|  | //===- InstCombineCasts.cpp -----------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the visit functions for cast operations. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "InstCombineInternal.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DIBuilder.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "instcombine" | 
|  |  | 
|  | /// Analyze 'Val', seeing if it is a simple linear expression. | 
|  | /// If so, decompose it, returning some value X, such that Val is | 
|  | /// X*Scale+Offset. | 
|  | /// | 
|  | static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, | 
|  | uint64_t &Offset) { | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { | 
|  | Offset = CI->getZExtValue(); | 
|  | Scale  = 0; | 
|  | return ConstantInt::get(Val->getType(), 0); | 
|  | } | 
|  |  | 
|  | if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { | 
|  | // Cannot look past anything that might overflow. | 
|  | OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); | 
|  | if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { | 
|  | Scale = 1; | 
|  | Offset = 0; | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | if (I->getOpcode() == Instruction::Shl) { | 
|  | // This is a value scaled by '1 << the shift amt'. | 
|  | Scale = UINT64_C(1) << RHS->getZExtValue(); | 
|  | Offset = 0; | 
|  | return I->getOperand(0); | 
|  | } | 
|  |  | 
|  | if (I->getOpcode() == Instruction::Mul) { | 
|  | // This value is scaled by 'RHS'. | 
|  | Scale = RHS->getZExtValue(); | 
|  | Offset = 0; | 
|  | return I->getOperand(0); | 
|  | } | 
|  |  | 
|  | if (I->getOpcode() == Instruction::Add) { | 
|  | // We have X+C.  Check to see if we really have (X*C2)+C1, | 
|  | // where C1 is divisible by C2. | 
|  | unsigned SubScale; | 
|  | Value *SubVal = | 
|  | decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); | 
|  | Offset += RHS->getZExtValue(); | 
|  | Scale = SubScale; | 
|  | return SubVal; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we can't look past this. | 
|  | Scale = 1; | 
|  | Offset = 0; | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | /// If we find a cast of an allocation instruction, try to eliminate the cast by | 
|  | /// moving the type information into the alloc. | 
|  | Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, | 
|  | AllocaInst &AI) { | 
|  | PointerType *PTy = cast<PointerType>(CI.getType()); | 
|  |  | 
|  | BuilderTy AllocaBuilder(Builder); | 
|  | AllocaBuilder.SetInsertPoint(&AI); | 
|  |  | 
|  | // Get the type really allocated and the type casted to. | 
|  | Type *AllocElTy = AI.getAllocatedType(); | 
|  | Type *CastElTy = PTy->getElementType(); | 
|  | if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; | 
|  |  | 
|  | unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy); | 
|  | unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy); | 
|  | if (CastElTyAlign < AllocElTyAlign) return nullptr; | 
|  |  | 
|  | // If the allocation has multiple uses, only promote it if we are strictly | 
|  | // increasing the alignment of the resultant allocation.  If we keep it the | 
|  | // same, we open the door to infinite loops of various kinds. | 
|  | if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; | 
|  |  | 
|  | uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy); | 
|  | uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy); | 
|  | if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; | 
|  |  | 
|  | // If the allocation has multiple uses, only promote it if we're not | 
|  | // shrinking the amount of memory being allocated. | 
|  | uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy); | 
|  | uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy); | 
|  | if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; | 
|  |  | 
|  | // See if we can satisfy the modulus by pulling a scale out of the array | 
|  | // size argument. | 
|  | unsigned ArraySizeScale; | 
|  | uint64_t ArrayOffset; | 
|  | Value *NumElements = // See if the array size is a decomposable linear expr. | 
|  | decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); | 
|  |  | 
|  | // If we can now satisfy the modulus, by using a non-1 scale, we really can | 
|  | // do the xform. | 
|  | if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || | 
|  | (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr; | 
|  |  | 
|  | unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; | 
|  | Value *Amt = nullptr; | 
|  | if (Scale == 1) { | 
|  | Amt = NumElements; | 
|  | } else { | 
|  | Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); | 
|  | // Insert before the alloca, not before the cast. | 
|  | Amt = AllocaBuilder.CreateMul(Amt, NumElements); | 
|  | } | 
|  |  | 
|  | if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { | 
|  | Value *Off = ConstantInt::get(AI.getArraySize()->getType(), | 
|  | Offset, true); | 
|  | Amt = AllocaBuilder.CreateAdd(Amt, Off); | 
|  | } | 
|  |  | 
|  | AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); | 
|  | New->setAlignment(AI.getAlignment()); | 
|  | New->takeName(&AI); | 
|  | New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); | 
|  |  | 
|  | // If the allocation has multiple real uses, insert a cast and change all | 
|  | // things that used it to use the new cast.  This will also hack on CI, but it | 
|  | // will die soon. | 
|  | if (!AI.hasOneUse()) { | 
|  | // New is the allocation instruction, pointer typed. AI is the original | 
|  | // allocation instruction, also pointer typed. Thus, cast to use is BitCast. | 
|  | Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); | 
|  | replaceInstUsesWith(AI, NewCast); | 
|  | } | 
|  | return replaceInstUsesWith(CI, New); | 
|  | } | 
|  |  | 
|  | /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns | 
|  | /// true for, actually insert the code to evaluate the expression. | 
|  | Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, | 
|  | bool isSigned) { | 
|  | if (Constant *C = dyn_cast<Constant>(V)) { | 
|  | C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); | 
|  | // If we got a constantexpr back, try to simplify it with DL info. | 
|  | if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI)) | 
|  | C = FoldedC; | 
|  | return C; | 
|  | } | 
|  |  | 
|  | // Otherwise, it must be an instruction. | 
|  | Instruction *I = cast<Instruction>(V); | 
|  | Instruction *Res = nullptr; | 
|  | unsigned Opc = I->getOpcode(); | 
|  | switch (Opc) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::AShr: | 
|  | case Instruction::LShr: | 
|  | case Instruction::Shl: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::URem: { | 
|  | Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); | 
|  | Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); | 
|  | Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); | 
|  | break; | 
|  | } | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | // If the source type of the cast is the type we're trying for then we can | 
|  | // just return the source.  There's no need to insert it because it is not | 
|  | // new. | 
|  | if (I->getOperand(0)->getType() == Ty) | 
|  | return I->getOperand(0); | 
|  |  | 
|  | // Otherwise, must be the same type of cast, so just reinsert a new one. | 
|  | // This also handles the case of zext(trunc(x)) -> zext(x). | 
|  | Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, | 
|  | Opc == Instruction::SExt); | 
|  | break; | 
|  | case Instruction::Select: { | 
|  | Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); | 
|  | Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); | 
|  | Res = SelectInst::Create(I->getOperand(0), True, False); | 
|  | break; | 
|  | } | 
|  | case Instruction::PHI: { | 
|  | PHINode *OPN = cast<PHINode>(I); | 
|  | PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); | 
|  | for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { | 
|  | Value *V = | 
|  | EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); | 
|  | NPN->addIncoming(V, OPN->getIncomingBlock(i)); | 
|  | } | 
|  | Res = NPN; | 
|  | break; | 
|  | } | 
|  | default: | 
|  | // TODO: Can handle more cases here. | 
|  | llvm_unreachable("Unreachable!"); | 
|  | } | 
|  |  | 
|  | Res->takeName(I); | 
|  | return InsertNewInstWith(Res, *I); | 
|  | } | 
|  |  | 
|  | Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1, | 
|  | const CastInst *CI2) { | 
|  | Type *SrcTy = CI1->getSrcTy(); | 
|  | Type *MidTy = CI1->getDestTy(); | 
|  | Type *DstTy = CI2->getDestTy(); | 
|  |  | 
|  | Instruction::CastOps firstOp = CI1->getOpcode(); | 
|  | Instruction::CastOps secondOp = CI2->getOpcode(); | 
|  | Type *SrcIntPtrTy = | 
|  | SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; | 
|  | Type *MidIntPtrTy = | 
|  | MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; | 
|  | Type *DstIntPtrTy = | 
|  | DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; | 
|  | unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, | 
|  | DstTy, SrcIntPtrTy, MidIntPtrTy, | 
|  | DstIntPtrTy); | 
|  |  | 
|  | // We don't want to form an inttoptr or ptrtoint that converts to an integer | 
|  | // type that differs from the pointer size. | 
|  | if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || | 
|  | (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) | 
|  | Res = 0; | 
|  |  | 
|  | return Instruction::CastOps(Res); | 
|  | } | 
|  |  | 
|  | /// @brief Implement the transforms common to all CastInst visitors. | 
|  | Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { | 
|  | Value *Src = CI.getOperand(0); | 
|  |  | 
|  | // Try to eliminate a cast of a cast. | 
|  | if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast | 
|  | if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { | 
|  | // The first cast (CSrc) is eliminable so we need to fix up or replace | 
|  | // the second cast (CI). CSrc will then have a good chance of being dead. | 
|  | auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), CI.getType()); | 
|  |  | 
|  | // If the eliminable cast has debug users, insert a debug value after the | 
|  | // cast pointing to the new Value. | 
|  | SmallVector<DbgInfoIntrinsic *, 1> CSrcDbgInsts; | 
|  | findDbgUsers(CSrcDbgInsts, CSrc); | 
|  | if (CSrcDbgInsts.size()) { | 
|  | DIBuilder DIB(*CI.getModule()); | 
|  | for (auto *DII : CSrcDbgInsts) | 
|  | DIB.insertDbgValueIntrinsic( | 
|  | Res, DII->getVariable(), DII->getExpression(), | 
|  | DII->getDebugLoc().get(), &*std::next(CI.getIterator())); | 
|  | } | 
|  | return Res; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we are casting a select, then fold the cast into the select. | 
|  | if (auto *SI = dyn_cast<SelectInst>(Src)) | 
|  | if (Instruction *NV = FoldOpIntoSelect(CI, SI)) | 
|  | return NV; | 
|  |  | 
|  | // If we are casting a PHI, then fold the cast into the PHI. | 
|  | if (auto *PN = dyn_cast<PHINode>(Src)) { | 
|  | // Don't do this if it would create a PHI node with an illegal type from a | 
|  | // legal type. | 
|  | if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || | 
|  | shouldChangeType(CI.getType(), Src->getType())) | 
|  | if (Instruction *NV = foldOpIntoPhi(CI, PN)) | 
|  | return NV; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Constants and extensions/truncates from the destination type are always | 
|  | /// free to be evaluated in that type. This is a helper for canEvaluate*. | 
|  | static bool canAlwaysEvaluateInType(Value *V, Type *Ty) { | 
|  | if (isa<Constant>(V)) | 
|  | return true; | 
|  | Value *X; | 
|  | if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) && | 
|  | X->getType() == Ty) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Filter out values that we can not evaluate in the destination type for free. | 
|  | /// This is a helper for canEvaluate*. | 
|  | static bool canNotEvaluateInType(Value *V, Type *Ty) { | 
|  | assert(!isa<Constant>(V) && "Constant should already be handled."); | 
|  | if (!isa<Instruction>(V)) | 
|  | return true; | 
|  | // We don't extend or shrink something that has multiple uses --  doing so | 
|  | // would require duplicating the instruction which isn't profitable. | 
|  | if (!V->hasOneUse()) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return true if we can evaluate the specified expression tree as type Ty | 
|  | /// instead of its larger type, and arrive with the same value. | 
|  | /// This is used by code that tries to eliminate truncates. | 
|  | /// | 
|  | /// Ty will always be a type smaller than V.  We should return true if trunc(V) | 
|  | /// can be computed by computing V in the smaller type.  If V is an instruction, | 
|  | /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only | 
|  | /// makes sense if x and y can be efficiently truncated. | 
|  | /// | 
|  | /// This function works on both vectors and scalars. | 
|  | /// | 
|  | static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, | 
|  | Instruction *CxtI) { | 
|  | if (canAlwaysEvaluateInType(V, Ty)) | 
|  | return true; | 
|  | if (canNotEvaluateInType(V, Ty)) | 
|  | return false; | 
|  |  | 
|  | auto *I = cast<Instruction>(V); | 
|  | Type *OrigTy = V->getType(); | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | // These operators can all arbitrarily be extended or truncated. | 
|  | return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && | 
|  | canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); | 
|  |  | 
|  | case Instruction::UDiv: | 
|  | case Instruction::URem: { | 
|  | // UDiv and URem can be truncated if all the truncated bits are zero. | 
|  | uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); | 
|  | uint32_t BitWidth = Ty->getScalarSizeInBits(); | 
|  | if (BitWidth < OrigBitWidth) { | 
|  | APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); | 
|  | if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && | 
|  | IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { | 
|  | return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && | 
|  | canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::Shl: { | 
|  | // If we are truncating the result of this SHL, and if it's a shift of a | 
|  | // constant amount, we can always perform a SHL in a smaller type. | 
|  | const APInt *Amt; | 
|  | if (match(I->getOperand(1), m_APInt(Amt))) { | 
|  | uint32_t BitWidth = Ty->getScalarSizeInBits(); | 
|  | if (Amt->getLimitedValue(BitWidth) < BitWidth) | 
|  | return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::LShr: { | 
|  | // If this is a truncate of a logical shr, we can truncate it to a smaller | 
|  | // lshr iff we know that the bits we would otherwise be shifting in are | 
|  | // already zeros. | 
|  | const APInt *Amt; | 
|  | if (match(I->getOperand(1), m_APInt(Amt))) { | 
|  | uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); | 
|  | uint32_t BitWidth = Ty->getScalarSizeInBits(); | 
|  | if (IC.MaskedValueIsZero(I->getOperand(0), | 
|  | APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) && | 
|  | Amt->getLimitedValue(BitWidth) < BitWidth) { | 
|  | return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::AShr: { | 
|  | // If this is a truncate of an arithmetic shr, we can truncate it to a | 
|  | // smaller ashr iff we know that all the bits from the sign bit of the | 
|  | // original type and the sign bit of the truncate type are similar. | 
|  | // TODO: It is enough to check that the bits we would be shifting in are | 
|  | //       similar to sign bit of the truncate type. | 
|  | const APInt *Amt; | 
|  | if (match(I->getOperand(1), m_APInt(Amt))) { | 
|  | uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); | 
|  | uint32_t BitWidth = Ty->getScalarSizeInBits(); | 
|  | if (Amt->getLimitedValue(BitWidth) < BitWidth && | 
|  | OrigBitWidth - BitWidth < | 
|  | IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI)) | 
|  | return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::Trunc: | 
|  | // trunc(trunc(x)) -> trunc(x) | 
|  | return true; | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest | 
|  | // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest | 
|  | return true; | 
|  | case Instruction::Select: { | 
|  | SelectInst *SI = cast<SelectInst>(I); | 
|  | return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && | 
|  | canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); | 
|  | } | 
|  | case Instruction::PHI: { | 
|  | // We can change a phi if we can change all operands.  Note that we never | 
|  | // get into trouble with cyclic PHIs here because we only consider | 
|  | // instructions with a single use. | 
|  | PHINode *PN = cast<PHINode>(I); | 
|  | for (Value *IncValue : PN->incoming_values()) | 
|  | if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | default: | 
|  | // TODO: Can handle more cases here. | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Given a vector that is bitcast to an integer, optionally logically | 
|  | /// right-shifted, and truncated, convert it to an extractelement. | 
|  | /// Example (big endian): | 
|  | ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 | 
|  | ///   ---> | 
|  | ///   extractelement <4 x i32> %X, 1 | 
|  | static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) { | 
|  | Value *TruncOp = Trunc.getOperand(0); | 
|  | Type *DestType = Trunc.getType(); | 
|  | if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) | 
|  | return nullptr; | 
|  |  | 
|  | Value *VecInput = nullptr; | 
|  | ConstantInt *ShiftVal = nullptr; | 
|  | if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), | 
|  | m_LShr(m_BitCast(m_Value(VecInput)), | 
|  | m_ConstantInt(ShiftVal)))) || | 
|  | !isa<VectorType>(VecInput->getType())) | 
|  | return nullptr; | 
|  |  | 
|  | VectorType *VecType = cast<VectorType>(VecInput->getType()); | 
|  | unsigned VecWidth = VecType->getPrimitiveSizeInBits(); | 
|  | unsigned DestWidth = DestType->getPrimitiveSizeInBits(); | 
|  | unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; | 
|  |  | 
|  | if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) | 
|  | return nullptr; | 
|  |  | 
|  | // If the element type of the vector doesn't match the result type, | 
|  | // bitcast it to a vector type that we can extract from. | 
|  | unsigned NumVecElts = VecWidth / DestWidth; | 
|  | if (VecType->getElementType() != DestType) { | 
|  | VecType = VectorType::get(DestType, NumVecElts); | 
|  | VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); | 
|  | } | 
|  |  | 
|  | unsigned Elt = ShiftAmount / DestWidth; | 
|  | if (IC.getDataLayout().isBigEndian()) | 
|  | Elt = NumVecElts - 1 - Elt; | 
|  |  | 
|  | return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); | 
|  | } | 
|  |  | 
|  | /// Rotate left/right may occur in a wider type than necessary because of type | 
|  | /// promotion rules. Try to narrow all of the component instructions. | 
|  | Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) { | 
|  | assert((isa<VectorType>(Trunc.getSrcTy()) || | 
|  | shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && | 
|  | "Don't narrow to an illegal scalar type"); | 
|  |  | 
|  | // First, find an or'd pair of opposite shifts with the same shifted operand: | 
|  | // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1)) | 
|  | Value *Or0, *Or1; | 
|  | if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) | 
|  | return nullptr; | 
|  |  | 
|  | Value *ShVal, *ShAmt0, *ShAmt1; | 
|  | if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) || | 
|  | !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1))))) | 
|  | return nullptr; | 
|  |  | 
|  | auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); | 
|  | auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); | 
|  | if (ShiftOpcode0 == ShiftOpcode1) | 
|  | return nullptr; | 
|  |  | 
|  | // The shift amounts must add up to the narrow bit width. | 
|  | Value *ShAmt; | 
|  | bool SubIsOnLHS; | 
|  | Type *DestTy = Trunc.getType(); | 
|  | unsigned NarrowWidth = DestTy->getScalarSizeInBits(); | 
|  | if (match(ShAmt0, | 
|  | m_OneUse(m_Sub(m_SpecificInt(NarrowWidth), m_Specific(ShAmt1))))) { | 
|  | ShAmt = ShAmt1; | 
|  | SubIsOnLHS = true; | 
|  | } else if (match(ShAmt1, m_OneUse(m_Sub(m_SpecificInt(NarrowWidth), | 
|  | m_Specific(ShAmt0))))) { | 
|  | ShAmt = ShAmt0; | 
|  | SubIsOnLHS = false; | 
|  | } else { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // The shifted value must have high zeros in the wide type. Typically, this | 
|  | // will be a zext, but it could also be the result of an 'and' or 'shift'. | 
|  | unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); | 
|  | APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); | 
|  | if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc)) | 
|  | return nullptr; | 
|  |  | 
|  | // We have an unnecessarily wide rotate! | 
|  | // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt)) | 
|  | // Narrow it down to eliminate the zext/trunc: | 
|  | // or (lshr trunc(ShVal), ShAmt0'), (shl trunc(ShVal), ShAmt1') | 
|  | Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy); | 
|  | Value *NegShAmt = Builder.CreateNeg(NarrowShAmt); | 
|  |  | 
|  | // Mask both shift amounts to ensure there's no UB from oversized shifts. | 
|  | Constant *MaskC = ConstantInt::get(DestTy, NarrowWidth - 1); | 
|  | Value *MaskedShAmt = Builder.CreateAnd(NarrowShAmt, MaskC); | 
|  | Value *MaskedNegShAmt = Builder.CreateAnd(NegShAmt, MaskC); | 
|  |  | 
|  | // Truncate the original value and use narrow ops. | 
|  | Value *X = Builder.CreateTrunc(ShVal, DestTy); | 
|  | Value *NarrowShAmt0 = SubIsOnLHS ? MaskedNegShAmt : MaskedShAmt; | 
|  | Value *NarrowShAmt1 = SubIsOnLHS ? MaskedShAmt : MaskedNegShAmt; | 
|  | Value *NarrowSh0 = Builder.CreateBinOp(ShiftOpcode0, X, NarrowShAmt0); | 
|  | Value *NarrowSh1 = Builder.CreateBinOp(ShiftOpcode1, X, NarrowShAmt1); | 
|  | return BinaryOperator::CreateOr(NarrowSh0, NarrowSh1); | 
|  | } | 
|  |  | 
|  | /// Try to narrow the width of math or bitwise logic instructions by pulling a | 
|  | /// truncate ahead of binary operators. | 
|  | /// TODO: Transforms for truncated shifts should be moved into here. | 
|  | Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) { | 
|  | Type *SrcTy = Trunc.getSrcTy(); | 
|  | Type *DestTy = Trunc.getType(); | 
|  | if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) | 
|  | return nullptr; | 
|  |  | 
|  | BinaryOperator *BinOp; | 
|  | if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) | 
|  | return nullptr; | 
|  |  | 
|  | Value *BinOp0 = BinOp->getOperand(0); | 
|  | Value *BinOp1 = BinOp->getOperand(1); | 
|  | switch (BinOp->getOpcode()) { | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: { | 
|  | Constant *C; | 
|  | if (match(BinOp0, m_Constant(C))) { | 
|  | // trunc (binop C, X) --> binop (trunc C', X) | 
|  | Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); | 
|  | Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy); | 
|  | return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); | 
|  | } | 
|  | if (match(BinOp1, m_Constant(C))) { | 
|  | // trunc (binop X, C) --> binop (trunc X, C') | 
|  | Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); | 
|  | Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy); | 
|  | return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); | 
|  | } | 
|  | Value *X; | 
|  | if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { | 
|  | // trunc (binop (ext X), Y) --> binop X, (trunc Y) | 
|  | Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy); | 
|  | return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1); | 
|  | } | 
|  | if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { | 
|  | // trunc (binop Y, (ext X)) --> binop (trunc Y), X | 
|  | Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy); | 
|  | return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: break; | 
|  | } | 
|  |  | 
|  | if (Instruction *NarrowOr = narrowRotate(Trunc)) | 
|  | return NarrowOr; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Try to narrow the width of a splat shuffle. This could be generalized to any | 
|  | /// shuffle with a constant operand, but we limit the transform to avoid | 
|  | /// creating a shuffle type that targets may not be able to lower effectively. | 
|  | static Instruction *shrinkSplatShuffle(TruncInst &Trunc, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); | 
|  | if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) && | 
|  | Shuf->getMask()->getSplatValue() && | 
|  | Shuf->getType() == Shuf->getOperand(0)->getType()) { | 
|  | // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask | 
|  | Constant *NarrowUndef = UndefValue::get(Trunc.getType()); | 
|  | Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); | 
|  | return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask()); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Try to narrow the width of an insert element. This could be generalized for | 
|  | /// any vector constant, but we limit the transform to insertion into undef to | 
|  | /// avoid potential backend problems from unsupported insertion widths. This | 
|  | /// could also be extended to handle the case of inserting a scalar constant | 
|  | /// into a vector variable. | 
|  | static Instruction *shrinkInsertElt(CastInst &Trunc, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | Instruction::CastOps Opcode = Trunc.getOpcode(); | 
|  | assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && | 
|  | "Unexpected instruction for shrinking"); | 
|  |  | 
|  | auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); | 
|  | if (!InsElt || !InsElt->hasOneUse()) | 
|  | return nullptr; | 
|  |  | 
|  | Type *DestTy = Trunc.getType(); | 
|  | Type *DestScalarTy = DestTy->getScalarType(); | 
|  | Value *VecOp = InsElt->getOperand(0); | 
|  | Value *ScalarOp = InsElt->getOperand(1); | 
|  | Value *Index = InsElt->getOperand(2); | 
|  |  | 
|  | if (isa<UndefValue>(VecOp)) { | 
|  | // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index | 
|  | // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index | 
|  | UndefValue *NarrowUndef = UndefValue::get(DestTy); | 
|  | Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); | 
|  | return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitTrunc(TruncInst &CI) { | 
|  | if (Instruction *Result = commonCastTransforms(CI)) | 
|  | return Result; | 
|  |  | 
|  | // Test if the trunc is the user of a select which is part of a | 
|  | // minimum or maximum operation. If so, don't do any more simplification. | 
|  | // Even simplifying demanded bits can break the canonical form of a | 
|  | // min/max. | 
|  | Value *LHS, *RHS; | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0))) | 
|  | if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN) | 
|  | return nullptr; | 
|  |  | 
|  | // See if we can simplify any instructions used by the input whose sole | 
|  | // purpose is to compute bits we don't care about. | 
|  | if (SimplifyDemandedInstructionBits(CI)) | 
|  | return &CI; | 
|  |  | 
|  | Value *Src = CI.getOperand(0); | 
|  | Type *DestTy = CI.getType(), *SrcTy = Src->getType(); | 
|  |  | 
|  | // Attempt to truncate the entire input expression tree to the destination | 
|  | // type.   Only do this if the dest type is a simple type, don't convert the | 
|  | // expression tree to something weird like i93 unless the source is also | 
|  | // strange. | 
|  | if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && | 
|  | canEvaluateTruncated(Src, DestTy, *this, &CI)) { | 
|  |  | 
|  | // If this cast is a truncate, evaluting in a different type always | 
|  | // eliminates the cast, so it is always a win. | 
|  | DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" | 
|  | " to avoid cast: " << CI << '\n'); | 
|  | Value *Res = EvaluateInDifferentType(Src, DestTy, false); | 
|  | assert(Res->getType() == DestTy); | 
|  | return replaceInstUsesWith(CI, Res); | 
|  | } | 
|  |  | 
|  | // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector. | 
|  | if (DestTy->getScalarSizeInBits() == 1) { | 
|  | Constant *One = ConstantInt::get(SrcTy, 1); | 
|  | Src = Builder.CreateAnd(Src, One); | 
|  | Value *Zero = Constant::getNullValue(Src->getType()); | 
|  | return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); | 
|  | } | 
|  |  | 
|  | // FIXME: Maybe combine the next two transforms to handle the no cast case | 
|  | // more efficiently. Support vector types. Cleanup code by using m_OneUse. | 
|  |  | 
|  | // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. | 
|  | Value *A = nullptr; ConstantInt *Cst = nullptr; | 
|  | if (Src->hasOneUse() && | 
|  | match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { | 
|  | // We have three types to worry about here, the type of A, the source of | 
|  | // the truncate (MidSize), and the destination of the truncate. We know that | 
|  | // ASize < MidSize   and MidSize > ResultSize, but don't know the relation | 
|  | // between ASize and ResultSize. | 
|  | unsigned ASize = A->getType()->getPrimitiveSizeInBits(); | 
|  |  | 
|  | // If the shift amount is larger than the size of A, then the result is | 
|  | // known to be zero because all the input bits got shifted out. | 
|  | if (Cst->getZExtValue() >= ASize) | 
|  | return replaceInstUsesWith(CI, Constant::getNullValue(DestTy)); | 
|  |  | 
|  | // Since we're doing an lshr and a zero extend, and know that the shift | 
|  | // amount is smaller than ASize, it is always safe to do the shift in A's | 
|  | // type, then zero extend or truncate to the result. | 
|  | Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue()); | 
|  | Shift->takeName(Src); | 
|  | return CastInst::CreateIntegerCast(Shift, DestTy, false); | 
|  | } | 
|  |  | 
|  | // FIXME: We should canonicalize to zext/trunc and remove this transform. | 
|  | // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type | 
|  | // conversion. | 
|  | // It works because bits coming from sign extension have the same value as | 
|  | // the sign bit of the original value; performing ashr instead of lshr | 
|  | // generates bits of the same value as the sign bit. | 
|  | if (Src->hasOneUse() && | 
|  | match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) { | 
|  | Value *SExt = cast<Instruction>(Src)->getOperand(0); | 
|  | const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits(); | 
|  | const unsigned ASize = A->getType()->getPrimitiveSizeInBits(); | 
|  | const unsigned CISize = CI.getType()->getPrimitiveSizeInBits(); | 
|  | const unsigned MaxAmt = SExtSize - std::max(CISize, ASize); | 
|  | unsigned ShiftAmt = Cst->getZExtValue(); | 
|  |  | 
|  | // This optimization can be only performed when zero bits generated by | 
|  | // the original lshr aren't pulled into the value after truncation, so we | 
|  | // can only shift by values no larger than the number of extension bits. | 
|  | // FIXME: Instead of bailing when the shift is too large, use and to clear | 
|  | // the extra bits. | 
|  | if (ShiftAmt <= MaxAmt) { | 
|  | if (CISize == ASize) | 
|  | return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(), | 
|  | std::min(ShiftAmt, ASize - 1))); | 
|  | if (SExt->hasOneUse()) { | 
|  | Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1)); | 
|  | Shift->takeName(Src); | 
|  | return CastInst::CreateIntegerCast(Shift, CI.getType(), true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Instruction *I = narrowBinOp(CI)) | 
|  | return I; | 
|  |  | 
|  | if (Instruction *I = shrinkSplatShuffle(CI, Builder)) | 
|  | return I; | 
|  |  | 
|  | if (Instruction *I = shrinkInsertElt(CI, Builder)) | 
|  | return I; | 
|  |  | 
|  | if (Src->hasOneUse() && isa<IntegerType>(SrcTy) && | 
|  | shouldChangeType(SrcTy, DestTy)) { | 
|  | // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the | 
|  | // dest type is native and cst < dest size. | 
|  | if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) && | 
|  | !match(A, m_Shr(m_Value(), m_Constant()))) { | 
|  | // Skip shifts of shift by constants. It undoes a combine in | 
|  | // FoldShiftByConstant and is the extend in reg pattern. | 
|  | const unsigned DestSize = DestTy->getScalarSizeInBits(); | 
|  | if (Cst->getValue().ult(DestSize)) { | 
|  | Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); | 
|  |  | 
|  | return BinaryOperator::Create( | 
|  | Instruction::Shl, NewTrunc, | 
|  | ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Instruction *I = foldVecTruncToExtElt(CI, *this)) | 
|  | return I; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, | 
|  | bool DoTransform) { | 
|  | // If we are just checking for a icmp eq of a single bit and zext'ing it | 
|  | // to an integer, then shift the bit to the appropriate place and then | 
|  | // cast to integer to avoid the comparison. | 
|  | const APInt *Op1CV; | 
|  | if (match(ICI->getOperand(1), m_APInt(Op1CV))) { | 
|  |  | 
|  | // zext (x <s  0) to i32 --> x>>u31      true if signbit set. | 
|  | // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear. | 
|  | if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) || | 
|  | (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) { | 
|  | if (!DoTransform) return ICI; | 
|  |  | 
|  | Value *In = ICI->getOperand(0); | 
|  | Value *Sh = ConstantInt::get(In->getType(), | 
|  | In->getType()->getScalarSizeInBits() - 1); | 
|  | In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); | 
|  | if (In->getType() != CI.getType()) | 
|  | In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/); | 
|  |  | 
|  | if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { | 
|  | Constant *One = ConstantInt::get(In->getType(), 1); | 
|  | In = Builder.CreateXor(In, One, In->getName() + ".not"); | 
|  | } | 
|  |  | 
|  | return replaceInstUsesWith(CI, In); | 
|  | } | 
|  |  | 
|  | // zext (X == 0) to i32 --> X^1      iff X has only the low bit set. | 
|  | // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. | 
|  | // zext (X == 1) to i32 --> X        iff X has only the low bit set. | 
|  | // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set. | 
|  | // zext (X != 0) to i32 --> X        iff X has only the low bit set. | 
|  | // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set. | 
|  | // zext (X != 1) to i32 --> X^1      iff X has only the low bit set. | 
|  | // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. | 
|  | if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) && | 
|  | // This only works for EQ and NE | 
|  | ICI->isEquality()) { | 
|  | // If Op1C some other power of two, convert: | 
|  | KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI); | 
|  |  | 
|  | APInt KnownZeroMask(~Known.Zero); | 
|  | if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? | 
|  | if (!DoTransform) return ICI; | 
|  |  | 
|  | bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; | 
|  | if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) { | 
|  | // (X&4) == 2 --> false | 
|  | // (X&4) != 2 --> true | 
|  | Constant *Res = ConstantInt::get(CI.getType(), isNE); | 
|  | return replaceInstUsesWith(CI, Res); | 
|  | } | 
|  |  | 
|  | uint32_t ShAmt = KnownZeroMask.logBase2(); | 
|  | Value *In = ICI->getOperand(0); | 
|  | if (ShAmt) { | 
|  | // Perform a logical shr by shiftamt. | 
|  | // Insert the shift to put the result in the low bit. | 
|  | In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), | 
|  | In->getName() + ".lobit"); | 
|  | } | 
|  |  | 
|  | if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit. | 
|  | Constant *One = ConstantInt::get(In->getType(), 1); | 
|  | In = Builder.CreateXor(In, One); | 
|  | } | 
|  |  | 
|  | if (CI.getType() == In->getType()) | 
|  | return replaceInstUsesWith(CI, In); | 
|  |  | 
|  | Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false); | 
|  | return replaceInstUsesWith(CI, IntCast); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // icmp ne A, B is equal to xor A, B when A and B only really have one bit. | 
|  | // It is also profitable to transform icmp eq into not(xor(A, B)) because that | 
|  | // may lead to additional simplifications. | 
|  | if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { | 
|  | if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { | 
|  | Value *LHS = ICI->getOperand(0); | 
|  | Value *RHS = ICI->getOperand(1); | 
|  |  | 
|  | KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI); | 
|  | KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI); | 
|  |  | 
|  | if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) { | 
|  | APInt KnownBits = KnownLHS.Zero | KnownLHS.One; | 
|  | APInt UnknownBit = ~KnownBits; | 
|  | if (UnknownBit.countPopulation() == 1) { | 
|  | if (!DoTransform) return ICI; | 
|  |  | 
|  | Value *Result = Builder.CreateXor(LHS, RHS); | 
|  |  | 
|  | // Mask off any bits that are set and won't be shifted away. | 
|  | if (KnownLHS.One.uge(UnknownBit)) | 
|  | Result = Builder.CreateAnd(Result, | 
|  | ConstantInt::get(ITy, UnknownBit)); | 
|  |  | 
|  | // Shift the bit we're testing down to the lsb. | 
|  | Result = Builder.CreateLShr( | 
|  | Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); | 
|  |  | 
|  | if (ICI->getPredicate() == ICmpInst::ICMP_EQ) | 
|  | Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1)); | 
|  | Result->takeName(ICI); | 
|  | return replaceInstUsesWith(CI, Result); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Determine if the specified value can be computed in the specified wider type | 
|  | /// and produce the same low bits. If not, return false. | 
|  | /// | 
|  | /// If this function returns true, it can also return a non-zero number of bits | 
|  | /// (in BitsToClear) which indicates that the value it computes is correct for | 
|  | /// the zero extend, but that the additional BitsToClear bits need to be zero'd | 
|  | /// out.  For example, to promote something like: | 
|  | /// | 
|  | ///   %B = trunc i64 %A to i32 | 
|  | ///   %C = lshr i32 %B, 8 | 
|  | ///   %E = zext i32 %C to i64 | 
|  | /// | 
|  | /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be | 
|  | /// set to 8 to indicate that the promoted value needs to have bits 24-31 | 
|  | /// cleared in addition to bits 32-63.  Since an 'and' will be generated to | 
|  | /// clear the top bits anyway, doing this has no extra cost. | 
|  | /// | 
|  | /// This function works on both vectors and scalars. | 
|  | static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, | 
|  | InstCombiner &IC, Instruction *CxtI) { | 
|  | BitsToClear = 0; | 
|  | if (canAlwaysEvaluateInType(V, Ty)) | 
|  | return true; | 
|  | if (canNotEvaluateInType(V, Ty)) | 
|  | return false; | 
|  |  | 
|  | auto *I = cast<Instruction>(V); | 
|  | unsigned Tmp; | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::ZExt:  // zext(zext(x)) -> zext(x). | 
|  | case Instruction::SExt:  // zext(sext(x)) -> sext(x). | 
|  | case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) | 
|  | return true; | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || | 
|  | !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) | 
|  | return false; | 
|  | // These can all be promoted if neither operand has 'bits to clear'. | 
|  | if (BitsToClear == 0 && Tmp == 0) | 
|  | return true; | 
|  |  | 
|  | // If the operation is an AND/OR/XOR and the bits to clear are zero in the | 
|  | // other side, BitsToClear is ok. | 
|  | if (Tmp == 0 && I->isBitwiseLogicOp()) { | 
|  | // We use MaskedValueIsZero here for generality, but the case we care | 
|  | // about the most is constant RHS. | 
|  | unsigned VSize = V->getType()->getScalarSizeInBits(); | 
|  | if (IC.MaskedValueIsZero(I->getOperand(1), | 
|  | APInt::getHighBitsSet(VSize, BitsToClear), | 
|  | 0, CxtI)) { | 
|  | // If this is an And instruction and all of the BitsToClear are | 
|  | // known to be zero we can reset BitsToClear. | 
|  | if (I->getOpcode() == Instruction::And) | 
|  | BitsToClear = 0; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we don't know how to analyze this BitsToClear case yet. | 
|  | return false; | 
|  |  | 
|  | case Instruction::Shl: { | 
|  | // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the | 
|  | // upper bits we can reduce BitsToClear by the shift amount. | 
|  | const APInt *Amt; | 
|  | if (match(I->getOperand(1), m_APInt(Amt))) { | 
|  | if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) | 
|  | return false; | 
|  | uint64_t ShiftAmt = Amt->getZExtValue(); | 
|  | BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | case Instruction::LShr: { | 
|  | // We can promote lshr(x, cst) if we can promote x.  This requires the | 
|  | // ultimate 'and' to clear out the high zero bits we're clearing out though. | 
|  | const APInt *Amt; | 
|  | if (match(I->getOperand(1), m_APInt(Amt))) { | 
|  | if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) | 
|  | return false; | 
|  | BitsToClear += Amt->getZExtValue(); | 
|  | if (BitsToClear > V->getType()->getScalarSizeInBits()) | 
|  | BitsToClear = V->getType()->getScalarSizeInBits(); | 
|  | return true; | 
|  | } | 
|  | // Cannot promote variable LSHR. | 
|  | return false; | 
|  | } | 
|  | case Instruction::Select: | 
|  | if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || | 
|  | !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || | 
|  | // TODO: If important, we could handle the case when the BitsToClear are | 
|  | // known zero in the disagreeing side. | 
|  | Tmp != BitsToClear) | 
|  | return false; | 
|  | return true; | 
|  |  | 
|  | case Instruction::PHI: { | 
|  | // We can change a phi if we can change all operands.  Note that we never | 
|  | // get into trouble with cyclic PHIs here because we only consider | 
|  | // instructions with a single use. | 
|  | PHINode *PN = cast<PHINode>(I); | 
|  | if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) | 
|  | return false; | 
|  | for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || | 
|  | // TODO: If important, we could handle the case when the BitsToClear | 
|  | // are known zero in the disagreeing input. | 
|  | Tmp != BitsToClear) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | default: | 
|  | // TODO: Can handle more cases here. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitZExt(ZExtInst &CI) { | 
|  | // If this zero extend is only used by a truncate, let the truncate be | 
|  | // eliminated before we try to optimize this zext. | 
|  | if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) | 
|  | return nullptr; | 
|  |  | 
|  | // If one of the common conversion will work, do it. | 
|  | if (Instruction *Result = commonCastTransforms(CI)) | 
|  | return Result; | 
|  |  | 
|  | Value *Src = CI.getOperand(0); | 
|  | Type *SrcTy = Src->getType(), *DestTy = CI.getType(); | 
|  |  | 
|  | // Attempt to extend the entire input expression tree to the destination | 
|  | // type.   Only do this if the dest type is a simple type, don't convert the | 
|  | // expression tree to something weird like i93 unless the source is also | 
|  | // strange. | 
|  | unsigned BitsToClear; | 
|  | if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && | 
|  | canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { | 
|  | assert(BitsToClear <= SrcTy->getScalarSizeInBits() && | 
|  | "Can't clear more bits than in SrcTy"); | 
|  |  | 
|  | // Okay, we can transform this!  Insert the new expression now. | 
|  | DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" | 
|  | " to avoid zero extend: " << CI << '\n'); | 
|  | Value *Res = EvaluateInDifferentType(Src, DestTy, false); | 
|  | assert(Res->getType() == DestTy); | 
|  |  | 
|  | uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; | 
|  | uint32_t DestBitSize = DestTy->getScalarSizeInBits(); | 
|  |  | 
|  | // If the high bits are already filled with zeros, just replace this | 
|  | // cast with the result. | 
|  | if (MaskedValueIsZero(Res, | 
|  | APInt::getHighBitsSet(DestBitSize, | 
|  | DestBitSize-SrcBitsKept), | 
|  | 0, &CI)) | 
|  | return replaceInstUsesWith(CI, Res); | 
|  |  | 
|  | // We need to emit an AND to clear the high bits. | 
|  | Constant *C = ConstantInt::get(Res->getType(), | 
|  | APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); | 
|  | return BinaryOperator::CreateAnd(Res, C); | 
|  | } | 
|  |  | 
|  | // If this is a TRUNC followed by a ZEXT then we are dealing with integral | 
|  | // types and if the sizes are just right we can convert this into a logical | 
|  | // 'and' which will be much cheaper than the pair of casts. | 
|  | if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast | 
|  | // TODO: Subsume this into EvaluateInDifferentType. | 
|  |  | 
|  | // Get the sizes of the types involved.  We know that the intermediate type | 
|  | // will be smaller than A or C, but don't know the relation between A and C. | 
|  | Value *A = CSrc->getOperand(0); | 
|  | unsigned SrcSize = A->getType()->getScalarSizeInBits(); | 
|  | unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); | 
|  | unsigned DstSize = CI.getType()->getScalarSizeInBits(); | 
|  | // If we're actually extending zero bits, then if | 
|  | // SrcSize <  DstSize: zext(a & mask) | 
|  | // SrcSize == DstSize: a & mask | 
|  | // SrcSize  > DstSize: trunc(a) & mask | 
|  | if (SrcSize < DstSize) { | 
|  | APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); | 
|  | Constant *AndConst = ConstantInt::get(A->getType(), AndValue); | 
|  | Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); | 
|  | return new ZExtInst(And, CI.getType()); | 
|  | } | 
|  |  | 
|  | if (SrcSize == DstSize) { | 
|  | APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); | 
|  | return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), | 
|  | AndValue)); | 
|  | } | 
|  | if (SrcSize > DstSize) { | 
|  | Value *Trunc = Builder.CreateTrunc(A, CI.getType()); | 
|  | APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); | 
|  | return BinaryOperator::CreateAnd(Trunc, | 
|  | ConstantInt::get(Trunc->getType(), | 
|  | AndValue)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) | 
|  | return transformZExtICmp(ICI, CI); | 
|  |  | 
|  | BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); | 
|  | if (SrcI && SrcI->getOpcode() == Instruction::Or) { | 
|  | // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one | 
|  | // of the (zext icmp) can be eliminated. If so, immediately perform the | 
|  | // according elimination. | 
|  | ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); | 
|  | ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); | 
|  | if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && | 
|  | (transformZExtICmp(LHS, CI, false) || | 
|  | transformZExtICmp(RHS, CI, false))) { | 
|  | // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) | 
|  | Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName()); | 
|  | Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName()); | 
|  | BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast); | 
|  |  | 
|  | // Perform the elimination. | 
|  | if (auto *LZExt = dyn_cast<ZExtInst>(LCast)) | 
|  | transformZExtICmp(LHS, *LZExt); | 
|  | if (auto *RZExt = dyn_cast<ZExtInst>(RCast)) | 
|  | transformZExtICmp(RHS, *RZExt); | 
|  |  | 
|  | return Or; | 
|  | } | 
|  | } | 
|  |  | 
|  | // zext(trunc(X) & C) -> (X & zext(C)). | 
|  | Constant *C; | 
|  | Value *X; | 
|  | if (SrcI && | 
|  | match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && | 
|  | X->getType() == CI.getType()) | 
|  | return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); | 
|  |  | 
|  | // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). | 
|  | Value *And; | 
|  | if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && | 
|  | match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && | 
|  | X->getType() == CI.getType()) { | 
|  | Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); | 
|  | return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. | 
|  | Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { | 
|  | Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); | 
|  | ICmpInst::Predicate Pred = ICI->getPredicate(); | 
|  |  | 
|  | // Don't bother if Op1 isn't of vector or integer type. | 
|  | if (!Op1->getType()->isIntOrIntVectorTy()) | 
|  | return nullptr; | 
|  |  | 
|  | if (Constant *Op1C = dyn_cast<Constant>(Op1)) { | 
|  | // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative | 
|  | // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive | 
|  | if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) || | 
|  | (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) { | 
|  |  | 
|  | Value *Sh = ConstantInt::get(Op0->getType(), | 
|  | Op0->getType()->getScalarSizeInBits()-1); | 
|  | Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); | 
|  | if (In->getType() != CI.getType()) | 
|  | In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/); | 
|  |  | 
|  | if (Pred == ICmpInst::ICMP_SGT) | 
|  | In = Builder.CreateNot(In, In->getName() + ".not"); | 
|  | return replaceInstUsesWith(CI, In); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { | 
|  | // If we know that only one bit of the LHS of the icmp can be set and we | 
|  | // have an equality comparison with zero or a power of 2, we can transform | 
|  | // the icmp and sext into bitwise/integer operations. | 
|  | if (ICI->hasOneUse() && | 
|  | ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ | 
|  | KnownBits Known = computeKnownBits(Op0, 0, &CI); | 
|  |  | 
|  | APInt KnownZeroMask(~Known.Zero); | 
|  | if (KnownZeroMask.isPowerOf2()) { | 
|  | Value *In = ICI->getOperand(0); | 
|  |  | 
|  | // If the icmp tests for a known zero bit we can constant fold it. | 
|  | if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { | 
|  | Value *V = Pred == ICmpInst::ICMP_NE ? | 
|  | ConstantInt::getAllOnesValue(CI.getType()) : | 
|  | ConstantInt::getNullValue(CI.getType()); | 
|  | return replaceInstUsesWith(CI, V); | 
|  | } | 
|  |  | 
|  | if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { | 
|  | // sext ((x & 2^n) == 0)   -> (x >> n) - 1 | 
|  | // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 | 
|  | unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); | 
|  | // Perform a right shift to place the desired bit in the LSB. | 
|  | if (ShiftAmt) | 
|  | In = Builder.CreateLShr(In, | 
|  | ConstantInt::get(In->getType(), ShiftAmt)); | 
|  |  | 
|  | // At this point "In" is either 1 or 0. Subtract 1 to turn | 
|  | // {1, 0} -> {0, -1}. | 
|  | In = Builder.CreateAdd(In, | 
|  | ConstantInt::getAllOnesValue(In->getType()), | 
|  | "sext"); | 
|  | } else { | 
|  | // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1 | 
|  | // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 | 
|  | unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); | 
|  | // Perform a left shift to place the desired bit in the MSB. | 
|  | if (ShiftAmt) | 
|  | In = Builder.CreateShl(In, | 
|  | ConstantInt::get(In->getType(), ShiftAmt)); | 
|  |  | 
|  | // Distribute the bit over the whole bit width. | 
|  | In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), | 
|  | KnownZeroMask.getBitWidth() - 1), "sext"); | 
|  | } | 
|  |  | 
|  | if (CI.getType() == In->getType()) | 
|  | return replaceInstUsesWith(CI, In); | 
|  | return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Return true if we can take the specified value and return it as type Ty | 
|  | /// without inserting any new casts and without changing the value of the common | 
|  | /// low bits.  This is used by code that tries to promote integer operations to | 
|  | /// a wider types will allow us to eliminate the extension. | 
|  | /// | 
|  | /// This function works on both vectors and scalars. | 
|  | /// | 
|  | static bool canEvaluateSExtd(Value *V, Type *Ty) { | 
|  | assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && | 
|  | "Can't sign extend type to a smaller type"); | 
|  | if (canAlwaysEvaluateInType(V, Ty)) | 
|  | return true; | 
|  | if (canNotEvaluateInType(V, Ty)) | 
|  | return false; | 
|  |  | 
|  | auto *I = cast<Instruction>(V); | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::SExt:  // sext(sext(x)) -> sext(x) | 
|  | case Instruction::ZExt:  // sext(zext(x)) -> zext(x) | 
|  | case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) | 
|  | return true; | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | // These operators can all arbitrarily be extended if their inputs can. | 
|  | return canEvaluateSExtd(I->getOperand(0), Ty) && | 
|  | canEvaluateSExtd(I->getOperand(1), Ty); | 
|  |  | 
|  | //case Instruction::Shl:   TODO | 
|  | //case Instruction::LShr:  TODO | 
|  |  | 
|  | case Instruction::Select: | 
|  | return canEvaluateSExtd(I->getOperand(1), Ty) && | 
|  | canEvaluateSExtd(I->getOperand(2), Ty); | 
|  |  | 
|  | case Instruction::PHI: { | 
|  | // We can change a phi if we can change all operands.  Note that we never | 
|  | // get into trouble with cyclic PHIs here because we only consider | 
|  | // instructions with a single use. | 
|  | PHINode *PN = cast<PHINode>(I); | 
|  | for (Value *IncValue : PN->incoming_values()) | 
|  | if (!canEvaluateSExtd(IncValue, Ty)) return false; | 
|  | return true; | 
|  | } | 
|  | default: | 
|  | // TODO: Can handle more cases here. | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSExt(SExtInst &CI) { | 
|  | // If this sign extend is only used by a truncate, let the truncate be | 
|  | // eliminated before we try to optimize this sext. | 
|  | if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) | 
|  | return nullptr; | 
|  |  | 
|  | if (Instruction *I = commonCastTransforms(CI)) | 
|  | return I; | 
|  |  | 
|  | Value *Src = CI.getOperand(0); | 
|  | Type *SrcTy = Src->getType(), *DestTy = CI.getType(); | 
|  |  | 
|  | // If we know that the value being extended is positive, we can use a zext | 
|  | // instead. | 
|  | KnownBits Known = computeKnownBits(Src, 0, &CI); | 
|  | if (Known.isNonNegative()) { | 
|  | Value *ZExt = Builder.CreateZExt(Src, DestTy); | 
|  | return replaceInstUsesWith(CI, ZExt); | 
|  | } | 
|  |  | 
|  | // Attempt to extend the entire input expression tree to the destination | 
|  | // type.   Only do this if the dest type is a simple type, don't convert the | 
|  | // expression tree to something weird like i93 unless the source is also | 
|  | // strange. | 
|  | if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && | 
|  | canEvaluateSExtd(Src, DestTy)) { | 
|  | // Okay, we can transform this!  Insert the new expression now. | 
|  | DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" | 
|  | " to avoid sign extend: " << CI << '\n'); | 
|  | Value *Res = EvaluateInDifferentType(Src, DestTy, true); | 
|  | assert(Res->getType() == DestTy); | 
|  |  | 
|  | uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); | 
|  | uint32_t DestBitSize = DestTy->getScalarSizeInBits(); | 
|  |  | 
|  | // If the high bits are already filled with sign bit, just replace this | 
|  | // cast with the result. | 
|  | if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) | 
|  | return replaceInstUsesWith(CI, Res); | 
|  |  | 
|  | // We need to emit a shl + ashr to do the sign extend. | 
|  | Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); | 
|  | return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), | 
|  | ShAmt); | 
|  | } | 
|  |  | 
|  | // If the input is a trunc from the destination type, then turn sext(trunc(x)) | 
|  | // into shifts. | 
|  | Value *X; | 
|  | if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) { | 
|  | // sext(trunc(X)) --> ashr(shl(X, C), C) | 
|  | unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); | 
|  | unsigned DestBitSize = DestTy->getScalarSizeInBits(); | 
|  | Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); | 
|  | return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); | 
|  | } | 
|  |  | 
|  | if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) | 
|  | return transformSExtICmp(ICI, CI); | 
|  |  | 
|  | // If the input is a shl/ashr pair of a same constant, then this is a sign | 
|  | // extension from a smaller value.  If we could trust arbitrary bitwidth | 
|  | // integers, we could turn this into a truncate to the smaller bit and then | 
|  | // use a sext for the whole extension.  Since we don't, look deeper and check | 
|  | // for a truncate.  If the source and dest are the same type, eliminate the | 
|  | // trunc and extend and just do shifts.  For example, turn: | 
|  | //   %a = trunc i32 %i to i8 | 
|  | //   %b = shl i8 %a, 6 | 
|  | //   %c = ashr i8 %b, 6 | 
|  | //   %d = sext i8 %c to i32 | 
|  | // into: | 
|  | //   %a = shl i32 %i, 30 | 
|  | //   %d = ashr i32 %a, 30 | 
|  | Value *A = nullptr; | 
|  | // TODO: Eventually this could be subsumed by EvaluateInDifferentType. | 
|  | ConstantInt *BA = nullptr, *CA = nullptr; | 
|  | if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), | 
|  | m_ConstantInt(CA))) && | 
|  | BA == CA && A->getType() == CI.getType()) { | 
|  | unsigned MidSize = Src->getType()->getScalarSizeInBits(); | 
|  | unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); | 
|  | unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; | 
|  | Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); | 
|  | A = Builder.CreateShl(A, ShAmtV, CI.getName()); | 
|  | return BinaryOperator::CreateAShr(A, ShAmtV); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Return a Constant* for the specified floating-point constant if it fits | 
|  | /// in the specified FP type without changing its value. | 
|  | static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { | 
|  | bool losesInfo; | 
|  | APFloat F = CFP->getValueAPF(); | 
|  | (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); | 
|  | return !losesInfo; | 
|  | } | 
|  |  | 
|  | static Type *shrinkFPConstant(ConstantFP *CFP) { | 
|  | if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext())) | 
|  | return nullptr;  // No constant folding of this. | 
|  | // See if the value can be truncated to half and then reextended. | 
|  | if (fitsInFPType(CFP, APFloat::IEEEhalf())) | 
|  | return Type::getHalfTy(CFP->getContext()); | 
|  | // See if the value can be truncated to float and then reextended. | 
|  | if (fitsInFPType(CFP, APFloat::IEEEsingle())) | 
|  | return Type::getFloatTy(CFP->getContext()); | 
|  | if (CFP->getType()->isDoubleTy()) | 
|  | return nullptr;  // Won't shrink. | 
|  | if (fitsInFPType(CFP, APFloat::IEEEdouble())) | 
|  | return Type::getDoubleTy(CFP->getContext()); | 
|  | // Don't try to shrink to various long double types. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Determine if this is a vector of ConstantFPs and if so, return the minimal | 
|  | // type we can safely truncate all elements to. | 
|  | // TODO: Make these support undef elements. | 
|  | static Type *shrinkFPConstantVector(Value *V) { | 
|  | auto *CV = dyn_cast<Constant>(V); | 
|  | if (!CV || !CV->getType()->isVectorTy()) | 
|  | return nullptr; | 
|  |  | 
|  | Type *MinType = nullptr; | 
|  |  | 
|  | unsigned NumElts = CV->getType()->getVectorNumElements(); | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); | 
|  | if (!CFP) | 
|  | return nullptr; | 
|  |  | 
|  | Type *T = shrinkFPConstant(CFP); | 
|  | if (!T) | 
|  | return nullptr; | 
|  |  | 
|  | // If we haven't found a type yet or this type has a larger mantissa than | 
|  | // our previous type, this is our new minimal type. | 
|  | if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth()) | 
|  | MinType = T; | 
|  | } | 
|  |  | 
|  | // Make a vector type from the minimal type. | 
|  | return VectorType::get(MinType, NumElts); | 
|  | } | 
|  |  | 
|  | /// Find the minimum FP type we can safely truncate to. | 
|  | static Type *getMinimumFPType(Value *V) { | 
|  | if (auto *FPExt = dyn_cast<FPExtInst>(V)) | 
|  | return FPExt->getOperand(0)->getType(); | 
|  |  | 
|  | // If this value is a constant, return the constant in the smallest FP type | 
|  | // that can accurately represent it.  This allows us to turn | 
|  | // (float)((double)X+2.0) into x+2.0f. | 
|  | if (auto *CFP = dyn_cast<ConstantFP>(V)) | 
|  | if (Type *T = shrinkFPConstant(CFP)) | 
|  | return T; | 
|  |  | 
|  | // Try to shrink a vector of FP constants. | 
|  | if (Type *T = shrinkFPConstantVector(V)) | 
|  | return T; | 
|  |  | 
|  | return V->getType(); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFPTrunc(FPTruncInst &FPT) { | 
|  | if (Instruction *I = commonCastTransforms(FPT)) | 
|  | return I; | 
|  |  | 
|  | // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to | 
|  | // simplify this expression to avoid one or more of the trunc/extend | 
|  | // operations if we can do so without changing the numerical results. | 
|  | // | 
|  | // The exact manner in which the widths of the operands interact to limit | 
|  | // what we can and cannot do safely varies from operation to operation, and | 
|  | // is explained below in the various case statements. | 
|  | Type *Ty = FPT.getType(); | 
|  | BinaryOperator *OpI = dyn_cast<BinaryOperator>(FPT.getOperand(0)); | 
|  | if (OpI && OpI->hasOneUse()) { | 
|  | Type *LHSMinType = getMinimumFPType(OpI->getOperand(0)); | 
|  | Type *RHSMinType = getMinimumFPType(OpI->getOperand(1)); | 
|  | unsigned OpWidth = OpI->getType()->getFPMantissaWidth(); | 
|  | unsigned LHSWidth = LHSMinType->getFPMantissaWidth(); | 
|  | unsigned RHSWidth = RHSMinType->getFPMantissaWidth(); | 
|  | unsigned SrcWidth = std::max(LHSWidth, RHSWidth); | 
|  | unsigned DstWidth = Ty->getFPMantissaWidth(); | 
|  | switch (OpI->getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::FAdd: | 
|  | case Instruction::FSub: | 
|  | // For addition and subtraction, the infinitely precise result can | 
|  | // essentially be arbitrarily wide; proving that double rounding | 
|  | // will not occur because the result of OpI is exact (as we will for | 
|  | // FMul, for example) is hopeless.  However, we *can* nonetheless | 
|  | // frequently know that double rounding cannot occur (or that it is | 
|  | // innocuous) by taking advantage of the specific structure of | 
|  | // infinitely-precise results that admit double rounding. | 
|  | // | 
|  | // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient | 
|  | // to represent both sources, we can guarantee that the double | 
|  | // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, | 
|  | // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." | 
|  | // for proof of this fact). | 
|  | // | 
|  | // Note: Figueroa does not consider the case where DstFormat != | 
|  | // SrcFormat.  It's possible (likely even!) that this analysis | 
|  | // could be tightened for those cases, but they are rare (the main | 
|  | // case of interest here is (float)((double)float + float)). | 
|  | if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { | 
|  | Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty); | 
|  | Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty); | 
|  | Instruction *RI = BinaryOperator::Create(OpI->getOpcode(), LHS, RHS); | 
|  | RI->copyFastMathFlags(OpI); | 
|  | return RI; | 
|  | } | 
|  | break; | 
|  | case Instruction::FMul: | 
|  | // For multiplication, the infinitely precise result has at most | 
|  | // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient | 
|  | // that such a value can be exactly represented, then no double | 
|  | // rounding can possibly occur; we can safely perform the operation | 
|  | // in the destination format if it can represent both sources. | 
|  | if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { | 
|  | Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty); | 
|  | Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty); | 
|  | return BinaryOperator::CreateFMulFMF(LHS, RHS, OpI); | 
|  | } | 
|  | break; | 
|  | case Instruction::FDiv: | 
|  | // For division, we use again use the bound from Figueroa's | 
|  | // dissertation.  I am entirely certain that this bound can be | 
|  | // tightened in the unbalanced operand case by an analysis based on | 
|  | // the diophantine rational approximation bound, but the well-known | 
|  | // condition used here is a good conservative first pass. | 
|  | // TODO: Tighten bound via rigorous analysis of the unbalanced case. | 
|  | if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { | 
|  | Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty); | 
|  | Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty); | 
|  | return BinaryOperator::CreateFDivFMF(LHS, RHS, OpI); | 
|  | } | 
|  | break; | 
|  | case Instruction::FRem: { | 
|  | // Remainder is straightforward.  Remainder is always exact, so the | 
|  | // type of OpI doesn't enter into things at all.  We simply evaluate | 
|  | // in whichever source type is larger, then convert to the | 
|  | // destination type. | 
|  | if (SrcWidth == OpWidth) | 
|  | break; | 
|  | Value *LHS, *RHS; | 
|  | if (LHSWidth == SrcWidth) { | 
|  | LHS = Builder.CreateFPTrunc(OpI->getOperand(0), LHSMinType); | 
|  | RHS = Builder.CreateFPTrunc(OpI->getOperand(1), LHSMinType); | 
|  | } else { | 
|  | LHS = Builder.CreateFPTrunc(OpI->getOperand(0), RHSMinType); | 
|  | RHS = Builder.CreateFPTrunc(OpI->getOperand(1), RHSMinType); | 
|  | } | 
|  |  | 
|  | Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, OpI); | 
|  | return CastInst::CreateFPCast(ExactResult, Ty); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (fptrunc (fneg x)) -> (fneg (fptrunc x)) | 
|  | if (BinaryOperator::isFNeg(OpI)) { | 
|  | Value *InnerTrunc = Builder.CreateFPTrunc(OpI->getOperand(1), Ty); | 
|  | return BinaryOperator::CreateFNegFMF(InnerTrunc, OpI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (fptrunc (select cond, R1, Cst)) --> | 
|  | // (select cond, (fptrunc R1), (fptrunc Cst)) | 
|  | // | 
|  | //  - but only if this isn't part of a min/max operation, else we'll | 
|  | // ruin min/max canonical form which is to have the select and | 
|  | // compare's operands be of the same type with no casts to look through. | 
|  | Value *LHS, *RHS; | 
|  | SelectInst *SI = dyn_cast<SelectInst>(FPT.getOperand(0)); | 
|  | if (SI && | 
|  | (isa<ConstantFP>(SI->getOperand(1)) || | 
|  | isa<ConstantFP>(SI->getOperand(2))) && | 
|  | matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) { | 
|  | Value *LHSTrunc = Builder.CreateFPTrunc(SI->getOperand(1), Ty); | 
|  | Value *RHSTrunc = Builder.CreateFPTrunc(SI->getOperand(2), Ty); | 
|  | return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc); | 
|  | } | 
|  |  | 
|  | if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) { | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: break; | 
|  | case Intrinsic::ceil: | 
|  | case Intrinsic::fabs: | 
|  | case Intrinsic::floor: | 
|  | case Intrinsic::nearbyint: | 
|  | case Intrinsic::rint: | 
|  | case Intrinsic::round: | 
|  | case Intrinsic::trunc: { | 
|  | Value *Src = II->getArgOperand(0); | 
|  | if (!Src->hasOneUse()) | 
|  | break; | 
|  |  | 
|  | // Except for fabs, this transformation requires the input of the unary FP | 
|  | // operation to be itself an fpext from the type to which we're | 
|  | // truncating. | 
|  | if (II->getIntrinsicID() != Intrinsic::fabs) { | 
|  | FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); | 
|  | if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Do unary FP operation on smaller type. | 
|  | // (fptrunc (fabs x)) -> (fabs (fptrunc x)) | 
|  | Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty); | 
|  | Function *Overload = Intrinsic::getDeclaration(FPT.getModule(), | 
|  | II->getIntrinsicID(), Ty); | 
|  | SmallVector<OperandBundleDef, 1> OpBundles; | 
|  | II->getOperandBundlesAsDefs(OpBundles); | 
|  | CallInst *NewCI = CallInst::Create(Overload, { InnerTrunc }, OpBundles, | 
|  | II->getName()); | 
|  | NewCI->copyFastMathFlags(II); | 
|  | return NewCI; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Instruction *I = shrinkInsertElt(FPT, Builder)) | 
|  | return I; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFPExt(CastInst &CI) { | 
|  | return commonCastTransforms(CI); | 
|  | } | 
|  |  | 
|  | // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) | 
|  | // This is safe if the intermediate type has enough bits in its mantissa to | 
|  | // accurately represent all values of X.  For example, this won't work with | 
|  | // i64 -> float -> i64. | 
|  | Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) { | 
|  | if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) | 
|  | return nullptr; | 
|  | Instruction *OpI = cast<Instruction>(FI.getOperand(0)); | 
|  |  | 
|  | Value *SrcI = OpI->getOperand(0); | 
|  | Type *FITy = FI.getType(); | 
|  | Type *OpITy = OpI->getType(); | 
|  | Type *SrcTy = SrcI->getType(); | 
|  | bool IsInputSigned = isa<SIToFPInst>(OpI); | 
|  | bool IsOutputSigned = isa<FPToSIInst>(FI); | 
|  |  | 
|  | // We can safely assume the conversion won't overflow the output range, | 
|  | // because (for example) (uint8_t)18293.f is undefined behavior. | 
|  |  | 
|  | // Since we can assume the conversion won't overflow, our decision as to | 
|  | // whether the input will fit in the float should depend on the minimum | 
|  | // of the input range and output range. | 
|  |  | 
|  | // This means this is also safe for a signed input and unsigned output, since | 
|  | // a negative input would lead to undefined behavior. | 
|  | int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned; | 
|  | int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned; | 
|  | int ActualSize = std::min(InputSize, OutputSize); | 
|  |  | 
|  | if (ActualSize <= OpITy->getFPMantissaWidth()) { | 
|  | if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) { | 
|  | if (IsInputSigned && IsOutputSigned) | 
|  | return new SExtInst(SrcI, FITy); | 
|  | return new ZExtInst(SrcI, FITy); | 
|  | } | 
|  | if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits()) | 
|  | return new TruncInst(SrcI, FITy); | 
|  | if (SrcTy == FITy) | 
|  | return replaceInstUsesWith(FI, SrcI); | 
|  | return new BitCastInst(SrcI, FITy); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { | 
|  | Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); | 
|  | if (!OpI) | 
|  | return commonCastTransforms(FI); | 
|  |  | 
|  | if (Instruction *I = FoldItoFPtoI(FI)) | 
|  | return I; | 
|  |  | 
|  | return commonCastTransforms(FI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { | 
|  | Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); | 
|  | if (!OpI) | 
|  | return commonCastTransforms(FI); | 
|  |  | 
|  | if (Instruction *I = FoldItoFPtoI(FI)) | 
|  | return I; | 
|  |  | 
|  | return commonCastTransforms(FI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitUIToFP(CastInst &CI) { | 
|  | return commonCastTransforms(CI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSIToFP(CastInst &CI) { | 
|  | return commonCastTransforms(CI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { | 
|  | // If the source integer type is not the intptr_t type for this target, do a | 
|  | // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the | 
|  | // cast to be exposed to other transforms. | 
|  | unsigned AS = CI.getAddressSpace(); | 
|  | if (CI.getOperand(0)->getType()->getScalarSizeInBits() != | 
|  | DL.getPointerSizeInBits(AS)) { | 
|  | Type *Ty = DL.getIntPtrType(CI.getContext(), AS); | 
|  | if (CI.getType()->isVectorTy()) // Handle vectors of pointers. | 
|  | Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); | 
|  |  | 
|  | Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); | 
|  | return new IntToPtrInst(P, CI.getType()); | 
|  | } | 
|  |  | 
|  | if (Instruction *I = commonCastTransforms(CI)) | 
|  | return I; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) | 
|  | Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { | 
|  | Value *Src = CI.getOperand(0); | 
|  |  | 
|  | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { | 
|  | // If casting the result of a getelementptr instruction with no offset, turn | 
|  | // this into a cast of the original pointer! | 
|  | if (GEP->hasAllZeroIndices() && | 
|  | // If CI is an addrspacecast and GEP changes the poiner type, merging | 
|  | // GEP into CI would undo canonicalizing addrspacecast with different | 
|  | // pointer types, causing infinite loops. | 
|  | (!isa<AddrSpaceCastInst>(CI) || | 
|  | GEP->getType() == GEP->getPointerOperandType())) { | 
|  | // Changing the cast operand is usually not a good idea but it is safe | 
|  | // here because the pointer operand is being replaced with another | 
|  | // pointer operand so the opcode doesn't need to change. | 
|  | Worklist.Add(GEP); | 
|  | CI.setOperand(0, GEP->getOperand(0)); | 
|  | return &CI; | 
|  | } | 
|  | } | 
|  |  | 
|  | return commonCastTransforms(CI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { | 
|  | // If the destination integer type is not the intptr_t type for this target, | 
|  | // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast | 
|  | // to be exposed to other transforms. | 
|  |  | 
|  | Type *Ty = CI.getType(); | 
|  | unsigned AS = CI.getPointerAddressSpace(); | 
|  |  | 
|  | if (Ty->getScalarSizeInBits() == DL.getIndexSizeInBits(AS)) | 
|  | return commonPointerCastTransforms(CI); | 
|  |  | 
|  | Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS); | 
|  | if (Ty->isVectorTy()) // Handle vectors of pointers. | 
|  | PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements()); | 
|  |  | 
|  | Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy); | 
|  | return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); | 
|  | } | 
|  |  | 
|  | /// This input value (which is known to have vector type) is being zero extended | 
|  | /// or truncated to the specified vector type. | 
|  | /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. | 
|  | /// | 
|  | /// The source and destination vector types may have different element types. | 
|  | static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy, | 
|  | InstCombiner &IC) { | 
|  | // We can only do this optimization if the output is a multiple of the input | 
|  | // element size, or the input is a multiple of the output element size. | 
|  | // Convert the input type to have the same element type as the output. | 
|  | VectorType *SrcTy = cast<VectorType>(InVal->getType()); | 
|  |  | 
|  | if (SrcTy->getElementType() != DestTy->getElementType()) { | 
|  | // The input types don't need to be identical, but for now they must be the | 
|  | // same size.  There is no specific reason we couldn't handle things like | 
|  | // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten | 
|  | // there yet. | 
|  | if (SrcTy->getElementType()->getPrimitiveSizeInBits() != | 
|  | DestTy->getElementType()->getPrimitiveSizeInBits()) | 
|  | return nullptr; | 
|  |  | 
|  | SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); | 
|  | InVal = IC.Builder.CreateBitCast(InVal, SrcTy); | 
|  | } | 
|  |  | 
|  | // Now that the element types match, get the shuffle mask and RHS of the | 
|  | // shuffle to use, which depends on whether we're increasing or decreasing the | 
|  | // size of the input. | 
|  | SmallVector<uint32_t, 16> ShuffleMask; | 
|  | Value *V2; | 
|  |  | 
|  | if (SrcTy->getNumElements() > DestTy->getNumElements()) { | 
|  | // If we're shrinking the number of elements, just shuffle in the low | 
|  | // elements from the input and use undef as the second shuffle input. | 
|  | V2 = UndefValue::get(SrcTy); | 
|  | for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) | 
|  | ShuffleMask.push_back(i); | 
|  |  | 
|  | } else { | 
|  | // If we're increasing the number of elements, shuffle in all of the | 
|  | // elements from InVal and fill the rest of the result elements with zeros | 
|  | // from a constant zero. | 
|  | V2 = Constant::getNullValue(SrcTy); | 
|  | unsigned SrcElts = SrcTy->getNumElements(); | 
|  | for (unsigned i = 0, e = SrcElts; i != e; ++i) | 
|  | ShuffleMask.push_back(i); | 
|  |  | 
|  | // The excess elements reference the first element of the zero input. | 
|  | for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) | 
|  | ShuffleMask.push_back(SrcElts); | 
|  | } | 
|  |  | 
|  | return new ShuffleVectorInst(InVal, V2, | 
|  | ConstantDataVector::get(V2->getContext(), | 
|  | ShuffleMask)); | 
|  | } | 
|  |  | 
|  | static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { | 
|  | return Value % Ty->getPrimitiveSizeInBits() == 0; | 
|  | } | 
|  |  | 
|  | static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { | 
|  | return Value / Ty->getPrimitiveSizeInBits(); | 
|  | } | 
|  |  | 
|  | /// V is a value which is inserted into a vector of VecEltTy. | 
|  | /// Look through the value to see if we can decompose it into | 
|  | /// insertions into the vector.  See the example in the comment for | 
|  | /// OptimizeIntegerToVectorInsertions for the pattern this handles. | 
|  | /// The type of V is always a non-zero multiple of VecEltTy's size. | 
|  | /// Shift is the number of bits between the lsb of V and the lsb of | 
|  | /// the vector. | 
|  | /// | 
|  | /// This returns false if the pattern can't be matched or true if it can, | 
|  | /// filling in Elements with the elements found here. | 
|  | static bool collectInsertionElements(Value *V, unsigned Shift, | 
|  | SmallVectorImpl<Value *> &Elements, | 
|  | Type *VecEltTy, bool isBigEndian) { | 
|  | assert(isMultipleOfTypeSize(Shift, VecEltTy) && | 
|  | "Shift should be a multiple of the element type size"); | 
|  |  | 
|  | // Undef values never contribute useful bits to the result. | 
|  | if (isa<UndefValue>(V)) return true; | 
|  |  | 
|  | // If we got down to a value of the right type, we win, try inserting into the | 
|  | // right element. | 
|  | if (V->getType() == VecEltTy) { | 
|  | // Inserting null doesn't actually insert any elements. | 
|  | if (Constant *C = dyn_cast<Constant>(V)) | 
|  | if (C->isNullValue()) | 
|  | return true; | 
|  |  | 
|  | unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); | 
|  | if (isBigEndian) | 
|  | ElementIndex = Elements.size() - ElementIndex - 1; | 
|  |  | 
|  | // Fail if multiple elements are inserted into this slot. | 
|  | if (Elements[ElementIndex]) | 
|  | return false; | 
|  |  | 
|  | Elements[ElementIndex] = V; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Constant *C = dyn_cast<Constant>(V)) { | 
|  | // Figure out the # elements this provides, and bitcast it or slice it up | 
|  | // as required. | 
|  | unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), | 
|  | VecEltTy); | 
|  | // If the constant is the size of a vector element, we just need to bitcast | 
|  | // it to the right type so it gets properly inserted. | 
|  | if (NumElts == 1) | 
|  | return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), | 
|  | Shift, Elements, VecEltTy, isBigEndian); | 
|  |  | 
|  | // Okay, this is a constant that covers multiple elements.  Slice it up into | 
|  | // pieces and insert each element-sized piece into the vector. | 
|  | if (!isa<IntegerType>(C->getType())) | 
|  | C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), | 
|  | C->getType()->getPrimitiveSizeInBits())); | 
|  | unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); | 
|  | Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); | 
|  |  | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | unsigned ShiftI = Shift+i*ElementSize; | 
|  | Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), | 
|  | ShiftI)); | 
|  | Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); | 
|  | if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, | 
|  | isBigEndian)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!V->hasOneUse()) return false; | 
|  |  | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) return false; | 
|  | switch (I->getOpcode()) { | 
|  | default: return false; // Unhandled case. | 
|  | case Instruction::BitCast: | 
|  | return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, | 
|  | isBigEndian); | 
|  | case Instruction::ZExt: | 
|  | if (!isMultipleOfTypeSize( | 
|  | I->getOperand(0)->getType()->getPrimitiveSizeInBits(), | 
|  | VecEltTy)) | 
|  | return false; | 
|  | return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, | 
|  | isBigEndian); | 
|  | case Instruction::Or: | 
|  | return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, | 
|  | isBigEndian) && | 
|  | collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, | 
|  | isBigEndian); | 
|  | case Instruction::Shl: { | 
|  | // Must be shifting by a constant that is a multiple of the element size. | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); | 
|  | if (!CI) return false; | 
|  | Shift += CI->getZExtValue(); | 
|  | if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; | 
|  | return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, | 
|  | isBigEndian); | 
|  | } | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// If the input is an 'or' instruction, we may be doing shifts and ors to | 
|  | /// assemble the elements of the vector manually. | 
|  | /// Try to rip the code out and replace it with insertelements.  This is to | 
|  | /// optimize code like this: | 
|  | /// | 
|  | ///    %tmp37 = bitcast float %inc to i32 | 
|  | ///    %tmp38 = zext i32 %tmp37 to i64 | 
|  | ///    %tmp31 = bitcast float %inc5 to i32 | 
|  | ///    %tmp32 = zext i32 %tmp31 to i64 | 
|  | ///    %tmp33 = shl i64 %tmp32, 32 | 
|  | ///    %ins35 = or i64 %tmp33, %tmp38 | 
|  | ///    %tmp43 = bitcast i64 %ins35 to <2 x float> | 
|  | /// | 
|  | /// Into two insertelements that do "buildvector{%inc, %inc5}". | 
|  | static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, | 
|  | InstCombiner &IC) { | 
|  | VectorType *DestVecTy = cast<VectorType>(CI.getType()); | 
|  | Value *IntInput = CI.getOperand(0); | 
|  |  | 
|  | SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); | 
|  | if (!collectInsertionElements(IntInput, 0, Elements, | 
|  | DestVecTy->getElementType(), | 
|  | IC.getDataLayout().isBigEndian())) | 
|  | return nullptr; | 
|  |  | 
|  | // If we succeeded, we know that all of the element are specified by Elements | 
|  | // or are zero if Elements has a null entry.  Recast this as a set of | 
|  | // insertions. | 
|  | Value *Result = Constant::getNullValue(CI.getType()); | 
|  | for (unsigned i = 0, e = Elements.size(); i != e; ++i) { | 
|  | if (!Elements[i]) continue;  // Unset element. | 
|  |  | 
|  | Result = IC.Builder.CreateInsertElement(Result, Elements[i], | 
|  | IC.Builder.getInt32(i)); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the | 
|  | /// vector followed by extract element. The backend tends to handle bitcasts of | 
|  | /// vectors better than bitcasts of scalars because vector registers are | 
|  | /// usually not type-specific like scalar integer or scalar floating-point. | 
|  | static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, | 
|  | InstCombiner &IC) { | 
|  | // TODO: Create and use a pattern matcher for ExtractElementInst. | 
|  | auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); | 
|  | if (!ExtElt || !ExtElt->hasOneUse()) | 
|  | return nullptr; | 
|  |  | 
|  | // The bitcast must be to a vectorizable type, otherwise we can't make a new | 
|  | // type to extract from. | 
|  | Type *DestType = BitCast.getType(); | 
|  | if (!VectorType::isValidElementType(DestType)) | 
|  | return nullptr; | 
|  |  | 
|  | unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements(); | 
|  | auto *NewVecType = VectorType::get(DestType, NumElts); | 
|  | auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(), | 
|  | NewVecType, "bc"); | 
|  | return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); | 
|  | } | 
|  |  | 
|  | /// Change the type of a bitwise logic operation if we can eliminate a bitcast. | 
|  | static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | Type *DestTy = BitCast.getType(); | 
|  | BinaryOperator *BO; | 
|  | if (!DestTy->isIntOrIntVectorTy() || | 
|  | !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || | 
|  | !BO->isBitwiseLogicOp()) | 
|  | return nullptr; | 
|  |  | 
|  | // FIXME: This transform is restricted to vector types to avoid backend | 
|  | // problems caused by creating potentially illegal operations. If a fix-up is | 
|  | // added to handle that situation, we can remove this check. | 
|  | if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) | 
|  | return nullptr; | 
|  |  | 
|  | Value *X; | 
|  | if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && | 
|  | X->getType() == DestTy && !isa<Constant>(X)) { | 
|  | // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) | 
|  | Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); | 
|  | return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); | 
|  | } | 
|  |  | 
|  | if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && | 
|  | X->getType() == DestTy && !isa<Constant>(X)) { | 
|  | // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) | 
|  | Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); | 
|  | return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); | 
|  | } | 
|  |  | 
|  | // Canonicalize vector bitcasts to come before vector bitwise logic with a | 
|  | // constant. This eases recognition of special constants for later ops. | 
|  | // Example: | 
|  | // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b | 
|  | Constant *C; | 
|  | if (match(BO->getOperand(1), m_Constant(C))) { | 
|  | // bitcast (logic X, C) --> logic (bitcast X, C') | 
|  | Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); | 
|  | Value *CastedC = ConstantExpr::getBitCast(C, DestTy); | 
|  | return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Change the type of a select if we can eliminate a bitcast. | 
|  | static Instruction *foldBitCastSelect(BitCastInst &BitCast, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | Value *Cond, *TVal, *FVal; | 
|  | if (!match(BitCast.getOperand(0), | 
|  | m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) | 
|  | return nullptr; | 
|  |  | 
|  | // A vector select must maintain the same number of elements in its operands. | 
|  | Type *CondTy = Cond->getType(); | 
|  | Type *DestTy = BitCast.getType(); | 
|  | if (CondTy->isVectorTy()) { | 
|  | if (!DestTy->isVectorTy()) | 
|  | return nullptr; | 
|  | if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements()) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // FIXME: This transform is restricted from changing the select between | 
|  | // scalars and vectors to avoid backend problems caused by creating | 
|  | // potentially illegal operations. If a fix-up is added to handle that | 
|  | // situation, we can remove this check. | 
|  | if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) | 
|  | return nullptr; | 
|  |  | 
|  | auto *Sel = cast<Instruction>(BitCast.getOperand(0)); | 
|  | Value *X; | 
|  | if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && | 
|  | !isa<Constant>(X)) { | 
|  | // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) | 
|  | Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); | 
|  | return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); | 
|  | } | 
|  |  | 
|  | if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && | 
|  | !isa<Constant>(X)) { | 
|  | // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) | 
|  | Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); | 
|  | return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Check if all users of CI are StoreInsts. | 
|  | static bool hasStoreUsersOnly(CastInst &CI) { | 
|  | for (User *U : CI.users()) { | 
|  | if (!isa<StoreInst>(U)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// This function handles following case | 
|  | /// | 
|  | ///     A  ->  B    cast | 
|  | ///     PHI | 
|  | ///     B  ->  A    cast | 
|  | /// | 
|  | /// All the related PHI nodes can be replaced by new PHI nodes with type A. | 
|  | /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. | 
|  | Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) { | 
|  | // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. | 
|  | if (hasStoreUsersOnly(CI)) | 
|  | return nullptr; | 
|  |  | 
|  | Value *Src = CI.getOperand(0); | 
|  | Type *SrcTy = Src->getType();         // Type B | 
|  | Type *DestTy = CI.getType();          // Type A | 
|  |  | 
|  | SmallVector<PHINode *, 4> PhiWorklist; | 
|  | SmallSetVector<PHINode *, 4> OldPhiNodes; | 
|  |  | 
|  | // Find all of the A->B casts and PHI nodes. | 
|  | // We need to inpect all related PHI nodes, but PHIs can be cyclic, so | 
|  | // OldPhiNodes is used to track all known PHI nodes, before adding a new | 
|  | // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. | 
|  | PhiWorklist.push_back(PN); | 
|  | OldPhiNodes.insert(PN); | 
|  | while (!PhiWorklist.empty()) { | 
|  | auto *OldPN = PhiWorklist.pop_back_val(); | 
|  | for (Value *IncValue : OldPN->incoming_values()) { | 
|  | if (isa<Constant>(IncValue)) | 
|  | continue; | 
|  |  | 
|  | if (auto *LI = dyn_cast<LoadInst>(IncValue)) { | 
|  | // If there is a sequence of one or more load instructions, each loaded | 
|  | // value is used as address of later load instruction, bitcast is | 
|  | // necessary to change the value type, don't optimize it. For | 
|  | // simplicity we give up if the load address comes from another load. | 
|  | Value *Addr = LI->getOperand(0); | 
|  | if (Addr == &CI || isa<LoadInst>(Addr)) | 
|  | return nullptr; | 
|  | if (LI->hasOneUse() && LI->isSimple()) | 
|  | continue; | 
|  | // If a LoadInst has more than one use, changing the type of loaded | 
|  | // value may create another bitcast. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (auto *PNode = dyn_cast<PHINode>(IncValue)) { | 
|  | if (OldPhiNodes.insert(PNode)) | 
|  | PhiWorklist.push_back(PNode); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | auto *BCI = dyn_cast<BitCastInst>(IncValue); | 
|  | // We can't handle other instructions. | 
|  | if (!BCI) | 
|  | return nullptr; | 
|  |  | 
|  | // Verify it's a A->B cast. | 
|  | Type *TyA = BCI->getOperand(0)->getType(); | 
|  | Type *TyB = BCI->getType(); | 
|  | if (TyA != DestTy || TyB != SrcTy) | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // For each old PHI node, create a corresponding new PHI node with a type A. | 
|  | SmallDenseMap<PHINode *, PHINode *> NewPNodes; | 
|  | for (auto *OldPN : OldPhiNodes) { | 
|  | Builder.SetInsertPoint(OldPN); | 
|  | PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); | 
|  | NewPNodes[OldPN] = NewPN; | 
|  | } | 
|  |  | 
|  | // Fill in the operands of new PHI nodes. | 
|  | for (auto *OldPN : OldPhiNodes) { | 
|  | PHINode *NewPN = NewPNodes[OldPN]; | 
|  | for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { | 
|  | Value *V = OldPN->getOperand(j); | 
|  | Value *NewV = nullptr; | 
|  | if (auto *C = dyn_cast<Constant>(V)) { | 
|  | NewV = ConstantExpr::getBitCast(C, DestTy); | 
|  | } else if (auto *LI = dyn_cast<LoadInst>(V)) { | 
|  | Builder.SetInsertPoint(LI->getNextNode()); | 
|  | NewV = Builder.CreateBitCast(LI, DestTy); | 
|  | Worklist.Add(LI); | 
|  | } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { | 
|  | NewV = BCI->getOperand(0); | 
|  | } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { | 
|  | NewV = NewPNodes[PrevPN]; | 
|  | } | 
|  | assert(NewV); | 
|  | NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there is a store with type B, change it to type A. | 
|  | for (User *U : PN->users()) { | 
|  | auto *SI = dyn_cast<StoreInst>(U); | 
|  | if (SI && SI->isSimple() && SI->getOperand(0) == PN) { | 
|  | Builder.SetInsertPoint(SI); | 
|  | auto *NewBC = | 
|  | cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy)); | 
|  | SI->setOperand(0, NewBC); | 
|  | Worklist.Add(SI); | 
|  | assert(hasStoreUsersOnly(*NewBC)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return replaceInstUsesWith(CI, NewPNodes[PN]); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { | 
|  | // If the operands are integer typed then apply the integer transforms, | 
|  | // otherwise just apply the common ones. | 
|  | Value *Src = CI.getOperand(0); | 
|  | Type *SrcTy = Src->getType(); | 
|  | Type *DestTy = CI.getType(); | 
|  |  | 
|  | // Get rid of casts from one type to the same type. These are useless and can | 
|  | // be replaced by the operand. | 
|  | if (DestTy == Src->getType()) | 
|  | return replaceInstUsesWith(CI, Src); | 
|  |  | 
|  | if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { | 
|  | PointerType *SrcPTy = cast<PointerType>(SrcTy); | 
|  | Type *DstElTy = DstPTy->getElementType(); | 
|  | Type *SrcElTy = SrcPTy->getElementType(); | 
|  |  | 
|  | // If we are casting a alloca to a pointer to a type of the same | 
|  | // size, rewrite the allocation instruction to allocate the "right" type. | 
|  | // There is no need to modify malloc calls because it is their bitcast that | 
|  | // needs to be cleaned up. | 
|  | if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) | 
|  | if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) | 
|  | return V; | 
|  |  | 
|  | // When the type pointed to is not sized the cast cannot be | 
|  | // turned into a gep. | 
|  | Type *PointeeType = | 
|  | cast<PointerType>(Src->getType()->getScalarType())->getElementType(); | 
|  | if (!PointeeType->isSized()) | 
|  | return nullptr; | 
|  |  | 
|  | // If the source and destination are pointers, and this cast is equivalent | 
|  | // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep. | 
|  | // This can enhance SROA and other transforms that want type-safe pointers. | 
|  | unsigned NumZeros = 0; | 
|  | while (SrcElTy != DstElTy && | 
|  | isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && | 
|  | SrcElTy->getNumContainedTypes() /* not "{}" */) { | 
|  | SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U); | 
|  | ++NumZeros; | 
|  | } | 
|  |  | 
|  | // If we found a path from the src to dest, create the getelementptr now. | 
|  | if (SrcElTy == DstElTy) { | 
|  | SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0)); | 
|  | return GetElementPtrInst::CreateInBounds(Src, Idxs); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { | 
|  | if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { | 
|  | Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); | 
|  | return InsertElementInst::Create(UndefValue::get(DestTy), Elem, | 
|  | Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); | 
|  | // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) | 
|  | } | 
|  |  | 
|  | if (isa<IntegerType>(SrcTy)) { | 
|  | // If this is a cast from an integer to vector, check to see if the input | 
|  | // is a trunc or zext of a bitcast from vector.  If so, we can replace all | 
|  | // the casts with a shuffle and (potentially) a bitcast. | 
|  | if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { | 
|  | CastInst *SrcCast = cast<CastInst>(Src); | 
|  | if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) | 
|  | if (isa<VectorType>(BCIn->getOperand(0)->getType())) | 
|  | if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0), | 
|  | cast<VectorType>(DestTy), *this)) | 
|  | return I; | 
|  | } | 
|  |  | 
|  | // If the input is an 'or' instruction, we may be doing shifts and ors to | 
|  | // assemble the elements of the vector manually.  Try to rip the code out | 
|  | // and replace it with insertelements. | 
|  | if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) | 
|  | return replaceInstUsesWith(CI, V); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { | 
|  | if (SrcVTy->getNumElements() == 1) { | 
|  | // If our destination is not a vector, then make this a straight | 
|  | // scalar-scalar cast. | 
|  | if (!DestTy->isVectorTy()) { | 
|  | Value *Elem = | 
|  | Builder.CreateExtractElement(Src, | 
|  | Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); | 
|  | return CastInst::Create(Instruction::BitCast, Elem, DestTy); | 
|  | } | 
|  |  | 
|  | // Otherwise, see if our source is an insert. If so, then use the scalar | 
|  | // component directly. | 
|  | if (InsertElementInst *IEI = | 
|  | dyn_cast<InsertElementInst>(CI.getOperand(0))) | 
|  | return CastInst::Create(Instruction::BitCast, IEI->getOperand(1), | 
|  | DestTy); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { | 
|  | // Okay, we have (bitcast (shuffle ..)).  Check to see if this is | 
|  | // a bitcast to a vector with the same # elts. | 
|  | if (SVI->hasOneUse() && DestTy->isVectorTy() && | 
|  | DestTy->getVectorNumElements() == SVI->getType()->getNumElements() && | 
|  | SVI->getType()->getNumElements() == | 
|  | SVI->getOperand(0)->getType()->getVectorNumElements()) { | 
|  | BitCastInst *Tmp; | 
|  | // If either of the operands is a cast from CI.getType(), then | 
|  | // evaluating the shuffle in the casted destination's type will allow | 
|  | // us to eliminate at least one cast. | 
|  | if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && | 
|  | Tmp->getOperand(0)->getType() == DestTy) || | 
|  | ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && | 
|  | Tmp->getOperand(0)->getType() == DestTy)) { | 
|  | Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy); | 
|  | Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy); | 
|  | // Return a new shuffle vector.  Use the same element ID's, as we | 
|  | // know the vector types match #elts. | 
|  | return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle the A->B->A cast, and there is an intervening PHI node. | 
|  | if (PHINode *PN = dyn_cast<PHINode>(Src)) | 
|  | if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) | 
|  | return I; | 
|  |  | 
|  | if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) | 
|  | return I; | 
|  |  | 
|  | if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) | 
|  | return I; | 
|  |  | 
|  | if (Instruction *I = foldBitCastSelect(CI, Builder)) | 
|  | return I; | 
|  |  | 
|  | if (SrcTy->isPointerTy()) | 
|  | return commonPointerCastTransforms(CI); | 
|  | return commonCastTransforms(CI); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { | 
|  | // If the destination pointer element type is not the same as the source's | 
|  | // first do a bitcast to the destination type, and then the addrspacecast. | 
|  | // This allows the cast to be exposed to other transforms. | 
|  | Value *Src = CI.getOperand(0); | 
|  | PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); | 
|  | PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); | 
|  |  | 
|  | Type *DestElemTy = DestTy->getElementType(); | 
|  | if (SrcTy->getElementType() != DestElemTy) { | 
|  | Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); | 
|  | if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { | 
|  | // Handle vectors of pointers. | 
|  | MidTy = VectorType::get(MidTy, VT->getNumElements()); | 
|  | } | 
|  |  | 
|  | Value *NewBitCast = Builder.CreateBitCast(Src, MidTy); | 
|  | return new AddrSpaceCastInst(NewBitCast, CI.getType()); | 
|  | } | 
|  |  | 
|  | return commonPointerCastTransforms(CI); | 
|  | } |