|  | //===- GuardWidening.cpp - ---- Guard widening ----------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the guard widening pass.  The semantics of the | 
|  | // @llvm.experimental.guard intrinsic lets LLVM transform it so that it fails | 
|  | // more often that it did before the transform.  This optimization is called | 
|  | // "widening" and can be used hoist and common runtime checks in situations like | 
|  | // these: | 
|  | // | 
|  | //    %cmp0 = 7 u< Length | 
|  | //    call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ] | 
|  | //    call @unknown_side_effects() | 
|  | //    %cmp1 = 9 u< Length | 
|  | //    call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ] | 
|  | //    ... | 
|  | // | 
|  | // => | 
|  | // | 
|  | //    %cmp0 = 9 u< Length | 
|  | //    call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ] | 
|  | //    call @unknown_side_effects() | 
|  | //    ... | 
|  | // | 
|  | // If %cmp0 is false, @llvm.experimental.guard will "deoptimize" back to a | 
|  | // generic implementation of the same function, which will have the correct | 
|  | // semantics from that point onward.  It is always _legal_ to deoptimize (so | 
|  | // replacing %cmp0 with false is "correct"), though it may not always be | 
|  | // profitable to do so. | 
|  | // | 
|  | // NB! This pass is a work in progress.  It hasn't been tuned to be "production | 
|  | // ready" yet.  It is known to have quadriatic running time and will not scale | 
|  | // to large numbers of guards | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Scalar/GuardWidening.h" | 
|  | #include <functional> | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/BranchProbabilityInfo.h" | 
|  | #include "llvm/Analysis/GuardUtils.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/LoopPass.h" | 
|  | #include "llvm/Analysis/PostDominators.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/ConstantRange.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Utils/LoopUtils.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "guard-widening" | 
|  |  | 
|  | STATISTIC(GuardsEliminated, "Number of eliminated guards"); | 
|  | STATISTIC(CondBranchEliminated, "Number of eliminated conditional branches"); | 
|  |  | 
|  | static cl::opt<bool> WidenFrequentBranches( | 
|  | "guard-widening-widen-frequent-branches", cl::Hidden, | 
|  | cl::desc("Widen conditions of explicit branches into dominating guards in " | 
|  | "case if their taken frequency exceeds threshold set by " | 
|  | "guard-widening-frequent-branch-threshold option"), | 
|  | cl::init(false)); | 
|  |  | 
|  | static cl::opt<unsigned> FrequentBranchThreshold( | 
|  | "guard-widening-frequent-branch-threshold", cl::Hidden, | 
|  | cl::desc("When WidenFrequentBranches is set to true, this option is used " | 
|  | "to determine which branches are frequently taken. The criteria " | 
|  | "that a branch is taken more often than " | 
|  | "((FrequentBranchThreshold - 1) / FrequentBranchThreshold), then " | 
|  | "it is considered frequently taken"), | 
|  | cl::init(1000)); | 
|  |  | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Get the condition of \p I. It can either be a guard or a conditional branch. | 
|  | static Value *getCondition(Instruction *I) { | 
|  | if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) { | 
|  | assert(GI->getIntrinsicID() == Intrinsic::experimental_guard && | 
|  | "Bad guard intrinsic?"); | 
|  | return GI->getArgOperand(0); | 
|  | } | 
|  | return cast<BranchInst>(I)->getCondition(); | 
|  | } | 
|  |  | 
|  | // Set the condition for \p I to \p NewCond. \p I can either be a guard or a | 
|  | // conditional branch. | 
|  | static void setCondition(Instruction *I, Value *NewCond) { | 
|  | if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) { | 
|  | assert(GI->getIntrinsicID() == Intrinsic::experimental_guard && | 
|  | "Bad guard intrinsic?"); | 
|  | GI->setArgOperand(0, NewCond); | 
|  | return; | 
|  | } | 
|  | cast<BranchInst>(I)->setCondition(NewCond); | 
|  | } | 
|  |  | 
|  | // Eliminates the guard instruction properly. | 
|  | static void eliminateGuard(Instruction *GuardInst) { | 
|  | GuardInst->eraseFromParent(); | 
|  | ++GuardsEliminated; | 
|  | } | 
|  |  | 
|  | class GuardWideningImpl { | 
|  | DominatorTree &DT; | 
|  | PostDominatorTree *PDT; | 
|  | LoopInfo &LI; | 
|  | BranchProbabilityInfo *BPI; | 
|  |  | 
|  | /// Together, these describe the region of interest.  This might be all of | 
|  | /// the blocks within a function, or only a given loop's blocks and preheader. | 
|  | DomTreeNode *Root; | 
|  | std::function<bool(BasicBlock*)> BlockFilter; | 
|  |  | 
|  | /// The set of guards and conditional branches whose conditions have been | 
|  | /// widened into dominating guards. | 
|  | SmallVector<Instruction *, 16> EliminatedGuardsAndBranches; | 
|  |  | 
|  | /// The set of guards which have been widened to include conditions to other | 
|  | /// guards. | 
|  | DenseSet<Instruction *> WidenedGuards; | 
|  |  | 
|  | /// Try to eliminate guard \p Guard by widening it into an earlier dominating | 
|  | /// guard.  \p DFSI is the DFS iterator on the dominator tree that is | 
|  | /// currently visiting the block containing \p Guard, and \p GuardsPerBlock | 
|  | /// maps BasicBlocks to the set of guards seen in that block. | 
|  | bool eliminateGuardViaWidening( | 
|  | Instruction *Guard, const df_iterator<DomTreeNode *> &DFSI, | 
|  | const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> & | 
|  | GuardsPerBlock, bool InvertCondition = false); | 
|  |  | 
|  | /// Used to keep track of which widening potential is more effective. | 
|  | enum WideningScore { | 
|  | /// Don't widen. | 
|  | WS_IllegalOrNegative, | 
|  |  | 
|  | /// Widening is performance neutral as far as the cycles spent in check | 
|  | /// conditions goes (but can still help, e.g., code layout, having less | 
|  | /// deopt state). | 
|  | WS_Neutral, | 
|  |  | 
|  | /// Widening is profitable. | 
|  | WS_Positive, | 
|  |  | 
|  | /// Widening is very profitable.  Not significantly different from \c | 
|  | /// WS_Positive, except by the order. | 
|  | WS_VeryPositive | 
|  | }; | 
|  |  | 
|  | static StringRef scoreTypeToString(WideningScore WS); | 
|  |  | 
|  | /// Compute the score for widening the condition in \p DominatedGuard | 
|  | /// (contained in \p DominatedGuardLoop) into \p DominatingGuard (contained in | 
|  | /// \p DominatingGuardLoop). If \p InvertCond is set, then we widen the | 
|  | /// inverted condition of the dominating guard. | 
|  | WideningScore computeWideningScore(Instruction *DominatedGuard, | 
|  | Loop *DominatedGuardLoop, | 
|  | Instruction *DominatingGuard, | 
|  | Loop *DominatingGuardLoop, | 
|  | bool InvertCond); | 
|  |  | 
|  | /// Helper to check if \p V can be hoisted to \p InsertPos. | 
|  | bool isAvailableAt(Value *V, Instruction *InsertPos) { | 
|  | SmallPtrSet<Instruction *, 8> Visited; | 
|  | return isAvailableAt(V, InsertPos, Visited); | 
|  | } | 
|  |  | 
|  | bool isAvailableAt(Value *V, Instruction *InsertPos, | 
|  | SmallPtrSetImpl<Instruction *> &Visited); | 
|  |  | 
|  | /// Helper to hoist \p V to \p InsertPos.  Guaranteed to succeed if \c | 
|  | /// isAvailableAt returned true. | 
|  | void makeAvailableAt(Value *V, Instruction *InsertPos); | 
|  |  | 
|  | /// Common helper used by \c widenGuard and \c isWideningCondProfitable.  Try | 
|  | /// to generate an expression computing the logical AND of \p Cond0 and (\p | 
|  | /// Cond1 XOR \p InvertCondition). | 
|  | /// Return true if the expression computing the AND is only as | 
|  | /// expensive as computing one of the two. If \p InsertPt is true then | 
|  | /// actually generate the resulting expression, make it available at \p | 
|  | /// InsertPt and return it in \p Result (else no change to the IR is made). | 
|  | bool widenCondCommon(Value *Cond0, Value *Cond1, Instruction *InsertPt, | 
|  | Value *&Result, bool InvertCondition); | 
|  |  | 
|  | /// Represents a range check of the form \c Base + \c Offset u< \c Length, | 
|  | /// with the constraint that \c Length is not negative.  \c CheckInst is the | 
|  | /// pre-existing instruction in the IR that computes the result of this range | 
|  | /// check. | 
|  | class RangeCheck { | 
|  | Value *Base; | 
|  | ConstantInt *Offset; | 
|  | Value *Length; | 
|  | ICmpInst *CheckInst; | 
|  |  | 
|  | public: | 
|  | explicit RangeCheck(Value *Base, ConstantInt *Offset, Value *Length, | 
|  | ICmpInst *CheckInst) | 
|  | : Base(Base), Offset(Offset), Length(Length), CheckInst(CheckInst) {} | 
|  |  | 
|  | void setBase(Value *NewBase) { Base = NewBase; } | 
|  | void setOffset(ConstantInt *NewOffset) { Offset = NewOffset; } | 
|  |  | 
|  | Value *getBase() const { return Base; } | 
|  | ConstantInt *getOffset() const { return Offset; } | 
|  | const APInt &getOffsetValue() const { return getOffset()->getValue(); } | 
|  | Value *getLength() const { return Length; }; | 
|  | ICmpInst *getCheckInst() const { return CheckInst; } | 
|  |  | 
|  | void print(raw_ostream &OS, bool PrintTypes = false) { | 
|  | OS << "Base: "; | 
|  | Base->printAsOperand(OS, PrintTypes); | 
|  | OS << " Offset: "; | 
|  | Offset->printAsOperand(OS, PrintTypes); | 
|  | OS << " Length: "; | 
|  | Length->printAsOperand(OS, PrintTypes); | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD void dump() { | 
|  | print(dbgs()); | 
|  | dbgs() << "\n"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Parse \p CheckCond into a conjunction (logical-and) of range checks; and | 
|  | /// append them to \p Checks.  Returns true on success, may clobber \c Checks | 
|  | /// on failure. | 
|  | bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks) { | 
|  | SmallPtrSet<Value *, 8> Visited; | 
|  | return parseRangeChecks(CheckCond, Checks, Visited); | 
|  | } | 
|  |  | 
|  | bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks, | 
|  | SmallPtrSetImpl<Value *> &Visited); | 
|  |  | 
|  | /// Combine the checks in \p Checks into a smaller set of checks and append | 
|  | /// them into \p CombinedChecks.  Return true on success (i.e. all of checks | 
|  | /// in \p Checks were combined into \p CombinedChecks).  Clobbers \p Checks | 
|  | /// and \p CombinedChecks on success and on failure. | 
|  | bool combineRangeChecks(SmallVectorImpl<RangeCheck> &Checks, | 
|  | SmallVectorImpl<RangeCheck> &CombinedChecks); | 
|  |  | 
|  | /// Can we compute the logical AND of \p Cond0 and \p Cond1 for the price of | 
|  | /// computing only one of the two expressions? | 
|  | bool isWideningCondProfitable(Value *Cond0, Value *Cond1, bool InvertCond) { | 
|  | Value *ResultUnused; | 
|  | return widenCondCommon(Cond0, Cond1, /*InsertPt=*/nullptr, ResultUnused, | 
|  | InvertCond); | 
|  | } | 
|  |  | 
|  | /// If \p InvertCondition is false, Widen \p ToWiden to fail if | 
|  | /// \p NewCondition is false, otherwise make it fail if \p NewCondition is | 
|  | /// true (in addition to whatever it is already checking). | 
|  | void widenGuard(Instruction *ToWiden, Value *NewCondition, | 
|  | bool InvertCondition) { | 
|  | Value *Result; | 
|  | widenCondCommon(ToWiden->getOperand(0), NewCondition, ToWiden, Result, | 
|  | InvertCondition); | 
|  | setCondition(ToWiden, Result); | 
|  | } | 
|  |  | 
|  | public: | 
|  |  | 
|  | explicit GuardWideningImpl(DominatorTree &DT, PostDominatorTree *PDT, | 
|  | LoopInfo &LI, BranchProbabilityInfo *BPI, | 
|  | DomTreeNode *Root, | 
|  | std::function<bool(BasicBlock*)> BlockFilter) | 
|  | : DT(DT), PDT(PDT), LI(LI), BPI(BPI), Root(Root), BlockFilter(BlockFilter) | 
|  | {} | 
|  |  | 
|  | /// The entry point for this pass. | 
|  | bool run(); | 
|  | }; | 
|  | } | 
|  |  | 
|  | bool GuardWideningImpl::run() { | 
|  | DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> GuardsInBlock; | 
|  | bool Changed = false; | 
|  | Optional<BranchProbability> LikelyTaken = None; | 
|  | if (WidenFrequentBranches && BPI) { | 
|  | unsigned Threshold = FrequentBranchThreshold; | 
|  | assert(Threshold > 0 && "Zero threshold makes no sense!"); | 
|  | LikelyTaken = BranchProbability(Threshold - 1, Threshold); | 
|  | } | 
|  |  | 
|  | for (auto DFI = df_begin(Root), DFE = df_end(Root); | 
|  | DFI != DFE; ++DFI) { | 
|  | auto *BB = (*DFI)->getBlock(); | 
|  | if (!BlockFilter(BB)) | 
|  | continue; | 
|  |  | 
|  | auto &CurrentList = GuardsInBlock[BB]; | 
|  |  | 
|  | for (auto &I : *BB) | 
|  | if (isGuard(&I)) | 
|  | CurrentList.push_back(cast<Instruction>(&I)); | 
|  |  | 
|  | for (auto *II : CurrentList) | 
|  | Changed |= eliminateGuardViaWidening(II, DFI, GuardsInBlock); | 
|  | if (WidenFrequentBranches && BPI) | 
|  | if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) | 
|  | if (BI->isConditional()) { | 
|  | // If one of branches of a conditional is likely taken, try to | 
|  | // eliminate it. | 
|  | if (BPI->getEdgeProbability(BB, 0U) >= *LikelyTaken) | 
|  | Changed |= eliminateGuardViaWidening(BI, DFI, GuardsInBlock); | 
|  | else if (BPI->getEdgeProbability(BB, 1U) >= *LikelyTaken) | 
|  | Changed |= eliminateGuardViaWidening(BI, DFI, GuardsInBlock, | 
|  | /*InvertCondition*/true); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(EliminatedGuardsAndBranches.empty() || Changed); | 
|  | for (auto *I : EliminatedGuardsAndBranches) | 
|  | if (!WidenedGuards.count(I)) { | 
|  | assert(isa<ConstantInt>(getCondition(I)) && "Should be!"); | 
|  | if (isGuard(I)) | 
|  | eliminateGuard(I); | 
|  | else { | 
|  | assert(isa<BranchInst>(I) && | 
|  | "Eliminated something other than guard or branch?"); | 
|  | ++CondBranchEliminated; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool GuardWideningImpl::eliminateGuardViaWidening( | 
|  | Instruction *GuardInst, const df_iterator<DomTreeNode *> &DFSI, | 
|  | const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> & | 
|  | GuardsInBlock, bool InvertCondition) { | 
|  | // Ignore trivial true or false conditions. These instructions will be | 
|  | // trivially eliminated by any cleanup pass. Do not erase them because other | 
|  | // guards can possibly be widened into them. | 
|  | if (isa<ConstantInt>(getCondition(GuardInst))) | 
|  | return false; | 
|  |  | 
|  | Instruction *BestSoFar = nullptr; | 
|  | auto BestScoreSoFar = WS_IllegalOrNegative; | 
|  | auto *GuardInstLoop = LI.getLoopFor(GuardInst->getParent()); | 
|  |  | 
|  | // In the set of dominating guards, find the one we can merge GuardInst with | 
|  | // for the most profit. | 
|  | for (unsigned i = 0, e = DFSI.getPathLength(); i != e; ++i) { | 
|  | auto *CurBB = DFSI.getPath(i)->getBlock(); | 
|  | if (!BlockFilter(CurBB)) | 
|  | break; | 
|  | auto *CurLoop = LI.getLoopFor(CurBB); | 
|  | assert(GuardsInBlock.count(CurBB) && "Must have been populated by now!"); | 
|  | const auto &GuardsInCurBB = GuardsInBlock.find(CurBB)->second; | 
|  |  | 
|  | auto I = GuardsInCurBB.begin(); | 
|  | auto E = GuardsInCurBB.end(); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | { | 
|  | unsigned Index = 0; | 
|  | for (auto &I : *CurBB) { | 
|  | if (Index == GuardsInCurBB.size()) | 
|  | break; | 
|  | if (GuardsInCurBB[Index] == &I) | 
|  | Index++; | 
|  | } | 
|  | assert(Index == GuardsInCurBB.size() && | 
|  | "Guards expected to be in order!"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | assert((i == (e - 1)) == (GuardInst->getParent() == CurBB) && "Bad DFS?"); | 
|  |  | 
|  | if (i == (e - 1) && CurBB->getTerminator() != GuardInst) { | 
|  | // Corner case: make sure we're only looking at guards strictly dominating | 
|  | // GuardInst when visiting GuardInst->getParent(). | 
|  | auto NewEnd = std::find(I, E, GuardInst); | 
|  | assert(NewEnd != E && "GuardInst not in its own block?"); | 
|  | E = NewEnd; | 
|  | } | 
|  |  | 
|  | for (auto *Candidate : make_range(I, E)) { | 
|  | auto Score = | 
|  | computeWideningScore(GuardInst, GuardInstLoop, Candidate, CurLoop, | 
|  | InvertCondition); | 
|  | LLVM_DEBUG(dbgs() << "Score between " << *getCondition(GuardInst) | 
|  | << " and " << *getCondition(Candidate) << " is " | 
|  | << scoreTypeToString(Score) << "\n"); | 
|  | if (Score > BestScoreSoFar) { | 
|  | BestScoreSoFar = Score; | 
|  | BestSoFar = Candidate; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BestScoreSoFar == WS_IllegalOrNegative) { | 
|  | LLVM_DEBUG(dbgs() << "Did not eliminate guard " << *GuardInst << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | assert(BestSoFar != GuardInst && "Should have never visited same guard!"); | 
|  | assert(DT.dominates(BestSoFar, GuardInst) && "Should be!"); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Widening " << *GuardInst << " into " << *BestSoFar | 
|  | << " with score " << scoreTypeToString(BestScoreSoFar) | 
|  | << "\n"); | 
|  | widenGuard(BestSoFar, getCondition(GuardInst), InvertCondition); | 
|  | auto NewGuardCondition = InvertCondition | 
|  | ? ConstantInt::getFalse(GuardInst->getContext()) | 
|  | : ConstantInt::getTrue(GuardInst->getContext()); | 
|  | setCondition(GuardInst, NewGuardCondition); | 
|  | EliminatedGuardsAndBranches.push_back(GuardInst); | 
|  | WidenedGuards.insert(BestSoFar); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | GuardWideningImpl::WideningScore GuardWideningImpl::computeWideningScore( | 
|  | Instruction *DominatedGuard, Loop *DominatedGuardLoop, | 
|  | Instruction *DominatingGuard, Loop *DominatingGuardLoop, bool InvertCond) { | 
|  | bool HoistingOutOfLoop = false; | 
|  |  | 
|  | if (DominatingGuardLoop != DominatedGuardLoop) { | 
|  | // Be conservative and don't widen into a sibling loop.  TODO: If the | 
|  | // sibling is colder, we should consider allowing this. | 
|  | if (DominatingGuardLoop && | 
|  | !DominatingGuardLoop->contains(DominatedGuardLoop)) | 
|  | return WS_IllegalOrNegative; | 
|  |  | 
|  | HoistingOutOfLoop = true; | 
|  | } | 
|  |  | 
|  | if (!isAvailableAt(getCondition(DominatedGuard), DominatingGuard)) | 
|  | return WS_IllegalOrNegative; | 
|  |  | 
|  | // If the guard was conditional executed, it may never be reached | 
|  | // dynamically.  There are two potential downsides to hoisting it out of the | 
|  | // conditionally executed region: 1) we may spuriously deopt without need and | 
|  | // 2) we have the extra cost of computing the guard condition in the common | 
|  | // case.  At the moment, we really only consider the second in our heuristic | 
|  | // here.  TODO: evaluate cost model for spurious deopt | 
|  | // NOTE: As written, this also lets us hoist right over another guard which | 
|  | // is essentially just another spelling for control flow. | 
|  | if (isWideningCondProfitable(getCondition(DominatedGuard), | 
|  | getCondition(DominatingGuard), InvertCond)) | 
|  | return HoistingOutOfLoop ? WS_VeryPositive : WS_Positive; | 
|  |  | 
|  | if (HoistingOutOfLoop) | 
|  | return WS_Positive; | 
|  |  | 
|  | // Returns true if we might be hoisting above explicit control flow.  Note | 
|  | // that this completely ignores implicit control flow (guards, calls which | 
|  | // throw, etc...).  That choice appears arbitrary. | 
|  | auto MaybeHoistingOutOfIf = [&]() { | 
|  | auto *DominatingBlock = DominatingGuard->getParent(); | 
|  | auto *DominatedBlock = DominatedGuard->getParent(); | 
|  |  | 
|  | // Same Block? | 
|  | if (DominatedBlock == DominatingBlock) | 
|  | return false; | 
|  | // Obvious successor (common loop header/preheader case) | 
|  | if (DominatedBlock == DominatingBlock->getUniqueSuccessor()) | 
|  | return false; | 
|  | // TODO: diamond, triangle cases | 
|  | if (!PDT) return true; | 
|  | return !PDT->dominates(DominatedGuard->getParent(), | 
|  | DominatingGuard->getParent()); | 
|  | }; | 
|  |  | 
|  | return MaybeHoistingOutOfIf() ? WS_IllegalOrNegative : WS_Neutral; | 
|  | } | 
|  |  | 
|  | bool GuardWideningImpl::isAvailableAt(Value *V, Instruction *Loc, | 
|  | SmallPtrSetImpl<Instruction *> &Visited) { | 
|  | auto *Inst = dyn_cast<Instruction>(V); | 
|  | if (!Inst || DT.dominates(Inst, Loc) || Visited.count(Inst)) | 
|  | return true; | 
|  |  | 
|  | if (!isSafeToSpeculativelyExecute(Inst, Loc, &DT) || | 
|  | Inst->mayReadFromMemory()) | 
|  | return false; | 
|  |  | 
|  | Visited.insert(Inst); | 
|  |  | 
|  | // We only want to go _up_ the dominance chain when recursing. | 
|  | assert(!isa<PHINode>(Loc) && | 
|  | "PHIs should return false for isSafeToSpeculativelyExecute"); | 
|  | assert(DT.isReachableFromEntry(Inst->getParent()) && | 
|  | "We did a DFS from the block entry!"); | 
|  | return all_of(Inst->operands(), | 
|  | [&](Value *Op) { return isAvailableAt(Op, Loc, Visited); }); | 
|  | } | 
|  |  | 
|  | void GuardWideningImpl::makeAvailableAt(Value *V, Instruction *Loc) { | 
|  | auto *Inst = dyn_cast<Instruction>(V); | 
|  | if (!Inst || DT.dominates(Inst, Loc)) | 
|  | return; | 
|  |  | 
|  | assert(isSafeToSpeculativelyExecute(Inst, Loc, &DT) && | 
|  | !Inst->mayReadFromMemory() && "Should've checked with isAvailableAt!"); | 
|  |  | 
|  | for (Value *Op : Inst->operands()) | 
|  | makeAvailableAt(Op, Loc); | 
|  |  | 
|  | Inst->moveBefore(Loc); | 
|  | } | 
|  |  | 
|  | bool GuardWideningImpl::widenCondCommon(Value *Cond0, Value *Cond1, | 
|  | Instruction *InsertPt, Value *&Result, | 
|  | bool InvertCondition) { | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | { | 
|  | // L >u C0 && L >u C1  ->  L >u max(C0, C1) | 
|  | ConstantInt *RHS0, *RHS1; | 
|  | Value *LHS; | 
|  | ICmpInst::Predicate Pred0, Pred1; | 
|  | if (match(Cond0, m_ICmp(Pred0, m_Value(LHS), m_ConstantInt(RHS0))) && | 
|  | match(Cond1, m_ICmp(Pred1, m_Specific(LHS), m_ConstantInt(RHS1)))) { | 
|  | if (InvertCondition) | 
|  | Pred1 = ICmpInst::getInversePredicate(Pred1); | 
|  |  | 
|  | ConstantRange CR0 = | 
|  | ConstantRange::makeExactICmpRegion(Pred0, RHS0->getValue()); | 
|  | ConstantRange CR1 = | 
|  | ConstantRange::makeExactICmpRegion(Pred1, RHS1->getValue()); | 
|  |  | 
|  | // SubsetIntersect is a subset of the actual mathematical intersection of | 
|  | // CR0 and CR1, while SupersetIntersect is a superset of the actual | 
|  | // mathematical intersection.  If these two ConstantRanges are equal, then | 
|  | // we know we were able to represent the actual mathematical intersection | 
|  | // of CR0 and CR1, and can use the same to generate an icmp instruction. | 
|  | // | 
|  | // Given what we're doing here and the semantics of guards, it would | 
|  | // actually be correct to just use SubsetIntersect, but that may be too | 
|  | // aggressive in cases we care about. | 
|  | auto SubsetIntersect = CR0.inverse().unionWith(CR1.inverse()).inverse(); | 
|  | auto SupersetIntersect = CR0.intersectWith(CR1); | 
|  |  | 
|  | APInt NewRHSAP; | 
|  | CmpInst::Predicate Pred; | 
|  | if (SubsetIntersect == SupersetIntersect && | 
|  | SubsetIntersect.getEquivalentICmp(Pred, NewRHSAP)) { | 
|  | if (InsertPt) { | 
|  | ConstantInt *NewRHS = ConstantInt::get(Cond0->getContext(), NewRHSAP); | 
|  | Result = new ICmpInst(InsertPt, Pred, LHS, NewRHS, "wide.chk"); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | SmallVector<GuardWideningImpl::RangeCheck, 4> Checks, CombinedChecks; | 
|  | // TODO: Support InvertCondition case? | 
|  | if (!InvertCondition && | 
|  | parseRangeChecks(Cond0, Checks) && parseRangeChecks(Cond1, Checks) && | 
|  | combineRangeChecks(Checks, CombinedChecks)) { | 
|  | if (InsertPt) { | 
|  | Result = nullptr; | 
|  | for (auto &RC : CombinedChecks) { | 
|  | makeAvailableAt(RC.getCheckInst(), InsertPt); | 
|  | if (Result) | 
|  | Result = BinaryOperator::CreateAnd(RC.getCheckInst(), Result, "", | 
|  | InsertPt); | 
|  | else | 
|  | Result = RC.getCheckInst(); | 
|  | } | 
|  |  | 
|  | Result->setName("wide.chk"); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Base case -- just logical-and the two conditions together. | 
|  |  | 
|  | if (InsertPt) { | 
|  | makeAvailableAt(Cond0, InsertPt); | 
|  | makeAvailableAt(Cond1, InsertPt); | 
|  | if (InvertCondition) | 
|  | Cond1 = BinaryOperator::CreateNot(Cond1, "inverted", InsertPt); | 
|  | Result = BinaryOperator::CreateAnd(Cond0, Cond1, "wide.chk", InsertPt); | 
|  | } | 
|  |  | 
|  | // We were not able to compute Cond0 AND Cond1 for the price of one. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool GuardWideningImpl::parseRangeChecks( | 
|  | Value *CheckCond, SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks, | 
|  | SmallPtrSetImpl<Value *> &Visited) { | 
|  | if (!Visited.insert(CheckCond).second) | 
|  | return true; | 
|  |  | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | { | 
|  | Value *AndLHS, *AndRHS; | 
|  | if (match(CheckCond, m_And(m_Value(AndLHS), m_Value(AndRHS)))) | 
|  | return parseRangeChecks(AndLHS, Checks) && | 
|  | parseRangeChecks(AndRHS, Checks); | 
|  | } | 
|  |  | 
|  | auto *IC = dyn_cast<ICmpInst>(CheckCond); | 
|  | if (!IC || !IC->getOperand(0)->getType()->isIntegerTy() || | 
|  | (IC->getPredicate() != ICmpInst::ICMP_ULT && | 
|  | IC->getPredicate() != ICmpInst::ICMP_UGT)) | 
|  | return false; | 
|  |  | 
|  | Value *CmpLHS = IC->getOperand(0), *CmpRHS = IC->getOperand(1); | 
|  | if (IC->getPredicate() == ICmpInst::ICMP_UGT) | 
|  | std::swap(CmpLHS, CmpRHS); | 
|  |  | 
|  | auto &DL = IC->getModule()->getDataLayout(); | 
|  |  | 
|  | GuardWideningImpl::RangeCheck Check( | 
|  | CmpLHS, cast<ConstantInt>(ConstantInt::getNullValue(CmpRHS->getType())), | 
|  | CmpRHS, IC); | 
|  |  | 
|  | if (!isKnownNonNegative(Check.getLength(), DL)) | 
|  | return false; | 
|  |  | 
|  | // What we have in \c Check now is a correct interpretation of \p CheckCond. | 
|  | // Try to see if we can move some constant offsets into the \c Offset field. | 
|  |  | 
|  | bool Changed; | 
|  | auto &Ctx = CheckCond->getContext(); | 
|  |  | 
|  | do { | 
|  | Value *OpLHS; | 
|  | ConstantInt *OpRHS; | 
|  | Changed = false; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | auto *BaseInst = dyn_cast<Instruction>(Check.getBase()); | 
|  | assert((!BaseInst || DT.isReachableFromEntry(BaseInst->getParent())) && | 
|  | "Unreachable instruction?"); | 
|  | #endif | 
|  |  | 
|  | if (match(Check.getBase(), m_Add(m_Value(OpLHS), m_ConstantInt(OpRHS)))) { | 
|  | Check.setBase(OpLHS); | 
|  | APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue(); | 
|  | Check.setOffset(ConstantInt::get(Ctx, NewOffset)); | 
|  | Changed = true; | 
|  | } else if (match(Check.getBase(), | 
|  | m_Or(m_Value(OpLHS), m_ConstantInt(OpRHS)))) { | 
|  | KnownBits Known = computeKnownBits(OpLHS, DL); | 
|  | if ((OpRHS->getValue() & Known.Zero) == OpRHS->getValue()) { | 
|  | Check.setBase(OpLHS); | 
|  | APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue(); | 
|  | Check.setOffset(ConstantInt::get(Ctx, NewOffset)); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | } while (Changed); | 
|  |  | 
|  | Checks.push_back(Check); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool GuardWideningImpl::combineRangeChecks( | 
|  | SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks, | 
|  | SmallVectorImpl<GuardWideningImpl::RangeCheck> &RangeChecksOut) { | 
|  | unsigned OldCount = Checks.size(); | 
|  | while (!Checks.empty()) { | 
|  | // Pick all of the range checks with a specific base and length, and try to | 
|  | // merge them. | 
|  | Value *CurrentBase = Checks.front().getBase(); | 
|  | Value *CurrentLength = Checks.front().getLength(); | 
|  |  | 
|  | SmallVector<GuardWideningImpl::RangeCheck, 3> CurrentChecks; | 
|  |  | 
|  | auto IsCurrentCheck = [&](GuardWideningImpl::RangeCheck &RC) { | 
|  | return RC.getBase() == CurrentBase && RC.getLength() == CurrentLength; | 
|  | }; | 
|  |  | 
|  | copy_if(Checks, std::back_inserter(CurrentChecks), IsCurrentCheck); | 
|  | Checks.erase(remove_if(Checks, IsCurrentCheck), Checks.end()); | 
|  |  | 
|  | assert(CurrentChecks.size() != 0 && "We know we have at least one!"); | 
|  |  | 
|  | if (CurrentChecks.size() < 3) { | 
|  | RangeChecksOut.insert(RangeChecksOut.end(), CurrentChecks.begin(), | 
|  | CurrentChecks.end()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // CurrentChecks.size() will typically be 3 here, but so far there has been | 
|  | // no need to hard-code that fact. | 
|  |  | 
|  | llvm::sort(CurrentChecks.begin(), CurrentChecks.end(), | 
|  | [&](const GuardWideningImpl::RangeCheck &LHS, | 
|  | const GuardWideningImpl::RangeCheck &RHS) { | 
|  | return LHS.getOffsetValue().slt(RHS.getOffsetValue()); | 
|  | }); | 
|  |  | 
|  | // Note: std::sort should not invalidate the ChecksStart iterator. | 
|  |  | 
|  | ConstantInt *MinOffset = CurrentChecks.front().getOffset(), | 
|  | *MaxOffset = CurrentChecks.back().getOffset(); | 
|  |  | 
|  | unsigned BitWidth = MaxOffset->getValue().getBitWidth(); | 
|  | if ((MaxOffset->getValue() - MinOffset->getValue()) | 
|  | .ugt(APInt::getSignedMinValue(BitWidth))) | 
|  | return false; | 
|  |  | 
|  | APInt MaxDiff = MaxOffset->getValue() - MinOffset->getValue(); | 
|  | const APInt &HighOffset = MaxOffset->getValue(); | 
|  | auto OffsetOK = [&](const GuardWideningImpl::RangeCheck &RC) { | 
|  | return (HighOffset - RC.getOffsetValue()).ult(MaxDiff); | 
|  | }; | 
|  |  | 
|  | if (MaxDiff.isMinValue() || | 
|  | !std::all_of(std::next(CurrentChecks.begin()), CurrentChecks.end(), | 
|  | OffsetOK)) | 
|  | return false; | 
|  |  | 
|  | // We have a series of f+1 checks as: | 
|  | // | 
|  | //   I+k_0 u< L   ... Chk_0 | 
|  | //   I+k_1 u< L   ... Chk_1 | 
|  | //   ... | 
|  | //   I+k_f u< L   ... Chk_f | 
|  | // | 
|  | //     with forall i in [0,f]: k_f-k_i u< k_f-k_0  ... Precond_0 | 
|  | //          k_f-k_0 u< INT_MIN+k_f                 ... Precond_1 | 
|  | //          k_f != k_0                             ... Precond_2 | 
|  | // | 
|  | // Claim: | 
|  | //   Chk_0 AND Chk_f  implies all the other checks | 
|  | // | 
|  | // Informal proof sketch: | 
|  | // | 
|  | // We will show that the integer range [I+k_0,I+k_f] does not unsigned-wrap | 
|  | // (i.e. going from I+k_0 to I+k_f does not cross the -1,0 boundary) and | 
|  | // thus I+k_f is the greatest unsigned value in that range. | 
|  | // | 
|  | // This combined with Ckh_(f+1) shows that everything in that range is u< L. | 
|  | // Via Precond_0 we know that all of the indices in Chk_0 through Chk_(f+1) | 
|  | // lie in [I+k_0,I+k_f], this proving our claim. | 
|  | // | 
|  | // To see that [I+k_0,I+k_f] is not a wrapping range, note that there are | 
|  | // two possibilities: I+k_0 u< I+k_f or I+k_0 >u I+k_f (they can't be equal | 
|  | // since k_0 != k_f).  In the former case, [I+k_0,I+k_f] is not a wrapping | 
|  | // range by definition, and the latter case is impossible: | 
|  | // | 
|  | //   0-----I+k_f---I+k_0----L---INT_MAX,INT_MIN------------------(-1) | 
|  | //   xxxxxx             xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | 
|  | // | 
|  | // For Chk_0 to succeed, we'd have to have k_f-k_0 (the range highlighted | 
|  | // with 'x' above) to be at least >u INT_MIN. | 
|  |  | 
|  | RangeChecksOut.emplace_back(CurrentChecks.front()); | 
|  | RangeChecksOut.emplace_back(CurrentChecks.back()); | 
|  | } | 
|  |  | 
|  | assert(RangeChecksOut.size() <= OldCount && "We pessimized!"); | 
|  | return RangeChecksOut.size() != OldCount; | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | StringRef GuardWideningImpl::scoreTypeToString(WideningScore WS) { | 
|  | switch (WS) { | 
|  | case WS_IllegalOrNegative: | 
|  | return "IllegalOrNegative"; | 
|  | case WS_Neutral: | 
|  | return "Neutral"; | 
|  | case WS_Positive: | 
|  | return "Positive"; | 
|  | case WS_VeryPositive: | 
|  | return "VeryPositive"; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Fully covered switch above!"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | PreservedAnalyses GuardWideningPass::run(Function &F, | 
|  | FunctionAnalysisManager &AM) { | 
|  | auto &DT = AM.getResult<DominatorTreeAnalysis>(F); | 
|  | auto &LI = AM.getResult<LoopAnalysis>(F); | 
|  | auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); | 
|  | BranchProbabilityInfo *BPI = nullptr; | 
|  | if (WidenFrequentBranches) | 
|  | BPI = AM.getCachedResult<BranchProbabilityAnalysis>(F); | 
|  | if (!GuardWideningImpl(DT, &PDT, LI, BPI, DT.getRootNode(), | 
|  | [](BasicBlock*) { return true; } ).run()) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | PreservedAnalyses PA; | 
|  | PA.preserveSet<CFGAnalyses>(); | 
|  | return PA; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct GuardWideningLegacyPass : public FunctionPass { | 
|  | static char ID; | 
|  |  | 
|  | GuardWideningLegacyPass() : FunctionPass(ID) { | 
|  | initializeGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override { | 
|  | if (skipFunction(F)) | 
|  | return false; | 
|  | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  | auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | 
|  | auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); | 
|  | BranchProbabilityInfo *BPI = nullptr; | 
|  | if (WidenFrequentBranches) | 
|  | BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); | 
|  | return GuardWideningImpl(DT, &PDT, LI, BPI, DT.getRootNode(), | 
|  | [](BasicBlock*) { return true; } ).run(); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | AU.addRequired<PostDominatorTreeWrapperPass>(); | 
|  | AU.addRequired<LoopInfoWrapperPass>(); | 
|  | if (WidenFrequentBranches) | 
|  | AU.addRequired<BranchProbabilityInfoWrapperPass>(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Same as above, but restricted to a single loop at a time.  Can be | 
|  | /// scheduled with other loop passes w/o breaking out of LPM | 
|  | struct LoopGuardWideningLegacyPass : public LoopPass { | 
|  | static char ID; | 
|  |  | 
|  | LoopGuardWideningLegacyPass() : LoopPass(ID) { | 
|  | initializeLoopGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnLoop(Loop *L, LPPassManager &LPM) override { | 
|  | if (skipLoop(L)) | 
|  | return false; | 
|  | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  | auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | 
|  | auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>(); | 
|  | auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr; | 
|  | BasicBlock *RootBB = L->getLoopPredecessor(); | 
|  | if (!RootBB) | 
|  | RootBB = L->getHeader(); | 
|  | auto BlockFilter = [&](BasicBlock *BB) { | 
|  | return BB == RootBB || L->contains(BB); | 
|  | }; | 
|  | BranchProbabilityInfo *BPI = nullptr; | 
|  | if (WidenFrequentBranches) | 
|  | BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); | 
|  | return GuardWideningImpl(DT, PDT, LI, BPI, | 
|  | DT.getNode(RootBB), BlockFilter).run(); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | if (WidenFrequentBranches) | 
|  | AU.addRequired<BranchProbabilityInfoWrapperPass>(); | 
|  | AU.setPreservesCFG(); | 
|  | getLoopAnalysisUsage(AU); | 
|  | AU.addPreserved<PostDominatorTreeWrapperPass>(); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | char GuardWideningLegacyPass::ID = 0; | 
|  | char LoopGuardWideningLegacyPass::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(GuardWideningLegacyPass, "guard-widening", "Widen guards", | 
|  | false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) | 
|  | if (WidenFrequentBranches) | 
|  | INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(GuardWideningLegacyPass, "guard-widening", "Widen guards", | 
|  | false, false) | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(LoopGuardWideningLegacyPass, "loop-guard-widening", | 
|  | "Widen guards (within a single loop, as a loop pass)", | 
|  | false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) | 
|  | if (WidenFrequentBranches) | 
|  | INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(LoopGuardWideningLegacyPass, "loop-guard-widening", | 
|  | "Widen guards (within a single loop, as a loop pass)", | 
|  | false, false) | 
|  |  | 
|  | FunctionPass *llvm::createGuardWideningPass() { | 
|  | return new GuardWideningLegacyPass(); | 
|  | } | 
|  |  | 
|  | Pass *llvm::createLoopGuardWideningPass() { | 
|  | return new LoopGuardWideningLegacyPass(); | 
|  | } |