|  | //===- Writer.cpp ---------------------------------------------------------===// | 
|  | // | 
|  | //                             The LLVM Linker | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Writer.h" | 
|  | #include "Config.h" | 
|  | #include "LinkerScript.h" | 
|  | #include "OutputSections.h" | 
|  | #include "SymbolTable.h" | 
|  | #include "Target.h" | 
|  |  | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/StringMap.h" | 
|  | #include "llvm/ADT/StringSwitch.h" | 
|  | #include "llvm/Support/FileOutputBuffer.h" | 
|  | #include "llvm/Support/StringSaver.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::ELF; | 
|  | using namespace llvm::object; | 
|  |  | 
|  | using namespace lld; | 
|  | using namespace lld::elf2; | 
|  |  | 
|  | namespace { | 
|  | // The writer writes a SymbolTable result to a file. | 
|  | template <class ELFT> class Writer { | 
|  | public: | 
|  | typedef typename ELFFile<ELFT>::uintX_t uintX_t; | 
|  | typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr; | 
|  | typedef typename ELFFile<ELFT>::Elf_Ehdr Elf_Ehdr; | 
|  | typedef typename ELFFile<ELFT>::Elf_Phdr Elf_Phdr; | 
|  | typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym; | 
|  | typedef typename ELFFile<ELFT>::Elf_Sym_Range Elf_Sym_Range; | 
|  | typedef typename ELFFile<ELFT>::Elf_Rela Elf_Rela; | 
|  | Writer(SymbolTable<ELFT> &S) : Symtab(S) {} | 
|  | void run(); | 
|  |  | 
|  | private: | 
|  | // This describes a program header entry. | 
|  | // Each contains type, access flags and range of output sections that will be | 
|  | // placed in it. | 
|  | struct Phdr { | 
|  | Phdr(unsigned Type, unsigned Flags) { | 
|  | H.p_type = Type; | 
|  | H.p_flags = Flags; | 
|  | } | 
|  | Elf_Phdr H = {}; | 
|  | OutputSectionBase<ELFT> *First = nullptr; | 
|  | OutputSectionBase<ELFT> *Last = nullptr; | 
|  | }; | 
|  |  | 
|  | void copyLocalSymbols(); | 
|  | void addReservedSymbols(); | 
|  | bool createSections(); | 
|  | void addPredefinedSections(); | 
|  | bool needsGot(); | 
|  |  | 
|  | template <bool isRela> | 
|  | void scanRelocs(InputSectionBase<ELFT> &C, | 
|  | iterator_range<const Elf_Rel_Impl<ELFT, isRela> *> Rels); | 
|  |  | 
|  | void scanRelocs(InputSection<ELFT> &C); | 
|  | void scanRelocs(InputSectionBase<ELFT> &S, const Elf_Shdr &RelSec); | 
|  | void createPhdrs(); | 
|  | void assignAddresses(); | 
|  | void assignAddressesRelocatable(); | 
|  | void fixAbsoluteSymbols(); | 
|  | bool openFile(); | 
|  | void writeHeader(); | 
|  | void writeSections(); | 
|  | bool isDiscarded(InputSectionBase<ELFT> *IS) const; | 
|  | StringRef getOutputSectionName(InputSectionBase<ELFT> *S) const; | 
|  | bool needsInterpSection() const { | 
|  | return !Symtab.getSharedFiles().empty() && !Config->DynamicLinker.empty(); | 
|  | } | 
|  | bool isOutputDynamic() const { | 
|  | return !Symtab.getSharedFiles().empty() || Config->Shared; | 
|  | } | 
|  |  | 
|  | OutputSection<ELFT> *getBss(); | 
|  | void addCommonSymbols(std::vector<DefinedCommon *> &Syms); | 
|  | void addCopyRelSymbols(std::vector<SharedSymbol<ELFT> *> &Syms); | 
|  |  | 
|  | std::unique_ptr<llvm::FileOutputBuffer> Buffer; | 
|  |  | 
|  | BumpPtrAllocator Alloc; | 
|  | std::vector<OutputSectionBase<ELFT> *> OutputSections; | 
|  | std::vector<std::unique_ptr<OutputSectionBase<ELFT>>> OwningSections; | 
|  |  | 
|  | // We create a section for the ELF header and one for the program headers. | 
|  | ArrayRef<OutputSectionBase<ELFT> *> getSections() const { | 
|  | return makeArrayRef(OutputSections).slice(dummySectionsNum()); | 
|  | } | 
|  | unsigned getNumSections() const { | 
|  | return OutputSections.size() + 1 - dummySectionsNum(); | 
|  | } | 
|  | // Usually there are 2 dummies sections: ELF header and program header. | 
|  | // Relocatable output does not require program headers to be created. | 
|  | unsigned dummySectionsNum() const { return Config->Relocatable ? 1 : 2; } | 
|  |  | 
|  | void addRelIpltSymbols(); | 
|  | void addStartEndSymbols(); | 
|  | void addStartStopSymbols(OutputSectionBase<ELFT> *Sec); | 
|  |  | 
|  | SymbolTable<ELFT> &Symtab; | 
|  | std::vector<Phdr> Phdrs; | 
|  |  | 
|  | uintX_t FileSize; | 
|  | uintX_t SectionHeaderOff; | 
|  |  | 
|  | // Flag to force GOT to be in output if we have relocations | 
|  | // that relies on its address. | 
|  | bool HasGotOffRel = false; | 
|  | }; | 
|  | } // anonymous namespace | 
|  |  | 
|  | template <class ELFT> static bool shouldUseRela() { return ELFT::Is64Bits; } | 
|  |  | 
|  | template <class ELFT> void elf2::writeResult(SymbolTable<ELFT> *Symtab) { | 
|  | typedef typename ELFFile<ELFT>::uintX_t uintX_t; | 
|  |  | 
|  | // Create singleton output sections. | 
|  | bool IsRela = shouldUseRela<ELFT>(); | 
|  | DynamicSection<ELFT> Dynamic(*Symtab); | 
|  | EhFrameHeader<ELFT> EhFrameHdr; | 
|  | GotSection<ELFT> Got; | 
|  | InterpSection<ELFT> Interp; | 
|  | PltSection<ELFT> Plt; | 
|  | RelocationSection<ELFT> RelaDyn(IsRela ? ".rela.dyn" : ".rel.dyn", IsRela); | 
|  | StringTableSection<ELFT> DynStrTab(".dynstr", true); | 
|  | StringTableSection<ELFT> ShStrTab(".shstrtab", false); | 
|  | SymbolTableSection<ELFT> DynSymTab(*Symtab, DynStrTab); | 
|  |  | 
|  | OutputSectionBase<ELFT> ElfHeader("", 0, SHF_ALLOC); | 
|  | OutputSectionBase<ELFT> ProgramHeaders("", 0, SHF_ALLOC); | 
|  | ProgramHeaders.updateAlign(sizeof(uintX_t)); | 
|  |  | 
|  | // Instantiate optional output sections if they are needed. | 
|  | std::unique_ptr<GnuHashTableSection<ELFT>> GnuHashTab; | 
|  | std::unique_ptr<GotPltSection<ELFT>> GotPlt; | 
|  | std::unique_ptr<HashTableSection<ELFT>> HashTab; | 
|  | std::unique_ptr<RelocationSection<ELFT>> RelaPlt; | 
|  | std::unique_ptr<StringTableSection<ELFT>> StrTab; | 
|  | std::unique_ptr<SymbolTableSection<ELFT>> SymTabSec; | 
|  | std::unique_ptr<OutputSection<ELFT>> MipsRldMap; | 
|  |  | 
|  | if (Config->GnuHash) | 
|  | GnuHashTab.reset(new GnuHashTableSection<ELFT>); | 
|  | if (Config->SysvHash) | 
|  | HashTab.reset(new HashTableSection<ELFT>); | 
|  | if (Target->UseLazyBinding) { | 
|  | StringRef S = IsRela ? ".rela.plt" : ".rel.plt"; | 
|  | GotPlt.reset(new GotPltSection<ELFT>); | 
|  | RelaPlt.reset(new RelocationSection<ELFT>(S, IsRela)); | 
|  | } | 
|  | if (!Config->StripAll) { | 
|  | StrTab.reset(new StringTableSection<ELFT>(".strtab", false)); | 
|  | SymTabSec.reset(new SymbolTableSection<ELFT>(*Symtab, *StrTab)); | 
|  | } | 
|  | if (Config->EMachine == EM_MIPS && !Config->Shared) { | 
|  | // This is a MIPS specific section to hold a space within the data segment | 
|  | // of executable file which is pointed to by the DT_MIPS_RLD_MAP entry. | 
|  | // See "Dynamic section" in Chapter 5 in the following document: | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | MipsRldMap.reset(new OutputSection<ELFT>(".rld_map", SHT_PROGBITS, | 
|  | SHF_ALLOC | SHF_WRITE)); | 
|  | MipsRldMap->setSize(sizeof(uintX_t)); | 
|  | MipsRldMap->updateAlign(sizeof(uintX_t)); | 
|  | } | 
|  |  | 
|  | Out<ELFT>::DynStrTab = &DynStrTab; | 
|  | Out<ELFT>::DynSymTab = &DynSymTab; | 
|  | Out<ELFT>::Dynamic = &Dynamic; | 
|  | Out<ELFT>::EhFrameHdr = &EhFrameHdr; | 
|  | Out<ELFT>::GnuHashTab = GnuHashTab.get(); | 
|  | Out<ELFT>::Got = &Got; | 
|  | Out<ELFT>::GotPlt = GotPlt.get(); | 
|  | Out<ELFT>::HashTab = HashTab.get(); | 
|  | Out<ELFT>::Interp = &Interp; | 
|  | Out<ELFT>::Plt = &Plt; | 
|  | Out<ELFT>::RelaDyn = &RelaDyn; | 
|  | Out<ELFT>::RelaPlt = RelaPlt.get(); | 
|  | Out<ELFT>::ShStrTab = &ShStrTab; | 
|  | Out<ELFT>::StrTab = StrTab.get(); | 
|  | Out<ELFT>::SymTab = SymTabSec.get(); | 
|  | Out<ELFT>::Bss = nullptr; | 
|  | Out<ELFT>::MipsRldMap = MipsRldMap.get(); | 
|  | Out<ELFT>::Opd = nullptr; | 
|  | Out<ELFT>::OpdBuf = nullptr; | 
|  | Out<ELFT>::TlsPhdr = nullptr; | 
|  | Out<ELFT>::ElfHeader = &ElfHeader; | 
|  | Out<ELFT>::ProgramHeaders = &ProgramHeaders; | 
|  |  | 
|  | Writer<ELFT>(*Symtab).run(); | 
|  | } | 
|  |  | 
|  | // The main function of the writer. | 
|  | template <class ELFT> void Writer<ELFT>::run() { | 
|  | if (!Config->DiscardAll) | 
|  | copyLocalSymbols(); | 
|  | addReservedSymbols(); | 
|  | if (!createSections()) | 
|  | return; | 
|  | if (!Config->Relocatable) { | 
|  | createPhdrs(); | 
|  | assignAddresses(); | 
|  | } else { | 
|  | assignAddressesRelocatable(); | 
|  | } | 
|  | fixAbsoluteSymbols(); | 
|  | if (!openFile()) | 
|  | return; | 
|  | writeHeader(); | 
|  | writeSections(); | 
|  | if (HasError) | 
|  | return; | 
|  | fatal(Buffer->commit()); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | template <bool Is64Bits> struct SectionKey { | 
|  | typedef typename std::conditional<Is64Bits, uint64_t, uint32_t>::type uintX_t; | 
|  | StringRef Name; | 
|  | uint32_t Type; | 
|  | uintX_t Flags; | 
|  | uintX_t Alignment; | 
|  | }; | 
|  | } | 
|  | namespace llvm { | 
|  | template <bool Is64Bits> struct DenseMapInfo<SectionKey<Is64Bits>> { | 
|  | static SectionKey<Is64Bits> getEmptyKey() { | 
|  | return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0, | 
|  | 0}; | 
|  | } | 
|  | static SectionKey<Is64Bits> getTombstoneKey() { | 
|  | return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getTombstoneKey(), 0, | 
|  | 0, 0}; | 
|  | } | 
|  | static unsigned getHashValue(const SectionKey<Is64Bits> &Val) { | 
|  | return hash_combine(Val.Name, Val.Type, Val.Flags, Val.Alignment); | 
|  | } | 
|  | static bool isEqual(const SectionKey<Is64Bits> &LHS, | 
|  | const SectionKey<Is64Bits> &RHS) { | 
|  | return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) && | 
|  | LHS.Type == RHS.Type && LHS.Flags == RHS.Flags && | 
|  | LHS.Alignment == RHS.Alignment; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | template <class ELFT, class RelT> | 
|  | static bool handleTlsRelocation(unsigned Type, SymbolBody *Body, | 
|  | InputSectionBase<ELFT> &C, RelT &RI) { | 
|  | if (Target->isTlsLocalDynamicRel(Type)) { | 
|  | if (Target->canRelaxTls(Type, nullptr)) | 
|  | return true; | 
|  | if (Out<ELFT>::Got->addTlsIndex()) | 
|  | Out<ELFT>::RelaDyn->addReloc({Target->TlsModuleIndexRel, | 
|  | DynamicReloc<ELFT>::Off_LTlsIndex, | 
|  | nullptr}); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!Body || !Body->IsTls) | 
|  | return false; | 
|  |  | 
|  | if (Target->isTlsGlobalDynamicRel(Type)) { | 
|  | if (!Target->canRelaxTls(Type, Body)) { | 
|  | if (Out<ELFT>::Got->addDynTlsEntry(Body)) { | 
|  | Out<ELFT>::RelaDyn->addReloc({Target->TlsModuleIndexRel, | 
|  | DynamicReloc<ELFT>::Off_GTlsIndex, Body}); | 
|  | Out<ELFT>::RelaDyn->addReloc( | 
|  | {Target->TlsOffsetRel, DynamicReloc<ELFT>::Off_GTlsOffset, Body}); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | if (!canBePreempted(Body)) | 
|  | return true; | 
|  | } | 
|  | return !Target->isTlsDynRel(Type, *Body); | 
|  | } | 
|  |  | 
|  | // The reason we have to do this early scan is as follows | 
|  | // * To mmap the output file, we need to know the size | 
|  | // * For that, we need to know how many dynamic relocs we will have. | 
|  | // It might be possible to avoid this by outputting the file with write: | 
|  | // * Write the allocated output sections, computing addresses. | 
|  | // * Apply relocations, recording which ones require a dynamic reloc. | 
|  | // * Write the dynamic relocations. | 
|  | // * Write the rest of the file. | 
|  | // This would have some drawbacks. For example, we would only know if .rela.dyn | 
|  | // is needed after applying relocations. If it is, it will go after rw and rx | 
|  | // sections. Given that it is ro, we will need an extra PT_LOAD. This | 
|  | // complicates things for the dynamic linker and means we would have to reserve | 
|  | // space for the extra PT_LOAD even if we end up not using it. | 
|  | template <class ELFT> | 
|  | template <bool isRela> | 
|  | void Writer<ELFT>::scanRelocs( | 
|  | InputSectionBase<ELFT> &C, | 
|  | iterator_range<const Elf_Rel_Impl<ELFT, isRela> *> Rels) { | 
|  | typedef Elf_Rel_Impl<ELFT, isRela> RelType; | 
|  | const ObjectFile<ELFT> &File = *C.getFile(); | 
|  | for (const RelType &RI : Rels) { | 
|  | uint32_t SymIndex = RI.getSymbol(Config->Mips64EL); | 
|  | SymbolBody *Body = File.getSymbolBody(SymIndex); | 
|  | uint32_t Type = RI.getType(Config->Mips64EL); | 
|  |  | 
|  | // Ignore "hint" relocation because it is for optional code optimization. | 
|  | if (Target->isHintRel(Type)) | 
|  | continue; | 
|  |  | 
|  | if (Target->isGotRelative(Type)) | 
|  | HasGotOffRel = true; | 
|  |  | 
|  | // Set "used" bit for --as-needed. | 
|  | if (Body && Body->isUndefined() && !Body->isWeak()) | 
|  | if (auto *S = dyn_cast<SharedSymbol<ELFT>>(Body->repl())) | 
|  | S->File->IsUsed = true; | 
|  |  | 
|  | if (Body) | 
|  | Body = Body->repl(); | 
|  |  | 
|  | bool CBP = canBePreempted(Body); | 
|  | if (handleTlsRelocation<ELFT>(Type, Body, C, RI)) | 
|  | continue; | 
|  |  | 
|  | if (Target->needsDynRelative(Type)) | 
|  | Out<ELFT>::RelaDyn->addReloc({Target->RelativeRel, &C, RI.r_offset, true, | 
|  | Body, getAddend<ELFT>(RI)}); | 
|  |  | 
|  | // MIPS has a special rule to create GOTs for local symbols. | 
|  | if (Config->EMachine == EM_MIPS && !CBP && | 
|  | (Type == R_MIPS_GOT16 || Type == R_MIPS_CALL16)) { | 
|  | // FIXME (simon): Do not add so many redundant entries. | 
|  | Out<ELFT>::Got->addMipsLocalEntry(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If a symbol in a DSO is referenced directly instead of through GOT, | 
|  | // we need to create a copy relocation for the symbol. | 
|  | if (auto *B = dyn_cast_or_null<SharedSymbol<ELFT>>(Body)) { | 
|  | if (B->needsCopy()) | 
|  | continue; | 
|  | if (Target->needsCopyRel<ELFT>(Type, *B)) { | 
|  | B->NeedsCopyOrPltAddr = true; | 
|  | Out<ELFT>::RelaDyn->addReloc( | 
|  | {Target->CopyRel, DynamicReloc<ELFT>::Off_Bss, B}); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // An STT_GNU_IFUNC symbol always uses a PLT entry, and all references | 
|  | // to the symbol go through the PLT. This is true even for a local | 
|  | // symbol, although local symbols normally do not require PLT entries. | 
|  | if (Body && isGnuIFunc<ELFT>(*Body)) { | 
|  | if (Body->isInPlt()) | 
|  | continue; | 
|  | Out<ELFT>::Plt->addEntry(Body); | 
|  | if (Target->UseLazyBinding) { | 
|  | Out<ELFT>::GotPlt->addEntry(Body); | 
|  | Out<ELFT>::RelaPlt->addReloc( | 
|  | {CBP ? Target->PltRel : Target->IRelativeRel, | 
|  | DynamicReloc<ELFT>::Off_GotPlt, !CBP, Body}); | 
|  | } else { | 
|  | Out<ELFT>::Got->addEntry(Body); | 
|  | Out<ELFT>::RelaDyn->addReloc( | 
|  | {CBP ? Target->PltRel : Target->IRelativeRel, | 
|  | DynamicReloc<ELFT>::Off_Got, !CBP, Body}); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If a relocation needs PLT, we create a PLT and a GOT slot | 
|  | // for the symbol. | 
|  | TargetInfo::PltNeed NeedPlt = TargetInfo::Plt_No; | 
|  | if (Body) | 
|  | NeedPlt = Target->needsPlt<ELFT>(Type, *Body); | 
|  | if (NeedPlt) { | 
|  | if (NeedPlt == TargetInfo::Plt_Implicit) | 
|  | Body->NeedsCopyOrPltAddr = true; | 
|  | if (Body->isInPlt()) | 
|  | continue; | 
|  | Out<ELFT>::Plt->addEntry(Body); | 
|  |  | 
|  | if (Target->UseLazyBinding) { | 
|  | Out<ELFT>::GotPlt->addEntry(Body); | 
|  | Out<ELFT>::RelaPlt->addReloc( | 
|  | {Target->PltRel, DynamicReloc<ELFT>::Off_GotPlt, Body}); | 
|  | } else { | 
|  | if (Body->isInGot()) | 
|  | continue; | 
|  | Out<ELFT>::Got->addEntry(Body); | 
|  | Out<ELFT>::RelaDyn->addReloc( | 
|  | {Target->GotRel, DynamicReloc<ELFT>::Off_Got, Body}); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If a relocation needs GOT, we create a GOT slot for the symbol. | 
|  | if (Body && Target->needsGot(Type, *Body)) { | 
|  | if (Body->isInGot()) | 
|  | continue; | 
|  | Out<ELFT>::Got->addEntry(Body); | 
|  |  | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | // MIPS ABI has special rules to process GOT entries | 
|  | // and doesn't require relocation entries for them. | 
|  | // See "Global Offset Table" in Chapter 5 in the following document | 
|  | // for detailed description: | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | Body->MustBeInDynSym = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | bool Dynrel = Config->Shared && !Target->isRelRelative(Type) && | 
|  | !Target->isSizeRel(Type); | 
|  | if (CBP || Dynrel) { | 
|  | uint32_t DynType; | 
|  | if (CBP) | 
|  | DynType = Body->IsTls ? Target->TlsGotRel : Target->GotRel; | 
|  | else | 
|  | DynType = Target->RelativeRel; | 
|  | Out<ELFT>::RelaDyn->addReloc( | 
|  | {DynType, DynamicReloc<ELFT>::Off_Got, !CBP, Body}); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | if (Type == R_MIPS_LO16) | 
|  | // Ignore R_MIPS_LO16 relocation. If it is a pair for R_MIPS_GOT16 we | 
|  | // already completed all required action (GOT entry allocation) when | 
|  | // handle R_MIPS_GOT16a. If it is a pair for R_MIPS_HI16 against | 
|  | // _gp_disp it does not require dynamic relocation. If its a pair for | 
|  | // R_MIPS_HI16 against a regular symbol it does not require dynamic | 
|  | // relocation too because that case is possible for executable file | 
|  | // linking only. | 
|  | continue; | 
|  | if (Body == Config->MipsGpDisp || Body == Config->MipsLocalGp) | 
|  | // MIPS _gp_disp designates offset between start of function and 'gp' | 
|  | // pointer into GOT. __gnu_local_gp is equal to the current value of | 
|  | // the 'gp'. Therefore any relocations against them do not require | 
|  | // dynamic relocation. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (CBP) { | 
|  | // We don't know anything about the finaly symbol. Just ask the dynamic | 
|  | // linker to handle the relocation for us. | 
|  | Out<ELFT>::RelaDyn->addReloc({Target->getDynRel(Type), &C, RI.r_offset, | 
|  | false, Body, getAddend<ELFT>(RI)}); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We know that this is the final symbol. If the program being produced | 
|  | // is position independent, the final value is still not known. | 
|  | // If the relocation depends on the symbol value (not the size or distances | 
|  | // in the output), we still need some help from the dynamic linker. | 
|  | // We can however do better than just copying the incoming relocation. We | 
|  | // can process some of it and and just ask the dynamic linker to add the | 
|  | // load address. | 
|  | if (!Config->Shared || Target->isRelRelative(Type) || | 
|  | Target->isSizeRel(Type)) | 
|  | continue; | 
|  |  | 
|  | uintX_t Addend = getAddend<ELFT>(RI); | 
|  | if (Config->EMachine == EM_PPC64 && RI.getType(false) == R_PPC64_TOC) { | 
|  | Out<ELFT>::RelaDyn->addReloc({R_PPC64_RELATIVE, &C, RI.r_offset, false, | 
|  | nullptr, | 
|  | (uintX_t)getPPC64TocBase() + Addend}); | 
|  | continue; | 
|  | } | 
|  | if (Body) { | 
|  | Out<ELFT>::RelaDyn->addReloc( | 
|  | {Target->RelativeRel, &C, RI.r_offset, true, Body, Addend}); | 
|  | continue; | 
|  | } | 
|  | const Elf_Sym *Sym = | 
|  | File.getObj().getRelocationSymbol(&RI, File.getSymbolTable()); | 
|  | InputSectionBase<ELFT> *Section = File.getSection(*Sym); | 
|  | uintX_t Offset = Sym->st_value; | 
|  | if (Sym->getType() == STT_SECTION) { | 
|  | Offset += Addend; | 
|  | Addend = 0; | 
|  | } | 
|  | Out<ELFT>::RelaDyn->addReloc( | 
|  | {Target->RelativeRel, &C, RI.r_offset, Section, Offset, Addend}); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::scanRelocs(InputSection<ELFT> &C) { | 
|  | if (C.getSectionHdr()->sh_flags & SHF_ALLOC) | 
|  | for (const Elf_Shdr *RelSec : C.RelocSections) | 
|  | scanRelocs(C, *RelSec); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::scanRelocs(InputSectionBase<ELFT> &S, | 
|  | const Elf_Shdr &RelSec) { | 
|  | ELFFile<ELFT> &EObj = S.getFile()->getObj(); | 
|  | if (RelSec.sh_type == SHT_RELA) | 
|  | scanRelocs(S, EObj.relas(&RelSec)); | 
|  | else | 
|  | scanRelocs(S, EObj.rels(&RelSec)); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static void reportUndefined(SymbolTable<ELFT> &Symtab, SymbolBody *Sym) { | 
|  | if ((Config->Relocatable || Config->Shared) && !Config->NoUndefined) | 
|  | return; | 
|  |  | 
|  | std::string Msg = "undefined symbol: " + Sym->getName().str(); | 
|  | if (ELFFileBase<ELFT> *File = Symtab.findFile(Sym)) | 
|  | Msg += " in " + File->getName().str(); | 
|  | if (Config->NoInhibitExec) | 
|  | warning(Msg); | 
|  | else | 
|  | error(Msg); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static bool shouldKeepInSymtab(const ObjectFile<ELFT> &File, StringRef SymName, | 
|  | const typename ELFFile<ELFT>::Elf_Sym &Sym) { | 
|  | if (Sym.getType() == STT_SECTION || Sym.getType() == STT_FILE) | 
|  | return false; | 
|  |  | 
|  | InputSectionBase<ELFT> *Sec = File.getSection(Sym); | 
|  | // If sym references a section in a discarded group, don't keep it. | 
|  | if (Sec == InputSection<ELFT>::Discarded) | 
|  | return false; | 
|  |  | 
|  | if (Config->DiscardNone) | 
|  | return true; | 
|  |  | 
|  | // In ELF assembly .L symbols are normally discarded by the assembler. | 
|  | // If the assembler fails to do so, the linker discards them if | 
|  | // * --discard-locals is used. | 
|  | // * The symbol is in a SHF_MERGE section, which is normally the reason for | 
|  | //   the assembler keeping the .L symbol. | 
|  | if (!SymName.startswith(".L") && !SymName.empty()) | 
|  | return true; | 
|  |  | 
|  | if (Config->DiscardLocals) | 
|  | return false; | 
|  |  | 
|  | return !(Sec->getSectionHdr()->sh_flags & SHF_MERGE); | 
|  | } | 
|  |  | 
|  | // Local symbols are not in the linker's symbol table. This function scans | 
|  | // each object file's symbol table to copy local symbols to the output. | 
|  | template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { | 
|  | if (!Out<ELFT>::SymTab) | 
|  | return; | 
|  | for (const std::unique_ptr<ObjectFile<ELFT>> &F : Symtab.getObjectFiles()) { | 
|  | for (const Elf_Sym &Sym : F->getLocalSymbols()) { | 
|  | ErrorOr<StringRef> SymNameOrErr = Sym.getName(F->getStringTable()); | 
|  | fatal(SymNameOrErr); | 
|  | StringRef SymName = *SymNameOrErr; | 
|  | if (!shouldKeepInSymtab<ELFT>(*F, SymName, Sym)) | 
|  | continue; | 
|  | if (Sym.st_shndx != SHN_ABS) { | 
|  | InputSectionBase<ELFT> *Section = F->getSection(Sym); | 
|  | if (!Section->Live) | 
|  | continue; | 
|  | } | 
|  | ++Out<ELFT>::SymTab->NumLocals; | 
|  | F->KeptLocalSyms.push_back(std::make_pair( | 
|  | &Sym, Out<ELFT>::SymTab->StrTabSec.addString(SymName))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections that | 
|  | // we would like to make sure appear is a specific order to maximize their | 
|  | // coverage by a single signed 16-bit offset from the TOC base pointer. | 
|  | // Conversely, the special .tocbss section should be first among all SHT_NOBITS | 
|  | // sections. This will put it next to the loaded special PPC64 sections (and, | 
|  | // thus, within reach of the TOC base pointer). | 
|  | static int getPPC64SectionRank(StringRef SectionName) { | 
|  | return StringSwitch<int>(SectionName) | 
|  | .Case(".tocbss", 0) | 
|  | .Case(".branch_lt", 2) | 
|  | .Case(".toc", 3) | 
|  | .Case(".toc1", 4) | 
|  | .Case(".opd", 5) | 
|  | .Default(1); | 
|  | } | 
|  |  | 
|  | template <class ELFT> static bool isRelroSection(OutputSectionBase<ELFT> *Sec) { | 
|  | if (!Config->ZRelro) | 
|  | return false; | 
|  | typename OutputSectionBase<ELFT>::uintX_t Flags = Sec->getFlags(); | 
|  | if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) | 
|  | return false; | 
|  | if (Flags & SHF_TLS) | 
|  | return true; | 
|  | uint32_t Type = Sec->getType(); | 
|  | if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || | 
|  | Type == SHT_PREINIT_ARRAY) | 
|  | return true; | 
|  | if (Sec == Out<ELFT>::GotPlt) | 
|  | return Config->ZNow; | 
|  | if (Sec == Out<ELFT>::Dynamic || Sec == Out<ELFT>::Got) | 
|  | return true; | 
|  | StringRef S = Sec->getName(); | 
|  | return S == ".data.rel.ro" || S == ".ctors" || S == ".dtors" || S == ".jcr" || | 
|  | S == ".eh_frame"; | 
|  | } | 
|  |  | 
|  | // Output section ordering is determined by this function. | 
|  | template <class ELFT> | 
|  | static bool compareSections(OutputSectionBase<ELFT> *A, | 
|  | OutputSectionBase<ELFT> *B) { | 
|  | typedef typename ELFFile<ELFT>::uintX_t uintX_t; | 
|  |  | 
|  | int Comp = Script->compareSections(A->getName(), B->getName()); | 
|  | if (Comp != 0) | 
|  | return Comp < 0; | 
|  |  | 
|  | uintX_t AFlags = A->getFlags(); | 
|  | uintX_t BFlags = B->getFlags(); | 
|  |  | 
|  | // Allocatable sections go first to reduce the total PT_LOAD size and | 
|  | // so debug info doesn't change addresses in actual code. | 
|  | bool AIsAlloc = AFlags & SHF_ALLOC; | 
|  | bool BIsAlloc = BFlags & SHF_ALLOC; | 
|  | if (AIsAlloc != BIsAlloc) | 
|  | return AIsAlloc; | 
|  |  | 
|  | // We don't have any special requirements for the relative order of | 
|  | // two non allocatable sections. | 
|  | if (!AIsAlloc) | 
|  | return false; | 
|  |  | 
|  | // We want the read only sections first so that they go in the PT_LOAD | 
|  | // covering the program headers at the start of the file. | 
|  | bool AIsWritable = AFlags & SHF_WRITE; | 
|  | bool BIsWritable = BFlags & SHF_WRITE; | 
|  | if (AIsWritable != BIsWritable) | 
|  | return BIsWritable; | 
|  |  | 
|  | // For a corresponding reason, put non exec sections first (the program | 
|  | // header PT_LOAD is not executable). | 
|  | bool AIsExec = AFlags & SHF_EXECINSTR; | 
|  | bool BIsExec = BFlags & SHF_EXECINSTR; | 
|  | if (AIsExec != BIsExec) | 
|  | return BIsExec; | 
|  |  | 
|  | // If we got here we know that both A and B are in the same PT_LOAD. | 
|  |  | 
|  | // The TLS initialization block needs to be a single contiguous block in a R/W | 
|  | // PT_LOAD, so stick TLS sections directly before R/W sections. The TLS NOBITS | 
|  | // sections are placed here as they don't take up virtual address space in the | 
|  | // PT_LOAD. | 
|  | bool AIsTls = AFlags & SHF_TLS; | 
|  | bool BIsTls = BFlags & SHF_TLS; | 
|  | if (AIsTls != BIsTls) | 
|  | return AIsTls; | 
|  |  | 
|  | // The next requirement we have is to put nobits sections last. The | 
|  | // reason is that the only thing the dynamic linker will see about | 
|  | // them is a p_memsz that is larger than p_filesz. Seeing that it | 
|  | // zeros the end of the PT_LOAD, so that has to correspond to the | 
|  | // nobits sections. | 
|  | bool AIsNoBits = A->getType() == SHT_NOBITS; | 
|  | bool BIsNoBits = B->getType() == SHT_NOBITS; | 
|  | if (AIsNoBits != BIsNoBits) | 
|  | return BIsNoBits; | 
|  |  | 
|  | // We place RelRo section before plain r/w ones. | 
|  | bool AIsRelRo = isRelroSection(A); | 
|  | bool BIsRelRo = isRelroSection(B); | 
|  | if (AIsRelRo != BIsRelRo) | 
|  | return AIsRelRo; | 
|  |  | 
|  | // Some architectures have additional ordering restrictions for sections | 
|  | // within the same PT_LOAD. | 
|  | if (Config->EMachine == EM_PPC64) | 
|  | return getPPC64SectionRank(A->getName()) < | 
|  | getPPC64SectionRank(B->getName()); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <class ELFT> OutputSection<ELFT> *Writer<ELFT>::getBss() { | 
|  | if (!Out<ELFT>::Bss) { | 
|  | Out<ELFT>::Bss = | 
|  | new OutputSection<ELFT>(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE); | 
|  | OwningSections.emplace_back(Out<ELFT>::Bss); | 
|  | OutputSections.push_back(Out<ELFT>::Bss); | 
|  | } | 
|  | return Out<ELFT>::Bss; | 
|  | } | 
|  |  | 
|  | // Until this function is called, common symbols do not belong to any section. | 
|  | // This function adds them to end of BSS section. | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::addCommonSymbols(std::vector<DefinedCommon *> &Syms) { | 
|  | if (Syms.empty()) | 
|  | return; | 
|  |  | 
|  | // Sort the common symbols by alignment as an heuristic to pack them better. | 
|  | std::stable_sort(Syms.begin(), Syms.end(), | 
|  | [](const DefinedCommon *A, const DefinedCommon *B) { | 
|  | return A->MaxAlignment > B->MaxAlignment; | 
|  | }); | 
|  |  | 
|  | uintX_t Off = getBss()->getSize(); | 
|  | for (DefinedCommon *C : Syms) { | 
|  | Off = alignTo(Off, C->MaxAlignment); | 
|  | C->OffsetInBss = Off; | 
|  | Off += C->Size; | 
|  | } | 
|  |  | 
|  | Out<ELFT>::Bss->setSize(Off); | 
|  | } | 
|  |  | 
|  | // Reserve space in .bss for copy relocations. | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::addCopyRelSymbols(std::vector<SharedSymbol<ELFT> *> &Syms) { | 
|  | if (Syms.empty()) | 
|  | return; | 
|  | uintX_t Off = getBss()->getSize(); | 
|  | for (SharedSymbol<ELFT> *C : Syms) { | 
|  | const Elf_Sym &Sym = C->Sym; | 
|  | const Elf_Shdr *Sec = C->File->getSection(Sym); | 
|  | uintX_t SecAlign = Sec->sh_addralign; | 
|  | unsigned TrailingZeros = | 
|  | std::min(countTrailingZeros(SecAlign), | 
|  | countTrailingZeros((uintX_t)Sym.st_value)); | 
|  | uintX_t Align = 1 << TrailingZeros; | 
|  | Out<ELFT>::Bss->updateAlign(Align); | 
|  | Off = alignTo(Off, Align); | 
|  | C->OffsetInBss = Off; | 
|  | Off += Sym.st_size; | 
|  | } | 
|  | Out<ELFT>::Bss->setSize(Off); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | StringRef Writer<ELFT>::getOutputSectionName(InputSectionBase<ELFT> *S) const { | 
|  | StringRef Dest = Script->getOutputSection<ELFT>(S); | 
|  | if (!Dest.empty()) | 
|  | return Dest; | 
|  |  | 
|  | StringRef Name = S->getSectionName(); | 
|  | for (StringRef V : {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.", | 
|  | ".init_array.", ".fini_array.", ".ctors.", ".dtors.", | 
|  | ".tbss.", ".gcc_except_table.", ".tdata."}) | 
|  | if (Name.startswith(V)) | 
|  | return V.drop_back(); | 
|  | return Name; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void reportDiscarded(InputSectionBase<ELFT> *IS, | 
|  | const std::unique_ptr<ObjectFile<ELFT>> &File) { | 
|  | if (!Config->PrintGcSections || !IS || IS->Live) | 
|  | return; | 
|  | llvm::errs() << "removing unused section from '" << IS->getSectionName() | 
|  | << "' in file '" << File->getName() << "'\n"; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | bool Writer<ELFT>::isDiscarded(InputSectionBase<ELFT> *S) const { | 
|  | return !S || S == InputSection<ELFT>::Discarded || !S->Live || | 
|  | Script->isDiscarded(S); | 
|  | } | 
|  |  | 
|  | // The beginning and the ending of .rel[a].plt section are marked | 
|  | // with __rel[a]_iplt_{start,end} symbols if it is a statically linked | 
|  | // executable. The runtime needs these symbols in order to resolve | 
|  | // all IRELATIVE relocs on startup. For dynamic executables, we don't | 
|  | // need these symbols, since IRELATIVE relocs are resolved through GOT | 
|  | // and PLT. For details, see http://www.airs.com/blog/archives/403. | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::addRelIpltSymbols() { | 
|  | if (isOutputDynamic() || !Out<ELFT>::RelaPlt) | 
|  | return; | 
|  | bool IsRela = shouldUseRela<ELFT>(); | 
|  |  | 
|  | StringRef S = IsRela ? "__rela_iplt_start" : "__rel_iplt_start"; | 
|  | if (Symtab.find(S)) | 
|  | Symtab.addAbsolute(S, ElfSym<ELFT>::RelaIpltStart); | 
|  |  | 
|  | S = IsRela ? "__rela_iplt_end" : "__rel_iplt_end"; | 
|  | if (Symtab.find(S)) | 
|  | Symtab.addAbsolute(S, ElfSym<ELFT>::RelaIpltEnd); | 
|  | } | 
|  |  | 
|  | template <class ELFT> static bool includeInSymtab(const SymbolBody &B) { | 
|  | if (!B.isUsedInRegularObj()) | 
|  | return false; | 
|  |  | 
|  | if (auto *D = dyn_cast<DefinedRegular<ELFT>>(&B)) { | 
|  | // Don't include synthetic symbols like __init_array_start in every output. | 
|  | if (&D->Sym == &ElfSym<ELFT>::Ignored) | 
|  | return false; | 
|  | // Exclude symbols pointing to garbage-collected sections. | 
|  | if (D->Section && !D->Section->Live) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool includeInDynsym(const SymbolBody &B) { | 
|  | uint8_t V = B.getVisibility(); | 
|  | if (V != STV_DEFAULT && V != STV_PROTECTED) | 
|  | return false; | 
|  | if (Config->ExportDynamic || Config->Shared) | 
|  | return true; | 
|  | return B.MustBeInDynSym; | 
|  | } | 
|  |  | 
|  | // This class knows how to create an output section for a given | 
|  | // input section. Output section type is determined by various | 
|  | // factors, including input section's sh_flags, sh_type and | 
|  | // linker scripts. | 
|  | namespace { | 
|  | template <class ELFT> class OutputSectionFactory { | 
|  | typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr; | 
|  | typedef typename ELFFile<ELFT>::uintX_t uintX_t; | 
|  |  | 
|  | public: | 
|  | std::pair<OutputSectionBase<ELFT> *, bool> create(InputSectionBase<ELFT> *C, | 
|  | StringRef OutsecName); | 
|  |  | 
|  | OutputSectionBase<ELFT> *lookup(StringRef Name, uint32_t Type, uintX_t Flags); | 
|  |  | 
|  | private: | 
|  | SectionKey<ELFT::Is64Bits> createKey(InputSectionBase<ELFT> *C, | 
|  | StringRef OutsecName); | 
|  |  | 
|  | SmallDenseMap<SectionKey<ELFT::Is64Bits>, OutputSectionBase<ELFT> *> Map; | 
|  | }; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | std::pair<OutputSectionBase<ELFT> *, bool> | 
|  | OutputSectionFactory<ELFT>::create(InputSectionBase<ELFT> *C, | 
|  | StringRef OutsecName) { | 
|  | SectionKey<ELFT::Is64Bits> Key = createKey(C, OutsecName); | 
|  | OutputSectionBase<ELFT> *&Sec = Map[Key]; | 
|  | if (Sec) | 
|  | return {Sec, false}; | 
|  |  | 
|  | switch (C->SectionKind) { | 
|  | case InputSectionBase<ELFT>::Regular: | 
|  | Sec = new OutputSection<ELFT>(Key.Name, Key.Type, Key.Flags); | 
|  | break; | 
|  | case InputSectionBase<ELFT>::EHFrame: | 
|  | Sec = new EHOutputSection<ELFT>(Key.Name, Key.Type, Key.Flags); | 
|  | break; | 
|  | case InputSectionBase<ELFT>::Merge: | 
|  | Sec = new MergeOutputSection<ELFT>(Key.Name, Key.Type, Key.Flags, | 
|  | Key.Alignment); | 
|  | break; | 
|  | case InputSectionBase<ELFT>::MipsReginfo: | 
|  | Sec = new MipsReginfoOutputSection<ELFT>(); | 
|  | break; | 
|  | } | 
|  | return {Sec, true}; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | OutputSectionBase<ELFT> *OutputSectionFactory<ELFT>::lookup(StringRef Name, | 
|  | uint32_t Type, | 
|  | uintX_t Flags) { | 
|  | return Map.lookup({Name, Type, Flags, 0}); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | SectionKey<ELFT::Is64Bits> | 
|  | OutputSectionFactory<ELFT>::createKey(InputSectionBase<ELFT> *C, | 
|  | StringRef OutsecName) { | 
|  | const Elf_Shdr *H = C->getSectionHdr(); | 
|  | uintX_t Flags = H->sh_flags & ~SHF_GROUP; | 
|  |  | 
|  | // For SHF_MERGE we create different output sections for each alignment. | 
|  | // This makes each output section simple and keeps a single level mapping from | 
|  | // input to output. | 
|  | uintX_t Alignment = 0; | 
|  | if (isa<MergeInputSection<ELFT>>(C)) { | 
|  | Alignment = H->sh_addralign; | 
|  | if (H->sh_entsize > Alignment) | 
|  | Alignment = H->sh_entsize; | 
|  | } | 
|  |  | 
|  | // GNU as can give .eh_frame secion type SHT_PROGBITS or SHT_X86_64_UNWIND | 
|  | // depending on the construct. We want to canonicalize it so that | 
|  | // there is only one .eh_frame in the end. | 
|  | uint32_t Type = H->sh_type; | 
|  | if (Type == SHT_PROGBITS && Config->EMachine == EM_X86_64 && | 
|  | isa<EHInputSection<ELFT>>(C)) | 
|  | Type = SHT_X86_64_UNWIND; | 
|  |  | 
|  | return SectionKey<ELFT::Is64Bits>{OutsecName, Type, Flags, Alignment}; | 
|  | } | 
|  |  | 
|  | // The linker is expected to define some symbols depending on | 
|  | // the linking result. This function defines such symbols. | 
|  | template <class ELFT> void Writer<ELFT>::addReservedSymbols() { | 
|  | // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For | 
|  | // static linking the linker is required to optimize away any references to | 
|  | // __tls_get_addr, so it's not defined anywhere. Create a hidden definition | 
|  | // to avoid the undefined symbol error. | 
|  | if (!isOutputDynamic()) | 
|  | Symtab.addIgnored("__tls_get_addr"); | 
|  |  | 
|  | auto Define = [this](StringRef S, Elf_Sym &Sym) { | 
|  | if (Symtab.find(S)) | 
|  | Symtab.addAbsolute(S, Sym); | 
|  |  | 
|  | // The name without the underscore is not a reserved name, | 
|  | // so it is defined only when there is a reference against it. | 
|  | assert(S.startswith("_")); | 
|  | S = S.substr(1); | 
|  | if (SymbolBody *B = Symtab.find(S)) | 
|  | if (B->isUndefined()) | 
|  | Symtab.addAbsolute(S, Sym); | 
|  | }; | 
|  |  | 
|  | Define("_end", ElfSym<ELFT>::End); | 
|  | Define("_etext", ElfSym<ELFT>::Etext); | 
|  | Define("_edata", ElfSym<ELFT>::Edata); | 
|  | } | 
|  |  | 
|  | // Sort input sections by section name suffixes for | 
|  | // __attribute__((init_priority(N))). | 
|  | template <class ELFT> static void sortInitFini(OutputSectionBase<ELFT> *S) { | 
|  | if (S) | 
|  | reinterpret_cast<OutputSection<ELFT> *>(S)->sortInitFini(); | 
|  | } | 
|  |  | 
|  | // Sort input sections by the special rule for .ctors and .dtors. | 
|  | template <class ELFT> static void sortCtorsDtors(OutputSectionBase<ELFT> *S) { | 
|  | if (S) | 
|  | reinterpret_cast<OutputSection<ELFT> *>(S)->sortCtorsDtors(); | 
|  | } | 
|  |  | 
|  | // Create output section objects and add them to OutputSections. | 
|  | template <class ELFT> bool Writer<ELFT>::createSections() { | 
|  | OutputSections.push_back(Out<ELFT>::ElfHeader); | 
|  | if (!Config->Relocatable) | 
|  | OutputSections.push_back(Out<ELFT>::ProgramHeaders); | 
|  |  | 
|  | // Add .interp first because some loaders want to see that section | 
|  | // on the first page of the executable file when loaded into memory. | 
|  | if (needsInterpSection()) | 
|  | OutputSections.push_back(Out<ELFT>::Interp); | 
|  |  | 
|  | // Create output sections for input object file sections. | 
|  | std::vector<OutputSectionBase<ELFT> *> RegularSections; | 
|  | OutputSectionFactory<ELFT> Factory; | 
|  | for (const std::unique_ptr<ObjectFile<ELFT>> &F : Symtab.getObjectFiles()) { | 
|  | for (InputSectionBase<ELFT> *C : F->getSections()) { | 
|  | if (isDiscarded(C)) { | 
|  | reportDiscarded(C, F); | 
|  | continue; | 
|  | } | 
|  | OutputSectionBase<ELFT> *Sec; | 
|  | bool IsNew; | 
|  | std::tie(Sec, IsNew) = Factory.create(C, getOutputSectionName(C)); | 
|  | if (IsNew) { | 
|  | OwningSections.emplace_back(Sec); | 
|  | OutputSections.push_back(Sec); | 
|  | RegularSections.push_back(Sec); | 
|  | } | 
|  | Sec->addSection(C); | 
|  | } | 
|  | } | 
|  |  | 
|  | Out<ELFT>::Bss = static_cast<OutputSection<ELFT> *>( | 
|  | Factory.lookup(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE)); | 
|  |  | 
|  | // If we have a .opd section (used under PPC64 for function descriptors), | 
|  | // store a pointer to it here so that we can use it later when processing | 
|  | // relocations. | 
|  | Out<ELFT>::Opd = Factory.lookup(".opd", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC); | 
|  |  | 
|  | Out<ELFT>::Dynamic->PreInitArraySec = Factory.lookup( | 
|  | ".preinit_array", SHT_PREINIT_ARRAY, SHF_WRITE | SHF_ALLOC); | 
|  | Out<ELFT>::Dynamic->InitArraySec = | 
|  | Factory.lookup(".init_array", SHT_INIT_ARRAY, SHF_WRITE | SHF_ALLOC); | 
|  | Out<ELFT>::Dynamic->FiniArraySec = | 
|  | Factory.lookup(".fini_array", SHT_FINI_ARRAY, SHF_WRITE | SHF_ALLOC); | 
|  |  | 
|  | // Sort section contents for __attribute__((init_priority(N)). | 
|  | sortInitFini(Out<ELFT>::Dynamic->InitArraySec); | 
|  | sortInitFini(Out<ELFT>::Dynamic->FiniArraySec); | 
|  | sortCtorsDtors(Factory.lookup(".ctors", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC)); | 
|  | sortCtorsDtors(Factory.lookup(".dtors", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC)); | 
|  |  | 
|  | // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop | 
|  | // symbols for sections, so that the runtime can get the start and end | 
|  | // addresses of each section by section name. Add such symbols. | 
|  | addStartEndSymbols(); | 
|  | for (OutputSectionBase<ELFT> *Sec : RegularSections) | 
|  | addStartStopSymbols(Sec); | 
|  |  | 
|  | // Define __rel[a]_iplt_{start,end} symbols if needed. | 
|  | addRelIpltSymbols(); | 
|  |  | 
|  | // Scan relocations. This must be done after every symbol is declared so that | 
|  | // we can correctly decide if a dynamic relocation is needed. | 
|  | for (const std::unique_ptr<ObjectFile<ELFT>> &F : Symtab.getObjectFiles()) { | 
|  | for (InputSectionBase<ELFT> *C : F->getSections()) { | 
|  | if (isDiscarded(C)) | 
|  | continue; | 
|  | if (auto *S = dyn_cast<InputSection<ELFT>>(C)) | 
|  | scanRelocs(*S); | 
|  | else if (auto *S = dyn_cast<EHInputSection<ELFT>>(C)) | 
|  | if (S->RelocSection) | 
|  | scanRelocs(*S, *S->RelocSection); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that we have defined all possible symbols including linker- | 
|  | // synthesized ones. Visit all symbols to give the finishing touches. | 
|  | std::vector<DefinedCommon *> CommonSymbols; | 
|  | std::vector<SharedSymbol<ELFT> *> CopyRelSymbols; | 
|  | for (auto &P : Symtab.getSymbols()) { | 
|  | SymbolBody *Body = P.second->Body; | 
|  | if (auto *U = dyn_cast<Undefined>(Body)) | 
|  | if (!U->isWeak() && !U->canKeepUndefined()) | 
|  | reportUndefined<ELFT>(Symtab, Body); | 
|  |  | 
|  | if (auto *C = dyn_cast<DefinedCommon>(Body)) | 
|  | CommonSymbols.push_back(C); | 
|  | if (auto *SC = dyn_cast<SharedSymbol<ELFT>>(Body)) | 
|  | if (SC->needsCopy()) | 
|  | CopyRelSymbols.push_back(SC); | 
|  |  | 
|  | if (!includeInSymtab<ELFT>(*Body)) | 
|  | continue; | 
|  | if (Out<ELFT>::SymTab) | 
|  | Out<ELFT>::SymTab->addSymbol(Body); | 
|  |  | 
|  | if (isOutputDynamic() && includeInDynsym(*Body)) | 
|  | Out<ELFT>::DynSymTab->addSymbol(Body); | 
|  | } | 
|  |  | 
|  | // Do not proceed if there was an undefined symbol. | 
|  | if (HasError) | 
|  | return false; | 
|  |  | 
|  | addCommonSymbols(CommonSymbols); | 
|  | addCopyRelSymbols(CopyRelSymbols); | 
|  |  | 
|  | // So far we have added sections from input object files. | 
|  | // This function adds linker-created Out<ELFT>::* sections. | 
|  | addPredefinedSections(); | 
|  |  | 
|  | std::stable_sort(OutputSections.begin(), OutputSections.end(), | 
|  | compareSections<ELFT>); | 
|  |  | 
|  | for (unsigned I = dummySectionsNum(), N = OutputSections.size(); I < N; ++I) | 
|  | OutputSections[I]->SectionIndex = I + 1 - dummySectionsNum(); | 
|  |  | 
|  | for (OutputSectionBase<ELFT> *Sec : getSections()) | 
|  | Sec->setSHName(Out<ELFT>::ShStrTab->addString(Sec->getName())); | 
|  |  | 
|  | // Finalizers fix each section's size. | 
|  | // .dynsym is finalized early since that may fill up .gnu.hash. | 
|  | if (isOutputDynamic()) | 
|  | Out<ELFT>::DynSymTab->finalize(); | 
|  |  | 
|  | // Fill other section headers. The dynamic table is finalized | 
|  | // at the end because some tags like RELSZ depend on result | 
|  | // of finalizing other sections. The dynamic string table is | 
|  | // finalized once the .dynamic finalizer has added a few last | 
|  | // strings. See DynamicSection::finalize() | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) | 
|  | if (Sec != Out<ELFT>::DynStrTab && Sec != Out<ELFT>::Dynamic) | 
|  | Sec->finalize(); | 
|  |  | 
|  | if (isOutputDynamic()) | 
|  | Out<ELFT>::Dynamic->finalize(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class ELFT> bool Writer<ELFT>::needsGot() { | 
|  | if (!Out<ELFT>::Got->empty()) | 
|  | return true; | 
|  |  | 
|  | // We add the .got section to the result for dynamic MIPS target because | 
|  | // its address and properties are mentioned in the .dynamic section. | 
|  | if (Config->EMachine == EM_MIPS && isOutputDynamic()) | 
|  | return true; | 
|  |  | 
|  | // If we have a relocation that is relative to GOT (such as GOTOFFREL), | 
|  | // we need to emit a GOT even if it's empty. | 
|  | return HasGotOffRel; | 
|  | } | 
|  |  | 
|  | // This function add Out<ELFT>::* sections to OutputSections. | 
|  | template <class ELFT> void Writer<ELFT>::addPredefinedSections() { | 
|  | auto Add = [&](OutputSectionBase<ELFT> *C) { | 
|  | if (C) | 
|  | OutputSections.push_back(C); | 
|  | }; | 
|  |  | 
|  | // This order is not the same as the final output order | 
|  | // because we sort the sections using their attributes below. | 
|  | Add(Out<ELFT>::SymTab); | 
|  | Add(Out<ELFT>::ShStrTab); | 
|  | Add(Out<ELFT>::StrTab); | 
|  | if (isOutputDynamic()) { | 
|  | Add(Out<ELFT>::DynSymTab); | 
|  | Add(Out<ELFT>::GnuHashTab); | 
|  | Add(Out<ELFT>::HashTab); | 
|  | Add(Out<ELFT>::Dynamic); | 
|  | Add(Out<ELFT>::DynStrTab); | 
|  | if (Out<ELFT>::RelaDyn->hasRelocs()) | 
|  | Add(Out<ELFT>::RelaDyn); | 
|  | Add(Out<ELFT>::MipsRldMap); | 
|  | } | 
|  |  | 
|  | // We always need to add rel[a].plt to output if it has entries. | 
|  | // Even during static linking it can contain R_[*]_IRELATIVE relocations. | 
|  | if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) { | 
|  | Add(Out<ELFT>::RelaPlt); | 
|  | Out<ELFT>::RelaPlt->Static = !isOutputDynamic(); | 
|  | } | 
|  |  | 
|  | if (needsGot()) | 
|  | Add(Out<ELFT>::Got); | 
|  | if (Out<ELFT>::GotPlt && !Out<ELFT>::GotPlt->empty()) | 
|  | Add(Out<ELFT>::GotPlt); | 
|  | if (!Out<ELFT>::Plt->empty()) | 
|  | Add(Out<ELFT>::Plt); | 
|  | if (Out<ELFT>::EhFrameHdr->Live) | 
|  | Add(Out<ELFT>::EhFrameHdr); | 
|  | } | 
|  |  | 
|  | // The linker is expected to define SECNAME_start and SECNAME_end | 
|  | // symbols for a few sections. This function defines them. | 
|  | template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { | 
|  | auto Define = [&](StringRef Start, StringRef End, | 
|  | OutputSectionBase<ELFT> *OS) { | 
|  | if (OS) { | 
|  | Symtab.addSynthetic(Start, *OS, 0); | 
|  | Symtab.addSynthetic(End, *OS, OS->getSize()); | 
|  | } else { | 
|  | Symtab.addIgnored(Start); | 
|  | Symtab.addIgnored(End); | 
|  | } | 
|  | }; | 
|  |  | 
|  | Define("__preinit_array_start", "__preinit_array_end", | 
|  | Out<ELFT>::Dynamic->PreInitArraySec); | 
|  | Define("__init_array_start", "__init_array_end", | 
|  | Out<ELFT>::Dynamic->InitArraySec); | 
|  | Define("__fini_array_start", "__fini_array_end", | 
|  | Out<ELFT>::Dynamic->FiniArraySec); | 
|  | } | 
|  |  | 
|  | // If a section name is valid as a C identifier (which is rare because of | 
|  | // the leading '.'), linkers are expected to define __start_<secname> and | 
|  | // __stop_<secname> symbols. They are at beginning and end of the section, | 
|  | // respectively. This is not requested by the ELF standard, but GNU ld and | 
|  | // gold provide the feature, and used by many programs. | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::addStartStopSymbols(OutputSectionBase<ELFT> *Sec) { | 
|  | StringRef S = Sec->getName(); | 
|  | if (!isValidCIdentifier(S)) | 
|  | return; | 
|  | StringSaver Saver(Alloc); | 
|  | StringRef Start = Saver.save("__start_" + S); | 
|  | StringRef Stop = Saver.save("__stop_" + S); | 
|  | if (SymbolBody *B = Symtab.find(Start)) | 
|  | if (B->isUndefined()) | 
|  | Symtab.addSynthetic(Start, *Sec, 0); | 
|  | if (SymbolBody *B = Symtab.find(Stop)) | 
|  | if (B->isUndefined()) | 
|  | Symtab.addSynthetic(Stop, *Sec, Sec->getSize()); | 
|  | } | 
|  |  | 
|  | template <class ELFT> static bool needsPtLoad(OutputSectionBase<ELFT> *Sec) { | 
|  | if (!(Sec->getFlags() & SHF_ALLOC)) | 
|  | return false; | 
|  |  | 
|  | // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is | 
|  | // responsible for allocating space for them, not the PT_LOAD that | 
|  | // contains the TLS initialization image. | 
|  | if (Sec->getFlags() & SHF_TLS && Sec->getType() == SHT_NOBITS) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static uint32_t toPhdrFlags(uint64_t Flags) { | 
|  | uint32_t Ret = PF_R; | 
|  | if (Flags & SHF_WRITE) | 
|  | Ret |= PF_W; | 
|  | if (Flags & SHF_EXECINSTR) | 
|  | Ret |= PF_X; | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | /// For AMDGPU we need to use custom segment kinds in order to specify which | 
|  | /// address space data should be loaded into. | 
|  | template <class ELFT> | 
|  | static uint32_t getAmdgpuPhdr(OutputSectionBase<ELFT> *Sec) { | 
|  | uint32_t Flags = Sec->getFlags(); | 
|  | if (Flags & SHF_AMDGPU_HSA_CODE) | 
|  | return PT_AMDGPU_HSA_LOAD_CODE_AGENT; | 
|  | if ((Flags & SHF_AMDGPU_HSA_GLOBAL) && !(Flags & SHF_AMDGPU_HSA_AGENT)) | 
|  | return PT_AMDGPU_HSA_LOAD_GLOBAL_PROGRAM; | 
|  | return PT_LOAD; | 
|  | } | 
|  |  | 
|  | // Decide which program headers to create and which sections to include in each | 
|  | // one. | 
|  | template <class ELFT> void Writer<ELFT>::createPhdrs() { | 
|  | auto AddHdr = [this](unsigned Type, unsigned Flags) { | 
|  | return &*Phdrs.emplace(Phdrs.end(), Type, Flags); | 
|  | }; | 
|  |  | 
|  | auto AddSec = [](Phdr &Hdr, OutputSectionBase<ELFT> *Sec) { | 
|  | Hdr.Last = Sec; | 
|  | if (!Hdr.First) | 
|  | Hdr.First = Sec; | 
|  | Hdr.H.p_align = std::max<uintX_t>(Hdr.H.p_align, Sec->getAlign()); | 
|  | }; | 
|  |  | 
|  | // The first phdr entry is PT_PHDR which describes the program header itself. | 
|  | Phdr &Hdr = *AddHdr(PT_PHDR, PF_R); | 
|  | AddSec(Hdr, Out<ELFT>::ProgramHeaders); | 
|  |  | 
|  | // PT_INTERP must be the second entry if exists. | 
|  | if (needsInterpSection()) { | 
|  | Phdr &Hdr = *AddHdr(PT_INTERP, toPhdrFlags(Out<ELFT>::Interp->getFlags())); | 
|  | AddSec(Hdr, Out<ELFT>::Interp); | 
|  | } | 
|  |  | 
|  | // Add the first PT_LOAD segment for regular output sections. | 
|  | uintX_t Flags = PF_R; | 
|  | Phdr *Load = AddHdr(PT_LOAD, Flags); | 
|  | AddSec(*Load, Out<ELFT>::ElfHeader); | 
|  |  | 
|  | Phdr TlsHdr(PT_TLS, PF_R); | 
|  | Phdr RelRo(PT_GNU_RELRO, PF_R); | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) { | 
|  | if (!(Sec->getFlags() & SHF_ALLOC)) | 
|  | break; | 
|  |  | 
|  | // If we meet TLS section then we create TLS header | 
|  | // and put all TLS sections inside for futher use when | 
|  | // assign addresses. | 
|  | if (Sec->getFlags() & SHF_TLS) | 
|  | AddSec(TlsHdr, Sec); | 
|  |  | 
|  | if (!needsPtLoad<ELFT>(Sec)) | 
|  | continue; | 
|  |  | 
|  | // If flags changed then we want new load segment. | 
|  | uintX_t NewFlags = toPhdrFlags(Sec->getFlags()); | 
|  | if (Flags != NewFlags) { | 
|  | uint32_t LoadType = (Config->EMachine == EM_AMDGPU) ? getAmdgpuPhdr(Sec) | 
|  | : (uint32_t)PT_LOAD; | 
|  | Load = AddHdr(LoadType, NewFlags); | 
|  | Flags = NewFlags; | 
|  | } | 
|  |  | 
|  | AddSec(*Load, Sec); | 
|  |  | 
|  | if (isRelroSection(Sec)) | 
|  | AddSec(RelRo, Sec); | 
|  | } | 
|  |  | 
|  | // Add the TLS segment unless it's empty. | 
|  | if (TlsHdr.First) | 
|  | Phdrs.push_back(std::move(TlsHdr)); | 
|  |  | 
|  | // Add an entry for .dynamic. | 
|  | if (isOutputDynamic()) { | 
|  | Phdr &H = *AddHdr(PT_DYNAMIC, toPhdrFlags(Out<ELFT>::Dynamic->getFlags())); | 
|  | AddSec(H, Out<ELFT>::Dynamic); | 
|  | } | 
|  |  | 
|  | // PT_GNU_RELRO includes all sections that should be marked as | 
|  | // read-only by dynamic linker after proccessing relocations. | 
|  | if (RelRo.First) | 
|  | Phdrs.push_back(std::move(RelRo)); | 
|  |  | 
|  | // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. | 
|  | if (Out<ELFT>::EhFrameHdr->Live) { | 
|  | Phdr &Hdr = *AddHdr(PT_GNU_EH_FRAME, | 
|  | toPhdrFlags(Out<ELFT>::EhFrameHdr->getFlags())); | 
|  | AddSec(Hdr, Out<ELFT>::EhFrameHdr); | 
|  | } | 
|  |  | 
|  | // PT_GNU_STACK is a special section to tell the loader to make the | 
|  | // pages for the stack non-executable. | 
|  | if (!Config->ZExecStack) | 
|  | AddHdr(PT_GNU_STACK, PF_R | PF_W); | 
|  | } | 
|  |  | 
|  | // Used for relocatable output (-r). In this case we create only ELF file | 
|  | // header, do not create program headers. Also assign of section addresses | 
|  | // is very straightforward: we just put all sections sequentually to the file. | 
|  | template <class ELFT> void Writer<ELFT>::assignAddressesRelocatable() { | 
|  | Out<ELFT>::ElfHeader->setSize(sizeof(Elf_Ehdr)); | 
|  | uintX_t FileOff = 0; | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) { | 
|  | FileOff = alignTo(FileOff, Sec->getAlign()); | 
|  | Sec->setFileOffset(FileOff); | 
|  | FileOff += Sec->getSize(); | 
|  | } | 
|  | SectionHeaderOff = alignTo(FileOff, sizeof(uintX_t)); | 
|  | FileSize = SectionHeaderOff + getNumSections() * sizeof(Elf_Shdr); | 
|  | } | 
|  |  | 
|  | // Visits all headers in PhdrTable and assigns the adresses to | 
|  | // the output sections. Also creates common and special headers. | 
|  | template <class ELFT> void Writer<ELFT>::assignAddresses() { | 
|  | Out<ELFT>::ElfHeader->setSize(sizeof(Elf_Ehdr)); | 
|  | size_t PhdrSize = sizeof(Elf_Phdr) * Phdrs.size(); | 
|  | Out<ELFT>::ProgramHeaders->setSize(PhdrSize); | 
|  |  | 
|  | // The first section of each PT_LOAD and the first section after PT_GNU_RELRO | 
|  | // have to be page aligned so that the dynamic linker can set the permissions. | 
|  | SmallPtrSet<OutputSectionBase<ELFT> *, 4> PageAlign; | 
|  | for (const Phdr &P : Phdrs) { | 
|  | if (P.H.p_type == PT_GNU_RELRO) { | 
|  | // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we | 
|  | // have to align it to a page. | 
|  | auto I = std::find(OutputSections.begin(), OutputSections.end(), P.Last); | 
|  | ++I; | 
|  | if (I != OutputSections.end() && needsPtLoad(*I)) | 
|  | PageAlign.insert(*I); | 
|  | } | 
|  |  | 
|  | if (P.H.p_type == PT_LOAD) | 
|  | PageAlign.insert(P.First); | 
|  | } | 
|  |  | 
|  | uintX_t ThreadBssOffset = 0; | 
|  | uintX_t VA = Target->getVAStart(); | 
|  | uintX_t FileOff = 0; | 
|  |  | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) { | 
|  | uintX_t Align = Sec->getAlign(); | 
|  | if (PageAlign.count(Sec)) | 
|  | Align = std::max<uintX_t>(Align, Target->PageSize); | 
|  |  | 
|  | if (Sec->getType() != SHT_NOBITS) | 
|  | FileOff = alignTo(FileOff, Align); | 
|  | Sec->setFileOffset(FileOff); | 
|  | if (Sec->getType() != SHT_NOBITS) | 
|  | FileOff += Sec->getSize(); | 
|  |  | 
|  | // We only assign VAs to allocated sections. | 
|  | if (needsPtLoad<ELFT>(Sec)) { | 
|  | VA = alignTo(VA, Align); | 
|  | Sec->setVA(VA); | 
|  | VA += Sec->getSize(); | 
|  | } else if (Sec->getFlags() & SHF_TLS && Sec->getType() == SHT_NOBITS) { | 
|  | uintX_t TVA = VA + ThreadBssOffset; | 
|  | TVA = alignTo(TVA, Align); | 
|  | Sec->setVA(TVA); | 
|  | ThreadBssOffset = TVA - VA + Sec->getSize(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add space for section headers. | 
|  | SectionHeaderOff = alignTo(FileOff, sizeof(uintX_t)); | 
|  | FileSize = SectionHeaderOff + getNumSections() * sizeof(Elf_Shdr); | 
|  |  | 
|  | // Update "_end" and "end" symbols so that they | 
|  | // point to the end of the data segment. | 
|  | ElfSym<ELFT>::End.st_value = VA; | 
|  |  | 
|  | for (Phdr &PHdr : Phdrs) { | 
|  | Elf_Phdr &H = PHdr.H; | 
|  | if (PHdr.First) { | 
|  | OutputSectionBase<ELFT> *Last = PHdr.Last; | 
|  | H.p_filesz = Last->getFileOff() - PHdr.First->getFileOff(); | 
|  | if (Last->getType() != SHT_NOBITS) | 
|  | H.p_filesz += Last->getSize(); | 
|  | H.p_memsz = Last->getVA() + Last->getSize() - PHdr.First->getVA(); | 
|  | H.p_offset = PHdr.First->getFileOff(); | 
|  | H.p_vaddr = PHdr.First->getVA(); | 
|  | } | 
|  | if (PHdr.H.p_type == PT_LOAD) | 
|  | H.p_align = Target->PageSize; | 
|  | else if (PHdr.H.p_type == PT_GNU_RELRO) | 
|  | H.p_align = 1; | 
|  | H.p_paddr = H.p_vaddr; | 
|  |  | 
|  | // The TLS pointer goes after PT_TLS. At least glibc will align it, | 
|  | // so round up the size to make sure the offsets are correct. | 
|  | if (PHdr.H.p_type == PT_TLS) { | 
|  | Out<ELFT>::TlsPhdr = &H; | 
|  | H.p_memsz = alignTo(H.p_memsz, H.p_align); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint32_t getELFFlags() { | 
|  | if (Config->EMachine != EM_MIPS) | 
|  | return 0; | 
|  | // FIXME: In fact ELF flags depends on ELF flags of input object files | 
|  | // and selected emulation. For now just use hard coded values. | 
|  | uint32_t V = EF_MIPS_ABI_O32 | EF_MIPS_CPIC | EF_MIPS_ARCH_32R2; | 
|  | if (Config->Shared) | 
|  | V |= EF_MIPS_PIC; | 
|  | return V; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static typename ELFFile<ELFT>::uintX_t getEntryAddr() { | 
|  | if (Config->EntrySym) { | 
|  | if (SymbolBody *B = Config->EntrySym->repl()) | 
|  | return B->getVA<ELFT>(); | 
|  | return 0; | 
|  | } | 
|  | if (Config->EntryAddr != uint64_t(-1)) | 
|  | return Config->EntryAddr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | template <class ELFT> static uint8_t getELFEncoding() { | 
|  | if (ELFT::TargetEndianness == llvm::support::little) | 
|  | return ELFDATA2LSB; | 
|  | return ELFDATA2MSB; | 
|  | } | 
|  |  | 
|  | static uint16_t getELFType() { | 
|  | if (Config->Shared) | 
|  | return ET_DYN; | 
|  | if (Config->Relocatable) | 
|  | return ET_REL; | 
|  | return ET_EXEC; | 
|  | } | 
|  |  | 
|  | // This function is called after we have assigned address and size | 
|  | // to each section. This function fixes some predefined absolute | 
|  | // symbol values that depend on section address and size. | 
|  | template <class ELFT> void Writer<ELFT>::fixAbsoluteSymbols() { | 
|  | // Update __rel[a]_iplt_{start,end} symbols so that they point | 
|  | // to beginning or ending of .rela.plt section, respectively. | 
|  | if (Out<ELFT>::RelaPlt) { | 
|  | uintX_t Start = Out<ELFT>::RelaPlt->getVA(); | 
|  | ElfSym<ELFT>::RelaIpltStart.st_value = Start; | 
|  | ElfSym<ELFT>::RelaIpltEnd.st_value = Start + Out<ELFT>::RelaPlt->getSize(); | 
|  | } | 
|  |  | 
|  | // Update MIPS _gp absolute symbol so that it points to the static data. | 
|  | if (Config->EMachine == EM_MIPS) | 
|  | ElfSym<ELFT>::MipsGp.st_value = getMipsGpAddr<ELFT>(); | 
|  |  | 
|  | // _etext points to location after the last read-only loadable segment. | 
|  | // _edata points to the end of the last non SHT_NOBITS section. | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) { | 
|  | if (!(Sec->getFlags() & SHF_ALLOC)) | 
|  | continue; | 
|  | if (!(Sec->getFlags() & SHF_WRITE)) | 
|  | ElfSym<ELFT>::Etext.st_value = Sec->getVA() + Sec->getSize(); | 
|  | if (Sec->getType() != SHT_NOBITS) | 
|  | ElfSym<ELFT>::Edata.st_value = Sec->getVA() + Sec->getSize(); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::writeHeader() { | 
|  | uint8_t *Buf = Buffer->getBufferStart(); | 
|  | memcpy(Buf, "\177ELF", 4); | 
|  |  | 
|  | auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf); | 
|  |  | 
|  | // Write the ELF header. | 
|  | auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf); | 
|  | EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; | 
|  | EHdr->e_ident[EI_DATA] = getELFEncoding<ELFT>(); | 
|  | EHdr->e_ident[EI_VERSION] = EV_CURRENT; | 
|  | EHdr->e_ident[EI_OSABI] = FirstObj.getOSABI(); | 
|  | EHdr->e_type = getELFType(); | 
|  | EHdr->e_machine = FirstObj.getEMachine(); | 
|  | EHdr->e_version = EV_CURRENT; | 
|  | EHdr->e_entry = getEntryAddr<ELFT>(); | 
|  | EHdr->e_shoff = SectionHeaderOff; | 
|  | EHdr->e_flags = getELFFlags(); | 
|  | EHdr->e_ehsize = sizeof(Elf_Ehdr); | 
|  | EHdr->e_phnum = Phdrs.size(); | 
|  | EHdr->e_shentsize = sizeof(Elf_Shdr); | 
|  | EHdr->e_shnum = getNumSections(); | 
|  | EHdr->e_shstrndx = Out<ELFT>::ShStrTab->SectionIndex; | 
|  |  | 
|  | if (!Config->Relocatable) { | 
|  | EHdr->e_phoff = sizeof(Elf_Ehdr); | 
|  | EHdr->e_phentsize = sizeof(Elf_Phdr); | 
|  | } | 
|  |  | 
|  | // Write the program header table. | 
|  | auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff); | 
|  | for (Phdr &P : Phdrs) | 
|  | *HBuf++ = P.H; | 
|  |  | 
|  | // Write the section header table. Note that the first table entry is null. | 
|  | auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff); | 
|  | for (OutputSectionBase<ELFT> *Sec : getSections()) | 
|  | Sec->writeHeaderTo(++SHdrs); | 
|  | } | 
|  |  | 
|  | template <class ELFT> bool Writer<ELFT>::openFile() { | 
|  | ErrorOr<std::unique_ptr<FileOutputBuffer>> BufferOrErr = | 
|  | FileOutputBuffer::create(Config->OutputFile, FileSize, | 
|  | FileOutputBuffer::F_executable); | 
|  | if (error(BufferOrErr, "failed to open " + Config->OutputFile)) | 
|  | return false; | 
|  | Buffer = std::move(*BufferOrErr); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Write section contents to a mmap'ed file. | 
|  | template <class ELFT> void Writer<ELFT>::writeSections() { | 
|  | uint8_t *Buf = Buffer->getBufferStart(); | 
|  |  | 
|  | // PPC64 needs to process relocations in the .opd section before processing | 
|  | // relocations in code-containing sections. | 
|  | if (OutputSectionBase<ELFT> *Sec = Out<ELFT>::Opd) { | 
|  | Out<ELFT>::OpdBuf = Buf + Sec->getFileOff(); | 
|  | Sec->writeTo(Buf + Sec->getFileOff()); | 
|  | } | 
|  |  | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) | 
|  | if (Sec != Out<ELFT>::Opd) | 
|  | Sec->writeTo(Buf + Sec->getFileOff()); | 
|  | } | 
|  |  | 
|  | template void elf2::writeResult<ELF32LE>(SymbolTable<ELF32LE> *Symtab); | 
|  | template void elf2::writeResult<ELF32BE>(SymbolTable<ELF32BE> *Symtab); | 
|  | template void elf2::writeResult<ELF64LE>(SymbolTable<ELF64LE> *Symtab); | 
|  | template void elf2::writeResult<ELF64BE>(SymbolTable<ELF64BE> *Symtab); |