|  | //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file | 
|  | /// This is the parent TargetLowering class for hardware code gen | 
|  | /// targets. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define AMDGPU_LOG2E_F     1.44269504088896340735992468100189214f | 
|  | #define AMDGPU_LN2_F       0.693147180559945309417232121458176568f | 
|  | #define AMDGPU_LN10_F      2.30258509299404568401799145468436421f | 
|  |  | 
|  | #include "AMDGPUISelLowering.h" | 
|  | #include "AMDGPU.h" | 
|  | #include "AMDGPUCallLowering.h" | 
|  | #include "AMDGPUFrameLowering.h" | 
|  | #include "AMDGPUIntrinsicInfo.h" | 
|  | #include "AMDGPURegisterInfo.h" | 
|  | #include "AMDGPUSubtarget.h" | 
|  | #include "AMDGPUTargetMachine.h" | 
|  | #include "Utils/AMDGPUBaseInfo.h" | 
|  | #include "R600MachineFunctionInfo.h" | 
|  | #include "SIInstrInfo.h" | 
|  | #include "SIMachineFunctionInfo.h" | 
|  | #include "llvm/CodeGen/CallingConvLower.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DiagnosticInfo.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT, | 
|  | CCValAssign::LocInfo LocInfo, | 
|  | ISD::ArgFlagsTy ArgFlags, CCState &State) { | 
|  | MachineFunction &MF = State.getMachineFunction(); | 
|  | AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); | 
|  |  | 
|  | uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(), | 
|  | ArgFlags.getOrigAlign()); | 
|  | State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT, | 
|  | CCValAssign::LocInfo LocInfo, | 
|  | ISD::ArgFlagsTy ArgFlags, CCState &State, | 
|  | const TargetRegisterClass *RC, | 
|  | unsigned NumRegs) { | 
|  | ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs); | 
|  | unsigned RegResult = State.AllocateReg(RegList); | 
|  | if (RegResult == AMDGPU::NoRegister) | 
|  | return false; | 
|  |  | 
|  | State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, | 
|  | CCValAssign::LocInfo LocInfo, | 
|  | ISD::ArgFlagsTy ArgFlags, CCState &State) { | 
|  | switch (LocVT.SimpleTy) { | 
|  | case MVT::i64: | 
|  | case MVT::f64: | 
|  | case MVT::v2i32: | 
|  | case MVT::v2f32: { | 
|  | // Up to SGPR0-SGPR39 | 
|  | return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, | 
|  | &AMDGPU::SGPR_64RegClass, 20); | 
|  | } | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Allocate up to VGPR31. | 
|  | // | 
|  | // TODO: Since there are no VGPR alignent requirements would it be better to | 
|  | // split into individual scalar registers? | 
|  | static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, | 
|  | CCValAssign::LocInfo LocInfo, | 
|  | ISD::ArgFlagsTy ArgFlags, CCState &State) { | 
|  | switch (LocVT.SimpleTy) { | 
|  | case MVT::i64: | 
|  | case MVT::f64: | 
|  | case MVT::v2i32: | 
|  | case MVT::v2f32: { | 
|  | return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, | 
|  | &AMDGPU::VReg_64RegClass, 31); | 
|  | } | 
|  | case MVT::v4i32: | 
|  | case MVT::v4f32: | 
|  | case MVT::v2i64: | 
|  | case MVT::v2f64: { | 
|  | return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, | 
|  | &AMDGPU::VReg_128RegClass, 29); | 
|  | } | 
|  | case MVT::v8i32: | 
|  | case MVT::v8f32: { | 
|  | return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, | 
|  | &AMDGPU::VReg_256RegClass, 25); | 
|  |  | 
|  | } | 
|  | case MVT::v16i32: | 
|  | case MVT::v16f32: { | 
|  | return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, | 
|  | &AMDGPU::VReg_512RegClass, 17); | 
|  |  | 
|  | } | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | #include "AMDGPUGenCallingConv.inc" | 
|  |  | 
|  | // Find a larger type to do a load / store of a vector with. | 
|  | EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { | 
|  | unsigned StoreSize = VT.getStoreSizeInBits(); | 
|  | if (StoreSize <= 32) | 
|  | return EVT::getIntegerVT(Ctx, StoreSize); | 
|  |  | 
|  | assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); | 
|  | return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); | 
|  | } | 
|  |  | 
|  | unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { | 
|  | KnownBits Known; | 
|  | EVT VT = Op.getValueType(); | 
|  | DAG.computeKnownBits(Op, Known); | 
|  |  | 
|  | return VT.getSizeInBits() - Known.countMinLeadingZeros(); | 
|  | } | 
|  |  | 
|  | unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | // In order for this to be a signed 24-bit value, bit 23, must | 
|  | // be a sign bit. | 
|  | return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); | 
|  | } | 
|  |  | 
|  | AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, | 
|  | const AMDGPUSubtarget &STI) | 
|  | : TargetLowering(TM), Subtarget(&STI) { | 
|  | AMDGPUASI = AMDGPU::getAMDGPUAS(TM); | 
|  | // Lower floating point store/load to integer store/load to reduce the number | 
|  | // of patterns in tablegen. | 
|  | setOperationAction(ISD::LOAD, MVT::f32, Promote); | 
|  | AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); | 
|  |  | 
|  | setOperationAction(ISD::LOAD, MVT::v2f32, Promote); | 
|  | AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); | 
|  |  | 
|  | setOperationAction(ISD::LOAD, MVT::v4f32, Promote); | 
|  | AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); | 
|  |  | 
|  | setOperationAction(ISD::LOAD, MVT::v8f32, Promote); | 
|  | AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); | 
|  |  | 
|  | setOperationAction(ISD::LOAD, MVT::v16f32, Promote); | 
|  | AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); | 
|  |  | 
|  | setOperationAction(ISD::LOAD, MVT::i64, Promote); | 
|  | AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); | 
|  |  | 
|  | setOperationAction(ISD::LOAD, MVT::v2i64, Promote); | 
|  | AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); | 
|  |  | 
|  | setOperationAction(ISD::LOAD, MVT::f64, Promote); | 
|  | AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); | 
|  |  | 
|  | setOperationAction(ISD::LOAD, MVT::v2f64, Promote); | 
|  | AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); | 
|  |  | 
|  | // There are no 64-bit extloads. These should be done as a 32-bit extload and | 
|  | // an extension to 64-bit. | 
|  | for (MVT VT : MVT::integer_valuetypes()) { | 
|  | setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); | 
|  | } | 
|  |  | 
|  | for (MVT VT : MVT::integer_valuetypes()) { | 
|  | if (VT == MVT::i64) | 
|  | continue; | 
|  |  | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); | 
|  |  | 
|  | setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); | 
|  |  | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); | 
|  | } | 
|  |  | 
|  | for (MVT VT : MVT::integer_vector_valuetypes()) { | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); | 
|  | } | 
|  |  | 
|  | setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); | 
|  |  | 
|  | setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); | 
|  |  | 
|  | setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); | 
|  |  | 
|  | setOperationAction(ISD::STORE, MVT::f32, Promote); | 
|  | AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); | 
|  |  | 
|  | setOperationAction(ISD::STORE, MVT::v2f32, Promote); | 
|  | AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); | 
|  |  | 
|  | setOperationAction(ISD::STORE, MVT::v4f32, Promote); | 
|  | AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); | 
|  |  | 
|  | setOperationAction(ISD::STORE, MVT::v8f32, Promote); | 
|  | AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); | 
|  |  | 
|  | setOperationAction(ISD::STORE, MVT::v16f32, Promote); | 
|  | AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); | 
|  |  | 
|  | setOperationAction(ISD::STORE, MVT::i64, Promote); | 
|  | AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); | 
|  |  | 
|  | setOperationAction(ISD::STORE, MVT::v2i64, Promote); | 
|  | AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); | 
|  |  | 
|  | setOperationAction(ISD::STORE, MVT::f64, Promote); | 
|  | AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); | 
|  |  | 
|  | setOperationAction(ISD::STORE, MVT::v2f64, Promote); | 
|  | AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); | 
|  |  | 
|  | setTruncStoreAction(MVT::i64, MVT::i1, Expand); | 
|  | setTruncStoreAction(MVT::i64, MVT::i8, Expand); | 
|  | setTruncStoreAction(MVT::i64, MVT::i16, Expand); | 
|  | setTruncStoreAction(MVT::i64, MVT::i32, Expand); | 
|  |  | 
|  | setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); | 
|  | setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); | 
|  | setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); | 
|  | setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); | 
|  |  | 
|  | setTruncStoreAction(MVT::f32, MVT::f16, Expand); | 
|  | setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); | 
|  | setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); | 
|  | setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); | 
|  |  | 
|  | setTruncStoreAction(MVT::f64, MVT::f16, Expand); | 
|  | setTruncStoreAction(MVT::f64, MVT::f32, Expand); | 
|  |  | 
|  | setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); | 
|  | setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); | 
|  |  | 
|  | setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); | 
|  | setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); | 
|  |  | 
|  | setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); | 
|  | setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); | 
|  |  | 
|  |  | 
|  | setOperationAction(ISD::Constant, MVT::i32, Legal); | 
|  | setOperationAction(ISD::Constant, MVT::i64, Legal); | 
|  | setOperationAction(ISD::ConstantFP, MVT::f32, Legal); | 
|  | setOperationAction(ISD::ConstantFP, MVT::f64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::BR_JT, MVT::Other, Expand); | 
|  | setOperationAction(ISD::BRIND, MVT::Other, Expand); | 
|  |  | 
|  | // This is totally unsupported, just custom lower to produce an error. | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); | 
|  |  | 
|  | // Library functions.  These default to Expand, but we have instructions | 
|  | // for them. | 
|  | setOperationAction(ISD::FCEIL,  MVT::f32, Legal); | 
|  | setOperationAction(ISD::FEXP2,  MVT::f32, Legal); | 
|  | setOperationAction(ISD::FPOW,   MVT::f32, Legal); | 
|  | setOperationAction(ISD::FLOG2,  MVT::f32, Legal); | 
|  | setOperationAction(ISD::FABS,   MVT::f32, Legal); | 
|  | setOperationAction(ISD::FFLOOR, MVT::f32, Legal); | 
|  | setOperationAction(ISD::FRINT,  MVT::f32, Legal); | 
|  | setOperationAction(ISD::FTRUNC, MVT::f32, Legal); | 
|  | setOperationAction(ISD::FMINNUM, MVT::f32, Legal); | 
|  | setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FROUND, MVT::f32, Custom); | 
|  | setOperationAction(ISD::FROUND, MVT::f64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::FLOG, MVT::f32, Custom); | 
|  | setOperationAction(ISD::FLOG10, MVT::f32, Custom); | 
|  |  | 
|  | if (Subtarget->has16BitInsts()) { | 
|  | setOperationAction(ISD::FLOG, MVT::f16, Custom); | 
|  | setOperationAction(ISD::FLOG10, MVT::f16, Custom); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); | 
|  | setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::FREM, MVT::f32, Custom); | 
|  | setOperationAction(ISD::FREM, MVT::f64, Custom); | 
|  |  | 
|  | // v_mad_f32 does not support denormals according to some sources. | 
|  | if (!Subtarget->hasFP32Denormals()) | 
|  | setOperationAction(ISD::FMAD, MVT::f32, Legal); | 
|  |  | 
|  | // Expand to fneg + fadd. | 
|  | setOperationAction(ISD::FSUB, MVT::f64, Expand); | 
|  |  | 
|  | setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); | 
|  | setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); | 
|  | setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); | 
|  | setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); | 
|  | setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); | 
|  |  | 
|  | if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { | 
|  | setOperationAction(ISD::FCEIL, MVT::f64, Custom); | 
|  | setOperationAction(ISD::FTRUNC, MVT::f64, Custom); | 
|  | setOperationAction(ISD::FRINT, MVT::f64, Custom); | 
|  | setOperationAction(ISD::FFLOOR, MVT::f64, Custom); | 
|  | } | 
|  |  | 
|  | if (!Subtarget->hasBFI()) { | 
|  | // fcopysign can be done in a single instruction with BFI. | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); | 
|  | setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); | 
|  |  | 
|  | const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; | 
|  | for (MVT VT : ScalarIntVTs) { | 
|  | // These should use [SU]DIVREM, so set them to expand | 
|  | setOperationAction(ISD::SDIV, VT, Expand); | 
|  | setOperationAction(ISD::UDIV, VT, Expand); | 
|  | setOperationAction(ISD::SREM, VT, Expand); | 
|  | setOperationAction(ISD::UREM, VT, Expand); | 
|  |  | 
|  | // GPU does not have divrem function for signed or unsigned. | 
|  | setOperationAction(ISD::SDIVREM, VT, Custom); | 
|  | setOperationAction(ISD::UDIVREM, VT, Custom); | 
|  |  | 
|  | // GPU does not have [S|U]MUL_LOHI functions as a single instruction. | 
|  | setOperationAction(ISD::SMUL_LOHI, VT, Expand); | 
|  | setOperationAction(ISD::UMUL_LOHI, VT, Expand); | 
|  |  | 
|  | setOperationAction(ISD::BSWAP, VT, Expand); | 
|  | setOperationAction(ISD::CTTZ, VT, Expand); | 
|  | setOperationAction(ISD::CTLZ, VT, Expand); | 
|  | } | 
|  |  | 
|  | if (!Subtarget->hasBCNT(32)) | 
|  | setOperationAction(ISD::CTPOP, MVT::i32, Expand); | 
|  |  | 
|  | if (!Subtarget->hasBCNT(64)) | 
|  | setOperationAction(ISD::CTPOP, MVT::i64, Expand); | 
|  |  | 
|  | // The hardware supports 32-bit ROTR, but not ROTL. | 
|  | setOperationAction(ISD::ROTL, MVT::i32, Expand); | 
|  | setOperationAction(ISD::ROTL, MVT::i64, Expand); | 
|  | setOperationAction(ISD::ROTR, MVT::i64, Expand); | 
|  |  | 
|  | setOperationAction(ISD::MUL, MVT::i64, Expand); | 
|  | setOperationAction(ISD::MULHU, MVT::i64, Expand); | 
|  | setOperationAction(ISD::MULHS, MVT::i64, Expand); | 
|  | setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); | 
|  | setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); | 
|  |  | 
|  | setOperationAction(ISD::SMIN, MVT::i32, Legal); | 
|  | setOperationAction(ISD::UMIN, MVT::i32, Legal); | 
|  | setOperationAction(ISD::SMAX, MVT::i32, Legal); | 
|  | setOperationAction(ISD::UMAX, MVT::i32, Legal); | 
|  |  | 
|  | if (Subtarget->hasFFBH()) | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); | 
|  |  | 
|  | if (Subtarget->hasFFBL()) | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::CTTZ, MVT::i64, Custom); | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); | 
|  | setOperationAction(ISD::CTLZ, MVT::i64, Custom); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); | 
|  |  | 
|  | // We only really have 32-bit BFE instructions (and 16-bit on VI). | 
|  | // | 
|  | // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any | 
|  | // effort to match them now. We want this to be false for i64 cases when the | 
|  | // extraction isn't restricted to the upper or lower half. Ideally we would | 
|  | // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that | 
|  | // span the midpoint are probably relatively rare, so don't worry about them | 
|  | // for now. | 
|  | if (Subtarget->hasBFE()) | 
|  | setHasExtractBitsInsn(true); | 
|  |  | 
|  | static const MVT::SimpleValueType VectorIntTypes[] = { | 
|  | MVT::v2i32, MVT::v4i32 | 
|  | }; | 
|  |  | 
|  | for (MVT VT : VectorIntTypes) { | 
|  | // Expand the following operations for the current type by default. | 
|  | setOperationAction(ISD::ADD,  VT, Expand); | 
|  | setOperationAction(ISD::AND,  VT, Expand); | 
|  | setOperationAction(ISD::FP_TO_SINT, VT, Expand); | 
|  | setOperationAction(ISD::FP_TO_UINT, VT, Expand); | 
|  | setOperationAction(ISD::MUL,  VT, Expand); | 
|  | setOperationAction(ISD::MULHU, VT, Expand); | 
|  | setOperationAction(ISD::MULHS, VT, Expand); | 
|  | setOperationAction(ISD::OR,   VT, Expand); | 
|  | setOperationAction(ISD::SHL,  VT, Expand); | 
|  | setOperationAction(ISD::SRA,  VT, Expand); | 
|  | setOperationAction(ISD::SRL,  VT, Expand); | 
|  | setOperationAction(ISD::ROTL, VT, Expand); | 
|  | setOperationAction(ISD::ROTR, VT, Expand); | 
|  | setOperationAction(ISD::SUB,  VT, Expand); | 
|  | setOperationAction(ISD::SINT_TO_FP, VT, Expand); | 
|  | setOperationAction(ISD::UINT_TO_FP, VT, Expand); | 
|  | setOperationAction(ISD::SDIV, VT, Expand); | 
|  | setOperationAction(ISD::UDIV, VT, Expand); | 
|  | setOperationAction(ISD::SREM, VT, Expand); | 
|  | setOperationAction(ISD::UREM, VT, Expand); | 
|  | setOperationAction(ISD::SMUL_LOHI, VT, Expand); | 
|  | setOperationAction(ISD::UMUL_LOHI, VT, Expand); | 
|  | setOperationAction(ISD::SDIVREM, VT, Custom); | 
|  | setOperationAction(ISD::UDIVREM, VT, Expand); | 
|  | setOperationAction(ISD::ADDC, VT, Expand); | 
|  | setOperationAction(ISD::SUBC, VT, Expand); | 
|  | setOperationAction(ISD::ADDE, VT, Expand); | 
|  | setOperationAction(ISD::SUBE, VT, Expand); | 
|  | setOperationAction(ISD::SELECT, VT, Expand); | 
|  | setOperationAction(ISD::VSELECT, VT, Expand); | 
|  | setOperationAction(ISD::SELECT_CC, VT, Expand); | 
|  | setOperationAction(ISD::XOR,  VT, Expand); | 
|  | setOperationAction(ISD::BSWAP, VT, Expand); | 
|  | setOperationAction(ISD::CTPOP, VT, Expand); | 
|  | setOperationAction(ISD::CTTZ, VT, Expand); | 
|  | setOperationAction(ISD::CTLZ, VT, Expand); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); | 
|  | setOperationAction(ISD::SETCC, VT, Expand); | 
|  | } | 
|  |  | 
|  | static const MVT::SimpleValueType FloatVectorTypes[] = { | 
|  | MVT::v2f32, MVT::v4f32 | 
|  | }; | 
|  |  | 
|  | for (MVT VT : FloatVectorTypes) { | 
|  | setOperationAction(ISD::FABS, VT, Expand); | 
|  | setOperationAction(ISD::FMINNUM, VT, Expand); | 
|  | setOperationAction(ISD::FMAXNUM, VT, Expand); | 
|  | setOperationAction(ISD::FADD, VT, Expand); | 
|  | setOperationAction(ISD::FCEIL, VT, Expand); | 
|  | setOperationAction(ISD::FCOS, VT, Expand); | 
|  | setOperationAction(ISD::FDIV, VT, Expand); | 
|  | setOperationAction(ISD::FEXP2, VT, Expand); | 
|  | setOperationAction(ISD::FLOG2, VT, Expand); | 
|  | setOperationAction(ISD::FREM, VT, Expand); | 
|  | setOperationAction(ISD::FLOG, VT, Expand); | 
|  | setOperationAction(ISD::FLOG10, VT, Expand); | 
|  | setOperationAction(ISD::FPOW, VT, Expand); | 
|  | setOperationAction(ISD::FFLOOR, VT, Expand); | 
|  | setOperationAction(ISD::FTRUNC, VT, Expand); | 
|  | setOperationAction(ISD::FMUL, VT, Expand); | 
|  | setOperationAction(ISD::FMA, VT, Expand); | 
|  | setOperationAction(ISD::FRINT, VT, Expand); | 
|  | setOperationAction(ISD::FNEARBYINT, VT, Expand); | 
|  | setOperationAction(ISD::FSQRT, VT, Expand); | 
|  | setOperationAction(ISD::FSIN, VT, Expand); | 
|  | setOperationAction(ISD::FSUB, VT, Expand); | 
|  | setOperationAction(ISD::FNEG, VT, Expand); | 
|  | setOperationAction(ISD::VSELECT, VT, Expand); | 
|  | setOperationAction(ISD::SELECT_CC, VT, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, VT, Expand); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); | 
|  | setOperationAction(ISD::SETCC, VT, Expand); | 
|  | } | 
|  |  | 
|  | // This causes using an unrolled select operation rather than expansion with | 
|  | // bit operations. This is in general better, but the alternative using BFI | 
|  | // instructions may be better if the select sources are SGPRs. | 
|  | setOperationAction(ISD::SELECT, MVT::v2f32, Promote); | 
|  | AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); | 
|  |  | 
|  | setOperationAction(ISD::SELECT, MVT::v4f32, Promote); | 
|  | AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); | 
|  |  | 
|  | // There are no libcalls of any kind. | 
|  | for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) | 
|  | setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); | 
|  |  | 
|  | setBooleanContents(ZeroOrNegativeOneBooleanContent); | 
|  | setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); | 
|  |  | 
|  | setSchedulingPreference(Sched::RegPressure); | 
|  | setJumpIsExpensive(true); | 
|  |  | 
|  | // FIXME: This is only partially true. If we have to do vector compares, any | 
|  | // SGPR pair can be a condition register. If we have a uniform condition, we | 
|  | // are better off doing SALU operations, where there is only one SCC. For now, | 
|  | // we don't have a way of knowing during instruction selection if a condition | 
|  | // will be uniform and we always use vector compares. Assume we are using | 
|  | // vector compares until that is fixed. | 
|  | setHasMultipleConditionRegisters(true); | 
|  |  | 
|  | // SI at least has hardware support for floating point exceptions, but no way | 
|  | // of using or handling them is implemented. They are also optional in OpenCL | 
|  | // (Section 7.3) | 
|  | setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); | 
|  |  | 
|  | PredictableSelectIsExpensive = false; | 
|  |  | 
|  | // We want to find all load dependencies for long chains of stores to enable | 
|  | // merging into very wide vectors. The problem is with vectors with > 4 | 
|  | // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 | 
|  | // vectors are a legal type, even though we have to split the loads | 
|  | // usually. When we can more precisely specify load legality per address | 
|  | // space, we should be able to make FindBetterChain/MergeConsecutiveStores | 
|  | // smarter so that they can figure out what to do in 2 iterations without all | 
|  | // N > 4 stores on the same chain. | 
|  | GatherAllAliasesMaxDepth = 16; | 
|  |  | 
|  | // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry | 
|  | // about these during lowering. | 
|  | MaxStoresPerMemcpy  = 0xffffffff; | 
|  | MaxStoresPerMemmove = 0xffffffff; | 
|  | MaxStoresPerMemset  = 0xffffffff; | 
|  |  | 
|  | setTargetDAGCombine(ISD::BITCAST); | 
|  | setTargetDAGCombine(ISD::SHL); | 
|  | setTargetDAGCombine(ISD::SRA); | 
|  | setTargetDAGCombine(ISD::SRL); | 
|  | setTargetDAGCombine(ISD::TRUNCATE); | 
|  | setTargetDAGCombine(ISD::MUL); | 
|  | setTargetDAGCombine(ISD::MULHU); | 
|  | setTargetDAGCombine(ISD::MULHS); | 
|  | setTargetDAGCombine(ISD::SELECT); | 
|  | setTargetDAGCombine(ISD::SELECT_CC); | 
|  | setTargetDAGCombine(ISD::STORE); | 
|  | setTargetDAGCombine(ISD::FADD); | 
|  | setTargetDAGCombine(ISD::FSUB); | 
|  | setTargetDAGCombine(ISD::FNEG); | 
|  | setTargetDAGCombine(ISD::FABS); | 
|  | setTargetDAGCombine(ISD::AssertZext); | 
|  | setTargetDAGCombine(ISD::AssertSext); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Target Information | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | LLVM_READNONE | 
|  | static bool fnegFoldsIntoOp(unsigned Opc) { | 
|  | switch (Opc) { | 
|  | case ISD::FADD: | 
|  | case ISD::FSUB: | 
|  | case ISD::FMUL: | 
|  | case ISD::FMA: | 
|  | case ISD::FMAD: | 
|  | case ISD::FMINNUM: | 
|  | case ISD::FMAXNUM: | 
|  | case ISD::FSIN: | 
|  | case ISD::FTRUNC: | 
|  | case ISD::FRINT: | 
|  | case ISD::FNEARBYINT: | 
|  | case AMDGPUISD::RCP: | 
|  | case AMDGPUISD::RCP_LEGACY: | 
|  | case AMDGPUISD::SIN_HW: | 
|  | case AMDGPUISD::FMUL_LEGACY: | 
|  | case AMDGPUISD::FMIN_LEGACY: | 
|  | case AMDGPUISD::FMAX_LEGACY: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \p returns true if the operation will definitely need to use a 64-bit | 
|  | /// encoding, and thus will use a VOP3 encoding regardless of the source | 
|  | /// modifiers. | 
|  | LLVM_READONLY | 
|  | static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { | 
|  | return N->getNumOperands() > 2 || VT == MVT::f64; | 
|  | } | 
|  |  | 
|  | // Most FP instructions support source modifiers, but this could be refined | 
|  | // slightly. | 
|  | LLVM_READONLY | 
|  | static bool hasSourceMods(const SDNode *N) { | 
|  | if (isa<MemSDNode>(N)) | 
|  | return false; | 
|  |  | 
|  | switch (N->getOpcode()) { | 
|  | case ISD::CopyToReg: | 
|  | case ISD::SELECT: | 
|  | case ISD::FDIV: | 
|  | case ISD::FREM: | 
|  | case ISD::INLINEASM: | 
|  | case AMDGPUISD::INTERP_P1: | 
|  | case AMDGPUISD::INTERP_P2: | 
|  | case AMDGPUISD::DIV_SCALE: | 
|  |  | 
|  | // TODO: Should really be looking at the users of the bitcast. These are | 
|  | // problematic because bitcasts are used to legalize all stores to integer | 
|  | // types. | 
|  | case ISD::BITCAST: | 
|  | return false; | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, | 
|  | unsigned CostThreshold) { | 
|  | // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus | 
|  | // it is truly free to use a source modifier in all cases. If there are | 
|  | // multiple users but for each one will necessitate using VOP3, there will be | 
|  | // a code size increase. Try to avoid increasing code size unless we know it | 
|  | // will save on the instruction count. | 
|  | unsigned NumMayIncreaseSize = 0; | 
|  | MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); | 
|  |  | 
|  | // XXX - Should this limit number of uses to check? | 
|  | for (const SDNode *U : N->uses()) { | 
|  | if (!hasSourceMods(U)) | 
|  | return false; | 
|  |  | 
|  | if (!opMustUseVOP3Encoding(U, VT)) { | 
|  | if (++NumMayIncreaseSize > CostThreshold) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { | 
|  | return MVT::i32; | 
|  | } | 
|  |  | 
|  | bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // The backend supports 32 and 64 bit floating point immediates. | 
|  | // FIXME: Why are we reporting vectors of FP immediates as legal? | 
|  | bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { | 
|  | EVT ScalarVT = VT.getScalarType(); | 
|  | return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || | 
|  | (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); | 
|  | } | 
|  |  | 
|  | // We don't want to shrink f64 / f32 constants. | 
|  | bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { | 
|  | EVT ScalarVT = VT.getScalarType(); | 
|  | return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); | 
|  | } | 
|  |  | 
|  | bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, | 
|  | ISD::LoadExtType, | 
|  | EVT NewVT) const { | 
|  |  | 
|  | unsigned NewSize = NewVT.getStoreSizeInBits(); | 
|  |  | 
|  | // If we are reducing to a 32-bit load, this is always better. | 
|  | if (NewSize == 32) | 
|  | return true; | 
|  |  | 
|  | EVT OldVT = N->getValueType(0); | 
|  | unsigned OldSize = OldVT.getStoreSizeInBits(); | 
|  |  | 
|  | // Don't produce extloads from sub 32-bit types. SI doesn't have scalar | 
|  | // extloads, so doing one requires using a buffer_load. In cases where we | 
|  | // still couldn't use a scalar load, using the wider load shouldn't really | 
|  | // hurt anything. | 
|  |  | 
|  | // If the old size already had to be an extload, there's no harm in continuing | 
|  | // to reduce the width. | 
|  | return (OldSize < 32); | 
|  | } | 
|  |  | 
|  | bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, | 
|  | EVT CastTy) const { | 
|  |  | 
|  | assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); | 
|  |  | 
|  | if (LoadTy.getScalarType() == MVT::i32) | 
|  | return false; | 
|  |  | 
|  | unsigned LScalarSize = LoadTy.getScalarSizeInBits(); | 
|  | unsigned CastScalarSize = CastTy.getScalarSizeInBits(); | 
|  |  | 
|  | return (LScalarSize < CastScalarSize) || | 
|  | (CastScalarSize >= 32); | 
|  | } | 
|  |  | 
|  | // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also | 
|  | // profitable with the expansion for 64-bit since it's generally good to | 
|  | // speculate things. | 
|  | // FIXME: These should really have the size as a parameter. | 
|  | bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { | 
|  | switch (N->getOpcode()) { | 
|  | default: | 
|  | return false; | 
|  | case ISD::EntryToken: | 
|  | case ISD::TokenFactor: | 
|  | return true; | 
|  | case ISD::INTRINSIC_WO_CHAIN: | 
|  | { | 
|  | unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); | 
|  | switch (IntrID) { | 
|  | default: | 
|  | return false; | 
|  | case Intrinsic::amdgcn_readfirstlane: | 
|  | case Intrinsic::amdgcn_readlane: | 
|  | return true; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::LOAD: | 
|  | { | 
|  | const LoadSDNode * L = dyn_cast<LoadSDNode>(N); | 
|  | if (L->getMemOperand()->getAddrSpace() | 
|  | == Subtarget->getAMDGPUAS().CONSTANT_ADDRESS_32BIT) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AMDGPUTargetLowering::isSDNodeSourceOfDivergence(const SDNode * N, | 
|  | FunctionLoweringInfo * FLI, DivergenceAnalysis * DA) const | 
|  | { | 
|  | switch (N->getOpcode()) { | 
|  | case ISD::Register: | 
|  | case ISD::CopyFromReg: | 
|  | { | 
|  | const RegisterSDNode *R = nullptr; | 
|  | if (N->getOpcode() == ISD::Register) { | 
|  | R = dyn_cast<RegisterSDNode>(N); | 
|  | } | 
|  | else { | 
|  | R = dyn_cast<RegisterSDNode>(N->getOperand(1)); | 
|  | } | 
|  | if (R) | 
|  | { | 
|  | const MachineFunction * MF = FLI->MF; | 
|  | const SISubtarget &ST = MF->getSubtarget<SISubtarget>(); | 
|  | const MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  | const SIRegisterInfo &TRI = ST.getInstrInfo()->getRegisterInfo(); | 
|  | unsigned Reg = R->getReg(); | 
|  | if (TRI.isPhysicalRegister(Reg)) | 
|  | return TRI.isVGPR(MRI, Reg); | 
|  |  | 
|  | if (MRI.isLiveIn(Reg)) { | 
|  | // workitem.id.x workitem.id.y workitem.id.z | 
|  | // Any VGPR formal argument is also considered divergent | 
|  | if ((MRI.getLiveInPhysReg(Reg) == AMDGPU::T0_X) || | 
|  | (MRI.getLiveInPhysReg(Reg) == AMDGPU::T0_Y) || | 
|  | (MRI.getLiveInPhysReg(Reg) == AMDGPU::T0_Z) || | 
|  | (TRI.isVGPR(MRI, Reg))) | 
|  | return true; | 
|  | // Formal arguments of non-entry functions | 
|  | // are conservatively considered divergent | 
|  | else if (!AMDGPU::isEntryFunctionCC(FLI->Fn->getCallingConv())) | 
|  | return true; | 
|  | } | 
|  | return !DA || DA->isDivergent(FLI->getValueFromVirtualReg(Reg)); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::LOAD: { | 
|  | const LoadSDNode *L = dyn_cast<LoadSDNode>(N); | 
|  | if (L->getMemOperand()->getAddrSpace() == | 
|  | Subtarget->getAMDGPUAS().PRIVATE_ADDRESS) | 
|  | return true; | 
|  | } break; | 
|  | case ISD::CALLSEQ_END: | 
|  | return true; | 
|  | break; | 
|  | case ISD::INTRINSIC_WO_CHAIN: | 
|  | { | 
|  |  | 
|  | } | 
|  | return AMDGPU::isIntrinsicSourceOfDivergence( | 
|  | cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()); | 
|  | case ISD::INTRINSIC_W_CHAIN: | 
|  | return AMDGPU::isIntrinsicSourceOfDivergence( | 
|  | cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); | 
|  | // In some cases intrinsics that are a source of divergence have been | 
|  | // lowered to AMDGPUISD so we also need to check those too. | 
|  | case AMDGPUISD::INTERP_MOV: | 
|  | case AMDGPUISD::INTERP_P1: | 
|  | case AMDGPUISD::INTERP_P2: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===---------------------------------------------------------------------===// | 
|  | // Target Properties | 
|  | //===---------------------------------------------------------------------===// | 
|  |  | 
|  | bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { | 
|  | assert(VT.isFloatingPoint()); | 
|  |  | 
|  | // Packed operations do not have a fabs modifier. | 
|  | return VT == MVT::f32 || VT == MVT::f64 || | 
|  | (Subtarget->has16BitInsts() && VT == MVT::f16); | 
|  | } | 
|  |  | 
|  | bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { | 
|  | assert(VT.isFloatingPoint()); | 
|  | return VT == MVT::f32 || VT == MVT::f64 || | 
|  | (Subtarget->has16BitInsts() && VT == MVT::f16) || | 
|  | (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); | 
|  | } | 
|  |  | 
|  | bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, | 
|  | unsigned NumElem, | 
|  | unsigned AS) const { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { | 
|  | // There are few operations which truly have vector input operands. Any vector | 
|  | // operation is going to involve operations on each component, and a | 
|  | // build_vector will be a copy per element, so it always makes sense to use a | 
|  | // build_vector input in place of the extracted element to avoid a copy into a | 
|  | // super register. | 
|  | // | 
|  | // We should probably only do this if all users are extracts only, but this | 
|  | // should be the common case. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { | 
|  | // Truncate is just accessing a subregister. | 
|  |  | 
|  | unsigned SrcSize = Source.getSizeInBits(); | 
|  | unsigned DestSize = Dest.getSizeInBits(); | 
|  |  | 
|  | return DestSize < SrcSize && DestSize % 32 == 0 ; | 
|  | } | 
|  |  | 
|  | bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { | 
|  | // Truncate is just accessing a subregister. | 
|  |  | 
|  | unsigned SrcSize = Source->getScalarSizeInBits(); | 
|  | unsigned DestSize = Dest->getScalarSizeInBits(); | 
|  |  | 
|  | if (DestSize== 16 && Subtarget->has16BitInsts()) | 
|  | return SrcSize >= 32; | 
|  |  | 
|  | return DestSize < SrcSize && DestSize % 32 == 0; | 
|  | } | 
|  |  | 
|  | bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { | 
|  | unsigned SrcSize = Src->getScalarSizeInBits(); | 
|  | unsigned DestSize = Dest->getScalarSizeInBits(); | 
|  |  | 
|  | if (SrcSize == 16 && Subtarget->has16BitInsts()) | 
|  | return DestSize >= 32; | 
|  |  | 
|  | return SrcSize == 32 && DestSize == 64; | 
|  | } | 
|  |  | 
|  | bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { | 
|  | // Any register load of a 64-bit value really requires 2 32-bit moves. For all | 
|  | // practical purposes, the extra mov 0 to load a 64-bit is free.  As used, | 
|  | // this will enable reducing 64-bit operations the 32-bit, which is always | 
|  | // good. | 
|  |  | 
|  | if (Src == MVT::i16) | 
|  | return Dest == MVT::i32 ||Dest == MVT::i64 ; | 
|  |  | 
|  | return Src == MVT::i32 && Dest == MVT::i64; | 
|  | } | 
|  |  | 
|  | bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { | 
|  | return isZExtFree(Val.getValueType(), VT2); | 
|  | } | 
|  |  | 
|  | // v_mad_mix* support a conversion from f16 to f32. | 
|  | // | 
|  | // There is only one special case when denormals are enabled we don't currently, | 
|  | // where this is OK to use. | 
|  | bool AMDGPUTargetLowering::isFPExtFoldable(unsigned Opcode, | 
|  | EVT DestVT, EVT SrcVT) const { | 
|  | return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) || | 
|  | (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) && | 
|  | DestVT.getScalarType() == MVT::f32 && !Subtarget->hasFP32Denormals() && | 
|  | SrcVT.getScalarType() == MVT::f16; | 
|  | } | 
|  |  | 
|  | bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { | 
|  | // There aren't really 64-bit registers, but pairs of 32-bit ones and only a | 
|  | // limited number of native 64-bit operations. Shrinking an operation to fit | 
|  | // in a single 32-bit register should always be helpful. As currently used, | 
|  | // this is much less general than the name suggests, and is only used in | 
|  | // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is | 
|  | // not profitable, and may actually be harmful. | 
|  | return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; | 
|  | } | 
|  |  | 
|  | //===---------------------------------------------------------------------===// | 
|  | // TargetLowering Callbacks | 
|  | //===---------------------------------------------------------------------===// | 
|  |  | 
|  | CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, | 
|  | bool IsVarArg) { | 
|  | switch (CC) { | 
|  | case CallingConv::AMDGPU_KERNEL: | 
|  | case CallingConv::SPIR_KERNEL: | 
|  | return CC_AMDGPU_Kernel; | 
|  | case CallingConv::AMDGPU_VS: | 
|  | case CallingConv::AMDGPU_GS: | 
|  | case CallingConv::AMDGPU_PS: | 
|  | case CallingConv::AMDGPU_CS: | 
|  | case CallingConv::AMDGPU_HS: | 
|  | case CallingConv::AMDGPU_ES: | 
|  | case CallingConv::AMDGPU_LS: | 
|  | return CC_AMDGPU; | 
|  | case CallingConv::C: | 
|  | case CallingConv::Fast: | 
|  | case CallingConv::Cold: | 
|  | return CC_AMDGPU_Func; | 
|  | default: | 
|  | report_fatal_error("Unsupported calling convention."); | 
|  | } | 
|  | } | 
|  |  | 
|  | CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, | 
|  | bool IsVarArg) { | 
|  | switch (CC) { | 
|  | case CallingConv::AMDGPU_KERNEL: | 
|  | case CallingConv::SPIR_KERNEL: | 
|  | return CC_AMDGPU_Kernel; | 
|  | case CallingConv::AMDGPU_VS: | 
|  | case CallingConv::AMDGPU_GS: | 
|  | case CallingConv::AMDGPU_PS: | 
|  | case CallingConv::AMDGPU_CS: | 
|  | case CallingConv::AMDGPU_HS: | 
|  | case CallingConv::AMDGPU_ES: | 
|  | case CallingConv::AMDGPU_LS: | 
|  | return RetCC_SI_Shader; | 
|  | case CallingConv::C: | 
|  | case CallingConv::Fast: | 
|  | case CallingConv::Cold: | 
|  | return RetCC_AMDGPU_Func; | 
|  | default: | 
|  | report_fatal_error("Unsupported calling convention."); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// The SelectionDAGBuilder will automatically promote function arguments | 
|  | /// with illegal types.  However, this does not work for the AMDGPU targets | 
|  | /// since the function arguments are stored in memory as these illegal types. | 
|  | /// In order to handle this properly we need to get the original types sizes | 
|  | /// from the LLVM IR Function and fixup the ISD:InputArg values before | 
|  | /// passing them to AnalyzeFormalArguments() | 
|  |  | 
|  | /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting | 
|  | /// input values across multiple registers.  Each item in the Ins array | 
|  | /// represents a single value that will be stored in registers.  Ins[x].VT is | 
|  | /// the value type of the value that will be stored in the register, so | 
|  | /// whatever SDNode we lower the argument to needs to be this type. | 
|  | /// | 
|  | /// In order to correctly lower the arguments we need to know the size of each | 
|  | /// argument.  Since Ins[x].VT gives us the size of the register that will | 
|  | /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type | 
|  | /// for the orignal function argument so that we can deduce the correct memory | 
|  | /// type to use for Ins[x].  In most cases the correct memory type will be | 
|  | /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example, | 
|  | /// we have a kernel argument of type v8i8, this argument will be split into | 
|  | /// 8 parts and each part will be represented by its own item in the Ins array. | 
|  | /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of | 
|  | /// the argument before it was split.  From this, we deduce that the memory type | 
|  | /// for each individual part is i8.  We pass the memory type as LocVT to the | 
|  | /// calling convention analysis function and the register type (Ins[x].VT) as | 
|  | /// the ValVT. | 
|  | void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins) const { | 
|  | for (unsigned i = 0, e = Ins.size(); i != e; ++i) { | 
|  | const ISD::InputArg &In = Ins[i]; | 
|  | EVT MemVT; | 
|  |  | 
|  | unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT); | 
|  |  | 
|  | if (!Subtarget->isAmdHsaOS() && | 
|  | (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) { | 
|  | // The ABI says the caller will extend these values to 32-bits. | 
|  | MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32; | 
|  | } else if (NumRegs == 1) { | 
|  | // This argument is not split, so the IR type is the memory type. | 
|  | assert(!In.Flags.isSplit()); | 
|  | if (In.ArgVT.isExtended()) { | 
|  | // We have an extended type, like i24, so we should just use the register type | 
|  | MemVT = In.VT; | 
|  | } else { | 
|  | MemVT = In.ArgVT; | 
|  | } | 
|  | } else if (In.ArgVT.isVector() && In.VT.isVector() && | 
|  | In.ArgVT.getScalarType() == In.VT.getScalarType()) { | 
|  | assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements()); | 
|  | // We have a vector value which has been split into a vector with | 
|  | // the same scalar type, but fewer elements.  This should handle | 
|  | // all the floating-point vector types. | 
|  | MemVT = In.VT; | 
|  | } else if (In.ArgVT.isVector() && | 
|  | In.ArgVT.getVectorNumElements() == NumRegs) { | 
|  | // This arg has been split so that each element is stored in a separate | 
|  | // register. | 
|  | MemVT = In.ArgVT.getScalarType(); | 
|  | } else if (In.ArgVT.isExtended()) { | 
|  | // We have an extended type, like i65. | 
|  | MemVT = In.VT; | 
|  | } else { | 
|  | unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs; | 
|  | assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0); | 
|  | if (In.VT.isInteger()) { | 
|  | MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); | 
|  | } else if (In.VT.isVector()) { | 
|  | assert(!In.VT.getScalarType().isFloatingPoint()); | 
|  | unsigned NumElements = In.VT.getVectorNumElements(); | 
|  | assert(MemoryBits % NumElements == 0); | 
|  | // This vector type has been split into another vector type with | 
|  | // a different elements size. | 
|  | EVT ScalarVT = EVT::getIntegerVT(State.getContext(), | 
|  | MemoryBits / NumElements); | 
|  | MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); | 
|  | } else { | 
|  | llvm_unreachable("cannot deduce memory type."); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Convert one element vectors to scalar. | 
|  | if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) | 
|  | MemVT = MemVT.getScalarType(); | 
|  |  | 
|  | if (MemVT.isExtended()) { | 
|  | // This should really only happen if we have vec3 arguments | 
|  | assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3); | 
|  | MemVT = MemVT.getPow2VectorType(State.getContext()); | 
|  | } | 
|  |  | 
|  | assert(MemVT.isSimple()); | 
|  | allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags, | 
|  | State); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerReturn( | 
|  | SDValue Chain, CallingConv::ID CallConv, | 
|  | bool isVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | const SDLoc &DL, SelectionDAG &DAG) const { | 
|  | // FIXME: Fails for r600 tests | 
|  | //assert(!isVarArg && Outs.empty() && OutVals.empty() && | 
|  | // "wave terminate should not have return values"); | 
|  | return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); | 
|  | } | 
|  |  | 
|  | //===---------------------------------------------------------------------===// | 
|  | // Target specific lowering | 
|  | //===---------------------------------------------------------------------===// | 
|  |  | 
|  | /// Selects the correct CCAssignFn for a given CallingConvention value. | 
|  | CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, | 
|  | bool IsVarArg) { | 
|  | return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); | 
|  | } | 
|  |  | 
|  | CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, | 
|  | bool IsVarArg) { | 
|  | return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, | 
|  | SelectionDAG &DAG, | 
|  | MachineFrameInfo &MFI, | 
|  | int ClobberedFI) const { | 
|  | SmallVector<SDValue, 8> ArgChains; | 
|  | int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); | 
|  | int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; | 
|  |  | 
|  | // Include the original chain at the beginning of the list. When this is | 
|  | // used by target LowerCall hooks, this helps legalize find the | 
|  | // CALLSEQ_BEGIN node. | 
|  | ArgChains.push_back(Chain); | 
|  |  | 
|  | // Add a chain value for each stack argument corresponding | 
|  | for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), | 
|  | UE = DAG.getEntryNode().getNode()->use_end(); | 
|  | U != UE; ++U) { | 
|  | if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { | 
|  | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { | 
|  | if (FI->getIndex() < 0) { | 
|  | int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); | 
|  | int64_t InLastByte = InFirstByte; | 
|  | InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; | 
|  |  | 
|  | if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || | 
|  | (FirstByte <= InFirstByte && InFirstByte <= LastByte)) | 
|  | ArgChains.push_back(SDValue(L, 1)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Build a tokenfactor for all the chains. | 
|  | return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, | 
|  | SmallVectorImpl<SDValue> &InVals, | 
|  | StringRef Reason) const { | 
|  | SDValue Callee = CLI.Callee; | 
|  | SelectionDAG &DAG = CLI.DAG; | 
|  |  | 
|  | const Function &Fn = DAG.getMachineFunction().getFunction(); | 
|  |  | 
|  | StringRef FuncName("<unknown>"); | 
|  |  | 
|  | if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) | 
|  | FuncName = G->getSymbol(); | 
|  | else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) | 
|  | FuncName = G->getGlobal()->getName(); | 
|  |  | 
|  | DiagnosticInfoUnsupported NoCalls( | 
|  | Fn, Reason + FuncName, CLI.DL.getDebugLoc()); | 
|  | DAG.getContext()->diagnose(NoCalls); | 
|  |  | 
|  | if (!CLI.IsTailCall) { | 
|  | for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) | 
|  | InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); | 
|  | } | 
|  |  | 
|  | return DAG.getEntryNode(); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  | return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | const Function &Fn = DAG.getMachineFunction().getFunction(); | 
|  |  | 
|  | DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", | 
|  | SDLoc(Op).getDebugLoc()); | 
|  | DAG.getContext()->diagnose(NoDynamicAlloca); | 
|  | auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; | 
|  | return DAG.getMergeValues(Ops, SDLoc()); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | switch (Op.getOpcode()) { | 
|  | default: | 
|  | Op->print(errs(), &DAG); | 
|  | llvm_unreachable("Custom lowering code for this" | 
|  | "instruction is not implemented yet!"); | 
|  | break; | 
|  | case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); | 
|  | case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); | 
|  | case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); | 
|  | case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); | 
|  | case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); | 
|  | case ISD::FREM: return LowerFREM(Op, DAG); | 
|  | case ISD::FCEIL: return LowerFCEIL(Op, DAG); | 
|  | case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); | 
|  | case ISD::FRINT: return LowerFRINT(Op, DAG); | 
|  | case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); | 
|  | case ISD::FROUND: return LowerFROUND(Op, DAG); | 
|  | case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); | 
|  | case ISD::FLOG: | 
|  | return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F); | 
|  | case ISD::FLOG10: | 
|  | return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F); | 
|  | case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); | 
|  | case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); | 
|  | case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); | 
|  | case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); | 
|  | case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); | 
|  | case ISD::CTTZ: | 
|  | case ISD::CTTZ_ZERO_UNDEF: | 
|  | case ISD::CTLZ: | 
|  | case ISD::CTLZ_ZERO_UNDEF: | 
|  | return LowerCTLZ_CTTZ(Op, DAG); | 
|  | case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); | 
|  | } | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, | 
|  | SmallVectorImpl<SDValue> &Results, | 
|  | SelectionDAG &DAG) const { | 
|  | switch (N->getOpcode()) { | 
|  | case ISD::SIGN_EXTEND_INREG: | 
|  | // Different parts of legalization seem to interpret which type of | 
|  | // sign_extend_inreg is the one to check for custom lowering. The extended | 
|  | // from type is what really matters, but some places check for custom | 
|  | // lowering of the result type. This results in trying to use | 
|  | // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do | 
|  | // nothing here and let the illegal result integer be handled normally. | 
|  | return; | 
|  | default: | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool hasDefinedInitializer(const GlobalValue *GV) { | 
|  | const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); | 
|  | if (!GVar || !GVar->hasInitializer()) | 
|  | return false; | 
|  |  | 
|  | return !isa<UndefValue>(GVar->getInitializer()); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, | 
|  | SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  |  | 
|  | const DataLayout &DL = DAG.getDataLayout(); | 
|  | GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); | 
|  | const GlobalValue *GV = G->getGlobal(); | 
|  |  | 
|  | if  (G->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS) { | 
|  | // XXX: What does the value of G->getOffset() mean? | 
|  | assert(G->getOffset() == 0 && | 
|  | "Do not know what to do with an non-zero offset"); | 
|  |  | 
|  | // TODO: We could emit code to handle the initialization somewhere. | 
|  | if (!hasDefinedInitializer(GV)) { | 
|  | unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); | 
|  | return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | const Function &Fn = DAG.getMachineFunction().getFunction(); | 
|  | DiagnosticInfoUnsupported BadInit( | 
|  | Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); | 
|  | DAG.getContext()->diagnose(BadInit); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SmallVector<SDValue, 8> Args; | 
|  |  | 
|  | for (const SDUse &U : Op->ops()) | 
|  | DAG.ExtractVectorElements(U.get(), Args); | 
|  |  | 
|  | return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  |  | 
|  | SmallVector<SDValue, 8> Args; | 
|  | unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | EVT VT = Op.getValueType(); | 
|  | DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, | 
|  | VT.getVectorNumElements()); | 
|  |  | 
|  | return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); | 
|  | } | 
|  |  | 
|  | /// Generate Min/Max node | 
|  | SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, | 
|  | SDValue LHS, SDValue RHS, | 
|  | SDValue True, SDValue False, | 
|  | SDValue CC, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) | 
|  | return SDValue(); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); | 
|  | switch (CCOpcode) { | 
|  | case ISD::SETOEQ: | 
|  | case ISD::SETONE: | 
|  | case ISD::SETUNE: | 
|  | case ISD::SETNE: | 
|  | case ISD::SETUEQ: | 
|  | case ISD::SETEQ: | 
|  | case ISD::SETFALSE: | 
|  | case ISD::SETFALSE2: | 
|  | case ISD::SETTRUE: | 
|  | case ISD::SETTRUE2: | 
|  | case ISD::SETUO: | 
|  | case ISD::SETO: | 
|  | break; | 
|  | case ISD::SETULE: | 
|  | case ISD::SETULT: { | 
|  | if (LHS == True) | 
|  | return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); | 
|  | return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); | 
|  | } | 
|  | case ISD::SETOLE: | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETLE: | 
|  | case ISD::SETLT: { | 
|  | // Ordered. Assume ordered for undefined. | 
|  |  | 
|  | // Only do this after legalization to avoid interfering with other combines | 
|  | // which might occur. | 
|  | if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && | 
|  | !DCI.isCalledByLegalizer()) | 
|  | return SDValue(); | 
|  |  | 
|  | // We need to permute the operands to get the correct NaN behavior. The | 
|  | // selected operand is the second one based on the failing compare with NaN, | 
|  | // so permute it based on the compare type the hardware uses. | 
|  | if (LHS == True) | 
|  | return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); | 
|  | return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); | 
|  | } | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETUGT: { | 
|  | if (LHS == True) | 
|  | return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); | 
|  | return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); | 
|  | } | 
|  | case ISD::SETGT: | 
|  | case ISD::SETGE: | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETOGT: { | 
|  | if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && | 
|  | !DCI.isCalledByLegalizer()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (LHS == True) | 
|  | return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); | 
|  | return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); | 
|  | } | 
|  | case ISD::SETCC_INVALID: | 
|  | llvm_unreachable("Invalid setcc condcode!"); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | std::pair<SDValue, SDValue> | 
|  | AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  |  | 
|  | SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); | 
|  |  | 
|  | const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); | 
|  | const SDValue One = DAG.getConstant(1, SL, MVT::i32); | 
|  |  | 
|  | SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); | 
|  | SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); | 
|  |  | 
|  | return std::make_pair(Lo, Hi); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  |  | 
|  | SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); | 
|  | const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  |  | 
|  | SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); | 
|  | const SDValue One = DAG.getConstant(1, SL, MVT::i32); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | LoadSDNode *Load = cast<LoadSDNode>(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  |  | 
|  | // If this is a 2 element vector, we really want to scalarize and not create | 
|  | // weird 1 element vectors. | 
|  | if (VT.getVectorNumElements() == 2) | 
|  | return scalarizeVectorLoad(Load, DAG); | 
|  |  | 
|  | SDValue BasePtr = Load->getBasePtr(); | 
|  | EVT MemVT = Load->getMemoryVT(); | 
|  | SDLoc SL(Op); | 
|  |  | 
|  | const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); | 
|  |  | 
|  | EVT LoVT, HiVT; | 
|  | EVT LoMemVT, HiMemVT; | 
|  | SDValue Lo, Hi; | 
|  |  | 
|  | std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); | 
|  | std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); | 
|  | std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); | 
|  |  | 
|  | unsigned Size = LoMemVT.getStoreSize(); | 
|  | unsigned BaseAlign = Load->getAlignment(); | 
|  | unsigned HiAlign = MinAlign(BaseAlign, Size); | 
|  |  | 
|  | SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, | 
|  | Load->getChain(), BasePtr, SrcValue, LoMemVT, | 
|  | BaseAlign, Load->getMemOperand()->getFlags()); | 
|  | SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size); | 
|  | SDValue HiLoad = | 
|  | DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), | 
|  | HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), | 
|  | HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); | 
|  |  | 
|  | SDValue Ops[] = { | 
|  | DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), | 
|  | DAG.getNode(ISD::TokenFactor, SL, MVT::Other, | 
|  | LoLoad.getValue(1), HiLoad.getValue(1)) | 
|  | }; | 
|  |  | 
|  | return DAG.getMergeValues(Ops, SL); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | StoreSDNode *Store = cast<StoreSDNode>(Op); | 
|  | SDValue Val = Store->getValue(); | 
|  | EVT VT = Val.getValueType(); | 
|  |  | 
|  | // If this is a 2 element vector, we really want to scalarize and not create | 
|  | // weird 1 element vectors. | 
|  | if (VT.getVectorNumElements() == 2) | 
|  | return scalarizeVectorStore(Store, DAG); | 
|  |  | 
|  | EVT MemVT = Store->getMemoryVT(); | 
|  | SDValue Chain = Store->getChain(); | 
|  | SDValue BasePtr = Store->getBasePtr(); | 
|  | SDLoc SL(Op); | 
|  |  | 
|  | EVT LoVT, HiVT; | 
|  | EVT LoMemVT, HiMemVT; | 
|  | SDValue Lo, Hi; | 
|  |  | 
|  | std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); | 
|  | std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); | 
|  | std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); | 
|  |  | 
|  | SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); | 
|  |  | 
|  | const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); | 
|  | unsigned BaseAlign = Store->getAlignment(); | 
|  | unsigned Size = LoMemVT.getStoreSize(); | 
|  | unsigned HiAlign = MinAlign(BaseAlign, Size); | 
|  |  | 
|  | SDValue LoStore = | 
|  | DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, | 
|  | Store->getMemOperand()->getFlags()); | 
|  | SDValue HiStore = | 
|  | DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), | 
|  | HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); | 
|  |  | 
|  | return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); | 
|  | } | 
|  |  | 
|  | // This is a shortcut for integer division because we have fast i32<->f32 | 
|  | // conversions, and fast f32 reciprocal instructions. The fractional part of a | 
|  | // float is enough to accurately represent up to a 24-bit signed integer. | 
|  | SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, | 
|  | bool Sign) const { | 
|  | SDLoc DL(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue LHS = Op.getOperand(0); | 
|  | SDValue RHS = Op.getOperand(1); | 
|  | MVT IntVT = MVT::i32; | 
|  | MVT FltVT = MVT::f32; | 
|  |  | 
|  | unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); | 
|  | if (LHSSignBits < 9) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); | 
|  | if (RHSSignBits < 9) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned BitSize = VT.getSizeInBits(); | 
|  | unsigned SignBits = std::min(LHSSignBits, RHSSignBits); | 
|  | unsigned DivBits = BitSize - SignBits; | 
|  | if (Sign) | 
|  | ++DivBits; | 
|  |  | 
|  | ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; | 
|  | ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; | 
|  |  | 
|  | SDValue jq = DAG.getConstant(1, DL, IntVT); | 
|  |  | 
|  | if (Sign) { | 
|  | // char|short jq = ia ^ ib; | 
|  | jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); | 
|  |  | 
|  | // jq = jq >> (bitsize - 2) | 
|  | jq = DAG.getNode(ISD::SRA, DL, VT, jq, | 
|  | DAG.getConstant(BitSize - 2, DL, VT)); | 
|  |  | 
|  | // jq = jq | 0x1 | 
|  | jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); | 
|  | } | 
|  |  | 
|  | // int ia = (int)LHS; | 
|  | SDValue ia = LHS; | 
|  |  | 
|  | // int ib, (int)RHS; | 
|  | SDValue ib = RHS; | 
|  |  | 
|  | // float fa = (float)ia; | 
|  | SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); | 
|  |  | 
|  | // float fb = (float)ib; | 
|  | SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); | 
|  |  | 
|  | SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, | 
|  | fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); | 
|  |  | 
|  | // fq = trunc(fq); | 
|  | fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); | 
|  |  | 
|  | // float fqneg = -fq; | 
|  | SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); | 
|  |  | 
|  | // float fr = mad(fqneg, fb, fa); | 
|  | unsigned OpCode = Subtarget->hasFP32Denormals() ? | 
|  | (unsigned)AMDGPUISD::FMAD_FTZ : | 
|  | (unsigned)ISD::FMAD; | 
|  | SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); | 
|  |  | 
|  | // int iq = (int)fq; | 
|  | SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); | 
|  |  | 
|  | // fr = fabs(fr); | 
|  | fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); | 
|  |  | 
|  | // fb = fabs(fb); | 
|  | fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); | 
|  |  | 
|  | EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); | 
|  |  | 
|  | // int cv = fr >= fb; | 
|  | SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); | 
|  |  | 
|  | // jq = (cv ? jq : 0); | 
|  | jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); | 
|  |  | 
|  | // dst = iq + jq; | 
|  | SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); | 
|  |  | 
|  | // Rem needs compensation, it's easier to recompute it | 
|  | SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); | 
|  | Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); | 
|  |  | 
|  | // Truncate to number of bits this divide really is. | 
|  | if (Sign) { | 
|  | SDValue InRegSize | 
|  | = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); | 
|  | Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); | 
|  | Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); | 
|  | } else { | 
|  | SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); | 
|  | Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); | 
|  | Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); | 
|  | } | 
|  |  | 
|  | return DAG.getMergeValues({ Div, Rem }, DL); | 
|  | } | 
|  |  | 
|  | void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, | 
|  | SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &Results) const { | 
|  | SDLoc DL(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); | 
|  |  | 
|  | EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); | 
|  |  | 
|  | SDValue One = DAG.getConstant(1, DL, HalfVT); | 
|  | SDValue Zero = DAG.getConstant(0, DL, HalfVT); | 
|  |  | 
|  | //HiLo split | 
|  | SDValue LHS = Op.getOperand(0); | 
|  | SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); | 
|  | SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); | 
|  |  | 
|  | SDValue RHS = Op.getOperand(1); | 
|  | SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); | 
|  | SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); | 
|  |  | 
|  | if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && | 
|  | DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { | 
|  |  | 
|  | SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), | 
|  | LHS_Lo, RHS_Lo); | 
|  |  | 
|  | SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); | 
|  | SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); | 
|  |  | 
|  | Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); | 
|  | Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (isTypeLegal(MVT::i64)) { | 
|  | // Compute denominator reciprocal. | 
|  | unsigned FMAD = Subtarget->hasFP32Denormals() ? | 
|  | (unsigned)AMDGPUISD::FMAD_FTZ : | 
|  | (unsigned)ISD::FMAD; | 
|  |  | 
|  | SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); | 
|  | SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); | 
|  | SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, | 
|  | DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), | 
|  | Cvt_Lo); | 
|  | SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); | 
|  | SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, | 
|  | DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); | 
|  | SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, | 
|  | DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); | 
|  | SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); | 
|  | SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, | 
|  | DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), | 
|  | Mul1); | 
|  | SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); | 
|  | SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); | 
|  | SDValue Rcp64 = DAG.getBitcast(VT, | 
|  | DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); | 
|  |  | 
|  | SDValue Zero64 = DAG.getConstant(0, DL, VT); | 
|  | SDValue One64  = DAG.getConstant(1, DL, VT); | 
|  | SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); | 
|  | SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); | 
|  |  | 
|  | SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); | 
|  | SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); | 
|  | SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); | 
|  | SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, | 
|  | Zero); | 
|  | SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, | 
|  | One); | 
|  |  | 
|  | SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, | 
|  | Mulhi1_Lo, Zero1); | 
|  | SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, | 
|  | Mulhi1_Hi, Add1_Lo.getValue(1)); | 
|  | SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); | 
|  | SDValue Add1 = DAG.getBitcast(VT, | 
|  | DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); | 
|  |  | 
|  | SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); | 
|  | SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); | 
|  | SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, | 
|  | Zero); | 
|  | SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, | 
|  | One); | 
|  |  | 
|  | SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, | 
|  | Mulhi2_Lo, Zero1); | 
|  | SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, | 
|  | Mulhi2_Hi, Add1_Lo.getValue(1)); | 
|  | SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, | 
|  | Zero, Add2_Lo.getValue(1)); | 
|  | SDValue Add2 = DAG.getBitcast(VT, | 
|  | DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); | 
|  | SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); | 
|  |  | 
|  | SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); | 
|  |  | 
|  | SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); | 
|  | SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); | 
|  | SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, | 
|  | Mul3_Lo, Zero1); | 
|  | SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, | 
|  | Mul3_Hi, Sub1_Lo.getValue(1)); | 
|  | SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); | 
|  | SDValue Sub1 = DAG.getBitcast(VT, | 
|  | DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); | 
|  |  | 
|  | SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); | 
|  | SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, | 
|  | ISD::SETUGE); | 
|  | SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, | 
|  | ISD::SETUGE); | 
|  | SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); | 
|  |  | 
|  | // TODO: Here and below portions of the code can be enclosed into if/endif. | 
|  | // Currently control flow is unconditional and we have 4 selects after | 
|  | // potential endif to substitute PHIs. | 
|  |  | 
|  | // if C3 != 0 ... | 
|  | SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, | 
|  | RHS_Lo, Zero1); | 
|  | SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, | 
|  | RHS_Hi, Sub1_Lo.getValue(1)); | 
|  | SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, | 
|  | Zero, Sub2_Lo.getValue(1)); | 
|  | SDValue Sub2 = DAG.getBitcast(VT, | 
|  | DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); | 
|  |  | 
|  | SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); | 
|  |  | 
|  | SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, | 
|  | ISD::SETUGE); | 
|  | SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, | 
|  | ISD::SETUGE); | 
|  | SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); | 
|  |  | 
|  | // if (C6 != 0) | 
|  | SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); | 
|  |  | 
|  | SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, | 
|  | RHS_Lo, Zero1); | 
|  | SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, | 
|  | RHS_Hi, Sub2_Lo.getValue(1)); | 
|  | SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, | 
|  | Zero, Sub3_Lo.getValue(1)); | 
|  | SDValue Sub3 = DAG.getBitcast(VT, | 
|  | DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); | 
|  |  | 
|  | // endif C6 | 
|  | // endif C3 | 
|  |  | 
|  | SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); | 
|  | SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); | 
|  |  | 
|  | SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); | 
|  | SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); | 
|  |  | 
|  | Results.push_back(Div); | 
|  | Results.push_back(Rem); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | // r600 expandion. | 
|  | // Get Speculative values | 
|  | SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); | 
|  | SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); | 
|  |  | 
|  | SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); | 
|  | SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); | 
|  | REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); | 
|  |  | 
|  | SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); | 
|  | SDValue DIV_Lo = Zero; | 
|  |  | 
|  | const unsigned halfBitWidth = HalfVT.getSizeInBits(); | 
|  |  | 
|  | for (unsigned i = 0; i < halfBitWidth; ++i) { | 
|  | const unsigned bitPos = halfBitWidth - i - 1; | 
|  | SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); | 
|  | // Get value of high bit | 
|  | SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); | 
|  | HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); | 
|  | HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); | 
|  |  | 
|  | // Shift | 
|  | REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); | 
|  | // Add LHS high bit | 
|  | REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); | 
|  |  | 
|  | SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); | 
|  | SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); | 
|  |  | 
|  | DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); | 
|  |  | 
|  | // Update REM | 
|  | SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); | 
|  | REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); | 
|  | } | 
|  |  | 
|  | SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); | 
|  | DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); | 
|  | Results.push_back(DIV); | 
|  | Results.push_back(REM); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | if (VT == MVT::i64) { | 
|  | SmallVector<SDValue, 2> Results; | 
|  | LowerUDIVREM64(Op, DAG, Results); | 
|  | return DAG.getMergeValues(Results, DL); | 
|  | } | 
|  |  | 
|  | if (VT == MVT::i32) { | 
|  | if (SDValue Res = LowerDIVREM24(Op, DAG, false)) | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | SDValue Num = Op.getOperand(0); | 
|  | SDValue Den = Op.getOperand(1); | 
|  |  | 
|  | // RCP =  URECIP(Den) = 2^32 / Den + e | 
|  | // e is rounding error. | 
|  | SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); | 
|  |  | 
|  | // RCP_LO = mul(RCP, Den) */ | 
|  | SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); | 
|  |  | 
|  | // RCP_HI = mulhu (RCP, Den) */ | 
|  | SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); | 
|  |  | 
|  | // NEG_RCP_LO = -RCP_LO | 
|  | SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), | 
|  | RCP_LO); | 
|  |  | 
|  | // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) | 
|  | SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), | 
|  | NEG_RCP_LO, RCP_LO, | 
|  | ISD::SETEQ); | 
|  | // Calculate the rounding error from the URECIP instruction | 
|  | // E = mulhu(ABS_RCP_LO, RCP) | 
|  | SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); | 
|  |  | 
|  | // RCP_A_E = RCP + E | 
|  | SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); | 
|  |  | 
|  | // RCP_S_E = RCP - E | 
|  | SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); | 
|  |  | 
|  | // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) | 
|  | SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), | 
|  | RCP_A_E, RCP_S_E, | 
|  | ISD::SETEQ); | 
|  | // Quotient = mulhu(Tmp0, Num) | 
|  | SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); | 
|  |  | 
|  | // Num_S_Remainder = Quotient * Den | 
|  | SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); | 
|  |  | 
|  | // Remainder = Num - Num_S_Remainder | 
|  | SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); | 
|  |  | 
|  | // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) | 
|  | SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, | 
|  | DAG.getConstant(-1, DL, VT), | 
|  | DAG.getConstant(0, DL, VT), | 
|  | ISD::SETUGE); | 
|  | // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) | 
|  | SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, | 
|  | Num_S_Remainder, | 
|  | DAG.getConstant(-1, DL, VT), | 
|  | DAG.getConstant(0, DL, VT), | 
|  | ISD::SETUGE); | 
|  | // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero | 
|  | SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, | 
|  | Remainder_GE_Zero); | 
|  |  | 
|  | // Calculate Division result: | 
|  |  | 
|  | // Quotient_A_One = Quotient + 1 | 
|  | SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, | 
|  | DAG.getConstant(1, DL, VT)); | 
|  |  | 
|  | // Quotient_S_One = Quotient - 1 | 
|  | SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, | 
|  | DAG.getConstant(1, DL, VT)); | 
|  |  | 
|  | // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) | 
|  | SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), | 
|  | Quotient, Quotient_A_One, ISD::SETEQ); | 
|  |  | 
|  | // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) | 
|  | Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), | 
|  | Quotient_S_One, Div, ISD::SETEQ); | 
|  |  | 
|  | // Calculate Rem result: | 
|  |  | 
|  | // Remainder_S_Den = Remainder - Den | 
|  | SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); | 
|  |  | 
|  | // Remainder_A_Den = Remainder + Den | 
|  | SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); | 
|  |  | 
|  | // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) | 
|  | SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), | 
|  | Remainder, Remainder_S_Den, ISD::SETEQ); | 
|  |  | 
|  | // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) | 
|  | Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), | 
|  | Remainder_A_Den, Rem, ISD::SETEQ); | 
|  | SDValue Ops[2] = { | 
|  | Div, | 
|  | Rem | 
|  | }; | 
|  | return DAG.getMergeValues(Ops, DL); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | SDValue LHS = Op.getOperand(0); | 
|  | SDValue RHS = Op.getOperand(1); | 
|  |  | 
|  | SDValue Zero = DAG.getConstant(0, DL, VT); | 
|  | SDValue NegOne = DAG.getConstant(-1, DL, VT); | 
|  |  | 
|  | if (VT == MVT::i32) { | 
|  | if (SDValue Res = LowerDIVREM24(Op, DAG, true)) | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | if (VT == MVT::i64 && | 
|  | DAG.ComputeNumSignBits(LHS) > 32 && | 
|  | DAG.ComputeNumSignBits(RHS) > 32) { | 
|  | EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); | 
|  |  | 
|  | //HiLo split | 
|  | SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); | 
|  | SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); | 
|  | SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), | 
|  | LHS_Lo, RHS_Lo); | 
|  | SDValue Res[2] = { | 
|  | DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), | 
|  | DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) | 
|  | }; | 
|  | return DAG.getMergeValues(Res, DL); | 
|  | } | 
|  |  | 
|  | SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); | 
|  | SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); | 
|  | SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); | 
|  | SDValue RSign = LHSign; // Remainder sign is the same as LHS | 
|  |  | 
|  | LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); | 
|  | RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); | 
|  |  | 
|  | LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); | 
|  | RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); | 
|  |  | 
|  | SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); | 
|  | SDValue Rem = Div.getValue(1); | 
|  |  | 
|  | Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); | 
|  | Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); | 
|  |  | 
|  | Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); | 
|  | Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); | 
|  |  | 
|  | SDValue Res[2] = { | 
|  | Div, | 
|  | Rem | 
|  | }; | 
|  | return DAG.getMergeValues(Res, DL); | 
|  | } | 
|  |  | 
|  | // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) | 
|  | SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue X = Op.getOperand(0); | 
|  | SDValue Y = Op.getOperand(1); | 
|  |  | 
|  | // TODO: Should this propagate fast-math-flags? | 
|  |  | 
|  | SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); | 
|  | SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); | 
|  | SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); | 
|  |  | 
|  | return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  | SDValue Src = Op.getOperand(0); | 
|  |  | 
|  | // result = trunc(src) | 
|  | // if (src > 0.0 && src != result) | 
|  | //   result += 1.0 | 
|  |  | 
|  | SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); | 
|  |  | 
|  | const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); | 
|  | const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); | 
|  |  | 
|  | EVT SetCCVT = | 
|  | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); | 
|  |  | 
|  | SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); | 
|  | SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); | 
|  | SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); | 
|  |  | 
|  | SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); | 
|  | // TODO: Should this propagate fast-math-flags? | 
|  | return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); | 
|  | } | 
|  |  | 
|  | static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, | 
|  | SelectionDAG &DAG) { | 
|  | const unsigned FractBits = 52; | 
|  | const unsigned ExpBits = 11; | 
|  |  | 
|  | SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, | 
|  | Hi, | 
|  | DAG.getConstant(FractBits - 32, SL, MVT::i32), | 
|  | DAG.getConstant(ExpBits, SL, MVT::i32)); | 
|  | SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, | 
|  | DAG.getConstant(1023, SL, MVT::i32)); | 
|  |  | 
|  | return Exp; | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  | SDValue Src = Op.getOperand(0); | 
|  |  | 
|  | assert(Op.getValueType() == MVT::f64); | 
|  |  | 
|  | const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); | 
|  | const SDValue One = DAG.getConstant(1, SL, MVT::i32); | 
|  |  | 
|  | SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); | 
|  |  | 
|  | // Extract the upper half, since this is where we will find the sign and | 
|  | // exponent. | 
|  | SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); | 
|  |  | 
|  | SDValue Exp = extractF64Exponent(Hi, SL, DAG); | 
|  |  | 
|  | const unsigned FractBits = 52; | 
|  |  | 
|  | // Extract the sign bit. | 
|  | const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); | 
|  | SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); | 
|  |  | 
|  | // Extend back to 64-bits. | 
|  | SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); | 
|  | SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); | 
|  |  | 
|  | SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); | 
|  | const SDValue FractMask | 
|  | = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); | 
|  |  | 
|  | SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); | 
|  | SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); | 
|  | SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); | 
|  |  | 
|  | EVT SetCCVT = | 
|  | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); | 
|  |  | 
|  | const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); | 
|  |  | 
|  | SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); | 
|  | SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); | 
|  |  | 
|  | SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); | 
|  | SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  | SDValue Src = Op.getOperand(0); | 
|  |  | 
|  | assert(Op.getValueType() == MVT::f64); | 
|  |  | 
|  | APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); | 
|  | SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); | 
|  | SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); | 
|  |  | 
|  | // TODO: Should this propagate fast-math-flags? | 
|  |  | 
|  | SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); | 
|  | SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); | 
|  |  | 
|  | SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); | 
|  |  | 
|  | APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); | 
|  | SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); | 
|  |  | 
|  | EVT SetCCVT = | 
|  | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); | 
|  | SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); | 
|  |  | 
|  | return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { | 
|  | // FNEARBYINT and FRINT are the same, except in their handling of FP | 
|  | // exceptions. Those aren't really meaningful for us, and OpenCL only has | 
|  | // rint, so just treat them as equivalent. | 
|  | return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); | 
|  | } | 
|  |  | 
|  | // XXX - May require not supporting f32 denormals? | 
|  |  | 
|  | // Don't handle v2f16. The extra instructions to scalarize and repack around the | 
|  | // compare and vselect end up producing worse code than scalarizing the whole | 
|  | // operation. | 
|  | SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  | SDValue X = Op.getOperand(0); | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); | 
|  |  | 
|  | // TODO: Should this propagate fast-math-flags? | 
|  |  | 
|  | SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); | 
|  |  | 
|  | SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); | 
|  |  | 
|  | const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); | 
|  | const SDValue One = DAG.getConstantFP(1.0, SL, VT); | 
|  | const SDValue Half = DAG.getConstantFP(0.5, SL, VT); | 
|  |  | 
|  | SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); | 
|  |  | 
|  | EVT SetCCVT = | 
|  | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); | 
|  |  | 
|  | SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); | 
|  |  | 
|  | SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); | 
|  |  | 
|  | return DAG.getNode(ISD::FADD, SL, VT, T, Sel); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  | SDValue X = Op.getOperand(0); | 
|  |  | 
|  | SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); | 
|  |  | 
|  | const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); | 
|  | const SDValue One = DAG.getConstant(1, SL, MVT::i32); | 
|  | const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); | 
|  | const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); | 
|  | EVT SetCCVT = | 
|  | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); | 
|  |  | 
|  | SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); | 
|  |  | 
|  | SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); | 
|  |  | 
|  | SDValue Exp = extractF64Exponent(Hi, SL, DAG); | 
|  |  | 
|  | const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, | 
|  | MVT::i64); | 
|  |  | 
|  | SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); | 
|  | SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, | 
|  | DAG.getConstant(INT64_C(0x0008000000000000), SL, | 
|  | MVT::i64), | 
|  | Exp); | 
|  |  | 
|  | SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); | 
|  | SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, | 
|  | DAG.getConstant(0, SL, MVT::i64), Tmp0, | 
|  | ISD::SETNE); | 
|  |  | 
|  | SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, | 
|  | D, DAG.getConstant(0, SL, MVT::i64)); | 
|  | SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); | 
|  |  | 
|  | K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); | 
|  | K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); | 
|  |  | 
|  | SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); | 
|  | SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); | 
|  | SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); | 
|  |  | 
|  | SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, | 
|  | ExpEqNegOne, | 
|  | DAG.getConstantFP(1.0, SL, MVT::f64), | 
|  | DAG.getConstantFP(0.0, SL, MVT::f64)); | 
|  |  | 
|  | SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); | 
|  |  | 
|  | K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); | 
|  | K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); | 
|  |  | 
|  | return K; | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | if (VT == MVT::f32 || VT == MVT::f16) | 
|  | return LowerFROUND32_16(Op, DAG); | 
|  |  | 
|  | if (VT == MVT::f64) | 
|  | return LowerFROUND64(Op, DAG); | 
|  |  | 
|  | llvm_unreachable("unhandled type"); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  | SDValue Src = Op.getOperand(0); | 
|  |  | 
|  | // result = trunc(src); | 
|  | // if (src < 0.0 && src != result) | 
|  | //   result += -1.0. | 
|  |  | 
|  | SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); | 
|  |  | 
|  | const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); | 
|  | const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); | 
|  |  | 
|  | EVT SetCCVT = | 
|  | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); | 
|  |  | 
|  | SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); | 
|  | SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); | 
|  | SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); | 
|  |  | 
|  | SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); | 
|  | // TODO: Should this propagate fast-math-flags? | 
|  | return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, | 
|  | double Log2BaseInverted) const { | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | SDLoc SL(Op); | 
|  | SDValue Operand = Op.getOperand(0); | 
|  | SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); | 
|  | SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); | 
|  |  | 
|  | return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); | 
|  | } | 
|  |  | 
|  | static bool isCtlzOpc(unsigned Opc) { | 
|  | return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; | 
|  | } | 
|  |  | 
|  | static bool isCttzOpc(unsigned Opc) { | 
|  | return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  | SDValue Src = Op.getOperand(0); | 
|  | bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || | 
|  | Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; | 
|  |  | 
|  | unsigned ISDOpc, NewOpc; | 
|  | if (isCtlzOpc(Op.getOpcode())) { | 
|  | ISDOpc = ISD::CTLZ_ZERO_UNDEF; | 
|  | NewOpc = AMDGPUISD::FFBH_U32; | 
|  | } else if (isCttzOpc(Op.getOpcode())) { | 
|  | ISDOpc = ISD::CTTZ_ZERO_UNDEF; | 
|  | NewOpc = AMDGPUISD::FFBL_B32; | 
|  | } else | 
|  | llvm_unreachable("Unexpected OPCode!!!"); | 
|  |  | 
|  |  | 
|  | if (ZeroUndef && Src.getValueType() == MVT::i32) | 
|  | return DAG.getNode(NewOpc, SL, MVT::i32, Src); | 
|  |  | 
|  | SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); | 
|  |  | 
|  | const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); | 
|  | const SDValue One = DAG.getConstant(1, SL, MVT::i32); | 
|  |  | 
|  | SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); | 
|  | SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); | 
|  |  | 
|  | EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), | 
|  | *DAG.getContext(), MVT::i32); | 
|  |  | 
|  | SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; | 
|  | SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); | 
|  |  | 
|  | SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); | 
|  | SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); | 
|  |  | 
|  | const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); | 
|  | SDValue Add, NewOpr; | 
|  | if (isCtlzOpc(Op.getOpcode())) { | 
|  | Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); | 
|  | // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) | 
|  | NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); | 
|  | } else { | 
|  | Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); | 
|  | // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) | 
|  | NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); | 
|  | } | 
|  |  | 
|  | if (!ZeroUndef) { | 
|  | // Test if the full 64-bit input is zero. | 
|  |  | 
|  | // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, | 
|  | // which we probably don't want. | 
|  | SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; | 
|  | SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); | 
|  | SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); | 
|  |  | 
|  | // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction | 
|  | // with the same cycles, otherwise it is slower. | 
|  | // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, | 
|  | // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); | 
|  |  | 
|  | const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); | 
|  |  | 
|  | // The instruction returns -1 for 0 input, but the defined intrinsic | 
|  | // behavior is to return the number of bits. | 
|  | NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, | 
|  | SrcIsZero, Bits32, NewOpr); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, | 
|  | bool Signed) const { | 
|  | // Unsigned | 
|  | // cul2f(ulong u) | 
|  | //{ | 
|  | //  uint lz = clz(u); | 
|  | //  uint e = (u != 0) ? 127U + 63U - lz : 0; | 
|  | //  u = (u << lz) & 0x7fffffffffffffffUL; | 
|  | //  ulong t = u & 0xffffffffffUL; | 
|  | //  uint v = (e << 23) | (uint)(u >> 40); | 
|  | //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); | 
|  | //  return as_float(v + r); | 
|  | //} | 
|  | // Signed | 
|  | // cl2f(long l) | 
|  | //{ | 
|  | //  long s = l >> 63; | 
|  | //  float r = cul2f((l + s) ^ s); | 
|  | //  return s ? -r : r; | 
|  | //} | 
|  |  | 
|  | SDLoc SL(Op); | 
|  | SDValue Src = Op.getOperand(0); | 
|  | SDValue L = Src; | 
|  |  | 
|  | SDValue S; | 
|  | if (Signed) { | 
|  | const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); | 
|  | S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); | 
|  |  | 
|  | SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); | 
|  | L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); | 
|  | } | 
|  |  | 
|  | EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), | 
|  | *DAG.getContext(), MVT::f32); | 
|  |  | 
|  |  | 
|  | SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); | 
|  | SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); | 
|  | SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); | 
|  | LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); | 
|  |  | 
|  | SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); | 
|  | SDValue E = DAG.getSelect(SL, MVT::i32, | 
|  | DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), | 
|  | DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), | 
|  | ZeroI32); | 
|  |  | 
|  | SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, | 
|  | DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), | 
|  | DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); | 
|  |  | 
|  | SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, | 
|  | DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); | 
|  |  | 
|  | SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, | 
|  | U, DAG.getConstant(40, SL, MVT::i64)); | 
|  |  | 
|  | SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, | 
|  | DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), | 
|  | DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl)); | 
|  |  | 
|  | SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); | 
|  | SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); | 
|  | SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); | 
|  |  | 
|  | SDValue One = DAG.getConstant(1, SL, MVT::i32); | 
|  |  | 
|  | SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); | 
|  |  | 
|  | SDValue R = DAG.getSelect(SL, MVT::i32, | 
|  | RCmp, | 
|  | One, | 
|  | DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); | 
|  | R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); | 
|  | R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); | 
|  |  | 
|  | if (!Signed) | 
|  | return R; | 
|  |  | 
|  | SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); | 
|  | return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, | 
|  | bool Signed) const { | 
|  | SDLoc SL(Op); | 
|  | SDValue Src = Op.getOperand(0); | 
|  |  | 
|  | SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); | 
|  |  | 
|  | SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, | 
|  | DAG.getConstant(0, SL, MVT::i32)); | 
|  | SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, | 
|  | DAG.getConstant(1, SL, MVT::i32)); | 
|  |  | 
|  | SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, | 
|  | SL, MVT::f64, Hi); | 
|  |  | 
|  | SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); | 
|  |  | 
|  | SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, | 
|  | DAG.getConstant(32, SL, MVT::i32)); | 
|  | // TODO: Should this propagate fast-math-flags? | 
|  | return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | assert(Op.getOperand(0).getValueType() == MVT::i64 && | 
|  | "operation should be legal"); | 
|  |  | 
|  | // TODO: Factor out code common with LowerSINT_TO_FP. | 
|  |  | 
|  | EVT DestVT = Op.getValueType(); | 
|  | if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { | 
|  | SDLoc DL(Op); | 
|  | SDValue Src = Op.getOperand(0); | 
|  |  | 
|  | SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); | 
|  | SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); | 
|  | SDValue FPRound = | 
|  | DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); | 
|  |  | 
|  | return FPRound; | 
|  | } | 
|  |  | 
|  | if (DestVT == MVT::f32) | 
|  | return LowerINT_TO_FP32(Op, DAG, false); | 
|  |  | 
|  | assert(DestVT == MVT::f64); | 
|  | return LowerINT_TO_FP64(Op, DAG, false); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | assert(Op.getOperand(0).getValueType() == MVT::i64 && | 
|  | "operation should be legal"); | 
|  |  | 
|  | // TODO: Factor out code common with LowerUINT_TO_FP. | 
|  |  | 
|  | EVT DestVT = Op.getValueType(); | 
|  | if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { | 
|  | SDLoc DL(Op); | 
|  | SDValue Src = Op.getOperand(0); | 
|  |  | 
|  | SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); | 
|  | SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); | 
|  | SDValue FPRound = | 
|  | DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); | 
|  |  | 
|  | return FPRound; | 
|  | } | 
|  |  | 
|  | if (DestVT == MVT::f32) | 
|  | return LowerINT_TO_FP32(Op, DAG, true); | 
|  |  | 
|  | assert(DestVT == MVT::f64); | 
|  | return LowerINT_TO_FP64(Op, DAG, true); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, | 
|  | bool Signed) const { | 
|  | SDLoc SL(Op); | 
|  |  | 
|  | SDValue Src = Op.getOperand(0); | 
|  |  | 
|  | SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); | 
|  |  | 
|  | SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, | 
|  | MVT::f64); | 
|  | SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, | 
|  | MVT::f64); | 
|  | // TODO: Should this propagate fast-math-flags? | 
|  | SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); | 
|  |  | 
|  | SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); | 
|  |  | 
|  |  | 
|  | SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); | 
|  |  | 
|  | SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, | 
|  | MVT::i32, FloorMul); | 
|  | SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); | 
|  |  | 
|  | SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | SDValue N0 = Op.getOperand(0); | 
|  |  | 
|  | // Convert to target node to get known bits | 
|  | if (N0.getValueType() == MVT::f32) | 
|  | return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); | 
|  |  | 
|  | if (getTargetMachine().Options.UnsafeFPMath) { | 
|  | // There is a generic expand for FP_TO_FP16 with unsafe fast math. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | assert(N0.getSimpleValueType() == MVT::f64); | 
|  |  | 
|  | // f64 -> f16 conversion using round-to-nearest-even rounding mode. | 
|  | const unsigned ExpMask = 0x7ff; | 
|  | const unsigned ExpBiasf64 = 1023; | 
|  | const unsigned ExpBiasf16 = 15; | 
|  | SDValue Zero = DAG.getConstant(0, DL, MVT::i32); | 
|  | SDValue One = DAG.getConstant(1, DL, MVT::i32); | 
|  | SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); | 
|  | SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, | 
|  | DAG.getConstant(32, DL, MVT::i64)); | 
|  | UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); | 
|  | U = DAG.getZExtOrTrunc(U, DL, MVT::i32); | 
|  | SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, | 
|  | DAG.getConstant(20, DL, MVT::i64)); | 
|  | E = DAG.getNode(ISD::AND, DL, MVT::i32, E, | 
|  | DAG.getConstant(ExpMask, DL, MVT::i32)); | 
|  | // Subtract the fp64 exponent bias (1023) to get the real exponent and | 
|  | // add the f16 bias (15) to get the biased exponent for the f16 format. | 
|  | E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, | 
|  | DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); | 
|  |  | 
|  | SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, | 
|  | DAG.getConstant(8, DL, MVT::i32)); | 
|  | M = DAG.getNode(ISD::AND, DL, MVT::i32, M, | 
|  | DAG.getConstant(0xffe, DL, MVT::i32)); | 
|  |  | 
|  | SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, | 
|  | DAG.getConstant(0x1ff, DL, MVT::i32)); | 
|  | MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); | 
|  |  | 
|  | SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); | 
|  | M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); | 
|  |  | 
|  | // (M != 0 ? 0x0200 : 0) | 0x7c00; | 
|  | SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, | 
|  | DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), | 
|  | Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); | 
|  |  | 
|  | // N = M | (E << 12); | 
|  | SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, | 
|  | DAG.getNode(ISD::SHL, DL, MVT::i32, E, | 
|  | DAG.getConstant(12, DL, MVT::i32))); | 
|  |  | 
|  | // B = clamp(1-E, 0, 13); | 
|  | SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, | 
|  | One, E); | 
|  | SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); | 
|  | B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, | 
|  | DAG.getConstant(13, DL, MVT::i32)); | 
|  |  | 
|  | SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, | 
|  | DAG.getConstant(0x1000, DL, MVT::i32)); | 
|  |  | 
|  | SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); | 
|  | SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); | 
|  | SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); | 
|  | D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); | 
|  |  | 
|  | SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); | 
|  | SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, | 
|  | DAG.getConstant(0x7, DL, MVT::i32)); | 
|  | V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, | 
|  | DAG.getConstant(2, DL, MVT::i32)); | 
|  | SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), | 
|  | One, Zero, ISD::SETEQ); | 
|  | SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), | 
|  | One, Zero, ISD::SETGT); | 
|  | V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); | 
|  | V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); | 
|  |  | 
|  | V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), | 
|  | DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); | 
|  | V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), | 
|  | I, V, ISD::SETEQ); | 
|  |  | 
|  | // Extract the sign bit. | 
|  | SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, | 
|  | DAG.getConstant(16, DL, MVT::i32)); | 
|  | Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, | 
|  | DAG.getConstant(0x8000, DL, MVT::i32)); | 
|  |  | 
|  | V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); | 
|  | return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Src = Op.getOperand(0); | 
|  |  | 
|  | // TODO: Factor out code common with LowerFP_TO_UINT. | 
|  |  | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); | 
|  | SDValue FpToInt32 = | 
|  | DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); | 
|  |  | 
|  | return FpToInt32; | 
|  | } | 
|  |  | 
|  | if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) | 
|  | return LowerFP64_TO_INT(Op, DAG, true); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Src = Op.getOperand(0); | 
|  |  | 
|  | // TODO: Factor out code common with LowerFP_TO_SINT. | 
|  |  | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); | 
|  | SDValue FpToInt32 = | 
|  | DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); | 
|  |  | 
|  | return FpToInt32; | 
|  | } | 
|  |  | 
|  | if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) | 
|  | return LowerFP64_TO_INT(Op, DAG, false); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | MVT ScalarVT = VT.getScalarType(); | 
|  |  | 
|  | assert(VT.isVector()); | 
|  |  | 
|  | SDValue Src = Op.getOperand(0); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | // TODO: Don't scalarize on Evergreen? | 
|  | unsigned NElts = VT.getVectorNumElements(); | 
|  | SmallVector<SDValue, 8> Args; | 
|  | DAG.ExtractVectorElements(Src, Args, 0, NElts); | 
|  |  | 
|  | SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); | 
|  | for (unsigned I = 0; I < NElts; ++I) | 
|  | Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); | 
|  |  | 
|  | return DAG.getBuildVector(VT, DL, Args); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Custom DAG optimizations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static bool isU24(SDValue Op, SelectionDAG &DAG) { | 
|  | return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; | 
|  | } | 
|  |  | 
|  | static bool isI24(SDValue Op, SelectionDAG &DAG) { | 
|  | EVT VT = Op.getValueType(); | 
|  | return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated | 
|  | // as unsigned 24-bit values. | 
|  | AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; | 
|  | } | 
|  |  | 
|  | static bool simplifyI24(SDNode *Node24, unsigned OpIdx, | 
|  | TargetLowering::DAGCombinerInfo &DCI) { | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue Op = Node24->getOperand(OpIdx); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); | 
|  | APInt KnownZero, KnownOne; | 
|  | TargetLowering::TargetLoweringOpt TLO(DAG, true, true); | 
|  | if (TLI.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI, TLO)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <typename IntTy> | 
|  | static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, | 
|  | uint32_t Width, const SDLoc &DL) { | 
|  | if (Width + Offset < 32) { | 
|  | uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); | 
|  | IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); | 
|  | return DAG.getConstant(Result, DL, MVT::i32); | 
|  | } | 
|  |  | 
|  | return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); | 
|  | } | 
|  |  | 
|  | static bool hasVolatileUser(SDNode *Val) { | 
|  | for (SDNode *U : Val->uses()) { | 
|  | if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { | 
|  | if (M->isVolatile()) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { | 
|  | // i32 vectors are the canonical memory type. | 
|  | if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) | 
|  | return false; | 
|  |  | 
|  | if (!VT.isByteSized()) | 
|  | return false; | 
|  |  | 
|  | unsigned Size = VT.getStoreSize(); | 
|  |  | 
|  | if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) | 
|  | return false; | 
|  |  | 
|  | if (Size == 3 || (Size > 4 && (Size % 4 != 0))) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Replace load of an illegal type with a store of a bitcast to a friendlier | 
|  | // type. | 
|  | SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | if (!DCI.isBeforeLegalize()) | 
|  | return SDValue(); | 
|  |  | 
|  | LoadSDNode *LN = cast<LoadSDNode>(N); | 
|  | if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc SL(N); | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | EVT VT = LN->getMemoryVT(); | 
|  |  | 
|  | unsigned Size = VT.getStoreSize(); | 
|  | unsigned Align = LN->getAlignment(); | 
|  | if (Align < Size && isTypeLegal(VT)) { | 
|  | bool IsFast; | 
|  | unsigned AS = LN->getAddressSpace(); | 
|  |  | 
|  | // Expand unaligned loads earlier than legalization. Due to visitation order | 
|  | // problems during legalization, the emitted instructions to pack and unpack | 
|  | // the bytes again are not eliminated in the case of an unaligned copy. | 
|  | if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { | 
|  | if (VT.isVector()) | 
|  | return scalarizeVectorLoad(LN, DAG); | 
|  |  | 
|  | SDValue Ops[2]; | 
|  | std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); | 
|  | return DAG.getMergeValues(Ops, SDLoc(N)); | 
|  | } | 
|  |  | 
|  | if (!IsFast) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | if (!shouldCombineMemoryType(VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); | 
|  |  | 
|  | SDValue NewLoad | 
|  | = DAG.getLoad(NewVT, SL, LN->getChain(), | 
|  | LN->getBasePtr(), LN->getMemOperand()); | 
|  |  | 
|  | SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); | 
|  | DCI.CombineTo(N, BC, NewLoad.getValue(1)); | 
|  | return SDValue(N, 0); | 
|  | } | 
|  |  | 
|  | // Replace store of an illegal type with a store of a bitcast to a friendlier | 
|  | // type. | 
|  | SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | if (!DCI.isBeforeLegalize()) | 
|  | return SDValue(); | 
|  |  | 
|  | StoreSDNode *SN = cast<StoreSDNode>(N); | 
|  | if (SN->isVolatile() || !ISD::isNormalStore(SN)) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = SN->getMemoryVT(); | 
|  | unsigned Size = VT.getStoreSize(); | 
|  |  | 
|  | SDLoc SL(N); | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | unsigned Align = SN->getAlignment(); | 
|  | if (Align < Size && isTypeLegal(VT)) { | 
|  | bool IsFast; | 
|  | unsigned AS = SN->getAddressSpace(); | 
|  |  | 
|  | // Expand unaligned stores earlier than legalization. Due to visitation | 
|  | // order problems during legalization, the emitted instructions to pack and | 
|  | // unpack the bytes again are not eliminated in the case of an unaligned | 
|  | // copy. | 
|  | if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { | 
|  | if (VT.isVector()) | 
|  | return scalarizeVectorStore(SN, DAG); | 
|  |  | 
|  | return expandUnalignedStore(SN, DAG); | 
|  | } | 
|  |  | 
|  | if (!IsFast) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | if (!shouldCombineMemoryType(VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); | 
|  | SDValue Val = SN->getValue(); | 
|  |  | 
|  | //DCI.AddToWorklist(Val.getNode()); | 
|  |  | 
|  | bool OtherUses = !Val.hasOneUse(); | 
|  | SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); | 
|  | if (OtherUses) { | 
|  | SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); | 
|  | DAG.ReplaceAllUsesOfValueWith(Val, CastBack); | 
|  | } | 
|  |  | 
|  | return DAG.getStore(SN->getChain(), SL, CastVal, | 
|  | SN->getBasePtr(), SN->getMemOperand()); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::performClampCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); | 
|  | if (!CSrc) | 
|  | return SDValue(); | 
|  |  | 
|  | const APFloat &F = CSrc->getValueAPF(); | 
|  | APFloat Zero = APFloat::getZero(F.getSemantics()); | 
|  | APFloat::cmpResult Cmp0 = F.compare(Zero); | 
|  | if (Cmp0 == APFloat::cmpLessThan || | 
|  | (Cmp0 == APFloat::cmpUnordered && Subtarget->enableDX10Clamp())) { | 
|  | return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); | 
|  | } | 
|  |  | 
|  | APFloat One(F.getSemantics(), "1.0"); | 
|  | APFloat::cmpResult Cmp1 = F.compare(One); | 
|  | if (Cmp1 == APFloat::cmpGreaterThan) | 
|  | return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); | 
|  |  | 
|  | return SDValue(CSrc, 0); | 
|  | } | 
|  |  | 
|  | // FIXME: This should go in generic DAG combiner with an isTruncateFree check, | 
|  | // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU | 
|  | // issues. | 
|  | SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue N0 = N->getOperand(0); | 
|  |  | 
|  | // (vt2 (assertzext (truncate vt0:x), vt1)) -> | 
|  | //     (vt2 (truncate (assertzext vt0:x, vt1))) | 
|  | if (N0.getOpcode() == ISD::TRUNCATE) { | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT ExtVT = cast<VTSDNode>(N1)->getVT(); | 
|  | SDLoc SL(N); | 
|  |  | 
|  | SDValue Src = N0.getOperand(0); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | if (SrcVT.bitsGE(ExtVT)) { | 
|  | SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); | 
|  | return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  | /// Split the 64-bit value \p LHS into two 32-bit components, and perform the | 
|  | /// binary operation \p Opc to it with the corresponding constant operands. | 
|  | SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( | 
|  | DAGCombinerInfo &DCI, const SDLoc &SL, | 
|  | unsigned Opc, SDValue LHS, | 
|  | uint32_t ValLo, uint32_t ValHi) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue Lo, Hi; | 
|  | std::tie(Lo, Hi) = split64BitValue(LHS, DAG); | 
|  |  | 
|  | SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); | 
|  | SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); | 
|  |  | 
|  | SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); | 
|  | SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); | 
|  |  | 
|  | // Re-visit the ands. It's possible we eliminated one of them and it could | 
|  | // simplify the vector. | 
|  | DCI.AddToWorklist(Lo.getNode()); | 
|  | DCI.AddToWorklist(Hi.getNode()); | 
|  |  | 
|  | SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); | 
|  | return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | if (!RHS) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue LHS = N->getOperand(0); | 
|  | unsigned RHSVal = RHS->getZExtValue(); | 
|  | if (!RHSVal) | 
|  | return LHS; | 
|  |  | 
|  | SDLoc SL(N); | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  |  | 
|  | switch (LHS->getOpcode()) { | 
|  | default: | 
|  | break; | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ANY_EXTEND: { | 
|  | SDValue X = LHS->getOperand(0); | 
|  |  | 
|  | if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && | 
|  | isTypeLegal(MVT::v2i16)) { | 
|  | // Prefer build_vector as the canonical form if packed types are legal. | 
|  | // (shl ([asz]ext i16:x), 16 -> build_vector 0, x | 
|  | SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, | 
|  | { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); | 
|  | return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); | 
|  | } | 
|  |  | 
|  | // shl (ext x) => zext (shl x), if shift does not overflow int | 
|  | if (VT != MVT::i64) | 
|  | break; | 
|  | KnownBits Known; | 
|  | DAG.computeKnownBits(X, Known); | 
|  | unsigned LZ = Known.countMinLeadingZeros(); | 
|  | if (LZ < RHSVal) | 
|  | break; | 
|  | EVT XVT = X.getValueType(); | 
|  | SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); | 
|  | return DAG.getZExtOrTrunc(Shl, SL, VT); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VT != MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) | 
|  |  | 
|  | // On some subtargets, 64-bit shift is a quarter rate instruction. In the | 
|  | // common case, splitting this into a move and a 32-bit shift is faster and | 
|  | // the same code size. | 
|  | if (RHSVal < 32) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); | 
|  |  | 
|  | SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); | 
|  | SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); | 
|  |  | 
|  | const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); | 
|  |  | 
|  | SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); | 
|  | return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | if (N->getValueType(0) != MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | if (!RHS) | 
|  | return SDValue(); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc SL(N); | 
|  | unsigned RHSVal = RHS->getZExtValue(); | 
|  |  | 
|  | // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) | 
|  | if (RHSVal == 32) { | 
|  | SDValue Hi = getHiHalf64(N->getOperand(0), DAG); | 
|  | SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, | 
|  | DAG.getConstant(31, SL, MVT::i32)); | 
|  |  | 
|  | SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); | 
|  | return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); | 
|  | } | 
|  |  | 
|  | // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) | 
|  | if (RHSVal == 63) { | 
|  | SDValue Hi = getHiHalf64(N->getOperand(0), DAG); | 
|  | SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, | 
|  | DAG.getConstant(31, SL, MVT::i32)); | 
|  | SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); | 
|  | return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | if (N->getValueType(0) != MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | if (!RHS) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned ShiftAmt = RHS->getZExtValue(); | 
|  | if (ShiftAmt < 32) | 
|  | return SDValue(); | 
|  |  | 
|  | // srl i64:x, C for C >= 32 | 
|  | // => | 
|  | //   build_pair (srl hi_32(x), C - 32), 0 | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc SL(N); | 
|  |  | 
|  | SDValue One = DAG.getConstant(1, SL, MVT::i32); | 
|  | SDValue Zero = DAG.getConstant(0, SL, MVT::i32); | 
|  |  | 
|  | SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); | 
|  | SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, | 
|  | VecOp, One); | 
|  |  | 
|  | SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); | 
|  | SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); | 
|  |  | 
|  | SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::performTruncateCombine( | 
|  | SDNode *N, DAGCombinerInfo &DCI) const { | 
|  | SDLoc SL(N); | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue Src = N->getOperand(0); | 
|  |  | 
|  | // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) | 
|  | if (Src.getOpcode() == ISD::BITCAST) { | 
|  | SDValue Vec = Src.getOperand(0); | 
|  | if (Vec.getOpcode() == ISD::BUILD_VECTOR) { | 
|  | SDValue Elt0 = Vec.getOperand(0); | 
|  | EVT EltVT = Elt0.getValueType(); | 
|  | if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { | 
|  | if (EltVT.isFloatingPoint()) { | 
|  | Elt0 = DAG.getNode(ISD::BITCAST, SL, | 
|  | EltVT.changeTypeToInteger(), Elt0); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Equivalent of above for accessing the high element of a vector as an | 
|  | // integer operation. | 
|  | // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) | 
|  | if (Src.getOpcode() == ISD::SRL) { | 
|  | if (auto K = isConstOrConstSplat(Src.getOperand(1))) { | 
|  | if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { | 
|  | SDValue BV = stripBitcast(Src.getOperand(0)); | 
|  | if (BV.getOpcode() == ISD::BUILD_VECTOR && | 
|  | BV.getValueType().getVectorNumElements() == 2) { | 
|  | SDValue SrcElt = BV.getOperand(1); | 
|  | EVT SrcEltVT = SrcElt.getValueType(); | 
|  | if (SrcEltVT.isFloatingPoint()) { | 
|  | SrcElt = DAG.getNode(ISD::BITCAST, SL, | 
|  | SrcEltVT.changeTypeToInteger(), SrcElt); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. | 
|  | // | 
|  | // i16 (trunc (srl i64:x, K)), K <= 16 -> | 
|  | //     i16 (trunc (srl (i32 (trunc x), K))) | 
|  | if (VT.getScalarSizeInBits() < 32) { | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | if (SrcVT.getScalarSizeInBits() > 32 && | 
|  | (Src.getOpcode() == ISD::SRL || | 
|  | Src.getOpcode() == ISD::SRA || | 
|  | Src.getOpcode() == ISD::SHL)) { | 
|  | SDValue Amt = Src.getOperand(1); | 
|  | KnownBits Known; | 
|  | DAG.computeKnownBits(Amt, Known); | 
|  | unsigned Size = VT.getScalarSizeInBits(); | 
|  | if ((Known.isConstant() && Known.getConstant().ule(Size)) || | 
|  | (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { | 
|  | EVT MidVT = VT.isVector() ? | 
|  | EVT::getVectorVT(*DAG.getContext(), MVT::i32, | 
|  | VT.getVectorNumElements()) : MVT::i32; | 
|  |  | 
|  | EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, | 
|  | Src.getOperand(0)); | 
|  | DCI.AddToWorklist(Trunc.getNode()); | 
|  |  | 
|  | if (Amt.getValueType() != NewShiftVT) { | 
|  | Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); | 
|  | DCI.AddToWorklist(Amt.getNode()); | 
|  | } | 
|  |  | 
|  | SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, | 
|  | Trunc, Amt); | 
|  | return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // We need to specifically handle i64 mul here to avoid unnecessary conversion | 
|  | // instructions. If we only match on the legalized i64 mul expansion, | 
|  | // SimplifyDemandedBits will be unable to remove them because there will be | 
|  | // multiple uses due to the separate mul + mulh[su]. | 
|  | static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, | 
|  | SDValue N0, SDValue N1, unsigned Size, bool Signed) { | 
|  | if (Size <= 32) { | 
|  | unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; | 
|  | return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); | 
|  | } | 
|  |  | 
|  | // Because we want to eliminate extension instructions before the | 
|  | // operation, we need to create a single user here (i.e. not the separate | 
|  | // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. | 
|  |  | 
|  | unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; | 
|  |  | 
|  | SDValue Mul = DAG.getNode(MulOpc, SL, | 
|  | DAG.getVTList(MVT::i32, MVT::i32), N0, N1); | 
|  |  | 
|  | return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, | 
|  | Mul.getValue(0), Mul.getValue(1)); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | unsigned Size = VT.getSizeInBits(); | 
|  | if (VT.isVector() || Size > 64) | 
|  | return SDValue(); | 
|  |  | 
|  | // There are i16 integer mul/mad. | 
|  | if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) | 
|  | return SDValue(); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc DL(N); | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  |  | 
|  | // SimplifyDemandedBits has the annoying habit of turning useful zero_extends | 
|  | // in the source into any_extends if the result of the mul is truncated. Since | 
|  | // we can assume the high bits are whatever we want, use the underlying value | 
|  | // to avoid the unknown high bits from interfering. | 
|  | if (N0.getOpcode() == ISD::ANY_EXTEND) | 
|  | N0 = N0.getOperand(0); | 
|  |  | 
|  | if (N1.getOpcode() == ISD::ANY_EXTEND) | 
|  | N1 = N1.getOperand(0); | 
|  |  | 
|  | SDValue Mul; | 
|  |  | 
|  | if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { | 
|  | N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); | 
|  | N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); | 
|  | Mul = getMul24(DAG, DL, N0, N1, Size, false); | 
|  | } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { | 
|  | N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); | 
|  | N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); | 
|  | Mul = getMul24(DAG, DL, N0, N1, Size, true); | 
|  | } else { | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // We need to use sext even for MUL_U24, because MUL_U24 is used | 
|  | // for signed multiply of 8 and 16-bit types. | 
|  | return DAG.getSExtOrTrunc(Mul, DL, VT); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (!Subtarget->hasMulI24() || VT.isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc DL(N); | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  |  | 
|  | if (!isI24(N0, DAG) || !isI24(N1, DAG)) | 
|  | return SDValue(); | 
|  |  | 
|  | N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); | 
|  | N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); | 
|  |  | 
|  | SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); | 
|  | DCI.AddToWorklist(Mulhi.getNode()); | 
|  | return DAG.getSExtOrTrunc(Mulhi, DL, VT); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) | 
|  | return SDValue(); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc DL(N); | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  |  | 
|  | if (!isU24(N0, DAG) || !isU24(N1, DAG)) | 
|  | return SDValue(); | 
|  |  | 
|  | N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); | 
|  | N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); | 
|  |  | 
|  | SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); | 
|  | DCI.AddToWorklist(Mulhi.getNode()); | 
|  | return DAG.getZExtOrTrunc(Mulhi, DL, VT); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::performMulLoHi24Combine( | 
|  | SDNode *N, DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  |  | 
|  | // Simplify demanded bits before splitting into multiple users. | 
|  | if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  |  | 
|  | bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); | 
|  |  | 
|  | unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; | 
|  | unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; | 
|  |  | 
|  | SDLoc SL(N); | 
|  |  | 
|  | SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); | 
|  | SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); | 
|  | return DAG.getMergeValues({ MulLo, MulHi }, SL); | 
|  | } | 
|  |  | 
|  | static bool isNegativeOne(SDValue Val) { | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) | 
|  | return C->isAllOnesValue(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, | 
|  | SDValue Op, | 
|  | const SDLoc &DL, | 
|  | unsigned Opc) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); | 
|  | if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && | 
|  | LegalVT != MVT::i16)) | 
|  | return SDValue(); | 
|  |  | 
|  | if (VT != MVT::i32) | 
|  | Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); | 
|  |  | 
|  | SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); | 
|  | if (VT != MVT::i32) | 
|  | FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); | 
|  |  | 
|  | return FFBX; | 
|  | } | 
|  |  | 
|  | // The native instructions return -1 on 0 input. Optimize out a select that | 
|  | // produces -1 on 0. | 
|  | // | 
|  | // TODO: If zero is not undef, we could also do this if the output is compared | 
|  | // against the bitwidth. | 
|  | // | 
|  | // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. | 
|  | SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, | 
|  | SDValue LHS, SDValue RHS, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); | 
|  | if (!CmpRhs || !CmpRhs->isNullValue()) | 
|  | return SDValue(); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); | 
|  | SDValue CmpLHS = Cond.getOperand(0); | 
|  |  | 
|  | unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : | 
|  | AMDGPUISD::FFBH_U32; | 
|  |  | 
|  | // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x | 
|  | // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x | 
|  | if (CCOpcode == ISD::SETEQ && | 
|  | (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && | 
|  | RHS.getOperand(0) == CmpLHS && | 
|  | isNegativeOne(LHS)) { | 
|  | return getFFBX_U32(DAG, CmpLHS, SL, Opc); | 
|  | } | 
|  |  | 
|  | // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x | 
|  | // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x | 
|  | if (CCOpcode == ISD::SETNE && | 
|  | (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && | 
|  | LHS.getOperand(0) == CmpLHS && | 
|  | isNegativeOne(RHS)) { | 
|  | return getFFBX_U32(DAG, CmpLHS, SL, Opc); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, | 
|  | unsigned Op, | 
|  | const SDLoc &SL, | 
|  | SDValue Cond, | 
|  | SDValue N1, | 
|  | SDValue N2) { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | EVT VT = N1.getValueType(); | 
|  |  | 
|  | SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, | 
|  | N1.getOperand(0), N2.getOperand(0)); | 
|  | DCI.AddToWorklist(NewSelect.getNode()); | 
|  | return DAG.getNode(Op, SL, VT, NewSelect); | 
|  | } | 
|  |  | 
|  | // Pull a free FP operation out of a select so it may fold into uses. | 
|  | // | 
|  | // select c, (fneg x), (fneg y) -> fneg (select c, x, y) | 
|  | // select c, (fneg x), k -> fneg (select c, x, (fneg k)) | 
|  | // | 
|  | // select c, (fabs x), (fabs y) -> fabs (select c, x, y) | 
|  | // select c, (fabs x), +k -> fabs (select c, x, k) | 
|  | static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, | 
|  | SDValue N) { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue Cond = N.getOperand(0); | 
|  | SDValue LHS = N.getOperand(1); | 
|  | SDValue RHS = N.getOperand(2); | 
|  |  | 
|  | EVT VT = N.getValueType(); | 
|  | if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || | 
|  | (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { | 
|  | return distributeOpThroughSelect(DCI, LHS.getOpcode(), | 
|  | SDLoc(N), Cond, LHS, RHS); | 
|  | } | 
|  |  | 
|  | bool Inv = false; | 
|  | if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { | 
|  | std::swap(LHS, RHS); | 
|  | Inv = true; | 
|  | } | 
|  |  | 
|  | // TODO: Support vector constants. | 
|  | ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); | 
|  | if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { | 
|  | SDLoc SL(N); | 
|  | // If one side is an fneg/fabs and the other is a constant, we can push the | 
|  | // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. | 
|  | SDValue NewLHS = LHS.getOperand(0); | 
|  | SDValue NewRHS = RHS; | 
|  |  | 
|  | // Careful: if the neg can be folded up, don't try to pull it back down. | 
|  | bool ShouldFoldNeg = true; | 
|  |  | 
|  | if (NewLHS.hasOneUse()) { | 
|  | unsigned Opc = NewLHS.getOpcode(); | 
|  | if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) | 
|  | ShouldFoldNeg = false; | 
|  | if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) | 
|  | ShouldFoldNeg = false; | 
|  | } | 
|  |  | 
|  | if (ShouldFoldNeg) { | 
|  | if (LHS.getOpcode() == ISD::FNEG) | 
|  | NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); | 
|  | else if (CRHS->isNegative()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Inv) | 
|  | std::swap(NewLHS, NewRHS); | 
|  |  | 
|  | SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, | 
|  | Cond, NewLHS, NewRHS); | 
|  | DCI.AddToWorklist(NewSelect.getNode()); | 
|  | return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) | 
|  | return Folded; | 
|  |  | 
|  | SDValue Cond = N->getOperand(0); | 
|  | if (Cond.getOpcode() != ISD::SETCC) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue LHS = Cond.getOperand(0); | 
|  | SDValue RHS = Cond.getOperand(1); | 
|  | SDValue CC = Cond.getOperand(2); | 
|  |  | 
|  | SDValue True = N->getOperand(1); | 
|  | SDValue False = N->getOperand(2); | 
|  |  | 
|  | if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | if ((DAG.isConstantValueOfAnyType(True) || | 
|  | DAG.isConstantValueOfAnyType(True)) && | 
|  | (!DAG.isConstantValueOfAnyType(False) && | 
|  | !DAG.isConstantValueOfAnyType(False))) { | 
|  | // Swap cmp + select pair to move constant to false input. | 
|  | // This will allow using VOPC cndmasks more often. | 
|  | // select (setcc x, y), k, x -> select (setcc y, x) x, x | 
|  |  | 
|  | SDLoc SL(N); | 
|  | ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), | 
|  | LHS.getValueType().isInteger()); | 
|  |  | 
|  | SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); | 
|  | return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); | 
|  | } | 
|  |  | 
|  | if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { | 
|  | SDValue MinMax | 
|  | = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); | 
|  | // Revisit this node so we can catch min3/max3/med3 patterns. | 
|  | //DCI.AddToWorklist(MinMax.getNode()); | 
|  | return MinMax; | 
|  | } | 
|  | } | 
|  |  | 
|  | // There's no reason to not do this if the condition has other uses. | 
|  | return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); | 
|  | } | 
|  |  | 
|  | static bool isConstantFPZero(SDValue N) { | 
|  | if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) | 
|  | return C->isZero() && !C->isNegative(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static unsigned inverseMinMax(unsigned Opc) { | 
|  | switch (Opc) { | 
|  | case ISD::FMAXNUM: | 
|  | return ISD::FMINNUM; | 
|  | case ISD::FMINNUM: | 
|  | return ISD::FMAXNUM; | 
|  | case AMDGPUISD::FMAX_LEGACY: | 
|  | return AMDGPUISD::FMIN_LEGACY; | 
|  | case AMDGPUISD::FMIN_LEGACY: | 
|  | return  AMDGPUISD::FMAX_LEGACY; | 
|  | default: | 
|  | llvm_unreachable("invalid min/max opcode"); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | unsigned Opc = N0.getOpcode(); | 
|  |  | 
|  | // If the input has multiple uses and we can either fold the negate down, or | 
|  | // the other uses cannot, give up. This both prevents unprofitable | 
|  | // transformations and infinite loops: we won't repeatedly try to fold around | 
|  | // a negate that has no 'good' form. | 
|  | if (N0.hasOneUse()) { | 
|  | // This may be able to fold into the source, but at a code size cost. Don't | 
|  | // fold if the fold into the user is free. | 
|  | if (allUsesHaveSourceMods(N, 0)) | 
|  | return SDValue(); | 
|  | } else { | 
|  | if (fnegFoldsIntoOp(Opc) && | 
|  | (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDLoc SL(N); | 
|  | switch (Opc) { | 
|  | case ISD::FADD: { | 
|  | if (!mayIgnoreSignedZero(N0)) | 
|  | return SDValue(); | 
|  |  | 
|  | // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) | 
|  | SDValue LHS = N0.getOperand(0); | 
|  | SDValue RHS = N0.getOperand(1); | 
|  |  | 
|  | if (LHS.getOpcode() != ISD::FNEG) | 
|  | LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); | 
|  | else | 
|  | LHS = LHS.getOperand(0); | 
|  |  | 
|  | if (RHS.getOpcode() != ISD::FNEG) | 
|  | RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); | 
|  | else | 
|  | RHS = RHS.getOperand(0); | 
|  |  | 
|  | SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); | 
|  | if (!N0.hasOneUse()) | 
|  | DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); | 
|  | return Res; | 
|  | } | 
|  | case ISD::FMUL: | 
|  | case AMDGPUISD::FMUL_LEGACY: { | 
|  | // (fneg (fmul x, y)) -> (fmul x, (fneg y)) | 
|  | // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) | 
|  | SDValue LHS = N0.getOperand(0); | 
|  | SDValue RHS = N0.getOperand(1); | 
|  |  | 
|  | if (LHS.getOpcode() == ISD::FNEG) | 
|  | LHS = LHS.getOperand(0); | 
|  | else if (RHS.getOpcode() == ISD::FNEG) | 
|  | RHS = RHS.getOperand(0); | 
|  | else | 
|  | RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); | 
|  |  | 
|  | SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); | 
|  | if (!N0.hasOneUse()) | 
|  | DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); | 
|  | return Res; | 
|  | } | 
|  | case ISD::FMA: | 
|  | case ISD::FMAD: { | 
|  | if (!mayIgnoreSignedZero(N0)) | 
|  | return SDValue(); | 
|  |  | 
|  | // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) | 
|  | SDValue LHS = N0.getOperand(0); | 
|  | SDValue MHS = N0.getOperand(1); | 
|  | SDValue RHS = N0.getOperand(2); | 
|  |  | 
|  | if (LHS.getOpcode() == ISD::FNEG) | 
|  | LHS = LHS.getOperand(0); | 
|  | else if (MHS.getOpcode() == ISD::FNEG) | 
|  | MHS = MHS.getOperand(0); | 
|  | else | 
|  | MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); | 
|  |  | 
|  | if (RHS.getOpcode() != ISD::FNEG) | 
|  | RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); | 
|  | else | 
|  | RHS = RHS.getOperand(0); | 
|  |  | 
|  | SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); | 
|  | if (!N0.hasOneUse()) | 
|  | DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); | 
|  | return Res; | 
|  | } | 
|  | case ISD::FMAXNUM: | 
|  | case ISD::FMINNUM: | 
|  | case AMDGPUISD::FMAX_LEGACY: | 
|  | case AMDGPUISD::FMIN_LEGACY: { | 
|  | // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) | 
|  | // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) | 
|  | // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) | 
|  | // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) | 
|  |  | 
|  | SDValue LHS = N0.getOperand(0); | 
|  | SDValue RHS = N0.getOperand(1); | 
|  |  | 
|  | // 0 doesn't have a negated inline immediate. | 
|  | // TODO: Shouldn't fold 1/2pi either, and should be generalized to other | 
|  | // operations. | 
|  | if (isConstantFPZero(RHS)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); | 
|  | SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); | 
|  | unsigned Opposite = inverseMinMax(Opc); | 
|  |  | 
|  | SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); | 
|  | if (!N0.hasOneUse()) | 
|  | DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); | 
|  | return Res; | 
|  | } | 
|  | case ISD::FP_EXTEND: | 
|  | case ISD::FTRUNC: | 
|  | case ISD::FRINT: | 
|  | case ISD::FNEARBYINT: // XXX - Should fround be handled? | 
|  | case ISD::FSIN: | 
|  | case AMDGPUISD::RCP: | 
|  | case AMDGPUISD::RCP_LEGACY: | 
|  | case AMDGPUISD::SIN_HW: { | 
|  | SDValue CvtSrc = N0.getOperand(0); | 
|  | if (CvtSrc.getOpcode() == ISD::FNEG) { | 
|  | // (fneg (fp_extend (fneg x))) -> (fp_extend x) | 
|  | // (fneg (rcp (fneg x))) -> (rcp x) | 
|  | return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); | 
|  | } | 
|  |  | 
|  | if (!N0.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | // (fneg (fp_extend x)) -> (fp_extend (fneg x)) | 
|  | // (fneg (rcp x)) -> (rcp (fneg x)) | 
|  | SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); | 
|  | return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); | 
|  | } | 
|  | case ISD::FP_ROUND: { | 
|  | SDValue CvtSrc = N0.getOperand(0); | 
|  |  | 
|  | if (CvtSrc.getOpcode() == ISD::FNEG) { | 
|  | // (fneg (fp_round (fneg x))) -> (fp_round x) | 
|  | return DAG.getNode(ISD::FP_ROUND, SL, VT, | 
|  | CvtSrc.getOperand(0), N0.getOperand(1)); | 
|  | } | 
|  |  | 
|  | if (!N0.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | // (fneg (fp_round x)) -> (fp_round (fneg x)) | 
|  | SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); | 
|  | return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); | 
|  | } | 
|  | case ISD::FP16_TO_FP: { | 
|  | // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal | 
|  | // f16, but legalization of f16 fneg ends up pulling it out of the source. | 
|  | // Put the fneg back as a legal source operation that can be matched later. | 
|  | SDLoc SL(N); | 
|  |  | 
|  | SDValue Src = N0.getOperand(0); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  |  | 
|  | // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) | 
|  | SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, | 
|  | DAG.getConstant(0x8000, SL, SrcVT)); | 
|  | return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); | 
|  | } | 
|  | default: | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue N0 = N->getOperand(0); | 
|  |  | 
|  | if (!N0.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | switch (N0.getOpcode()) { | 
|  | case ISD::FP16_TO_FP: { | 
|  | assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); | 
|  | SDLoc SL(N); | 
|  | SDValue Src = N0.getOperand(0); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  |  | 
|  | // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) | 
|  | SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, | 
|  | DAG.getConstant(0x7fff, SL, SrcVT)); | 
|  | return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); | 
|  | } | 
|  | default: | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc DL(N); | 
|  |  | 
|  | switch(N->getOpcode()) { | 
|  | default: | 
|  | break; | 
|  | case ISD::BITCAST: { | 
|  | EVT DestVT = N->getValueType(0); | 
|  |  | 
|  | // Push casts through vector builds. This helps avoid emitting a large | 
|  | // number of copies when materializing floating point vector constants. | 
|  | // | 
|  | // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => | 
|  | //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) | 
|  | if (DestVT.isVector()) { | 
|  | SDValue Src = N->getOperand(0); | 
|  | if (Src.getOpcode() == ISD::BUILD_VECTOR) { | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | unsigned NElts = DestVT.getVectorNumElements(); | 
|  |  | 
|  | if (SrcVT.getVectorNumElements() == NElts) { | 
|  | EVT DestEltVT = DestVT.getVectorElementType(); | 
|  |  | 
|  | SmallVector<SDValue, 8> CastedElts; | 
|  | SDLoc SL(N); | 
|  | for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { | 
|  | SDValue Elt = Src.getOperand(I); | 
|  | CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); | 
|  | } | 
|  |  | 
|  | return DAG.getBuildVector(DestVT, SL, CastedElts); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) | 
|  | break; | 
|  |  | 
|  | // Fold bitcasts of constants. | 
|  | // | 
|  | // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) | 
|  | // TODO: Generalize and move to DAGCombiner | 
|  | SDValue Src = N->getOperand(0); | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { | 
|  | assert(Src.getValueType() == MVT::i64); | 
|  | SDLoc SL(N); | 
|  | uint64_t CVal = C->getZExtValue(); | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, | 
|  | DAG.getConstant(Lo_32(CVal), SL, MVT::i32), | 
|  | DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); | 
|  | } | 
|  |  | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { | 
|  | const APInt &Val = C->getValueAPF().bitcastToAPInt(); | 
|  | SDLoc SL(N); | 
|  | uint64_t CVal = Val.getZExtValue(); | 
|  | SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, | 
|  | DAG.getConstant(Lo_32(CVal), SL, MVT::i32), | 
|  | DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | case ISD::SHL: { | 
|  | if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) | 
|  | break; | 
|  |  | 
|  | return performShlCombine(N, DCI); | 
|  | } | 
|  | case ISD::SRL: { | 
|  | if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) | 
|  | break; | 
|  |  | 
|  | return performSrlCombine(N, DCI); | 
|  | } | 
|  | case ISD::SRA: { | 
|  | if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) | 
|  | break; | 
|  |  | 
|  | return performSraCombine(N, DCI); | 
|  | } | 
|  | case ISD::TRUNCATE: | 
|  | return performTruncateCombine(N, DCI); | 
|  | case ISD::MUL: | 
|  | return performMulCombine(N, DCI); | 
|  | case ISD::MULHS: | 
|  | return performMulhsCombine(N, DCI); | 
|  | case ISD::MULHU: | 
|  | return performMulhuCombine(N, DCI); | 
|  | case AMDGPUISD::MUL_I24: | 
|  | case AMDGPUISD::MUL_U24: | 
|  | case AMDGPUISD::MULHI_I24: | 
|  | case AMDGPUISD::MULHI_U24: { | 
|  | // If the first call to simplify is successfull, then N may end up being | 
|  | // deleted, so we shouldn't call simplifyI24 again. | 
|  | simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI); | 
|  | return SDValue(); | 
|  | } | 
|  | case AMDGPUISD::MUL_LOHI_I24: | 
|  | case AMDGPUISD::MUL_LOHI_U24: | 
|  | return performMulLoHi24Combine(N, DCI); | 
|  | case ISD::SELECT: | 
|  | return performSelectCombine(N, DCI); | 
|  | case ISD::FNEG: | 
|  | return performFNegCombine(N, DCI); | 
|  | case ISD::FABS: | 
|  | return performFAbsCombine(N, DCI); | 
|  | case AMDGPUISD::BFE_I32: | 
|  | case AMDGPUISD::BFE_U32: { | 
|  | assert(!N->getValueType(0).isVector() && | 
|  | "Vector handling of BFE not implemented"); | 
|  | ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); | 
|  | if (!Width) | 
|  | break; | 
|  |  | 
|  | uint32_t WidthVal = Width->getZExtValue() & 0x1f; | 
|  | if (WidthVal == 0) | 
|  | return DAG.getConstant(0, DL, MVT::i32); | 
|  |  | 
|  | ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | if (!Offset) | 
|  | break; | 
|  |  | 
|  | SDValue BitsFrom = N->getOperand(0); | 
|  | uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; | 
|  |  | 
|  | bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; | 
|  |  | 
|  | if (OffsetVal == 0) { | 
|  | // This is already sign / zero extended, so try to fold away extra BFEs. | 
|  | unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal); | 
|  |  | 
|  | unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); | 
|  | if (OpSignBits >= SignBits) | 
|  | return BitsFrom; | 
|  |  | 
|  | EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); | 
|  | if (Signed) { | 
|  | // This is a sign_extend_inreg. Replace it to take advantage of existing | 
|  | // DAG Combines. If not eliminated, we will match back to BFE during | 
|  | // selection. | 
|  |  | 
|  | // TODO: The sext_inreg of extended types ends, although we can could | 
|  | // handle them in a single BFE. | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, | 
|  | DAG.getValueType(SmallVT)); | 
|  | } | 
|  |  | 
|  | return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); | 
|  | } | 
|  |  | 
|  | if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { | 
|  | if (Signed) { | 
|  | return constantFoldBFE<int32_t>(DAG, | 
|  | CVal->getSExtValue(), | 
|  | OffsetVal, | 
|  | WidthVal, | 
|  | DL); | 
|  | } | 
|  |  | 
|  | return constantFoldBFE<uint32_t>(DAG, | 
|  | CVal->getZExtValue(), | 
|  | OffsetVal, | 
|  | WidthVal, | 
|  | DL); | 
|  | } | 
|  |  | 
|  | if ((OffsetVal + WidthVal) >= 32 && | 
|  | !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { | 
|  | SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); | 
|  | return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, | 
|  | BitsFrom, ShiftVal); | 
|  | } | 
|  |  | 
|  | if (BitsFrom.hasOneUse()) { | 
|  | APInt Demanded = APInt::getBitsSet(32, | 
|  | OffsetVal, | 
|  | OffsetVal + WidthVal); | 
|  |  | 
|  | KnownBits Known; | 
|  | TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), | 
|  | !DCI.isBeforeLegalizeOps()); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || | 
|  | TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { | 
|  | DCI.CommitTargetLoweringOpt(TLO); | 
|  | } | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | case ISD::LOAD: | 
|  | return performLoadCombine(N, DCI); | 
|  | case ISD::STORE: | 
|  | return performStoreCombine(N, DCI); | 
|  | case AMDGPUISD::CLAMP: | 
|  | return performClampCombine(N, DCI); | 
|  | case AMDGPUISD::RCP: { | 
|  | if (const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { | 
|  | // XXX - Should this flush denormals? | 
|  | const APFloat &Val = CFP->getValueAPF(); | 
|  | APFloat One(Val.getSemantics(), "1.0"); | 
|  | return DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | case ISD::AssertZext: | 
|  | case ISD::AssertSext: | 
|  | return performAssertSZExtCombine(N, DCI); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Helper functions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, | 
|  | const TargetRegisterClass *RC, | 
|  | unsigned Reg, EVT VT, | 
|  | const SDLoc &SL, | 
|  | bool RawReg) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | unsigned VReg; | 
|  |  | 
|  | if (!MRI.isLiveIn(Reg)) { | 
|  | VReg = MRI.createVirtualRegister(RC); | 
|  | MRI.addLiveIn(Reg, VReg); | 
|  | } else { | 
|  | VReg = MRI.getLiveInVirtReg(Reg); | 
|  | } | 
|  |  | 
|  | if (RawReg) | 
|  | return DAG.getRegister(VReg, VT); | 
|  |  | 
|  | return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, | 
|  | EVT VT, | 
|  | const SDLoc &SL, | 
|  | int64_t Offset) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  |  | 
|  | int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true); | 
|  | auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); | 
|  | SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); | 
|  |  | 
|  | return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, | 
|  | MachineMemOperand::MODereferenceable | | 
|  | MachineMemOperand::MOInvariant); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, | 
|  | const SDLoc &SL, | 
|  | SDValue Chain, | 
|  | SDValue StackPtr, | 
|  | SDValue ArgVal, | 
|  | int64_t Offset) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); | 
|  |  | 
|  | SDValue Ptr = DAG.getObjectPtrOffset(SL, StackPtr, Offset); | 
|  | SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, | 
|  | MachineMemOperand::MODereferenceable); | 
|  | return Store; | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, | 
|  | const TargetRegisterClass *RC, | 
|  | EVT VT, const SDLoc &SL, | 
|  | const ArgDescriptor &Arg) const { | 
|  | assert(Arg && "Attempting to load missing argument"); | 
|  |  | 
|  | if (Arg.isRegister()) | 
|  | return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL); | 
|  | return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); | 
|  | } | 
|  |  | 
|  | uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( | 
|  | const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { | 
|  | unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr(); | 
|  | uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment); | 
|  | switch (Param) { | 
|  | case GRID_DIM: | 
|  | return ArgOffset; | 
|  | case GRID_OFFSET: | 
|  | return ArgOffset + 4; | 
|  | } | 
|  | llvm_unreachable("unexpected implicit parameter type"); | 
|  | } | 
|  |  | 
|  | #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; | 
|  |  | 
|  | const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { | 
|  | switch ((AMDGPUISD::NodeType)Opcode) { | 
|  | case AMDGPUISD::FIRST_NUMBER: break; | 
|  | // AMDIL DAG nodes | 
|  | NODE_NAME_CASE(UMUL); | 
|  | NODE_NAME_CASE(BRANCH_COND); | 
|  |  | 
|  | // AMDGPU DAG nodes | 
|  | NODE_NAME_CASE(IF) | 
|  | NODE_NAME_CASE(ELSE) | 
|  | NODE_NAME_CASE(LOOP) | 
|  | NODE_NAME_CASE(CALL) | 
|  | NODE_NAME_CASE(TC_RETURN) | 
|  | NODE_NAME_CASE(TRAP) | 
|  | NODE_NAME_CASE(RET_FLAG) | 
|  | NODE_NAME_CASE(RETURN_TO_EPILOG) | 
|  | NODE_NAME_CASE(ENDPGM) | 
|  | NODE_NAME_CASE(DWORDADDR) | 
|  | NODE_NAME_CASE(FRACT) | 
|  | NODE_NAME_CASE(SETCC) | 
|  | NODE_NAME_CASE(SETREG) | 
|  | NODE_NAME_CASE(FMA_W_CHAIN) | 
|  | NODE_NAME_CASE(FMUL_W_CHAIN) | 
|  | NODE_NAME_CASE(CLAMP) | 
|  | NODE_NAME_CASE(COS_HW) | 
|  | NODE_NAME_CASE(SIN_HW) | 
|  | NODE_NAME_CASE(FMAX_LEGACY) | 
|  | NODE_NAME_CASE(FMIN_LEGACY) | 
|  | NODE_NAME_CASE(FMAX3) | 
|  | NODE_NAME_CASE(SMAX3) | 
|  | NODE_NAME_CASE(UMAX3) | 
|  | NODE_NAME_CASE(FMIN3) | 
|  | NODE_NAME_CASE(SMIN3) | 
|  | NODE_NAME_CASE(UMIN3) | 
|  | NODE_NAME_CASE(FMED3) | 
|  | NODE_NAME_CASE(SMED3) | 
|  | NODE_NAME_CASE(UMED3) | 
|  | NODE_NAME_CASE(URECIP) | 
|  | NODE_NAME_CASE(DIV_SCALE) | 
|  | NODE_NAME_CASE(DIV_FMAS) | 
|  | NODE_NAME_CASE(DIV_FIXUP) | 
|  | NODE_NAME_CASE(FMAD_FTZ) | 
|  | NODE_NAME_CASE(TRIG_PREOP) | 
|  | NODE_NAME_CASE(RCP) | 
|  | NODE_NAME_CASE(RSQ) | 
|  | NODE_NAME_CASE(RCP_LEGACY) | 
|  | NODE_NAME_CASE(RSQ_LEGACY) | 
|  | NODE_NAME_CASE(FMUL_LEGACY) | 
|  | NODE_NAME_CASE(RSQ_CLAMP) | 
|  | NODE_NAME_CASE(LDEXP) | 
|  | NODE_NAME_CASE(FP_CLASS) | 
|  | NODE_NAME_CASE(DOT4) | 
|  | NODE_NAME_CASE(CARRY) | 
|  | NODE_NAME_CASE(BORROW) | 
|  | NODE_NAME_CASE(BFE_U32) | 
|  | NODE_NAME_CASE(BFE_I32) | 
|  | NODE_NAME_CASE(BFI) | 
|  | NODE_NAME_CASE(BFM) | 
|  | NODE_NAME_CASE(FFBH_U32) | 
|  | NODE_NAME_CASE(FFBH_I32) | 
|  | NODE_NAME_CASE(FFBL_B32) | 
|  | NODE_NAME_CASE(MUL_U24) | 
|  | NODE_NAME_CASE(MUL_I24) | 
|  | NODE_NAME_CASE(MULHI_U24) | 
|  | NODE_NAME_CASE(MULHI_I24) | 
|  | NODE_NAME_CASE(MUL_LOHI_U24) | 
|  | NODE_NAME_CASE(MUL_LOHI_I24) | 
|  | NODE_NAME_CASE(MAD_U24) | 
|  | NODE_NAME_CASE(MAD_I24) | 
|  | NODE_NAME_CASE(MAD_I64_I32) | 
|  | NODE_NAME_CASE(MAD_U64_U32) | 
|  | NODE_NAME_CASE(TEXTURE_FETCH) | 
|  | NODE_NAME_CASE(EXPORT) | 
|  | NODE_NAME_CASE(EXPORT_DONE) | 
|  | NODE_NAME_CASE(R600_EXPORT) | 
|  | NODE_NAME_CASE(CONST_ADDRESS) | 
|  | NODE_NAME_CASE(REGISTER_LOAD) | 
|  | NODE_NAME_CASE(REGISTER_STORE) | 
|  | NODE_NAME_CASE(SAMPLE) | 
|  | NODE_NAME_CASE(SAMPLEB) | 
|  | NODE_NAME_CASE(SAMPLED) | 
|  | NODE_NAME_CASE(SAMPLEL) | 
|  | NODE_NAME_CASE(CVT_F32_UBYTE0) | 
|  | NODE_NAME_CASE(CVT_F32_UBYTE1) | 
|  | NODE_NAME_CASE(CVT_F32_UBYTE2) | 
|  | NODE_NAME_CASE(CVT_F32_UBYTE3) | 
|  | NODE_NAME_CASE(CVT_PKRTZ_F16_F32) | 
|  | NODE_NAME_CASE(CVT_PKNORM_I16_F32) | 
|  | NODE_NAME_CASE(CVT_PKNORM_U16_F32) | 
|  | NODE_NAME_CASE(CVT_PK_I16_I32) | 
|  | NODE_NAME_CASE(CVT_PK_U16_U32) | 
|  | NODE_NAME_CASE(FP_TO_FP16) | 
|  | NODE_NAME_CASE(FP16_ZEXT) | 
|  | NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) | 
|  | NODE_NAME_CASE(CONST_DATA_PTR) | 
|  | NODE_NAME_CASE(PC_ADD_REL_OFFSET) | 
|  | NODE_NAME_CASE(KILL) | 
|  | NODE_NAME_CASE(DUMMY_CHAIN) | 
|  | case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; | 
|  | NODE_NAME_CASE(INIT_EXEC) | 
|  | NODE_NAME_CASE(INIT_EXEC_FROM_INPUT) | 
|  | NODE_NAME_CASE(SENDMSG) | 
|  | NODE_NAME_CASE(SENDMSGHALT) | 
|  | NODE_NAME_CASE(INTERP_MOV) | 
|  | NODE_NAME_CASE(INTERP_P1) | 
|  | NODE_NAME_CASE(INTERP_P2) | 
|  | NODE_NAME_CASE(STORE_MSKOR) | 
|  | NODE_NAME_CASE(LOAD_CONSTANT) | 
|  | NODE_NAME_CASE(TBUFFER_STORE_FORMAT) | 
|  | NODE_NAME_CASE(TBUFFER_STORE_FORMAT_X3) | 
|  | NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) | 
|  | NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) | 
|  | NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) | 
|  | NODE_NAME_CASE(ATOMIC_CMP_SWAP) | 
|  | NODE_NAME_CASE(ATOMIC_INC) | 
|  | NODE_NAME_CASE(ATOMIC_DEC) | 
|  | NODE_NAME_CASE(ATOMIC_LOAD_FADD) | 
|  | NODE_NAME_CASE(ATOMIC_LOAD_FMIN) | 
|  | NODE_NAME_CASE(ATOMIC_LOAD_FMAX) | 
|  | NODE_NAME_CASE(BUFFER_LOAD) | 
|  | NODE_NAME_CASE(BUFFER_LOAD_FORMAT) | 
|  | NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) | 
|  | NODE_NAME_CASE(BUFFER_STORE) | 
|  | NODE_NAME_CASE(BUFFER_STORE_FORMAT) | 
|  | NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) | 
|  | NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) | 
|  | NODE_NAME_CASE(BUFFER_ATOMIC_ADD) | 
|  | NODE_NAME_CASE(BUFFER_ATOMIC_SUB) | 
|  | NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) | 
|  | NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) | 
|  | NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) | 
|  | NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) | 
|  | NODE_NAME_CASE(BUFFER_ATOMIC_AND) | 
|  | NODE_NAME_CASE(BUFFER_ATOMIC_OR) | 
|  | NODE_NAME_CASE(BUFFER_ATOMIC_XOR) | 
|  | NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) | 
|  | NODE_NAME_CASE(IMAGE_LOAD) | 
|  | NODE_NAME_CASE(IMAGE_LOAD_MIP) | 
|  | NODE_NAME_CASE(IMAGE_STORE) | 
|  | NODE_NAME_CASE(IMAGE_STORE_MIP) | 
|  | // Basic sample. | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_CL) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_D) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_D_CL) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_L) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_B) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_B_CL) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_LZ) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_CD) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_CD_CL) | 
|  | // Sample with comparison. | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_C) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_C_CL) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_C_D) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_C_D_CL) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_C_L) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_C_B) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_C_B_CL) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_C_LZ) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_C_CD) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_C_CD_CL) | 
|  | // Sample with offsets. | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_O) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_CL_O) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_D_O) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_D_CL_O) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_L_O) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_B_O) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_B_CL_O) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_LZ_O) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_CD_O) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_CD_CL_O) | 
|  | // Sample with comparison and offsets. | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_C_O) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_C_CL_O) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_C_D_O) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_C_D_CL_O) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_C_L_O) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_C_B_O) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_C_B_CL_O) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_C_LZ_O) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_C_CD_O) | 
|  | NODE_NAME_CASE(IMAGE_SAMPLE_C_CD_CL_O) | 
|  | // Basic gather4. | 
|  | NODE_NAME_CASE(IMAGE_GATHER4) | 
|  | NODE_NAME_CASE(IMAGE_GATHER4_CL) | 
|  | NODE_NAME_CASE(IMAGE_GATHER4_L) | 
|  | NODE_NAME_CASE(IMAGE_GATHER4_B) | 
|  | NODE_NAME_CASE(IMAGE_GATHER4_B_CL) | 
|  | NODE_NAME_CASE(IMAGE_GATHER4_LZ) | 
|  | // Gather4 with comparison. | 
|  | NODE_NAME_CASE(IMAGE_GATHER4_C) | 
|  | NODE_NAME_CASE(IMAGE_GATHER4_C_CL) | 
|  | NODE_NAME_CASE(IMAGE_GATHER4_C_L) | 
|  | NODE_NAME_CASE(IMAGE_GATHER4_C_B) | 
|  | NODE_NAME_CASE(IMAGE_GATHER4_C_B_CL) | 
|  | NODE_NAME_CASE(IMAGE_GATHER4_C_LZ) | 
|  | // Gather4 with offsets. | 
|  | NODE_NAME_CASE(IMAGE_GATHER4_O) | 
|  | NODE_NAME_CASE(IMAGE_GATHER4_CL_O) | 
|  | NODE_NAME_CASE(IMAGE_GATHER4_L_O) | 
|  | NODE_NAME_CASE(IMAGE_GATHER4_B_O) | 
|  | NODE_NAME_CASE(IMAGE_GATHER4_B_CL_O) | 
|  | NODE_NAME_CASE(IMAGE_GATHER4_LZ_O) | 
|  | // Gather4 with comparison and offsets. | 
|  | NODE_NAME_CASE(IMAGE_GATHER4_C_O) | 
|  | NODE_NAME_CASE(IMAGE_GATHER4_C_CL_O) | 
|  | NODE_NAME_CASE(IMAGE_GATHER4_C_L_O) | 
|  | NODE_NAME_CASE(IMAGE_GATHER4_C_B_O) | 
|  | NODE_NAME_CASE(IMAGE_GATHER4_C_B_CL_O) | 
|  | NODE_NAME_CASE(IMAGE_GATHER4_C_LZ_O) | 
|  |  | 
|  | case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, | 
|  | SelectionDAG &DAG, int Enabled, | 
|  | int &RefinementSteps, | 
|  | bool &UseOneConstNR, | 
|  | bool Reciprocal) const { | 
|  | EVT VT = Operand.getValueType(); | 
|  |  | 
|  | if (VT == MVT::f32) { | 
|  | RefinementSteps = 0; | 
|  | return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); | 
|  | } | 
|  |  | 
|  | // TODO: There is also f64 rsq instruction, but the documentation is less | 
|  | // clear on its precision. | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, | 
|  | SelectionDAG &DAG, int Enabled, | 
|  | int &RefinementSteps) const { | 
|  | EVT VT = Operand.getValueType(); | 
|  |  | 
|  | if (VT == MVT::f32) { | 
|  | // Reciprocal, < 1 ulp error. | 
|  | // | 
|  | // This reciprocal approximation converges to < 0.5 ulp error with one | 
|  | // newton rhapson performed with two fused multiple adds (FMAs). | 
|  |  | 
|  | RefinementSteps = 0; | 
|  | return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); | 
|  | } | 
|  |  | 
|  | // TODO: There is also f64 rcp instruction, but the documentation is less | 
|  | // clear on its precision. | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | void AMDGPUTargetLowering::computeKnownBitsForTargetNode( | 
|  | const SDValue Op, KnownBits &Known, | 
|  | const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { | 
|  |  | 
|  | Known.resetAll(); // Don't know anything. | 
|  |  | 
|  | unsigned Opc = Op.getOpcode(); | 
|  |  | 
|  | switch (Opc) { | 
|  | default: | 
|  | break; | 
|  | case AMDGPUISD::CARRY: | 
|  | case AMDGPUISD::BORROW: { | 
|  | Known.Zero = APInt::getHighBitsSet(32, 31); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case AMDGPUISD::BFE_I32: | 
|  | case AMDGPUISD::BFE_U32: { | 
|  | ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); | 
|  | if (!CWidth) | 
|  | return; | 
|  |  | 
|  | uint32_t Width = CWidth->getZExtValue() & 0x1f; | 
|  |  | 
|  | if (Opc == AMDGPUISD::BFE_U32) | 
|  | Known.Zero = APInt::getHighBitsSet(32, 32 - Width); | 
|  |  | 
|  | break; | 
|  | } | 
|  | case AMDGPUISD::FP_TO_FP16: | 
|  | case AMDGPUISD::FP16_ZEXT: { | 
|  | unsigned BitWidth = Known.getBitWidth(); | 
|  |  | 
|  | // High bits are zero. | 
|  | Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); | 
|  | break; | 
|  | } | 
|  | case AMDGPUISD::MUL_U24: | 
|  | case AMDGPUISD::MUL_I24: { | 
|  | KnownBits LHSKnown, RHSKnown; | 
|  | DAG.computeKnownBits(Op.getOperand(0), LHSKnown, Depth + 1); | 
|  | DAG.computeKnownBits(Op.getOperand(1), RHSKnown, Depth + 1); | 
|  |  | 
|  | unsigned TrailZ = LHSKnown.countMinTrailingZeros() + | 
|  | RHSKnown.countMinTrailingZeros(); | 
|  | Known.Zero.setLowBits(std::min(TrailZ, 32u)); | 
|  |  | 
|  | unsigned LHSValBits = 32 - std::max(LHSKnown.countMinSignBits(), 8u); | 
|  | unsigned RHSValBits = 32 - std::max(RHSKnown.countMinSignBits(), 8u); | 
|  | unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); | 
|  | if (MaxValBits >= 32) | 
|  | break; | 
|  | bool Negative = false; | 
|  | if (Opc == AMDGPUISD::MUL_I24) { | 
|  | bool LHSNegative = !!(LHSKnown.One  & (1 << 23)); | 
|  | bool LHSPositive = !!(LHSKnown.Zero & (1 << 23)); | 
|  | bool RHSNegative = !!(RHSKnown.One  & (1 << 23)); | 
|  | bool RHSPositive = !!(RHSKnown.Zero & (1 << 23)); | 
|  | if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive)) | 
|  | break; | 
|  | Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative); | 
|  | } | 
|  | if (Negative) | 
|  | Known.One.setHighBits(32 - MaxValBits); | 
|  | else | 
|  | Known.Zero.setHighBits(32 - MaxValBits); | 
|  | break; | 
|  | } | 
|  | case ISD::INTRINSIC_WO_CHAIN: { | 
|  | unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | switch (IID) { | 
|  | case Intrinsic::amdgcn_mbcnt_lo: | 
|  | case Intrinsic::amdgcn_mbcnt_hi: { | 
|  | // These return at most the wavefront size - 1. | 
|  | unsigned Size = Op.getValueType().getSizeInBits(); | 
|  | Known.Zero.setHighBits(Size - Subtarget->getWavefrontSizeLog2()); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( | 
|  | SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, | 
|  | unsigned Depth) const { | 
|  | switch (Op.getOpcode()) { | 
|  | case AMDGPUISD::BFE_I32: { | 
|  | ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); | 
|  | if (!Width) | 
|  | return 1; | 
|  |  | 
|  | unsigned SignBits = 32 - Width->getZExtValue() + 1; | 
|  | if (!isNullConstant(Op.getOperand(1))) | 
|  | return SignBits; | 
|  |  | 
|  | // TODO: Could probably figure something out with non-0 offsets. | 
|  | unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); | 
|  | return std::max(SignBits, Op0SignBits); | 
|  | } | 
|  |  | 
|  | case AMDGPUISD::BFE_U32: { | 
|  | ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); | 
|  | return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; | 
|  | } | 
|  |  | 
|  | case AMDGPUISD::CARRY: | 
|  | case AMDGPUISD::BORROW: | 
|  | return 31; | 
|  | case AMDGPUISD::FP_TO_FP16: | 
|  | case AMDGPUISD::FP16_ZEXT: | 
|  | return 16; | 
|  | default: | 
|  | return 1; | 
|  | } | 
|  | } |