allows nearly empty primary virtual bases.  These bases don't get | 
|  | ///   get their own storage because they're laid out as part of another base | 
|  | ///   or at the beginning of the structure.  Determining if a VBase actually | 
|  | ///   gets storage awkwardly involves a walk of all bases. | 
|  | /// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable. | 
|  | struct CGRecordLowering { | 
|  | // MemberInfo is a helper structure that contains information about a record | 
|  | // member.  In additional to the standard member types, there exists a | 
|  | // sentinal member type that ensures correct rounding. | 
|  | struct MemberInfo { | 
|  | CharUnits Offset; | 
|  | enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind; | 
|  | llvm::Type *Data; | 
|  | union { | 
|  | const FieldDecl *FD; | 
|  | const CXXRecordDecl *RD; | 
|  | }; | 
|  | MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data, | 
|  | const FieldDecl *FD = 0) | 
|  | : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {} | 
|  | MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data, | 
|  | const CXXRecordDecl *RD) | 
|  | : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {} | 
|  | // MemberInfos are sorted so we define a < operator. | 
|  | bool operator <(const MemberInfo& a) const { return Offset < a.Offset; } | 
|  | }; | 
|  | // The constructor. | 
|  | CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D); | 
|  | // Short helper routines. | 
|  | /// \brief Constructs a MemberInfo instance from an offset and llvm::Type *. | 
|  | MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) { | 
|  | return MemberInfo(Offset, MemberInfo::Field, Data); | 
|  | } | 
|  | bool useMSABI() { | 
|  | return Context.getTargetInfo().getCXXABI().isMicrosoft() || | 
|  | D->isMsStruct(Context); | 
|  | } | 
|  | /// \brief Wraps llvm::Type::getIntNTy with some implicit arguments. | 
|  | llvm::Type *getIntNType(uint64_t NumBits) { | 
|  | return llvm::Type::getIntNTy(Types.getLLVMContext(), | 
|  | (unsigned)llvm::RoundUpToAlignment(NumBits, 8)); | 
|  | } | 
|  | /// \brief Gets an llvm type of size NumBytes and alignment 1. | 
|  | llvm::Type *getByteArrayType(CharUnits NumBytes) { | 
|  | assert(!NumBytes.isZero() && "Empty byte arrays aren't allowed."); | 
|  | llvm::Type *Type = llvm::Type::getInt8Ty(Types.getLLVMContext()); | 
|  | return NumBytes == CharUnits::One() ? Type : | 
|  | (llvm::Type *)llvm::ArrayType::get(Type, NumBytes.getQuantity()); | 
|  | } | 
|  | /// \brief Gets the storage type for a field decl and handles storage | 
|  | /// for itanium bitfields that are smaller than their declared type. | 
|  | llvm::Type *getStorageType(const FieldDecl *FD) { | 
|  | llvm::Type *Type = Types.ConvertTypeForMem(FD->getType()); | 
|  | return useMSABI() || !FD->isBitField() ? Type : | 
|  | getIntNType(std::min(FD->getBitWidthValue(Context), | 
|  | (unsigned)Context.toBits(getSize(Type)))); | 
|  | } | 
|  | /// \brief Gets the llvm Basesubobject type from a CXXRecordDecl. | 
|  | llvm::Type *getStorageType(const CXXRecordDecl *RD) { | 
|  | return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType(); | 
|  | } | 
|  | CharUnits bitsToCharUnits(uint64_t BitOffset) { | 
|  | return Context.toCharUnitsFromBits(BitOffset); | 
|  | } | 
|  | CharUnits getSize(llvm::Type *Type) { | 
|  | return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type)); | 
|  | } | 
|  | CharUnits getAlignment(llvm::Type *Type) { | 
|  | return CharUnits::fromQuantity(DataLayout.getABITypeAlignment(Type)); | 
|  | } | 
|  | bool isZeroInitializable(const FieldDecl *FD) { | 
|  | const Type *Type = FD->getType()->getBaseElementTypeUnsafe(); | 
|  | if (const MemberPointerType *MPT = Type->getAs<MemberPointerType>()) | 
|  | return Types.getCXXABI().isZeroInitializable(MPT); | 
|  | if (const RecordType *RT = Type->getAs<RecordType>()) | 
|  | return isZeroInitializable(RT->getDecl()); | 
|  | return true; | 
|  | } | 
|  | bool isZeroInitializable(const RecordDecl *RD) { | 
|  | return Types.getCGRecordLayout(RD).isZeroInitializable(); | 
|  | } | 
|  | void appendPaddingBytes(CharUnits Size) { | 
|  | if (!Size.isZero()) | 
|  | FieldTypes.push_back(getByteArrayType(Size)); | 
|  | } | 
|  | uint64_t getFieldBitOffset(const FieldDecl *FD) { | 
|  | return Layout.getFieldOffset(FD->getFieldIndex()); | 
|  | } | 
|  | // Layout routines. | 
|  | void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset, | 
|  | llvm::Type *StorageType); | 
|  | /// \brief Lowers an ASTRecordLayout to a llvm type. | 
|  | void lower(bool NonVirtualBaseType); | 
|  | void lowerUnion(); | 
|  | void accumulateFields(); | 
|  | void accumulateBitFields(RecordDecl::field_iterator Field, | 
|  | RecordDecl::field_iterator FieldEnd); | 
|  | void accumulateBases(); | 
|  | void accumulateVPtrs(); | 
|  | void accumulateVBases(); | 
|  | /// \brief Recursively searches all of the bases to find out if a vbase is | 
|  | /// not the primary vbase of some base class. | 
|  | bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query); | 
|  | void calculateZeroInit(); | 
|  | /// \brief Lowers bitfield storage types to I8 arrays for bitfields with tail | 
|  | /// padding that is or can potentially be used. | 
|  | void clipTailPadding(); | 
|  | /// \brief Determines if we need a packed llvm struct. | 
|  | void determinePacked(); | 
|  | /// \brief Inserts padding everwhere it's needed. | 
|  | void insertPadding(); | 
|  | /// \brief Fills out the structures that are ultimately consumed. | 
|  | void fillOutputFields(); | 
|  | // Input memoization fields. | 
|  | CodeGenTypes &Types; | 
|  | const ASTContext &Context; | 
|  | const RecordDecl *D; | 
|  | const CXXRecordDecl *RD; | 
|  | const ASTRecordLayout &Layout; | 
|  | const llvm::DataLayout &DataLayout; | 
|  | // Helpful intermediate data-structures. | 
|  | std::vector<MemberInfo> Members; | 
|  | // Output fields, consumed by CodeGenTypes::ComputeRecordLayout. | 
|  | SmallVector<llvm::Type *, 16> FieldTypes; | 
|  | llvm::DenseMap<const FieldDecl *, unsigned> Fields; | 
|  | llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields; | 
|  | llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases; | 
|  | llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases; | 
|  | bool IsZeroInitializable : 1; | 
|  | bool IsZeroInitializableAsBase : 1; | 
|  | bool Packed : 1; | 
|  | private: | 
|  | CGRecordLowering(const CGRecordLowering &) LLVM_DELETED_FUNCTION; | 
|  | void operator =(const CGRecordLowering &) LLVM_DELETED_FUNCTION; | 
|  | }; | 
|  | } // namespace { | 
|  |  | 
|  | CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D) | 
|  | : Types(Types), Context(Types.getContext()), D(D), | 
|  | RD(dyn_cast<CXXRecordDecl>(D)), | 
|  | Layout(Types.getContext().getASTRecordLayout(D)), | 
|  | DataLayout(Types.getDataLayout()), IsZeroInitializable(true), | 
|  | IsZeroInitializableAsBase(true), Packed(false) {} | 
|  |  | 
|  | void CGRecordLowering::setBitFieldInfo( | 
|  | const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) { | 
|  | CGBitFieldInfo &Info = BitFields[FD]; | 
|  | Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType(); | 
|  | Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset)); | 
|  | Info.Size = FD->getBitWidthValue(Context); | 
|  | Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType); | 
|  | // Here we calculate the actual storage alignment of the bits.  E.g if we've | 
|  | // got an alignment >= 2 and the bitfield starts at offset 6 we've got an | 
|  | // alignment of 2. | 
|  | Info.StorageAlignment = | 
|  | Layout.getAlignment().alignmentAtOffset(StartOffset).getQuantity(); | 
|  | if (Info.Size > Info.StorageSize) | 
|  | Info.Size = Info.StorageSize; | 
|  | // Reverse the bit offsets for big endian machines. Because we represent | 
|  | // a bitfield as a single large integer load, we can imagine the bits | 
|  | // counting from the most-significant-bit instead of the | 
|  | // least-significant-bit. | 
|  | if (DataLayout.isBigEndian()) | 
|  | Info.Offset = Info.StorageSize - (Info.Offset + Info.Size); | 
|  | } | 
|  |  | 
|  | void CGRecordLowering::lower(bool NVBaseType) { | 
|  | // The lowering process implemented in this function takes a variety of | 
|  | // carefully ordered phases. | 
|  | // 1) Store all members (fields and bases) in a list and sort them by offset. | 
|  | // 2) Add a 1-byte capstone member at the Size of the structure. | 
|  | // 3) Clip bitfield storages members if their tail padding is or might be | 
|  | //    used by another field or base.  The clipping process uses the capstone | 
|  | //    by treating it as another object that occurs after the record. | 
|  | // 4) Determine if the llvm-struct requires packing.  It's important that this | 
|  | //    phase occur after clipping, because clipping changes the llvm type. | 
|  | //    This phase reads the offset of the capstone when determining packedness | 
|  | //    and updates the alignment of the capstone to be equal of the alignment | 
|  | //    of the record after doing so. | 
|  | // 5) Insert padding everywhere it is needed.  This phase requires 'Packed' to | 
|  | //    have been computed and needs to know the alignment of the record in | 
|  | //    order to understand if explicit tail padding is needed. | 
|  | // 6) Remove the capstone, we don't need it anymore. | 
|  | // 7) Determine if this record can be zero-initialized.  This phase could have | 
|  | //    been placed anywhere after phase 1. | 
|  | // 8) Format the complete list of members in a way that can be consumed by | 
|  | //    CodeGenTypes::ComputeRecordLayout. | 
|  | CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize(); | 
|  | if (D->isUnion()) | 
|  | return lowerUnion(); | 
|  | accumulateFields(); | 
|  | // RD implies C++. | 
|  | if (RD) { | 
|  | accumulateVPtrs(); | 
|  | accumulateBases(); | 
|  | if (Members.empty()) | 
|  | return appendPaddingBytes(Size); | 
|  | if (!NVBaseType) | 
|  | accumulateVBases(); | 
|  | } | 
|  | std::stable_sort(Members.begin(), Members.end()); | 
|  | Members.push_back(StorageInfo(Size, getIntNType(8))); | 
|  | clipTailPadding(); | 
|  | determinePacked(); | 
|  | insertPadding(); | 
|  | Members.pop_back(); | 
|  | calculateZeroInit(); | 
|  | fillOutputFields(); | 
|  | } | 
|  |  | 
|  | void CGRecordLowering::lowerUnion() { | 
|  | CharUnits LayoutSize = Layout.getSize(); | 
|  | llvm::Type *StorageType = 0; | 
|  | // Compute zero-initializable status. | 
|  | if (!D->field_empty() && !isZeroInitializable(*D->field_begin())) | 
|  | IsZeroInitializable = IsZeroInitializableAsBase = false; | 
|  | // Iterate through the fields setting bitFieldInfo and the Fields array. Also | 
|  | // locate the "most appropriate" storage type.  The heuristic for finding the | 
|  | // storage type isn't necessary, the first (non-0-length-bitfield) field's | 
|  | // type would work fine and be simpler but would be differen than what we've | 
|  | // been doing and cause lit tests to change. | 
|  | for (RecordDecl::field_iterator Field = D->field_begin(), | 
|  | FieldEnd = D->field_end(); | 
|  | Field != FieldEnd; ++Field) { | 
|  | if (Field->isBitField()) { | 
|  | // Skip 0 sized bitfields. | 
|  | if (Field->getBitWidthValue(Context) == 0) | 
|  | continue; | 
|  | llvm::Type *FieldType = getStorageType(*Field); | 
|  | if (LayoutSize < getSize(FieldType)) | 
|  | FieldType = getByteArrayType(LayoutSize); | 
|  | setBitFieldInfo(*Field, CharUnits::Zero(), FieldType); | 
|  | } | 
|  | Fields[*Field] = 0; | 
|  | llvm::Type *FieldType = getStorageType(*Field); | 
|  | // Conditionally update our storage type if we've got a new "better" one. | 
|  | if (!StorageType || | 
|  | getAlignment(FieldType) >  getAlignment(StorageType) || | 
|  | (getAlignment(FieldType) == getAlignment(StorageType) && | 
|  | getSize(FieldType) > getSize(StorageType))) | 
|  | StorageType = FieldType; | 
|  | } | 
|  | // If we have no storage type just pad to the appropriate size and return. | 
|  | if (!StorageType) | 
|  | return appendPaddingBytes(LayoutSize); | 
|  | // If our storage size was bigger than our required size (can happen in the | 
|  | // case of packed bitfields on Itanium) then just use an I8 array. | 
|  | if (LayoutSize < getSize(StorageType)) | 
|  | StorageType = getByteArrayType(LayoutSize); | 
|  | FieldTypes.push_back(StorageType); | 
|  | appendPaddingBytes(LayoutSize - getSize(StorageType)); | 
|  | // Set packed if we need it. | 
|  | if (LayoutSize % getAlignment(StorageType)) | 
|  | Packed = true; | 
|  | } | 
|  |  | 
|  | void CGRecordLowering::accumulateFields() { | 
|  | for (RecordDecl::field_iterator Field = D->field_begin(), | 
|  | FieldEnd = D->field_end(); | 
|  | Field != FieldEnd;) | 
|  | if (Field->isBitField()) { | 
|  | RecordDecl::field_iterator Start = Field; | 
|  | // Iterate to gather the list of bitfields. | 
|  | for (++Field; Field != FieldEnd && Field->isBitField(); ++Field); | 
|  | accumulateBitFields(Start, Field); | 
|  | } else { | 
|  | Members.push_back(MemberInfo( | 
|  | bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field, | 
|  | getStorageType(*Field), *Field)); | 
|  | ++Field; | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field, | 
|  | RecordDecl::field_iterator FieldEnd) { | 
|  | // Run stores the first element of the current run of bitfields.  FieldEnd is | 
|  | // used as a special value to note that we don't have a current run.  A | 
|  | // bitfield run is a contiguous collection of bitfields that can be stored in | 
|  | // the same storage block.  Zero-sized bitfields and bitfields that would | 
|  | // cross an alignment boundary break a run and start a new one. | 
|  | RecordDecl::field_iterator Run = FieldEnd; | 
|  | // Tail is the offset of the first bit off the end of the current run.  It's | 
|  | // used to determine if the ASTRecordLayout is treating these two bitfields as | 
|  | // contiguous.  StartBitOffset is offset of the beginning of the Run. | 
|  | uint64_t StartBitOffset, Tail = 0; | 
|  | if (useMSABI()) { | 
|  | for (; Field != FieldEnd; ++Field) { | 
|  | uint64_t BitOffset = getFieldBitOffset(*Field); | 
|  | // Zero-width bitfields end runs. | 
|  | if (Field->getBitWidthValue(Context) == 0) { | 
|  | Run = FieldEnd; | 
|  | continue; | 
|  | } | 
|  | llvm::Type *Type = Types.ConvertTypeForMem(Field->getType()); | 
|  | // If we don't have a run yet, or don't live within the previous run's | 
|  | // allocated storage then we allocate some storage and start a new run. | 
|  | if (Run == FieldEnd || BitOffset >= Tail) { | 
|  | Run = Field; | 
|  | StartBitOffset = BitOffset; | 
|  | Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type); | 
|  | // Add the storage member to the record.  This must be added to the | 
|  | // record before the bitfield members so that it gets laid out before | 
|  | // the bitfields it contains get laid out. | 
|  | Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type)); | 
|  | } | 
|  | // Bitfields get the offset of their storage but come afterward and remain | 
|  | // there after a stable sort. | 
|  | Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset), | 
|  | MemberInfo::Field, 0, *Field)); | 
|  | } | 
|  | return; | 
|  | } | 
|  | for (;;) { | 
|  | // Check to see if we need to start a new run. | 
|  | if (Run == FieldEnd) { | 
|  | // If we're out of fields, return. | 
|  | if (Field == FieldEnd) | 
|  | break; | 
|  | // Any non-zero-length bitfield can start a new run. | 
|  | if (Field->getBitWidthValue(Context) != 0) { | 
|  | Run = Field; | 
|  | StartBitOffset = getFieldBitOffset(*Field); | 
|  | Tail = StartBitOffset + Field->getBitWidthValue(Context); | 
|  | } | 
|  | ++Field; | 
|  | continue; | 
|  | } | 
|  | // Add bitfields to the run as long as they qualify. | 
|  | if (Field != FieldEnd && Field->getBitWidthValue(Context) != 0 && | 
|  | Tail == getFieldBitOffset(*Field)) { | 
|  | Tail += Field->getBitWidthValue(Context); | 
|  | ++Field; | 
|  | continue; | 
|  | } | 
|  | // We've hit a break-point in the run and need to emit a storage field. | 
|  | llvm::Type *Type = getIntNType(Tail - StartBitOffset); | 
|  | // Add the storage member to the record and set the bitfield info for all of | 
|  | // the bitfields in the run.  Bitfields get the offset of their storage but | 
|  | // come afterward and remain there after a stable sort. | 
|  | Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type)); | 
|  | for (; Run != Field; ++Run) | 
|  | Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset), | 
|  | MemberInfo::Field, 0, *Run)); | 
|  | Run = FieldEnd; | 
|  | } | 
|  | } | 
|  |  | 
|  | void CGRecordLowering::accumulateBases() { | 
|  | // If we've got a primary virtual base, we need to add it with the bases. | 
|  | if (Layout.isPrimaryBaseVirtual()) | 
|  | Members.push_back(StorageInfo( | 
|  | CharUnits::Zero(), | 
|  | getStorageType(Layout.getPrimaryBase()))); | 
|  | // Accumulate the non-virtual bases. | 
|  | for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(), | 
|  | BaseEnd = RD->bases_end(); | 
|  | Base != BaseEnd; ++Base) { | 
|  | if (Base->isVirtual()) | 
|  | continue; | 
|  | const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); | 
|  | if (!BaseDecl->isEmpty()) | 
|  | Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl), | 
|  | MemberInfo::Base, getStorageType(BaseDecl), BaseDecl)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CGRecordLowering::accumulateVPtrs() { | 
|  | if (Layout.hasOwnVFPtr()) | 
|  | Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr, | 
|  | llvm::FunctionType::get(getIntNType(32), /*isVarArg=*/true)-> | 
|  | getPointerTo()->getPointerTo())); | 
|  | if (Layout.hasOwnVBPtr()) | 
|  | Members.push_back(MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr, | 
|  | llvm::Type::getInt32PtrTy(Types.getLLVMContext()))); | 
|  | } | 
|  |  | 
|  | void CGRecordLowering::accumulateVBases() { | 
|  | Members.push_back(MemberInfo(Layout.getNonVirtualSize(), | 
|  | MemberInfo::Scissor, 0, RD)); | 
|  | for (CXXRecordDecl::base_class_const_iterator Base = RD->vbases_begin(), | 
|  | BaseEnd = RD->vbases_end(); | 
|  | Base != BaseEnd; ++Base) { | 
|  | const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); | 
|  | if (BaseDecl->isEmpty()) | 
|  | continue; | 
|  | CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl); | 
|  | // If the vbase is a primary virtual base of some base, then it doesn't | 
|  | // get its own storage location but instead lives inside of that base. | 
|  | if (!useMSABI() && Context.isNearlyEmpty(BaseDecl) && | 
|  | !hasOwnStorage(RD, BaseDecl)) { | 
|  | Members.push_back(MemberInfo(Offset, MemberInfo::VBase, 0, BaseDecl)); | 
|  | continue; | 
|  | } | 
|  | // If we've got a vtordisp, add it as a storage type. | 
|  | if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp()) | 
|  | Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4), | 
|  | getIntNType(32))); | 
|  | Members.push_back(MemberInfo(Offset, MemberInfo::VBase, | 
|  | getStorageType(BaseDecl), BaseDecl)); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl, | 
|  | const CXXRecordDecl *Query) { | 
|  | const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl); | 
|  | if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query) | 
|  | return false; | 
|  | for (CXXRecordDecl::base_class_const_iterator Base = Decl->bases_begin(), | 
|  | BaseEnd = Decl->bases_end(); | 
|  | Base != BaseEnd; ++Base) | 
|  | if (!hasOwnStorage(Base->getType()->getAsCXXRecordDecl(), Query)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void CGRecordLowering::calculateZeroInit() { | 
|  | for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), | 
|  | MemberEnd = Members.end(); | 
|  | IsZeroInitializableAsBase && Member != MemberEnd; ++Member) { | 
|  | if (Member->Kind == MemberInfo::Field) { | 
|  | if (!Member->FD || isZeroInitializable(Member->FD)) | 
|  | continue; | 
|  | IsZeroInitializable = IsZeroInitializableAsBase = false; | 
|  | } else if (Member->Kind == MemberInfo::Base || | 
|  | Member->Kind == MemberInfo::VBase) { | 
|  | if (isZeroInitializable(Member->RD)) | 
|  | continue; | 
|  | IsZeroInitializable = false; | 
|  | if (Member->Kind == MemberInfo::Base) | 
|  | IsZeroInitializableAsBase = false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void CGRecordLowering::clipTailPadding() { | 
|  | std::vector<MemberInfo>::iterator Prior = Members.begin(); | 
|  | CharUnits Tail = getSize(Prior->Data); | 
|  | for (std::vector<MemberInfo>::iterator Member = Prior + 1, | 
|  | MemberEnd = Members.end(); | 
|  | Member != MemberEnd; ++Member) { | 
|  | // Only members with data and the scissor can cut into tail padding. | 
|  | if (!Member->Data && Member->Kind != MemberInfo::Scissor) | 
|  | continue; | 
|  | if (Member->Offset < Tail) { | 
|  | assert(Prior->Kind == MemberInfo::Field && !Prior->FD && | 
|  | "Only storage fields have tail padding!"); | 
|  | Prior->Data = getByteArrayType(bitsToCharUnits(llvm::RoundUpToAlignment( | 
|  | cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8))); | 
|  | } | 
|  | if (Member->Data) | 
|  | Prior = Member; | 
|  | Tail = Prior->Offset + getSize(Prior->Data); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CGRecordLowering::determinePacked() { | 
|  | CharUnits Alignment = CharUnits::One(); | 
|  | for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), | 
|  | MemberEnd = Members.end(); | 
|  | Member != MemberEnd; ++Member) { | 
|  | if (!Member->Data) | 
|  | continue; | 
|  | // If any member falls at an offset that it not a multiple of its alignment, | 
|  | // then the entire record must be packed. | 
|  | if (Member->Offset % getAlignment(Member->Data)) | 
|  | Packed = true; | 
|  | Alignment = std::max(Alignment, getAlignment(Member->Data)); | 
|  | } | 
|  | // If the size of the record (the capstone's offset) is not a multiple of the | 
|  | // record's alignment, it must be packed. | 
|  | if (Members.back().Offset % Alignment) | 
|  | Packed = true; | 
|  | // Update the alignment of the sentinal. | 
|  | if (!Packed) | 
|  | Members.back().Data = getIntNType(Context.toBits(Alignment)); | 
|  | } | 
|  |  | 
|  | void CGRecordLowering::insertPadding() { | 
|  | std::vector<std::pair<CharUnits, CharUnits> > Padding; | 
|  | CharUnits Size = CharUnits::Zero(); | 
|  | for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), | 
|  | MemberEnd = Members.end(); | 
|  | Member != MemberEnd; ++Member) { | 
|  | if (!Member->Data) | 
|  | continue; | 
|  | CharUnits Offset = Member->Offset; | 
|  | assert(Offset >= Size); | 
|  | // Insert padding if we need to. | 
|  | if (Offset != Size.RoundUpToAlignment(Packed ? CharUnits::One() : | 
|  | getAlignment(Member->Data))) | 
|  | Padding.push_back(std::make_pair(Size, Offset - Size)); | 
|  | Size = Offset + getSize(Member->Data); | 
|  | } | 
|  | if (Padding.empty()) | 
|  | return; | 
|  | // Add the padding to the Members list and sort it. | 
|  | for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator | 
|  | Pad = Padding.begin(), PadEnd = Padding.end(); | 
|  | Pad != PadEnd; ++Pad) | 
|  | Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second))); | 
|  | std::stable_sort(Members.begin(), Members.end()); | 
|  | } | 
|  |  | 
|  | void CGRecordLowering::fillOutputFields() { | 
|  | for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), | 
|  | MemberEnd = Members.end(); | 
|  | Member != MemberEnd; ++Member) { | 
|  | if (Member->Data) | 
|  | FieldTypes.push_back(Member->Data); | 
|  | if (Member->Kind == MemberInfo::Field) { | 
|  | if (Member->FD) | 
|  | Fields[Member->FD] = FieldTypes.size() - 1; | 
|  | // A field without storage must be a bitfield. | 
|  | if (!Member->Data) | 
|  | setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back()); | 
|  | } else if (Member->Kind == MemberInfo::Base) | 
|  | NonVirtualBases[Member->RD] = FieldTypes.size() - 1; | 
|  | else if (Member->Kind == MemberInfo::VBase) | 
|  | VirtualBases[Member->RD] = FieldTypes.size() - 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types, | 
|  | const FieldDecl *FD, | 
|  | uint64_t Offset, uint64_t Size, | 
|  | uint64_t StorageSize, | 
|  | uint64_t StorageAlignment) { | 
|  | // This function is vestigial from CGRecordLayoutBuilder days but is still | 
|  | // used in GCObjCRuntime.cpp.  That usage has a "fixme" attached to it that | 
|  | // when addressed will allow for the removal of this function. | 
|  | llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType()); | 
|  | CharUnits TypeSizeInBytes = | 
|  | CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty)); | 
|  | uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes); | 
|  |  | 
|  | bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType(); | 
|  |  | 
|  | if (Size > TypeSizeInBits) { | 
|  | // We have a wide bit-field. The extra bits are only used for padding, so | 
|  | // if we have a bitfield of type T, with size N: | 
|  | // | 
|  | // T t : N; | 
|  | // | 
|  | // We can just assume that it's: | 
|  | // | 
|  | // T t : sizeof(T); | 
|  | // | 
|  | Size = TypeSizeInBits; | 
|  | } | 
|  |  | 
|  | // Reverse the bit offsets for big endian machines. Because we represent | 
|  | // a bitfield as a single large integer load, we can imagine the bits | 
|  | // counting from the most-significant-bit instead of the | 
|  | // least-significant-bit. | 
|  | if (Types.getDataLayout().isBigEndian()) { | 
|  | Offset = StorageSize - (Offset + Size); | 
|  | } | 
|  |  | 
|  | return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageAlignment); | 
|  | } | 
|  |  | 
|  | CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D, | 
|  | llvm::StructType *Ty) { | 
|  | CGRecordLowering Builder(*this, D); | 
|  |  | 
|  | Builder.lower(false); | 
|  |  | 
|  | // If we're in C++, compute the base subobject type. | 
|  | llvm::StructType *BaseTy = 0; | 
|  | if (isa<CXXRecordDecl>(D) && !D->isUnion() && !D->hasAttr<FinalAttr>()) { | 
|  | BaseTy = Ty; | 
|  | if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) { | 
|  | CGRecordLowering BaseBuilder(*this, D); | 
|  | BaseBuilder.lower(true); | 
|  | BaseTy = llvm::StructType::create( | 
|  | getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed); | 
|  | addRecordTypeName(D, BaseTy, ".base"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fill in the struct *after* computing the base type.  Filling in the body | 
|  | // signifies that the type is no longer opaque and record layout is complete, | 
|  | // but we may need to recursively layout D while laying D out as a base type. | 
|  | Ty->setBody(Builder.FieldTypes, Builder.Packed); | 
|  |  | 
|  | CGRecordLayout *RL = | 
|  | new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable, | 
|  | Builder.IsZeroInitializableAsBase); | 
|  |  | 
|  | RL->NonVirtualBases.swap(Builder.NonVirtualBases); | 
|  | RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases); | 
|  |  | 
|  | // Add all the field numbers. | 
|  | RL->FieldInfo.swap(Builder.Fields); | 
|  |  | 
|  | // Add bitfield info. | 
|  | RL->BitFields.swap(Builder.BitFields); | 
|  |  | 
|  | // Dump the layout, if requested. | 
|  | if (getContext().getLangOpts().DumpRecordLayouts) { | 
|  | llvm::outs() << "\n*** Dumping IRgen Record Layout\n"; | 
|  | llvm::outs() << "Record: "; | 
|  | D->dump(llvm::outs()); | 
|  | llvm::outs() << "\nLayout: "; | 
|  | RL->print(llvm::outs()); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Verify that the computed LLVM struct size matches the AST layout size. | 
|  | const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D); | 
|  |  | 
|  | uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize()); | 
|  | assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) && | 
|  | "Type size mismatch!"); | 
|  |  | 
|  | if (BaseTy) { | 
|  | CharUnits NonVirtualSize  = Layout.getNonVirtualSize(); | 
|  |  | 
|  | uint64_t AlignedNonVirtualTypeSizeInBits = | 
|  | getContext().toBits(NonVirtualSize); | 
|  |  | 
|  | assert(AlignedNonVirtualTypeSizeInBits == | 
|  | getDataLayout().getTypeAllocSizeInBits(BaseTy) && | 
|  | "Type size mismatch!"); | 
|  | } | 
|  |  | 
|  | // Verify that the LLVM and AST field offsets agree. | 
|  | llvm::StructType *ST = | 
|  | dyn_cast<llvm::StructType>(RL->getLLVMType()); | 
|  | const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST); | 
|  |  | 
|  | const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D); | 
|  | RecordDecl::field_iterator it = D->field_begin(); | 
|  | for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) { | 
|  | const FieldDecl *FD = *it; | 
|  |  | 
|  | // For non-bit-fields, just check that the LLVM struct offset matches the | 
|  | // AST offset. | 
|  | if (!FD->isBitField()) { | 
|  | unsigned FieldNo = RL->getLLVMFieldNo(FD); | 
|  | assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) && | 
|  | "Invalid field offset!"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Ignore unnamed bit-fields. | 
|  | if (!FD->getDeclName()) | 
|  | continue; | 
|  |  | 
|  | // Don't inspect zero-length bitfields. | 
|  | if (FD->getBitWidthValue(getContext()) == 0) | 
|  | continue; | 
|  |  | 
|  | const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD); | 
|  | llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD)); | 
|  |  | 
|  | // Unions have overlapping elements dictating their layout, but for | 
|  | // non-unions we can verify that this section of the layout is the exact | 
|  | // expected size. | 
|  | if (D->isUnion()) { | 
|  | // For unions we verify that the start is zero and the size | 
|  | // is in-bounds. However, on BE systems, the offset may be non-zero, but | 
|  | // the size + offset should match the storage size in that case as it | 
|  | // "starts" at the back. | 
|  | if (getDataLayout().isBigEndian()) | 
|  | assert(static_cast<unsigned>(Info.Offset + Info.Size) == | 
|  | Info.StorageSize && | 
|  | "Big endian union bitfield does not end at the back"); | 
|  | else | 
|  | assert(Info.Offset == 0 && | 
|  | "Little endian union bitfield with a non-zero offset"); | 
|  | assert(Info.StorageSize <= SL->getSizeInBits() && | 
|  | "Union not large enough for bitfield storage"); | 
|  | } else { | 
|  | assert(Info.StorageSize == | 
|  | getDataLayout().getTypeAllocSizeInBits(ElementTy) && | 
|  | "Storage size does not match the element type size"); | 
|  | } | 
|  | assert(Info.Size > 0 && "Empty bitfield!"); | 
|  | assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize && | 
|  | "Bitfield outside of its allocated storage"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return RL; | 
|  | } | 
|  |  | 
|  | void CGRecordLayout::print(raw_ostream &OS) const { | 
|  | OS << "<CGRecordLayout\n"; | 
|  | OS << "  LLVMType:" << *CompleteObjectType << "\n"; | 
|  | if (BaseSubobjectType) | 
|  | OS << "  NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n"; | 
|  | OS << "  IsZeroInitializable:" << IsZeroInitializable << "\n"; | 
|  | OS << "  BitFields:[\n"; | 
|  |  | 
|  | // Print bit-field infos in declaration order. | 
|  | std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs; | 
|  | for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator | 
|  | it = BitFields.begin(), ie = BitFields.end(); | 
|  | it != ie; ++it) { | 
|  | const RecordDecl *RD = it->first->getParent(); | 
|  | unsigned Index = 0; | 
|  | for (RecordDecl::field_iterator | 
|  | it2 = RD->field_begin(); *it2 != it->first; ++it2) | 
|  | ++Index; | 
|  | BFIs.push_back(std::make_pair(Index, &it->second)); | 
|  | } | 
|  | llvm::array_pod_sort(BFIs.begin(), BFIs.end()); | 
|  | for (unsigned i = 0, e = BFIs.size(); i != e; ++i) { | 
|  | OS.indent(4); | 
|  | BFIs[i].second->print(OS); | 
|  | OS << "\n"; | 
|  | } | 
|  |  | 
|  | OS << "]>\n"; | 
|  | } | 
|  |  | 
|  | void CGRecordLayout::dump() const { | 
|  | print(llvm::errs()); | 
|  | } | 
|  |  | 
|  | void CGBitFieldInfo::print(raw_ostream &OS) const { | 
|  | OS << "<CGBitFieldInfo" | 
|  | << " Offset:" << Offset | 
|  | << " Size:" << Size | 
|  | << " IsSigned:" << IsSigned | 
|  | << " StorageSize:" << StorageSize | 
|  | << " StorageAlignment:" << StorageAlignment << ">"; | 
|  | } | 
|  |  | 
|  | void CGBitFieldInfo::dump() const { | 
|  | print(llvm::errs()); | 
|  | } |