|  | //===--------------------- SemaLookup.cpp - Name Lookup  ------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements name lookup for C, C++, Objective-C, and | 
|  | //  Objective-C++. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/CXXInheritance.h" | 
|  | #include "clang/AST/Decl.h" | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/AST/DeclLookups.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/DeclTemplate.h" | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/Basic/Builtins.h" | 
|  | #include "clang/Basic/LangOptions.h" | 
|  | #include "clang/Lex/HeaderSearch.h" | 
|  | #include "clang/Lex/ModuleLoader.h" | 
|  | #include "clang/Lex/Preprocessor.h" | 
|  | #include "clang/Sema/DeclSpec.h" | 
|  | #include "clang/Sema/Lookup.h" | 
|  | #include "clang/Sema/Overload.h" | 
|  | #include "clang/Sema/Scope.h" | 
|  | #include "clang/Sema/ScopeInfo.h" | 
|  | #include "clang/Sema/Sema.h" | 
|  | #include "clang/Sema/SemaInternal.h" | 
|  | #include "clang/Sema/TemplateDeduction.h" | 
|  | #include "clang/Sema/TypoCorrection.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/TinyPtrVector.h" | 
|  | #include "llvm/ADT/edit_distance.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include <algorithm> | 
|  | #include <iterator> | 
|  | #include <list> | 
|  | #include <set> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace clang; | 
|  | using namespace sema; | 
|  |  | 
|  | namespace { | 
|  | class UnqualUsingEntry { | 
|  | const DeclContext *Nominated; | 
|  | const DeclContext *CommonAncestor; | 
|  |  | 
|  | public: | 
|  | UnqualUsingEntry(const DeclContext *Nominated, | 
|  | const DeclContext *CommonAncestor) | 
|  | : Nominated(Nominated), CommonAncestor(CommonAncestor) { | 
|  | } | 
|  |  | 
|  | const DeclContext *getCommonAncestor() const { | 
|  | return CommonAncestor; | 
|  | } | 
|  |  | 
|  | const DeclContext *getNominatedNamespace() const { | 
|  | return Nominated; | 
|  | } | 
|  |  | 
|  | // Sort by the pointer value of the common ancestor. | 
|  | struct Comparator { | 
|  | bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) { | 
|  | return L.getCommonAncestor() < R.getCommonAncestor(); | 
|  | } | 
|  |  | 
|  | bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) { | 
|  | return E.getCommonAncestor() < DC; | 
|  | } | 
|  |  | 
|  | bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) { | 
|  | return DC < E.getCommonAncestor(); | 
|  | } | 
|  | }; | 
|  | }; | 
|  |  | 
|  | /// A collection of using directives, as used by C++ unqualified | 
|  | /// lookup. | 
|  | class UnqualUsingDirectiveSet { | 
|  | Sema &SemaRef; | 
|  |  | 
|  | typedef SmallVector<UnqualUsingEntry, 8> ListTy; | 
|  |  | 
|  | ListTy list; | 
|  | llvm::SmallPtrSet<DeclContext*, 8> visited; | 
|  |  | 
|  | public: | 
|  | UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {} | 
|  |  | 
|  | void visitScopeChain(Scope *S, Scope *InnermostFileScope) { | 
|  | // C++ [namespace.udir]p1: | 
|  | //   During unqualified name lookup, the names appear as if they | 
|  | //   were declared in the nearest enclosing namespace which contains | 
|  | //   both the using-directive and the nominated namespace. | 
|  | DeclContext *InnermostFileDC = InnermostFileScope->getEntity(); | 
|  | assert(InnermostFileDC && InnermostFileDC->isFileContext()); | 
|  |  | 
|  | for (; S; S = S->getParent()) { | 
|  | // C++ [namespace.udir]p1: | 
|  | //   A using-directive shall not appear in class scope, but may | 
|  | //   appear in namespace scope or in block scope. | 
|  | DeclContext *Ctx = S->getEntity(); | 
|  | if (Ctx && Ctx->isFileContext()) { | 
|  | visit(Ctx, Ctx); | 
|  | } else if (!Ctx || Ctx->isFunctionOrMethod()) { | 
|  | for (auto *I : S->using_directives()) | 
|  | if (SemaRef.isVisible(I)) | 
|  | visit(I, InnermostFileDC); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Visits a context and collect all of its using directives | 
|  | // recursively.  Treats all using directives as if they were | 
|  | // declared in the context. | 
|  | // | 
|  | // A given context is only every visited once, so it is important | 
|  | // that contexts be visited from the inside out in order to get | 
|  | // the effective DCs right. | 
|  | void visit(DeclContext *DC, DeclContext *EffectiveDC) { | 
|  | if (!visited.insert(DC).second) | 
|  | return; | 
|  |  | 
|  | addUsingDirectives(DC, EffectiveDC); | 
|  | } | 
|  |  | 
|  | // Visits a using directive and collects all of its using | 
|  | // directives recursively.  Treats all using directives as if they | 
|  | // were declared in the effective DC. | 
|  | void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { | 
|  | DeclContext *NS = UD->getNominatedNamespace(); | 
|  | if (!visited.insert(NS).second) | 
|  | return; | 
|  |  | 
|  | addUsingDirective(UD, EffectiveDC); | 
|  | addUsingDirectives(NS, EffectiveDC); | 
|  | } | 
|  |  | 
|  | // Adds all the using directives in a context (and those nominated | 
|  | // by its using directives, transitively) as if they appeared in | 
|  | // the given effective context. | 
|  | void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) { | 
|  | SmallVector<DeclContext*, 4> queue; | 
|  | while (true) { | 
|  | for (auto UD : DC->using_directives()) { | 
|  | DeclContext *NS = UD->getNominatedNamespace(); | 
|  | if (SemaRef.isVisible(UD) && visited.insert(NS).second) { | 
|  | addUsingDirective(UD, EffectiveDC); | 
|  | queue.push_back(NS); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (queue.empty()) | 
|  | return; | 
|  |  | 
|  | DC = queue.pop_back_val(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add a using directive as if it had been declared in the given | 
|  | // context.  This helps implement C++ [namespace.udir]p3: | 
|  | //   The using-directive is transitive: if a scope contains a | 
|  | //   using-directive that nominates a second namespace that itself | 
|  | //   contains using-directives, the effect is as if the | 
|  | //   using-directives from the second namespace also appeared in | 
|  | //   the first. | 
|  | void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { | 
|  | // Find the common ancestor between the effective context and | 
|  | // the nominated namespace. | 
|  | DeclContext *Common = UD->getNominatedNamespace(); | 
|  | while (!Common->Encloses(EffectiveDC)) | 
|  | Common = Common->getParent(); | 
|  | Common = Common->getPrimaryContext(); | 
|  |  | 
|  | list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common)); | 
|  | } | 
|  |  | 
|  | void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); } | 
|  |  | 
|  | typedef ListTy::const_iterator const_iterator; | 
|  |  | 
|  | const_iterator begin() const { return list.begin(); } | 
|  | const_iterator end() const { return list.end(); } | 
|  |  | 
|  | llvm::iterator_range<const_iterator> | 
|  | getNamespacesFor(DeclContext *DC) const { | 
|  | return llvm::make_range(std::equal_range(begin(), end(), | 
|  | DC->getPrimaryContext(), | 
|  | UnqualUsingEntry::Comparator())); | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | // Retrieve the set of identifier namespaces that correspond to a | 
|  | // specific kind of name lookup. | 
|  | static inline unsigned getIDNS(Sema::LookupNameKind NameKind, | 
|  | bool CPlusPlus, | 
|  | bool Redeclaration) { | 
|  | unsigned IDNS = 0; | 
|  | switch (NameKind) { | 
|  | case Sema::LookupObjCImplicitSelfParam: | 
|  | case Sema::LookupOrdinaryName: | 
|  | case Sema::LookupRedeclarationWithLinkage: | 
|  | case Sema::LookupLocalFriendName: | 
|  | IDNS = Decl::IDNS_Ordinary; | 
|  | if (CPlusPlus) { | 
|  | IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace; | 
|  | if (Redeclaration) | 
|  | IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend; | 
|  | } | 
|  | if (Redeclaration) | 
|  | IDNS |= Decl::IDNS_LocalExtern; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupOperatorName: | 
|  | // Operator lookup is its own crazy thing;  it is not the same | 
|  | // as (e.g.) looking up an operator name for redeclaration. | 
|  | assert(!Redeclaration && "cannot do redeclaration operator lookup"); | 
|  | IDNS = Decl::IDNS_NonMemberOperator; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupTagName: | 
|  | if (CPlusPlus) { | 
|  | IDNS = Decl::IDNS_Type; | 
|  |  | 
|  | // When looking for a redeclaration of a tag name, we add: | 
|  | // 1) TagFriend to find undeclared friend decls | 
|  | // 2) Namespace because they can't "overload" with tag decls. | 
|  | // 3) Tag because it includes class templates, which can't | 
|  | //    "overload" with tag decls. | 
|  | if (Redeclaration) | 
|  | IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace; | 
|  | } else { | 
|  | IDNS = Decl::IDNS_Tag; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Sema::LookupLabel: | 
|  | IDNS = Decl::IDNS_Label; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupMemberName: | 
|  | IDNS = Decl::IDNS_Member; | 
|  | if (CPlusPlus) | 
|  | IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupNestedNameSpecifierName: | 
|  | IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupNamespaceName: | 
|  | IDNS = Decl::IDNS_Namespace; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupUsingDeclName: | 
|  | assert(Redeclaration && "should only be used for redecl lookup"); | 
|  | IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member | | 
|  | Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend | | 
|  | Decl::IDNS_LocalExtern; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupObjCProtocolName: | 
|  | IDNS = Decl::IDNS_ObjCProtocol; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupOMPReductionName: | 
|  | IDNS = Decl::IDNS_OMPReduction; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupOMPMapperName: | 
|  | IDNS = Decl::IDNS_OMPMapper; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupAnyName: | 
|  | IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member | 
|  | | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol | 
|  | | Decl::IDNS_Type; | 
|  | break; | 
|  | } | 
|  | return IDNS; | 
|  | } | 
|  |  | 
|  | void LookupResult::configure() { | 
|  | IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus, | 
|  | isForRedeclaration()); | 
|  |  | 
|  | // If we're looking for one of the allocation or deallocation | 
|  | // operators, make sure that the implicitly-declared new and delete | 
|  | // operators can be found. | 
|  | switch (NameInfo.getName().getCXXOverloadedOperator()) { | 
|  | case OO_New: | 
|  | case OO_Delete: | 
|  | case OO_Array_New: | 
|  | case OO_Array_Delete: | 
|  | getSema().DeclareGlobalNewDelete(); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Compiler builtins are always visible, regardless of where they end | 
|  | // up being declared. | 
|  | if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) { | 
|  | if (unsigned BuiltinID = Id->getBuiltinID()) { | 
|  | if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) | 
|  | AllowHidden = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool LookupResult::sanity() const { | 
|  | // This function is never called by NDEBUG builds. | 
|  | assert(ResultKind != NotFound || Decls.size() == 0); | 
|  | assert(ResultKind != Found || Decls.size() == 1); | 
|  | assert(ResultKind != FoundOverloaded || Decls.size() > 1 || | 
|  | (Decls.size() == 1 && | 
|  | isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))); | 
|  | assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved()); | 
|  | assert(ResultKind != Ambiguous || Decls.size() > 1 || | 
|  | (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || | 
|  | Ambiguity == AmbiguousBaseSubobjectTypes))); | 
|  | assert((Paths != nullptr) == (ResultKind == Ambiguous && | 
|  | (Ambiguity == AmbiguousBaseSubobjectTypes || | 
|  | Ambiguity == AmbiguousBaseSubobjects))); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Necessary because CXXBasePaths is not complete in Sema.h | 
|  | void LookupResult::deletePaths(CXXBasePaths *Paths) { | 
|  | delete Paths; | 
|  | } | 
|  |  | 
|  | /// Get a representative context for a declaration such that two declarations | 
|  | /// will have the same context if they were found within the same scope. | 
|  | static DeclContext *getContextForScopeMatching(Decl *D) { | 
|  | // For function-local declarations, use that function as the context. This | 
|  | // doesn't account for scopes within the function; the caller must deal with | 
|  | // those. | 
|  | DeclContext *DC = D->getLexicalDeclContext(); | 
|  | if (DC->isFunctionOrMethod()) | 
|  | return DC; | 
|  |  | 
|  | // Otherwise, look at the semantic context of the declaration. The | 
|  | // declaration must have been found there. | 
|  | return D->getDeclContext()->getRedeclContext(); | 
|  | } | 
|  |  | 
|  | /// Determine whether \p D is a better lookup result than \p Existing, | 
|  | /// given that they declare the same entity. | 
|  | static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind, | 
|  | NamedDecl *D, NamedDecl *Existing) { | 
|  | // When looking up redeclarations of a using declaration, prefer a using | 
|  | // shadow declaration over any other declaration of the same entity. | 
|  | if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) && | 
|  | !isa<UsingShadowDecl>(Existing)) | 
|  | return true; | 
|  |  | 
|  | auto *DUnderlying = D->getUnderlyingDecl(); | 
|  | auto *EUnderlying = Existing->getUnderlyingDecl(); | 
|  |  | 
|  | // If they have different underlying declarations, prefer a typedef over the | 
|  | // original type (this happens when two type declarations denote the same | 
|  | // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef | 
|  | // might carry additional semantic information, such as an alignment override. | 
|  | // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag | 
|  | // declaration over a typedef. | 
|  | if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) { | 
|  | assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying)); | 
|  | bool HaveTag = isa<TagDecl>(EUnderlying); | 
|  | bool WantTag = Kind == Sema::LookupTagName; | 
|  | return HaveTag != WantTag; | 
|  | } | 
|  |  | 
|  | // Pick the function with more default arguments. | 
|  | // FIXME: In the presence of ambiguous default arguments, we should keep both, | 
|  | //        so we can diagnose the ambiguity if the default argument is needed. | 
|  | //        See C++ [over.match.best]p3. | 
|  | if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) { | 
|  | auto *EFD = cast<FunctionDecl>(EUnderlying); | 
|  | unsigned DMin = DFD->getMinRequiredArguments(); | 
|  | unsigned EMin = EFD->getMinRequiredArguments(); | 
|  | // If D has more default arguments, it is preferred. | 
|  | if (DMin != EMin) | 
|  | return DMin < EMin; | 
|  | // FIXME: When we track visibility for default function arguments, check | 
|  | // that we pick the declaration with more visible default arguments. | 
|  | } | 
|  |  | 
|  | // Pick the template with more default template arguments. | 
|  | if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) { | 
|  | auto *ETD = cast<TemplateDecl>(EUnderlying); | 
|  | unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments(); | 
|  | unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments(); | 
|  | // If D has more default arguments, it is preferred. Note that default | 
|  | // arguments (and their visibility) is monotonically increasing across the | 
|  | // redeclaration chain, so this is a quick proxy for "is more recent". | 
|  | if (DMin != EMin) | 
|  | return DMin < EMin; | 
|  | // If D has more *visible* default arguments, it is preferred. Note, an | 
|  | // earlier default argument being visible does not imply that a later | 
|  | // default argument is visible, so we can't just check the first one. | 
|  | for (unsigned I = DMin, N = DTD->getTemplateParameters()->size(); | 
|  | I != N; ++I) { | 
|  | if (!S.hasVisibleDefaultArgument( | 
|  | ETD->getTemplateParameters()->getParam(I)) && | 
|  | S.hasVisibleDefaultArgument( | 
|  | DTD->getTemplateParameters()->getParam(I))) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // VarDecl can have incomplete array types, prefer the one with more complete | 
|  | // array type. | 
|  | if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) { | 
|  | VarDecl *EVD = cast<VarDecl>(EUnderlying); | 
|  | if (EVD->getType()->isIncompleteType() && | 
|  | !DVD->getType()->isIncompleteType()) { | 
|  | // Prefer the decl with a more complete type if visible. | 
|  | return S.isVisible(DVD); | 
|  | } | 
|  | return false; // Avoid picking up a newer decl, just because it was newer. | 
|  | } | 
|  |  | 
|  | // For most kinds of declaration, it doesn't really matter which one we pick. | 
|  | if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) { | 
|  | // If the existing declaration is hidden, prefer the new one. Otherwise, | 
|  | // keep what we've got. | 
|  | return !S.isVisible(Existing); | 
|  | } | 
|  |  | 
|  | // Pick the newer declaration; it might have a more precise type. | 
|  | for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev; | 
|  | Prev = Prev->getPreviousDecl()) | 
|  | if (Prev == EUnderlying) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determine whether \p D can hide a tag declaration. | 
|  | static bool canHideTag(NamedDecl *D) { | 
|  | // C++ [basic.scope.declarative]p4: | 
|  | //   Given a set of declarations in a single declarative region [...] | 
|  | //   exactly one declaration shall declare a class name or enumeration name | 
|  | //   that is not a typedef name and the other declarations shall all refer to | 
|  | //   the same variable, non-static data member, or enumerator, or all refer | 
|  | //   to functions and function templates; in this case the class name or | 
|  | //   enumeration name is hidden. | 
|  | // C++ [basic.scope.hiding]p2: | 
|  | //   A class name or enumeration name can be hidden by the name of a | 
|  | //   variable, data member, function, or enumerator declared in the same | 
|  | //   scope. | 
|  | // An UnresolvedUsingValueDecl always instantiates to one of these. | 
|  | D = D->getUnderlyingDecl(); | 
|  | return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) || | 
|  | isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) || | 
|  | isa<UnresolvedUsingValueDecl>(D); | 
|  | } | 
|  |  | 
|  | /// Resolves the result kind of this lookup. | 
|  | void LookupResult::resolveKind() { | 
|  | unsigned N = Decls.size(); | 
|  |  | 
|  | // Fast case: no possible ambiguity. | 
|  | if (N == 0) { | 
|  | assert(ResultKind == NotFound || | 
|  | ResultKind == NotFoundInCurrentInstantiation); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If there's a single decl, we need to examine it to decide what | 
|  | // kind of lookup this is. | 
|  | if (N == 1) { | 
|  | NamedDecl *D = (*Decls.begin())->getUnderlyingDecl(); | 
|  | if (isa<FunctionTemplateDecl>(D)) | 
|  | ResultKind = FoundOverloaded; | 
|  | else if (isa<UnresolvedUsingValueDecl>(D)) | 
|  | ResultKind = FoundUnresolvedValue; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Don't do any extra resolution if we've already resolved as ambiguous. | 
|  | if (ResultKind == Ambiguous) return; | 
|  |  | 
|  | llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique; | 
|  | llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes; | 
|  |  | 
|  | bool Ambiguous = false; | 
|  | bool HasTag = false, HasFunction = false; | 
|  | bool HasFunctionTemplate = false, HasUnresolved = false; | 
|  | NamedDecl *HasNonFunction = nullptr; | 
|  |  | 
|  | llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions; | 
|  |  | 
|  | unsigned UniqueTagIndex = 0; | 
|  |  | 
|  | unsigned I = 0; | 
|  | while (I < N) { | 
|  | NamedDecl *D = Decls[I]->getUnderlyingDecl(); | 
|  | D = cast<NamedDecl>(D->getCanonicalDecl()); | 
|  |  | 
|  | // Ignore an invalid declaration unless it's the only one left. | 
|  | if (D->isInvalidDecl() && !(I == 0 && N == 1)) { | 
|  | Decls[I] = Decls[--N]; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | llvm::Optional<unsigned> ExistingI; | 
|  |  | 
|  | // Redeclarations of types via typedef can occur both within a scope | 
|  | // and, through using declarations and directives, across scopes. There is | 
|  | // no ambiguity if they all refer to the same type, so unique based on the | 
|  | // canonical type. | 
|  | if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) { | 
|  | QualType T = getSema().Context.getTypeDeclType(TD); | 
|  | auto UniqueResult = UniqueTypes.insert( | 
|  | std::make_pair(getSema().Context.getCanonicalType(T), I)); | 
|  | if (!UniqueResult.second) { | 
|  | // The type is not unique. | 
|  | ExistingI = UniqueResult.first->second; | 
|  | } | 
|  | } | 
|  |  | 
|  | // For non-type declarations, check for a prior lookup result naming this | 
|  | // canonical declaration. | 
|  | if (!ExistingI) { | 
|  | auto UniqueResult = Unique.insert(std::make_pair(D, I)); | 
|  | if (!UniqueResult.second) { | 
|  | // We've seen this entity before. | 
|  | ExistingI = UniqueResult.first->second; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ExistingI) { | 
|  | // This is not a unique lookup result. Pick one of the results and | 
|  | // discard the other. | 
|  | if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I], | 
|  | Decls[*ExistingI])) | 
|  | Decls[*ExistingI] = Decls[I]; | 
|  | Decls[I] = Decls[--N]; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, do some decl type analysis and then continue. | 
|  |  | 
|  | if (isa<UnresolvedUsingValueDecl>(D)) { | 
|  | HasUnresolved = true; | 
|  | } else if (isa<TagDecl>(D)) { | 
|  | if (HasTag) | 
|  | Ambiguous = true; | 
|  | UniqueTagIndex = I; | 
|  | HasTag = true; | 
|  | } else if (isa<FunctionTemplateDecl>(D)) { | 
|  | HasFunction = true; | 
|  | HasFunctionTemplate = true; | 
|  | } else if (isa<FunctionDecl>(D)) { | 
|  | HasFunction = true; | 
|  | } else { | 
|  | if (HasNonFunction) { | 
|  | // If we're about to create an ambiguity between two declarations that | 
|  | // are equivalent, but one is an internal linkage declaration from one | 
|  | // module and the other is an internal linkage declaration from another | 
|  | // module, just skip it. | 
|  | if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction, | 
|  | D)) { | 
|  | EquivalentNonFunctions.push_back(D); | 
|  | Decls[I] = Decls[--N]; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Ambiguous = true; | 
|  | } | 
|  | HasNonFunction = D; | 
|  | } | 
|  | I++; | 
|  | } | 
|  |  | 
|  | // C++ [basic.scope.hiding]p2: | 
|  | //   A class name or enumeration name can be hidden by the name of | 
|  | //   an object, function, or enumerator declared in the same | 
|  | //   scope. If a class or enumeration name and an object, function, | 
|  | //   or enumerator are declared in the same scope (in any order) | 
|  | //   with the same name, the class or enumeration name is hidden | 
|  | //   wherever the object, function, or enumerator name is visible. | 
|  | // But it's still an error if there are distinct tag types found, | 
|  | // even if they're not visible. (ref?) | 
|  | if (N > 1 && HideTags && HasTag && !Ambiguous && | 
|  | (HasFunction || HasNonFunction || HasUnresolved)) { | 
|  | NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1]; | 
|  | if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) && | 
|  | getContextForScopeMatching(Decls[UniqueTagIndex])->Equals( | 
|  | getContextForScopeMatching(OtherDecl)) && | 
|  | canHideTag(OtherDecl)) | 
|  | Decls[UniqueTagIndex] = Decls[--N]; | 
|  | else | 
|  | Ambiguous = true; | 
|  | } | 
|  |  | 
|  | // FIXME: This diagnostic should really be delayed until we're done with | 
|  | // the lookup result, in case the ambiguity is resolved by the caller. | 
|  | if (!EquivalentNonFunctions.empty() && !Ambiguous) | 
|  | getSema().diagnoseEquivalentInternalLinkageDeclarations( | 
|  | getNameLoc(), HasNonFunction, EquivalentNonFunctions); | 
|  |  | 
|  | Decls.set_size(N); | 
|  |  | 
|  | if (HasNonFunction && (HasFunction || HasUnresolved)) | 
|  | Ambiguous = true; | 
|  |  | 
|  | if (Ambiguous) | 
|  | setAmbiguous(LookupResult::AmbiguousReference); | 
|  | else if (HasUnresolved) | 
|  | ResultKind = LookupResult::FoundUnresolvedValue; | 
|  | else if (N > 1 || HasFunctionTemplate) | 
|  | ResultKind = LookupResult::FoundOverloaded; | 
|  | else | 
|  | ResultKind = LookupResult::Found; | 
|  | } | 
|  |  | 
|  | void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) { | 
|  | CXXBasePaths::const_paths_iterator I, E; | 
|  | for (I = P.begin(), E = P.end(); I != E; ++I) | 
|  | for (DeclContext::lookup_iterator DI = I->Decls.begin(), | 
|  | DE = I->Decls.end(); DI != DE; ++DI) | 
|  | addDecl(*DI); | 
|  | } | 
|  |  | 
|  | void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) { | 
|  | Paths = new CXXBasePaths; | 
|  | Paths->swap(P); | 
|  | addDeclsFromBasePaths(*Paths); | 
|  | resolveKind(); | 
|  | setAmbiguous(AmbiguousBaseSubobjects); | 
|  | } | 
|  |  | 
|  | void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) { | 
|  | Paths = new CXXBasePaths; | 
|  | Paths->swap(P); | 
|  | addDeclsFromBasePaths(*Paths); | 
|  | resolveKind(); | 
|  | setAmbiguous(AmbiguousBaseSubobjectTypes); | 
|  | } | 
|  |  | 
|  | void LookupResult::print(raw_ostream &Out) { | 
|  | Out << Decls.size() << " result(s)"; | 
|  | if (isAmbiguous()) Out << ", ambiguous"; | 
|  | if (Paths) Out << ", base paths present"; | 
|  |  | 
|  | for (iterator I = begin(), E = end(); I != E; ++I) { | 
|  | Out << "\n"; | 
|  | (*I)->print(Out, 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD void LookupResult::dump() { | 
|  | llvm::errs() << "lookup results for " << getLookupName().getAsString() | 
|  | << ":\n"; | 
|  | for (NamedDecl *D : *this) | 
|  | D->dump(); | 
|  | } | 
|  |  | 
|  | /// Lookup a builtin function, when name lookup would otherwise | 
|  | /// fail. | 
|  | static bool LookupBuiltin(Sema &S, LookupResult &R) { | 
|  | Sema::LookupNameKind NameKind = R.getLookupKind(); | 
|  |  | 
|  | // If we didn't find a use of this identifier, and if the identifier | 
|  | // corresponds to a compiler builtin, create the decl object for the builtin | 
|  | // now, injecting it into translation unit scope, and return it. | 
|  | if (NameKind == Sema::LookupOrdinaryName || | 
|  | NameKind == Sema::LookupRedeclarationWithLinkage) { | 
|  | IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo(); | 
|  | if (II) { | 
|  | if (S.getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) { | 
|  | if (II == S.getASTContext().getMakeIntegerSeqName()) { | 
|  | R.addDecl(S.getASTContext().getMakeIntegerSeqDecl()); | 
|  | return true; | 
|  | } else if (II == S.getASTContext().getTypePackElementName()) { | 
|  | R.addDecl(S.getASTContext().getTypePackElementDecl()); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is a builtin on this (or all) targets, create the decl. | 
|  | if (unsigned BuiltinID = II->getBuiltinID()) { | 
|  | // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined | 
|  | // library functions like 'malloc'. Instead, we'll just error. | 
|  | if ((S.getLangOpts().CPlusPlus || S.getLangOpts().OpenCL) && | 
|  | S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) | 
|  | return false; | 
|  |  | 
|  | if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II, | 
|  | BuiltinID, S.TUScope, | 
|  | R.isForRedeclaration(), | 
|  | R.getNameLoc())) { | 
|  | R.addDecl(D); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determine whether we can declare a special member function within | 
|  | /// the class at this point. | 
|  | static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) { | 
|  | // We need to have a definition for the class. | 
|  | if (!Class->getDefinition() || Class->isDependentContext()) | 
|  | return false; | 
|  |  | 
|  | // We can't be in the middle of defining the class. | 
|  | return !Class->isBeingDefined(); | 
|  | } | 
|  |  | 
|  | void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) { | 
|  | if (!CanDeclareSpecialMemberFunction(Class)) | 
|  | return; | 
|  |  | 
|  | // If the default constructor has not yet been declared, do so now. | 
|  | if (Class->needsImplicitDefaultConstructor()) | 
|  | DeclareImplicitDefaultConstructor(Class); | 
|  |  | 
|  | // If the copy constructor has not yet been declared, do so now. | 
|  | if (Class->needsImplicitCopyConstructor()) | 
|  | DeclareImplicitCopyConstructor(Class); | 
|  |  | 
|  | // If the copy assignment operator has not yet been declared, do so now. | 
|  | if (Class->needsImplicitCopyAssignment()) | 
|  | DeclareImplicitCopyAssignment(Class); | 
|  |  | 
|  | if (getLangOpts().CPlusPlus11) { | 
|  | // If the move constructor has not yet been declared, do so now. | 
|  | if (Class->needsImplicitMoveConstructor()) | 
|  | DeclareImplicitMoveConstructor(Class); | 
|  |  | 
|  | // If the move assignment operator has not yet been declared, do so now. | 
|  | if (Class->needsImplicitMoveAssignment()) | 
|  | DeclareImplicitMoveAssignment(Class); | 
|  | } | 
|  |  | 
|  | // If the destructor has not yet been declared, do so now. | 
|  | if (Class->needsImplicitDestructor()) | 
|  | DeclareImplicitDestructor(Class); | 
|  | } | 
|  |  | 
|  | /// Determine whether this is the name of an implicitly-declared | 
|  | /// special member function. | 
|  | static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) { | 
|  | switch (Name.getNameKind()) { | 
|  | case DeclarationName::CXXConstructorName: | 
|  | case DeclarationName::CXXDestructorName: | 
|  | return true; | 
|  |  | 
|  | case DeclarationName::CXXOperatorName: | 
|  | return Name.getCXXOverloadedOperator() == OO_Equal; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// If there are any implicit member functions with the given name | 
|  | /// that need to be declared in the given declaration context, do so. | 
|  | static void DeclareImplicitMemberFunctionsWithName(Sema &S, | 
|  | DeclarationName Name, | 
|  | SourceLocation Loc, | 
|  | const DeclContext *DC) { | 
|  | if (!DC) | 
|  | return; | 
|  |  | 
|  | switch (Name.getNameKind()) { | 
|  | case DeclarationName::CXXConstructorName: | 
|  | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) | 
|  | if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { | 
|  | CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); | 
|  | if (Record->needsImplicitDefaultConstructor()) | 
|  | S.DeclareImplicitDefaultConstructor(Class); | 
|  | if (Record->needsImplicitCopyConstructor()) | 
|  | S.DeclareImplicitCopyConstructor(Class); | 
|  | if (S.getLangOpts().CPlusPlus11 && | 
|  | Record->needsImplicitMoveConstructor()) | 
|  | S.DeclareImplicitMoveConstructor(Class); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case DeclarationName::CXXDestructorName: | 
|  | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) | 
|  | if (Record->getDefinition() && Record->needsImplicitDestructor() && | 
|  | CanDeclareSpecialMemberFunction(Record)) | 
|  | S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record)); | 
|  | break; | 
|  |  | 
|  | case DeclarationName::CXXOperatorName: | 
|  | if (Name.getCXXOverloadedOperator() != OO_Equal) | 
|  | break; | 
|  |  | 
|  | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) { | 
|  | if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { | 
|  | CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); | 
|  | if (Record->needsImplicitCopyAssignment()) | 
|  | S.DeclareImplicitCopyAssignment(Class); | 
|  | if (S.getLangOpts().CPlusPlus11 && | 
|  | Record->needsImplicitMoveAssignment()) | 
|  | S.DeclareImplicitMoveAssignment(Class); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case DeclarationName::CXXDeductionGuideName: | 
|  | S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Adds all qualifying matches for a name within a decl context to the | 
|  | // given lookup result.  Returns true if any matches were found. | 
|  | static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) { | 
|  | bool Found = false; | 
|  |  | 
|  | // Lazily declare C++ special member functions. | 
|  | if (S.getLangOpts().CPlusPlus) | 
|  | DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(), | 
|  | DC); | 
|  |  | 
|  | // Perform lookup into this declaration context. | 
|  | DeclContext::lookup_result DR = DC->lookup(R.getLookupName()); | 
|  | for (NamedDecl *D : DR) { | 
|  | if ((D = R.getAcceptableDecl(D))) { | 
|  | R.addDecl(D); | 
|  | Found = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R)) | 
|  | return true; | 
|  |  | 
|  | if (R.getLookupName().getNameKind() | 
|  | != DeclarationName::CXXConversionFunctionName || | 
|  | R.getLookupName().getCXXNameType()->isDependentType() || | 
|  | !isa<CXXRecordDecl>(DC)) | 
|  | return Found; | 
|  |  | 
|  | // C++ [temp.mem]p6: | 
|  | //   A specialization of a conversion function template is not found by | 
|  | //   name lookup. Instead, any conversion function templates visible in the | 
|  | //   context of the use are considered. [...] | 
|  | const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); | 
|  | if (!Record->isCompleteDefinition()) | 
|  | return Found; | 
|  |  | 
|  | // For conversion operators, 'operator auto' should only match | 
|  | // 'operator auto'.  Since 'auto' is not a type, it shouldn't be considered | 
|  | // as a candidate for template substitution. | 
|  | auto *ContainedDeducedType = | 
|  | R.getLookupName().getCXXNameType()->getContainedDeducedType(); | 
|  | if (R.getLookupName().getNameKind() == | 
|  | DeclarationName::CXXConversionFunctionName && | 
|  | ContainedDeducedType && ContainedDeducedType->isUndeducedType()) | 
|  | return Found; | 
|  |  | 
|  | for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(), | 
|  | UEnd = Record->conversion_end(); U != UEnd; ++U) { | 
|  | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U); | 
|  | if (!ConvTemplate) | 
|  | continue; | 
|  |  | 
|  | // When we're performing lookup for the purposes of redeclaration, just | 
|  | // add the conversion function template. When we deduce template | 
|  | // arguments for specializations, we'll end up unifying the return | 
|  | // type of the new declaration with the type of the function template. | 
|  | if (R.isForRedeclaration()) { | 
|  | R.addDecl(ConvTemplate); | 
|  | Found = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // C++ [temp.mem]p6: | 
|  | //   [...] For each such operator, if argument deduction succeeds | 
|  | //   (14.9.2.3), the resulting specialization is used as if found by | 
|  | //   name lookup. | 
|  | // | 
|  | // When referencing a conversion function for any purpose other than | 
|  | // a redeclaration (such that we'll be building an expression with the | 
|  | // result), perform template argument deduction and place the | 
|  | // specialization into the result set. We do this to avoid forcing all | 
|  | // callers to perform special deduction for conversion functions. | 
|  | TemplateDeductionInfo Info(R.getNameLoc()); | 
|  | FunctionDecl *Specialization = nullptr; | 
|  |  | 
|  | const FunctionProtoType *ConvProto | 
|  | = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>(); | 
|  | assert(ConvProto && "Nonsensical conversion function template type"); | 
|  |  | 
|  | // Compute the type of the function that we would expect the conversion | 
|  | // function to have, if it were to match the name given. | 
|  | // FIXME: Calling convention! | 
|  | FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo(); | 
|  | EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C); | 
|  | EPI.ExceptionSpec = EST_None; | 
|  | QualType ExpectedType | 
|  | = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(), | 
|  | None, EPI); | 
|  |  | 
|  | // Perform template argument deduction against the type that we would | 
|  | // expect the function to have. | 
|  | if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType, | 
|  | Specialization, Info) | 
|  | == Sema::TDK_Success) { | 
|  | R.addDecl(Specialization); | 
|  | Found = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Found; | 
|  | } | 
|  |  | 
|  | // Performs C++ unqualified lookup into the given file context. | 
|  | static bool | 
|  | CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context, | 
|  | DeclContext *NS, UnqualUsingDirectiveSet &UDirs) { | 
|  |  | 
|  | assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!"); | 
|  |  | 
|  | // Perform direct name lookup into the LookupCtx. | 
|  | bool Found = LookupDirect(S, R, NS); | 
|  |  | 
|  | // Perform direct name lookup into the namespaces nominated by the | 
|  | // using directives whose common ancestor is this namespace. | 
|  | for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS)) | 
|  | if (LookupDirect(S, R, UUE.getNominatedNamespace())) | 
|  | Found = true; | 
|  |  | 
|  | R.resolveKind(); | 
|  |  | 
|  | return Found; | 
|  | } | 
|  |  | 
|  | static bool isNamespaceOrTranslationUnitScope(Scope *S) { | 
|  | if (DeclContext *Ctx = S->getEntity()) | 
|  | return Ctx->isFileContext(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Find the next outer declaration context from this scope. This | 
|  | // routine actually returns the semantic outer context, which may | 
|  | // differ from the lexical context (encoded directly in the Scope | 
|  | // stack) when we are parsing a member of a class template. In this | 
|  | // case, the second element of the pair will be true, to indicate that | 
|  | // name lookup should continue searching in this semantic context when | 
|  | // it leaves the current template parameter scope. | 
|  | static std::pair<DeclContext *, bool> findOuterContext(Scope *S) { | 
|  | DeclContext *DC = S->getEntity(); | 
|  | DeclContext *Lexical = nullptr; | 
|  | for (Scope *OuterS = S->getParent(); OuterS; | 
|  | OuterS = OuterS->getParent()) { | 
|  | if (OuterS->getEntity()) { | 
|  | Lexical = OuterS->getEntity(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [temp.local]p8: | 
|  | //   In the definition of a member of a class template that appears | 
|  | //   outside of the namespace containing the class template | 
|  | //   definition, the name of a template-parameter hides the name of | 
|  | //   a member of this namespace. | 
|  | // | 
|  | // Example: | 
|  | // | 
|  | //   namespace N { | 
|  | //     class C { }; | 
|  | // | 
|  | //     template<class T> class B { | 
|  | //       void f(T); | 
|  | //     }; | 
|  | //   } | 
|  | // | 
|  | //   template<class C> void N::B<C>::f(C) { | 
|  | //     C b;  // C is the template parameter, not N::C | 
|  | //   } | 
|  | // | 
|  | // In this example, the lexical context we return is the | 
|  | // TranslationUnit, while the semantic context is the namespace N. | 
|  | if (!Lexical || !DC || !S->getParent() || | 
|  | !S->getParent()->isTemplateParamScope()) | 
|  | return std::make_pair(Lexical, false); | 
|  |  | 
|  | // Find the outermost template parameter scope. | 
|  | // For the example, this is the scope for the template parameters of | 
|  | // template<class C>. | 
|  | Scope *OutermostTemplateScope = S->getParent(); | 
|  | while (OutermostTemplateScope->getParent() && | 
|  | OutermostTemplateScope->getParent()->isTemplateParamScope()) | 
|  | OutermostTemplateScope = OutermostTemplateScope->getParent(); | 
|  |  | 
|  | // Find the namespace context in which the original scope occurs. In | 
|  | // the example, this is namespace N. | 
|  | DeclContext *Semantic = DC; | 
|  | while (!Semantic->isFileContext()) | 
|  | Semantic = Semantic->getParent(); | 
|  |  | 
|  | // Find the declaration context just outside of the template | 
|  | // parameter scope. This is the context in which the template is | 
|  | // being lexically declaration (a namespace context). In the | 
|  | // example, this is the global scope. | 
|  | if (Lexical->isFileContext() && !Lexical->Equals(Semantic) && | 
|  | Lexical->Encloses(Semantic)) | 
|  | return std::make_pair(Semantic, true); | 
|  |  | 
|  | return std::make_pair(Lexical, false); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// An RAII object to specify that we want to find block scope extern | 
|  | /// declarations. | 
|  | struct FindLocalExternScope { | 
|  | FindLocalExternScope(LookupResult &R) | 
|  | : R(R), OldFindLocalExtern(R.getIdentifierNamespace() & | 
|  | Decl::IDNS_LocalExtern) { | 
|  | R.setFindLocalExtern(R.getIdentifierNamespace() & | 
|  | (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator)); | 
|  | } | 
|  | void restore() { | 
|  | R.setFindLocalExtern(OldFindLocalExtern); | 
|  | } | 
|  | ~FindLocalExternScope() { | 
|  | restore(); | 
|  | } | 
|  | LookupResult &R; | 
|  | bool OldFindLocalExtern; | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | bool Sema::CppLookupName(LookupResult &R, Scope *S) { | 
|  | assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup"); | 
|  |  | 
|  | DeclarationName Name = R.getLookupName(); | 
|  | Sema::LookupNameKind NameKind = R.getLookupKind(); | 
|  |  | 
|  | // If this is the name of an implicitly-declared special member function, | 
|  | // go through the scope stack to implicitly declare | 
|  | if (isImplicitlyDeclaredMemberFunctionName(Name)) { | 
|  | for (Scope *PreS = S; PreS; PreS = PreS->getParent()) | 
|  | if (DeclContext *DC = PreS->getEntity()) | 
|  | DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC); | 
|  | } | 
|  |  | 
|  | // Implicitly declare member functions with the name we're looking for, if in | 
|  | // fact we are in a scope where it matters. | 
|  |  | 
|  | Scope *Initial = S; | 
|  | IdentifierResolver::iterator | 
|  | I = IdResolver.begin(Name), | 
|  | IEnd = IdResolver.end(); | 
|  |  | 
|  | // First we lookup local scope. | 
|  | // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir] | 
|  | // ...During unqualified name lookup (3.4.1), the names appear as if | 
|  | // they were declared in the nearest enclosing namespace which contains | 
|  | // both the using-directive and the nominated namespace. | 
|  | // [Note: in this context, "contains" means "contains directly or | 
|  | // indirectly". | 
|  | // | 
|  | // For example: | 
|  | // namespace A { int i; } | 
|  | // void foo() { | 
|  | //   int i; | 
|  | //   { | 
|  | //     using namespace A; | 
|  | //     ++i; // finds local 'i', A::i appears at global scope | 
|  | //   } | 
|  | // } | 
|  | // | 
|  | UnqualUsingDirectiveSet UDirs(*this); | 
|  | bool VisitedUsingDirectives = false; | 
|  | bool LeftStartingScope = false; | 
|  | DeclContext *OutsideOfTemplateParamDC = nullptr; | 
|  |  | 
|  | // When performing a scope lookup, we want to find local extern decls. | 
|  | FindLocalExternScope FindLocals(R); | 
|  |  | 
|  | for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) { | 
|  | DeclContext *Ctx = S->getEntity(); | 
|  | bool SearchNamespaceScope = true; | 
|  | // Check whether the IdResolver has anything in this scope. | 
|  | for (; I != IEnd && S->isDeclScope(*I); ++I) { | 
|  | if (NamedDecl *ND = R.getAcceptableDecl(*I)) { | 
|  | if (NameKind == LookupRedeclarationWithLinkage && | 
|  | !(*I)->isTemplateParameter()) { | 
|  | // If it's a template parameter, we still find it, so we can diagnose | 
|  | // the invalid redeclaration. | 
|  |  | 
|  | // Determine whether this (or a previous) declaration is | 
|  | // out-of-scope. | 
|  | if (!LeftStartingScope && !Initial->isDeclScope(*I)) | 
|  | LeftStartingScope = true; | 
|  |  | 
|  | // If we found something outside of our starting scope that | 
|  | // does not have linkage, skip it. | 
|  | if (LeftStartingScope && !((*I)->hasLinkage())) { | 
|  | R.setShadowed(); | 
|  | continue; | 
|  | } | 
|  | } else { | 
|  | // We found something in this scope, we should not look at the | 
|  | // namespace scope | 
|  | SearchNamespaceScope = false; | 
|  | } | 
|  | R.addDecl(ND); | 
|  | } | 
|  | } | 
|  | if (!SearchNamespaceScope) { | 
|  | R.resolveKind(); | 
|  | if (S->isClassScope()) | 
|  | if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx)) | 
|  | R.setNamingClass(Record); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (NameKind == LookupLocalFriendName && !S->isClassScope()) { | 
|  | // C++11 [class.friend]p11: | 
|  | //   If a friend declaration appears in a local class and the name | 
|  | //   specified is an unqualified name, a prior declaration is | 
|  | //   looked up without considering scopes that are outside the | 
|  | //   innermost enclosing non-class scope. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC && | 
|  | S->getParent() && !S->getParent()->isTemplateParamScope()) { | 
|  | // We've just searched the last template parameter scope and | 
|  | // found nothing, so look into the contexts between the | 
|  | // lexical and semantic declaration contexts returned by | 
|  | // findOuterContext(). This implements the name lookup behavior | 
|  | // of C++ [temp.local]p8. | 
|  | Ctx = OutsideOfTemplateParamDC; | 
|  | OutsideOfTemplateParamDC = nullptr; | 
|  | } | 
|  |  | 
|  | if (Ctx) { | 
|  | DeclContext *OuterCtx; | 
|  | bool SearchAfterTemplateScope; | 
|  | std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S); | 
|  | if (SearchAfterTemplateScope) | 
|  | OutsideOfTemplateParamDC = OuterCtx; | 
|  |  | 
|  | for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { | 
|  | // We do not directly look into transparent contexts, since | 
|  | // those entities will be found in the nearest enclosing | 
|  | // non-transparent context. | 
|  | if (Ctx->isTransparentContext()) | 
|  | continue; | 
|  |  | 
|  | // We do not look directly into function or method contexts, | 
|  | // since all of the local variables and parameters of the | 
|  | // function/method are present within the Scope. | 
|  | if (Ctx->isFunctionOrMethod()) { | 
|  | // If we have an Objective-C instance method, look for ivars | 
|  | // in the corresponding interface. | 
|  | if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { | 
|  | if (Method->isInstanceMethod() && Name.getAsIdentifierInfo()) | 
|  | if (ObjCInterfaceDecl *Class = Method->getClassInterface()) { | 
|  | ObjCInterfaceDecl *ClassDeclared; | 
|  | if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable( | 
|  | Name.getAsIdentifierInfo(), | 
|  | ClassDeclared)) { | 
|  | if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) { | 
|  | R.addDecl(ND); | 
|  | R.resolveKind(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If this is a file context, we need to perform unqualified name | 
|  | // lookup considering using directives. | 
|  | if (Ctx->isFileContext()) { | 
|  | // If we haven't handled using directives yet, do so now. | 
|  | if (!VisitedUsingDirectives) { | 
|  | // Add using directives from this context up to the top level. | 
|  | for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) { | 
|  | if (UCtx->isTransparentContext()) | 
|  | continue; | 
|  |  | 
|  | UDirs.visit(UCtx, UCtx); | 
|  | } | 
|  |  | 
|  | // Find the innermost file scope, so we can add using directives | 
|  | // from local scopes. | 
|  | Scope *InnermostFileScope = S; | 
|  | while (InnermostFileScope && | 
|  | !isNamespaceOrTranslationUnitScope(InnermostFileScope)) | 
|  | InnermostFileScope = InnermostFileScope->getParent(); | 
|  | UDirs.visitScopeChain(Initial, InnermostFileScope); | 
|  |  | 
|  | UDirs.done(); | 
|  |  | 
|  | VisitedUsingDirectives = true; | 
|  | } | 
|  |  | 
|  | if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) { | 
|  | R.resolveKind(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Perform qualified name lookup into this context. | 
|  | // FIXME: In some cases, we know that every name that could be found by | 
|  | // this qualified name lookup will also be on the identifier chain. For | 
|  | // example, inside a class without any base classes, we never need to | 
|  | // perform qualified lookup because all of the members are on top of the | 
|  | // identifier chain. | 
|  | if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Stop if we ran out of scopes. | 
|  | // FIXME:  This really, really shouldn't be happening. | 
|  | if (!S) return false; | 
|  |  | 
|  | // If we are looking for members, no need to look into global/namespace scope. | 
|  | if (NameKind == LookupMemberName) | 
|  | return false; | 
|  |  | 
|  | // Collect UsingDirectiveDecls in all scopes, and recursively all | 
|  | // nominated namespaces by those using-directives. | 
|  | // | 
|  | // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we | 
|  | // don't build it for each lookup! | 
|  | if (!VisitedUsingDirectives) { | 
|  | UDirs.visitScopeChain(Initial, S); | 
|  | UDirs.done(); | 
|  | } | 
|  |  | 
|  | // If we're not performing redeclaration lookup, do not look for local | 
|  | // extern declarations outside of a function scope. | 
|  | if (!R.isForRedeclaration()) | 
|  | FindLocals.restore(); | 
|  |  | 
|  | // Lookup namespace scope, and global scope. | 
|  | // Unqualified name lookup in C++ requires looking into scopes | 
|  | // that aren't strictly lexical, and therefore we walk through the | 
|  | // context as well as walking through the scopes. | 
|  | for (; S; S = S->getParent()) { | 
|  | // Check whether the IdResolver has anything in this scope. | 
|  | bool Found = false; | 
|  | for (; I != IEnd && S->isDeclScope(*I); ++I) { | 
|  | if (NamedDecl *ND = R.getAcceptableDecl(*I)) { | 
|  | // We found something.  Look for anything else in our scope | 
|  | // with this same name and in an acceptable identifier | 
|  | // namespace, so that we can construct an overload set if we | 
|  | // need to. | 
|  | Found = true; | 
|  | R.addDecl(ND); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Found && S->isTemplateParamScope()) { | 
|  | R.resolveKind(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | DeclContext *Ctx = S->getEntity(); | 
|  | if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC && | 
|  | S->getParent() && !S->getParent()->isTemplateParamScope()) { | 
|  | // We've just searched the last template parameter scope and | 
|  | // found nothing, so look into the contexts between the | 
|  | // lexical and semantic declaration contexts returned by | 
|  | // findOuterContext(). This implements the name lookup behavior | 
|  | // of C++ [temp.local]p8. | 
|  | Ctx = OutsideOfTemplateParamDC; | 
|  | OutsideOfTemplateParamDC = nullptr; | 
|  | } | 
|  |  | 
|  | if (Ctx) { | 
|  | DeclContext *OuterCtx; | 
|  | bool SearchAfterTemplateScope; | 
|  | std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S); | 
|  | if (SearchAfterTemplateScope) | 
|  | OutsideOfTemplateParamDC = OuterCtx; | 
|  |  | 
|  | for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { | 
|  | // We do not directly look into transparent contexts, since | 
|  | // those entities will be found in the nearest enclosing | 
|  | // non-transparent context. | 
|  | if (Ctx->isTransparentContext()) | 
|  | continue; | 
|  |  | 
|  | // If we have a context, and it's not a context stashed in the | 
|  | // template parameter scope for an out-of-line definition, also | 
|  | // look into that context. | 
|  | if (!(Found && S->isTemplateParamScope())) { | 
|  | assert(Ctx->isFileContext() && | 
|  | "We should have been looking only at file context here already."); | 
|  |  | 
|  | // Look into context considering using-directives. | 
|  | if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) | 
|  | Found = true; | 
|  | } | 
|  |  | 
|  | if (Found) { | 
|  | R.resolveKind(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (R.isForRedeclaration() && !Ctx->isTransparentContext()) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return !R.empty(); | 
|  | } | 
|  |  | 
|  | void Sema::makeMergedDefinitionVisible(NamedDecl *ND) { | 
|  | if (auto *M = getCurrentModule()) | 
|  | Context.mergeDefinitionIntoModule(ND, M); | 
|  | else | 
|  | // We're not building a module; just make the definition visible. | 
|  | ND->setVisibleDespiteOwningModule(); | 
|  |  | 
|  | // If ND is a template declaration, make the template parameters | 
|  | // visible too. They're not (necessarily) within a mergeable DeclContext. | 
|  | if (auto *TD = dyn_cast<TemplateDecl>(ND)) | 
|  | for (auto *Param : *TD->getTemplateParameters()) | 
|  | makeMergedDefinitionVisible(Param); | 
|  | } | 
|  |  | 
|  | /// Find the module in which the given declaration was defined. | 
|  | static Module *getDefiningModule(Sema &S, Decl *Entity) { | 
|  | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) { | 
|  | // If this function was instantiated from a template, the defining module is | 
|  | // the module containing the pattern. | 
|  | if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) | 
|  | Entity = Pattern; | 
|  | } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) { | 
|  | if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern()) | 
|  | Entity = Pattern; | 
|  | } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) { | 
|  | if (auto *Pattern = ED->getTemplateInstantiationPattern()) | 
|  | Entity = Pattern; | 
|  | } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) { | 
|  | if (VarDecl *Pattern = VD->getTemplateInstantiationPattern()) | 
|  | Entity = Pattern; | 
|  | } | 
|  |  | 
|  | // Walk up to the containing context. That might also have been instantiated | 
|  | // from a template. | 
|  | DeclContext *Context = Entity->getLexicalDeclContext(); | 
|  | if (Context->isFileContext()) | 
|  | return S.getOwningModule(Entity); | 
|  | return getDefiningModule(S, cast<Decl>(Context)); | 
|  | } | 
|  |  | 
|  | llvm::DenseSet<Module*> &Sema::getLookupModules() { | 
|  | unsigned N = CodeSynthesisContexts.size(); | 
|  | for (unsigned I = CodeSynthesisContextLookupModules.size(); | 
|  | I != N; ++I) { | 
|  | Module *M = getDefiningModule(*this, CodeSynthesisContexts[I].Entity); | 
|  | if (M && !LookupModulesCache.insert(M).second) | 
|  | M = nullptr; | 
|  | CodeSynthesisContextLookupModules.push_back(M); | 
|  | } | 
|  | return LookupModulesCache; | 
|  | } | 
|  |  | 
|  | /// Determine whether the module M is part of the current module from the | 
|  | /// perspective of a module-private visibility check. | 
|  | static bool isInCurrentModule(const Module *M, const LangOptions &LangOpts) { | 
|  | // If M is the global module fragment of a module that we've not yet finished | 
|  | // parsing, then it must be part of the current module. | 
|  | return M->getTopLevelModuleName() == LangOpts.CurrentModule || | 
|  | (M->Kind == Module::GlobalModuleFragment && !M->Parent); | 
|  | } | 
|  |  | 
|  | bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) { | 
|  | for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) | 
|  | if (isModuleVisible(Merged)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) { | 
|  | for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) | 
|  | if (isInCurrentModule(Merged, getLangOpts())) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template<typename ParmDecl> | 
|  | static bool | 
|  | hasVisibleDefaultArgument(Sema &S, const ParmDecl *D, | 
|  | llvm::SmallVectorImpl<Module *> *Modules) { | 
|  | if (!D->hasDefaultArgument()) | 
|  | return false; | 
|  |  | 
|  | while (D) { | 
|  | auto &DefaultArg = D->getDefaultArgStorage(); | 
|  | if (!DefaultArg.isInherited() && S.isVisible(D)) | 
|  | return true; | 
|  |  | 
|  | if (!DefaultArg.isInherited() && Modules) { | 
|  | auto *NonConstD = const_cast<ParmDecl*>(D); | 
|  | Modules->push_back(S.getOwningModule(NonConstD)); | 
|  | } | 
|  |  | 
|  | // If there was a previous default argument, maybe its parameter is visible. | 
|  | D = DefaultArg.getInheritedFrom(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::hasVisibleDefaultArgument(const NamedDecl *D, | 
|  | llvm::SmallVectorImpl<Module *> *Modules) { | 
|  | if (auto *P = dyn_cast<TemplateTypeParmDecl>(D)) | 
|  | return ::hasVisibleDefaultArgument(*this, P, Modules); | 
|  | if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D)) | 
|  | return ::hasVisibleDefaultArgument(*this, P, Modules); | 
|  | return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D), | 
|  | Modules); | 
|  | } | 
|  |  | 
|  | template<typename Filter> | 
|  | static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D, | 
|  | llvm::SmallVectorImpl<Module *> *Modules, | 
|  | Filter F) { | 
|  | bool HasFilteredRedecls = false; | 
|  |  | 
|  | for (auto *Redecl : D->redecls()) { | 
|  | auto *R = cast<NamedDecl>(Redecl); | 
|  | if (!F(R)) | 
|  | continue; | 
|  |  | 
|  | if (S.isVisible(R)) | 
|  | return true; | 
|  |  | 
|  | HasFilteredRedecls = true; | 
|  |  | 
|  | if (Modules) | 
|  | Modules->push_back(R->getOwningModule()); | 
|  | } | 
|  |  | 
|  | // Only return false if there is at least one redecl that is not filtered out. | 
|  | if (HasFilteredRedecls) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Sema::hasVisibleExplicitSpecialization( | 
|  | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { | 
|  | return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) { | 
|  | if (auto *RD = dyn_cast<CXXRecordDecl>(D)) | 
|  | return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization; | 
|  | if (auto *FD = dyn_cast<FunctionDecl>(D)) | 
|  | return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization; | 
|  | if (auto *VD = dyn_cast<VarDecl>(D)) | 
|  | return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization; | 
|  | llvm_unreachable("unknown explicit specialization kind"); | 
|  | }); | 
|  | } | 
|  |  | 
|  | bool Sema::hasVisibleMemberSpecialization( | 
|  | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { | 
|  | assert(isa<CXXRecordDecl>(D->getDeclContext()) && | 
|  | "not a member specialization"); | 
|  | return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) { | 
|  | // If the specialization is declared at namespace scope, then it's a member | 
|  | // specialization declaration. If it's lexically inside the class | 
|  | // definition then it was instantiated. | 
|  | // | 
|  | // FIXME: This is a hack. There should be a better way to determine this. | 
|  | // FIXME: What about MS-style explicit specializations declared within a | 
|  | //        class definition? | 
|  | return D->getLexicalDeclContext()->isFileContext(); | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// Determine whether a declaration is visible to name lookup. | 
|  | /// | 
|  | /// This routine determines whether the declaration D is visible in the current | 
|  | /// lookup context, taking into account the current template instantiation | 
|  | /// stack. During template instantiation, a declaration is visible if it is | 
|  | /// visible from a module containing any entity on the template instantiation | 
|  | /// path (by instantiating a template, you allow it to see the declarations that | 
|  | /// your module can see, including those later on in your module). | 
|  | bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) { | 
|  | assert(D->isHidden() && "should not call this: not in slow case"); | 
|  |  | 
|  | Module *DeclModule = SemaRef.getOwningModule(D); | 
|  | assert(DeclModule && "hidden decl has no owning module"); | 
|  |  | 
|  | // If the owning module is visible, the decl is visible. | 
|  | if (SemaRef.isModuleVisible(DeclModule, D->isModulePrivate())) | 
|  | return true; | 
|  |  | 
|  | // Determine whether a decl context is a file context for the purpose of | 
|  | // visibility. This looks through some (export and linkage spec) transparent | 
|  | // contexts, but not others (enums). | 
|  | auto IsEffectivelyFileContext = [](const DeclContext *DC) { | 
|  | return DC->isFileContext() || isa<LinkageSpecDecl>(DC) || | 
|  | isa<ExportDecl>(DC); | 
|  | }; | 
|  |  | 
|  | // If this declaration is not at namespace scope | 
|  | // then it is visible if its lexical parent has a visible definition. | 
|  | DeclContext *DC = D->getLexicalDeclContext(); | 
|  | if (DC && !IsEffectivelyFileContext(DC)) { | 
|  | // For a parameter, check whether our current template declaration's | 
|  | // lexical context is visible, not whether there's some other visible | 
|  | // definition of it, because parameters aren't "within" the definition. | 
|  | // | 
|  | // In C++ we need to check for a visible definition due to ODR merging, | 
|  | // and in C we must not because each declaration of a function gets its own | 
|  | // set of declarations for tags in prototype scope. | 
|  | bool VisibleWithinParent; | 
|  | if (D->isTemplateParameter() || isa<ParmVarDecl>(D) || | 
|  | (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus)) | 
|  | VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC)); | 
|  | else if (D->isModulePrivate()) { | 
|  | // A module-private declaration is only visible if an enclosing lexical | 
|  | // parent was merged with another definition in the current module. | 
|  | VisibleWithinParent = false; | 
|  | do { | 
|  | if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) { | 
|  | VisibleWithinParent = true; | 
|  | break; | 
|  | } | 
|  | DC = DC->getLexicalParent(); | 
|  | } while (!IsEffectivelyFileContext(DC)); | 
|  | } else { | 
|  | VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC)); | 
|  | } | 
|  |  | 
|  | if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() && | 
|  | // FIXME: Do something better in this case. | 
|  | !SemaRef.getLangOpts().ModulesLocalVisibility) { | 
|  | // Cache the fact that this declaration is implicitly visible because | 
|  | // its parent has a visible definition. | 
|  | D->setVisibleDespiteOwningModule(); | 
|  | } | 
|  | return VisibleWithinParent; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) { | 
|  | // The module might be ordinarily visible. For a module-private query, that | 
|  | // means it is part of the current module. For any other query, that means it | 
|  | // is in our visible module set. | 
|  | if (ModulePrivate) { | 
|  | if (isInCurrentModule(M, getLangOpts())) | 
|  | return true; | 
|  | } else { | 
|  | if (VisibleModules.isVisible(M)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, it might be visible by virtue of the query being within a | 
|  | // template instantiation or similar that is permitted to look inside M. | 
|  |  | 
|  | // Find the extra places where we need to look. | 
|  | const auto &LookupModules = getLookupModules(); | 
|  | if (LookupModules.empty()) | 
|  | return false; | 
|  |  | 
|  | // If our lookup set contains the module, it's visible. | 
|  | if (LookupModules.count(M)) | 
|  | return true; | 
|  |  | 
|  | // For a module-private query, that's everywhere we get to look. | 
|  | if (ModulePrivate) | 
|  | return false; | 
|  |  | 
|  | // Check whether M is transitively exported to an import of the lookup set. | 
|  | return llvm::any_of(LookupModules, [&](const Module *LookupM) { | 
|  | return LookupM->isModuleVisible(M); | 
|  | }); | 
|  | } | 
|  |  | 
|  | bool Sema::isVisibleSlow(const NamedDecl *D) { | 
|  | return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D)); | 
|  | } | 
|  |  | 
|  | bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) { | 
|  | // FIXME: If there are both visible and hidden declarations, we need to take | 
|  | // into account whether redeclaration is possible. Example: | 
|  | // | 
|  | // Non-imported module: | 
|  | //   int f(T);        // #1 | 
|  | // Some TU: | 
|  | //   static int f(U); // #2, not a redeclaration of #1 | 
|  | //   int f(T);        // #3, finds both, should link with #1 if T != U, but | 
|  | //                    // with #2 if T == U; neither should be ambiguous. | 
|  | for (auto *D : R) { | 
|  | if (isVisible(D)) | 
|  | return true; | 
|  | assert(D->isExternallyDeclarable() && | 
|  | "should not have hidden, non-externally-declarable result here"); | 
|  | } | 
|  |  | 
|  | // This function is called once "New" is essentially complete, but before a | 
|  | // previous declaration is attached. We can't query the linkage of "New" in | 
|  | // general, because attaching the previous declaration can change the | 
|  | // linkage of New to match the previous declaration. | 
|  | // | 
|  | // However, because we've just determined that there is no *visible* prior | 
|  | // declaration, we can compute the linkage here. There are two possibilities: | 
|  | // | 
|  | //  * This is not a redeclaration; it's safe to compute the linkage now. | 
|  | // | 
|  | //  * This is a redeclaration of a prior declaration that is externally | 
|  | //    redeclarable. In that case, the linkage of the declaration is not | 
|  | //    changed by attaching the prior declaration, because both are externally | 
|  | //    declarable (and thus ExternalLinkage or VisibleNoLinkage). | 
|  | // | 
|  | // FIXME: This is subtle and fragile. | 
|  | return New->isExternallyDeclarable(); | 
|  | } | 
|  |  | 
|  | /// Retrieve the visible declaration corresponding to D, if any. | 
|  | /// | 
|  | /// This routine determines whether the declaration D is visible in the current | 
|  | /// module, with the current imports. If not, it checks whether any | 
|  | /// redeclaration of D is visible, and if so, returns that declaration. | 
|  | /// | 
|  | /// \returns D, or a visible previous declaration of D, whichever is more recent | 
|  | /// and visible. If no declaration of D is visible, returns null. | 
|  | static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D, | 
|  | unsigned IDNS) { | 
|  | assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case"); | 
|  |  | 
|  | for (auto RD : D->redecls()) { | 
|  | // Don't bother with extra checks if we already know this one isn't visible. | 
|  | if (RD == D) | 
|  | continue; | 
|  |  | 
|  | auto ND = cast<NamedDecl>(RD); | 
|  | // FIXME: This is wrong in the case where the previous declaration is not | 
|  | // visible in the same scope as D. This needs to be done much more | 
|  | // carefully. | 
|  | if (ND->isInIdentifierNamespace(IDNS) && | 
|  | LookupResult::isVisible(SemaRef, ND)) | 
|  | return ND; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D, | 
|  | llvm::SmallVectorImpl<Module *> *Modules) { | 
|  | assert(!isVisible(D) && "not in slow case"); | 
|  | return hasVisibleDeclarationImpl(*this, D, Modules, | 
|  | [](const NamedDecl *) { return true; }); | 
|  | } | 
|  |  | 
|  | NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const { | 
|  | if (auto *ND = dyn_cast<NamespaceDecl>(D)) { | 
|  | // Namespaces are a bit of a special case: we expect there to be a lot of | 
|  | // redeclarations of some namespaces, all declarations of a namespace are | 
|  | // essentially interchangeable, all declarations are found by name lookup | 
|  | // if any is, and namespaces are never looked up during template | 
|  | // instantiation. So we benefit from caching the check in this case, and | 
|  | // it is correct to do so. | 
|  | auto *Key = ND->getCanonicalDecl(); | 
|  | if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key)) | 
|  | return Acceptable; | 
|  | auto *Acceptable = isVisible(getSema(), Key) | 
|  | ? Key | 
|  | : findAcceptableDecl(getSema(), Key, IDNS); | 
|  | if (Acceptable) | 
|  | getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable)); | 
|  | return Acceptable; | 
|  | } | 
|  |  | 
|  | return findAcceptableDecl(getSema(), D, IDNS); | 
|  | } | 
|  |  | 
|  | /// Perform unqualified name lookup starting from a given | 
|  | /// scope. | 
|  | /// | 
|  | /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is | 
|  | /// used to find names within the current scope. For example, 'x' in | 
|  | /// @code | 
|  | /// int x; | 
|  | /// int f() { | 
|  | ///   return x; // unqualified name look finds 'x' in the global scope | 
|  | /// } | 
|  | /// @endcode | 
|  | /// | 
|  | /// Different lookup criteria can find different names. For example, a | 
|  | /// particular scope can have both a struct and a function of the same | 
|  | /// name, and each can be found by certain lookup criteria. For more | 
|  | /// information about lookup criteria, see the documentation for the | 
|  | /// class LookupCriteria. | 
|  | /// | 
|  | /// @param S        The scope from which unqualified name lookup will | 
|  | /// begin. If the lookup criteria permits, name lookup may also search | 
|  | /// in the parent scopes. | 
|  | /// | 
|  | /// @param [in,out] R Specifies the lookup to perform (e.g., the name to | 
|  | /// look up and the lookup kind), and is updated with the results of lookup | 
|  | /// including zero or more declarations and possibly additional information | 
|  | /// used to diagnose ambiguities. | 
|  | /// | 
|  | /// @returns \c true if lookup succeeded and false otherwise. | 
|  | bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) { | 
|  | DeclarationName Name = R.getLookupName(); | 
|  | if (!Name) return false; | 
|  |  | 
|  | LookupNameKind NameKind = R.getLookupKind(); | 
|  |  | 
|  | if (!getLangOpts().CPlusPlus) { | 
|  | // Unqualified name lookup in C/Objective-C is purely lexical, so | 
|  | // search in the declarations attached to the name. | 
|  | if (NameKind == Sema::LookupRedeclarationWithLinkage) { | 
|  | // Find the nearest non-transparent declaration scope. | 
|  | while (!(S->getFlags() & Scope::DeclScope) || | 
|  | (S->getEntity() && S->getEntity()->isTransparentContext())) | 
|  | S = S->getParent(); | 
|  | } | 
|  |  | 
|  | // When performing a scope lookup, we want to find local extern decls. | 
|  | FindLocalExternScope FindLocals(R); | 
|  |  | 
|  | // Scan up the scope chain looking for a decl that matches this | 
|  | // identifier that is in the appropriate namespace.  This search | 
|  | // should not take long, as shadowing of names is uncommon, and | 
|  | // deep shadowing is extremely uncommon. | 
|  | bool LeftStartingScope = false; | 
|  |  | 
|  | for (IdentifierResolver::iterator I = IdResolver.begin(Name), | 
|  | IEnd = IdResolver.end(); | 
|  | I != IEnd; ++I) | 
|  | if (NamedDecl *D = R.getAcceptableDecl(*I)) { | 
|  | if (NameKind == LookupRedeclarationWithLinkage) { | 
|  | // Determine whether this (or a previous) declaration is | 
|  | // out-of-scope. | 
|  | if (!LeftStartingScope && !S->isDeclScope(*I)) | 
|  | LeftStartingScope = true; | 
|  |  | 
|  | // If we found something outside of our starting scope that | 
|  | // does not have linkage, skip it. | 
|  | if (LeftStartingScope && !((*I)->hasLinkage())) { | 
|  | R.setShadowed(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | else if (NameKind == LookupObjCImplicitSelfParam && | 
|  | !isa<ImplicitParamDecl>(*I)) | 
|  | continue; | 
|  |  | 
|  | R.addDecl(D); | 
|  |  | 
|  | // Check whether there are any other declarations with the same name | 
|  | // and in the same scope. | 
|  | if (I != IEnd) { | 
|  | // Find the scope in which this declaration was declared (if it | 
|  | // actually exists in a Scope). | 
|  | while (S && !S->isDeclScope(D)) | 
|  | S = S->getParent(); | 
|  |  | 
|  | // If the scope containing the declaration is the translation unit, | 
|  | // then we'll need to perform our checks based on the matching | 
|  | // DeclContexts rather than matching scopes. | 
|  | if (S && isNamespaceOrTranslationUnitScope(S)) | 
|  | S = nullptr; | 
|  |  | 
|  | // Compute the DeclContext, if we need it. | 
|  | DeclContext *DC = nullptr; | 
|  | if (!S) | 
|  | DC = (*I)->getDeclContext()->getRedeclContext(); | 
|  |  | 
|  | IdentifierResolver::iterator LastI = I; | 
|  | for (++LastI; LastI != IEnd; ++LastI) { | 
|  | if (S) { | 
|  | // Match based on scope. | 
|  | if (!S->isDeclScope(*LastI)) | 
|  | break; | 
|  | } else { | 
|  | // Match based on DeclContext. | 
|  | DeclContext *LastDC | 
|  | = (*LastI)->getDeclContext()->getRedeclContext(); | 
|  | if (!LastDC->Equals(DC)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If the declaration is in the right namespace and visible, add it. | 
|  | if (NamedDecl *LastD = R.getAcceptableDecl(*LastI)) | 
|  | R.addDecl(LastD); | 
|  | } | 
|  |  | 
|  | R.resolveKind(); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | } else { | 
|  | // Perform C++ unqualified name lookup. | 
|  | if (CppLookupName(R, S)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If we didn't find a use of this identifier, and if the identifier | 
|  | // corresponds to a compiler builtin, create the decl object for the builtin | 
|  | // now, injecting it into translation unit scope, and return it. | 
|  | if (AllowBuiltinCreation && LookupBuiltin(*this, R)) | 
|  | return true; | 
|  |  | 
|  | // If we didn't find a use of this identifier, the ExternalSource | 
|  | // may be able to handle the situation. | 
|  | // Note: some lookup failures are expected! | 
|  | // See e.g. R.isForRedeclaration(). | 
|  | return (ExternalSource && ExternalSource->LookupUnqualified(R, S)); | 
|  | } | 
|  |  | 
|  | /// Perform qualified name lookup in the namespaces nominated by | 
|  | /// using directives by the given context. | 
|  | /// | 
|  | /// C++98 [namespace.qual]p2: | 
|  | ///   Given X::m (where X is a user-declared namespace), or given \::m | 
|  | ///   (where X is the global namespace), let S be the set of all | 
|  | ///   declarations of m in X and in the transitive closure of all | 
|  | ///   namespaces nominated by using-directives in X and its used | 
|  | ///   namespaces, except that using-directives are ignored in any | 
|  | ///   namespace, including X, directly containing one or more | 
|  | ///   declarations of m. No namespace is searched more than once in | 
|  | ///   the lookup of a name. If S is the empty set, the program is | 
|  | ///   ill-formed. Otherwise, if S has exactly one member, or if the | 
|  | ///   context of the reference is a using-declaration | 
|  | ///   (namespace.udecl), S is the required set of declarations of | 
|  | ///   m. Otherwise if the use of m is not one that allows a unique | 
|  | ///   declaration to be chosen from S, the program is ill-formed. | 
|  | /// | 
|  | /// C++98 [namespace.qual]p5: | 
|  | ///   During the lookup of a qualified namespace member name, if the | 
|  | ///   lookup finds more than one declaration of the member, and if one | 
|  | ///   declaration introduces a class name or enumeration name and the | 
|  | ///   other declarations either introduce the same object, the same | 
|  | ///   enumerator or a set of functions, the non-type name hides the | 
|  | ///   class or enumeration name if and only if the declarations are | 
|  | ///   from the same namespace; otherwise (the declarations are from | 
|  | ///   different namespaces), the program is ill-formed. | 
|  | static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R, | 
|  | DeclContext *StartDC) { | 
|  | assert(StartDC->isFileContext() && "start context is not a file context"); | 
|  |  | 
|  | // We have not yet looked into these namespaces, much less added | 
|  | // their "using-children" to the queue. | 
|  | SmallVector<NamespaceDecl*, 8> Queue; | 
|  |  | 
|  | // We have at least added all these contexts to the queue. | 
|  | llvm::SmallPtrSet<DeclContext*, 8> Visited; | 
|  | Visited.insert(StartDC); | 
|  |  | 
|  | // We have already looked into the initial namespace; seed the queue | 
|  | // with its using-children. | 
|  | for (auto *I : StartDC->using_directives()) { | 
|  | NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace(); | 
|  | if (S.isVisible(I) && Visited.insert(ND).second) | 
|  | Queue.push_back(ND); | 
|  | } | 
|  |  | 
|  | // The easiest way to implement the restriction in [namespace.qual]p5 | 
|  | // is to check whether any of the individual results found a tag | 
|  | // and, if so, to declare an ambiguity if the final result is not | 
|  | // a tag. | 
|  | bool FoundTag = false; | 
|  | bool FoundNonTag = false; | 
|  |  | 
|  | LookupResult LocalR(LookupResult::Temporary, R); | 
|  |  | 
|  | bool Found = false; | 
|  | while (!Queue.empty()) { | 
|  | NamespaceDecl *ND = Queue.pop_back_val(); | 
|  |  | 
|  | // We go through some convolutions here to avoid copying results | 
|  | // between LookupResults. | 
|  | bool UseLocal = !R.empty(); | 
|  | LookupResult &DirectR = UseLocal ? LocalR : R; | 
|  | bool FoundDirect = LookupDirect(S, DirectR, ND); | 
|  |  | 
|  | if (FoundDirect) { | 
|  | // First do any local hiding. | 
|  | DirectR.resolveKind(); | 
|  |  | 
|  | // If the local result is a tag, remember that. | 
|  | if (DirectR.isSingleTagDecl()) | 
|  | FoundTag = true; | 
|  | else | 
|  | FoundNonTag = true; | 
|  |  | 
|  | // Append the local results to the total results if necessary. | 
|  | if (UseLocal) { | 
|  | R.addAllDecls(LocalR); | 
|  | LocalR.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we find names in this namespace, ignore its using directives. | 
|  | if (FoundDirect) { | 
|  | Found = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for (auto I : ND->using_directives()) { | 
|  | NamespaceDecl *Nom = I->getNominatedNamespace(); | 
|  | if (S.isVisible(I) && Visited.insert(Nom).second) | 
|  | Queue.push_back(Nom); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Found) { | 
|  | if (FoundTag && FoundNonTag) | 
|  | R.setAmbiguousQualifiedTagHiding(); | 
|  | else | 
|  | R.resolveKind(); | 
|  | } | 
|  |  | 
|  | return Found; | 
|  | } | 
|  |  | 
|  | /// Callback that looks for any member of a class with the given name. | 
|  | static bool LookupAnyMember(const CXXBaseSpecifier *Specifier, | 
|  | CXXBasePath &Path, DeclarationName Name) { | 
|  | RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl(); | 
|  |  | 
|  | Path.Decls = BaseRecord->lookup(Name); | 
|  | return !Path.Decls.empty(); | 
|  | } | 
|  |  | 
|  | /// Determine whether the given set of member declarations contains only | 
|  | /// static members, nested types, and enumerators. | 
|  | template<typename InputIterator> | 
|  | static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) { | 
|  | Decl *D = (*First)->getUnderlyingDecl(); | 
|  | if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D)) | 
|  | return true; | 
|  |  | 
|  | if (isa<CXXMethodDecl>(D)) { | 
|  | // Determine whether all of the methods are static. | 
|  | bool AllMethodsAreStatic = true; | 
|  | for(; First != Last; ++First) { | 
|  | D = (*First)->getUnderlyingDecl(); | 
|  |  | 
|  | if (!isa<CXXMethodDecl>(D)) { | 
|  | assert(isa<TagDecl>(D) && "Non-function must be a tag decl"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!cast<CXXMethodDecl>(D)->isStatic()) { | 
|  | AllMethodsAreStatic = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (AllMethodsAreStatic) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Perform qualified name lookup into a given context. | 
|  | /// | 
|  | /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find | 
|  | /// names when the context of those names is explicit specified, e.g., | 
|  | /// "std::vector" or "x->member", or as part of unqualified name lookup. | 
|  | /// | 
|  | /// Different lookup criteria can find different names. For example, a | 
|  | /// particular scope can have both a struct and a function of the same | 
|  | /// name, and each can be found by certain lookup criteria. For more | 
|  | /// information about lookup criteria, see the documentation for the | 
|  | /// class LookupCriteria. | 
|  | /// | 
|  | /// \param R captures both the lookup criteria and any lookup results found. | 
|  | /// | 
|  | /// \param LookupCtx The context in which qualified name lookup will | 
|  | /// search. If the lookup criteria permits, name lookup may also search | 
|  | /// in the parent contexts or (for C++ classes) base classes. | 
|  | /// | 
|  | /// \param InUnqualifiedLookup true if this is qualified name lookup that | 
|  | /// occurs as part of unqualified name lookup. | 
|  | /// | 
|  | /// \returns true if lookup succeeded, false if it failed. | 
|  | bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, | 
|  | bool InUnqualifiedLookup) { | 
|  | assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context"); | 
|  |  | 
|  | if (!R.getLookupName()) | 
|  | return false; | 
|  |  | 
|  | // Make sure that the declaration context is complete. | 
|  | assert((!isa<TagDecl>(LookupCtx) || | 
|  | LookupCtx->isDependentContext() || | 
|  | cast<TagDecl>(LookupCtx)->isCompleteDefinition() || | 
|  | cast<TagDecl>(LookupCtx)->isBeingDefined()) && | 
|  | "Declaration context must already be complete!"); | 
|  |  | 
|  | struct QualifiedLookupInScope { | 
|  | bool oldVal; | 
|  | DeclContext *Context; | 
|  | // Set flag in DeclContext informing debugger that we're looking for qualified name | 
|  | QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) { | 
|  | oldVal = ctx->setUseQualifiedLookup(); | 
|  | } | 
|  | ~QualifiedLookupInScope() { | 
|  | Context->setUseQualifiedLookup(oldVal); | 
|  | } | 
|  | } QL(LookupCtx); | 
|  |  | 
|  | if (LookupDirect(*this, R, LookupCtx)) { | 
|  | R.resolveKind(); | 
|  | if (isa<CXXRecordDecl>(LookupCtx)) | 
|  | R.setNamingClass(cast<CXXRecordDecl>(LookupCtx)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Don't descend into implied contexts for redeclarations. | 
|  | // C++98 [namespace.qual]p6: | 
|  | //   In a declaration for a namespace member in which the | 
|  | //   declarator-id is a qualified-id, given that the qualified-id | 
|  | //   for the namespace member has the form | 
|  | //     nested-name-specifier unqualified-id | 
|  | //   the unqualified-id shall name a member of the namespace | 
|  | //   designated by the nested-name-specifier. | 
|  | // See also [class.mfct]p5 and [class.static.data]p2. | 
|  | if (R.isForRedeclaration()) | 
|  | return false; | 
|  |  | 
|  | // If this is a namespace, look it up in the implied namespaces. | 
|  | if (LookupCtx->isFileContext()) | 
|  | return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx); | 
|  |  | 
|  | // If this isn't a C++ class, we aren't allowed to look into base | 
|  | // classes, we're done. | 
|  | CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx); | 
|  | if (!LookupRec || !LookupRec->getDefinition()) | 
|  | return false; | 
|  |  | 
|  | // If we're performing qualified name lookup into a dependent class, | 
|  | // then we are actually looking into a current instantiation. If we have any | 
|  | // dependent base classes, then we either have to delay lookup until | 
|  | // template instantiation time (at which point all bases will be available) | 
|  | // or we have to fail. | 
|  | if (!InUnqualifiedLookup && LookupRec->isDependentContext() && | 
|  | LookupRec->hasAnyDependentBases()) { | 
|  | R.setNotFoundInCurrentInstantiation(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Perform lookup into our base classes. | 
|  | CXXBasePaths Paths; | 
|  | Paths.setOrigin(LookupRec); | 
|  |  | 
|  | // Look for this member in our base classes | 
|  | bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, | 
|  | DeclarationName Name) = nullptr; | 
|  | switch (R.getLookupKind()) { | 
|  | case LookupObjCImplicitSelfParam: | 
|  | case LookupOrdinaryName: | 
|  | case LookupMemberName: | 
|  | case LookupRedeclarationWithLinkage: | 
|  | case LookupLocalFriendName: | 
|  | BaseCallback = &CXXRecordDecl::FindOrdinaryMember; | 
|  | break; | 
|  |  | 
|  | case LookupTagName: | 
|  | BaseCallback = &CXXRecordDecl::FindTagMember; | 
|  | break; | 
|  |  | 
|  | case LookupAnyName: | 
|  | BaseCallback = &LookupAnyMember; | 
|  | break; | 
|  |  | 
|  | case LookupOMPReductionName: | 
|  | BaseCallback = &CXXRecordDecl::FindOMPReductionMember; | 
|  | break; | 
|  |  | 
|  | case LookupOMPMapperName: | 
|  | BaseCallback = &CXXRecordDecl::FindOMPMapperMember; | 
|  | break; | 
|  |  | 
|  | case LookupUsingDeclName: | 
|  | // This lookup is for redeclarations only. | 
|  |  | 
|  | case LookupOperatorName: | 
|  | case LookupNamespaceName: | 
|  | case LookupObjCProtocolName: | 
|  | case LookupLabel: | 
|  | // These lookups will never find a member in a C++ class (or base class). | 
|  | return false; | 
|  |  | 
|  | case LookupNestedNameSpecifierName: | 
|  | BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember; | 
|  | break; | 
|  | } | 
|  |  | 
|  | DeclarationName Name = R.getLookupName(); | 
|  | if (!LookupRec->lookupInBases( | 
|  | [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { | 
|  | return BaseCallback(Specifier, Path, Name); | 
|  | }, | 
|  | Paths)) | 
|  | return false; | 
|  |  | 
|  | R.setNamingClass(LookupRec); | 
|  |  | 
|  | // C++ [class.member.lookup]p2: | 
|  | //   [...] If the resulting set of declarations are not all from | 
|  | //   sub-objects of the same type, or the set has a nonstatic member | 
|  | //   and includes members from distinct sub-objects, there is an | 
|  | //   ambiguity and the program is ill-formed. Otherwise that set is | 
|  | //   the result of the lookup. | 
|  | QualType SubobjectType; | 
|  | int SubobjectNumber = 0; | 
|  | AccessSpecifier SubobjectAccess = AS_none; | 
|  |  | 
|  | for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end(); | 
|  | Path != PathEnd; ++Path) { | 
|  | const CXXBasePathElement &PathElement = Path->back(); | 
|  |  | 
|  | // Pick the best (i.e. most permissive i.e. numerically lowest) access | 
|  | // across all paths. | 
|  | SubobjectAccess = std::min(SubobjectAccess, Path->Access); | 
|  |  | 
|  | // Determine whether we're looking at a distinct sub-object or not. | 
|  | if (SubobjectType.isNull()) { | 
|  | // This is the first subobject we've looked at. Record its type. | 
|  | SubobjectType = Context.getCanonicalType(PathElement.Base->getType()); | 
|  | SubobjectNumber = PathElement.SubobjectNumber; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (SubobjectType | 
|  | != Context.getCanonicalType(PathElement.Base->getType())) { | 
|  | // We found members of the given name in two subobjects of | 
|  | // different types. If the declaration sets aren't the same, this | 
|  | // lookup is ambiguous. | 
|  | if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) { | 
|  | CXXBasePaths::paths_iterator FirstPath = Paths.begin(); | 
|  | DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin(); | 
|  | DeclContext::lookup_iterator CurrentD = Path->Decls.begin(); | 
|  |  | 
|  | // Get the decl that we should use for deduplicating this lookup. | 
|  | auto GetRepresentativeDecl = [&](NamedDecl *D) -> Decl * { | 
|  | // C++ [temp.local]p3: | 
|  | //   A lookup that finds an injected-class-name (10.2) can result in | 
|  | //   an ambiguity in certain cases (for example, if it is found in | 
|  | //   more than one base class). If all of the injected-class-names | 
|  | //   that are found refer to specializations of the same class | 
|  | //   template, and if the name is used as a template-name, the | 
|  | //   reference refers to the class template itself and not a | 
|  | //   specialization thereof, and is not ambiguous. | 
|  | if (R.isTemplateNameLookup()) | 
|  | if (auto *TD = getAsTemplateNameDecl(D)) | 
|  | D = TD; | 
|  | return D->getUnderlyingDecl()->getCanonicalDecl(); | 
|  | }; | 
|  |  | 
|  | while (FirstD != FirstPath->Decls.end() && | 
|  | CurrentD != Path->Decls.end()) { | 
|  | if (GetRepresentativeDecl(*FirstD) != | 
|  | GetRepresentativeDecl(*CurrentD)) | 
|  | break; | 
|  |  | 
|  | ++FirstD; | 
|  | ++CurrentD; | 
|  | } | 
|  |  | 
|  | if (FirstD == FirstPath->Decls.end() && | 
|  | CurrentD == Path->Decls.end()) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | R.setAmbiguousBaseSubobjectTypes(Paths); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (SubobjectNumber != PathElement.SubobjectNumber) { | 
|  | // We have a different subobject of the same type. | 
|  |  | 
|  | // C++ [class.member.lookup]p5: | 
|  | //   A static member, a nested type or an enumerator defined in | 
|  | //   a base class T can unambiguously be found even if an object | 
|  | //   has more than one base class subobject of type T. | 
|  | if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) | 
|  | continue; | 
|  |  | 
|  | // We have found a nonstatic member name in multiple, distinct | 
|  | // subobjects. Name lookup is ambiguous. | 
|  | R.setAmbiguousBaseSubobjects(Paths); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Lookup in a base class succeeded; return these results. | 
|  |  | 
|  | for (auto *D : Paths.front().Decls) { | 
|  | AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess, | 
|  | D->getAccess()); | 
|  | R.addDecl(D, AS); | 
|  | } | 
|  | R.resolveKind(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Performs qualified name lookup or special type of lookup for | 
|  | /// "__super::" scope specifier. | 
|  | /// | 
|  | /// This routine is a convenience overload meant to be called from contexts | 
|  | /// that need to perform a qualified name lookup with an optional C++ scope | 
|  | /// specifier that might require special kind of lookup. | 
|  | /// | 
|  | /// \param R captures both the lookup criteria and any lookup results found. | 
|  | /// | 
|  | /// \param LookupCtx The context in which qualified name lookup will | 
|  | /// search. | 
|  | /// | 
|  | /// \param SS An optional C++ scope-specifier. | 
|  | /// | 
|  | /// \returns true if lookup succeeded, false if it failed. | 
|  | bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, | 
|  | CXXScopeSpec &SS) { | 
|  | auto *NNS = SS.getScopeRep(); | 
|  | if (NNS && NNS->getKind() == NestedNameSpecifier::Super) | 
|  | return LookupInSuper(R, NNS->getAsRecordDecl()); | 
|  | else | 
|  |  | 
|  | return LookupQualifiedName(R, LookupCtx); | 
|  | } | 
|  |  | 
|  | /// Performs name lookup for a name that was parsed in the | 
|  | /// source code, and may contain a C++ scope specifier. | 
|  | /// | 
|  | /// This routine is a convenience routine meant to be called from | 
|  | /// contexts that receive a name and an optional C++ scope specifier | 
|  | /// (e.g., "N::M::x"). It will then perform either qualified or | 
|  | /// unqualified name lookup (with LookupQualifiedName or LookupName, | 
|  | /// respectively) on the given name and return those results. It will | 
|  | /// perform a special type of lookup for "__super::" scope specifier. | 
|  | /// | 
|  | /// @param S        The scope from which unqualified name lookup will | 
|  | /// begin. | 
|  | /// | 
|  | /// @param SS       An optional C++ scope-specifier, e.g., "::N::M". | 
|  | /// | 
|  | /// @param EnteringContext Indicates whether we are going to enter the | 
|  | /// context of the scope-specifier SS (if present). | 
|  | /// | 
|  | /// @returns True if any decls were found (but possibly ambiguous) | 
|  | bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, | 
|  | bool AllowBuiltinCreation, bool EnteringContext) { | 
|  | if (SS && SS->isInvalid()) { | 
|  | // When the scope specifier is invalid, don't even look for | 
|  | // anything. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (SS && SS->isSet()) { | 
|  | NestedNameSpecifier *NNS = SS->getScopeRep(); | 
|  | if (NNS->getKind() == NestedNameSpecifier::Super) | 
|  | return LookupInSuper(R, NNS->getAsRecordDecl()); | 
|  |  | 
|  | if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) { | 
|  | // We have resolved the scope specifier to a particular declaration | 
|  | // contex, and will perform name lookup in that context. | 
|  | if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC)) | 
|  | return false; | 
|  |  | 
|  | R.setContextRange(SS->getRange()); | 
|  | return LookupQualifiedName(R, DC); | 
|  | } | 
|  |  | 
|  | // We could not resolve the scope specified to a specific declaration | 
|  | // context, which means that SS refers to an unknown specialization. | 
|  | // Name lookup can't find anything in this case. | 
|  | R.setNotFoundInCurrentInstantiation(); | 
|  | R.setContextRange(SS->getRange()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Perform unqualified name lookup starting in the given scope. | 
|  | return LookupName(R, S, AllowBuiltinCreation); | 
|  | } | 
|  |  | 
|  | /// Perform qualified name lookup into all base classes of the given | 
|  | /// class. | 
|  | /// | 
|  | /// \param R captures both the lookup criteria and any lookup results found. | 
|  | /// | 
|  | /// \param Class The context in which qualified name lookup will | 
|  | /// search. Name lookup will search in all base classes merging the results. | 
|  | /// | 
|  | /// @returns True if any decls were found (but possibly ambiguous) | 
|  | bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) { | 
|  | // The access-control rules we use here are essentially the rules for | 
|  | // doing a lookup in Class that just magically skipped the direct | 
|  | // members of Class itself.  That is, the naming class is Class, and the | 
|  | // access includes the access of the base. | 
|  | for (const auto &BaseSpec : Class->bases()) { | 
|  | CXXRecordDecl *RD = cast<CXXRecordDecl>( | 
|  | BaseSpec.getType()->castAs<RecordType>()->getDecl()); | 
|  | LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind()); | 
|  | Result.setBaseObjectType(Context.getRecordType(Class)); | 
|  | LookupQualifiedName(Result, RD); | 
|  |  | 
|  | // Copy the lookup results into the target, merging the base's access into | 
|  | // the path access. | 
|  | for (auto I = Result.begin(), E = Result.end(); I != E; ++I) { | 
|  | R.addDecl(I.getDecl(), | 
|  | CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(), | 
|  | I.getAccess())); | 
|  | } | 
|  |  | 
|  | Result.suppressDiagnostics(); | 
|  | } | 
|  |  | 
|  | R.resolveKind(); | 
|  | R.setNamingClass(Class); | 
|  |  | 
|  | return !R.empty(); | 
|  | } | 
|  |  | 
|  | /// Produce a diagnostic describing the ambiguity that resulted | 
|  | /// from name lookup. | 
|  | /// | 
|  | /// \param Result The result of the ambiguous lookup to be diagnosed. | 
|  | void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) { | 
|  | assert(Result.isAmbiguous() && "Lookup result must be ambiguous"); | 
|  |  | 
|  | DeclarationName Name = Result.getLookupName(); | 
|  | SourceLocation NameLoc = Result.getNameLoc(); | 
|  | SourceRange LookupRange = Result.getContextRange(); | 
|  |  | 
|  | switch (Result.getAmbiguityKind()) { | 
|  | case LookupResult::AmbiguousBaseSubobjects: { | 
|  | CXXBasePaths *Paths = Result.getBasePaths(); | 
|  | QualType SubobjectType = Paths->front().back().Base->getType(); | 
|  | Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects) | 
|  | << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths) | 
|  | << LookupRange; | 
|  |  | 
|  | DeclContext::lookup_iterator Found = Paths->front().Decls.begin(); | 
|  | while (isa<CXXMethodDecl>(*Found) && | 
|  | cast<CXXMethodDecl>(*Found)->isStatic()) | 
|  | ++Found; | 
|  |  | 
|  | Diag((*Found)->getLocation(), diag::note_ambiguous_member_found); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case LookupResult::AmbiguousBaseSubobjectTypes: { | 
|  | Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types) | 
|  | << Name << LookupRange; | 
|  |  | 
|  | CXXBasePaths *Paths = Result.getBasePaths(); | 
|  | std::set<Decl *> DeclsPrinted; | 
|  | for (CXXBasePaths::paths_iterator Path = Paths->begin(), | 
|  | PathEnd = Paths->end(); | 
|  | Path != PathEnd; ++Path) { | 
|  | Decl *D = Path->Decls.front(); | 
|  | if (DeclsPrinted.insert(D).second) | 
|  | Diag(D->getLocation(), diag::note_ambiguous_member_found); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case LookupResult::AmbiguousTagHiding: { | 
|  | Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange; | 
|  |  | 
|  | llvm::SmallPtrSet<NamedDecl*, 8> TagDecls; | 
|  |  | 
|  | for (auto *D : Result) | 
|  | if (TagDecl *TD = dyn_cast<TagDecl>(D)) { | 
|  | TagDecls.insert(TD); | 
|  | Diag(TD->getLocation(), diag::note_hidden_tag); | 
|  | } | 
|  |  | 
|  | for (auto *D : Result) | 
|  | if (!isa<TagDecl>(D)) | 
|  | Diag(D->getLocation(), diag::note_hiding_object); | 
|  |  | 
|  | // For recovery purposes, go ahead and implement the hiding. | 
|  | LookupResult::Filter F = Result.makeFilter(); | 
|  | while (F.hasNext()) { | 
|  | if (TagDecls.count(F.next())) | 
|  | F.erase(); | 
|  | } | 
|  | F.done(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case LookupResult::AmbiguousReference: { | 
|  | Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange; | 
|  |  | 
|  | for (auto *D : Result) | 
|  | Diag(D->getLocation(), diag::note_ambiguous_candidate) << D; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct AssociatedLookup { | 
|  | AssociatedLookup(Sema &S, SourceLocation InstantiationLoc, | 
|  | Sema::AssociatedNamespaceSet &Namespaces, | 
|  | Sema::AssociatedClassSet &Classes) | 
|  | : S(S), Namespaces(Namespaces), Classes(Classes), | 
|  | InstantiationLoc(InstantiationLoc) { | 
|  | } | 
|  |  | 
|  | bool addClassTransitive(CXXRecordDecl *RD) { | 
|  | Classes.insert(RD); | 
|  | return ClassesTransitive.insert(RD); | 
|  | } | 
|  |  | 
|  | Sema &S; | 
|  | Sema::AssociatedNamespaceSet &Namespaces; | 
|  | Sema::AssociatedClassSet &Classes; | 
|  | SourceLocation InstantiationLoc; | 
|  |  | 
|  | private: | 
|  | Sema::AssociatedClassSet ClassesTransitive; | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | static void | 
|  | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T); | 
|  |  | 
|  | static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces, | 
|  | DeclContext *Ctx) { | 
|  | // Add the associated namespace for this class. | 
|  |  | 
|  | // We don't use DeclContext::getEnclosingNamespaceContext() as this may | 
|  | // be a locally scoped record. | 
|  |  | 
|  | // We skip out of inline namespaces. The innermost non-inline namespace | 
|  | // contains all names of all its nested inline namespaces anyway, so we can | 
|  | // replace the entire inline namespace tree with its root. | 
|  | while (Ctx->isRecord() || Ctx->isTransparentContext() || | 
|  | Ctx->isInlineNamespace()) | 
|  | Ctx = Ctx->getParent(); | 
|  |  | 
|  | if (Ctx->isFileContext()) | 
|  | Namespaces.insert(Ctx->getPrimaryContext()); | 
|  | } | 
|  |  | 
|  | // Add the associated classes and namespaces for argument-dependent | 
|  | // lookup that involves a template argument (C++ [basic.lookup.koenig]p2). | 
|  | static void | 
|  | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, | 
|  | const TemplateArgument &Arg) { | 
|  | // C++ [basic.lookup.koenig]p2, last bullet: | 
|  | //   -- [...] ; | 
|  | switch (Arg.getKind()) { | 
|  | case TemplateArgument::Null: | 
|  | break; | 
|  |  | 
|  | case TemplateArgument::Type: | 
|  | // [...] the namespaces and classes associated with the types of the | 
|  | // template arguments provided for template type parameters (excluding | 
|  | // template template parameters) | 
|  | addAssociatedClassesAndNamespaces(Result, Arg.getAsType()); | 
|  | break; | 
|  |  | 
|  | case TemplateArgument::Template: | 
|  | case TemplateArgument::TemplateExpansion: { | 
|  | // [...] the namespaces in which any template template arguments are | 
|  | // defined; and the classes in which any member templates used as | 
|  | // template template arguments are defined. | 
|  | TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); | 
|  | if (ClassTemplateDecl *ClassTemplate | 
|  | = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) { | 
|  | DeclContext *Ctx = ClassTemplate->getDeclContext(); | 
|  | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) | 
|  | Result.Classes.insert(EnclosingClass); | 
|  | // Add the associated namespace for this class. | 
|  | CollectEnclosingNamespace(Result.Namespaces, Ctx); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TemplateArgument::Declaration: | 
|  | case TemplateArgument::Integral: | 
|  | case TemplateArgument::Expression: | 
|  | case TemplateArgument::NullPtr: | 
|  | // [Note: non-type template arguments do not contribute to the set of | 
|  | //  associated namespaces. ] | 
|  | break; | 
|  |  | 
|  | case TemplateArgument::Pack: | 
|  | for (const auto &P : Arg.pack_elements()) | 
|  | addAssociatedClassesAndNamespaces(Result, P); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add the associated classes and namespaces for | 
|  | // argument-dependent lookup with an argument of class type | 
|  | // (C++ [basic.lookup.koenig]p2). | 
|  | static void | 
|  | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, | 
|  | CXXRecordDecl *Class) { | 
|  |  | 
|  | // Just silently ignore anything whose name is __va_list_tag. | 
|  | if (Class->getDeclName() == Result.S.VAListTagName) | 
|  | return; | 
|  |  | 
|  | // C++ [basic.lookup.koenig]p2: | 
|  | //   [...] | 
|  | //     -- If T is a class type (including unions), its associated | 
|  | //        classes are: the class itself; the class of which it is a | 
|  | //        member, if any; and its direct and indirect base | 
|  | //        classes. Its associated namespaces are the namespaces in | 
|  | //        which its associated classes are defined. | 
|  |  | 
|  | // Add the class of which it is a member, if any. | 
|  | DeclContext *Ctx = Class->getDeclContext(); | 
|  | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) | 
|  | Result.Classes.insert(EnclosingClass); | 
|  | // Add the associated namespace for this class. | 
|  | CollectEnclosingNamespace(Result.Namespaces, Ctx); | 
|  |  | 
|  | // -- If T is a template-id, its associated namespaces and classes are | 
|  | //    the namespace in which the template is defined; for member | 
|  | //    templates, the member template's class; the namespaces and classes | 
|  | //    associated with the types of the template arguments provided for | 
|  | //    template type parameters (excluding template template parameters); the | 
|  | //    namespaces in which any template template arguments are defined; and | 
|  | //    the classes in which any member templates used as template template | 
|  | //    arguments are defined. [Note: non-type template arguments do not | 
|  | //    contribute to the set of associated namespaces. ] | 
|  | if (ClassTemplateSpecializationDecl *Spec | 
|  | = dyn_cast<ClassTemplateSpecializationDecl>(Class)) { | 
|  | DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext(); | 
|  | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) | 
|  | Result.Classes.insert(EnclosingClass); | 
|  | // Add the associated namespace for this class. | 
|  | CollectEnclosingNamespace(Result.Namespaces, Ctx); | 
|  |  | 
|  | const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); | 
|  | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) | 
|  | addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]); | 
|  | } | 
|  |  | 
|  | // Add the class itself. If we've already transitively visited this class, | 
|  | // we don't need to visit base classes. | 
|  | if (!Result.addClassTransitive(Class)) | 
|  | return; | 
|  |  | 
|  | // Only recurse into base classes for complete types. | 
|  | if (!Result.S.isCompleteType(Result.InstantiationLoc, | 
|  | Result.S.Context.getRecordType(Class))) | 
|  | return; | 
|  |  | 
|  | // Add direct and indirect base classes along with their associated | 
|  | // namespaces. | 
|  | SmallVector<CXXRecordDecl *, 32> Bases; | 
|  | Bases.push_back(Class); | 
|  | while (!Bases.empty()) { | 
|  | // Pop this class off the stack. | 
|  | Class = Bases.pop_back_val(); | 
|  |  | 
|  | // Visit the base classes. | 
|  | for (const auto &Base : Class->bases()) { | 
|  | const RecordType *BaseType = Base.getType()->getAs<RecordType>(); | 
|  | // In dependent contexts, we do ADL twice, and the first time around, | 
|  | // the base type might be a dependent TemplateSpecializationType, or a | 
|  | // TemplateTypeParmType. If that happens, simply ignore it. | 
|  | // FIXME: If we want to support export, we probably need to add the | 
|  | // namespace of the template in a TemplateSpecializationType, or even | 
|  | // the classes and namespaces of known non-dependent arguments. | 
|  | if (!BaseType) | 
|  | continue; | 
|  | CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl()); | 
|  | if (Result.addClassTransitive(BaseDecl)) { | 
|  | // Find the associated namespace for this base class. | 
|  | DeclContext *BaseCtx = BaseDecl->getDeclContext(); | 
|  | CollectEnclosingNamespace(Result.Namespaces, BaseCtx); | 
|  |  | 
|  | // Make sure we visit the bases of this base class. | 
|  | if (BaseDecl->bases_begin() != BaseDecl->bases_end()) | 
|  | Bases.push_back(BaseDecl); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add the associated classes and namespaces for | 
|  | // argument-dependent lookup with an argument of type T | 
|  | // (C++ [basic.lookup.koenig]p2). | 
|  | static void | 
|  | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) { | 
|  | // C++ [basic.lookup.koenig]p2: | 
|  | // | 
|  | //   For each argument type T in the function call, there is a set | 
|  | //   of zero or more associated namespaces and a set of zero or more | 
|  | //   associated classes to be considered. The sets of namespaces and | 
|  | //   classes is determined entirely by the types of the function | 
|  | //   arguments (and the namespace of any template template | 
|  | //   argument). Typedef names and using-declarations used to specify | 
|  | //   the types do not contribute to this set. The sets of namespaces | 
|  | //   and classes are determined in the following way: | 
|  |  | 
|  | SmallVector<const Type *, 16> Queue; | 
|  | const Type *T = Ty->getCanonicalTypeInternal().getTypePtr(); | 
|  |  | 
|  | while (true) { | 
|  | switch (T->getTypeClass()) { | 
|  |  | 
|  | #define TYPE(Class, Base) | 
|  | #define DEPENDENT_TYPE(Class, Base) case Type::Class: | 
|  | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: | 
|  | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: | 
|  | #define ABSTRACT_TYPE(Class, Base) | 
|  | #include "clang/AST/TypeNodes.def" | 
|  | // T is canonical.  We can also ignore dependent types because | 
|  | // we don't need to do ADL at the definition point, but if we | 
|  | // wanted to implement template export (or if we find some other | 
|  | // use for associated classes and namespaces...) this would be | 
|  | // wrong. | 
|  | break; | 
|  |  | 
|  | //    -- If T is a pointer to U or an array of U, its associated | 
|  | //       namespaces and classes are those associated with U. | 
|  | case Type::Pointer: | 
|  | T = cast<PointerType>(T)->getPointeeType().getTypePtr(); | 
|  | continue; | 
|  | case Type::ConstantArray: | 
|  | case Type::IncompleteArray: | 
|  | case Type::VariableArray: | 
|  | T = cast<ArrayType>(T)->getElementType().getTypePtr(); | 
|  | continue; | 
|  |  | 
|  | //     -- If T is a fundamental type, its associated sets of | 
|  | //        namespaces and classes are both empty. | 
|  | case Type::Builtin: | 
|  | break; | 
|  |  | 
|  | //     -- If T is a class type (including unions), its associated | 
|  | //        classes are: the class itself; the class of which it is a | 
|  | //        member, if any; and its direct and indirect base | 
|  | //        classes. Its associated namespaces are the namespaces in | 
|  | //        which its associated classes are defined. | 
|  | case Type::Record: { | 
|  | CXXRecordDecl *Class = | 
|  | cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl()); | 
|  | addAssociatedClassesAndNamespaces(Result, Class); | 
|  | break; | 
|  | } | 
|  |  | 
|  | //     -- If T is an enumeration type, its associated namespace is | 
|  | //        the namespace in which it is defined. If it is class | 
|  | //        member, its associated class is the member's class; else | 
|  | //        it has no associated class. | 
|  | case Type::Enum: { | 
|  | EnumDecl *Enum = cast<EnumType>(T)->getDecl(); | 
|  |  | 
|  | DeclContext *Ctx = Enum->getDeclContext(); | 
|  | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) | 
|  | Result.Classes.insert(EnclosingClass); | 
|  |  | 
|  | // Add the associated namespace for this class. | 
|  | CollectEnclosingNamespace(Result.Namespaces, Ctx); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | //     -- If T is a function type, its associated namespaces and | 
|  | //        classes are those associated with the function parameter | 
|  | //        types and those associated with the return type. | 
|  | case Type::FunctionProto: { | 
|  | const FunctionProtoType *Proto = cast<FunctionProtoType>(T); | 
|  | for (const auto &Arg : Proto->param_types()) | 
|  | Queue.push_back(Arg.getTypePtr()); | 
|  | // fallthrough | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | case Type::FunctionNoProto: { | 
|  | const FunctionType *FnType = cast<FunctionType>(T); | 
|  | T = FnType->getReturnType().getTypePtr(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | //     -- If T is a pointer to a member function of a class X, its | 
|  | //        associated namespaces and classes are those associated | 
|  | //        with the function parameter types and return type, | 
|  | //        together with those associated with X. | 
|  | // | 
|  | //     -- If T is a pointer to a data member of class X, its | 
|  | //        associated namespaces and classes are those associated | 
|  | //        with the member type together with those associated with | 
|  | //        X. | 
|  | case Type::MemberPointer: { | 
|  | const MemberPointerType *MemberPtr = cast<MemberPointerType>(T); | 
|  |  | 
|  | // Queue up the class type into which this points. | 
|  | Queue.push_back(MemberPtr->getClass()); | 
|  |  | 
|  | // And directly continue with the pointee type. | 
|  | T = MemberPtr->getPointeeType().getTypePtr(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // As an extension, treat this like a normal pointer. | 
|  | case Type::BlockPointer: | 
|  | T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr(); | 
|  | continue; | 
|  |  | 
|  | // References aren't covered by the standard, but that's such an | 
|  | // obvious defect that we cover them anyway. | 
|  | case Type::LValueReference: | 
|  | case Type::RValueReference: | 
|  | T = cast<ReferenceType>(T)->getPointeeType().getTypePtr(); | 
|  | continue; | 
|  |  | 
|  | // These are fundamental types. | 
|  | case Type::Vector: | 
|  | case Type::ExtVector: | 
|  | case Type::Complex: | 
|  | break; | 
|  |  | 
|  | // Non-deduced auto types only get here for error cases. | 
|  | case Type::Auto: | 
|  | case Type::DeducedTemplateSpecialization: | 
|  | break; | 
|  |  | 
|  | // If T is an Objective-C object or interface type, or a pointer to an | 
|  | // object or interface type, the associated namespace is the global | 
|  | // namespace. | 
|  | case Type::ObjCObject: | 
|  | case Type::ObjCInterface: | 
|  | case Type::ObjCObjectPointer: | 
|  | Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl()); | 
|  | break; | 
|  |  | 
|  | // Atomic types are just wrappers; use the associations of the | 
|  | // contained type. | 
|  | case Type::Atomic: | 
|  | T = cast<AtomicType>(T)->getValueType().getTypePtr(); | 
|  | continue; | 
|  | case Type::Pipe: | 
|  | T = cast<PipeType>(T)->getElementType().getTypePtr(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Queue.empty()) | 
|  | break; | 
|  | T = Queue.pop_back_val(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Find the associated classes and namespaces for | 
|  | /// argument-dependent lookup for a call with the given set of | 
|  | /// arguments. | 
|  | /// | 
|  | /// This routine computes the sets of associated classes and associated | 
|  | /// namespaces searched by argument-dependent lookup | 
|  | /// (C++ [basic.lookup.argdep]) for a given set of arguments. | 
|  | void Sema::FindAssociatedClassesAndNamespaces( | 
|  | SourceLocation InstantiationLoc, ArrayRef<Expr *> Args, | 
|  | AssociatedNamespaceSet &AssociatedNamespaces, | 
|  | AssociatedClassSet &AssociatedClasses) { | 
|  | AssociatedNamespaces.clear(); | 
|  | AssociatedClasses.clear(); | 
|  |  | 
|  | AssociatedLookup Result(*this, InstantiationLoc, | 
|  | AssociatedNamespaces, AssociatedClasses); | 
|  |  | 
|  | // C++ [basic.lookup.koenig]p2: | 
|  | //   For each argument type T in the function call, there is a set | 
|  | //   of zero or more associated namespaces and a set of zero or more | 
|  | //   associated classes to be considered. The sets of namespaces and | 
|  | //   classes is determined entirely by the types of the function | 
|  | //   arguments (and the namespace of any template template | 
|  | //   argument). | 
|  | for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { | 
|  | Expr *Arg = Args[ArgIdx]; | 
|  |  | 
|  | if (Arg->getType() != Context.OverloadTy) { | 
|  | addAssociatedClassesAndNamespaces(Result, Arg->getType()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // [...] In addition, if the argument is the name or address of a | 
|  | // set of overloaded functions and/or function templates, its | 
|  | // associated classes and namespaces are the union of those | 
|  | // associated with each of the members of the set: the namespace | 
|  | // in which the function or function template is defined and the | 
|  | // classes and namespaces associated with its (non-dependent) | 
|  | // parameter types and return type. | 
|  | OverloadExpr *OE = OverloadExpr::find(Arg).Expression; | 
|  |  | 
|  | for (const NamedDecl *D : OE->decls()) { | 
|  | // Look through any using declarations to find the underlying function. | 
|  | const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction(); | 
|  |  | 
|  | // Add the classes and namespaces associated with the parameter | 
|  | // types and return type of this function. | 
|  | addAssociatedClassesAndNamespaces(Result, FDecl->getType()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name, | 
|  | SourceLocation Loc, | 
|  | LookupNameKind NameKind, | 
|  | RedeclarationKind Redecl) { | 
|  | LookupResult R(*this, Name, Loc, NameKind, Redecl); | 
|  | LookupName(R, S); | 
|  | return R.getAsSingle<NamedDecl>(); | 
|  | } | 
|  |  | 
|  | /// Find the protocol with the given name, if any. | 
|  | ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II, | 
|  | SourceLocation IdLoc, | 
|  | RedeclarationKind Redecl) { | 
|  | Decl *D = LookupSingleName(TUScope, II, IdLoc, | 
|  | LookupObjCProtocolName, Redecl); | 
|  | return cast_or_null<ObjCProtocolDecl>(D); | 
|  | } | 
|  |  | 
|  | void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, | 
|  | QualType T1, QualType T2, | 
|  | UnresolvedSetImpl &Functions) { | 
|  | // C++ [over.match.oper]p3: | 
|  | //     -- The set of non-member candidates is the result of the | 
|  | //        unqualified lookup of operator@ in the context of the | 
|  | //        expression according to the usual rules for name lookup in | 
|  | //        unqualified function calls (3.4.2) except that all member | 
|  | //        functions are ignored. | 
|  | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); | 
|  | LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName); | 
|  | LookupName(Operators, S); | 
|  |  | 
|  | assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); | 
|  | Functions.append(Operators.begin(), Operators.end()); | 
|  | } | 
|  |  | 
|  | Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD, | 
|  | CXXSpecialMember SM, | 
|  | bool ConstArg, | 
|  | bool VolatileArg, | 
|  | bool RValueThis, | 
|  | bool ConstThis, | 
|  | bool VolatileThis) { | 
|  | assert(CanDeclareSpecialMemberFunction(RD) && | 
|  | "doing special member lookup into record that isn't fully complete"); | 
|  | RD = RD->getDefinition(); | 
|  | if (RValueThis || ConstThis || VolatileThis) | 
|  | assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) && | 
|  | "constructors and destructors always have unqualified lvalue this"); | 
|  | if (ConstArg || VolatileArg) | 
|  | assert((SM != CXXDefaultConstructor && SM != CXXDestructor) && | 
|  | "parameter-less special members can't have qualified arguments"); | 
|  |  | 
|  | // FIXME: Get the caller to pass in a location for the lookup. | 
|  | SourceLocation LookupLoc = RD->getLocation(); | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | ID.AddPointer(RD); | 
|  | ID.AddInteger(SM); | 
|  | ID.AddInteger(ConstArg); | 
|  | ID.AddInteger(VolatileArg); | 
|  | ID.AddInteger(RValueThis); | 
|  | ID.AddInteger(ConstThis); | 
|  | ID.AddInteger(VolatileThis); | 
|  |  | 
|  | void *InsertPoint; | 
|  | SpecialMemberOverloadResultEntry *Result = | 
|  | SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint); | 
|  |  | 
|  | // This was already cached | 
|  | if (Result) | 
|  | return *Result; | 
|  |  | 
|  | Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>(); | 
|  | Result = new (Result) SpecialMemberOverloadResultEntry(ID); | 
|  | SpecialMemberCache.InsertNode(Result, InsertPoint); | 
|  |  | 
|  | if (SM == CXXDestructor) { | 
|  | if (RD->needsImplicitDestructor()) | 
|  | DeclareImplicitDestructor(RD); | 
|  | CXXDestructorDecl *DD = RD->getDestructor(); | 
|  | assert(DD && "record without a destructor"); | 
|  | Result->setMethod(DD); | 
|  | Result->setKind(DD->isDeleted() ? | 
|  | SpecialMemberOverloadResult::NoMemberOrDeleted : | 
|  | SpecialMemberOverloadResult::Success); | 
|  | return *Result; | 
|  | } | 
|  |  | 
|  | // Prepare for overload resolution. Here we construct a synthetic argument | 
|  | // if necessary and make sure that implicit functions are declared. | 
|  | CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD)); | 
|  | DeclarationName Name; | 
|  | Expr *Arg = nullptr; | 
|  | unsigned NumArgs; | 
|  |  | 
|  | QualType ArgType = CanTy; | 
|  | ExprValueKind VK = VK_LValue; | 
|  |  | 
|  | if (SM == CXXDefaultConstructor) { | 
|  | Name = Context.DeclarationNames.getCXXConstructorName(CanTy); | 
|  | NumArgs = 0; | 
|  | if (RD->needsImplicitDefaultConstructor()) | 
|  | DeclareImplicitDefaultConstructor(RD); | 
|  | } else { | 
|  | if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) { | 
|  | Name = Context.DeclarationNames.getCXXConstructorName(CanTy); | 
|  | if (RD->needsImplicitCopyConstructor()) | 
|  | DeclareImplicitCopyConstructor(RD); | 
|  | if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) | 
|  | DeclareImplicitMoveConstructor(RD); | 
|  | } else { | 
|  | Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); | 
|  | if (RD->needsImplicitCopyAssignment()) | 
|  | DeclareImplicitCopyAssignment(RD); | 
|  | if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) | 
|  | DeclareImplicitMoveAssignment(RD); | 
|  | } | 
|  |  | 
|  | if (ConstArg) | 
|  | ArgType.addConst(); | 
|  | if (VolatileArg) | 
|  | ArgType.addVolatile(); | 
|  |  | 
|  | // This isn't /really/ specified by the standard, but it's implied | 
|  | // we should be working from an RValue in the case of move to ensure | 
|  | // that we prefer to bind to rvalue references, and an LValue in the | 
|  | // case of copy to ensure we don't bind to rvalue references. | 
|  | // Possibly an XValue is actually correct in the case of move, but | 
|  | // there is no semantic difference for class types in this restricted | 
|  | // case. | 
|  | if (SM == CXXCopyConstructor || SM == CXXCopyAssignment) | 
|  | VK = VK_LValue; | 
|  | else | 
|  | VK = VK_RValue; | 
|  | } | 
|  |  | 
|  | OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK); | 
|  |  | 
|  | if (SM != CXXDefaultConstructor) { | 
|  | NumArgs = 1; | 
|  | Arg = &FakeArg; | 
|  | } | 
|  |  | 
|  | // Create the object argument | 
|  | QualType ThisTy = CanTy; | 
|  | if (ConstThis) | 
|  | ThisTy.addConst(); | 
|  | if (VolatileThis) | 
|  | ThisTy.addVolatile(); | 
|  | Expr::Classification Classification = | 
|  | OpaqueValueExpr(LookupLoc, ThisTy, | 
|  | RValueThis ? VK_RValue : VK_LValue).Classify(Context); | 
|  |  | 
|  | // Now we perform lookup on the name we computed earlier and do overload | 
|  | // resolution. Lookup is only performed directly into the class since there | 
|  | // will always be a (possibly implicit) declaration to shadow any others. | 
|  | OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal); | 
|  | DeclContext::lookup_result R = RD->lookup(Name); | 
|  |  | 
|  | if (R.empty()) { | 
|  | // We might have no default constructor because we have a lambda's closure | 
|  | // type, rather than because there's some other declared constructor. | 
|  | // Every class has a copy/move constructor, copy/move assignment, and | 
|  | // destructor. | 
|  | assert(SM == CXXDefaultConstructor && | 
|  | "lookup for a constructor or assignment operator was empty"); | 
|  | Result->setMethod(nullptr); | 
|  | Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); | 
|  | return *Result; | 
|  | } | 
|  |  | 
|  | // Copy the candidates as our processing of them may load new declarations | 
|  | // from an external source and invalidate lookup_result. | 
|  | SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end()); | 
|  |  | 
|  | for (NamedDecl *CandDecl : Candidates) { | 
|  | if (CandDecl->isInvalidDecl()) | 
|  | continue; | 
|  |  | 
|  | DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public); | 
|  | auto CtorInfo = getConstructorInfo(Cand); | 
|  | if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) { | 
|  | if (SM == CXXCopyAssignment || SM == CXXMoveAssignment) | 
|  | AddMethodCandidate(M, Cand, RD, ThisTy, Classification, | 
|  | llvm::makeArrayRef(&Arg, NumArgs), OCS, true); | 
|  | else if (CtorInfo) | 
|  | AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl, | 
|  | llvm::makeArrayRef(&Arg, NumArgs), OCS, true); | 
|  | else | 
|  | AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS, | 
|  | true); | 
|  | } else if (FunctionTemplateDecl *Tmpl = | 
|  | dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) { | 
|  | if (SM == CXXCopyAssignment || SM == CXXMoveAssignment) | 
|  | AddMethodTemplateCandidate( | 
|  | Tmpl, Cand, RD, nullptr, ThisTy, Classification, | 
|  | llvm::makeArrayRef(&Arg, NumArgs), OCS, true); | 
|  | else if (CtorInfo) | 
|  | AddTemplateOverloadCandidate( | 
|  | CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr, | 
|  | llvm::makeArrayRef(&Arg, NumArgs), OCS, true); | 
|  | else | 
|  | AddTemplateOverloadCandidate( | 
|  | Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true); | 
|  | } else { | 
|  | assert(isa<UsingDecl>(Cand.getDecl()) && | 
|  | "illegal Kind of operator = Decl"); | 
|  | } | 
|  | } | 
|  |  | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (OCS.BestViableFunction(*this, LookupLoc, Best)) { | 
|  | case OR_Success: | 
|  | Result->setMethod(cast<CXXMethodDecl>(Best->Function)); | 
|  | Result->setKind(SpecialMemberOverloadResult::Success); | 
|  | break; | 
|  |  | 
|  | case OR_Deleted: | 
|  | Result->setMethod(cast<CXXMethodDecl>(Best->Function)); | 
|  | Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); | 
|  | break; | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | Result->setMethod(nullptr); | 
|  | Result->setKind(SpecialMemberOverloadResult::Ambiguous); | 
|  | break; | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  | Result->setMethod(nullptr); | 
|  | Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return *Result; | 
|  | } | 
|  |  | 
|  | /// Look up the default constructor for the given class. | 
|  | CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) { | 
|  | SpecialMemberOverloadResult Result = | 
|  | LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false, | 
|  | false, false); | 
|  |  | 
|  | return cast_or_null<CXXConstructorDecl>(Result.getMethod()); | 
|  | } | 
|  |  | 
|  | /// Look up the copying constructor for the given class. | 
|  | CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class, | 
|  | unsigned Quals) { | 
|  | assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && | 
|  | "non-const, non-volatile qualifiers for copy ctor arg"); | 
|  | SpecialMemberOverloadResult Result = | 
|  | LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const, | 
|  | Quals & Qualifiers::Volatile, false, false, false); | 
|  |  | 
|  | return cast_or_null<CXXConstructorDecl>(Result.getMethod()); | 
|  | } | 
|  |  | 
|  | /// Look up the moving constructor for the given class. | 
|  | CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class, | 
|  | unsigned Quals) { | 
|  | SpecialMemberOverloadResult Result = | 
|  | LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const, | 
|  | Quals & Qualifiers::Volatile, false, false, false); | 
|  |  | 
|  | return cast_or_null<CXXConstructorDecl>(Result.getMethod()); | 
|  | } | 
|  |  | 
|  | /// Look up the constructors for the given class. | 
|  | DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) { | 
|  | // If the implicit constructors have not yet been declared, do so now. | 
|  | if (CanDeclareSpecialMemberFunction(Class)) { | 
|  | if (Class->needsImplicitDefaultConstructor()) | 
|  | DeclareImplicitDefaultConstructor(Class); | 
|  | if (Class->needsImplicitCopyConstructor()) | 
|  | DeclareImplicitCopyConstructor(Class); | 
|  | if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor()) | 
|  | DeclareImplicitMoveConstructor(Class); | 
|  | } | 
|  |  | 
|  | CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class)); | 
|  | DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T); | 
|  | return Class->lookup(Name); | 
|  | } | 
|  |  | 
|  | /// Look up the copying assignment operator for the given class. | 
|  | CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class, | 
|  | unsigned Quals, bool RValueThis, | 
|  | unsigned ThisQuals) { | 
|  | assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && | 
|  | "non-const, non-volatile qualifiers for copy assignment arg"); | 
|  | assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && | 
|  | "non-const, non-volatile qualifiers for copy assignment this"); | 
|  | SpecialMemberOverloadResult Result = | 
|  | LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const, | 
|  | Quals & Qualifiers::Volatile, RValueThis, | 
|  | ThisQuals & Qualifiers::Const, | 
|  | ThisQuals & Qualifiers::Volatile); | 
|  |  | 
|  | return Result.getMethod(); | 
|  | } | 
|  |  | 
|  | /// Look up the moving assignment operator for the given class. | 
|  | CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class, | 
|  | unsigned Quals, | 
|  | bool RValueThis, | 
|  | unsigned ThisQuals) { | 
|  | assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && | 
|  | "non-const, non-volatile qualifiers for copy assignment this"); | 
|  | SpecialMemberOverloadResult Result = | 
|  | LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const, | 
|  | Quals & Qualifiers::Volatile, RValueThis, | 
|  | ThisQuals & Qualifiers::Const, | 
|  | ThisQuals & Qualifiers::Volatile); | 
|  |  | 
|  | return Result.getMethod(); | 
|  | } | 
|  |  | 
|  | /// Look for the destructor of the given class. | 
|  | /// | 
|  | /// During semantic analysis, this routine should be used in lieu of | 
|  | /// CXXRecordDecl::getDestructor(). | 
|  | /// | 
|  | /// \returns The destructor for this class. | 
|  | CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) { | 
|  | return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor, | 
|  | false, false, false, | 
|  | false, false).getMethod()); | 
|  | } | 
|  |  | 
|  | /// LookupLiteralOperator - Determine which literal operator should be used for | 
|  | /// a user-defined literal, per C++11 [lex.ext]. | 
|  | /// | 
|  | /// Normal overload resolution is not used to select which literal operator to | 
|  | /// call for a user-defined literal. Look up the provided literal operator name, | 
|  | /// and filter the results to the appropriate set for the given argument types. | 
|  | Sema::LiteralOperatorLookupResult | 
|  | Sema::LookupLiteralOperator(Scope *S, LookupResult &R, | 
|  | ArrayRef<QualType> ArgTys, | 
|  | bool AllowRaw, bool AllowTemplate, | 
|  | bool AllowStringTemplate, bool DiagnoseMissing) { | 
|  | LookupName(R, S); | 
|  | assert(R.getResultKind() != LookupResult::Ambiguous && | 
|  | "literal operator lookup can't be ambiguous"); | 
|  |  | 
|  | // Filter the lookup results appropriately. | 
|  | LookupResult::Filter F = R.makeFilter(); | 
|  |  | 
|  | bool FoundRaw = false; | 
|  | bool FoundTemplate = false; | 
|  | bool FoundStringTemplate = false; | 
|  | bool FoundExactMatch = false; | 
|  |  | 
|  | while (F.hasNext()) { | 
|  | Decl *D = F.next(); | 
|  | if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) | 
|  | D = USD->getTargetDecl(); | 
|  |  | 
|  | // If the declaration we found is invalid, skip it. | 
|  | if (D->isInvalidDecl()) { | 
|  | F.erase(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | bool IsRaw = false; | 
|  | bool IsTemplate = false; | 
|  | bool IsStringTemplate = false; | 
|  | bool IsExactMatch = false; | 
|  |  | 
|  | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | if (FD->getNumParams() == 1 && | 
|  | FD->getParamDecl(0)->getType()->getAs<PointerType>()) | 
|  | IsRaw = true; | 
|  | else if (FD->getNumParams() == ArgTys.size()) { | 
|  | IsExactMatch = true; | 
|  | for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) { | 
|  | QualType ParamTy = FD->getParamDecl(ArgIdx)->getType(); | 
|  | if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) { | 
|  | IsExactMatch = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) { | 
|  | TemplateParameterList *Params = FD->getTemplateParameters(); | 
|  | if (Params->size() == 1) | 
|  | IsTemplate = true; | 
|  | else | 
|  | IsStringTemplate = true; | 
|  | } | 
|  |  | 
|  | if (IsExactMatch) { | 
|  | FoundExactMatch = true; | 
|  | AllowRaw = false; | 
|  | AllowTemplate = false; | 
|  | AllowStringTemplate = false; | 
|  | if (FoundRaw || FoundTemplate || FoundStringTemplate) { | 
|  | // Go through again and remove the raw and template decls we've | 
|  | // already found. | 
|  | F.restart(); | 
|  | FoundRaw = FoundTemplate = FoundStringTemplate = false; | 
|  | } | 
|  | } else if (AllowRaw && IsRaw) { | 
|  | FoundRaw = true; | 
|  | } else if (AllowTemplate && IsTemplate) { | 
|  | FoundTemplate = true; | 
|  | } else if (AllowStringTemplate && IsStringTemplate) { | 
|  | FoundStringTemplate = true; | 
|  | } else { | 
|  | F.erase(); | 
|  | } | 
|  | } | 
|  |  | 
|  | F.done(); | 
|  |  | 
|  | // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching | 
|  | // parameter type, that is used in preference to a raw literal operator | 
|  | // or literal operator template. | 
|  | if (FoundExactMatch) | 
|  | return LOLR_Cooked; | 
|  |  | 
|  | // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal | 
|  | // operator template, but not both. | 
|  | if (FoundRaw && FoundTemplate) { | 
|  | Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName(); | 
|  | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) | 
|  | NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction()); | 
|  | return LOLR_Error; | 
|  | } | 
|  |  | 
|  | if (FoundRaw) | 
|  | return LOLR_Raw; | 
|  |  | 
|  | if (FoundTemplate) | 
|  | return LOLR_Template; | 
|  |  | 
|  | if (FoundStringTemplate) | 
|  | return LOLR_StringTemplate; | 
|  |  | 
|  | // Didn't find anything we could use. | 
|  | if (DiagnoseMissing) { | 
|  | Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator) | 
|  | << R.getLookupName() << (int)ArgTys.size() << ArgTys[0] | 
|  | << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw | 
|  | << (AllowTemplate || AllowStringTemplate); | 
|  | return LOLR_Error; | 
|  | } | 
|  |  | 
|  | return LOLR_ErrorNoDiagnostic; | 
|  | } | 
|  |  | 
|  | void ADLResult::insert(NamedDecl *New) { | 
|  | NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())]; | 
|  |  | 
|  | // If we haven't yet seen a decl for this key, or the last decl | 
|  | // was exactly this one, we're done. | 
|  | if (Old == nullptr || Old == New) { | 
|  | Old = New; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, decide which is a more recent redeclaration. | 
|  | FunctionDecl *OldFD = Old->getAsFunction(); | 
|  | FunctionDecl *NewFD = New->getAsFunction(); | 
|  |  | 
|  | FunctionDecl *Cursor = NewFD; | 
|  | while (true) { | 
|  | Cursor = Cursor->getPreviousDecl(); | 
|  |  | 
|  | // If we got to the end without finding OldFD, OldFD is the newer | 
|  | // declaration;  leave things as they are. | 
|  | if (!Cursor) return; | 
|  |  | 
|  | // If we do find OldFD, then NewFD is newer. | 
|  | if (Cursor == OldFD) break; | 
|  |  | 
|  | // Otherwise, keep looking. | 
|  | } | 
|  |  | 
|  | Old = New; | 
|  | } | 
|  |  | 
|  | void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc, | 
|  | ArrayRef<Expr *> Args, ADLResult &Result) { | 
|  | // Find all of the associated namespaces and classes based on the | 
|  | // arguments we have. | 
|  | AssociatedNamespaceSet AssociatedNamespaces; | 
|  | AssociatedClassSet AssociatedClasses; | 
|  | FindAssociatedClassesAndNamespaces(Loc, Args, | 
|  | AssociatedNamespaces, | 
|  | AssociatedClasses); | 
|  |  | 
|  | // C++ [basic.lookup.argdep]p3: | 
|  | //   Let X be the lookup set produced by unqualified lookup (3.4.1) | 
|  | //   and let Y be the lookup set produced by argument dependent | 
|  | //   lookup (defined as follows). If X contains [...] then Y is | 
|  | //   empty. Otherwise Y is the set of declarations found in the | 
|  | //   namespaces associated with the argument types as described | 
|  | //   below. The set of declarations found by the lookup of the name | 
|  | //   is the union of X and Y. | 
|  | // | 
|  | // Here, we compute Y and add its members to the overloaded | 
|  | // candidate set. | 
|  | for (auto *NS : AssociatedNamespaces) { | 
|  | //   When considering an associated namespace, the lookup is the | 
|  | //   same as the lookup performed when the associated namespace is | 
|  | //   used as a qualifier (3.4.3.2) except that: | 
|  | // | 
|  | //     -- Any using-directives in the associated namespace are | 
|  | //        ignored. | 
|  | // | 
|  | //     -- Any namespace-scope friend functions declared in | 
|  | //        associated classes are visible within their respective | 
|  | //        namespaces even if they are not visible during an ordinary | 
|  | //        lookup (11.4). | 
|  | DeclContext::lookup_result R = NS->lookup(Name); | 
|  | for (auto *D : R) { | 
|  | auto *Underlying = D; | 
|  | if (auto *USD = dyn_cast<UsingShadowDecl>(D)) | 
|  | Underlying = USD->getTargetDecl(); | 
|  |  | 
|  | if (!isa<FunctionDecl>(Underlying) && | 
|  | !isa<FunctionTemplateDecl>(Underlying)) | 
|  | continue; | 
|  |  | 
|  | // The declaration is visible to argument-dependent lookup if either | 
|  | // it's ordinarily visible or declared as a friend in an associated | 
|  | // class. | 
|  | bool Visible = false; | 
|  | for (D = D->getMostRecentDecl(); D; | 
|  | D = cast_or_null<NamedDecl>(D->getPreviousDecl())) { | 
|  | if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) { | 
|  | if (isVisible(D)) { | 
|  | Visible = true; | 
|  | break; | 
|  | } | 
|  | } else if (D->getFriendObjectKind()) { | 
|  | auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext()); | 
|  | if (AssociatedClasses.count(RD) && isVisible(D)) { | 
|  | Visible = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: Preserve D as the FoundDecl. | 
|  | if (Visible) | 
|  | Result.insert(Underlying); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //---------------------------------------------------------------------------- | 
|  | // Search for all visible declarations. | 
|  | //---------------------------------------------------------------------------- | 
|  | VisibleDeclConsumer::~VisibleDeclConsumer() { } | 
|  |  | 
|  | bool VisibleDeclConsumer::includeHiddenDecls() const { return false; } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class ShadowContextRAII; | 
|  |  | 
|  | class VisibleDeclsRecord { | 
|  | public: | 
|  | /// An entry in the shadow map, which is optimized to store a | 
|  | /// single declaration (the common case) but can also store a list | 
|  | /// of declarations. | 
|  | typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry; | 
|  |  | 
|  | private: | 
|  | /// A mapping from declaration names to the declarations that have | 
|  | /// this name within a particular scope. | 
|  | typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap; | 
|  |  | 
|  | /// A list of shadow maps, which is used to model name hiding. | 
|  | std::list<ShadowMap> ShadowMaps; | 
|  |  | 
|  | /// The declaration contexts we have already visited. | 
|  | llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts; | 
|  |  | 
|  | friend class ShadowContextRAII; | 
|  |  | 
|  | public: | 
|  | /// Determine whether we have already visited this context | 
|  | /// (and, if not, note that we are going to visit that context now). | 
|  | bool visitedContext(DeclContext *Ctx) { | 
|  | return !VisitedContexts.insert(Ctx).second; | 
|  | } | 
|  |  | 
|  | bool alreadyVisitedContext(DeclContext *Ctx) { | 
|  | return VisitedContexts.count(Ctx); | 
|  | } | 
|  |  | 
|  | /// Determine whether the given declaration is hidden in the | 
|  | /// current scope. | 
|  | /// | 
|  | /// \returns the declaration that hides the given declaration, or | 
|  | /// NULL if no such declaration exists. | 
|  | NamedDecl *checkHidden(NamedDecl *ND); | 
|  |  | 
|  | /// Add a declaration to the current shadow map. | 
|  | void add(NamedDecl *ND) { | 
|  | ShadowMaps.back()[ND->getDeclName()].push_back(ND); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// RAII object that records when we've entered a shadow context. | 
|  | class ShadowContextRAII { | 
|  | VisibleDeclsRecord &Visible; | 
|  |  | 
|  | typedef VisibleDeclsRecord::ShadowMap ShadowMap; | 
|  |  | 
|  | public: | 
|  | ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) { | 
|  | Visible.ShadowMaps.emplace_back(); | 
|  | } | 
|  |  | 
|  | ~ShadowContextRAII() { | 
|  | Visible.ShadowMaps.pop_back(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) { | 
|  | unsigned IDNS = ND->getIdentifierNamespace(); | 
|  | std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin(); | 
|  | for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend(); | 
|  | SM != SMEnd; ++SM) { | 
|  | ShadowMap::iterator Pos = SM->find(ND->getDeclName()); | 
|  | if (Pos == SM->end()) | 
|  | continue; | 
|  |  | 
|  | for (auto *D : Pos->second) { | 
|  | // A tag declaration does not hide a non-tag declaration. | 
|  | if (D->hasTagIdentifierNamespace() && | 
|  | (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | | 
|  | Decl::IDNS_ObjCProtocol))) | 
|  | continue; | 
|  |  | 
|  | // Protocols are in distinct namespaces from everything else. | 
|  | if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) | 
|  | || (IDNS & Decl::IDNS_ObjCProtocol)) && | 
|  | D->getIdentifierNamespace() != IDNS) | 
|  | continue; | 
|  |  | 
|  | // Functions and function templates in the same scope overload | 
|  | // rather than hide.  FIXME: Look for hiding based on function | 
|  | // signatures! | 
|  | if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && | 
|  | ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && | 
|  | SM == ShadowMaps.rbegin()) | 
|  | continue; | 
|  |  | 
|  | // A shadow declaration that's created by a resolved using declaration | 
|  | // is not hidden by the same using declaration. | 
|  | if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) && | 
|  | cast<UsingShadowDecl>(ND)->getUsingDecl() == D) | 
|  | continue; | 
|  |  | 
|  | // We've found a declaration that hides this one. | 
|  | return D; | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result, | 
|  | bool QualifiedNameLookup, | 
|  | bool InBaseClass, | 
|  | VisibleDeclConsumer &Consumer, | 
|  | VisibleDeclsRecord &Visited, | 
|  | bool IncludeDependentBases, | 
|  | bool LoadExternal) { | 
|  | if (!Ctx) | 
|  | return; | 
|  |  | 
|  | // Make sure we don't visit the same context twice. | 
|  | if (Visited.visitedContext(Ctx->getPrimaryContext())) | 
|  | return; | 
|  |  | 
|  | Consumer.EnteredContext(Ctx); | 
|  |  | 
|  | // Outside C++, lookup results for the TU live on identifiers. | 
|  | if (isa<TranslationUnitDecl>(Ctx) && | 
|  | !Result.getSema().getLangOpts().CPlusPlus) { | 
|  | auto &S = Result.getSema(); | 
|  | auto &Idents = S.Context.Idents; | 
|  |  | 
|  | // Ensure all external identifiers are in the identifier table. | 
|  | if (LoadExternal) | 
|  | if (IdentifierInfoLookup *External = Idents.getExternalIdentifierLookup()) { | 
|  | std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); | 
|  | for (StringRef Name = Iter->Next(); !Name.empty(); Name = Iter->Next()) | 
|  | Idents.get(Name); | 
|  | } | 
|  |  | 
|  | // Walk all lookup results in the TU for each identifier. | 
|  | for (const auto &Ident : Idents) { | 
|  | for (auto I = S.IdResolver.begin(Ident.getValue()), | 
|  | E = S.IdResolver.end(); | 
|  | I != E; ++I) { | 
|  | if (S.IdResolver.isDeclInScope(*I, Ctx)) { | 
|  | if (NamedDecl *ND = Result.getAcceptableDecl(*I)) { | 
|  | Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); | 
|  | Visited.add(ND); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) | 
|  | Result.getSema().ForceDeclarationOfImplicitMembers(Class); | 
|  |  | 
|  | // We sometimes skip loading namespace-level results (they tend to be huge). | 
|  | bool Load = LoadExternal || | 
|  | !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx)); | 
|  | // Enumerate all of the results in this context. | 
|  | for (DeclContextLookupResult R : | 
|  | Load ? Ctx->lookups() | 
|  | : Ctx->noload_lookups(/*PreserveInternalState=*/false)) { | 
|  | for (auto *D : R) { | 
|  | if (auto *ND = Result.getAcceptableDecl(D)) { | 
|  | Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); | 
|  | Visited.add(ND); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Traverse using directives for qualified name lookup. | 
|  | if (QualifiedNameLookup) { | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | for (auto I : Ctx->using_directives()) { | 
|  | if (!Result.getSema().isVisible(I)) | 
|  | continue; | 
|  | LookupVisibleDecls(I->getNominatedNamespace(), Result, | 
|  | QualifiedNameLookup, InBaseClass, Consumer, Visited, | 
|  | IncludeDependentBases, LoadExternal); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Traverse the contexts of inherited C++ classes. | 
|  | if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) { | 
|  | if (!Record->hasDefinition()) | 
|  | return; | 
|  |  | 
|  | for (const auto &B : Record->bases()) { | 
|  | QualType BaseType = B.getType(); | 
|  |  | 
|  | RecordDecl *RD; | 
|  | if (BaseType->isDependentType()) { | 
|  | if (!IncludeDependentBases) { | 
|  | // Don't look into dependent bases, because name lookup can't look | 
|  | // there anyway. | 
|  | continue; | 
|  | } | 
|  | const auto *TST = BaseType->getAs<TemplateSpecializationType>(); | 
|  | if (!TST) | 
|  | continue; | 
|  | TemplateName TN = TST->getTemplateName(); | 
|  | const auto *TD = | 
|  | dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl()); | 
|  | if (!TD) | 
|  | continue; | 
|  | RD = TD->getTemplatedDecl(); | 
|  | } else { | 
|  | const auto *Record = BaseType->getAs<RecordType>(); | 
|  | if (!Record) | 
|  | continue; | 
|  | RD = Record->getDecl(); | 
|  | } | 
|  |  | 
|  | // FIXME: It would be nice to be able to determine whether referencing | 
|  | // a particular member would be ambiguous. For example, given | 
|  | // | 
|  | //   struct A { int member; }; | 
|  | //   struct B { int member; }; | 
|  | //   struct C : A, B { }; | 
|  | // | 
|  | //   void f(C *c) { c->### } | 
|  | // | 
|  | // accessing 'member' would result in an ambiguity. However, we | 
|  | // could be smart enough to qualify the member with the base | 
|  | // class, e.g., | 
|  | // | 
|  | //   c->B::member | 
|  | // | 
|  | // or | 
|  | // | 
|  | //   c->A::member | 
|  |  | 
|  | // Find results in this base class (and its bases). | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | LookupVisibleDecls(RD, Result, QualifiedNameLookup, /*InBaseClass=*/true, | 
|  | Consumer, Visited, IncludeDependentBases, | 
|  | LoadExternal); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Traverse the contexts of Objective-C classes. | 
|  | if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) { | 
|  | // Traverse categories. | 
|  | for (auto *Cat : IFace->visible_categories()) { | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false, Consumer, | 
|  | Visited, IncludeDependentBases, LoadExternal); | 
|  | } | 
|  |  | 
|  | // Traverse protocols. | 
|  | for (auto *I : IFace->all_referenced_protocols()) { | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer, | 
|  | Visited, IncludeDependentBases, LoadExternal); | 
|  | } | 
|  |  | 
|  | // Traverse the superclass. | 
|  | if (IFace->getSuperClass()) { | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup, | 
|  | true, Consumer, Visited, IncludeDependentBases, | 
|  | LoadExternal); | 
|  | } | 
|  |  | 
|  | // If there is an implementation, traverse it. We do this to find | 
|  | // synthesized ivars. | 
|  | if (IFace->getImplementation()) { | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | LookupVisibleDecls(IFace->getImplementation(), Result, | 
|  | QualifiedNameLookup, InBaseClass, Consumer, Visited, | 
|  | IncludeDependentBases, LoadExternal); | 
|  | } | 
|  | } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) { | 
|  | for (auto *I : Protocol->protocols()) { | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer, | 
|  | Visited, IncludeDependentBases, LoadExternal); | 
|  | } | 
|  | } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) { | 
|  | for (auto *I : Category->protocols()) { | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer, | 
|  | Visited, IncludeDependentBases, LoadExternal); | 
|  | } | 
|  |  | 
|  | // If there is an implementation, traverse it. | 
|  | if (Category->getImplementation()) { | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | LookupVisibleDecls(Category->getImplementation(), Result, | 
|  | QualifiedNameLookup, true, Consumer, Visited, | 
|  | IncludeDependentBases, LoadExternal); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void LookupVisibleDecls(Scope *S, LookupResult &Result, | 
|  | UnqualUsingDirectiveSet &UDirs, | 
|  | VisibleDeclConsumer &Consumer, | 
|  | VisibleDeclsRecord &Visited, | 
|  | bool LoadExternal) { | 
|  | if (!S) | 
|  | return; | 
|  |  | 
|  | if (!S->getEntity() || | 
|  | (!S->getParent() && | 
|  | !Visited.alreadyVisitedContext(S->getEntity())) || | 
|  | (S->getEntity())->isFunctionOrMethod()) { | 
|  | FindLocalExternScope FindLocals(Result); | 
|  | // Walk through the declarations in this Scope. The consumer might add new | 
|  | // decls to the scope as part of deserialization, so make a copy first. | 
|  | SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end()); | 
|  | for (Decl *D : ScopeDecls) { | 
|  | if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) | 
|  | if ((ND = Result.getAcceptableDecl(ND))) { | 
|  | Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false); | 
|  | Visited.add(ND); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: C++ [temp.local]p8 | 
|  | DeclContext *Entity = nullptr; | 
|  | if (S->getEntity()) { | 
|  | // Look into this scope's declaration context, along with any of its | 
|  | // parent lookup contexts (e.g., enclosing classes), up to the point | 
|  | // where we hit the context stored in the next outer scope. | 
|  | Entity = S->getEntity(); | 
|  | DeclContext *OuterCtx = findOuterContext(S).first; // FIXME | 
|  |  | 
|  | for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx); | 
|  | Ctx = Ctx->getLookupParent()) { | 
|  | if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { | 
|  | if (Method->isInstanceMethod()) { | 
|  | // For instance methods, look for ivars in the method's interface. | 
|  | LookupResult IvarResult(Result.getSema(), Result.getLookupName(), | 
|  | Result.getNameLoc(), Sema::LookupMemberName); | 
|  | if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) { | 
|  | LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false, | 
|  | /*InBaseClass=*/false, Consumer, Visited, | 
|  | /*IncludeDependentBases=*/false, LoadExternal); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We've already performed all of the name lookup that we need | 
|  | // to for Objective-C methods; the next context will be the | 
|  | // outer scope. | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (Ctx->isFunctionOrMethod()) | 
|  | continue; | 
|  |  | 
|  | LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false, | 
|  | /*InBaseClass=*/false, Consumer, Visited, | 
|  | /*IncludeDependentBases=*/false, LoadExternal); | 
|  | } | 
|  | } else if (!S->getParent()) { | 
|  | // Look into the translation unit scope. We walk through the translation | 
|  | // unit's declaration context, because the Scope itself won't have all of | 
|  | // the declarations if we loaded a precompiled header. | 
|  | // FIXME: We would like the translation unit's Scope object to point to the | 
|  | // translation unit, so we don't need this special "if" branch. However, | 
|  | // doing so would force the normal C++ name-lookup code to look into the | 
|  | // translation unit decl when the IdentifierInfo chains would suffice. | 
|  | // Once we fix that problem (which is part of a more general "don't look | 
|  | // in DeclContexts unless we have to" optimization), we can eliminate this. | 
|  | Entity = Result.getSema().Context.getTranslationUnitDecl(); | 
|  | LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false, | 
|  | /*InBaseClass=*/false, Consumer, Visited, | 
|  | /*IncludeDependentBases=*/false, LoadExternal); | 
|  | } | 
|  |  | 
|  | if (Entity) { | 
|  | // Lookup visible declarations in any namespaces found by using | 
|  | // directives. | 
|  | for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity)) | 
|  | LookupVisibleDecls(const_cast<DeclContext *>(UUE.getNominatedNamespace()), | 
|  | Result, /*QualifiedNameLookup=*/false, | 
|  | /*InBaseClass=*/false, Consumer, Visited, | 
|  | /*IncludeDependentBases=*/false, LoadExternal); | 
|  | } | 
|  |  | 
|  | // Lookup names in the parent scope. | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited, | 
|  | LoadExternal); | 
|  | } | 
|  |  | 
|  | void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind, | 
|  | VisibleDeclConsumer &Consumer, | 
|  | bool IncludeGlobalScope, bool LoadExternal) { | 
|  | // Determine the set of using directives available during | 
|  | // unqualified name lookup. | 
|  | Scope *Initial = S; | 
|  | UnqualUsingDirectiveSet UDirs(*this); | 
|  | if (getLangOpts().CPlusPlus) { | 
|  | // Find the first namespace or translation-unit scope. | 
|  | while (S && !isNamespaceOrTranslationUnitScope(S)) | 
|  | S = S->getParent(); | 
|  |  | 
|  | UDirs.visitScopeChain(Initial, S); | 
|  | } | 
|  | UDirs.done(); | 
|  |  | 
|  | // Look for visible declarations. | 
|  | LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind); | 
|  | Result.setAllowHidden(Consumer.includeHiddenDecls()); | 
|  | VisibleDeclsRecord Visited; | 
|  | if (!IncludeGlobalScope) | 
|  | Visited.visitedContext(Context.getTranslationUnitDecl()); | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited, LoadExternal); | 
|  | } | 
|  |  | 
|  | void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, | 
|  | VisibleDeclConsumer &Consumer, | 
|  | bool IncludeGlobalScope, | 
|  | bool IncludeDependentBases, bool LoadExternal) { | 
|  | LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind); | 
|  | Result.setAllowHidden(Consumer.includeHiddenDecls()); | 
|  | VisibleDeclsRecord Visited; | 
|  | if (!IncludeGlobalScope) | 
|  | Visited.visitedContext(Context.getTranslationUnitDecl()); | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true, | 
|  | /*InBaseClass=*/false, Consumer, Visited, | 
|  | IncludeDependentBases, LoadExternal); | 
|  | } | 
|  |  | 
|  | /// LookupOrCreateLabel - Do a name lookup of a label with the specified name. | 
|  | /// If GnuLabelLoc is a valid source location, then this is a definition | 
|  | /// of an __label__ label name, otherwise it is a normal label definition | 
|  | /// or use. | 
|  | LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc, | 
|  | SourceLocation GnuLabelLoc) { | 
|  | // Do a lookup to see if we have a label with this name already. | 
|  | NamedDecl *Res = nullptr; | 
|  |  | 
|  | if (GnuLabelLoc.isValid()) { | 
|  | // Local label definitions always shadow existing labels. | 
|  | Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc); | 
|  | Scope *S = CurScope; | 
|  | PushOnScopeChains(Res, S, true); | 
|  | return cast<LabelDecl>(Res); | 
|  | } | 
|  |  | 
|  | // Not a GNU local label. | 
|  | Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration); | 
|  | // If we found a label, check to see if it is in the same context as us. | 
|  | // When in a Block, we don't want to reuse a label in an enclosing function. | 
|  | if (Res && Res->getDeclContext() != CurContext) | 
|  | Res = nullptr; | 
|  | if (!Res) { | 
|  | // If not forward referenced or defined already, create the backing decl. | 
|  | Res = LabelDecl::Create(Context, CurContext, Loc, II); | 
|  | Scope *S = CurScope->getFnParent(); | 
|  | assert(S && "Not in a function?"); | 
|  | PushOnScopeChains(Res, S, true); | 
|  | } | 
|  | return cast<LabelDecl>(Res); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Typo correction | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static bool isCandidateViable(CorrectionCandidateCallback &CCC, | 
|  | TypoCorrection &Candidate) { | 
|  | Candidate.setCallbackDistance(CCC.RankCandidate(Candidate)); | 
|  | return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance; | 
|  | } | 
|  |  | 
|  | static void LookupPotentialTypoResult(Sema &SemaRef, | 
|  | LookupResult &Res, | 
|  | IdentifierInfo *Name, | 
|  | Scope *S, CXXScopeSpec *SS, | 
|  | DeclContext *MemberContext, | 
|  | bool EnteringContext, | 
|  | bool isObjCIvarLookup, | 
|  | bool FindHidden); | 
|  |  | 
|  | /// Check whether the declarations found for a typo correction are | 
|  | /// visible. Set the correction's RequiresImport flag to true if none of the | 
|  | /// declarations are visible, false otherwise. | 
|  | static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) { | 
|  | TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end(); | 
|  |  | 
|  | for (/**/; DI != DE; ++DI) | 
|  | if (!LookupResult::isVisible(SemaRef, *DI)) | 
|  | break; | 
|  | // No filtering needed if all decls are visible. | 
|  | if (DI == DE) { | 
|  | TC.setRequiresImport(false); | 
|  | return; | 
|  | } | 
|  |  | 
|  | llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI); | 
|  | bool AnyVisibleDecls = !NewDecls.empty(); | 
|  |  | 
|  | for (/**/; DI != DE; ++DI) { | 
|  | if (LookupResult::isVisible(SemaRef, *DI)) { | 
|  | if (!AnyVisibleDecls) { | 
|  | // Found a visible decl, discard all hidden ones. | 
|  | AnyVisibleDecls = true; | 
|  | NewDecls.clear(); | 
|  | } | 
|  | NewDecls.push_back(*DI); | 
|  | } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate()) | 
|  | NewDecls.push_back(*DI); | 
|  | } | 
|  |  | 
|  | if (NewDecls.empty()) | 
|  | TC = TypoCorrection(); | 
|  | else { | 
|  | TC.setCorrectionDecls(NewDecls); | 
|  | TC.setRequiresImport(!AnyVisibleDecls); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fill the supplied vector with the IdentifierInfo pointers for each piece of | 
|  | // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::", | 
|  | // fill the vector with the IdentifierInfo pointers for "foo" and "bar"). | 
|  | static void getNestedNameSpecifierIdentifiers( | 
|  | NestedNameSpecifier *NNS, | 
|  | SmallVectorImpl<const IdentifierInfo*> &Identifiers) { | 
|  | if (NestedNameSpecifier *Prefix = NNS->getPrefix()) | 
|  | getNestedNameSpecifierIdentifiers(Prefix, Identifiers); | 
|  | else | 
|  | Identifiers.clear(); | 
|  |  | 
|  | const IdentifierInfo *II = nullptr; | 
|  |  | 
|  | switch (NNS->getKind()) { | 
|  | case NestedNameSpecifier::Identifier: | 
|  | II = NNS->getAsIdentifier(); | 
|  | break; | 
|  |  | 
|  | case NestedNameSpecifier::Namespace: | 
|  | if (NNS->getAsNamespace()->isAnonymousNamespace()) | 
|  | return; | 
|  | II = NNS->getAsNamespace()->getIdentifier(); | 
|  | break; | 
|  |  | 
|  | case NestedNameSpecifier::NamespaceAlias: | 
|  | II = NNS->getAsNamespaceAlias()->getIdentifier(); | 
|  | break; | 
|  |  | 
|  | case NestedNameSpecifier::TypeSpecWithTemplate: | 
|  | case NestedNameSpecifier::TypeSpec: | 
|  | II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier(); | 
|  | break; | 
|  |  | 
|  | case NestedNameSpecifier::Global: | 
|  | case NestedNameSpecifier::Super: | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (II) | 
|  | Identifiers.push_back(II); | 
|  | } | 
|  |  | 
|  | void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding, | 
|  | DeclContext *Ctx, bool InBaseClass) { | 
|  | // Don't consider hidden names for typo correction. | 
|  | if (Hiding) | 
|  | return; | 
|  |  | 
|  | // Only consider entities with identifiers for names, ignoring | 
|  | // special names (constructors, overloaded operators, selectors, | 
|  | // etc.). | 
|  | IdentifierInfo *Name = ND->getIdentifier(); | 
|  | if (!Name) | 
|  | return; | 
|  |  | 
|  | // Only consider visible declarations and declarations from modules with | 
|  | // names that exactly match. | 
|  | if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo) | 
|  | return; | 
|  |  | 
|  | FoundName(Name->getName()); | 
|  | } | 
|  |  | 
|  | void TypoCorrectionConsumer::FoundName(StringRef Name) { | 
|  | // Compute the edit distance between the typo and the name of this | 
|  | // entity, and add the identifier to the list of results. | 
|  | addName(Name, nullptr); | 
|  | } | 
|  |  | 
|  | void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) { | 
|  | // Compute the edit distance between the typo and this keyword, | 
|  | // and add the keyword to the list of results. | 
|  | addName(Keyword, nullptr, nullptr, true); | 
|  | } | 
|  |  | 
|  | void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND, | 
|  | NestedNameSpecifier *NNS, bool isKeyword) { | 
|  | // Use a simple length-based heuristic to determine the minimum possible | 
|  | // edit distance. If the minimum isn't good enough, bail out early. | 
|  | StringRef TypoStr = Typo->getName(); | 
|  | unsigned MinED = abs((int)Name.size() - (int)TypoStr.size()); | 
|  | if (MinED && TypoStr.size() / MinED < 3) | 
|  | return; | 
|  |  | 
|  | // Compute an upper bound on the allowable edit distance, so that the | 
|  | // edit-distance algorithm can short-circuit. | 
|  | unsigned UpperBound = (TypoStr.size() + 2) / 3; | 
|  | unsigned ED = TypoStr.edit_distance(Name, true, UpperBound); | 
|  | if (ED > UpperBound) return; | 
|  |  | 
|  | TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED); | 
|  | if (isKeyword) TC.makeKeyword(); | 
|  | TC.setCorrectionRange(nullptr, Result.getLookupNameInfo()); | 
|  | addCorrection(TC); | 
|  | } | 
|  |  | 
|  | static const unsigned MaxTypoDistanceResultSets = 5; | 
|  |  | 
|  | void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) { | 
|  | StringRef TypoStr = Typo->getName(); | 
|  | StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName(); | 
|  |  | 
|  | // For very short typos, ignore potential corrections that have a different | 
|  | // base identifier from the typo or which have a normalized edit distance | 
|  | // longer than the typo itself. | 
|  | if (TypoStr.size() < 3 && | 
|  | (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size())) | 
|  | return; | 
|  |  | 
|  | // If the correction is resolved but is not viable, ignore it. | 
|  | if (Correction.isResolved()) { | 
|  | checkCorrectionVisibility(SemaRef, Correction); | 
|  | if (!Correction || !isCandidateViable(*CorrectionValidator, Correction)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | TypoResultList &CList = | 
|  | CorrectionResults[Correction.getEditDistance(false)][Name]; | 
|  |  | 
|  | if (!CList.empty() && !CList.back().isResolved()) | 
|  | CList.pop_back(); | 
|  | if (NamedDecl *NewND = Correction.getCorrectionDecl()) { | 
|  | std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts()); | 
|  | for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end(); | 
|  | RI != RIEnd; ++RI) { | 
|  | // If the Correction refers to a decl already in the result list, | 
|  | // replace the existing result if the string representation of Correction | 
|  | // comes before the current result alphabetically, then stop as there is | 
|  | // nothing more to be done to add Correction to the candidate set. | 
|  | if (RI->getCorrectionDecl() == NewND) { | 
|  | if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts())) | 
|  | *RI = Correction; | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (CList.empty() || Correction.isResolved()) | 
|  | CList.push_back(Correction); | 
|  |  | 
|  | while (CorrectionResults.size() > MaxTypoDistanceResultSets) | 
|  | CorrectionResults.erase(std::prev(CorrectionResults.end())); | 
|  | } | 
|  |  | 
|  | void TypoCorrectionConsumer::addNamespaces( | 
|  | const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) { | 
|  | SearchNamespaces = true; | 
|  |  | 
|  | for (auto KNPair : KnownNamespaces) | 
|  | Namespaces.addNameSpecifier(KNPair.first); | 
|  |  | 
|  | bool SSIsTemplate = false; | 
|  | if (NestedNameSpecifier *NNS = | 
|  | (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) { | 
|  | if (const Type *T = NNS->getAsType()) | 
|  | SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization; | 
|  | } | 
|  | // Do not transform this into an iterator-based loop. The loop body can | 
|  | // trigger the creation of further types (through lazy deserialization) and | 
|  | // invalid iterators into this list. | 
|  | auto &Types = SemaRef.getASTContext().getTypes(); | 
|  | for (unsigned I = 0; I != Types.size(); ++I) { | 
|  | const auto *TI = Types[I]; | 
|  | if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) { | 
|  | CD = CD->getCanonicalDecl(); | 
|  | if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() && | 
|  | !CD->isUnion() && CD->getIdentifier() && | 
|  | (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) && | 
|  | (CD->isBeingDefined() || CD->isCompleteDefinition())) | 
|  | Namespaces.addNameSpecifier(CD); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() { | 
|  | if (++CurrentTCIndex < ValidatedCorrections.size()) | 
|  | return ValidatedCorrections[CurrentTCIndex]; | 
|  |  | 
|  | CurrentTCIndex = ValidatedCorrections.size(); | 
|  | while (!CorrectionResults.empty()) { | 
|  | auto DI = CorrectionResults.begin(); | 
|  | if (DI->second.empty()) { | 
|  | CorrectionResults.erase(DI); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | auto RI = DI->second.begin(); | 
|  | if (RI->second.empty()) { | 
|  | DI->second.erase(RI); | 
|  | performQualifiedLookups(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | TypoCorrection TC = RI->second.pop_back_val(); | 
|  | if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) { | 
|  | ValidatedCorrections.push_back(TC); | 
|  | return ValidatedCorrections[CurrentTCIndex]; | 
|  | } | 
|  | } | 
|  | return ValidatedCorrections[0];  // The empty correction. | 
|  | } | 
|  |  | 
|  | bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) { | 
|  | IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo(); | 
|  | DeclContext *TempMemberContext = MemberContext; | 
|  | CXXScopeSpec *TempSS = SS.get(); | 
|  | retry_lookup: | 
|  | LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext, | 
|  | EnteringContext, | 
|  | CorrectionValidator->IsObjCIvarLookup, | 
|  | Name == Typo && !Candidate.WillReplaceSpecifier()); | 
|  | switch (Result.getResultKind()) { | 
|  | case LookupResult::NotFound: | 
|  | case LookupResult::NotFoundInCurrentInstantiation: | 
|  | case LookupResult::FoundUnresolvedValue: | 
|  | if (TempSS) { | 
|  | // Immediately retry the lookup without the given CXXScopeSpec | 
|  | TempSS = nullptr; | 
|  | Candidate.WillReplaceSpecifier(true); | 
|  | goto retry_lookup; | 
|  | } | 
|  | if (TempMemberContext) { | 
|  | if (SS && !TempSS) | 
|  | TempSS = SS.get(); | 
|  | TempMemberContext = nullptr; | 
|  | goto retry_lookup; | 
|  | } | 
|  | if (SearchNamespaces) | 
|  | QualifiedResults.push_back(Candidate); | 
|  | break; | 
|  |  | 
|  | case LookupResult::Ambiguous: | 
|  | // We don't deal with ambiguities. | 
|  | break; | 
|  |  | 
|  | case LookupResult::Found: | 
|  | case LookupResult::FoundOverloaded: | 
|  | // Store all of the Decls for overloaded symbols | 
|  | for (auto *TRD : Result) | 
|  | Candidate.addCorrectionDecl(TRD); | 
|  | checkCorrectionVisibility(SemaRef, Candidate); | 
|  | if (!isCandidateViable(*CorrectionValidator, Candidate)) { | 
|  | if (SearchNamespaces) | 
|  | QualifiedResults.push_back(Candidate); | 
|  | break; | 
|  | } | 
|  | Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void TypoCorrectionConsumer::performQualifiedLookups() { | 
|  | unsigned TypoLen = Typo->getName().size(); | 
|  | for (const TypoCorrection &QR : QualifiedResults) { | 
|  | for (const auto &NSI : Namespaces) { | 
|  | DeclContext *Ctx = NSI.DeclCtx; | 
|  | const Type *NSType = NSI.NameSpecifier->getAsType(); | 
|  |  | 
|  | // If the current NestedNameSpecifier refers to a class and the | 
|  | // current correction candidate is the name of that class, then skip | 
|  | // it as it is unlikely a qualified version of the class' constructor | 
|  | // is an appropriate correction. | 
|  | if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() : | 
|  | nullptr) { | 
|  | if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo()) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | TypoCorrection TC(QR); | 
|  | TC.ClearCorrectionDecls(); | 
|  | TC.setCorrectionSpecifier(NSI.NameSpecifier); | 
|  | TC.setQualifierDistance(NSI.EditDistance); | 
|  | TC.setCallbackDistance(0); // Reset the callback distance | 
|  |  | 
|  | // If the current correction candidate and namespace combination are | 
|  | // too far away from the original typo based on the normalized edit | 
|  | // distance, then skip performing a qualified name lookup. | 
|  | unsigned TmpED = TC.getEditDistance(true); | 
|  | if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED && | 
|  | TypoLen / TmpED < 3) | 
|  | continue; | 
|  |  | 
|  | Result.clear(); | 
|  | Result.setLookupName(QR.getCorrectionAsIdentifierInfo()); | 
|  | if (!SemaRef.LookupQualifiedName(Result, Ctx)) | 
|  | continue; | 
|  |  | 
|  | // Any corrections added below will be validated in subsequent | 
|  | // iterations of the main while() loop over the Consumer's contents. | 
|  | switch (Result.getResultKind()) { | 
|  | case LookupResult::Found: | 
|  | case LookupResult::FoundOverloaded: { | 
|  | if (SS && SS->isValid()) { | 
|  | std::string NewQualified = TC.getAsString(SemaRef.getLangOpts()); | 
|  | std::string OldQualified; | 
|  | llvm::raw_string_ostream OldOStream(OldQualified); | 
|  | SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy()); | 
|  | OldOStream << Typo->getName(); | 
|  | // If correction candidate would be an identical written qualified | 
|  | // identifier, then the existing CXXScopeSpec probably included a | 
|  | // typedef that didn't get accounted for properly. | 
|  | if (OldOStream.str() == NewQualified) | 
|  | break; | 
|  | } | 
|  | for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end(); | 
|  | TRD != TRDEnd; ++TRD) { | 
|  | if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(), | 
|  | NSType ? NSType->getAsCXXRecordDecl() | 
|  | : nullptr, | 
|  | TRD.getPair()) == Sema::AR_accessible) | 
|  | TC.addCorrectionDecl(*TRD); | 
|  | } | 
|  | if (TC.isResolved()) { | 
|  | TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); | 
|  | addCorrection(TC); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case LookupResult::NotFound: | 
|  | case LookupResult::NotFoundInCurrentInstantiation: | 
|  | case LookupResult::Ambiguous: | 
|  | case LookupResult::FoundUnresolvedValue: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | QualifiedResults.clear(); | 
|  | } | 
|  |  | 
|  | TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet( | 
|  | ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec) | 
|  | : Context(Context), CurContextChain(buildContextChain(CurContext)) { | 
|  | if (NestedNameSpecifier *NNS = | 
|  | CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) { | 
|  | llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier); | 
|  | NNS->print(SpecifierOStream, Context.getPrintingPolicy()); | 
|  |  | 
|  | getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers); | 
|  | } | 
|  | // Build the list of identifiers that would be used for an absolute | 
|  | // (from the global context) NestedNameSpecifier referring to the current | 
|  | // context. | 
|  | for (DeclContext *C : llvm::reverse(CurContextChain)) { | 
|  | if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) | 
|  | CurContextIdentifiers.push_back(ND->getIdentifier()); | 
|  | } | 
|  |  | 
|  | // Add the global context as a NestedNameSpecifier | 
|  | SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()), | 
|  | NestedNameSpecifier::GlobalSpecifier(Context), 1}; | 
|  | DistanceMap[1].push_back(SI); | 
|  | } | 
|  |  | 
|  | auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain( | 
|  | DeclContext *Start) -> DeclContextList { | 
|  | assert(Start && "Building a context chain from a null context"); | 
|  | DeclContextList Chain; | 
|  | for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr; | 
|  | DC = DC->getLookupParent()) { | 
|  | NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC); | 
|  | if (!DC->isInlineNamespace() && !DC->isTransparentContext() && | 
|  | !(ND && ND->isAnonymousNamespace())) | 
|  | Chain.push_back(DC->getPrimaryContext()); | 
|  | } | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier( | 
|  | DeclContextList &DeclChain, NestedNameSpecifier *&NNS) { | 
|  | unsigned NumSpecifiers = 0; | 
|  | for (DeclContext *C : llvm::reverse(DeclChain)) { | 
|  | if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) { | 
|  | NNS = NestedNameSpecifier::Create(Context, NNS, ND); | 
|  | ++NumSpecifiers; | 
|  | } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) { | 
|  | NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(), | 
|  | RD->getTypeForDecl()); | 
|  | ++NumSpecifiers; | 
|  | } | 
|  | } | 
|  | return NumSpecifiers; | 
|  | } | 
|  |  | 
|  | void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier( | 
|  | DeclContext *Ctx) { | 
|  | NestedNameSpecifier *NNS = nullptr; | 
|  | unsigned NumSpecifiers = 0; | 
|  | DeclContextList NamespaceDeclChain(buildContextChain(Ctx)); | 
|  | DeclContextList FullNamespaceDeclChain(NamespaceDeclChain); | 
|  |  | 
|  | // Eliminate common elements from the two DeclContext chains. | 
|  | for (DeclContext *C : llvm::reverse(CurContextChain)) { | 
|  | if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C) | 
|  | break; | 
|  | NamespaceDeclChain.pop_back(); | 
|  | } | 
|  |  | 
|  | // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain | 
|  | NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS); | 
|  |  | 
|  | // Add an explicit leading '::' specifier if needed. | 
|  | if (NamespaceDeclChain.empty()) { | 
|  | // Rebuild the NestedNameSpecifier as a globally-qualified specifier. | 
|  | NNS = NestedNameSpecifier::GlobalSpecifier(Context); | 
|  | NumSpecifiers = | 
|  | buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); | 
|  | } else if (NamedDecl *ND = | 
|  | dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) { | 
|  | IdentifierInfo *Name = ND->getIdentifier(); | 
|  | bool SameNameSpecifier = false; | 
|  | if (std::find(CurNameSpecifierIdentifiers.begin(), | 
|  | CurNameSpecifierIdentifiers.end(), | 
|  | Name) != CurNameSpecifierIdentifiers.end()) { | 
|  | std::string NewNameSpecifier; | 
|  | llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier); | 
|  | SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers; | 
|  | getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); | 
|  | NNS->print(SpecifierOStream, Context.getPrintingPolicy()); | 
|  | SpecifierOStream.flush(); | 
|  | SameNameSpecifier = NewNameSpecifier == CurNameSpecifier; | 
|  | } | 
|  | if (SameNameSpecifier || llvm::find(CurContextIdentifiers, Name) != | 
|  | CurContextIdentifiers.end()) { | 
|  | // Rebuild the NestedNameSpecifier as a globally-qualified specifier. | 
|  | NNS = NestedNameSpecifier::GlobalSpecifier(Context); | 
|  | NumSpecifiers = | 
|  | buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the built NestedNameSpecifier would be replacing an existing | 
|  | // NestedNameSpecifier, use the number of component identifiers that | 
|  | // would need to be changed as the edit distance instead of the number | 
|  | // of components in the built NestedNameSpecifier. | 
|  | if (NNS && !CurNameSpecifierIdentifiers.empty()) { | 
|  | SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers; | 
|  | getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); | 
|  | NumSpecifiers = llvm::ComputeEditDistance( | 
|  | llvm::makeArrayRef(CurNameSpecifierIdentifiers), | 
|  | llvm::makeArrayRef(NewNameSpecifierIdentifiers)); | 
|  | } | 
|  |  | 
|  | SpecifierInfo SI = {Ctx, NNS, NumSpecifiers}; | 
|  | DistanceMap[NumSpecifiers].push_back(SI); | 
|  | } | 
|  |  | 
|  | /// Perform name lookup for a possible result for typo correction. | 
|  | static void LookupPotentialTypoResult(Sema &SemaRef, | 
|  | LookupResult &Res, | 
|  | IdentifierInfo *Name, | 
|  | Scope *S, CXXScopeSpec *SS, | 
|  | DeclContext *MemberContext, | 
|  | bool EnteringContext, | 
|  | bool isObjCIvarLookup, | 
|  | bool FindHidden) { | 
|  | Res.suppressDiagnostics(); | 
|  | Res.clear(); | 
|  | Res.setLookupName(Name); | 
|  | Res.setAllowHidden(FindHidden); | 
|  | if (MemberContext) { | 
|  | if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) { | 
|  | if (isObjCIvarLookup) { | 
|  | if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) { | 
|  | Res.addDecl(Ivar); | 
|  | Res.resolveKind(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration( | 
|  | Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { | 
|  | Res.addDecl(Prop); | 
|  | Res.resolveKind(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | SemaRef.LookupQualifiedName(Res, MemberContext); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false, | 
|  | EnteringContext); | 
|  |  | 
|  | // Fake ivar lookup; this should really be part of | 
|  | // LookupParsedName. | 
|  | if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) { | 
|  | if (Method->isInstanceMethod() && Method->getClassInterface() && | 
|  | (Res.empty() || | 
|  | (Res.isSingleResult() && | 
|  | Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) { | 
|  | if (ObjCIvarDecl *IV | 
|  | = Method->getClassInterface()->lookupInstanceVariable(Name)) { | 
|  | Res.addDecl(IV); | 
|  | Res.resolveKind(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Add keywords to the consumer as possible typo corrections. | 
|  | static void AddKeywordsToConsumer(Sema &SemaRef, | 
|  | TypoCorrectionConsumer &Consumer, | 
|  | Scope *S, CorrectionCandidateCallback &CCC, | 
|  | bool AfterNestedNameSpecifier) { | 
|  | if (AfterNestedNameSpecifier) { | 
|  | // For 'X::', we know exactly which keywords can appear next. | 
|  | Consumer.addKeywordResult("template"); | 
|  | if (CCC.WantExpressionKeywords) | 
|  | Consumer.addKeywordResult("operator"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (CCC.WantObjCSuper) | 
|  | Consumer.addKeywordResult("super"); | 
|  |  | 
|  | if (CCC.WantTypeSpecifiers) { | 
|  | // Add type-specifier keywords to the set of results. | 
|  | static const char *const CTypeSpecs[] = { | 
|  | "char", "const", "double", "enum", "float", "int", "long", "short", | 
|  | "signed", "struct", "union", "unsigned", "void", "volatile", | 
|  | "_Complex", "_Imaginary", | 
|  | // storage-specifiers as well | 
|  | "extern", "inline", "static", "typedef" | 
|  | }; | 
|  |  | 
|  | const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs); | 
|  | for (unsigned I = 0; I != NumCTypeSpecs; ++I) | 
|  | Consumer.addKeywordResult(CTypeSpecs[I]); | 
|  |  | 
|  | if (SemaRef.getLangOpts().C99) | 
|  | Consumer.addKeywordResult("restrict"); | 
|  | if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) | 
|  | Consumer.addKeywordResult("bool"); | 
|  | else if (SemaRef.getLangOpts().C99) | 
|  | Consumer.addKeywordResult("_Bool"); | 
|  |  | 
|  | if (SemaRef.getLangOpts().CPlusPlus) { | 
|  | Consumer.addKeywordResult("class"); | 
|  | Consumer.addKeywordResult("typename"); | 
|  | Consumer.addKeywordResult("wchar_t"); | 
|  |  | 
|  | if (SemaRef.getLangOpts().CPlusPlus11) { | 
|  | Consumer.addKeywordResult("char16_t"); | 
|  | Consumer.addKeywordResult("char32_t"); | 
|  | Consumer.addKeywordResult("constexpr"); | 
|  | Consumer.addKeywordResult("decltype"); | 
|  | Consumer.addKeywordResult("thread_local"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SemaRef.getLangOpts().GNUKeywords) | 
|  | Consumer.addKeywordResult("typeof"); | 
|  | } else if (CCC.WantFunctionLikeCasts) { | 
|  | static const char *const CastableTypeSpecs[] = { | 
|  | "char", "double", "float", "int", "long", "short", | 
|  | "signed", "unsigned", "void" | 
|  | }; | 
|  | for (auto *kw : CastableTypeSpecs) | 
|  | Consumer.addKeywordResult(kw); | 
|  | } | 
|  |  | 
|  | if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) { | 
|  | Consumer.addKeywordResult("const_cast"); | 
|  | Consumer.addKeywordResult("dynamic_cast"); | 
|  | Consumer.addKeywordResult("reinterpret_cast"); | 
|  | Consumer.addKeywordResult("static_cast"); | 
|  | } | 
|  |  | 
|  | if (CCC.WantExpressionKeywords) { | 
|  | Consumer.addKeywordResult("sizeof"); | 
|  | if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) { | 
|  | Consumer.addKeywordResult("false"); | 
|  | Consumer.addKeywordResult("true"); | 
|  | } | 
|  |  | 
|  | if (SemaRef.getLangOpts().CPlusPlus) { | 
|  | static const char *const CXXExprs[] = { | 
|  | "delete", "new", "operator", "throw", "typeid" | 
|  | }; | 
|  | const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs); | 
|  | for (unsigned I = 0; I != NumCXXExprs; ++I) | 
|  | Consumer.addKeywordResult(CXXExprs[I]); | 
|  |  | 
|  | if (isa<CXXMethodDecl>(SemaRef.CurContext) && | 
|  | cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance()) | 
|  | Consumer.addKeywordResult("this"); | 
|  |  | 
|  | if (SemaRef.getLangOpts().CPlusPlus11) { | 
|  | Consumer.addKeywordResult("alignof"); | 
|  | Consumer.addKeywordResult("nullptr"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SemaRef.getLangOpts().C11) { | 
|  | // FIXME: We should not suggest _Alignof if the alignof macro | 
|  | // is present. | 
|  | Consumer.addKeywordResult("_Alignof"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CCC.WantRemainingKeywords) { | 
|  | if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) { | 
|  | // Statements. | 
|  | static const char *const CStmts[] = { | 
|  | "do", "else", "for", "goto", "if", "return", "switch", "while" }; | 
|  | const unsigned NumCStmts = llvm::array_lengthof(CStmts); | 
|  | for (unsigned I = 0; I != NumCStmts; ++I) | 
|  | Consumer.addKeywordResult(CStmts[I]); | 
|  |  | 
|  | if (SemaRef.getLangOpts().CPlusPlus) { | 
|  | Consumer.addKeywordResult("catch"); | 
|  | Consumer.addKeywordResult("try"); | 
|  | } | 
|  |  | 
|  | if (S && S->getBreakParent()) | 
|  | Consumer.addKeywordResult("break"); | 
|  |  | 
|  | if (S && S->getContinueParent()) | 
|  | Consumer.addKeywordResult("continue"); | 
|  |  | 
|  | if (SemaRef.getCurFunction() && | 
|  | !SemaRef.getCurFunction()->SwitchStack.empty()) { | 
|  | Consumer.addKeywordResult("case"); | 
|  | Consumer.addKeywordResult("default"); | 
|  | } | 
|  | } else { | 
|  | if (SemaRef.getLangOpts().CPlusPlus) { | 
|  | Consumer.addKeywordResult("namespace"); | 
|  | Consumer.addKeywordResult("template"); | 
|  | } | 
|  |  | 
|  | if (S && S->isClassScope()) { | 
|  | Consumer.addKeywordResult("explicit"); | 
|  | Consumer.addKeywordResult("friend"); | 
|  | Consumer.addKeywordResult("mutable"); | 
|  | Consumer.addKeywordResult("private"); | 
|  | Consumer.addKeywordResult("protected"); | 
|  | Consumer.addKeywordResult("public"); | 
|  | Consumer.addKeywordResult("virtual"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SemaRef.getLangOpts().CPlusPlus) { | 
|  | Consumer.addKeywordResult("using"); | 
|  |  | 
|  | if (SemaRef.getLangOpts().CPlusPlus11) | 
|  | Consumer.addKeywordResult("static_assert"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer( | 
|  | const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, | 
|  | Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, | 
|  | DeclContext *MemberContext, bool EnteringContext, | 
|  | const ObjCObjectPointerType *OPT, bool ErrorRecovery) { | 
|  |  | 
|  | if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking || | 
|  | DisableTypoCorrection) | 
|  | return nullptr; | 
|  |  | 
|  | // In Microsoft mode, don't perform typo correction in a template member | 
|  | // function dependent context because it interferes with the "lookup into | 
|  | // dependent bases of class templates" feature. | 
|  | if (getLangOpts().MSVCCompat && CurContext->isDependentContext() && | 
|  | isa<CXXMethodDecl>(CurContext)) | 
|  | return nullptr; | 
|  |  | 
|  | // We only attempt to correct typos for identifiers. | 
|  | IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); | 
|  | if (!Typo) | 
|  | return nullptr; | 
|  |  | 
|  | // If the scope specifier itself was invalid, don't try to correct | 
|  | // typos. | 
|  | if (SS && SS->isInvalid()) | 
|  | return nullptr; | 
|  |  | 
|  | // Never try to correct typos during any kind of code synthesis. | 
|  | if (!CodeSynthesisContexts.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | // Don't try to correct 'super'. | 
|  | if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier()) | 
|  | return nullptr; | 
|  |  | 
|  | // Abort if typo correction already failed for this specific typo. | 
|  | IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo); | 
|  | if (locs != TypoCorrectionFailures.end() && | 
|  | locs->second.count(TypoName.getLoc())) | 
|  | return nullptr; | 
|  |  | 
|  | // Don't try to correct the identifier "vector" when in AltiVec mode. | 
|  | // TODO: Figure out why typo correction misbehaves in this case, fix it, and | 
|  | // remove this workaround. | 
|  | if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector")) | 
|  | return nullptr; | 
|  |  | 
|  | // Provide a stop gap for files that are just seriously broken.  Trying | 
|  | // to correct all typos can turn into a HUGE performance penalty, causing | 
|  | // some files to take minutes to get rejected by the parser. | 
|  | unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit; | 
|  | if (Limit && TyposCorrected >= Limit) | 
|  | return nullptr; | 
|  | ++TyposCorrected; | 
|  |  | 
|  | // If we're handling a missing symbol error, using modules, and the | 
|  | // special search all modules option is used, look for a missing import. | 
|  | if (ErrorRecovery && getLangOpts().Modules && | 
|  | getLangOpts().ModulesSearchAll) { | 
|  | // The following has the side effect of loading the missing module. | 
|  | getModuleLoader().lookupMissingImports(Typo->getName(), | 
|  | TypoName.getBeginLoc()); | 
|  | } | 
|  |  | 
|  | // Extend the lifetime of the callback. We delayed this until here | 
|  | // to avoid allocations in the hot path (which is where no typo correction | 
|  | // occurs). Note that CorrectionCandidateCallback is polymorphic and | 
|  | // initially stack-allocated. | 
|  | std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone(); | 
|  | auto Consumer = llvm::make_unique<TypoCorrectionConsumer>( | 
|  | *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext, | 
|  | EnteringContext); | 
|  |  | 
|  | // Perform name lookup to find visible, similarly-named entities. | 
|  | bool IsUnqualifiedLookup = false; | 
|  | DeclContext *QualifiedDC = MemberContext; | 
|  | if (MemberContext) { | 
|  | LookupVisibleDecls(MemberContext, LookupKind, *Consumer); | 
|  |  | 
|  | // Look in qualified interfaces. | 
|  | if (OPT) { | 
|  | for (auto *I : OPT->quals()) | 
|  | LookupVisibleDecls(I, LookupKind, *Consumer); | 
|  | } | 
|  | } else if (SS && SS->isSet()) { | 
|  | QualifiedDC = computeDeclContext(*SS, EnteringContext); | 
|  | if (!QualifiedDC) | 
|  | return nullptr; | 
|  |  | 
|  | LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer); | 
|  | } else { | 
|  | IsUnqualifiedLookup = true; | 
|  | } | 
|  |  | 
|  | // Determine whether we are going to search in the various namespaces for | 
|  | // corrections. | 
|  | bool SearchNamespaces | 
|  | = getLangOpts().CPlusPlus && | 
|  | (IsUnqualifiedLookup || (SS && SS->isSet())); | 
|  |  | 
|  | if (IsUnqualifiedLookup || SearchNamespaces) { | 
|  | // For unqualified lookup, look through all of the names that we have | 
|  | // seen in this translation unit. | 
|  | // FIXME: Re-add the ability to skip very unlikely potential corrections. | 
|  | for (const auto &I : Context.Idents) | 
|  | Consumer->FoundName(I.getKey()); | 
|  |  | 
|  | // Walk through identifiers in external identifier sources. | 
|  | // FIXME: Re-add the ability to skip very unlikely potential corrections. | 
|  | if (IdentifierInfoLookup *External | 
|  | = Context.Idents.getExternalIdentifierLookup()) { | 
|  | std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); | 
|  | do { | 
|  | StringRef Name = Iter->Next(); | 
|  | if (Name.empty()) | 
|  | break; | 
|  |  | 
|  | Consumer->FoundName(Name); | 
|  | } while (true); | 
|  | } | 
|  | } | 
|  |  | 
|  | AddKeywordsToConsumer(*this, *Consumer, S, | 
|  | *Consumer->getCorrectionValidator(), | 
|  | SS && SS->isNotEmpty()); | 
|  |  | 
|  | // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going | 
|  | // to search those namespaces. | 
|  | if (SearchNamespaces) { | 
|  | // Load any externally-known namespaces. | 
|  | if (ExternalSource && !LoadedExternalKnownNamespaces) { | 
|  | SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces; | 
|  | LoadedExternalKnownNamespaces = true; | 
|  | ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces); | 
|  | for (auto *N : ExternalKnownNamespaces) | 
|  | KnownNamespaces[N] = true; | 
|  | } | 
|  |  | 
|  | Consumer->addNamespaces(KnownNamespaces); | 
|  | } | 
|  |  | 
|  | return Consumer; | 
|  | } | 
|  |  | 
|  | /// Try to "correct" a typo in the source code by finding | 
|  | /// visible declarations whose names are similar to the name that was | 
|  | /// present in the source code. | 
|  | /// | 
|  | /// \param TypoName the \c DeclarationNameInfo structure that contains | 
|  | /// the name that was present in the source code along with its location. | 
|  | /// | 
|  | /// \param LookupKind the name-lookup criteria used to search for the name. | 
|  | /// | 
|  | /// \param S the scope in which name lookup occurs. | 
|  | /// | 
|  | /// \param SS the nested-name-specifier that precedes the name we're | 
|  | /// looking for, if present. | 
|  | /// | 
|  | /// \param CCC A CorrectionCandidateCallback object that provides further | 
|  | /// validation of typo correction candidates. It also provides flags for | 
|  | /// determining the set of keywords permitted. | 
|  | /// | 
|  | /// \param MemberContext if non-NULL, the context in which to look for | 
|  | /// a member access expression. | 
|  | /// | 
|  | /// \param EnteringContext whether we're entering the context described by | 
|  | /// the nested-name-specifier SS. | 
|  | /// | 
|  | /// \param OPT when non-NULL, the search for visible declarations will | 
|  | /// also walk the protocols in the qualified interfaces of \p OPT. | 
|  | /// | 
|  | /// \returns a \c TypoCorrection containing the corrected name if the typo | 
|  | /// along with information such as the \c NamedDecl where the corrected name | 
|  | /// was declared, and any additional \c NestedNameSpecifier needed to access | 
|  | /// it (C++ only). The \c TypoCorrection is empty if there is no correction. | 
|  | TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName, | 
|  | Sema::LookupNameKind LookupKind, | 
|  | Scope *S, CXXScopeSpec *SS, | 
|  | CorrectionCandidateCallback &CCC, | 
|  | CorrectTypoKind Mode, | 
|  | DeclContext *MemberContext, | 
|  | bool EnteringContext, | 
|  | const ObjCObjectPointerType *OPT, | 
|  | bool RecordFailure) { | 
|  | // Always let the ExternalSource have the first chance at correction, even | 
|  | // if we would otherwise have given up. | 
|  | if (ExternalSource) { | 
|  | if (TypoCorrection Correction = | 
|  | ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC, | 
|  | MemberContext, EnteringContext, OPT)) | 
|  | return Correction; | 
|  | } | 
|  |  | 
|  | // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver; | 
|  | // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for | 
|  | // some instances of CTC_Unknown, while WantRemainingKeywords is true | 
|  | // for CTC_Unknown but not for CTC_ObjCMessageReceiver. | 
|  | bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords; | 
|  |  | 
|  | IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); | 
|  | auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, | 
|  | MemberContext, EnteringContext, | 
|  | OPT, Mode == CTK_ErrorRecovery); | 
|  |  | 
|  | if (!Consumer) | 
|  | return TypoCorrection(); | 
|  |  | 
|  | // If we haven't found anything, we're done. | 
|  | if (Consumer->empty()) | 
|  | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); | 
|  |  | 
|  | // Make sure the best edit distance (prior to adding any namespace qualifiers) | 
|  | // is not more that about a third of the length of the typo's identifier. | 
|  | unsigned ED = Consumer->getBestEditDistance(true); | 
|  | unsigned TypoLen = Typo->getName().size(); | 
|  | if (ED > 0 && TypoLen / ED < 3) | 
|  | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); | 
|  |  | 
|  | TypoCorrection BestTC = Consumer->getNextCorrection(); | 
|  | TypoCorrection SecondBestTC = Consumer->getNextCorrection(); | 
|  | if (!BestTC) | 
|  | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); | 
|  |  | 
|  | ED = BestTC.getEditDistance(); | 
|  |  | 
|  | if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) { | 
|  | // If this was an unqualified lookup and we believe the callback | 
|  | // object wouldn't have filtered out possible corrections, note | 
|  | // that no correction was found. | 
|  | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); | 
|  | } | 
|  |  | 
|  | // If only a single name remains, return that result. | 
|  | if (!SecondBestTC || | 
|  | SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) { | 
|  | const TypoCorrection &Result = BestTC; | 
|  |  | 
|  | // Don't correct to a keyword that's the same as the typo; the keyword | 
|  | // wasn't actually in scope. | 
|  | if (ED == 0 && Result.isKeyword()) | 
|  | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); | 
|  |  | 
|  | TypoCorrection TC = Result; | 
|  | TC.setCorrectionRange(SS, TypoName); | 
|  | checkCorrectionVisibility(*this, TC); | 
|  | return TC; | 
|  | } else if (SecondBestTC && ObjCMessageReceiver) { | 
|  | // Prefer 'super' when we're completing in a message-receiver | 
|  | // context. | 
|  |  | 
|  | if (BestTC.getCorrection().getAsString() != "super") { | 
|  | if (SecondBestTC.getCorrection().getAsString() == "super") | 
|  | BestTC = SecondBestTC; | 
|  | else if ((*Consumer)["super"].front().isKeyword()) | 
|  | BestTC = (*Consumer)["super"].front(); | 
|  | } | 
|  | // Don't correct to a keyword that's the same as the typo; the keyword | 
|  | // wasn't actually in scope. | 
|  | if (BestTC.getEditDistance() == 0 || | 
|  | BestTC.getCorrection().getAsString() != "super") | 
|  | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); | 
|  |  | 
|  | BestTC.setCorrectionRange(SS, TypoName); | 
|  | return BestTC; | 
|  | } | 
|  |  | 
|  | // Record the failure's location if needed and return an empty correction. If | 
|  | // this was an unqualified lookup and we believe the callback object did not | 
|  | // filter out possible corrections, also cache the failure for the typo. | 
|  | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC); | 
|  | } | 
|  |  | 
|  | /// Try to "correct" a typo in the source code by finding | 
|  | /// visible declarations whose names are similar to the name that was | 
|  | /// present in the source code. | 
|  | /// | 
|  | /// \param TypoName the \c DeclarationNameInfo structure that contains | 
|  | /// the name that was present in the source code along with its location. | 
|  | /// | 
|  | /// \param LookupKind the name-lookup criteria used to search for the name. | 
|  | /// | 
|  | /// \param S the scope in which name lookup occurs. | 
|  | /// | 
|  | /// \param SS the nested-name-specifier that precedes the name we're | 
|  | /// looking for, if present. | 
|  | /// | 
|  | /// \param CCC A CorrectionCandidateCallback object that provides further | 
|  | /// validation of typo correction candidates. It also provides flags for | 
|  | /// determining the set of keywords permitted. | 
|  | /// | 
|  | /// \param TDG A TypoDiagnosticGenerator functor that will be used to print | 
|  | /// diagnostics when the actual typo correction is attempted. | 
|  | /// | 
|  | /// \param TRC A TypoRecoveryCallback functor that will be used to build an | 
|  | /// Expr from a typo correction candidate. | 
|  | /// | 
|  | /// \param MemberContext if non-NULL, the context in which to look for | 
|  | /// a member access expression. | 
|  | /// | 
|  | /// \param EnteringContext whether we're entering the context described by | 
|  | /// the nested-name-specifier SS. | 
|  | /// | 
|  | /// \param OPT when non-NULL, the search for visible declarations will | 
|  | /// also walk the protocols in the qualified interfaces of \p OPT. | 
|  | /// | 
|  | /// \returns a new \c TypoExpr that will later be replaced in the AST with an | 
|  | /// Expr representing the result of performing typo correction, or nullptr if | 
|  | /// typo correction is not possible. If nullptr is returned, no diagnostics will | 
|  | /// be emitted and it is the responsibility of the caller to emit any that are | 
|  | /// needed. | 
|  | TypoExpr *Sema::CorrectTypoDelayed( | 
|  | const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, | 
|  | Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, | 
|  | TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode, | 
|  | DeclContext *MemberContext, bool EnteringContext, | 
|  | const ObjCObjectPointerType *OPT) { | 
|  | auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, | 
|  | MemberContext, EnteringContext, | 
|  | OPT, Mode == CTK_ErrorRecovery); | 
|  |  | 
|  | // Give the external sema source a chance to correct the typo. | 
|  | TypoCorrection ExternalTypo; | 
|  | if (ExternalSource && Consumer) { | 
|  | ExternalTypo = ExternalSource->CorrectTypo( | 
|  | TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(), | 
|  | MemberContext, EnteringContext, OPT); | 
|  | if (ExternalTypo) | 
|  | Consumer->addCorrection(ExternalTypo); | 
|  | } | 
|  |  | 
|  | if (!Consumer || Consumer->empty()) | 
|  | return nullptr; | 
|  |  | 
|  | // Make sure the best edit distance (prior to adding any namespace qualifiers) | 
|  | // is not more that about a third of the length of the typo's identifier. | 
|  | unsigned ED = Consumer->getBestEditDistance(true); | 
|  | IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); | 
|  | if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3) | 
|  | return nullptr; | 
|  |  | 
|  | ExprEvalContexts.back().NumTypos++; | 
|  | return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC)); | 
|  | } | 
|  |  | 
|  | void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) { | 
|  | if (!CDecl) return; | 
|  |  | 
|  | if (isKeyword()) | 
|  | CorrectionDecls.clear(); | 
|  |  | 
|  | CorrectionDecls.push_back(CDecl); | 
|  |  | 
|  | if (!CorrectionName) | 
|  | CorrectionName = CDecl->getDeclName(); | 
|  | } | 
|  |  | 
|  | std::string TypoCorrection::getAsString(const LangOptions &LO) const { | 
|  | if (CorrectionNameSpec) { | 
|  | std::string tmpBuffer; | 
|  | llvm::raw_string_ostream PrefixOStream(tmpBuffer); | 
|  | CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO)); | 
|  | PrefixOStream << CorrectionName; | 
|  | return PrefixOStream.str(); | 
|  | } | 
|  |  | 
|  | return CorrectionName.getAsString(); | 
|  | } | 
|  |  | 
|  | bool CorrectionCandidateCallback::ValidateCandidate( | 
|  | const TypoCorrection &candidate) { | 
|  | if (!candidate.isResolved()) | 
|  | return true; | 
|  |  | 
|  | if (candidate.isKeyword()) | 
|  | return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts || | 
|  | WantRemainingKeywords || WantObjCSuper; | 
|  |  | 
|  | bool HasNonType = false; | 
|  | bool HasStaticMethod = false; | 
|  | bool HasNonStaticMethod = false; | 
|  | for (Decl *D : candidate) { | 
|  | if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D)) | 
|  | D = FTD->getTemplatedDecl(); | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { | 
|  | if (Method->isStatic()) | 
|  | HasStaticMethod = true; | 
|  | else | 
|  | HasNonStaticMethod = true; | 
|  | } | 
|  | if (!isa<TypeDecl>(D)) | 
|  | HasNonType = true; | 
|  | } | 
|  |  | 
|  | if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod && | 
|  | !candidate.getCorrectionSpecifier()) | 
|  | return false; | 
|  |  | 
|  | return WantTypeSpecifiers || HasNonType; | 
|  | } | 
|  |  | 
|  | FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs, | 
|  | bool HasExplicitTemplateArgs, | 
|  | MemberExpr *ME) | 
|  | : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs), | 
|  | CurContext(SemaRef.CurContext), MemberFn(ME) { | 
|  | WantTypeSpecifiers = false; | 
|  | WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && NumArgs == 1; | 
|  | WantRemainingKeywords = false; | 
|  | } | 
|  |  | 
|  | bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) { | 
|  | if (!candidate.getCorrectionDecl()) | 
|  | return candidate.isKeyword(); | 
|  |  | 
|  | for (auto *C : candidate) { | 
|  | FunctionDecl *FD = nullptr; | 
|  | NamedDecl *ND = C->getUnderlyingDecl(); | 
|  | if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) | 
|  | FD = FTD->getTemplatedDecl(); | 
|  | if (!HasExplicitTemplateArgs && !FD) { | 
|  | if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) { | 
|  | // If the Decl is neither a function nor a template function, | 
|  | // determine if it is a pointer or reference to a function. If so, | 
|  | // check against the number of arguments expected for the pointee. | 
|  | QualType ValType = cast<ValueDecl>(ND)->getType(); | 
|  | if (ValType.isNull()) | 
|  | continue; | 
|  | if (ValType->isAnyPointerType() || ValType->isReferenceType()) | 
|  | ValType = ValType->getPointeeType(); | 
|  | if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>()) | 
|  | if (FPT->getNumParams() == NumArgs) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Skip the current candidate if it is not a FunctionDecl or does not accept | 
|  | // the current number of arguments. | 
|  | if (!FD || !(FD->getNumParams() >= NumArgs && | 
|  | FD->getMinRequiredArguments() <= NumArgs)) | 
|  | continue; | 
|  |  | 
|  | // If the current candidate is a non-static C++ method, skip the candidate | 
|  | // unless the method being corrected--or the current DeclContext, if the | 
|  | // function being corrected is not a method--is a method in the same class | 
|  | // or a descendent class of the candidate's parent class. | 
|  | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | 
|  | if (MemberFn || !MD->isStatic()) { | 
|  | CXXMethodDecl *CurMD = | 
|  | MemberFn | 
|  | ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl()) | 
|  | : dyn_cast_or_null<CXXMethodDecl>(CurContext); | 
|  | CXXRecordDecl *CurRD = | 
|  | CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr; | 
|  | CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl(); | 
|  | if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD))) | 
|  | continue; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Sema::diagnoseTypo(const TypoCorrection &Correction, | 
|  | const PartialDiagnostic &TypoDiag, | 
|  | bool ErrorRecovery) { | 
|  | diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl), | 
|  | ErrorRecovery); | 
|  | } | 
|  |  | 
|  | /// Find which declaration we should import to provide the definition of | 
|  | /// the given declaration. | 
|  | static NamedDecl *getDefinitionToImport(NamedDecl *D) { | 
|  | if (VarDecl *VD = dyn_cast<VarDecl>(D)) | 
|  | return VD->getDefinition(); | 
|  | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) | 
|  | return FD->getDefinition(); | 
|  | if (TagDecl *TD = dyn_cast<TagDecl>(D)) | 
|  | return TD->getDefinition(); | 
|  | if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D)) | 
|  | return ID->getDefinition(); | 
|  | if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D)) | 
|  | return PD->getDefinition(); | 
|  | if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) | 
|  | return getDefinitionToImport(TD->getTemplatedDecl()); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl, | 
|  | MissingImportKind MIK, bool Recover) { | 
|  | // Suggest importing a module providing the definition of this entity, if | 
|  | // possible. | 
|  | NamedDecl *Def = getDefinitionToImport(Decl); | 
|  | if (!Def) | 
|  | Def = Decl; | 
|  |  | 
|  | Module *Owner = getOwningModule(Def); | 
|  | assert(Owner && "definition of hidden declaration is not in a module"); | 
|  |  | 
|  | llvm::SmallVector<Module*, 8> OwningModules; | 
|  | OwningModules.push_back(Owner); | 
|  | auto Merged = Context.getModulesWithMergedDefinition(Def); | 
|  | OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end()); | 
|  |  | 
|  | diagnoseMissingImport(Loc, Decl, Decl->getLocation(), OwningModules, MIK, | 
|  | Recover); | 
|  | } | 
|  |  | 
|  | /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic | 
|  | /// suggesting the addition of a #include of the specified file. | 
|  | static std::string getIncludeStringForHeader(Preprocessor &PP, | 
|  | const FileEntry *E) { | 
|  | bool IsSystem; | 
|  | auto Path = | 
|  | PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(E, &IsSystem); | 
|  | return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"'); | 
|  | } | 
|  |  | 
|  | void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl, | 
|  | SourceLocation DeclLoc, | 
|  | ArrayRef<Module *> Modules, | 
|  | MissingImportKind MIK, bool Recover) { | 
|  | assert(!Modules.empty()); | 
|  |  | 
|  | // Weed out duplicates from module list. | 
|  | llvm::SmallVector<Module*, 8> UniqueModules; | 
|  | llvm::SmallDenseSet<Module*, 8> UniqueModuleSet; | 
|  | for (auto *M : Modules) | 
|  | if (UniqueModuleSet.insert(M).second) | 
|  | UniqueModules.push_back(M); | 
|  | Modules = UniqueModules; | 
|  |  | 
|  | if (Modules.size() > 1) { | 
|  | std::string ModuleList; | 
|  | unsigned N = 0; | 
|  | for (Module *M : Modules) { | 
|  | ModuleList += "\n        "; | 
|  | if (++N == 5 && N != Modules.size()) { | 
|  | ModuleList += "[...]"; | 
|  | break; | 
|  | } | 
|  | ModuleList += M->getFullModuleName(); | 
|  | } | 
|  |  | 
|  | Diag(UseLoc, diag::err_module_unimported_use_multiple) | 
|  | << (int)MIK << Decl << ModuleList; | 
|  | } else if (const FileEntry *E = PP.getModuleHeaderToIncludeForDiagnostics( | 
|  | UseLoc, Modules[0], DeclLoc)) { | 
|  | // The right way to make the declaration visible is to include a header; | 
|  | // suggest doing so. | 
|  | // | 
|  | // FIXME: Find a smart place to suggest inserting a #include, and add | 
|  | // a FixItHint there. | 
|  | Diag(UseLoc, diag::err_module_unimported_use_header) | 
|  | << (int)MIK << Decl << Modules[0]->getFullModuleName() | 
|  | << getIncludeStringForHeader(PP, E); | 
|  | } else { | 
|  | // FIXME: Add a FixItHint that imports the corresponding module. | 
|  | Diag(UseLoc, diag::err_module_unimported_use) | 
|  | << (int)MIK << Decl << Modules[0]->getFullModuleName(); | 
|  | } | 
|  |  | 
|  | unsigned DiagID; | 
|  | switch (MIK) { | 
|  | case MissingImportKind::Declaration: | 
|  | DiagID = diag::note_previous_declaration; | 
|  | break; | 
|  | case MissingImportKind::Definition: | 
|  | DiagID = diag::note_previous_definition; | 
|  | break; | 
|  | case MissingImportKind::DefaultArgument: | 
|  | DiagID = diag::note_default_argument_declared_here; | 
|  | break; | 
|  | case MissingImportKind::ExplicitSpecialization: | 
|  | DiagID = diag::note_explicit_specialization_declared_here; | 
|  | break; | 
|  | case MissingImportKind::PartialSpecialization: | 
|  | DiagID = diag::note_partial_specialization_declared_here; | 
|  | break; | 
|  | } | 
|  | Diag(DeclLoc, DiagID); | 
|  |  | 
|  | // Try to recover by implicitly importing this module. | 
|  | if (Recover) | 
|  | createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); | 
|  | } | 
|  |  | 
|  | /// Diagnose a successfully-corrected typo. Separated from the correction | 
|  | /// itself to allow external validation of the result, etc. | 
|  | /// | 
|  | /// \param Correction The result of performing typo correction. | 
|  | /// \param TypoDiag The diagnostic to produce. This will have the corrected | 
|  | ///        string added to it (and usually also a fixit). | 
|  | /// \param PrevNote A note to use when indicating the location of the entity to | 
|  | ///        which we are correcting. Will have the correction string added to it. | 
|  | /// \param ErrorRecovery If \c true (the default), the caller is going to | 
|  | ///        recover from the typo as if the corrected string had been typed. | 
|  | ///        In this case, \c PDiag must be an error, and we will attach a fixit | 
|  | ///        to it. | 
|  | void Sema::diagnoseTypo(const TypoCorrection &Correction, | 
|  | const PartialDiagnostic &TypoDiag, | 
|  | const PartialDiagnostic &PrevNote, | 
|  | bool ErrorRecovery) { | 
|  | std::string CorrectedStr = Correction.getAsString(getLangOpts()); | 
|  | std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts()); | 
|  | FixItHint FixTypo = FixItHint::CreateReplacement( | 
|  | Correction.getCorrectionRange(), CorrectedStr); | 
|  |  | 
|  | // Maybe we're just missing a module import. | 
|  | if (Correction.requiresImport()) { | 
|  | NamedDecl *Decl = Correction.getFoundDecl(); | 
|  | assert(Decl && "import required but no declaration to import"); | 
|  |  | 
|  | diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl, | 
|  | MissingImportKind::Declaration, ErrorRecovery); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Diag(Correction.getCorrectionRange().getBegin(), TypoDiag) | 
|  | << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint()); | 
|  |  | 
|  | NamedDecl *ChosenDecl = | 
|  | Correction.isKeyword() ? nullptr : Correction.getFoundDecl(); | 
|  | if (PrevNote.getDiagID() && ChosenDecl) | 
|  | Diag(ChosenDecl->getLocation(), PrevNote) | 
|  | << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo); | 
|  |  | 
|  | // Add any extra diagnostics. | 
|  | for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics()) | 
|  | Diag(Correction.getCorrectionRange().getBegin(), PD); | 
|  | } | 
|  |  | 
|  | TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC, | 
|  | TypoDiagnosticGenerator TDG, | 
|  | TypoRecoveryCallback TRC) { | 
|  | assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer"); | 
|  | auto TE = new (Context) TypoExpr(Context.DependentTy); | 
|  | auto &State = DelayedTypos[TE]; | 
|  | State.Consumer = std::move(TCC); | 
|  | State.DiagHandler = std::move(TDG); | 
|  | State.RecoveryHandler = std::move(TRC); | 
|  | return TE; | 
|  | } | 
|  |  | 
|  | const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const { | 
|  | auto Entry = DelayedTypos.find(TE); | 
|  | assert(Entry != DelayedTypos.end() && | 
|  | "Failed to get the state for a TypoExpr!"); | 
|  | return Entry->second; | 
|  | } | 
|  |  | 
|  | void Sema::clearDelayedTypo(TypoExpr *TE) { | 
|  | DelayedTypos.erase(TE); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) { | 
|  | DeclarationNameInfo Name(II, IILoc); | 
|  | LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration); | 
|  | R.suppressDiagnostics(); | 
|  | R.setHideTags(false); | 
|  | LookupName(R, S); | 
|  | R.dump(); | 
|  | } |