|  | //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains a printer that converts from our internal representation | 
|  | // of machine-dependent LLVM code to GAS-format ARM assembly language. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "ARMAsmPrinter.h" | 
|  | #include "ARM.h" | 
|  | #include "ARMConstantPoolValue.h" | 
|  | #include "ARMMachineFunctionInfo.h" | 
|  | #include "ARMTargetMachine.h" | 
|  | #include "ARMTargetObjectFile.h" | 
|  | #include "InstPrinter/ARMInstPrinter.h" | 
|  | #include "MCTargetDesc/ARMAddressingModes.h" | 
|  | #include "MCTargetDesc/ARMMCExpr.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/BinaryFormat/COFF.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfoImpls.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Mangler.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/MCAssembler.h" | 
|  | #include "llvm/MC/MCContext.h" | 
|  | #include "llvm/MC/MCELFStreamer.h" | 
|  | #include "llvm/MC/MCInst.h" | 
|  | #include "llvm/MC/MCInstBuilder.h" | 
|  | #include "llvm/MC/MCObjectStreamer.h" | 
|  | #include "llvm/MC/MCStreamer.h" | 
|  | #include "llvm/MC/MCSymbol.h" | 
|  | #include "llvm/Support/ARMBuildAttributes.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/TargetParser.h" | 
|  | #include "llvm/Support/TargetRegistry.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "asm-printer" | 
|  |  | 
|  | ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, | 
|  | std::unique_ptr<MCStreamer> Streamer) | 
|  | : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr), | 
|  | InConstantPool(false), OptimizationGoals(-1) {} | 
|  |  | 
|  | void ARMAsmPrinter::EmitFunctionBodyEnd() { | 
|  | // Make sure to terminate any constant pools that were at the end | 
|  | // of the function. | 
|  | if (!InConstantPool) | 
|  | return; | 
|  | InConstantPool = false; | 
|  | OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); | 
|  | } | 
|  |  | 
|  | void ARMAsmPrinter::EmitFunctionEntryLabel() { | 
|  | if (AFI->isThumbFunction()) { | 
|  | OutStreamer->EmitAssemblerFlag(MCAF_Code16); | 
|  | OutStreamer->EmitThumbFunc(CurrentFnSym); | 
|  | } else { | 
|  | OutStreamer->EmitAssemblerFlag(MCAF_Code32); | 
|  | } | 
|  | OutStreamer->EmitLabel(CurrentFnSym); | 
|  | } | 
|  |  | 
|  | void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) { | 
|  | uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); | 
|  | assert(Size && "C++ constructor pointer had zero size!"); | 
|  |  | 
|  | const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); | 
|  | assert(GV && "C++ constructor pointer was not a GlobalValue!"); | 
|  |  | 
|  | const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, | 
|  | ARMII::MO_NO_FLAG), | 
|  | (Subtarget->isTargetELF() | 
|  | ? MCSymbolRefExpr::VK_ARM_TARGET1 | 
|  | : MCSymbolRefExpr::VK_None), | 
|  | OutContext); | 
|  |  | 
|  | OutStreamer->EmitValue(E, Size); | 
|  | } | 
|  |  | 
|  | void ARMAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { | 
|  | if (PromotedGlobals.count(GV)) | 
|  | // The global was promoted into a constant pool. It should not be emitted. | 
|  | return; | 
|  | AsmPrinter::EmitGlobalVariable(GV); | 
|  | } | 
|  |  | 
|  | /// runOnMachineFunction - This uses the EmitInstruction() | 
|  | /// method to print assembly for each instruction. | 
|  | /// | 
|  | bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { | 
|  | AFI = MF.getInfo<ARMFunctionInfo>(); | 
|  | MCP = MF.getConstantPool(); | 
|  | Subtarget = &MF.getSubtarget<ARMSubtarget>(); | 
|  |  | 
|  | SetupMachineFunction(MF); | 
|  | const Function &F = MF.getFunction(); | 
|  | const TargetMachine& TM = MF.getTarget(); | 
|  |  | 
|  | // Collect all globals that had their storage promoted to a constant pool. | 
|  | // Functions are emitted before variables, so this accumulates promoted | 
|  | // globals from all functions in PromotedGlobals. | 
|  | for (auto *GV : AFI->getGlobalsPromotedToConstantPool()) | 
|  | PromotedGlobals.insert(GV); | 
|  |  | 
|  | // Calculate this function's optimization goal. | 
|  | unsigned OptimizationGoal; | 
|  | if (F.optForNone()) | 
|  | // For best debugging illusion, speed and small size sacrificed | 
|  | OptimizationGoal = 6; | 
|  | else if (F.optForMinSize()) | 
|  | // Aggressively for small size, speed and debug illusion sacrificed | 
|  | OptimizationGoal = 4; | 
|  | else if (F.optForSize()) | 
|  | // For small size, but speed and debugging illusion preserved | 
|  | OptimizationGoal = 3; | 
|  | else if (TM.getOptLevel() == CodeGenOpt::Aggressive) | 
|  | // Aggressively for speed, small size and debug illusion sacrificed | 
|  | OptimizationGoal = 2; | 
|  | else if (TM.getOptLevel() > CodeGenOpt::None) | 
|  | // For speed, but small size and good debug illusion preserved | 
|  | OptimizationGoal = 1; | 
|  | else // TM.getOptLevel() == CodeGenOpt::None | 
|  | // For good debugging, but speed and small size preserved | 
|  | OptimizationGoal = 5; | 
|  |  | 
|  | // Combine a new optimization goal with existing ones. | 
|  | if (OptimizationGoals == -1) // uninitialized goals | 
|  | OptimizationGoals = OptimizationGoal; | 
|  | else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals | 
|  | OptimizationGoals = 0; | 
|  |  | 
|  | if (Subtarget->isTargetCOFF()) { | 
|  | bool Internal = F.hasInternalLinkage(); | 
|  | COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC | 
|  | : COFF::IMAGE_SYM_CLASS_EXTERNAL; | 
|  | int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; | 
|  |  | 
|  | OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); | 
|  | OutStreamer->EmitCOFFSymbolStorageClass(Scl); | 
|  | OutStreamer->EmitCOFFSymbolType(Type); | 
|  | OutStreamer->EndCOFFSymbolDef(); | 
|  | } | 
|  |  | 
|  | // Emit the rest of the function body. | 
|  | EmitFunctionBody(); | 
|  |  | 
|  | // Emit the XRay table for this function. | 
|  | emitXRayTable(); | 
|  |  | 
|  | // If we need V4T thumb mode Register Indirect Jump pads, emit them. | 
|  | // These are created per function, rather than per TU, since it's | 
|  | // relatively easy to exceed the thumb branch range within a TU. | 
|  | if (! ThumbIndirectPads.empty()) { | 
|  | OutStreamer->EmitAssemblerFlag(MCAF_Code16); | 
|  | EmitAlignment(1); | 
|  | for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { | 
|  | OutStreamer->EmitLabel(TIP.second); | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) | 
|  | .addReg(TIP.first) | 
|  | // Add predicate operands. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  | } | 
|  | ThumbIndirectPads.clear(); | 
|  | } | 
|  |  | 
|  | // We didn't modify anything. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, | 
|  | raw_ostream &O) { | 
|  | const MachineOperand &MO = MI->getOperand(OpNum); | 
|  | unsigned TF = MO.getTargetFlags(); | 
|  |  | 
|  | switch (MO.getType()) { | 
|  | default: llvm_unreachable("<unknown operand type>"); | 
|  | case MachineOperand::MO_Register: { | 
|  | unsigned Reg = MO.getReg(); | 
|  | assert(TargetRegisterInfo::isPhysicalRegister(Reg)); | 
|  | assert(!MO.getSubReg() && "Subregs should be eliminated!"); | 
|  | if(ARM::GPRPairRegClass.contains(Reg)) { | 
|  | const MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | Reg = TRI->getSubReg(Reg, ARM::gsub_0); | 
|  | } | 
|  | O << ARMInstPrinter::getRegisterName(Reg); | 
|  | break; | 
|  | } | 
|  | case MachineOperand::MO_Immediate: { | 
|  | int64_t Imm = MO.getImm(); | 
|  | O << '#'; | 
|  | if (TF == ARMII::MO_LO16) | 
|  | O << ":lower16:"; | 
|  | else if (TF == ARMII::MO_HI16) | 
|  | O << ":upper16:"; | 
|  | O << Imm; | 
|  | break; | 
|  | } | 
|  | case MachineOperand::MO_MachineBasicBlock: | 
|  | MO.getMBB()->getSymbol()->print(O, MAI); | 
|  | return; | 
|  | case MachineOperand::MO_GlobalAddress: { | 
|  | const GlobalValue *GV = MO.getGlobal(); | 
|  | if (TF & ARMII::MO_LO16) | 
|  | O << ":lower16:"; | 
|  | else if (TF & ARMII::MO_HI16) | 
|  | O << ":upper16:"; | 
|  | GetARMGVSymbol(GV, TF)->print(O, MAI); | 
|  |  | 
|  | printOffset(MO.getOffset(), O); | 
|  | break; | 
|  | } | 
|  | case MachineOperand::MO_ConstantPoolIndex: | 
|  | if (Subtarget->genExecuteOnly()) | 
|  | llvm_unreachable("execute-only should not generate constant pools"); | 
|  | GetCPISymbol(MO.getIndex())->print(O, MAI); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const { | 
|  | // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as | 
|  | // indexes in MachineConstantPool, which isn't in sync with indexes used here. | 
|  | const DataLayout &DL = getDataLayout(); | 
|  | return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + | 
|  | "CPI" + Twine(getFunctionNumber()) + "_" + | 
|  | Twine(CPID)); | 
|  | } | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | MCSymbol *ARMAsmPrinter:: | 
|  | GetARMJTIPICJumpTableLabel(unsigned uid) const { | 
|  | const DataLayout &DL = getDataLayout(); | 
|  | SmallString<60> Name; | 
|  | raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" | 
|  | << getFunctionNumber() << '_' << uid; | 
|  | return OutContext.getOrCreateSymbol(Name); | 
|  | } | 
|  |  | 
|  | bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, | 
|  | unsigned AsmVariant, const char *ExtraCode, | 
|  | raw_ostream &O) { | 
|  | // Does this asm operand have a single letter operand modifier? | 
|  | if (ExtraCode && ExtraCode[0]) { | 
|  | if (ExtraCode[1] != 0) return true; // Unknown modifier. | 
|  |  | 
|  | switch (ExtraCode[0]) { | 
|  | default: | 
|  | // See if this is a generic print operand | 
|  | return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O); | 
|  | case 'a': // Print as a memory address. | 
|  | if (MI->getOperand(OpNum).isReg()) { | 
|  | O << "[" | 
|  | << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()) | 
|  | << "]"; | 
|  | return false; | 
|  | } | 
|  | LLVM_FALLTHROUGH; | 
|  | case 'c': // Don't print "#" before an immediate operand. | 
|  | if (!MI->getOperand(OpNum).isImm()) | 
|  | return true; | 
|  | O << MI->getOperand(OpNum).getImm(); | 
|  | return false; | 
|  | case 'P': // Print a VFP double precision register. | 
|  | case 'q': // Print a NEON quad precision register. | 
|  | printOperand(MI, OpNum, O); | 
|  | return false; | 
|  | case 'y': // Print a VFP single precision register as indexed double. | 
|  | if (MI->getOperand(OpNum).isReg()) { | 
|  | unsigned Reg = MI->getOperand(OpNum).getReg(); | 
|  | const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); | 
|  | // Find the 'd' register that has this 's' register as a sub-register, | 
|  | // and determine the lane number. | 
|  | for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { | 
|  | if (!ARM::DPRRegClass.contains(*SR)) | 
|  | continue; | 
|  | bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; | 
|  | O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | case 'B': // Bitwise inverse of integer or symbol without a preceding #. | 
|  | if (!MI->getOperand(OpNum).isImm()) | 
|  | return true; | 
|  | O << ~(MI->getOperand(OpNum).getImm()); | 
|  | return false; | 
|  | case 'L': // The low 16 bits of an immediate constant. | 
|  | if (!MI->getOperand(OpNum).isImm()) | 
|  | return true; | 
|  | O << (MI->getOperand(OpNum).getImm() & 0xffff); | 
|  | return false; | 
|  | case 'M': { // A register range suitable for LDM/STM. | 
|  | if (!MI->getOperand(OpNum).isReg()) | 
|  | return true; | 
|  | const MachineOperand &MO = MI->getOperand(OpNum); | 
|  | unsigned RegBegin = MO.getReg(); | 
|  | // This takes advantage of the 2 operand-ness of ldm/stm and that we've | 
|  | // already got the operands in registers that are operands to the | 
|  | // inline asm statement. | 
|  | O << "{"; | 
|  | if (ARM::GPRPairRegClass.contains(RegBegin)) { | 
|  | const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); | 
|  | unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); | 
|  | O << ARMInstPrinter::getRegisterName(Reg0) << ", "; | 
|  | RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); | 
|  | } | 
|  | O << ARMInstPrinter::getRegisterName(RegBegin); | 
|  |  | 
|  | // FIXME: The register allocator not only may not have given us the | 
|  | // registers in sequence, but may not be in ascending registers. This | 
|  | // will require changes in the register allocator that'll need to be | 
|  | // propagated down here if the operands change. | 
|  | unsigned RegOps = OpNum + 1; | 
|  | while (MI->getOperand(RegOps).isReg()) { | 
|  | O << ", " | 
|  | << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); | 
|  | RegOps++; | 
|  | } | 
|  |  | 
|  | O << "}"; | 
|  |  | 
|  | return false; | 
|  | } | 
|  | case 'R': // The most significant register of a pair. | 
|  | case 'Q': { // The least significant register of a pair. | 
|  | if (OpNum == 0) | 
|  | return true; | 
|  | const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); | 
|  | if (!FlagsOP.isImm()) | 
|  | return true; | 
|  | unsigned Flags = FlagsOP.getImm(); | 
|  |  | 
|  | // This operand may not be the one that actually provides the register. If | 
|  | // it's tied to a previous one then we should refer instead to that one | 
|  | // for registers and their classes. | 
|  | unsigned TiedIdx; | 
|  | if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { | 
|  | for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { | 
|  | unsigned OpFlags = MI->getOperand(OpNum).getImm(); | 
|  | OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; | 
|  | } | 
|  | Flags = MI->getOperand(OpNum).getImm(); | 
|  |  | 
|  | // Later code expects OpNum to be pointing at the register rather than | 
|  | // the flags. | 
|  | OpNum += 1; | 
|  | } | 
|  |  | 
|  | unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); | 
|  | unsigned RC; | 
|  | bool FirstHalf; | 
|  | const ARMBaseTargetMachine &ATM = | 
|  | static_cast<const ARMBaseTargetMachine &>(TM); | 
|  |  | 
|  | // 'Q' should correspond to the low order register and 'R' to the high | 
|  | // order register.  Whether this corresponds to the upper or lower half | 
|  | // depends on the endianess mode. | 
|  | if (ExtraCode[0] == 'Q') | 
|  | FirstHalf = ATM.isLittleEndian(); | 
|  | else | 
|  | // ExtraCode[0] == 'R'. | 
|  | FirstHalf = !ATM.isLittleEndian(); | 
|  | const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); | 
|  | if (InlineAsm::hasRegClassConstraint(Flags, RC) && | 
|  | ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) { | 
|  | if (NumVals != 1) | 
|  | return true; | 
|  | const MachineOperand &MO = MI->getOperand(OpNum); | 
|  | if (!MO.isReg()) | 
|  | return true; | 
|  | const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); | 
|  | unsigned Reg = TRI->getSubReg(MO.getReg(), FirstHalf ? | 
|  | ARM::gsub_0 : ARM::gsub_1); | 
|  | O << ARMInstPrinter::getRegisterName(Reg); | 
|  | return false; | 
|  | } | 
|  | if (NumVals != 2) | 
|  | return true; | 
|  | unsigned RegOp = FirstHalf ? OpNum : OpNum + 1; | 
|  | if (RegOp >= MI->getNumOperands()) | 
|  | return true; | 
|  | const MachineOperand &MO = MI->getOperand(RegOp); | 
|  | if (!MO.isReg()) | 
|  | return true; | 
|  | unsigned Reg = MO.getReg(); | 
|  | O << ARMInstPrinter::getRegisterName(Reg); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case 'e': // The low doubleword register of a NEON quad register. | 
|  | case 'f': { // The high doubleword register of a NEON quad register. | 
|  | if (!MI->getOperand(OpNum).isReg()) | 
|  | return true; | 
|  | unsigned Reg = MI->getOperand(OpNum).getReg(); | 
|  | if (!ARM::QPRRegClass.contains(Reg)) | 
|  | return true; | 
|  | const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); | 
|  | unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? | 
|  | ARM::dsub_0 : ARM::dsub_1); | 
|  | O << ARMInstPrinter::getRegisterName(SubReg); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // This modifier is not yet supported. | 
|  | case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. | 
|  | return true; | 
|  | case 'H': { // The highest-numbered register of a pair. | 
|  | const MachineOperand &MO = MI->getOperand(OpNum); | 
|  | if (!MO.isReg()) | 
|  | return true; | 
|  | const MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | unsigned Reg = MO.getReg(); | 
|  | if(!ARM::GPRPairRegClass.contains(Reg)) | 
|  | return false; | 
|  | Reg = TRI->getSubReg(Reg, ARM::gsub_1); | 
|  | O << ARMInstPrinter::getRegisterName(Reg); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | printOperand(MI, OpNum, O); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, | 
|  | unsigned OpNum, unsigned AsmVariant, | 
|  | const char *ExtraCode, | 
|  | raw_ostream &O) { | 
|  | // Does this asm operand have a single letter operand modifier? | 
|  | if (ExtraCode && ExtraCode[0]) { | 
|  | if (ExtraCode[1] != 0) return true; // Unknown modifier. | 
|  |  | 
|  | switch (ExtraCode[0]) { | 
|  | case 'A': // A memory operand for a VLD1/VST1 instruction. | 
|  | default: return true;  // Unknown modifier. | 
|  | case 'm': // The base register of a memory operand. | 
|  | if (!MI->getOperand(OpNum).isReg()) | 
|  | return true; | 
|  | O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | const MachineOperand &MO = MI->getOperand(OpNum); | 
|  | assert(MO.isReg() && "unexpected inline asm memory operand"); | 
|  | O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isThumb(const MCSubtargetInfo& STI) { | 
|  | return STI.getFeatureBits()[ARM::ModeThumb]; | 
|  | } | 
|  |  | 
|  | void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, | 
|  | const MCSubtargetInfo *EndInfo) const { | 
|  | // If either end mode is unknown (EndInfo == NULL) or different than | 
|  | // the start mode, then restore the start mode. | 
|  | const bool WasThumb = isThumb(StartInfo); | 
|  | if (!EndInfo || WasThumb != isThumb(*EndInfo)) { | 
|  | OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) { | 
|  | const Triple &TT = TM.getTargetTriple(); | 
|  | // Use unified assembler syntax. | 
|  | OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified); | 
|  |  | 
|  | // Emit ARM Build Attributes | 
|  | if (TT.isOSBinFormatELF()) | 
|  | emitAttributes(); | 
|  |  | 
|  | // Use the triple's architecture and subarchitecture to determine | 
|  | // if we're thumb for the purposes of the top level code16 assembler | 
|  | // flag. | 
|  | if (!M.getModuleInlineAsm().empty() && TT.isThumb()) | 
|  | OutStreamer->EmitAssemblerFlag(MCAF_Code16); | 
|  | } | 
|  |  | 
|  | static void | 
|  | emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, | 
|  | MachineModuleInfoImpl::StubValueTy &MCSym) { | 
|  | // L_foo$stub: | 
|  | OutStreamer.EmitLabel(StubLabel); | 
|  | //   .indirect_symbol _foo | 
|  | OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); | 
|  |  | 
|  | if (MCSym.getInt()) | 
|  | // External to current translation unit. | 
|  | OutStreamer.EmitIntValue(0, 4/*size*/); | 
|  | else | 
|  | // Internal to current translation unit. | 
|  | // | 
|  | // When we place the LSDA into the TEXT section, the type info | 
|  | // pointers need to be indirect and pc-rel. We accomplish this by | 
|  | // using NLPs; however, sometimes the types are local to the file. | 
|  | // We need to fill in the value for the NLP in those cases. | 
|  | OutStreamer.EmitValue( | 
|  | MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), | 
|  | 4 /*size*/); | 
|  | } | 
|  |  | 
|  |  | 
|  | void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) { | 
|  | const Triple &TT = TM.getTargetTriple(); | 
|  | if (TT.isOSBinFormatMachO()) { | 
|  | // All darwin targets use mach-o. | 
|  | const TargetLoweringObjectFileMachO &TLOFMacho = | 
|  | static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); | 
|  | MachineModuleInfoMachO &MMIMacho = | 
|  | MMI->getObjFileInfo<MachineModuleInfoMachO>(); | 
|  |  | 
|  | // Output non-lazy-pointers for external and common global variables. | 
|  | MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); | 
|  |  | 
|  | if (!Stubs.empty()) { | 
|  | // Switch with ".non_lazy_symbol_pointer" directive. | 
|  | OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); | 
|  | EmitAlignment(2); | 
|  |  | 
|  | for (auto &Stub : Stubs) | 
|  | emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); | 
|  |  | 
|  | Stubs.clear(); | 
|  | OutStreamer->AddBlankLine(); | 
|  | } | 
|  |  | 
|  | Stubs = MMIMacho.GetThreadLocalGVStubList(); | 
|  | if (!Stubs.empty()) { | 
|  | // Switch with ".non_lazy_symbol_pointer" directive. | 
|  | OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection()); | 
|  | EmitAlignment(2); | 
|  |  | 
|  | for (auto &Stub : Stubs) | 
|  | emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); | 
|  |  | 
|  | Stubs.clear(); | 
|  | OutStreamer->AddBlankLine(); | 
|  | } | 
|  |  | 
|  | // Funny Darwin hack: This flag tells the linker that no global symbols | 
|  | // contain code that falls through to other global symbols (e.g. the obvious | 
|  | // implementation of multiple entry points).  If this doesn't occur, the | 
|  | // linker can safely perform dead code stripping.  Since LLVM never | 
|  | // generates code that does this, it is always safe to set. | 
|  | OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); | 
|  | } | 
|  |  | 
|  | // The last attribute to be emitted is ABI_optimization_goals | 
|  | MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); | 
|  | ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); | 
|  |  | 
|  | if (OptimizationGoals > 0 && | 
|  | (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || | 
|  | Subtarget->isTargetMuslAEABI())) | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); | 
|  | OptimizationGoals = -1; | 
|  |  | 
|  | ATS.finishAttributeSection(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile() | 
|  | // FIXME: | 
|  | // The following seem like one-off assembler flags, but they actually need | 
|  | // to appear in the .ARM.attributes section in ELF. | 
|  | // Instead of subclassing the MCELFStreamer, we do the work here. | 
|  |  | 
|  | // Returns true if all functions have the same function attribute value. | 
|  | // It also returns true when the module has no functions. | 
|  | static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, | 
|  | StringRef Value) { | 
|  | return !any_of(M, [&](const Function &F) { | 
|  | return F.getFnAttribute(Attr).getValueAsString() != Value; | 
|  | }); | 
|  | } | 
|  |  | 
|  | void ARMAsmPrinter::emitAttributes() { | 
|  | MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); | 
|  | ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); | 
|  |  | 
|  | ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); | 
|  |  | 
|  | ATS.switchVendor("aeabi"); | 
|  |  | 
|  | // Compute ARM ELF Attributes based on the default subtarget that | 
|  | // we'd have constructed. The existing ARM behavior isn't LTO clean | 
|  | // anyhow. | 
|  | // FIXME: For ifunc related functions we could iterate over and look | 
|  | // for a feature string that doesn't match the default one. | 
|  | const Triple &TT = TM.getTargetTriple(); | 
|  | StringRef CPU = TM.getTargetCPU(); | 
|  | StringRef FS = TM.getTargetFeatureString(); | 
|  | std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); | 
|  | if (!FS.empty()) { | 
|  | if (!ArchFS.empty()) | 
|  | ArchFS = (Twine(ArchFS) + "," + FS).str(); | 
|  | else | 
|  | ArchFS = FS; | 
|  | } | 
|  | const ARMBaseTargetMachine &ATM = | 
|  | static_cast<const ARMBaseTargetMachine &>(TM); | 
|  | const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian()); | 
|  |  | 
|  | // Emit build attributes for the available hardware. | 
|  | ATS.emitTargetAttributes(STI); | 
|  |  | 
|  | // RW data addressing. | 
|  | if (isPositionIndependent()) { | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, | 
|  | ARMBuildAttrs::AddressRWPCRel); | 
|  | } else if (STI.isRWPI()) { | 
|  | // RWPI specific attributes. | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, | 
|  | ARMBuildAttrs::AddressRWSBRel); | 
|  | } | 
|  |  | 
|  | // RO data addressing. | 
|  | if (isPositionIndependent() || STI.isROPI()) { | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, | 
|  | ARMBuildAttrs::AddressROPCRel); | 
|  | } | 
|  |  | 
|  | // GOT use. | 
|  | if (isPositionIndependent()) { | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, | 
|  | ARMBuildAttrs::AddressGOT); | 
|  | } else { | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, | 
|  | ARMBuildAttrs::AddressDirect); | 
|  | } | 
|  |  | 
|  | // Set FP Denormals. | 
|  | if (checkFunctionsAttributeConsistency(*MMI->getModule(), | 
|  | "denormal-fp-math", | 
|  | "preserve-sign") || | 
|  | TM.Options.FPDenormalMode == FPDenormal::PreserveSign) | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, | 
|  | ARMBuildAttrs::PreserveFPSign); | 
|  | else if (checkFunctionsAttributeConsistency(*MMI->getModule(), | 
|  | "denormal-fp-math", | 
|  | "positive-zero") || | 
|  | TM.Options.FPDenormalMode == FPDenormal::PositiveZero) | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, | 
|  | ARMBuildAttrs::PositiveZero); | 
|  | else if (!TM.Options.UnsafeFPMath) | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, | 
|  | ARMBuildAttrs::IEEEDenormals); | 
|  | else { | 
|  | if (!STI.hasVFP2()) { | 
|  | // When the target doesn't have an FPU (by design or | 
|  | // intention), the assumptions made on the software support | 
|  | // mirror that of the equivalent hardware support *if it | 
|  | // existed*. For v7 and better we indicate that denormals are | 
|  | // flushed preserving sign, and for V6 we indicate that | 
|  | // denormals are flushed to positive zero. | 
|  | if (STI.hasV7Ops()) | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, | 
|  | ARMBuildAttrs::PreserveFPSign); | 
|  | } else if (STI.hasVFP3()) { | 
|  | // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, | 
|  | // the sign bit of the zero matches the sign bit of the input or | 
|  | // result that is being flushed to zero. | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, | 
|  | ARMBuildAttrs::PreserveFPSign); | 
|  | } | 
|  | // For VFPv2 implementations it is implementation defined as | 
|  | // to whether denormals are flushed to positive zero or to | 
|  | // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically | 
|  | // LLVM has chosen to flush this to positive zero (most likely for | 
|  | // GCC compatibility), so that's the chosen value here (the | 
|  | // absence of its emission implies zero). | 
|  | } | 
|  |  | 
|  | // Set FP exceptions and rounding | 
|  | if (checkFunctionsAttributeConsistency(*MMI->getModule(), | 
|  | "no-trapping-math", "true") || | 
|  | TM.Options.NoTrappingFPMath) | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, | 
|  | ARMBuildAttrs::Not_Allowed); | 
|  | else if (!TM.Options.UnsafeFPMath) { | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); | 
|  |  | 
|  | // If the user has permitted this code to choose the IEEE 754 | 
|  | // rounding at run-time, emit the rounding attribute. | 
|  | if (TM.Options.HonorSignDependentRoundingFPMathOption) | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); | 
|  | } | 
|  |  | 
|  | // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the | 
|  | // equivalent of GCC's -ffinite-math-only flag. | 
|  | if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, | 
|  | ARMBuildAttrs::Allowed); | 
|  | else | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, | 
|  | ARMBuildAttrs::AllowIEEE754); | 
|  |  | 
|  | // FIXME: add more flags to ARMBuildAttributes.h | 
|  | // 8-bytes alignment stuff. | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); | 
|  |  | 
|  | // Hard float.  Use both S and D registers and conform to AAPCS-VFP. | 
|  | if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); | 
|  |  | 
|  | // FIXME: To support emitting this build attribute as GCC does, the | 
|  | // -mfp16-format option and associated plumbing must be | 
|  | // supported. For now the __fp16 type is exposed by default, so this | 
|  | // attribute should be emitted with value 1. | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, | 
|  | ARMBuildAttrs::FP16FormatIEEE); | 
|  |  | 
|  | if (MMI) { | 
|  | if (const Module *SourceModule = MMI->getModule()) { | 
|  | // ABI_PCS_wchar_t to indicate wchar_t width | 
|  | // FIXME: There is no way to emit value 0 (wchar_t prohibited). | 
|  | if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( | 
|  | SourceModule->getModuleFlag("wchar_size"))) { | 
|  | int WCharWidth = WCharWidthValue->getZExtValue(); | 
|  | assert((WCharWidth == 2 || WCharWidth == 4) && | 
|  | "wchar_t width must be 2 or 4 bytes"); | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); | 
|  | } | 
|  |  | 
|  | // ABI_enum_size to indicate enum width | 
|  | // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 | 
|  | //        (all enums contain a value needing 32 bits to encode). | 
|  | if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( | 
|  | SourceModule->getModuleFlag("min_enum_size"))) { | 
|  | int EnumWidth = EnumWidthValue->getZExtValue(); | 
|  | assert((EnumWidth == 1 || EnumWidth == 4) && | 
|  | "Minimum enum width must be 1 or 4 bytes"); | 
|  | int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // We currently do not support using R9 as the TLS pointer. | 
|  | if (STI.isRWPI()) | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, | 
|  | ARMBuildAttrs::R9IsSB); | 
|  | else if (STI.isR9Reserved()) | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, | 
|  | ARMBuildAttrs::R9Reserved); | 
|  | else | 
|  | ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, | 
|  | ARMBuildAttrs::R9IsGPR); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, | 
|  | unsigned LabelId, MCContext &Ctx) { | 
|  |  | 
|  | MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) | 
|  | + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); | 
|  | return Label; | 
|  | } | 
|  |  | 
|  | static MCSymbolRefExpr::VariantKind | 
|  | getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { | 
|  | switch (Modifier) { | 
|  | case ARMCP::no_modifier: | 
|  | return MCSymbolRefExpr::VK_None; | 
|  | case ARMCP::TLSGD: | 
|  | return MCSymbolRefExpr::VK_TLSGD; | 
|  | case ARMCP::TPOFF: | 
|  | return MCSymbolRefExpr::VK_TPOFF; | 
|  | case ARMCP::GOTTPOFF: | 
|  | return MCSymbolRefExpr::VK_GOTTPOFF; | 
|  | case ARMCP::SBREL: | 
|  | return MCSymbolRefExpr::VK_ARM_SBREL; | 
|  | case ARMCP::GOT_PREL: | 
|  | return MCSymbolRefExpr::VK_ARM_GOT_PREL; | 
|  | case ARMCP::SECREL: | 
|  | return MCSymbolRefExpr::VK_SECREL; | 
|  | } | 
|  | llvm_unreachable("Invalid ARMCPModifier!"); | 
|  | } | 
|  |  | 
|  | MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, | 
|  | unsigned char TargetFlags) { | 
|  | if (Subtarget->isTargetMachO()) { | 
|  | bool IsIndirect = | 
|  | (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); | 
|  |  | 
|  | if (!IsIndirect) | 
|  | return getSymbol(GV); | 
|  |  | 
|  | // FIXME: Remove this when Darwin transition to @GOT like syntax. | 
|  | MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); | 
|  | MachineModuleInfoMachO &MMIMachO = | 
|  | MMI->getObjFileInfo<MachineModuleInfoMachO>(); | 
|  | MachineModuleInfoImpl::StubValueTy &StubSym = | 
|  | GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) | 
|  | : MMIMachO.getGVStubEntry(MCSym); | 
|  |  | 
|  | if (!StubSym.getPointer()) | 
|  | StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), | 
|  | !GV->hasInternalLinkage()); | 
|  | return MCSym; | 
|  | } else if (Subtarget->isTargetCOFF()) { | 
|  | assert(Subtarget->isTargetWindows() && | 
|  | "Windows is the only supported COFF target"); | 
|  |  | 
|  | bool IsIndirect = | 
|  | (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB)); | 
|  | if (!IsIndirect) | 
|  | return getSymbol(GV); | 
|  |  | 
|  | SmallString<128> Name; | 
|  | if (TargetFlags & ARMII::MO_DLLIMPORT) | 
|  | Name = "__imp_"; | 
|  | else if (TargetFlags & ARMII::MO_COFFSTUB) | 
|  | Name = ".refptr."; | 
|  | getNameWithPrefix(Name, GV); | 
|  |  | 
|  | MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name); | 
|  |  | 
|  | if (TargetFlags & ARMII::MO_COFFSTUB) { | 
|  | MachineModuleInfoCOFF &MMICOFF = | 
|  | MMI->getObjFileInfo<MachineModuleInfoCOFF>(); | 
|  | MachineModuleInfoImpl::StubValueTy &StubSym = | 
|  | MMICOFF.getGVStubEntry(MCSym); | 
|  |  | 
|  | if (!StubSym.getPointer()) | 
|  | StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true); | 
|  | } | 
|  |  | 
|  | return MCSym; | 
|  | } else if (Subtarget->isTargetELF()) { | 
|  | return getSymbol(GV); | 
|  | } | 
|  | llvm_unreachable("unexpected target"); | 
|  | } | 
|  |  | 
|  | void ARMAsmPrinter:: | 
|  | EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { | 
|  | const DataLayout &DL = getDataLayout(); | 
|  | int Size = DL.getTypeAllocSize(MCPV->getType()); | 
|  |  | 
|  | ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); | 
|  |  | 
|  | if (ACPV->isPromotedGlobal()) { | 
|  | // This constant pool entry is actually a global whose storage has been | 
|  | // promoted into the constant pool. This global may be referenced still | 
|  | // by debug information, and due to the way AsmPrinter is set up, the debug | 
|  | // info is immutable by the time we decide to promote globals to constant | 
|  | // pools. Because of this, we need to ensure we emit a symbol for the global | 
|  | // with private linkage (the default) so debug info can refer to it. | 
|  | // | 
|  | // However, if this global is promoted into several functions we must ensure | 
|  | // we don't try and emit duplicate symbols! | 
|  | auto *ACPC = cast<ARMConstantPoolConstant>(ACPV); | 
|  | for (const auto *GV : ACPC->promotedGlobals()) { | 
|  | if (!EmittedPromotedGlobalLabels.count(GV)) { | 
|  | MCSymbol *GVSym = getSymbol(GV); | 
|  | OutStreamer->EmitLabel(GVSym); | 
|  | EmittedPromotedGlobalLabels.insert(GV); | 
|  | } | 
|  | } | 
|  | return EmitGlobalConstant(DL, ACPC->getPromotedGlobalInit()); | 
|  | } | 
|  |  | 
|  | MCSymbol *MCSym; | 
|  | if (ACPV->isLSDA()) { | 
|  | MCSym = getCurExceptionSym(); | 
|  | } else if (ACPV->isBlockAddress()) { | 
|  | const BlockAddress *BA = | 
|  | cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); | 
|  | MCSym = GetBlockAddressSymbol(BA); | 
|  | } else if (ACPV->isGlobalValue()) { | 
|  | const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); | 
|  |  | 
|  | // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so | 
|  | // flag the global as MO_NONLAZY. | 
|  | unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; | 
|  | MCSym = GetARMGVSymbol(GV, TF); | 
|  | } else if (ACPV->isMachineBasicBlock()) { | 
|  | const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); | 
|  | MCSym = MBB->getSymbol(); | 
|  | } else { | 
|  | assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); | 
|  | auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); | 
|  | MCSym = GetExternalSymbolSymbol(Sym); | 
|  | } | 
|  |  | 
|  | // Create an MCSymbol for the reference. | 
|  | const MCExpr *Expr = | 
|  | MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), | 
|  | OutContext); | 
|  |  | 
|  | if (ACPV->getPCAdjustment()) { | 
|  | MCSymbol *PCLabel = | 
|  | getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), | 
|  | ACPV->getLabelId(), OutContext); | 
|  | const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); | 
|  | PCRelExpr = | 
|  | MCBinaryExpr::createAdd(PCRelExpr, | 
|  | MCConstantExpr::create(ACPV->getPCAdjustment(), | 
|  | OutContext), | 
|  | OutContext); | 
|  | if (ACPV->mustAddCurrentAddress()) { | 
|  | // We want "(<expr> - .)", but MC doesn't have a concept of the '.' | 
|  | // label, so just emit a local label end reference that instead. | 
|  | MCSymbol *DotSym = OutContext.createTempSymbol(); | 
|  | OutStreamer->EmitLabel(DotSym); | 
|  | const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); | 
|  | PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); | 
|  | } | 
|  | Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); | 
|  | } | 
|  | OutStreamer->EmitValue(Expr, Size); | 
|  | } | 
|  |  | 
|  | void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) { | 
|  | const MachineOperand &MO1 = MI->getOperand(1); | 
|  | unsigned JTI = MO1.getIndex(); | 
|  |  | 
|  | // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for | 
|  | // ARM mode tables. | 
|  | EmitAlignment(2); | 
|  |  | 
|  | // Emit a label for the jump table. | 
|  | MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); | 
|  | OutStreamer->EmitLabel(JTISymbol); | 
|  |  | 
|  | // Mark the jump table as data-in-code. | 
|  | OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); | 
|  |  | 
|  | // Emit each entry of the table. | 
|  | const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); | 
|  | const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); | 
|  | const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; | 
|  |  | 
|  | for (MachineBasicBlock *MBB : JTBBs) { | 
|  | // Construct an MCExpr for the entry. We want a value of the form: | 
|  | // (BasicBlockAddr - TableBeginAddr) | 
|  | // | 
|  | // For example, a table with entries jumping to basic blocks BB0 and BB1 | 
|  | // would look like: | 
|  | // LJTI_0_0: | 
|  | //    .word (LBB0 - LJTI_0_0) | 
|  | //    .word (LBB1 - LJTI_0_0) | 
|  | const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); | 
|  |  | 
|  | if (isPositionIndependent() || Subtarget->isROPI()) | 
|  | Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, | 
|  | OutContext), | 
|  | OutContext); | 
|  | // If we're generating a table of Thumb addresses in static relocation | 
|  | // model, we need to add one to keep interworking correctly. | 
|  | else if (AFI->isThumbFunction()) | 
|  | Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), | 
|  | OutContext); | 
|  | OutStreamer->EmitValue(Expr, 4); | 
|  | } | 
|  | // Mark the end of jump table data-in-code region. | 
|  | OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); | 
|  | } | 
|  |  | 
|  | void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) { | 
|  | const MachineOperand &MO1 = MI->getOperand(1); | 
|  | unsigned JTI = MO1.getIndex(); | 
|  |  | 
|  | // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for | 
|  | // ARM mode tables. | 
|  | EmitAlignment(2); | 
|  |  | 
|  | // Emit a label for the jump table. | 
|  | MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); | 
|  | OutStreamer->EmitLabel(JTISymbol); | 
|  |  | 
|  | // Emit each entry of the table. | 
|  | const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); | 
|  | const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); | 
|  | const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; | 
|  |  | 
|  | for (MachineBasicBlock *MBB : JTBBs) { | 
|  | const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), | 
|  | OutContext); | 
|  | // If this isn't a TBB or TBH, the entries are direct branch instructions. | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) | 
|  | .addExpr(MBBSymbolExpr) | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI, | 
|  | unsigned OffsetWidth) { | 
|  | assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); | 
|  | const MachineOperand &MO1 = MI->getOperand(1); | 
|  | unsigned JTI = MO1.getIndex(); | 
|  |  | 
|  | if (Subtarget->isThumb1Only()) | 
|  | EmitAlignment(2); | 
|  |  | 
|  | MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); | 
|  | OutStreamer->EmitLabel(JTISymbol); | 
|  |  | 
|  | // Emit each entry of the table. | 
|  | const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); | 
|  | const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); | 
|  | const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; | 
|  |  | 
|  | // Mark the jump table as data-in-code. | 
|  | OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 | 
|  | : MCDR_DataRegionJT16); | 
|  |  | 
|  | for (auto MBB : JTBBs) { | 
|  | const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), | 
|  | OutContext); | 
|  | // Otherwise it's an offset from the dispatch instruction. Construct an | 
|  | // MCExpr for the entry. We want a value of the form: | 
|  | // (BasicBlockAddr - TBBInstAddr + 4) / 2 | 
|  | // | 
|  | // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 | 
|  | // would look like: | 
|  | // LJTI_0_0: | 
|  | //    .byte (LBB0 - (LCPI0_0 + 4)) / 2 | 
|  | //    .byte (LBB1 - (LCPI0_0 + 4)) / 2 | 
|  | // where LCPI0_0 is a label defined just before the TBB instruction using | 
|  | // this table. | 
|  | MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); | 
|  | const MCExpr *Expr = MCBinaryExpr::createAdd( | 
|  | MCSymbolRefExpr::create(TBInstPC, OutContext), | 
|  | MCConstantExpr::create(4, OutContext), OutContext); | 
|  | Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); | 
|  | Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), | 
|  | OutContext); | 
|  | OutStreamer->EmitValue(Expr, OffsetWidth); | 
|  | } | 
|  | // Mark the end of jump table data-in-code region. 32-bit offsets use | 
|  | // actual branch instructions here, so we don't mark those as a data-region | 
|  | // at all. | 
|  | OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); | 
|  |  | 
|  | // Make sure the next instruction is 2-byte aligned. | 
|  | EmitAlignment(1); | 
|  | } | 
|  |  | 
|  | void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { | 
|  | assert(MI->getFlag(MachineInstr::FrameSetup) && | 
|  | "Only instruction which are involved into frame setup code are allowed"); | 
|  |  | 
|  | MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); | 
|  | ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); | 
|  | const MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | const TargetRegisterInfo *TargetRegInfo = | 
|  | MF.getSubtarget().getRegisterInfo(); | 
|  | const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo(); | 
|  | const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>(); | 
|  |  | 
|  | unsigned FramePtr = TargetRegInfo->getFrameRegister(MF); | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | unsigned SrcReg, DstReg; | 
|  |  | 
|  | if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { | 
|  | // Two special cases: | 
|  | // 1) tPUSH does not have src/dst regs. | 
|  | // 2) for Thumb1 code we sometimes materialize the constant via constpool | 
|  | // load. Yes, this is pretty fragile, but for now I don't see better | 
|  | // way... :( | 
|  | SrcReg = DstReg = ARM::SP; | 
|  | } else { | 
|  | SrcReg = MI->getOperand(1).getReg(); | 
|  | DstReg = MI->getOperand(0).getReg(); | 
|  | } | 
|  |  | 
|  | // Try to figure out the unwinding opcode out of src / dst regs. | 
|  | if (MI->mayStore()) { | 
|  | // Register saves. | 
|  | assert(DstReg == ARM::SP && | 
|  | "Only stack pointer as a destination reg is supported"); | 
|  |  | 
|  | SmallVector<unsigned, 4> RegList; | 
|  | // Skip src & dst reg, and pred ops. | 
|  | unsigned StartOp = 2 + 2; | 
|  | // Use all the operands. | 
|  | unsigned NumOffset = 0; | 
|  | // Amount of SP adjustment folded into a push. | 
|  | unsigned Pad = 0; | 
|  |  | 
|  | switch (Opc) { | 
|  | default: | 
|  | MI->print(errs()); | 
|  | llvm_unreachable("Unsupported opcode for unwinding information"); | 
|  | case ARM::tPUSH: | 
|  | // Special case here: no src & dst reg, but two extra imp ops. | 
|  | StartOp = 2; NumOffset = 2; | 
|  | LLVM_FALLTHROUGH; | 
|  | case ARM::STMDB_UPD: | 
|  | case ARM::t2STMDB_UPD: | 
|  | case ARM::VSTMDDB_UPD: | 
|  | assert(SrcReg == ARM::SP && | 
|  | "Only stack pointer as a source reg is supported"); | 
|  | for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; | 
|  | i != NumOps; ++i) { | 
|  | const MachineOperand &MO = MI->getOperand(i); | 
|  | // Actually, there should never be any impdef stuff here. Skip it | 
|  | // temporary to workaround PR11902. | 
|  | if (MO.isImplicit()) | 
|  | continue; | 
|  | // Registers, pushed as a part of folding an SP update into the | 
|  | // push instruction are marked as undef and should not be | 
|  | // restored when unwinding, because the function can modify the | 
|  | // corresponding stack slots. | 
|  | if (MO.isUndef()) { | 
|  | assert(RegList.empty() && | 
|  | "Pad registers must come before restored ones"); | 
|  | unsigned Width = | 
|  | TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8; | 
|  | Pad += Width; | 
|  | continue; | 
|  | } | 
|  | RegList.push_back(MO.getReg()); | 
|  | } | 
|  | break; | 
|  | case ARM::STR_PRE_IMM: | 
|  | case ARM::STR_PRE_REG: | 
|  | case ARM::t2STR_PRE: | 
|  | assert(MI->getOperand(2).getReg() == ARM::SP && | 
|  | "Only stack pointer as a source reg is supported"); | 
|  | RegList.push_back(SrcReg); | 
|  | break; | 
|  | } | 
|  | if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { | 
|  | ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); | 
|  | // Account for the SP adjustment, folded into the push. | 
|  | if (Pad) | 
|  | ATS.emitPad(Pad); | 
|  | } | 
|  | } else { | 
|  | // Changes of stack / frame pointer. | 
|  | if (SrcReg == ARM::SP) { | 
|  | int64_t Offset = 0; | 
|  | switch (Opc) { | 
|  | default: | 
|  | MI->print(errs()); | 
|  | llvm_unreachable("Unsupported opcode for unwinding information"); | 
|  | case ARM::MOVr: | 
|  | case ARM::tMOVr: | 
|  | Offset = 0; | 
|  | break; | 
|  | case ARM::ADDri: | 
|  | case ARM::t2ADDri: | 
|  | Offset = -MI->getOperand(2).getImm(); | 
|  | break; | 
|  | case ARM::SUBri: | 
|  | case ARM::t2SUBri: | 
|  | Offset = MI->getOperand(2).getImm(); | 
|  | break; | 
|  | case ARM::tSUBspi: | 
|  | Offset = MI->getOperand(2).getImm()*4; | 
|  | break; | 
|  | case ARM::tADDspi: | 
|  | case ARM::tADDrSPi: | 
|  | Offset = -MI->getOperand(2).getImm()*4; | 
|  | break; | 
|  | case ARM::tLDRpci: { | 
|  | // Grab the constpool index and check, whether it corresponds to | 
|  | // original or cloned constpool entry. | 
|  | unsigned CPI = MI->getOperand(1).getIndex(); | 
|  | const MachineConstantPool *MCP = MF.getConstantPool(); | 
|  | if (CPI >= MCP->getConstants().size()) | 
|  | CPI = AFI.getOriginalCPIdx(CPI); | 
|  | assert(CPI != -1U && "Invalid constpool index"); | 
|  |  | 
|  | // Derive the actual offset. | 
|  | const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; | 
|  | assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); | 
|  | // FIXME: Check for user, it should be "add" instruction! | 
|  | Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { | 
|  | if (DstReg == FramePtr && FramePtr != ARM::SP) | 
|  | // Set-up of the frame pointer. Positive values correspond to "add" | 
|  | // instruction. | 
|  | ATS.emitSetFP(FramePtr, ARM::SP, -Offset); | 
|  | else if (DstReg == ARM::SP) { | 
|  | // Change of SP by an offset. Positive values correspond to "sub" | 
|  | // instruction. | 
|  | ATS.emitPad(Offset); | 
|  | } else { | 
|  | // Move of SP to a register.  Positive values correspond to an "add" | 
|  | // instruction. | 
|  | ATS.emitMovSP(DstReg, -Offset); | 
|  | } | 
|  | } | 
|  | } else if (DstReg == ARM::SP) { | 
|  | MI->print(errs()); | 
|  | llvm_unreachable("Unsupported opcode for unwinding information"); | 
|  | } | 
|  | else { | 
|  | MI->print(errs()); | 
|  | llvm_unreachable("Unsupported opcode for unwinding information"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Simple pseudo-instructions have their lowering (with expansion to real | 
|  | // instructions) auto-generated. | 
|  | #include "ARMGenMCPseudoLowering.inc" | 
|  |  | 
|  | void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) { | 
|  | const DataLayout &DL = getDataLayout(); | 
|  | MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); | 
|  | ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); | 
|  |  | 
|  | const MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); | 
|  | unsigned FramePtr = STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11; | 
|  |  | 
|  | // If we just ended a constant pool, mark it as such. | 
|  | if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { | 
|  | OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); | 
|  | InConstantPool = false; | 
|  | } | 
|  |  | 
|  | // Emit unwinding stuff for frame-related instructions | 
|  | if (Subtarget->isTargetEHABICompatible() && | 
|  | MI->getFlag(MachineInstr::FrameSetup)) | 
|  | EmitUnwindingInstruction(MI); | 
|  |  | 
|  | // Do any auto-generated pseudo lowerings. | 
|  | if (emitPseudoExpansionLowering(*OutStreamer, MI)) | 
|  | return; | 
|  |  | 
|  | assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && | 
|  | "Pseudo flag setting opcode should be expanded early"); | 
|  |  | 
|  | // Check for manual lowerings. | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | switch (Opc) { | 
|  | case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); | 
|  | case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); | 
|  | case ARM::LEApcrel: | 
|  | case ARM::tLEApcrel: | 
|  | case ARM::t2LEApcrel: { | 
|  | // FIXME: Need to also handle globals and externals | 
|  | MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == | 
|  | ARM::t2LEApcrel ? ARM::t2ADR | 
|  | : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR | 
|  | : ARM::ADR)) | 
|  | .addReg(MI->getOperand(0).getReg()) | 
|  | .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) | 
|  | // Add predicate operands. | 
|  | .addImm(MI->getOperand(2).getImm()) | 
|  | .addReg(MI->getOperand(3).getReg())); | 
|  | return; | 
|  | } | 
|  | case ARM::LEApcrelJT: | 
|  | case ARM::tLEApcrelJT: | 
|  | case ARM::t2LEApcrelJT: { | 
|  | MCSymbol *JTIPICSymbol = | 
|  | GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == | 
|  | ARM::t2LEApcrelJT ? ARM::t2ADR | 
|  | : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR | 
|  | : ARM::ADR)) | 
|  | .addReg(MI->getOperand(0).getReg()) | 
|  | .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) | 
|  | // Add predicate operands. | 
|  | .addImm(MI->getOperand(2).getImm()) | 
|  | .addReg(MI->getOperand(3).getReg())); | 
|  | return; | 
|  | } | 
|  | // Darwin call instructions are just normal call instructions with different | 
|  | // clobber semantics (they clobber R9). | 
|  | case ARM::BX_CALL: { | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) | 
|  | .addReg(ARM::LR) | 
|  | .addReg(ARM::PC) | 
|  | // Add predicate operands. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0) | 
|  | // Add 's' bit operand (always reg0 for this) | 
|  | .addReg(0)); | 
|  |  | 
|  | assert(Subtarget->hasV4TOps()); | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) | 
|  | .addReg(MI->getOperand(0).getReg())); | 
|  | return; | 
|  | } | 
|  | case ARM::tBX_CALL: { | 
|  | if (Subtarget->hasV5TOps()) | 
|  | llvm_unreachable("Expected BLX to be selected for v5t+"); | 
|  |  | 
|  | // On ARM v4t, when doing a call from thumb mode, we need to ensure | 
|  | // that the saved lr has its LSB set correctly (the arch doesn't | 
|  | // have blx). | 
|  | // So here we generate a bl to a small jump pad that does bx rN. | 
|  | // The jump pads are emitted after the function body. | 
|  |  | 
|  | unsigned TReg = MI->getOperand(0).getReg(); | 
|  | MCSymbol *TRegSym = nullptr; | 
|  | for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { | 
|  | if (TIP.first == TReg) { | 
|  | TRegSym = TIP.second; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!TRegSym) { | 
|  | TRegSym = OutContext.createTempSymbol(); | 
|  | ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); | 
|  | } | 
|  |  | 
|  | // Create a link-saving branch to the Reg Indirect Jump Pad. | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) | 
|  | // Predicate comes first here. | 
|  | .addImm(ARMCC::AL).addReg(0) | 
|  | .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); | 
|  | return; | 
|  | } | 
|  | case ARM::BMOVPCRX_CALL: { | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) | 
|  | .addReg(ARM::LR) | 
|  | .addReg(ARM::PC) | 
|  | // Add predicate operands. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0) | 
|  | // Add 's' bit operand (always reg0 for this) | 
|  | .addReg(0)); | 
|  |  | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) | 
|  | .addReg(ARM::PC) | 
|  | .addReg(MI->getOperand(0).getReg()) | 
|  | // Add predicate operands. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0) | 
|  | // Add 's' bit operand (always reg0 for this) | 
|  | .addReg(0)); | 
|  | return; | 
|  | } | 
|  | case ARM::BMOVPCB_CALL: { | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) | 
|  | .addReg(ARM::LR) | 
|  | .addReg(ARM::PC) | 
|  | // Add predicate operands. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0) | 
|  | // Add 's' bit operand (always reg0 for this) | 
|  | .addReg(0)); | 
|  |  | 
|  | const MachineOperand &Op = MI->getOperand(0); | 
|  | const GlobalValue *GV = Op.getGlobal(); | 
|  | const unsigned TF = Op.getTargetFlags(); | 
|  | MCSymbol *GVSym = GetARMGVSymbol(GV, TF); | 
|  | const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) | 
|  | .addExpr(GVSymExpr) | 
|  | // Add predicate operands. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  | return; | 
|  | } | 
|  | case ARM::MOVi16_ga_pcrel: | 
|  | case ARM::t2MOVi16_ga_pcrel: { | 
|  | MCInst TmpInst; | 
|  | TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); | 
|  | TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); | 
|  |  | 
|  | unsigned TF = MI->getOperand(1).getTargetFlags(); | 
|  | const GlobalValue *GV = MI->getOperand(1).getGlobal(); | 
|  | MCSymbol *GVSym = GetARMGVSymbol(GV, TF); | 
|  | const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); | 
|  |  | 
|  | MCSymbol *LabelSym = | 
|  | getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), | 
|  | MI->getOperand(2).getImm(), OutContext); | 
|  | const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); | 
|  | unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; | 
|  | const MCExpr *PCRelExpr = | 
|  | ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, | 
|  | MCBinaryExpr::createAdd(LabelSymExpr, | 
|  | MCConstantExpr::create(PCAdj, OutContext), | 
|  | OutContext), OutContext), OutContext); | 
|  | TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); | 
|  |  | 
|  | // Add predicate operands. | 
|  | TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); | 
|  | TmpInst.addOperand(MCOperand::createReg(0)); | 
|  | // Add 's' bit operand (always reg0 for this) | 
|  | TmpInst.addOperand(MCOperand::createReg(0)); | 
|  | EmitToStreamer(*OutStreamer, TmpInst); | 
|  | return; | 
|  | } | 
|  | case ARM::MOVTi16_ga_pcrel: | 
|  | case ARM::t2MOVTi16_ga_pcrel: { | 
|  | MCInst TmpInst; | 
|  | TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel | 
|  | ? ARM::MOVTi16 : ARM::t2MOVTi16); | 
|  | TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); | 
|  | TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); | 
|  |  | 
|  | unsigned TF = MI->getOperand(2).getTargetFlags(); | 
|  | const GlobalValue *GV = MI->getOperand(2).getGlobal(); | 
|  | MCSymbol *GVSym = GetARMGVSymbol(GV, TF); | 
|  | const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); | 
|  |  | 
|  | MCSymbol *LabelSym = | 
|  | getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), | 
|  | MI->getOperand(3).getImm(), OutContext); | 
|  | const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); | 
|  | unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; | 
|  | const MCExpr *PCRelExpr = | 
|  | ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, | 
|  | MCBinaryExpr::createAdd(LabelSymExpr, | 
|  | MCConstantExpr::create(PCAdj, OutContext), | 
|  | OutContext), OutContext), OutContext); | 
|  | TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); | 
|  | // Add predicate operands. | 
|  | TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); | 
|  | TmpInst.addOperand(MCOperand::createReg(0)); | 
|  | // Add 's' bit operand (always reg0 for this) | 
|  | TmpInst.addOperand(MCOperand::createReg(0)); | 
|  | EmitToStreamer(*OutStreamer, TmpInst); | 
|  | return; | 
|  | } | 
|  | case ARM::tPICADD: { | 
|  | // This is a pseudo op for a label + instruction sequence, which looks like: | 
|  | // LPC0: | 
|  | //     add r0, pc | 
|  | // This adds the address of LPC0 to r0. | 
|  |  | 
|  | // Emit the label. | 
|  | OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), | 
|  | getFunctionNumber(), | 
|  | MI->getOperand(2).getImm(), OutContext)); | 
|  |  | 
|  | // Form and emit the add. | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) | 
|  | .addReg(MI->getOperand(0).getReg()) | 
|  | .addReg(MI->getOperand(0).getReg()) | 
|  | .addReg(ARM::PC) | 
|  | // Add predicate operands. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  | return; | 
|  | } | 
|  | case ARM::PICADD: { | 
|  | // This is a pseudo op for a label + instruction sequence, which looks like: | 
|  | // LPC0: | 
|  | //     add r0, pc, r0 | 
|  | // This adds the address of LPC0 to r0. | 
|  |  | 
|  | // Emit the label. | 
|  | OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), | 
|  | getFunctionNumber(), | 
|  | MI->getOperand(2).getImm(), OutContext)); | 
|  |  | 
|  | // Form and emit the add. | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) | 
|  | .addReg(MI->getOperand(0).getReg()) | 
|  | .addReg(ARM::PC) | 
|  | .addReg(MI->getOperand(1).getReg()) | 
|  | // Add predicate operands. | 
|  | .addImm(MI->getOperand(3).getImm()) | 
|  | .addReg(MI->getOperand(4).getReg()) | 
|  | // Add 's' bit operand (always reg0 for this) | 
|  | .addReg(0)); | 
|  | return; | 
|  | } | 
|  | case ARM::PICSTR: | 
|  | case ARM::PICSTRB: | 
|  | case ARM::PICSTRH: | 
|  | case ARM::PICLDR: | 
|  | case ARM::PICLDRB: | 
|  | case ARM::PICLDRH: | 
|  | case ARM::PICLDRSB: | 
|  | case ARM::PICLDRSH: { | 
|  | // This is a pseudo op for a label + instruction sequence, which looks like: | 
|  | // LPC0: | 
|  | //     OP r0, [pc, r0] | 
|  | // The LCP0 label is referenced by a constant pool entry in order to get | 
|  | // a PC-relative address at the ldr instruction. | 
|  |  | 
|  | // Emit the label. | 
|  | OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), | 
|  | getFunctionNumber(), | 
|  | MI->getOperand(2).getImm(), OutContext)); | 
|  |  | 
|  | // Form and emit the load | 
|  | unsigned Opcode; | 
|  | switch (MI->getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Unexpected opcode!"); | 
|  | case ARM::PICSTR:   Opcode = ARM::STRrs; break; | 
|  | case ARM::PICSTRB:  Opcode = ARM::STRBrs; break; | 
|  | case ARM::PICSTRH:  Opcode = ARM::STRH; break; | 
|  | case ARM::PICLDR:   Opcode = ARM::LDRrs; break; | 
|  | case ARM::PICLDRB:  Opcode = ARM::LDRBrs; break; | 
|  | case ARM::PICLDRH:  Opcode = ARM::LDRH; break; | 
|  | case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; | 
|  | case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; | 
|  | } | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) | 
|  | .addReg(MI->getOperand(0).getReg()) | 
|  | .addReg(ARM::PC) | 
|  | .addReg(MI->getOperand(1).getReg()) | 
|  | .addImm(0) | 
|  | // Add predicate operands. | 
|  | .addImm(MI->getOperand(3).getImm()) | 
|  | .addReg(MI->getOperand(4).getReg())); | 
|  |  | 
|  | return; | 
|  | } | 
|  | case ARM::CONSTPOOL_ENTRY: { | 
|  | if (Subtarget->genExecuteOnly()) | 
|  | llvm_unreachable("execute-only should not generate constant pools"); | 
|  |  | 
|  | /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool | 
|  | /// in the function.  The first operand is the ID# for this instruction, the | 
|  | /// second is the index into the MachineConstantPool that this is, the third | 
|  | /// is the size in bytes of this constant pool entry. | 
|  | /// The required alignment is specified on the basic block holding this MI. | 
|  | unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); | 
|  | unsigned CPIdx   = (unsigned)MI->getOperand(1).getIndex(); | 
|  |  | 
|  | // If this is the first entry of the pool, mark it. | 
|  | if (!InConstantPool) { | 
|  | OutStreamer->EmitDataRegion(MCDR_DataRegion); | 
|  | InConstantPool = true; | 
|  | } | 
|  |  | 
|  | OutStreamer->EmitLabel(GetCPISymbol(LabelId)); | 
|  |  | 
|  | const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; | 
|  | if (MCPE.isMachineConstantPoolEntry()) | 
|  | EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); | 
|  | else | 
|  | EmitGlobalConstant(DL, MCPE.Val.ConstVal); | 
|  | return; | 
|  | } | 
|  | case ARM::JUMPTABLE_ADDRS: | 
|  | EmitJumpTableAddrs(MI); | 
|  | return; | 
|  | case ARM::JUMPTABLE_INSTS: | 
|  | EmitJumpTableInsts(MI); | 
|  | return; | 
|  | case ARM::JUMPTABLE_TBB: | 
|  | case ARM::JUMPTABLE_TBH: | 
|  | EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); | 
|  | return; | 
|  | case ARM::t2BR_JT: { | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) | 
|  | .addReg(ARM::PC) | 
|  | .addReg(MI->getOperand(0).getReg()) | 
|  | // Add predicate operands. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  | return; | 
|  | } | 
|  | case ARM::t2TBB_JT: | 
|  | case ARM::t2TBH_JT: { | 
|  | unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; | 
|  | // Lower and emit the PC label, then the instruction itself. | 
|  | OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) | 
|  | .addReg(MI->getOperand(0).getReg()) | 
|  | .addReg(MI->getOperand(1).getReg()) | 
|  | // Add predicate operands. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  | return; | 
|  | } | 
|  | case ARM::tTBB_JT: | 
|  | case ARM::tTBH_JT: { | 
|  |  | 
|  | bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; | 
|  | unsigned Base = MI->getOperand(0).getReg(); | 
|  | unsigned Idx = MI->getOperand(1).getReg(); | 
|  | assert(MI->getOperand(1).isKill() && "We need the index register as scratch!"); | 
|  |  | 
|  | // Multiply up idx if necessary. | 
|  | if (!Is8Bit) | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) | 
|  | .addReg(Idx) | 
|  | .addReg(ARM::CPSR) | 
|  | .addReg(Idx) | 
|  | .addImm(1) | 
|  | // Add predicate operands. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  |  | 
|  | if (Base == ARM::PC) { | 
|  | // TBB [base, idx] = | 
|  | //    ADDS idx, idx, base | 
|  | //    LDRB idx, [idx, #4] ; or LDRH if TBH | 
|  | //    LSLS idx, #1 | 
|  | //    ADDS pc, pc, idx | 
|  |  | 
|  | // When using PC as the base, it's important that there is no padding | 
|  | // between the last ADDS and the start of the jump table. The jump table | 
|  | // is 4-byte aligned, so we ensure we're 4 byte aligned here too. | 
|  | // | 
|  | // FIXME: Ideally we could vary the LDRB index based on the padding | 
|  | // between the sequence and jump table, however that relies on MCExprs | 
|  | // for load indexes which are currently not supported. | 
|  | OutStreamer->EmitCodeAlignment(4); | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) | 
|  | .addReg(Idx) | 
|  | .addReg(Idx) | 
|  | .addReg(Base) | 
|  | // Add predicate operands. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  |  | 
|  | unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) | 
|  | .addReg(Idx) | 
|  | .addReg(Idx) | 
|  | .addImm(Is8Bit ? 4 : 2) | 
|  | // Add predicate operands. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  | } else { | 
|  | // TBB [base, idx] = | 
|  | //    LDRB idx, [base, idx] ; or LDRH if TBH | 
|  | //    LSLS idx, #1 | 
|  | //    ADDS pc, pc, idx | 
|  |  | 
|  | unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) | 
|  | .addReg(Idx) | 
|  | .addReg(Base) | 
|  | .addReg(Idx) | 
|  | // Add predicate operands. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  | } | 
|  |  | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) | 
|  | .addReg(Idx) | 
|  | .addReg(ARM::CPSR) | 
|  | .addReg(Idx) | 
|  | .addImm(1) | 
|  | // Add predicate operands. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  |  | 
|  | OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) | 
|  | .addReg(ARM::PC) | 
|  | .addReg(ARM::PC) | 
|  | .addReg(Idx) | 
|  | // Add predicate operands. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  | return; | 
|  | } | 
|  | case ARM::tBR_JTr: | 
|  | case ARM::BR_JTr: { | 
|  | // mov pc, target | 
|  | MCInst TmpInst; | 
|  | unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? | 
|  | ARM::MOVr : ARM::tMOVr; | 
|  | TmpInst.setOpcode(Opc); | 
|  | TmpInst.addOperand(MCOperand::createReg(ARM::PC)); | 
|  | TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); | 
|  | // Add predicate operands. | 
|  | TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); | 
|  | TmpInst.addOperand(MCOperand::createReg(0)); | 
|  | // Add 's' bit operand (always reg0 for this) | 
|  | if (Opc == ARM::MOVr) | 
|  | TmpInst.addOperand(MCOperand::createReg(0)); | 
|  | EmitToStreamer(*OutStreamer, TmpInst); | 
|  | return; | 
|  | } | 
|  | case ARM::BR_JTm_i12: { | 
|  | // ldr pc, target | 
|  | MCInst TmpInst; | 
|  | TmpInst.setOpcode(ARM::LDRi12); | 
|  | TmpInst.addOperand(MCOperand::createReg(ARM::PC)); | 
|  | TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); | 
|  | TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); | 
|  | // Add predicate operands. | 
|  | TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); | 
|  | TmpInst.addOperand(MCOperand::createReg(0)); | 
|  | EmitToStreamer(*OutStreamer, TmpInst); | 
|  | return; | 
|  | } | 
|  | case ARM::BR_JTm_rs: { | 
|  | // ldr pc, target | 
|  | MCInst TmpInst; | 
|  | TmpInst.setOpcode(ARM::LDRrs); | 
|  | TmpInst.addOperand(MCOperand::createReg(ARM::PC)); | 
|  | TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); | 
|  | TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); | 
|  | TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); | 
|  | // Add predicate operands. | 
|  | TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); | 
|  | TmpInst.addOperand(MCOperand::createReg(0)); | 
|  | EmitToStreamer(*OutStreamer, TmpInst); | 
|  | return; | 
|  | } | 
|  | case ARM::BR_JTadd: { | 
|  | // add pc, target, idx | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) | 
|  | .addReg(ARM::PC) | 
|  | .addReg(MI->getOperand(0).getReg()) | 
|  | .addReg(MI->getOperand(1).getReg()) | 
|  | // Add predicate operands. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0) | 
|  | // Add 's' bit operand (always reg0 for this) | 
|  | .addReg(0)); | 
|  | return; | 
|  | } | 
|  | case ARM::SPACE: | 
|  | OutStreamer->EmitZeros(MI->getOperand(1).getImm()); | 
|  | return; | 
|  | case ARM::TRAP: { | 
|  | // Non-Darwin binutils don't yet support the "trap" mnemonic. | 
|  | // FIXME: Remove this special case when they do. | 
|  | if (!Subtarget->isTargetMachO()) { | 
|  | uint32_t Val = 0xe7ffdefeUL; | 
|  | OutStreamer->AddComment("trap"); | 
|  | ATS.emitInst(Val); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ARM::TRAPNaCl: { | 
|  | uint32_t Val = 0xe7fedef0UL; | 
|  | OutStreamer->AddComment("trap"); | 
|  | ATS.emitInst(Val); | 
|  | return; | 
|  | } | 
|  | case ARM::tTRAP: { | 
|  | // Non-Darwin binutils don't yet support the "trap" mnemonic. | 
|  | // FIXME: Remove this special case when they do. | 
|  | if (!Subtarget->isTargetMachO()) { | 
|  | uint16_t Val = 0xdefe; | 
|  | OutStreamer->AddComment("trap"); | 
|  | ATS.emitInst(Val, 'n'); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ARM::t2Int_eh_sjlj_setjmp: | 
|  | case ARM::t2Int_eh_sjlj_setjmp_nofp: | 
|  | case ARM::tInt_eh_sjlj_setjmp: { | 
|  | // Two incoming args: GPR:$src, GPR:$val | 
|  | // mov $val, pc | 
|  | // adds $val, #7 | 
|  | // str $val, [$src, #4] | 
|  | // movs r0, #0 | 
|  | // b LSJLJEH | 
|  | // movs r0, #1 | 
|  | // LSJLJEH: | 
|  | unsigned SrcReg = MI->getOperand(0).getReg(); | 
|  | unsigned ValReg = MI->getOperand(1).getReg(); | 
|  | MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true); | 
|  | OutStreamer->AddComment("eh_setjmp begin"); | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) | 
|  | .addReg(ValReg) | 
|  | .addReg(ARM::PC) | 
|  | // Predicate. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  |  | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) | 
|  | .addReg(ValReg) | 
|  | // 's' bit operand | 
|  | .addReg(ARM::CPSR) | 
|  | .addReg(ValReg) | 
|  | .addImm(7) | 
|  | // Predicate. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  |  | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) | 
|  | .addReg(ValReg) | 
|  | .addReg(SrcReg) | 
|  | // The offset immediate is #4. The operand value is scaled by 4 for the | 
|  | // tSTR instruction. | 
|  | .addImm(1) | 
|  | // Predicate. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  |  | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) | 
|  | .addReg(ARM::R0) | 
|  | .addReg(ARM::CPSR) | 
|  | .addImm(0) | 
|  | // Predicate. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  |  | 
|  | const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) | 
|  | .addExpr(SymbolExpr) | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  |  | 
|  | OutStreamer->AddComment("eh_setjmp end"); | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) | 
|  | .addReg(ARM::R0) | 
|  | .addReg(ARM::CPSR) | 
|  | .addImm(1) | 
|  | // Predicate. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  |  | 
|  | OutStreamer->EmitLabel(Label); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case ARM::Int_eh_sjlj_setjmp_nofp: | 
|  | case ARM::Int_eh_sjlj_setjmp: { | 
|  | // Two incoming args: GPR:$src, GPR:$val | 
|  | // add $val, pc, #8 | 
|  | // str $val, [$src, #+4] | 
|  | // mov r0, #0 | 
|  | // add pc, pc, #0 | 
|  | // mov r0, #1 | 
|  | unsigned SrcReg = MI->getOperand(0).getReg(); | 
|  | unsigned ValReg = MI->getOperand(1).getReg(); | 
|  |  | 
|  | OutStreamer->AddComment("eh_setjmp begin"); | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) | 
|  | .addReg(ValReg) | 
|  | .addReg(ARM::PC) | 
|  | .addImm(8) | 
|  | // Predicate. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0) | 
|  | // 's' bit operand (always reg0 for this). | 
|  | .addReg(0)); | 
|  |  | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) | 
|  | .addReg(ValReg) | 
|  | .addReg(SrcReg) | 
|  | .addImm(4) | 
|  | // Predicate. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  |  | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) | 
|  | .addReg(ARM::R0) | 
|  | .addImm(0) | 
|  | // Predicate. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0) | 
|  | // 's' bit operand (always reg0 for this). | 
|  | .addReg(0)); | 
|  |  | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) | 
|  | .addReg(ARM::PC) | 
|  | .addReg(ARM::PC) | 
|  | .addImm(0) | 
|  | // Predicate. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0) | 
|  | // 's' bit operand (always reg0 for this). | 
|  | .addReg(0)); | 
|  |  | 
|  | OutStreamer->AddComment("eh_setjmp end"); | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) | 
|  | .addReg(ARM::R0) | 
|  | .addImm(1) | 
|  | // Predicate. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0) | 
|  | // 's' bit operand (always reg0 for this). | 
|  | .addReg(0)); | 
|  | return; | 
|  | } | 
|  | case ARM::Int_eh_sjlj_longjmp: { | 
|  | // ldr sp, [$src, #8] | 
|  | // ldr $scratch, [$src, #4] | 
|  | // ldr r7, [$src] | 
|  | // bx $scratch | 
|  | unsigned SrcReg = MI->getOperand(0).getReg(); | 
|  | unsigned ScratchReg = MI->getOperand(1).getReg(); | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) | 
|  | .addReg(ARM::SP) | 
|  | .addReg(SrcReg) | 
|  | .addImm(8) | 
|  | // Predicate. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  |  | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) | 
|  | .addReg(ScratchReg) | 
|  | .addReg(SrcReg) | 
|  | .addImm(4) | 
|  | // Predicate. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  |  | 
|  | if (STI.isTargetDarwin() || STI.isTargetWindows()) { | 
|  | // These platforms always use the same frame register | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) | 
|  | .addReg(FramePtr) | 
|  | .addReg(SrcReg) | 
|  | .addImm(0) | 
|  | // Predicate. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  | } else { | 
|  | // If the calling code might use either R7 or R11 as | 
|  | // frame pointer register, restore it into both. | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) | 
|  | .addReg(ARM::R7) | 
|  | .addReg(SrcReg) | 
|  | .addImm(0) | 
|  | // Predicate. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) | 
|  | .addReg(ARM::R11) | 
|  | .addReg(SrcReg) | 
|  | .addImm(0) | 
|  | // Predicate. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  | } | 
|  |  | 
|  | assert(Subtarget->hasV4TOps()); | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) | 
|  | .addReg(ScratchReg) | 
|  | // Predicate. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  | return; | 
|  | } | 
|  | case ARM::tInt_eh_sjlj_longjmp: { | 
|  | // ldr $scratch, [$src, #8] | 
|  | // mov sp, $scratch | 
|  | // ldr $scratch, [$src, #4] | 
|  | // ldr r7, [$src] | 
|  | // bx $scratch | 
|  | unsigned SrcReg = MI->getOperand(0).getReg(); | 
|  | unsigned ScratchReg = MI->getOperand(1).getReg(); | 
|  |  | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) | 
|  | .addReg(ScratchReg) | 
|  | .addReg(SrcReg) | 
|  | // The offset immediate is #8. The operand value is scaled by 4 for the | 
|  | // tLDR instruction. | 
|  | .addImm(2) | 
|  | // Predicate. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  |  | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) | 
|  | .addReg(ARM::SP) | 
|  | .addReg(ScratchReg) | 
|  | // Predicate. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  |  | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) | 
|  | .addReg(ScratchReg) | 
|  | .addReg(SrcReg) | 
|  | .addImm(1) | 
|  | // Predicate. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  |  | 
|  | if (STI.isTargetDarwin() || STI.isTargetWindows()) { | 
|  | // These platforms always use the same frame register | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) | 
|  | .addReg(FramePtr) | 
|  | .addReg(SrcReg) | 
|  | .addImm(0) | 
|  | // Predicate. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  | } else { | 
|  | // If the calling code might use either R7 or R11 as | 
|  | // frame pointer register, restore it into both. | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) | 
|  | .addReg(ARM::R7) | 
|  | .addReg(SrcReg) | 
|  | .addImm(0) | 
|  | // Predicate. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) | 
|  | .addReg(ARM::R11) | 
|  | .addReg(SrcReg) | 
|  | .addImm(0) | 
|  | // Predicate. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  | } | 
|  |  | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) | 
|  | .addReg(ScratchReg) | 
|  | // Predicate. | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  | return; | 
|  | } | 
|  | case ARM::tInt_WIN_eh_sjlj_longjmp: { | 
|  | // ldr.w r11, [$src, #0] | 
|  | // ldr.w  sp, [$src, #8] | 
|  | // ldr.w  pc, [$src, #4] | 
|  |  | 
|  | unsigned SrcReg = MI->getOperand(0).getReg(); | 
|  |  | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) | 
|  | .addReg(ARM::R11) | 
|  | .addReg(SrcReg) | 
|  | .addImm(0) | 
|  | // Predicate | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) | 
|  | .addReg(ARM::SP) | 
|  | .addReg(SrcReg) | 
|  | .addImm(8) | 
|  | // Predicate | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  | EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) | 
|  | .addReg(ARM::PC) | 
|  | .addReg(SrcReg) | 
|  | .addImm(4) | 
|  | // Predicate | 
|  | .addImm(ARMCC::AL) | 
|  | .addReg(0)); | 
|  | return; | 
|  | } | 
|  | case ARM::PATCHABLE_FUNCTION_ENTER: | 
|  | LowerPATCHABLE_FUNCTION_ENTER(*MI); | 
|  | return; | 
|  | case ARM::PATCHABLE_FUNCTION_EXIT: | 
|  | LowerPATCHABLE_FUNCTION_EXIT(*MI); | 
|  | return; | 
|  | case ARM::PATCHABLE_TAIL_CALL: | 
|  | LowerPATCHABLE_TAIL_CALL(*MI); | 
|  | return; | 
|  | } | 
|  |  | 
|  | MCInst TmpInst; | 
|  | LowerARMMachineInstrToMCInst(MI, TmpInst, *this); | 
|  |  | 
|  | EmitToStreamer(*OutStreamer, TmpInst); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Target Registry Stuff | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Force static initialization. | 
|  | extern "C" void LLVMInitializeARMAsmPrinter() { | 
|  | RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget()); | 
|  | RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget()); | 
|  | RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget()); | 
|  | RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget()); | 
|  | } |