|  | //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements the ScheduleDAG class, which is a base class used by | 
|  | // scheduling implementation classes. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "ScheduleDAGSDNodes.h" | 
|  | #include "InstrEmitter.h" | 
|  | #include "SDNodeDbgValue.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/MC/MCInstrItineraries.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/Target/TargetSubtargetInfo.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "pre-RA-sched" | 
|  |  | 
|  | STATISTIC(LoadsClustered, "Number of loads clustered together"); | 
|  |  | 
|  | // This allows the latency-based scheduler to notice high latency instructions | 
|  | // without a target itinerary. The choice of number here has more to do with | 
|  | // balancing scheduler heuristics than with the actual machine latency. | 
|  | static cl::opt<int> HighLatencyCycles( | 
|  | "sched-high-latency-cycles", cl::Hidden, cl::init(10), | 
|  | cl::desc("Roughly estimate the number of cycles that 'long latency'" | 
|  | "instructions take for targets with no itinerary")); | 
|  |  | 
|  | ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf) | 
|  | : ScheduleDAG(mf), BB(nullptr), DAG(nullptr), | 
|  | InstrItins(mf.getSubtarget().getInstrItineraryData()) {} | 
|  |  | 
|  | /// Run - perform scheduling. | 
|  | /// | 
|  | void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) { | 
|  | BB = bb; | 
|  | DAG = dag; | 
|  |  | 
|  | // Clear the scheduler's SUnit DAG. | 
|  | ScheduleDAG::clearDAG(); | 
|  | Sequence.clear(); | 
|  |  | 
|  | // Invoke the target's selection of scheduler. | 
|  | Schedule(); | 
|  | } | 
|  |  | 
|  | /// NewSUnit - Creates a new SUnit and return a ptr to it. | 
|  | /// | 
|  | SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) { | 
|  | #ifndef NDEBUG | 
|  | const SUnit *Addr = nullptr; | 
|  | if (!SUnits.empty()) | 
|  | Addr = &SUnits[0]; | 
|  | #endif | 
|  | SUnits.push_back(SUnit(N, (unsigned)SUnits.size())); | 
|  | assert((Addr == nullptr || Addr == &SUnits[0]) && | 
|  | "SUnits std::vector reallocated on the fly!"); | 
|  | SUnits.back().OrigNode = &SUnits.back(); | 
|  | SUnit *SU = &SUnits.back(); | 
|  | const TargetLowering &TLI = DAG->getTargetLoweringInfo(); | 
|  | if (!N || | 
|  | (N->isMachineOpcode() && | 
|  | N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)) | 
|  | SU->SchedulingPref = Sched::None; | 
|  | else | 
|  | SU->SchedulingPref = TLI.getSchedulingPreference(N); | 
|  | return SU; | 
|  | } | 
|  |  | 
|  | SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) { | 
|  | SUnit *SU = newSUnit(Old->getNode()); | 
|  | SU->OrigNode = Old->OrigNode; | 
|  | SU->Latency = Old->Latency; | 
|  | SU->isVRegCycle = Old->isVRegCycle; | 
|  | SU->isCall = Old->isCall; | 
|  | SU->isCallOp = Old->isCallOp; | 
|  | SU->isTwoAddress = Old->isTwoAddress; | 
|  | SU->isCommutable = Old->isCommutable; | 
|  | SU->hasPhysRegDefs = Old->hasPhysRegDefs; | 
|  | SU->hasPhysRegClobbers = Old->hasPhysRegClobbers; | 
|  | SU->isScheduleHigh = Old->isScheduleHigh; | 
|  | SU->isScheduleLow = Old->isScheduleLow; | 
|  | SU->SchedulingPref = Old->SchedulingPref; | 
|  | Old->isCloned = true; | 
|  | return SU; | 
|  | } | 
|  |  | 
|  | /// CheckForPhysRegDependency - Check if the dependency between def and use of | 
|  | /// a specified operand is a physical register dependency. If so, returns the | 
|  | /// register and the cost of copying the register. | 
|  | static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, | 
|  | const TargetRegisterInfo *TRI, | 
|  | const TargetInstrInfo *TII, | 
|  | unsigned &PhysReg, int &Cost) { | 
|  | if (Op != 2 || User->getOpcode() != ISD::CopyToReg) | 
|  | return; | 
|  |  | 
|  | unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | return; | 
|  |  | 
|  | unsigned ResNo = User->getOperand(2).getResNo(); | 
|  | if (Def->getOpcode() == ISD::CopyFromReg && | 
|  | cast<RegisterSDNode>(Def->getOperand(1))->getReg() == Reg) { | 
|  | PhysReg = Reg; | 
|  | } else if (Def->isMachineOpcode()) { | 
|  | const MCInstrDesc &II = TII->get(Def->getMachineOpcode()); | 
|  | if (ResNo >= II.getNumDefs() && | 
|  | II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) | 
|  | PhysReg = Reg; | 
|  | } | 
|  |  | 
|  | if (PhysReg != 0) { | 
|  | const TargetRegisterClass *RC = | 
|  | TRI->getMinimalPhysRegClass(Reg, Def->getSimpleValueType(ResNo)); | 
|  | Cost = RC->getCopyCost(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Helper for AddGlue to clone node operands. | 
|  | static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, ArrayRef<EVT> VTs, | 
|  | SDValue ExtraOper = SDValue()) { | 
|  | SmallVector<SDValue, 8> Ops(N->op_begin(), N->op_end()); | 
|  | if (ExtraOper.getNode()) | 
|  | Ops.push_back(ExtraOper); | 
|  |  | 
|  | SDVTList VTList = DAG->getVTList(VTs); | 
|  | MachineSDNode::mmo_iterator Begin = nullptr, End = nullptr; | 
|  | MachineSDNode *MN = dyn_cast<MachineSDNode>(N); | 
|  |  | 
|  | // Store memory references. | 
|  | if (MN) { | 
|  | Begin = MN->memoperands_begin(); | 
|  | End = MN->memoperands_end(); | 
|  | } | 
|  |  | 
|  | DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops); | 
|  |  | 
|  | // Reset the memory references | 
|  | if (MN) | 
|  | MN->setMemRefs(Begin, End); | 
|  | } | 
|  |  | 
|  | static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) { | 
|  | SDNode *GlueDestNode = Glue.getNode(); | 
|  |  | 
|  | // Don't add glue from a node to itself. | 
|  | if (GlueDestNode == N) return false; | 
|  |  | 
|  | // Don't add a glue operand to something that already uses glue. | 
|  | if (GlueDestNode && | 
|  | N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { | 
|  | return false; | 
|  | } | 
|  | // Don't add glue to something that already has a glue value. | 
|  | if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false; | 
|  |  | 
|  | SmallVector<EVT, 4> VTs(N->value_begin(), N->value_end()); | 
|  | if (AddGlue) | 
|  | VTs.push_back(MVT::Glue); | 
|  |  | 
|  | CloneNodeWithValues(N, DAG, VTs, Glue); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the | 
|  | // node even though simply shrinking the value list is sufficient. | 
|  | static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) { | 
|  | assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue && | 
|  | !N->hasAnyUseOfValue(N->getNumValues() - 1)) && | 
|  | "expected an unused glue value"); | 
|  |  | 
|  | CloneNodeWithValues(N, DAG, | 
|  | makeArrayRef(N->value_begin(), N->getNumValues() - 1)); | 
|  | } | 
|  |  | 
|  | /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them. | 
|  | /// This function finds loads of the same base and different offsets. If the | 
|  | /// offsets are not far apart (target specific), it add MVT::Glue inputs and | 
|  | /// outputs to ensure they are scheduled together and in order. This | 
|  | /// optimization may benefit some targets by improving cache locality. | 
|  | void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) { | 
|  | SDNode *Chain = nullptr; | 
|  | unsigned NumOps = Node->getNumOperands(); | 
|  | if (Node->getOperand(NumOps-1).getValueType() == MVT::Other) | 
|  | Chain = Node->getOperand(NumOps-1).getNode(); | 
|  | if (!Chain) | 
|  | return; | 
|  |  | 
|  | // Look for other loads of the same chain. Find loads that are loading from | 
|  | // the same base pointer and different offsets. | 
|  | SmallPtrSet<SDNode*, 16> Visited; | 
|  | SmallVector<int64_t, 4> Offsets; | 
|  | DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode. | 
|  | bool Cluster = false; | 
|  | SDNode *Base = Node; | 
|  | // This algorithm requires a reasonably low use count before finding a match | 
|  | // to avoid uselessly blowing up compile time in large blocks. | 
|  | unsigned UseCount = 0; | 
|  | for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end(); | 
|  | I != E && UseCount < 100; ++I, ++UseCount) { | 
|  | SDNode *User = *I; | 
|  | if (User == Node || !Visited.insert(User).second) | 
|  | continue; | 
|  | int64_t Offset1, Offset2; | 
|  | if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) || | 
|  | Offset1 == Offset2) | 
|  | // FIXME: Should be ok if they addresses are identical. But earlier | 
|  | // optimizations really should have eliminated one of the loads. | 
|  | continue; | 
|  | if (O2SMap.insert(std::make_pair(Offset1, Base)).second) | 
|  | Offsets.push_back(Offset1); | 
|  | O2SMap.insert(std::make_pair(Offset2, User)); | 
|  | Offsets.push_back(Offset2); | 
|  | if (Offset2 < Offset1) | 
|  | Base = User; | 
|  | Cluster = true; | 
|  | // Reset UseCount to allow more matches. | 
|  | UseCount = 0; | 
|  | } | 
|  |  | 
|  | if (!Cluster) | 
|  | return; | 
|  |  | 
|  | // Sort them in increasing order. | 
|  | std::sort(Offsets.begin(), Offsets.end()); | 
|  |  | 
|  | // Check if the loads are close enough. | 
|  | SmallVector<SDNode*, 4> Loads; | 
|  | unsigned NumLoads = 0; | 
|  | int64_t BaseOff = Offsets[0]; | 
|  | SDNode *BaseLoad = O2SMap[BaseOff]; | 
|  | Loads.push_back(BaseLoad); | 
|  | for (unsigned i = 1, e = Offsets.size(); i != e; ++i) { | 
|  | int64_t Offset = Offsets[i]; | 
|  | SDNode *Load = O2SMap[Offset]; | 
|  | if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads)) | 
|  | break; // Stop right here. Ignore loads that are further away. | 
|  | Loads.push_back(Load); | 
|  | ++NumLoads; | 
|  | } | 
|  |  | 
|  | if (NumLoads == 0) | 
|  | return; | 
|  |  | 
|  | // Cluster loads by adding MVT::Glue outputs and inputs. This also | 
|  | // ensure they are scheduled in order of increasing addresses. | 
|  | SDNode *Lead = Loads[0]; | 
|  | SDValue InGlue = SDValue(nullptr, 0); | 
|  | if (AddGlue(Lead, InGlue, true, DAG)) | 
|  | InGlue = SDValue(Lead, Lead->getNumValues() - 1); | 
|  | for (unsigned I = 1, E = Loads.size(); I != E; ++I) { | 
|  | bool OutGlue = I < E - 1; | 
|  | SDNode *Load = Loads[I]; | 
|  |  | 
|  | // If AddGlue fails, we could leave an unsused glue value. This should not | 
|  | // cause any | 
|  | if (AddGlue(Load, InGlue, OutGlue, DAG)) { | 
|  | if (OutGlue) | 
|  | InGlue = SDValue(Load, Load->getNumValues() - 1); | 
|  |  | 
|  | ++LoadsClustered; | 
|  | } | 
|  | else if (!OutGlue && InGlue.getNode()) | 
|  | RemoveUnusedGlue(InGlue.getNode(), DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ClusterNodes - Cluster certain nodes which should be scheduled together. | 
|  | /// | 
|  | void ScheduleDAGSDNodes::ClusterNodes() { | 
|  | for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(), | 
|  | E = DAG->allnodes_end(); NI != E; ++NI) { | 
|  | SDNode *Node = &*NI; | 
|  | if (!Node || !Node->isMachineOpcode()) | 
|  | continue; | 
|  |  | 
|  | unsigned Opc = Node->getMachineOpcode(); | 
|  | const MCInstrDesc &MCID = TII->get(Opc); | 
|  | if (MCID.mayLoad()) | 
|  | // Cluster loads from "near" addresses into combined SUnits. | 
|  | ClusterNeighboringLoads(Node); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ScheduleDAGSDNodes::BuildSchedUnits() { | 
|  | // During scheduling, the NodeId field of SDNode is used to map SDNodes | 
|  | // to their associated SUnits by holding SUnits table indices. A value | 
|  | // of -1 means the SDNode does not yet have an associated SUnit. | 
|  | unsigned NumNodes = 0; | 
|  | for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(), | 
|  | E = DAG->allnodes_end(); NI != E; ++NI) { | 
|  | NI->setNodeId(-1); | 
|  | ++NumNodes; | 
|  | } | 
|  |  | 
|  | // Reserve entries in the vector for each of the SUnits we are creating.  This | 
|  | // ensure that reallocation of the vector won't happen, so SUnit*'s won't get | 
|  | // invalidated. | 
|  | // FIXME: Multiply by 2 because we may clone nodes during scheduling. | 
|  | // This is a temporary workaround. | 
|  | SUnits.reserve(NumNodes * 2); | 
|  |  | 
|  | // Add all nodes in depth first order. | 
|  | SmallVector<SDNode*, 64> Worklist; | 
|  | SmallPtrSet<SDNode*, 64> Visited; | 
|  | Worklist.push_back(DAG->getRoot().getNode()); | 
|  | Visited.insert(DAG->getRoot().getNode()); | 
|  |  | 
|  | SmallVector<SUnit*, 8> CallSUnits; | 
|  | while (!Worklist.empty()) { | 
|  | SDNode *NI = Worklist.pop_back_val(); | 
|  |  | 
|  | // Add all operands to the worklist unless they've already been added. | 
|  | for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i) | 
|  | if (Visited.insert(NI->getOperand(i).getNode()).second) | 
|  | Worklist.push_back(NI->getOperand(i).getNode()); | 
|  |  | 
|  | if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate. | 
|  | continue; | 
|  |  | 
|  | // If this node has already been processed, stop now. | 
|  | if (NI->getNodeId() != -1) continue; | 
|  |  | 
|  | SUnit *NodeSUnit = newSUnit(NI); | 
|  |  | 
|  | // See if anything is glued to this node, if so, add them to glued | 
|  | // nodes.  Nodes can have at most one glue input and one glue output.  Glue | 
|  | // is required to be the last operand and result of a node. | 
|  |  | 
|  | // Scan up to find glued preds. | 
|  | SDNode *N = NI; | 
|  | while (N->getNumOperands() && | 
|  | N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { | 
|  | N = N->getOperand(N->getNumOperands()-1).getNode(); | 
|  | assert(N->getNodeId() == -1 && "Node already inserted!"); | 
|  | N->setNodeId(NodeSUnit->NodeNum); | 
|  | if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) | 
|  | NodeSUnit->isCall = true; | 
|  | } | 
|  |  | 
|  | // Scan down to find any glued succs. | 
|  | N = NI; | 
|  | while (N->getValueType(N->getNumValues()-1) == MVT::Glue) { | 
|  | SDValue GlueVal(N, N->getNumValues()-1); | 
|  |  | 
|  | // There are either zero or one users of the Glue result. | 
|  | bool HasGlueUse = false; | 
|  | for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); | 
|  | UI != E; ++UI) | 
|  | if (GlueVal.isOperandOf(*UI)) { | 
|  | HasGlueUse = true; | 
|  | assert(N->getNodeId() == -1 && "Node already inserted!"); | 
|  | N->setNodeId(NodeSUnit->NodeNum); | 
|  | N = *UI; | 
|  | if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) | 
|  | NodeSUnit->isCall = true; | 
|  | break; | 
|  | } | 
|  | if (!HasGlueUse) break; | 
|  | } | 
|  |  | 
|  | if (NodeSUnit->isCall) | 
|  | CallSUnits.push_back(NodeSUnit); | 
|  |  | 
|  | // Schedule zero-latency TokenFactor below any nodes that may increase the | 
|  | // schedule height. Otherwise, ancestors of the TokenFactor may appear to | 
|  | // have false stalls. | 
|  | if (NI->getOpcode() == ISD::TokenFactor) | 
|  | NodeSUnit->isScheduleLow = true; | 
|  |  | 
|  | // If there are glue operands involved, N is now the bottom-most node | 
|  | // of the sequence of nodes that are glued together. | 
|  | // Update the SUnit. | 
|  | NodeSUnit->setNode(N); | 
|  | assert(N->getNodeId() == -1 && "Node already inserted!"); | 
|  | N->setNodeId(NodeSUnit->NodeNum); | 
|  |  | 
|  | // Compute NumRegDefsLeft. This must be done before AddSchedEdges. | 
|  | InitNumRegDefsLeft(NodeSUnit); | 
|  |  | 
|  | // Assign the Latency field of NodeSUnit using target-provided information. | 
|  | computeLatency(NodeSUnit); | 
|  | } | 
|  |  | 
|  | // Find all call operands. | 
|  | while (!CallSUnits.empty()) { | 
|  | SUnit *SU = CallSUnits.pop_back_val(); | 
|  | for (const SDNode *SUNode = SU->getNode(); SUNode; | 
|  | SUNode = SUNode->getGluedNode()) { | 
|  | if (SUNode->getOpcode() != ISD::CopyToReg) | 
|  | continue; | 
|  | SDNode *SrcN = SUNode->getOperand(2).getNode(); | 
|  | if (isPassiveNode(SrcN)) continue;   // Not scheduled. | 
|  | SUnit *SrcSU = &SUnits[SrcN->getNodeId()]; | 
|  | SrcSU->isCallOp = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ScheduleDAGSDNodes::AddSchedEdges() { | 
|  | const TargetSubtargetInfo &ST = MF.getSubtarget(); | 
|  |  | 
|  | // Check to see if the scheduler cares about latencies. | 
|  | bool UnitLatencies = forceUnitLatencies(); | 
|  |  | 
|  | // Pass 2: add the preds, succs, etc. | 
|  | for (unsigned su = 0, e = SUnits.size(); su != e; ++su) { | 
|  | SUnit *SU = &SUnits[su]; | 
|  | SDNode *MainNode = SU->getNode(); | 
|  |  | 
|  | if (MainNode->isMachineOpcode()) { | 
|  | unsigned Opc = MainNode->getMachineOpcode(); | 
|  | const MCInstrDesc &MCID = TII->get(Opc); | 
|  | for (unsigned i = 0; i != MCID.getNumOperands(); ++i) { | 
|  | if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) { | 
|  | SU->isTwoAddress = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (MCID.isCommutable()) | 
|  | SU->isCommutable = true; | 
|  | } | 
|  |  | 
|  | // Find all predecessors and successors of the group. | 
|  | for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) { | 
|  | if (N->isMachineOpcode() && | 
|  | TII->get(N->getMachineOpcode()).getImplicitDefs()) { | 
|  | SU->hasPhysRegClobbers = true; | 
|  | unsigned NumUsed = InstrEmitter::CountResults(N); | 
|  | while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1)) | 
|  | --NumUsed;    // Skip over unused values at the end. | 
|  | if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs()) | 
|  | SU->hasPhysRegDefs = true; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | 
|  | SDNode *OpN = N->getOperand(i).getNode(); | 
|  | if (isPassiveNode(OpN)) continue;   // Not scheduled. | 
|  | SUnit *OpSU = &SUnits[OpN->getNodeId()]; | 
|  | assert(OpSU && "Node has no SUnit!"); | 
|  | if (OpSU == SU) continue;           // In the same group. | 
|  |  | 
|  | EVT OpVT = N->getOperand(i).getValueType(); | 
|  | assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!"); | 
|  | bool isChain = OpVT == MVT::Other; | 
|  |  | 
|  | unsigned PhysReg = 0; | 
|  | int Cost = 1; | 
|  | // Determine if this is a physical register dependency. | 
|  | CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost); | 
|  | assert((PhysReg == 0 || !isChain) && | 
|  | "Chain dependence via physreg data?"); | 
|  | // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler | 
|  | // emits a copy from the physical register to a virtual register unless | 
|  | // it requires a cross class copy (cost < 0). That means we are only | 
|  | // treating "expensive to copy" register dependency as physical register | 
|  | // dependency. This may change in the future though. | 
|  | if (Cost >= 0 && !StressSched) | 
|  | PhysReg = 0; | 
|  |  | 
|  | // If this is a ctrl dep, latency is 1. | 
|  | unsigned OpLatency = isChain ? 1 : OpSU->Latency; | 
|  | // Special-case TokenFactor chains as zero-latency. | 
|  | if(isChain && OpN->getOpcode() == ISD::TokenFactor) | 
|  | OpLatency = 0; | 
|  |  | 
|  | SDep Dep = isChain ? SDep(OpSU, SDep::Barrier) | 
|  | : SDep(OpSU, SDep::Data, PhysReg); | 
|  | Dep.setLatency(OpLatency); | 
|  | if (!isChain && !UnitLatencies) { | 
|  | computeOperandLatency(OpN, N, i, Dep); | 
|  | ST.adjustSchedDependency(OpSU, SU, Dep); | 
|  | } | 
|  |  | 
|  | if (!SU->addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) { | 
|  | // Multiple register uses are combined in the same SUnit. For example, | 
|  | // we could have a set of glued nodes with all their defs consumed by | 
|  | // another set of glued nodes. Register pressure tracking sees this as | 
|  | // a single use, so to keep pressure balanced we reduce the defs. | 
|  | // | 
|  | // We can't tell (without more book-keeping) if this results from | 
|  | // glued nodes or duplicate operands. As long as we don't reduce | 
|  | // NumRegDefsLeft to zero, we handle the common cases well. | 
|  | --OpSU->NumRegDefsLeft; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// BuildSchedGraph - Build the SUnit graph from the selection dag that we | 
|  | /// are input.  This SUnit graph is similar to the SelectionDAG, but | 
|  | /// excludes nodes that aren't interesting to scheduling, and represents | 
|  | /// glued together nodes with a single SUnit. | 
|  | void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) { | 
|  | // Cluster certain nodes which should be scheduled together. | 
|  | ClusterNodes(); | 
|  | // Populate the SUnits array. | 
|  | BuildSchedUnits(); | 
|  | // Compute all the scheduling dependencies between nodes. | 
|  | AddSchedEdges(); | 
|  | } | 
|  |  | 
|  | // Initialize NumNodeDefs for the current Node's opcode. | 
|  | void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() { | 
|  | // Check for phys reg copy. | 
|  | if (!Node) | 
|  | return; | 
|  |  | 
|  | if (!Node->isMachineOpcode()) { | 
|  | if (Node->getOpcode() == ISD::CopyFromReg) | 
|  | NodeNumDefs = 1; | 
|  | else | 
|  | NodeNumDefs = 0; | 
|  | return; | 
|  | } | 
|  | unsigned POpc = Node->getMachineOpcode(); | 
|  | if (POpc == TargetOpcode::IMPLICIT_DEF) { | 
|  | // No register need be allocated for this. | 
|  | NodeNumDefs = 0; | 
|  | return; | 
|  | } | 
|  | if (POpc == TargetOpcode::PATCHPOINT && | 
|  | Node->getValueType(0) == MVT::Other) { | 
|  | // PATCHPOINT is defined to have one result, but it might really have none | 
|  | // if we're not using CallingConv::AnyReg. Don't mistake the chain for a | 
|  | // real definition. | 
|  | NodeNumDefs = 0; | 
|  | return; | 
|  | } | 
|  | unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs(); | 
|  | // Some instructions define regs that are not represented in the selection DAG | 
|  | // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues. | 
|  | NodeNumDefs = std::min(Node->getNumValues(), NRegDefs); | 
|  | DefIdx = 0; | 
|  | } | 
|  |  | 
|  | // Construct a RegDefIter for this SUnit and find the first valid value. | 
|  | ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU, | 
|  | const ScheduleDAGSDNodes *SD) | 
|  | : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) { | 
|  | InitNodeNumDefs(); | 
|  | Advance(); | 
|  | } | 
|  |  | 
|  | // Advance to the next valid value defined by the SUnit. | 
|  | void ScheduleDAGSDNodes::RegDefIter::Advance() { | 
|  | for (;Node;) { // Visit all glued nodes. | 
|  | for (;DefIdx < NodeNumDefs; ++DefIdx) { | 
|  | if (!Node->hasAnyUseOfValue(DefIdx)) | 
|  | continue; | 
|  | ValueType = Node->getSimpleValueType(DefIdx); | 
|  | ++DefIdx; | 
|  | return; // Found a normal regdef. | 
|  | } | 
|  | Node = Node->getGluedNode(); | 
|  | if (!Node) { | 
|  | return; // No values left to visit. | 
|  | } | 
|  | InitNodeNumDefs(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) { | 
|  | assert(SU->NumRegDefsLeft == 0 && "expect a new node"); | 
|  | for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) { | 
|  | assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected"); | 
|  | ++SU->NumRegDefsLeft; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ScheduleDAGSDNodes::computeLatency(SUnit *SU) { | 
|  | SDNode *N = SU->getNode(); | 
|  |  | 
|  | // TokenFactor operands are considered zero latency, and some schedulers | 
|  | // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero | 
|  | // whenever node latency is nonzero. | 
|  | if (N && N->getOpcode() == ISD::TokenFactor) { | 
|  | SU->Latency = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check to see if the scheduler cares about latencies. | 
|  | if (forceUnitLatencies()) { | 
|  | SU->Latency = 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!InstrItins || InstrItins->isEmpty()) { | 
|  | if (N && N->isMachineOpcode() && | 
|  | TII->isHighLatencyDef(N->getMachineOpcode())) | 
|  | SU->Latency = HighLatencyCycles; | 
|  | else | 
|  | SU->Latency = 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Compute the latency for the node.  We use the sum of the latencies for | 
|  | // all nodes glued together into this SUnit. | 
|  | SU->Latency = 0; | 
|  | for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) | 
|  | if (N->isMachineOpcode()) | 
|  | SU->Latency += TII->getInstrLatency(InstrItins, N); | 
|  | } | 
|  |  | 
|  | void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use, | 
|  | unsigned OpIdx, SDep& dep) const{ | 
|  | // Check to see if the scheduler cares about latencies. | 
|  | if (forceUnitLatencies()) | 
|  | return; | 
|  |  | 
|  | if (dep.getKind() != SDep::Data) | 
|  | return; | 
|  |  | 
|  | unsigned DefIdx = Use->getOperand(OpIdx).getResNo(); | 
|  | if (Use->isMachineOpcode()) | 
|  | // Adjust the use operand index by num of defs. | 
|  | OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs(); | 
|  | int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx); | 
|  | if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg && | 
|  | !BB->succ_empty()) { | 
|  | unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg(); | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | // This copy is a liveout value. It is likely coalesced, so reduce the | 
|  | // latency so not to penalize the def. | 
|  | // FIXME: need target specific adjustment here? | 
|  | Latency = (Latency > 1) ? Latency - 1 : 1; | 
|  | } | 
|  | if (Latency >= 0) | 
|  | dep.setLatency(Latency); | 
|  | } | 
|  |  | 
|  | void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const { | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | if (!SU->getNode()) { | 
|  | dbgs() << "PHYS REG COPY\n"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | SU->getNode()->dump(DAG); | 
|  | dbgs() << "\n"; | 
|  | SmallVector<SDNode *, 4> GluedNodes; | 
|  | for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode()) | 
|  | GluedNodes.push_back(N); | 
|  | while (!GluedNodes.empty()) { | 
|  | dbgs() << "    "; | 
|  | GluedNodes.back()->dump(DAG); | 
|  | dbgs() << "\n"; | 
|  | GluedNodes.pop_back(); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | void ScheduleDAGSDNodes::dumpSchedule() const { | 
|  | for (unsigned i = 0, e = Sequence.size(); i != e; i++) { | 
|  | if (SUnit *SU = Sequence[i]) | 
|  | SU->dump(this); | 
|  | else | 
|  | dbgs() << "**** NOOP ****\n"; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that | 
|  | /// their state is consistent with the nodes listed in Sequence. | 
|  | /// | 
|  | void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) { | 
|  | unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp); | 
|  | unsigned Noops = 0; | 
|  | for (unsigned i = 0, e = Sequence.size(); i != e; ++i) | 
|  | if (!Sequence[i]) | 
|  | ++Noops; | 
|  | assert(Sequence.size() - Noops == ScheduledNodes && | 
|  | "The number of nodes scheduled doesn't match the expected number!"); | 
|  | } | 
|  | #endif // NDEBUG | 
|  |  | 
|  | /// ProcessSDDbgValues - Process SDDbgValues associated with this node. | 
|  | static void | 
|  | ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, | 
|  | SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders, | 
|  | DenseMap<SDValue, unsigned> &VRBaseMap, unsigned Order) { | 
|  | if (!N->getHasDebugValue()) | 
|  | return; | 
|  |  | 
|  | // Opportunistically insert immediate dbg_value uses, i.e. those with source | 
|  | // order number right after the N. | 
|  | MachineBasicBlock *BB = Emitter.getBlock(); | 
|  | MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos(); | 
|  | ArrayRef<SDDbgValue*> DVs = DAG->GetDbgValues(N); | 
|  | for (unsigned i = 0, e = DVs.size(); i != e; ++i) { | 
|  | if (DVs[i]->isInvalidated()) | 
|  | continue; | 
|  | unsigned DVOrder = DVs[i]->getOrder(); | 
|  | if (!Order || DVOrder == ++Order) { | 
|  | MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap); | 
|  | if (DbgMI) { | 
|  | Orders.push_back(std::make_pair(DVOrder, DbgMI)); | 
|  | BB->insert(InsertPos, DbgMI); | 
|  | } | 
|  | DVs[i]->setIsInvalidated(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // ProcessSourceNode - Process nodes with source order numbers. These are added | 
|  | // to a vector which EmitSchedule uses to determine how to insert dbg_value | 
|  | // instructions in the right order. | 
|  | static void | 
|  | ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, | 
|  | DenseMap<SDValue, unsigned> &VRBaseMap, | 
|  | SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders, | 
|  | SmallSet<unsigned, 8> &Seen) { | 
|  | unsigned Order = N->getIROrder(); | 
|  | if (!Order || !Seen.insert(Order).second) { | 
|  | // Process any valid SDDbgValues even if node does not have any order | 
|  | // assigned. | 
|  | ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *BB = Emitter.getBlock(); | 
|  | if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI() || | 
|  | // Fast-isel may have inserted some instructions, in which case the | 
|  | // BB->back().isPHI() test will not fire when we want it to. | 
|  | std::prev(Emitter.getInsertPos())->isPHI()) { | 
|  | // Did not insert any instruction. | 
|  | Orders.push_back(std::make_pair(Order, (MachineInstr*)nullptr)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Orders.push_back(std::make_pair(Order, std::prev(Emitter.getInsertPos()))); | 
|  | ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order); | 
|  | } | 
|  |  | 
|  | void ScheduleDAGSDNodes:: | 
|  | EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap, | 
|  | MachineBasicBlock::iterator InsertPos) { | 
|  | for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); | 
|  | I != E; ++I) { | 
|  | if (I->isCtrl()) continue;  // ignore chain preds | 
|  | if (I->getSUnit()->CopyDstRC) { | 
|  | // Copy to physical register. | 
|  | DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->getSUnit()); | 
|  | assert(VRI != VRBaseMap.end() && "Node emitted out of order - late"); | 
|  | // Find the destination physical register. | 
|  | unsigned Reg = 0; | 
|  | for (SUnit::const_succ_iterator II = SU->Succs.begin(), | 
|  | EE = SU->Succs.end(); II != EE; ++II) { | 
|  | if (II->isCtrl()) continue;  // ignore chain preds | 
|  | if (II->getReg()) { | 
|  | Reg = II->getReg(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg) | 
|  | .addReg(VRI->second); | 
|  | } else { | 
|  | // Copy from physical register. | 
|  | assert(I->getReg() && "Unknown physical register!"); | 
|  | unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC); | 
|  | bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second; | 
|  | (void)isNew; // Silence compiler warning. | 
|  | assert(isNew && "Node emitted out of order - early"); | 
|  | BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase) | 
|  | .addReg(I->getReg()); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// EmitSchedule - Emit the machine code in scheduled order. Return the new | 
|  | /// InsertPos and MachineBasicBlock that contains this insertion | 
|  | /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does | 
|  | /// not necessarily refer to returned BB. The emitter may split blocks. | 
|  | MachineBasicBlock *ScheduleDAGSDNodes:: | 
|  | EmitSchedule(MachineBasicBlock::iterator &InsertPos) { | 
|  | InstrEmitter Emitter(BB, InsertPos); | 
|  | DenseMap<SDValue, unsigned> VRBaseMap; | 
|  | DenseMap<SUnit*, unsigned> CopyVRBaseMap; | 
|  | SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders; | 
|  | SmallSet<unsigned, 8> Seen; | 
|  | bool HasDbg = DAG->hasDebugValues(); | 
|  |  | 
|  | // If this is the first BB, emit byval parameter dbg_value's. | 
|  | if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) { | 
|  | SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin(); | 
|  | SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd(); | 
|  | for (; PDI != PDE; ++PDI) { | 
|  | MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap); | 
|  | if (DbgMI) | 
|  | BB->insert(InsertPos, DbgMI); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = Sequence.size(); i != e; i++) { | 
|  | SUnit *SU = Sequence[i]; | 
|  | if (!SU) { | 
|  | // Null SUnit* is a noop. | 
|  | TII->insertNoop(*Emitter.getBlock(), InsertPos); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // For pre-regalloc scheduling, create instructions corresponding to the | 
|  | // SDNode and any glued SDNodes and append them to the block. | 
|  | if (!SU->getNode()) { | 
|  | // Emit a copy. | 
|  | EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SmallVector<SDNode *, 4> GluedNodes; | 
|  | for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode()) | 
|  | GluedNodes.push_back(N); | 
|  | while (!GluedNodes.empty()) { | 
|  | SDNode *N = GluedNodes.back(); | 
|  | Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned, | 
|  | VRBaseMap); | 
|  | // Remember the source order of the inserted instruction. | 
|  | if (HasDbg) | 
|  | ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen); | 
|  | GluedNodes.pop_back(); | 
|  | } | 
|  | Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, | 
|  | VRBaseMap); | 
|  | // Remember the source order of the inserted instruction. | 
|  | if (HasDbg) | 
|  | ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders, | 
|  | Seen); | 
|  | } | 
|  |  | 
|  | // Insert all the dbg_values which have not already been inserted in source | 
|  | // order sequence. | 
|  | if (HasDbg) { | 
|  | MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI(); | 
|  |  | 
|  | // Sort the source order instructions and use the order to insert debug | 
|  | // values. | 
|  | std::sort(Orders.begin(), Orders.end(), less_first()); | 
|  |  | 
|  | SDDbgInfo::DbgIterator DI = DAG->DbgBegin(); | 
|  | SDDbgInfo::DbgIterator DE = DAG->DbgEnd(); | 
|  | // Now emit the rest according to source order. | 
|  | unsigned LastOrder = 0; | 
|  | for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) { | 
|  | unsigned Order = Orders[i].first; | 
|  | MachineInstr *MI = Orders[i].second; | 
|  | // Insert all SDDbgValue's whose order(s) are before "Order". | 
|  | if (!MI) | 
|  | continue; | 
|  | for (; DI != DE && | 
|  | (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) { | 
|  | if ((*DI)->isInvalidated()) | 
|  | continue; | 
|  | MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap); | 
|  | if (DbgMI) { | 
|  | if (!LastOrder) | 
|  | // Insert to start of the BB (after PHIs). | 
|  | BB->insert(BBBegin, DbgMI); | 
|  | else { | 
|  | // Insert at the instruction, which may be in a different | 
|  | // block, if the block was split by a custom inserter. | 
|  | MachineBasicBlock::iterator Pos = MI; | 
|  | MI->getParent()->insert(Pos, DbgMI); | 
|  | } | 
|  | } | 
|  | } | 
|  | LastOrder = Order; | 
|  | } | 
|  | // Add trailing DbgValue's before the terminator. FIXME: May want to add | 
|  | // some of them before one or more conditional branches? | 
|  | SmallVector<MachineInstr*, 8> DbgMIs; | 
|  | while (DI != DE) { | 
|  | if (!(*DI)->isInvalidated()) | 
|  | if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap)) | 
|  | DbgMIs.push_back(DbgMI); | 
|  | ++DI; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *InsertBB = Emitter.getBlock(); | 
|  | MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator(); | 
|  | InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end()); | 
|  | } | 
|  |  | 
|  | InsertPos = Emitter.getInsertPos(); | 
|  | return Emitter.getBlock(); | 
|  | } | 
|  |  | 
|  | /// Return the basic block label. | 
|  | std::string ScheduleDAGSDNodes::getDAGName() const { | 
|  | return "sunit-dag." + BB->getFullName(); | 
|  | } |