|  | //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass eliminates allocas by either converting them into vectors or | 
|  | // by migrating them to local address space. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "AMDGPU.h" | 
|  | #include "AMDGPUSubtarget.h" | 
|  | #include "Utils/AMDGPUBaseInfo.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/Analysis/CaptureTracking.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/CodeGen/TargetPassConfig.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <map> | 
|  | #include <tuple> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #define DEBUG_TYPE "amdgpu-promote-alloca" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // FIXME: This can create globals so should be a module pass. | 
|  | class AMDGPUPromoteAlloca : public FunctionPass { | 
|  | private: | 
|  | const TargetMachine *TM; | 
|  | Module *Mod = nullptr; | 
|  | const DataLayout *DL = nullptr; | 
|  | AMDGPUAS AS; | 
|  |  | 
|  | // FIXME: This should be per-kernel. | 
|  | uint32_t LocalMemLimit = 0; | 
|  | uint32_t CurrentLocalMemUsage = 0; | 
|  |  | 
|  | bool IsAMDGCN = false; | 
|  | bool IsAMDHSA = false; | 
|  |  | 
|  | std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); | 
|  | Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); | 
|  |  | 
|  | /// BaseAlloca is the alloca root the search started from. | 
|  | /// Val may be that alloca or a recursive user of it. | 
|  | bool collectUsesWithPtrTypes(Value *BaseAlloca, | 
|  | Value *Val, | 
|  | std::vector<Value*> &WorkList) const; | 
|  |  | 
|  | /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand | 
|  | /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). | 
|  | /// Returns true if both operands are derived from the same alloca. Val should | 
|  | /// be the same value as one of the input operands of UseInst. | 
|  | bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, | 
|  | Instruction *UseInst, | 
|  | int OpIdx0, int OpIdx1) const; | 
|  |  | 
|  | /// Check whether we have enough local memory for promotion. | 
|  | bool hasSufficientLocalMem(const Function &F); | 
|  |  | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | AMDGPUPromoteAlloca() : FunctionPass(ID) {} | 
|  |  | 
|  | bool doInitialization(Module &M) override; | 
|  | bool runOnFunction(Function &F) override; | 
|  |  | 
|  | StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } | 
|  |  | 
|  | bool handleAlloca(AllocaInst &I, bool SufficientLDS); | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | FunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char AMDGPUPromoteAlloca::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE, | 
|  | "AMDGPU promote alloca to vector or LDS", false, false) | 
|  |  | 
|  | char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; | 
|  |  | 
|  | bool AMDGPUPromoteAlloca::doInitialization(Module &M) { | 
|  | Mod = &M; | 
|  | DL = &Mod->getDataLayout(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { | 
|  | if (skipFunction(F)) | 
|  | return false; | 
|  |  | 
|  | if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) | 
|  | TM = &TPC->getTM<TargetMachine>(); | 
|  | else | 
|  | return false; | 
|  |  | 
|  | const Triple &TT = TM->getTargetTriple(); | 
|  | IsAMDGCN = TT.getArch() == Triple::amdgcn; | 
|  | IsAMDHSA = TT.getOS() == Triple::AMDHSA; | 
|  |  | 
|  | const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>(F); | 
|  | if (!ST.isPromoteAllocaEnabled()) | 
|  | return false; | 
|  |  | 
|  | AS = AMDGPU::getAMDGPUAS(*F.getParent()); | 
|  |  | 
|  | bool SufficientLDS = hasSufficientLocalMem(F); | 
|  | bool Changed = false; | 
|  | BasicBlock &EntryBB = *F.begin(); | 
|  | for (auto I = EntryBB.begin(), E = EntryBB.end(); I != E; ) { | 
|  | AllocaInst *AI = dyn_cast<AllocaInst>(I); | 
|  |  | 
|  | ++I; | 
|  | if (AI) | 
|  | Changed |= handleAlloca(*AI, SufficientLDS); | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | std::pair<Value *, Value *> | 
|  | AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) { | 
|  | const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>( | 
|  | *Builder.GetInsertBlock()->getParent()); | 
|  |  | 
|  | if (!IsAMDHSA) { | 
|  | Function *LocalSizeYFn | 
|  | = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); | 
|  | Function *LocalSizeZFn | 
|  | = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); | 
|  |  | 
|  | CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); | 
|  | CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); | 
|  |  | 
|  | ST.makeLIDRangeMetadata(LocalSizeY); | 
|  | ST.makeLIDRangeMetadata(LocalSizeZ); | 
|  |  | 
|  | return std::make_pair(LocalSizeY, LocalSizeZ); | 
|  | } | 
|  |  | 
|  | // We must read the size out of the dispatch pointer. | 
|  | assert(IsAMDGCN); | 
|  |  | 
|  | // We are indexing into this struct, and want to extract the workgroup_size_* | 
|  | // fields. | 
|  | // | 
|  | //   typedef struct hsa_kernel_dispatch_packet_s { | 
|  | //     uint16_t header; | 
|  | //     uint16_t setup; | 
|  | //     uint16_t workgroup_size_x ; | 
|  | //     uint16_t workgroup_size_y; | 
|  | //     uint16_t workgroup_size_z; | 
|  | //     uint16_t reserved0; | 
|  | //     uint32_t grid_size_x ; | 
|  | //     uint32_t grid_size_y ; | 
|  | //     uint32_t grid_size_z; | 
|  | // | 
|  | //     uint32_t private_segment_size; | 
|  | //     uint32_t group_segment_size; | 
|  | //     uint64_t kernel_object; | 
|  | // | 
|  | // #ifdef HSA_LARGE_MODEL | 
|  | //     void *kernarg_address; | 
|  | // #elif defined HSA_LITTLE_ENDIAN | 
|  | //     void *kernarg_address; | 
|  | //     uint32_t reserved1; | 
|  | // #else | 
|  | //     uint32_t reserved1; | 
|  | //     void *kernarg_address; | 
|  | // #endif | 
|  | //     uint64_t reserved2; | 
|  | //     hsa_signal_t completion_signal; // uint64_t wrapper | 
|  | //   } hsa_kernel_dispatch_packet_t | 
|  | // | 
|  | Function *DispatchPtrFn | 
|  | = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); | 
|  |  | 
|  | CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); | 
|  | DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias); | 
|  | DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); | 
|  |  | 
|  | // Size of the dispatch packet struct. | 
|  | DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64); | 
|  |  | 
|  | Type *I32Ty = Type::getInt32Ty(Mod->getContext()); | 
|  | Value *CastDispatchPtr = Builder.CreateBitCast( | 
|  | DispatchPtr, PointerType::get(I32Ty, AS.CONSTANT_ADDRESS)); | 
|  |  | 
|  | // We could do a single 64-bit load here, but it's likely that the basic | 
|  | // 32-bit and extract sequence is already present, and it is probably easier | 
|  | // to CSE this. The loads should be mergable later anyway. | 
|  | Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 1); | 
|  | LoadInst *LoadXY = Builder.CreateAlignedLoad(GEPXY, 4); | 
|  |  | 
|  | Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 2); | 
|  | LoadInst *LoadZU = Builder.CreateAlignedLoad(GEPZU, 4); | 
|  |  | 
|  | MDNode *MD = MDNode::get(Mod->getContext(), None); | 
|  | LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); | 
|  | LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); | 
|  | ST.makeLIDRangeMetadata(LoadZU); | 
|  |  | 
|  | // Extract y component. Upper half of LoadZU should be zero already. | 
|  | Value *Y = Builder.CreateLShr(LoadXY, 16); | 
|  |  | 
|  | return std::make_pair(Y, LoadZU); | 
|  | } | 
|  |  | 
|  | Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) { | 
|  | const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>( | 
|  | *Builder.GetInsertBlock()->getParent()); | 
|  | Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic; | 
|  |  | 
|  | switch (N) { | 
|  | case 0: | 
|  | IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x | 
|  | : Intrinsic::r600_read_tidig_x; | 
|  | break; | 
|  | case 1: | 
|  | IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y | 
|  | : Intrinsic::r600_read_tidig_y; | 
|  | break; | 
|  |  | 
|  | case 2: | 
|  | IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z | 
|  | : Intrinsic::r600_read_tidig_z; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("invalid dimension"); | 
|  | } | 
|  |  | 
|  | Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); | 
|  | CallInst *CI = Builder.CreateCall(WorkitemIdFn); | 
|  | ST.makeLIDRangeMetadata(CI); | 
|  |  | 
|  | return CI; | 
|  | } | 
|  |  | 
|  | static VectorType *arrayTypeToVecType(ArrayType *ArrayTy) { | 
|  | return VectorType::get(ArrayTy->getElementType(), | 
|  | ArrayTy->getNumElements()); | 
|  | } | 
|  |  | 
|  | static Value * | 
|  | calculateVectorIndex(Value *Ptr, | 
|  | const std::map<GetElementPtrInst *, Value *> &GEPIdx) { | 
|  | GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr); | 
|  |  | 
|  | auto I = GEPIdx.find(GEP); | 
|  | return I == GEPIdx.end() ? nullptr : I->second; | 
|  | } | 
|  |  | 
|  | static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { | 
|  | // FIXME we only support simple cases | 
|  | if (GEP->getNumOperands() != 3) | 
|  | return nullptr; | 
|  |  | 
|  | ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); | 
|  | if (!I0 || !I0->isZero()) | 
|  | return nullptr; | 
|  |  | 
|  | return GEP->getOperand(2); | 
|  | } | 
|  |  | 
|  | // Not an instruction handled below to turn into a vector. | 
|  | // | 
|  | // TODO: Check isTriviallyVectorizable for calls and handle other | 
|  | // instructions. | 
|  | static bool canVectorizeInst(Instruction *Inst, User *User) { | 
|  | switch (Inst->getOpcode()) { | 
|  | case Instruction::Load: { | 
|  | LoadInst *LI = cast<LoadInst>(Inst); | 
|  | // Currently only handle the case where the Pointer Operand is a GEP so check for that case. | 
|  | return isa<GetElementPtrInst>(LI->getPointerOperand()) && !LI->isVolatile(); | 
|  | } | 
|  | case Instruction::BitCast: | 
|  | case Instruction::AddrSpaceCast: | 
|  | return true; | 
|  | case Instruction::Store: { | 
|  | // Must be the stored pointer operand, not a stored value, plus | 
|  | // since it should be canonical form, the User should be a GEP. | 
|  | StoreInst *SI = cast<StoreInst>(Inst); | 
|  | return (SI->getPointerOperand() == User) && isa<GetElementPtrInst>(User) && !SI->isVolatile(); | 
|  | } | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool tryPromoteAllocaToVector(AllocaInst *Alloca, AMDGPUAS AS) { | 
|  | ArrayType *AllocaTy = dyn_cast<ArrayType>(Alloca->getAllocatedType()); | 
|  |  | 
|  | DEBUG(dbgs() << "Alloca candidate for vectorization\n"); | 
|  |  | 
|  | // FIXME: There is no reason why we can't support larger arrays, we | 
|  | // are just being conservative for now. | 
|  | // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these | 
|  | // could also be promoted but we don't currently handle this case | 
|  | if (!AllocaTy || | 
|  | AllocaTy->getNumElements() > 4 || | 
|  | AllocaTy->getNumElements() < 2 || | 
|  | !VectorType::isValidElementType(AllocaTy->getElementType())) { | 
|  | DEBUG(dbgs() << "  Cannot convert type to vector\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::map<GetElementPtrInst*, Value*> GEPVectorIdx; | 
|  | std::vector<Value*> WorkList; | 
|  | for (User *AllocaUser : Alloca->users()) { | 
|  | GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); | 
|  | if (!GEP) { | 
|  | if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca)) | 
|  | return false; | 
|  |  | 
|  | WorkList.push_back(AllocaUser); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Value *Index = GEPToVectorIndex(GEP); | 
|  |  | 
|  | // If we can't compute a vector index from this GEP, then we can't | 
|  | // promote this alloca to vector. | 
|  | if (!Index) { | 
|  | DEBUG(dbgs() << "  Cannot compute vector index for GEP " << *GEP << '\n'); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | GEPVectorIdx[GEP] = Index; | 
|  | for (User *GEPUser : AllocaUser->users()) { | 
|  | if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser)) | 
|  | return false; | 
|  |  | 
|  | WorkList.push_back(GEPUser); | 
|  | } | 
|  | } | 
|  |  | 
|  | VectorType *VectorTy = arrayTypeToVecType(AllocaTy); | 
|  |  | 
|  | DEBUG(dbgs() << "  Converting alloca to vector " | 
|  | << *AllocaTy << " -> " << *VectorTy << '\n'); | 
|  |  | 
|  | for (Value *V : WorkList) { | 
|  | Instruction *Inst = cast<Instruction>(V); | 
|  | IRBuilder<> Builder(Inst); | 
|  | switch (Inst->getOpcode()) { | 
|  | case Instruction::Load: { | 
|  | Type *VecPtrTy = VectorTy->getPointerTo(AS.PRIVATE_ADDRESS); | 
|  | Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand(); | 
|  | Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); | 
|  |  | 
|  | Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); | 
|  | Value *VecValue = Builder.CreateLoad(BitCast); | 
|  | Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); | 
|  | Inst->replaceAllUsesWith(ExtractElement); | 
|  | Inst->eraseFromParent(); | 
|  | break; | 
|  | } | 
|  | case Instruction::Store: { | 
|  | Type *VecPtrTy = VectorTy->getPointerTo(AS.PRIVATE_ADDRESS); | 
|  |  | 
|  | StoreInst *SI = cast<StoreInst>(Inst); | 
|  | Value *Ptr = SI->getPointerOperand(); | 
|  | Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); | 
|  | Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); | 
|  | Value *VecValue = Builder.CreateLoad(BitCast); | 
|  | Value *NewVecValue = Builder.CreateInsertElement(VecValue, | 
|  | SI->getValueOperand(), | 
|  | Index); | 
|  | Builder.CreateStore(NewVecValue, BitCast); | 
|  | Inst->eraseFromParent(); | 
|  | break; | 
|  | } | 
|  | case Instruction::BitCast: | 
|  | case Instruction::AddrSpaceCast: | 
|  | break; | 
|  |  | 
|  | default: | 
|  | llvm_unreachable("Inconsistency in instructions promotable to vector"); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isCallPromotable(CallInst *CI) { | 
|  | IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); | 
|  | if (!II) | 
|  | return false; | 
|  |  | 
|  | switch (II->getIntrinsicID()) { | 
|  | case Intrinsic::memcpy: | 
|  | case Intrinsic::memmove: | 
|  | case Intrinsic::memset: | 
|  | case Intrinsic::lifetime_start: | 
|  | case Intrinsic::lifetime_end: | 
|  | case Intrinsic::invariant_start: | 
|  | case Intrinsic::invariant_end: | 
|  | case Intrinsic::invariant_group_barrier: | 
|  | case Intrinsic::objectsize: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca, | 
|  | Value *Val, | 
|  | Instruction *Inst, | 
|  | int OpIdx0, | 
|  | int OpIdx1) const { | 
|  | // Figure out which operand is the one we might not be promoting. | 
|  | Value *OtherOp = Inst->getOperand(OpIdx0); | 
|  | if (Val == OtherOp) | 
|  | OtherOp = Inst->getOperand(OpIdx1); | 
|  |  | 
|  | if (isa<ConstantPointerNull>(OtherOp)) | 
|  | return true; | 
|  |  | 
|  | Value *OtherObj = GetUnderlyingObject(OtherOp, *DL); | 
|  | if (!isa<AllocaInst>(OtherObj)) | 
|  | return false; | 
|  |  | 
|  | // TODO: We should be able to replace undefs with the right pointer type. | 
|  |  | 
|  | // TODO: If we know the other base object is another promotable | 
|  | // alloca, not necessarily this alloca, we can do this. The | 
|  | // important part is both must have the same address space at | 
|  | // the end. | 
|  | if (OtherObj != BaseAlloca) { | 
|  | DEBUG(dbgs() << "Found a binary instruction with another alloca object\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes( | 
|  | Value *BaseAlloca, | 
|  | Value *Val, | 
|  | std::vector<Value*> &WorkList) const { | 
|  |  | 
|  | for (User *User : Val->users()) { | 
|  | if (is_contained(WorkList, User)) | 
|  | continue; | 
|  |  | 
|  | if (CallInst *CI = dyn_cast<CallInst>(User)) { | 
|  | if (!isCallPromotable(CI)) | 
|  | return false; | 
|  |  | 
|  | WorkList.push_back(User); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Instruction *UseInst = cast<Instruction>(User); | 
|  | if (UseInst->getOpcode() == Instruction::PtrToInt) | 
|  | return false; | 
|  |  | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { | 
|  | if (LI->isVolatile()) | 
|  | return false; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { | 
|  | if (SI->isVolatile()) | 
|  | return false; | 
|  |  | 
|  | // Reject if the stored value is not the pointer operand. | 
|  | if (SI->getPointerOperand() != Val) | 
|  | return false; | 
|  | } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { | 
|  | if (RMW->isVolatile()) | 
|  | return false; | 
|  | } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { | 
|  | if (CAS->isVolatile()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Only promote a select if we know that the other select operand | 
|  | // is from another pointer that will also be promoted. | 
|  | if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { | 
|  | if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) | 
|  | return false; | 
|  |  | 
|  | // May need to rewrite constant operands. | 
|  | WorkList.push_back(ICmp); | 
|  | } | 
|  |  | 
|  | if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { | 
|  | // Give up if the pointer may be captured. | 
|  | if (PointerMayBeCaptured(UseInst, true, true)) | 
|  | return false; | 
|  | // Don't collect the users of this. | 
|  | WorkList.push_back(User); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!User->getType()->isPointerTy()) | 
|  | continue; | 
|  |  | 
|  | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { | 
|  | // Be conservative if an address could be computed outside the bounds of | 
|  | // the alloca. | 
|  | if (!GEP->isInBounds()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Only promote a select if we know that the other select operand is from | 
|  | // another pointer that will also be promoted. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { | 
|  | if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Repeat for phis. | 
|  | if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { | 
|  | // TODO: Handle more complex cases. We should be able to replace loops | 
|  | // over arrays. | 
|  | switch (Phi->getNumIncomingValues()) { | 
|  | case 1: | 
|  | break; | 
|  | case 2: | 
|  | if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) | 
|  | return false; | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | WorkList.push_back(User); | 
|  | if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUPromoteAlloca::hasSufficientLocalMem(const Function &F) { | 
|  |  | 
|  | FunctionType *FTy = F.getFunctionType(); | 
|  | const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>(F); | 
|  |  | 
|  | // If the function has any arguments in the local address space, then it's | 
|  | // possible these arguments require the entire local memory space, so | 
|  | // we cannot use local memory in the pass. | 
|  | for (Type *ParamTy : FTy->params()) { | 
|  | PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); | 
|  | if (PtrTy && PtrTy->getAddressSpace() == AS.LOCAL_ADDRESS) { | 
|  | LocalMemLimit = 0; | 
|  | DEBUG(dbgs() << "Function has local memory argument. Promoting to " | 
|  | "local memory disabled.\n"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | LocalMemLimit = ST.getLocalMemorySize(); | 
|  | if (LocalMemLimit == 0) | 
|  | return false; | 
|  |  | 
|  | const DataLayout &DL = Mod->getDataLayout(); | 
|  |  | 
|  | // Check how much local memory is being used by global objects | 
|  | CurrentLocalMemUsage = 0; | 
|  | for (GlobalVariable &GV : Mod->globals()) { | 
|  | if (GV.getType()->getAddressSpace() != AS.LOCAL_ADDRESS) | 
|  | continue; | 
|  |  | 
|  | for (const User *U : GV.users()) { | 
|  | const Instruction *Use = dyn_cast<Instruction>(U); | 
|  | if (!Use) | 
|  | continue; | 
|  |  | 
|  | if (Use->getParent()->getParent() == &F) { | 
|  | unsigned Align = GV.getAlignment(); | 
|  | if (Align == 0) | 
|  | Align = DL.getABITypeAlignment(GV.getValueType()); | 
|  |  | 
|  | // FIXME: Try to account for padding here. The padding is currently | 
|  | // determined from the inverse order of uses in the function. I'm not | 
|  | // sure if the use list order is in any way connected to this, so the | 
|  | // total reported size is likely incorrect. | 
|  | uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType()); | 
|  | CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align); | 
|  | CurrentLocalMemUsage += AllocSize; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, | 
|  | F); | 
|  |  | 
|  | // Restrict local memory usage so that we don't drastically reduce occupancy, | 
|  | // unless it is already significantly reduced. | 
|  |  | 
|  | // TODO: Have some sort of hint or other heuristics to guess occupancy based | 
|  | // on other factors.. | 
|  | unsigned OccupancyHint = ST.getWavesPerEU(F).second; | 
|  | if (OccupancyHint == 0) | 
|  | OccupancyHint = 7; | 
|  |  | 
|  | // Clamp to max value. | 
|  | OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); | 
|  |  | 
|  | // Check the hint but ignore it if it's obviously wrong from the existing LDS | 
|  | // usage. | 
|  | MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); | 
|  |  | 
|  |  | 
|  | // Round up to the next tier of usage. | 
|  | unsigned MaxSizeWithWaveCount | 
|  | = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); | 
|  |  | 
|  | // Program is possibly broken by using more local mem than available. | 
|  | if (CurrentLocalMemUsage > MaxSizeWithWaveCount) | 
|  | return false; | 
|  |  | 
|  | LocalMemLimit = MaxSizeWithWaveCount; | 
|  |  | 
|  | DEBUG( | 
|  | dbgs() << F.getName() << " uses " << CurrentLocalMemUsage << " bytes of LDS\n" | 
|  | << "  Rounding size to " << MaxSizeWithWaveCount | 
|  | << " with a maximum occupancy of " << MaxOccupancy << '\n' | 
|  | << " and " << (LocalMemLimit - CurrentLocalMemUsage) | 
|  | << " available for promotion\n" | 
|  | ); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // FIXME: Should try to pick the most likely to be profitable allocas first. | 
|  | bool AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I, bool SufficientLDS) { | 
|  | // Array allocations are probably not worth handling, since an allocation of | 
|  | // the array type is the canonical form. | 
|  | if (!I.isStaticAlloca() || I.isArrayAllocation()) | 
|  | return false; | 
|  |  | 
|  | IRBuilder<> Builder(&I); | 
|  |  | 
|  | // First try to replace the alloca with a vector | 
|  | Type *AllocaTy = I.getAllocatedType(); | 
|  |  | 
|  | DEBUG(dbgs() << "Trying to promote " << I << '\n'); | 
|  |  | 
|  | if (tryPromoteAllocaToVector(&I, AS)) | 
|  | return true; // Promoted to vector. | 
|  |  | 
|  | const Function &ContainingFunction = *I.getParent()->getParent(); | 
|  | CallingConv::ID CC = ContainingFunction.getCallingConv(); | 
|  |  | 
|  | // Don't promote the alloca to LDS for shader calling conventions as the work | 
|  | // item ID intrinsics are not supported for these calling conventions. | 
|  | // Furthermore not all LDS is available for some of the stages. | 
|  | switch (CC) { | 
|  | case CallingConv::AMDGPU_KERNEL: | 
|  | case CallingConv::SPIR_KERNEL: | 
|  | break; | 
|  | default: | 
|  | DEBUG(dbgs() << " promote alloca to LDS not supported with calling convention.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Not likely to have sufficient local memory for promotion. | 
|  | if (!SufficientLDS) | 
|  | return false; | 
|  |  | 
|  | const AMDGPUSubtarget &ST = | 
|  | TM->getSubtarget<AMDGPUSubtarget>(ContainingFunction); | 
|  | unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; | 
|  |  | 
|  | const DataLayout &DL = Mod->getDataLayout(); | 
|  |  | 
|  | unsigned Align = I.getAlignment(); | 
|  | if (Align == 0) | 
|  | Align = DL.getABITypeAlignment(I.getAllocatedType()); | 
|  |  | 
|  | // FIXME: This computed padding is likely wrong since it depends on inverse | 
|  | // usage order. | 
|  | // | 
|  | // FIXME: It is also possible that if we're allowed to use all of the memory | 
|  | // could could end up using more than the maximum due to alignment padding. | 
|  |  | 
|  | uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align); | 
|  | uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); | 
|  | NewSize += AllocSize; | 
|  |  | 
|  | if (NewSize > LocalMemLimit) { | 
|  | DEBUG(dbgs() << "  " << AllocSize | 
|  | << " bytes of local memory not available to promote\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | CurrentLocalMemUsage = NewSize; | 
|  |  | 
|  | std::vector<Value*> WorkList; | 
|  |  | 
|  | if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { | 
|  | DEBUG(dbgs() << " Do not know how to convert all uses\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Promoting alloca to local memory\n"); | 
|  |  | 
|  | Function *F = I.getParent()->getParent(); | 
|  |  | 
|  | Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); | 
|  | GlobalVariable *GV = new GlobalVariable( | 
|  | *Mod, GVTy, false, GlobalValue::InternalLinkage, | 
|  | UndefValue::get(GVTy), | 
|  | Twine(F->getName()) + Twine('.') + I.getName(), | 
|  | nullptr, | 
|  | GlobalVariable::NotThreadLocal, | 
|  | AS.LOCAL_ADDRESS); | 
|  | GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); | 
|  | GV->setAlignment(I.getAlignment()); | 
|  |  | 
|  | Value *TCntY, *TCntZ; | 
|  |  | 
|  | std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); | 
|  | Value *TIdX = getWorkitemID(Builder, 0); | 
|  | Value *TIdY = getWorkitemID(Builder, 1); | 
|  | Value *TIdZ = getWorkitemID(Builder, 2); | 
|  |  | 
|  | Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); | 
|  | Tmp0 = Builder.CreateMul(Tmp0, TIdX); | 
|  | Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); | 
|  | Value *TID = Builder.CreateAdd(Tmp0, Tmp1); | 
|  | TID = Builder.CreateAdd(TID, TIdZ); | 
|  |  | 
|  | Value *Indices[] = { | 
|  | Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), | 
|  | TID | 
|  | }; | 
|  |  | 
|  | Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); | 
|  | I.mutateType(Offset->getType()); | 
|  | I.replaceAllUsesWith(Offset); | 
|  | I.eraseFromParent(); | 
|  |  | 
|  | for (Value *V : WorkList) { | 
|  | CallInst *Call = dyn_cast<CallInst>(V); | 
|  | if (!Call) { | 
|  | if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { | 
|  | Value *Src0 = CI->getOperand(0); | 
|  | Type *EltTy = Src0->getType()->getPointerElementType(); | 
|  | PointerType *NewTy = PointerType::get(EltTy, AS.LOCAL_ADDRESS); | 
|  |  | 
|  | if (isa<ConstantPointerNull>(CI->getOperand(0))) | 
|  | CI->setOperand(0, ConstantPointerNull::get(NewTy)); | 
|  |  | 
|  | if (isa<ConstantPointerNull>(CI->getOperand(1))) | 
|  | CI->setOperand(1, ConstantPointerNull::get(NewTy)); | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // The operand's value should be corrected on its own and we don't want to | 
|  | // touch the users. | 
|  | if (isa<AddrSpaceCastInst>(V)) | 
|  | continue; | 
|  |  | 
|  | Type *EltTy = V->getType()->getPointerElementType(); | 
|  | PointerType *NewTy = PointerType::get(EltTy, AS.LOCAL_ADDRESS); | 
|  |  | 
|  | // FIXME: It doesn't really make sense to try to do this for all | 
|  | // instructions. | 
|  | V->mutateType(NewTy); | 
|  |  | 
|  | // Adjust the types of any constant operands. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(V)) { | 
|  | if (isa<ConstantPointerNull>(SI->getOperand(1))) | 
|  | SI->setOperand(1, ConstantPointerNull::get(NewTy)); | 
|  |  | 
|  | if (isa<ConstantPointerNull>(SI->getOperand(2))) | 
|  | SI->setOperand(2, ConstantPointerNull::get(NewTy)); | 
|  | } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { | 
|  | for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { | 
|  | if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) | 
|  | Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); | 
|  | } | 
|  | } | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | IntrinsicInst *Intr = cast<IntrinsicInst>(Call); | 
|  | Builder.SetInsertPoint(Intr); | 
|  | switch (Intr->getIntrinsicID()) { | 
|  | case Intrinsic::lifetime_start: | 
|  | case Intrinsic::lifetime_end: | 
|  | // These intrinsics are for address space 0 only | 
|  | Intr->eraseFromParent(); | 
|  | continue; | 
|  | case Intrinsic::memcpy: { | 
|  | MemCpyInst *MemCpy = cast<MemCpyInst>(Intr); | 
|  | Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getRawSource(), | 
|  | MemCpy->getLength(), MemCpy->getAlignment(), | 
|  | MemCpy->isVolatile()); | 
|  | Intr->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  | case Intrinsic::memmove: { | 
|  | MemMoveInst *MemMove = cast<MemMoveInst>(Intr); | 
|  | Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getRawSource(), | 
|  | MemMove->getLength(), MemMove->getAlignment(), | 
|  | MemMove->isVolatile()); | 
|  | Intr->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  | case Intrinsic::memset: { | 
|  | MemSetInst *MemSet = cast<MemSetInst>(Intr); | 
|  | Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(), | 
|  | MemSet->getLength(), MemSet->getAlignment(), | 
|  | MemSet->isVolatile()); | 
|  | Intr->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  | case Intrinsic::invariant_start: | 
|  | case Intrinsic::invariant_end: | 
|  | case Intrinsic::invariant_group_barrier: | 
|  | Intr->eraseFromParent(); | 
|  | // FIXME: I think the invariant marker should still theoretically apply, | 
|  | // but the intrinsics need to be changed to accept pointers with any | 
|  | // address space. | 
|  | continue; | 
|  | case Intrinsic::objectsize: { | 
|  | Value *Src = Intr->getOperand(0); | 
|  | Type *SrcTy = Src->getType()->getPointerElementType(); | 
|  | Function *ObjectSize = Intrinsic::getDeclaration(Mod, | 
|  | Intrinsic::objectsize, | 
|  | { Intr->getType(), PointerType::get(SrcTy, AS.LOCAL_ADDRESS) } | 
|  | ); | 
|  |  | 
|  | CallInst *NewCall = Builder.CreateCall( | 
|  | ObjectSize, {Src, Intr->getOperand(1), Intr->getOperand(2)}); | 
|  | Intr->replaceAllUsesWith(NewCall); | 
|  | Intr->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  | default: | 
|  | Intr->print(errs()); | 
|  | llvm_unreachable("Don't know how to promote alloca intrinsic use."); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | FunctionPass *llvm::createAMDGPUPromoteAlloca() { | 
|  | return new AMDGPUPromoteAlloca(); | 
|  | } |