|  | //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the interfaces that X86 uses to lower LLVM code into a | 
|  | // selection DAG. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86.h" | 
|  | #include "X86InstrBuilder.h" | 
|  | #include "X86ISelLowering.h" | 
|  | #include "X86TargetMachine.h" | 
|  | #include "llvm/CallingConv.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/GlobalAlias.h" | 
|  | #include "llvm/GlobalVariable.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/Intrinsics.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/VectorExtras.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/PseudoSourceValue.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<bool> | 
|  | DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX")); | 
|  |  | 
|  | // Forward declarations. | 
|  | static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1, | 
|  | SDValue V2); | 
|  |  | 
|  | X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) | 
|  | : TargetLowering(TM) { | 
|  | Subtarget = &TM.getSubtarget<X86Subtarget>(); | 
|  | X86ScalarSSEf64 = Subtarget->hasSSE2(); | 
|  | X86ScalarSSEf32 = Subtarget->hasSSE1(); | 
|  | X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP; | 
|  |  | 
|  | RegInfo = TM.getRegisterInfo(); | 
|  | TD = getTargetData(); | 
|  |  | 
|  | // Set up the TargetLowering object. | 
|  |  | 
|  | // X86 is weird, it always uses i8 for shift amounts and setcc results. | 
|  | setShiftAmountType(MVT::i8); | 
|  | setBooleanContents(ZeroOrOneBooleanContent); | 
|  | setSchedulingPreference(SchedulingForRegPressure); | 
|  | setStackPointerRegisterToSaveRestore(X86StackPtr); | 
|  |  | 
|  | if (Subtarget->isTargetDarwin()) { | 
|  | // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. | 
|  | setUseUnderscoreSetJmp(false); | 
|  | setUseUnderscoreLongJmp(false); | 
|  | } else if (Subtarget->isTargetMingw()) { | 
|  | // MS runtime is weird: it exports _setjmp, but longjmp! | 
|  | setUseUnderscoreSetJmp(true); | 
|  | setUseUnderscoreLongJmp(false); | 
|  | } else { | 
|  | setUseUnderscoreSetJmp(true); | 
|  | setUseUnderscoreLongJmp(true); | 
|  | } | 
|  |  | 
|  | // Set up the register classes. | 
|  | addRegisterClass(MVT::i8, X86::GR8RegisterClass); | 
|  | addRegisterClass(MVT::i16, X86::GR16RegisterClass); | 
|  | addRegisterClass(MVT::i32, X86::GR32RegisterClass); | 
|  | if (Subtarget->is64Bit()) | 
|  | addRegisterClass(MVT::i64, X86::GR64RegisterClass); | 
|  |  | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); | 
|  |  | 
|  | // We don't accept any truncstore of integer registers. | 
|  | setTruncStoreAction(MVT::i64, MVT::i32, Expand); | 
|  | setTruncStoreAction(MVT::i64, MVT::i16, Expand); | 
|  | setTruncStoreAction(MVT::i64, MVT::i8 , Expand); | 
|  | setTruncStoreAction(MVT::i32, MVT::i16, Expand); | 
|  | setTruncStoreAction(MVT::i32, MVT::i8 , Expand); | 
|  | setTruncStoreAction(MVT::i16, MVT::i8,  Expand); | 
|  |  | 
|  | // SETOEQ and SETUNE require checking two conditions. | 
|  | setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand); | 
|  | setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand); | 
|  | setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand); | 
|  | setCondCodeAction(ISD::SETUNE, MVT::f32, Expand); | 
|  | setCondCodeAction(ISD::SETUNE, MVT::f64, Expand); | 
|  | setCondCodeAction(ISD::SETUNE, MVT::f80, Expand); | 
|  |  | 
|  | // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this | 
|  | // operation. | 
|  | setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote); | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand); | 
|  | } else if (!UseSoftFloat) { | 
|  | if (X86ScalarSSEf64) { | 
|  | // We have an impenetrably clever algorithm for ui64->double only. | 
|  | setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom); | 
|  | } | 
|  | // We have an algorithm for SSE2, and we turn this into a 64-bit | 
|  | // FILD for other targets. | 
|  | setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom); | 
|  | } | 
|  |  | 
|  | // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have | 
|  | // this operation. | 
|  | setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote); | 
|  |  | 
|  | if (!UseSoftFloat) { | 
|  | // SSE has no i16 to fp conversion, only i32 | 
|  | if (X86ScalarSSEf32) { | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote); | 
|  | // f32 and f64 cases are Legal, f80 case is not | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom); | 
|  | } else { | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom); | 
|  | } | 
|  | } else { | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote); | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote); | 
|  | } | 
|  |  | 
|  | // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64 | 
|  | // are Legal, f80 is custom lowered. | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom); | 
|  |  | 
|  | // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have | 
|  | // this operation. | 
|  | setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote); | 
|  |  | 
|  | if (X86ScalarSSEf32) { | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote); | 
|  | // f32 and f64 cases are Legal, f80 case is not | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom); | 
|  | } else { | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom); | 
|  | } | 
|  |  | 
|  | // Handle FP_TO_UINT by promoting the destination to a larger signed | 
|  | // conversion. | 
|  | setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote); | 
|  | setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote); | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand); | 
|  | setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote); | 
|  | } else if (!UseSoftFloat) { | 
|  | if (X86ScalarSSEf32 && !Subtarget->hasSSE3()) | 
|  | // Expand FP_TO_UINT into a select. | 
|  | // FIXME: We would like to use a Custom expander here eventually to do | 
|  | // the optimal thing for SSE vs. the default expansion in the legalizer. | 
|  | setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand); | 
|  | else | 
|  | // With SSE3 we can use fisttpll to convert to a signed i64; without | 
|  | // SSE, we're stuck with a fistpll. | 
|  | setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom); | 
|  | } | 
|  |  | 
|  | // TODO: when we have SSE, these could be more efficient, by using movd/movq. | 
|  | if (!X86ScalarSSEf64) { | 
|  | setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand); | 
|  | setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand); | 
|  | } | 
|  |  | 
|  | // Scalar integer divide and remainder are lowered to use operations that | 
|  | // produce two results, to match the available instructions. This exposes | 
|  | // the two-result form to trivial CSE, which is able to combine x/y and x%y | 
|  | // into a single instruction. | 
|  | // | 
|  | // Scalar integer multiply-high is also lowered to use two-result | 
|  | // operations, to match the available instructions. However, plain multiply | 
|  | // (low) operations are left as Legal, as there are single-result | 
|  | // instructions for this in x86. Using the two-result multiply instructions | 
|  | // when both high and low results are needed must be arranged by dagcombine. | 
|  | setOperationAction(ISD::MULHS           , MVT::i8    , Expand); | 
|  | setOperationAction(ISD::MULHU           , MVT::i8    , Expand); | 
|  | setOperationAction(ISD::SDIV            , MVT::i8    , Expand); | 
|  | setOperationAction(ISD::UDIV            , MVT::i8    , Expand); | 
|  | setOperationAction(ISD::SREM            , MVT::i8    , Expand); | 
|  | setOperationAction(ISD::UREM            , MVT::i8    , Expand); | 
|  | setOperationAction(ISD::MULHS           , MVT::i16   , Expand); | 
|  | setOperationAction(ISD::MULHU           , MVT::i16   , Expand); | 
|  | setOperationAction(ISD::SDIV            , MVT::i16   , Expand); | 
|  | setOperationAction(ISD::UDIV            , MVT::i16   , Expand); | 
|  | setOperationAction(ISD::SREM            , MVT::i16   , Expand); | 
|  | setOperationAction(ISD::UREM            , MVT::i16   , Expand); | 
|  | setOperationAction(ISD::MULHS           , MVT::i32   , Expand); | 
|  | setOperationAction(ISD::MULHU           , MVT::i32   , Expand); | 
|  | setOperationAction(ISD::SDIV            , MVT::i32   , Expand); | 
|  | setOperationAction(ISD::UDIV            , MVT::i32   , Expand); | 
|  | setOperationAction(ISD::SREM            , MVT::i32   , Expand); | 
|  | setOperationAction(ISD::UREM            , MVT::i32   , Expand); | 
|  | setOperationAction(ISD::MULHS           , MVT::i64   , Expand); | 
|  | setOperationAction(ISD::MULHU           , MVT::i64   , Expand); | 
|  | setOperationAction(ISD::SDIV            , MVT::i64   , Expand); | 
|  | setOperationAction(ISD::UDIV            , MVT::i64   , Expand); | 
|  | setOperationAction(ISD::SREM            , MVT::i64   , Expand); | 
|  | setOperationAction(ISD::UREM            , MVT::i64   , Expand); | 
|  |  | 
|  | setOperationAction(ISD::BR_JT            , MVT::Other, Expand); | 
|  | setOperationAction(ISD::BRCOND           , MVT::Other, Custom); | 
|  | setOperationAction(ISD::BR_CC            , MVT::Other, Expand); | 
|  | setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand); | 
|  | if (Subtarget->is64Bit()) | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand); | 
|  | setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand); | 
|  | setOperationAction(ISD::FREM             , MVT::f32  , Expand); | 
|  | setOperationAction(ISD::FREM             , MVT::f64  , Expand); | 
|  | setOperationAction(ISD::FREM             , MVT::f80  , Expand); | 
|  | setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom); | 
|  |  | 
|  | setOperationAction(ISD::CTPOP            , MVT::i8   , Expand); | 
|  | setOperationAction(ISD::CTTZ             , MVT::i8   , Custom); | 
|  | setOperationAction(ISD::CTLZ             , MVT::i8   , Custom); | 
|  | setOperationAction(ISD::CTPOP            , MVT::i16  , Expand); | 
|  | setOperationAction(ISD::CTTZ             , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::CTLZ             , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::CTPOP            , MVT::i32  , Expand); | 
|  | setOperationAction(ISD::CTTZ             , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::CTLZ             , MVT::i32  , Custom); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::CTPOP          , MVT::i64  , Expand); | 
|  | setOperationAction(ISD::CTTZ           , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::CTLZ           , MVT::i64  , Custom); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::BSWAP            , MVT::i16  , Expand); | 
|  |  | 
|  | // These should be promoted to a larger select which is supported. | 
|  | setOperationAction(ISD::SELECT           , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::SELECT           , MVT::i8   , Promote); | 
|  | // X86 wants to expand cmov itself. | 
|  | setOperationAction(ISD::SELECT          , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::SELECT          , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SELECT          , MVT::f32  , Custom); | 
|  | setOperationAction(ISD::SELECT          , MVT::f64  , Custom); | 
|  | setOperationAction(ISD::SELECT          , MVT::f80  , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::i8   , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::f32  , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::f64  , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::f80  , Custom); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::SELECT        , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::SETCC         , MVT::i64  , Custom); | 
|  | } | 
|  | // X86 ret instruction may pop stack. | 
|  | setOperationAction(ISD::RET             , MVT::Other, Custom); | 
|  | setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom); | 
|  |  | 
|  | // Darwin ABI issue. | 
|  | setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::JumpTable       , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom); | 
|  | if (Subtarget->is64Bit()) | 
|  | setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::JumpTable     , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom); | 
|  | } | 
|  | // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) | 
|  | setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasSSE1()) | 
|  | setOperationAction(ISD::PREFETCH      , MVT::Other, Legal); | 
|  |  | 
|  | if (!Subtarget->hasSSE2()) | 
|  | setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand); | 
|  |  | 
|  | // Expand certain atomics | 
|  | setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom); | 
|  | setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom); | 
|  | setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); | 
|  | setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom); | 
|  |  | 
|  | if (!Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom); | 
|  | } | 
|  |  | 
|  | // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion. | 
|  | setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand); | 
|  | // FIXME - use subtarget debug flags | 
|  | if (!Subtarget->isTargetDarwin() && | 
|  | !Subtarget->isTargetELF() && | 
|  | !Subtarget->isTargetCygMing()) { | 
|  | setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand); | 
|  | setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); | 
|  | setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand); | 
|  | setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); | 
|  | setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setExceptionPointerRegister(X86::RAX); | 
|  | setExceptionSelectorRegister(X86::RDX); | 
|  | } else { | 
|  | setExceptionPointerRegister(X86::EAX); | 
|  | setExceptionSelectorRegister(X86::EDX); | 
|  | } | 
|  | setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); | 
|  | setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom); | 
|  |  | 
|  | setOperationAction(ISD::TRAP, MVT::Other, Legal); | 
|  |  | 
|  | // VASTART needs to be custom lowered to use the VarArgsFrameIndex | 
|  | setOperationAction(ISD::VASTART           , MVT::Other, Custom); | 
|  | setOperationAction(ISD::VAEND             , MVT::Other, Expand); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::VAARG           , MVT::Other, Custom); | 
|  | setOperationAction(ISD::VACOPY          , MVT::Other, Custom); | 
|  | } else { | 
|  | setOperationAction(ISD::VAARG           , MVT::Other, Expand); | 
|  | setOperationAction(ISD::VACOPY          , MVT::Other, Expand); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand); | 
|  | setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand); | 
|  | if (Subtarget->is64Bit()) | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); | 
|  | if (Subtarget->isTargetCygMing()) | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); | 
|  | else | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); | 
|  |  | 
|  | if (!UseSoftFloat && X86ScalarSSEf64) { | 
|  | // f32 and f64 use SSE. | 
|  | // Set up the FP register classes. | 
|  | addRegisterClass(MVT::f32, X86::FR32RegisterClass); | 
|  | addRegisterClass(MVT::f64, X86::FR64RegisterClass); | 
|  |  | 
|  | // Use ANDPD to simulate FABS. | 
|  | setOperationAction(ISD::FABS , MVT::f64, Custom); | 
|  | setOperationAction(ISD::FABS , MVT::f32, Custom); | 
|  |  | 
|  | // Use XORP to simulate FNEG. | 
|  | setOperationAction(ISD::FNEG , MVT::f64, Custom); | 
|  | setOperationAction(ISD::FNEG , MVT::f32, Custom); | 
|  |  | 
|  | // Use ANDPD and ORPD to simulate FCOPYSIGN. | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); | 
|  |  | 
|  | // We don't support sin/cos/fmod | 
|  | setOperationAction(ISD::FSIN , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOS , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSIN , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOS , MVT::f32, Expand); | 
|  |  | 
|  | // Expand FP immediates into loads from the stack, except for the special | 
|  | // cases we handle. | 
|  | addLegalFPImmediate(APFloat(+0.0)); // xorpd | 
|  | addLegalFPImmediate(APFloat(+0.0f)); // xorps | 
|  | } else if (!UseSoftFloat && X86ScalarSSEf32) { | 
|  | // Use SSE for f32, x87 for f64. | 
|  | // Set up the FP register classes. | 
|  | addRegisterClass(MVT::f32, X86::FR32RegisterClass); | 
|  | addRegisterClass(MVT::f64, X86::RFP64RegisterClass); | 
|  |  | 
|  | // Use ANDPS to simulate FABS. | 
|  | setOperationAction(ISD::FABS , MVT::f32, Custom); | 
|  |  | 
|  | // Use XORP to simulate FNEG. | 
|  | setOperationAction(ISD::FNEG , MVT::f32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::UNDEF,     MVT::f64, Expand); | 
|  |  | 
|  | // Use ANDPS and ORPS to simulate FCOPYSIGN. | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); | 
|  |  | 
|  | // We don't support sin/cos/fmod | 
|  | setOperationAction(ISD::FSIN , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOS , MVT::f32, Expand); | 
|  |  | 
|  | // Special cases we handle for FP constants. | 
|  | addLegalFPImmediate(APFloat(+0.0f)); // xorps | 
|  | addLegalFPImmediate(APFloat(+0.0)); // FLD0 | 
|  | addLegalFPImmediate(APFloat(+1.0)); // FLD1 | 
|  | addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS | 
|  | addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS | 
|  |  | 
|  | if (!UnsafeFPMath) { | 
|  | setOperationAction(ISD::FSIN           , MVT::f64  , Expand); | 
|  | setOperationAction(ISD::FCOS           , MVT::f64  , Expand); | 
|  | } | 
|  | } else if (!UseSoftFloat) { | 
|  | // f32 and f64 in x87. | 
|  | // Set up the FP register classes. | 
|  | addRegisterClass(MVT::f64, X86::RFP64RegisterClass); | 
|  | addRegisterClass(MVT::f32, X86::RFP32RegisterClass); | 
|  |  | 
|  | setOperationAction(ISD::UNDEF,     MVT::f64, Expand); | 
|  | setOperationAction(ISD::UNDEF,     MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); | 
|  |  | 
|  | if (!UnsafeFPMath) { | 
|  | setOperationAction(ISD::FSIN           , MVT::f64  , Expand); | 
|  | setOperationAction(ISD::FCOS           , MVT::f64  , Expand); | 
|  | } | 
|  | addLegalFPImmediate(APFloat(+0.0)); // FLD0 | 
|  | addLegalFPImmediate(APFloat(+1.0)); // FLD1 | 
|  | addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS | 
|  | addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS | 
|  | addLegalFPImmediate(APFloat(+0.0f)); // FLD0 | 
|  | addLegalFPImmediate(APFloat(+1.0f)); // FLD1 | 
|  | addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS | 
|  | addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS | 
|  | } | 
|  |  | 
|  | // Long double always uses X87. | 
|  | if (!UseSoftFloat) { | 
|  | addRegisterClass(MVT::f80, X86::RFP80RegisterClass); | 
|  | setOperationAction(ISD::UNDEF,     MVT::f80, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand); | 
|  | { | 
|  | bool ignored; | 
|  | APFloat TmpFlt(+0.0); | 
|  | TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven, | 
|  | &ignored); | 
|  | addLegalFPImmediate(TmpFlt);  // FLD0 | 
|  | TmpFlt.changeSign(); | 
|  | addLegalFPImmediate(TmpFlt);  // FLD0/FCHS | 
|  | APFloat TmpFlt2(+1.0); | 
|  | TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven, | 
|  | &ignored); | 
|  | addLegalFPImmediate(TmpFlt2);  // FLD1 | 
|  | TmpFlt2.changeSign(); | 
|  | addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS | 
|  | } | 
|  |  | 
|  | if (!UnsafeFPMath) { | 
|  | setOperationAction(ISD::FSIN           , MVT::f80  , Expand); | 
|  | setOperationAction(ISD::FCOS           , MVT::f80  , Expand); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Always use a library call for pow. | 
|  | setOperationAction(ISD::FPOW             , MVT::f32  , Expand); | 
|  | setOperationAction(ISD::FPOW             , MVT::f64  , Expand); | 
|  | setOperationAction(ISD::FPOW             , MVT::f80  , Expand); | 
|  |  | 
|  | setOperationAction(ISD::FLOG, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FLOG2, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FLOG10, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FEXP, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FEXP2, MVT::f80, Expand); | 
|  |  | 
|  | // First set operation action for all vector types to either promote | 
|  | // (for widening) or expand (for scalarization). Then we will selectively | 
|  | // turn on ones that can be effectively codegen'd. | 
|  | for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; | 
|  | VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { | 
|  | setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand); | 
|  | setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand); | 
|  | } | 
|  |  | 
|  | // FIXME: In order to prevent SSE instructions being expanded to MMX ones | 
|  | // with -msoft-float, disable use of MMX as well. | 
|  | if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) { | 
|  | addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass); | 
|  | addRegisterClass(MVT::v4i16, X86::VR64RegisterClass); | 
|  | addRegisterClass(MVT::v2i32, X86::VR64RegisterClass); | 
|  | addRegisterClass(MVT::v2f32, X86::VR64RegisterClass); | 
|  | addRegisterClass(MVT::v1i64, X86::VR64RegisterClass); | 
|  |  | 
|  | setOperationAction(ISD::ADD,                MVT::v8i8,  Legal); | 
|  | setOperationAction(ISD::ADD,                MVT::v4i16, Legal); | 
|  | setOperationAction(ISD::ADD,                MVT::v2i32, Legal); | 
|  | setOperationAction(ISD::ADD,                MVT::v1i64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SUB,                MVT::v8i8,  Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v4i16, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v2i32, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v1i64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::MULHS,              MVT::v4i16, Legal); | 
|  | setOperationAction(ISD::MUL,                MVT::v4i16, Legal); | 
|  |  | 
|  | setOperationAction(ISD::AND,                MVT::v8i8,  Promote); | 
|  | AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64); | 
|  | setOperationAction(ISD::AND,                MVT::v4i16, Promote); | 
|  | AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64); | 
|  | setOperationAction(ISD::AND,                MVT::v2i32, Promote); | 
|  | AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64); | 
|  | setOperationAction(ISD::AND,                MVT::v1i64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::OR,                 MVT::v8i8,  Promote); | 
|  | AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64); | 
|  | setOperationAction(ISD::OR,                 MVT::v4i16, Promote); | 
|  | AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64); | 
|  | setOperationAction(ISD::OR,                 MVT::v2i32, Promote); | 
|  | AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64); | 
|  | setOperationAction(ISD::OR,                 MVT::v1i64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::XOR,                MVT::v8i8,  Promote); | 
|  | AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64); | 
|  | setOperationAction(ISD::XOR,                MVT::v4i16, Promote); | 
|  | AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64); | 
|  | setOperationAction(ISD::XOR,                MVT::v2i32, Promote); | 
|  | AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64); | 
|  | setOperationAction(ISD::XOR,                MVT::v1i64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote); | 
|  | AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64); | 
|  | setOperationAction(ISD::LOAD,               MVT::v4i16, Promote); | 
|  | AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64); | 
|  | setOperationAction(ISD::LOAD,               MVT::v2i32, Promote); | 
|  | AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64); | 
|  | setOperationAction(ISD::LOAD,               MVT::v2f32, Promote); | 
|  | AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64); | 
|  | setOperationAction(ISD::LOAD,               MVT::v1i64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom); | 
|  |  | 
|  | setTruncStoreAction(MVT::v8i16,             MVT::v8i8, Expand); | 
|  | setOperationAction(ISD::TRUNCATE,           MVT::v8i8, Expand); | 
|  | setOperationAction(ISD::SELECT,             MVT::v8i8, Promote); | 
|  | setOperationAction(ISD::SELECT,             MVT::v4i16, Promote); | 
|  | setOperationAction(ISD::SELECT,             MVT::v2i32, Promote); | 
|  | setOperationAction(ISD::SELECT,             MVT::v1i64, Custom); | 
|  | setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom); | 
|  | setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom); | 
|  | setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom); | 
|  | } | 
|  |  | 
|  | if (!UseSoftFloat && Subtarget->hasSSE1()) { | 
|  | addRegisterClass(MVT::v4f32, X86::VR128RegisterClass); | 
|  |  | 
|  | setOperationAction(ISD::FADD,               MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FSUB,               MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FMUL,               MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FDIV,               MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FNEG,               MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::LOAD,               MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom); | 
|  | } | 
|  |  | 
|  | if (!UseSoftFloat && Subtarget->hasSSE2()) { | 
|  | addRegisterClass(MVT::v2f64, X86::VR128RegisterClass); | 
|  |  | 
|  | // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM | 
|  | // registers cannot be used even for integer operations. | 
|  | addRegisterClass(MVT::v16i8, X86::VR128RegisterClass); | 
|  | addRegisterClass(MVT::v8i16, X86::VR128RegisterClass); | 
|  | addRegisterClass(MVT::v4i32, X86::VR128RegisterClass); | 
|  | addRegisterClass(MVT::v2i64, X86::VR128RegisterClass); | 
|  |  | 
|  | setOperationAction(ISD::ADD,                MVT::v16i8, Legal); | 
|  | setOperationAction(ISD::ADD,                MVT::v8i16, Legal); | 
|  | setOperationAction(ISD::ADD,                MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::ADD,                MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::MUL,                MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::SUB,                MVT::v16i8, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v8i16, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::MUL,                MVT::v8i16, Legal); | 
|  | setOperationAction(ISD::FADD,               MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FSUB,               MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FMUL,               MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FDIV,               MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FNEG,               MVT::v2f64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom); | 
|  |  | 
|  | // Custom lower build_vector, vector_shuffle, and extract_vector_elt. | 
|  | for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) { | 
|  | MVT VT = (MVT::SimpleValueType)i; | 
|  | // Do not attempt to custom lower non-power-of-2 vectors | 
|  | if (!isPowerOf2_32(VT.getVectorNumElements())) | 
|  | continue; | 
|  | // Do not attempt to custom lower non-128-bit vectors | 
|  | if (!VT.is128BitVector()) | 
|  | continue; | 
|  | setOperationAction(ISD::BUILD_VECTOR,       VT, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); | 
|  | } | 
|  |  | 
|  | // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. | 
|  | for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) { | 
|  | MVT VT = (MVT::SimpleValueType)i; | 
|  |  | 
|  | // Do not attempt to promote non-128-bit vectors | 
|  | if (!VT.is128BitVector()) { | 
|  | continue; | 
|  | } | 
|  | setOperationAction(ISD::AND,    VT, Promote); | 
|  | AddPromotedToType (ISD::AND,    VT, MVT::v2i64); | 
|  | setOperationAction(ISD::OR,     VT, Promote); | 
|  | AddPromotedToType (ISD::OR,     VT, MVT::v2i64); | 
|  | setOperationAction(ISD::XOR,    VT, Promote); | 
|  | AddPromotedToType (ISD::XOR,    VT, MVT::v2i64); | 
|  | setOperationAction(ISD::LOAD,   VT, Promote); | 
|  | AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64); | 
|  | setOperationAction(ISD::SELECT, VT, Promote); | 
|  | AddPromotedToType (ISD::SELECT, VT, MVT::v2i64); | 
|  | } | 
|  |  | 
|  | setTruncStoreAction(MVT::f64, MVT::f32, Expand); | 
|  |  | 
|  | // Custom lower v2i64 and v2f64 selects. | 
|  | setOperationAction(ISD::LOAD,               MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::SELECT,             MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::v2i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal); | 
|  | if (!DisableMMX && Subtarget->hasMMX()) { | 
|  | setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom); | 
|  | setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasSSE41()) { | 
|  | // FIXME: Do we need to handle scalar-to-vector here? | 
|  | setOperationAction(ISD::MUL,                MVT::v4i32, Legal); | 
|  |  | 
|  | // i8 and i16 vectors are custom , because the source register and source | 
|  | // source memory operand types are not the same width.  f32 vectors are | 
|  | // custom since the immediate controlling the insert encodes additional | 
|  | // information. | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasSSE42()) { | 
|  | setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom); | 
|  | } | 
|  |  | 
|  | if (!UseSoftFloat && Subtarget->hasAVX()) { | 
|  | addRegisterClass(MVT::v8f32, X86::VR256RegisterClass); | 
|  | addRegisterClass(MVT::v4f64, X86::VR256RegisterClass); | 
|  | addRegisterClass(MVT::v8i32, X86::VR256RegisterClass); | 
|  | addRegisterClass(MVT::v4i64, X86::VR256RegisterClass); | 
|  |  | 
|  | setOperationAction(ISD::LOAD,               MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v8i32, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v4i64, Legal); | 
|  | setOperationAction(ISD::FADD,               MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FSUB,               MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FMUL,               MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FDIV,               MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FNEG,               MVT::v8f32, Custom); | 
|  | //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom); | 
|  | //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom); | 
|  | //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom); | 
|  | //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom); | 
|  | //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom); | 
|  |  | 
|  | // Operations to consider commented out -v16i16 v32i8 | 
|  | //setOperationAction(ISD::ADD,                MVT::v16i16, Legal); | 
|  | setOperationAction(ISD::ADD,                MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::ADD,                MVT::v4i64, Custom); | 
|  | //setOperationAction(ISD::SUB,                MVT::v32i8, Legal); | 
|  | //setOperationAction(ISD::SUB,                MVT::v16i16, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::SUB,                MVT::v4i64, Custom); | 
|  | //setOperationAction(ISD::MUL,                MVT::v16i16, Legal); | 
|  | setOperationAction(ISD::FADD,               MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FSUB,               MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FMUL,               MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FDIV,               MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FNEG,               MVT::v4f64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom); | 
|  | // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom); | 
|  | // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom); | 
|  |  | 
|  | // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom); | 
|  | // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom); | 
|  | // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom); | 
|  |  | 
|  | #if 0 | 
|  | // Not sure we want to do this since there are no 256-bit integer | 
|  | // operations in AVX | 
|  |  | 
|  | // Custom lower build_vector, vector_shuffle, and extract_vector_elt. | 
|  | // This includes 256-bit vectors | 
|  | for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) { | 
|  | MVT VT = (MVT::SimpleValueType)i; | 
|  |  | 
|  | // Do not attempt to custom lower non-power-of-2 vectors | 
|  | if (!isPowerOf2_32(VT.getVectorNumElements())) | 
|  | continue; | 
|  |  | 
|  | setOperationAction(ISD::BUILD_VECTOR,       VT, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); | 
|  | } | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if 0 | 
|  | // Not sure we want to do this since there are no 256-bit integer | 
|  | // operations in AVX | 
|  |  | 
|  | // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64. | 
|  | // Including 256-bit vectors | 
|  | for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) { | 
|  | MVT VT = (MVT::SimpleValueType)i; | 
|  |  | 
|  | if (!VT.is256BitVector()) { | 
|  | continue; | 
|  | } | 
|  | setOperationAction(ISD::AND,    VT, Promote); | 
|  | AddPromotedToType (ISD::AND,    VT, MVT::v4i64); | 
|  | setOperationAction(ISD::OR,     VT, Promote); | 
|  | AddPromotedToType (ISD::OR,     VT, MVT::v4i64); | 
|  | setOperationAction(ISD::XOR,    VT, Promote); | 
|  | AddPromotedToType (ISD::XOR,    VT, MVT::v4i64); | 
|  | setOperationAction(ISD::LOAD,   VT, Promote); | 
|  | AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64); | 
|  | setOperationAction(ISD::SELECT, VT, Promote); | 
|  | AddPromotedToType (ISD::SELECT, VT, MVT::v4i64); | 
|  | } | 
|  |  | 
|  | setTruncStoreAction(MVT::f64, MVT::f32, Expand); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // We want to custom lower some of our intrinsics. | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); | 
|  |  | 
|  | // Add/Sub/Mul with overflow operations are custom lowered. | 
|  | setOperationAction(ISD::SADDO, MVT::i32, Custom); | 
|  | setOperationAction(ISD::SADDO, MVT::i64, Custom); | 
|  | setOperationAction(ISD::UADDO, MVT::i32, Custom); | 
|  | setOperationAction(ISD::UADDO, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SSUBO, MVT::i32, Custom); | 
|  | setOperationAction(ISD::SSUBO, MVT::i64, Custom); | 
|  | setOperationAction(ISD::USUBO, MVT::i32, Custom); | 
|  | setOperationAction(ISD::USUBO, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SMULO, MVT::i32, Custom); | 
|  | setOperationAction(ISD::SMULO, MVT::i64, Custom); | 
|  |  | 
|  | if (!Subtarget->is64Bit()) { | 
|  | // These libcalls are not available in 32-bit. | 
|  | setLibcallName(RTLIB::SHL_I128, 0); | 
|  | setLibcallName(RTLIB::SRL_I128, 0); | 
|  | setLibcallName(RTLIB::SRA_I128, 0); | 
|  | } | 
|  |  | 
|  | // We have target-specific dag combine patterns for the following nodes: | 
|  | setTargetDAGCombine(ISD::VECTOR_SHUFFLE); | 
|  | setTargetDAGCombine(ISD::BUILD_VECTOR); | 
|  | setTargetDAGCombine(ISD::SELECT); | 
|  | setTargetDAGCombine(ISD::SHL); | 
|  | setTargetDAGCombine(ISD::SRA); | 
|  | setTargetDAGCombine(ISD::SRL); | 
|  | setTargetDAGCombine(ISD::STORE); | 
|  | setTargetDAGCombine(ISD::MEMBARRIER); | 
|  | if (Subtarget->is64Bit()) | 
|  | setTargetDAGCombine(ISD::MUL); | 
|  |  | 
|  | computeRegisterProperties(); | 
|  |  | 
|  | // FIXME: These should be based on subtarget info. Plus, the values should | 
|  | // be smaller when we are in optimizing for size mode. | 
|  | maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores | 
|  | maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores | 
|  | maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores | 
|  | allowUnalignedMemoryAccesses = true; // x86 supports it! | 
|  | setPrefLoopAlignment(16); | 
|  | benefitFromCodePlacementOpt = true; | 
|  | } | 
|  |  | 
|  |  | 
|  | MVT X86TargetLowering::getSetCCResultType(MVT VT) const { | 
|  | return MVT::i8; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getMaxByValAlign - Helper for getByValTypeAlignment to determine | 
|  | /// the desired ByVal argument alignment. | 
|  | static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) { | 
|  | if (MaxAlign == 16) | 
|  | return; | 
|  | if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) { | 
|  | if (VTy->getBitWidth() == 128) | 
|  | MaxAlign = 16; | 
|  | } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
|  | unsigned EltAlign = 0; | 
|  | getMaxByValAlign(ATy->getElementType(), EltAlign); | 
|  | if (EltAlign > MaxAlign) | 
|  | MaxAlign = EltAlign; | 
|  | } else if (const StructType *STy = dyn_cast<StructType>(Ty)) { | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | 
|  | unsigned EltAlign = 0; | 
|  | getMaxByValAlign(STy->getElementType(i), EltAlign); | 
|  | if (EltAlign > MaxAlign) | 
|  | MaxAlign = EltAlign; | 
|  | if (MaxAlign == 16) | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate | 
|  | /// function arguments in the caller parameter area. For X86, aggregates | 
|  | /// that contain SSE vectors are placed at 16-byte boundaries while the rest | 
|  | /// are at 4-byte boundaries. | 
|  | unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const { | 
|  | if (Subtarget->is64Bit()) { | 
|  | // Max of 8 and alignment of type. | 
|  | unsigned TyAlign = TD->getABITypeAlignment(Ty); | 
|  | if (TyAlign > 8) | 
|  | return TyAlign; | 
|  | return 8; | 
|  | } | 
|  |  | 
|  | unsigned Align = 4; | 
|  | if (Subtarget->hasSSE1()) | 
|  | getMaxByValAlign(Ty, Align); | 
|  | return Align; | 
|  | } | 
|  |  | 
|  | /// getOptimalMemOpType - Returns the target specific optimal type for load | 
|  | /// and store operations as a result of memset, memcpy, and memmove | 
|  | /// lowering. It returns MVT::iAny if SelectionDAG should be responsible for | 
|  | /// determining it. | 
|  | MVT | 
|  | X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align, | 
|  | bool isSrcConst, bool isSrcStr, | 
|  | SelectionDAG &DAG) const { | 
|  | // FIXME: This turns off use of xmm stores for memset/memcpy on targets like | 
|  | // linux.  This is because the stack realignment code can't handle certain | 
|  | // cases like PR2962.  This should be removed when PR2962 is fixed. | 
|  | const Function *F = DAG.getMachineFunction().getFunction(); | 
|  | bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat); | 
|  | if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) { | 
|  | if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16) | 
|  | return MVT::v4i32; | 
|  | if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16) | 
|  | return MVT::v4f32; | 
|  | } | 
|  | if (Subtarget->is64Bit() && Size >= 8) | 
|  | return MVT::i64; | 
|  | return MVT::i32; | 
|  | } | 
|  |  | 
|  | /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC | 
|  | /// jumptable. | 
|  | SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table, | 
|  | SelectionDAG &DAG) const { | 
|  | if (usesGlobalOffsetTable()) | 
|  | return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy()); | 
|  | if (!Subtarget->is64Bit()) | 
|  | // This doesn't have DebugLoc associated with it, but is not really the | 
|  | // same as a Register. | 
|  | return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(), | 
|  | getPointerTy()); | 
|  | return Table; | 
|  | } | 
|  |  | 
|  | /// getFunctionAlignment - Return the Log2 alignment of this function. | 
|  | unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const { | 
|  | return F->hasFnAttr(Attribute::OptimizeForSize) ? 1 : 4; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //               Return Value Calling Convention Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86GenCallingConv.inc" | 
|  |  | 
|  | /// LowerRET - Lower an ISD::RET node. | 
|  | SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) { | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args"); | 
|  |  | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv(); | 
|  | bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); | 
|  | CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs, *DAG.getContext()); | 
|  | CCInfo.AnalyzeReturn(Op.getNode(), RetCC_X86); | 
|  |  | 
|  | // If this is the first return lowered for this function, add the regs to the | 
|  | // liveout set for the function. | 
|  | if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { | 
|  | for (unsigned i = 0; i != RVLocs.size(); ++i) | 
|  | if (RVLocs[i].isRegLoc()) | 
|  | DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); | 
|  | } | 
|  | SDValue Chain = Op.getOperand(0); | 
|  |  | 
|  | // Handle tail call return. | 
|  | Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL); | 
|  | if (Chain.getOpcode() == X86ISD::TAILCALL) { | 
|  | SDValue TailCall = Chain; | 
|  | SDValue TargetAddress = TailCall.getOperand(1); | 
|  | SDValue StackAdjustment = TailCall.getOperand(2); | 
|  | assert(((TargetAddress.getOpcode() == ISD::Register && | 
|  | (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::EAX || | 
|  | cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R11)) || | 
|  | TargetAddress.getOpcode() == ISD::TargetExternalSymbol || | 
|  | TargetAddress.getOpcode() == ISD::TargetGlobalAddress) && | 
|  | "Expecting an global address, external symbol, or register"); | 
|  | assert(StackAdjustment.getOpcode() == ISD::Constant && | 
|  | "Expecting a const value"); | 
|  |  | 
|  | SmallVector<SDValue,8> Operands; | 
|  | Operands.push_back(Chain.getOperand(0)); | 
|  | Operands.push_back(TargetAddress); | 
|  | Operands.push_back(StackAdjustment); | 
|  | // Copy registers used by the call. Last operand is a flag so it is not | 
|  | // copied. | 
|  | for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) { | 
|  | Operands.push_back(Chain.getOperand(i)); | 
|  | } | 
|  | return DAG.getNode(X86ISD::TC_RETURN, dl, MVT::Other, &Operands[0], | 
|  | Operands.size()); | 
|  | } | 
|  |  | 
|  | // Regular return. | 
|  | SDValue Flag; | 
|  |  | 
|  | SmallVector<SDValue, 6> RetOps; | 
|  | RetOps.push_back(Chain); // Operand #0 = Chain (updated below) | 
|  | // Operand #1 = Bytes To Pop | 
|  | RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16)); | 
|  |  | 
|  | // Copy the result values into the output registers. | 
|  | for (unsigned i = 0; i != RVLocs.size(); ++i) { | 
|  | CCValAssign &VA = RVLocs[i]; | 
|  | assert(VA.isRegLoc() && "Can only return in registers!"); | 
|  | SDValue ValToCopy = Op.getOperand(i*2+1); | 
|  |  | 
|  | // Returns in ST0/ST1 are handled specially: these are pushed as operands to | 
|  | // the RET instruction and handled by the FP Stackifier. | 
|  | if (VA.getLocReg() == X86::ST0 || | 
|  | VA.getLocReg() == X86::ST1) { | 
|  | // If this is a copy from an xmm register to ST(0), use an FPExtend to | 
|  | // change the value to the FP stack register class. | 
|  | if (isScalarFPTypeInSSEReg(VA.getValVT())) | 
|  | ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy); | 
|  | RetOps.push_back(ValToCopy); | 
|  | // Don't emit a copytoreg. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64 | 
|  | // which is returned in RAX / RDX. | 
|  | if (Subtarget->is64Bit()) { | 
|  | MVT ValVT = ValToCopy.getValueType(); | 
|  | if (ValVT.isVector() && ValVT.getSizeInBits() == 64) { | 
|  | ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy); | 
|  | if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) | 
|  | ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy); | 
|  | } | 
|  | } | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag); | 
|  | Flag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | // The x86-64 ABI for returning structs by value requires that we copy | 
|  | // the sret argument into %rax for the return. We saved the argument into | 
|  | // a virtual register in the entry block, so now we copy the value out | 
|  | // and into %rax. | 
|  | if (Subtarget->is64Bit() && | 
|  | DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | unsigned Reg = FuncInfo->getSRetReturnReg(); | 
|  | if (!Reg) { | 
|  | Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64)); | 
|  | FuncInfo->setSRetReturnReg(Reg); | 
|  | } | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy()); | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag); | 
|  | Flag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | RetOps[0] = Chain;  // Update chain. | 
|  |  | 
|  | // Add the flag if we have it. | 
|  | if (Flag.getNode()) | 
|  | RetOps.push_back(Flag); | 
|  |  | 
|  | return DAG.getNode(X86ISD::RET_FLAG, dl, | 
|  | MVT::Other, &RetOps[0], RetOps.size()); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// LowerCallResult - Lower the result values of an ISD::CALL into the | 
|  | /// appropriate copies out of appropriate physical registers.  This assumes that | 
|  | /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call | 
|  | /// being lowered.  The returns a SDNode with the same number of values as the | 
|  | /// ISD::CALL. | 
|  | SDNode *X86TargetLowering:: | 
|  | LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall, | 
|  | unsigned CallingConv, SelectionDAG &DAG) { | 
|  |  | 
|  | DebugLoc dl = TheCall->getDebugLoc(); | 
|  | // Assign locations to each value returned by this call. | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | bool isVarArg = TheCall->isVarArg(); | 
|  | bool Is64Bit = Subtarget->is64Bit(); | 
|  | CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), | 
|  | RVLocs, *DAG.getContext()); | 
|  | CCInfo.AnalyzeCallResult(TheCall, RetCC_X86); | 
|  |  | 
|  | SmallVector<SDValue, 8> ResultVals; | 
|  |  | 
|  | // Copy all of the result registers out of their specified physreg. | 
|  | for (unsigned i = 0; i != RVLocs.size(); ++i) { | 
|  | CCValAssign &VA = RVLocs[i]; | 
|  | MVT CopyVT = VA.getValVT(); | 
|  |  | 
|  | // If this is x86-64, and we disabled SSE, we can't return FP values | 
|  | if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && | 
|  | ((Is64Bit || TheCall->isInreg()) && !Subtarget->hasSSE1())) { | 
|  | llvm_report_error("SSE register return with SSE disabled"); | 
|  | } | 
|  |  | 
|  | // If this is a call to a function that returns an fp value on the floating | 
|  | // point stack, but where we prefer to use the value in xmm registers, copy | 
|  | // it out as F80 and use a truncate to move it from fp stack reg to xmm reg. | 
|  | if ((VA.getLocReg() == X86::ST0 || | 
|  | VA.getLocReg() == X86::ST1) && | 
|  | isScalarFPTypeInSSEReg(VA.getValVT())) { | 
|  | CopyVT = MVT::f80; | 
|  | } | 
|  |  | 
|  | SDValue Val; | 
|  | if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) { | 
|  | // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64. | 
|  | if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) { | 
|  | Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), | 
|  | MVT::v2i64, InFlag).getValue(1); | 
|  | Val = Chain.getValue(0); | 
|  | Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, | 
|  | Val, DAG.getConstant(0, MVT::i64)); | 
|  | } else { | 
|  | Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), | 
|  | MVT::i64, InFlag).getValue(1); | 
|  | Val = Chain.getValue(0); | 
|  | } | 
|  | Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val); | 
|  | } else { | 
|  | Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), | 
|  | CopyVT, InFlag).getValue(1); | 
|  | Val = Chain.getValue(0); | 
|  | } | 
|  | InFlag = Chain.getValue(2); | 
|  |  | 
|  | if (CopyVT != VA.getValVT()) { | 
|  | // Round the F80 the right size, which also moves to the appropriate xmm | 
|  | // register. | 
|  | Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val, | 
|  | // This truncation won't change the value. | 
|  | DAG.getIntPtrConstant(1)); | 
|  | } | 
|  |  | 
|  | ResultVals.push_back(Val); | 
|  | } | 
|  |  | 
|  | // Merge everything together with a MERGE_VALUES node. | 
|  | ResultVals.push_back(Chain); | 
|  | return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(), | 
|  | &ResultVals[0], ResultVals.size()).getNode(); | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                C & StdCall & Fast Calling Convention implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  StdCall calling convention seems to be standard for many Windows' API | 
|  | //  routines and around. It differs from C calling convention just a little: | 
|  | //  callee should clean up the stack, not caller. Symbols should be also | 
|  | //  decorated in some fancy way :) It doesn't support any vector arguments. | 
|  | //  For info on fast calling convention see Fast Calling Convention (tail call) | 
|  | //  implementation LowerX86_32FastCCCallTo. | 
|  |  | 
|  | /// CallIsStructReturn - Determines whether a CALL node uses struct return | 
|  | /// semantics. | 
|  | static bool CallIsStructReturn(CallSDNode *TheCall) { | 
|  | unsigned NumOps = TheCall->getNumArgs(); | 
|  | if (!NumOps) | 
|  | return false; | 
|  |  | 
|  | return TheCall->getArgFlags(0).isSRet(); | 
|  | } | 
|  |  | 
|  | /// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct | 
|  | /// return semantics. | 
|  | static bool ArgsAreStructReturn(SDValue Op) { | 
|  | unsigned NumArgs = Op.getNode()->getNumValues() - 1; | 
|  | if (!NumArgs) | 
|  | return false; | 
|  |  | 
|  | return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet(); | 
|  | } | 
|  |  | 
|  | /// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires | 
|  | /// the callee to pop its own arguments. Callee pop is necessary to support tail | 
|  | /// calls. | 
|  | bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) { | 
|  | if (IsVarArg) | 
|  | return false; | 
|  |  | 
|  | switch (CallingConv) { | 
|  | default: | 
|  | return false; | 
|  | case CallingConv::X86_StdCall: | 
|  | return !Subtarget->is64Bit(); | 
|  | case CallingConv::X86_FastCall: | 
|  | return !Subtarget->is64Bit(); | 
|  | case CallingConv::Fast: | 
|  | return PerformTailCallOpt; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// CCAssignFnForNode - Selects the correct CCAssignFn for a the | 
|  | /// given CallingConvention value. | 
|  | CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const { | 
|  | if (Subtarget->is64Bit()) { | 
|  | if (Subtarget->isTargetWin64()) | 
|  | return CC_X86_Win64_C; | 
|  | else | 
|  | return CC_X86_64_C; | 
|  | } | 
|  |  | 
|  | if (CC == CallingConv::X86_FastCall) | 
|  | return CC_X86_32_FastCall; | 
|  | else if (CC == CallingConv::Fast) | 
|  | return CC_X86_32_FastCC; | 
|  | else | 
|  | return CC_X86_32_C; | 
|  | } | 
|  |  | 
|  | /// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to | 
|  | /// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node. | 
|  | NameDecorationStyle | 
|  | X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op) { | 
|  | unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | if (CC == CallingConv::X86_FastCall) | 
|  | return FastCall; | 
|  | else if (CC == CallingConv::X86_StdCall) | 
|  | return StdCall; | 
|  | return None; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified | 
|  | /// by "Src" to address "Dst" with size and alignment information specified by | 
|  | /// the specific parameter attribute. The copy will be passed as a byval | 
|  | /// function parameter. | 
|  | static SDValue | 
|  | CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, | 
|  | ISD::ArgFlagsTy Flags, SelectionDAG &DAG, | 
|  | DebugLoc dl) { | 
|  | SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32); | 
|  | return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), | 
|  | /*AlwaysInline=*/true, NULL, 0, NULL, 0); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerMemArgument(SDValue Op, SelectionDAG &DAG, | 
|  | const CCValAssign &VA, | 
|  | MachineFrameInfo *MFI, | 
|  | unsigned CC, | 
|  | SDValue Root, unsigned i) { | 
|  | // Create the nodes corresponding to a load from this parameter slot. | 
|  | ISD::ArgFlagsTy Flags = | 
|  | cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags(); | 
|  | bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt; | 
|  | bool isImmutable = !AlwaysUseMutable && !Flags.isByVal(); | 
|  |  | 
|  | // FIXME: For now, all byval parameter objects are marked mutable. This can be | 
|  | // changed with more analysis. | 
|  | // In case of tail call optimization mark all arguments mutable. Since they | 
|  | // could be overwritten by lowering of arguments in case of a tail call. | 
|  | int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8, | 
|  | VA.getLocMemOffset(), isImmutable); | 
|  | SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); | 
|  | if (Flags.isByVal()) | 
|  | return FIN; | 
|  | return DAG.getLoad(VA.getValVT(), Op.getDebugLoc(), Root, FIN, | 
|  | PseudoSourceValue::getFixedStack(FI), 0); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | const Function* Fn = MF.getFunction(); | 
|  | if (Fn->hasExternalLinkage() && | 
|  | Subtarget->isTargetCygMing() && | 
|  | Fn->getName() == "main") | 
|  | FuncInfo->setForceFramePointer(true); | 
|  |  | 
|  | // Decorate the function name. | 
|  | FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op)); | 
|  |  | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  | SDValue Root = Op.getOperand(0); | 
|  | bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0; | 
|  | unsigned CC = MF.getFunction()->getCallingConv(); | 
|  | bool Is64Bit = Subtarget->is64Bit(); | 
|  | bool IsWin64 = Subtarget->isTargetWin64(); | 
|  |  | 
|  | assert(!(isVarArg && CC == CallingConv::Fast) && | 
|  | "Var args not supported with calling convention fastcc"); | 
|  |  | 
|  | // Assign locations to all of the incoming arguments. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext()); | 
|  | CCInfo.AnalyzeFormalArguments(Op.getNode(), CCAssignFnForNode(CC)); | 
|  |  | 
|  | SmallVector<SDValue, 8> ArgValues; | 
|  | unsigned LastVal = ~0U; | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | // TODO: If an arg is passed in two places (e.g. reg and stack), skip later | 
|  | // places. | 
|  | assert(VA.getValNo() != LastVal && | 
|  | "Don't support value assigned to multiple locs yet"); | 
|  | LastVal = VA.getValNo(); | 
|  |  | 
|  | if (VA.isRegLoc()) { | 
|  | MVT RegVT = VA.getLocVT(); | 
|  | TargetRegisterClass *RC = NULL; | 
|  | if (RegVT == MVT::i32) | 
|  | RC = X86::GR32RegisterClass; | 
|  | else if (Is64Bit && RegVT == MVT::i64) | 
|  | RC = X86::GR64RegisterClass; | 
|  | else if (RegVT == MVT::f32) | 
|  | RC = X86::FR32RegisterClass; | 
|  | else if (RegVT == MVT::f64) | 
|  | RC = X86::FR64RegisterClass; | 
|  | else if (RegVT.isVector() && RegVT.getSizeInBits() == 128) | 
|  | RC = X86::VR128RegisterClass; | 
|  | else if (RegVT.isVector()) { | 
|  | assert(RegVT.getSizeInBits() == 64); | 
|  | if (!Is64Bit) | 
|  | RC = X86::VR64RegisterClass;     // MMX values are passed in MMXs. | 
|  | else { | 
|  | // Darwin calling convention passes MMX values in either GPRs or | 
|  | // XMMs in x86-64. Other targets pass them in memory. | 
|  | if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) { | 
|  | RC = X86::VR128RegisterClass;  // MMX values are passed in XMMs. | 
|  | RegVT = MVT::v2i64; | 
|  | } else { | 
|  | RC = X86::GR64RegisterClass;   // v1i64 values are passed in GPRs. | 
|  | RegVT = MVT::i64; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | llvm_unreachable("Unknown argument type!"); | 
|  | } | 
|  |  | 
|  | unsigned Reg = DAG.getMachineFunction().addLiveIn(VA.getLocReg(), RC); | 
|  | SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, RegVT); | 
|  |  | 
|  | // If this is an 8 or 16-bit value, it is really passed promoted to 32 | 
|  | // bits.  Insert an assert[sz]ext to capture this, then truncate to the | 
|  | // right size. | 
|  | if (VA.getLocInfo() == CCValAssign::SExt) | 
|  | ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, | 
|  | DAG.getValueType(VA.getValVT())); | 
|  | else if (VA.getLocInfo() == CCValAssign::ZExt) | 
|  | ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, | 
|  | DAG.getValueType(VA.getValVT())); | 
|  |  | 
|  | if (VA.getLocInfo() != CCValAssign::Full) | 
|  | ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); | 
|  |  | 
|  | // Handle MMX values passed in GPRs. | 
|  | if (Is64Bit && RegVT != VA.getLocVT()) { | 
|  | if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass) | 
|  | ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), ArgValue); | 
|  | else if (RC == X86::VR128RegisterClass) { | 
|  | ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, | 
|  | ArgValue, DAG.getConstant(0, MVT::i64)); | 
|  | ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), ArgValue); | 
|  | } | 
|  | } | 
|  |  | 
|  | ArgValues.push_back(ArgValue); | 
|  | } else { | 
|  | assert(VA.isMemLoc()); | 
|  | ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The x86-64 ABI for returning structs by value requires that we copy | 
|  | // the sret argument into %rax for the return. Save the argument into | 
|  | // a virtual register so that we can access it from the return points. | 
|  | if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | unsigned Reg = FuncInfo->getSRetReturnReg(); | 
|  | if (!Reg) { | 
|  | Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64)); | 
|  | FuncInfo->setSRetReturnReg(Reg); | 
|  | } | 
|  | SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, ArgValues[0]); | 
|  | Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Root); | 
|  | } | 
|  |  | 
|  | unsigned StackSize = CCInfo.getNextStackOffset(); | 
|  | // align stack specially for tail calls | 
|  | if (PerformTailCallOpt && CC == CallingConv::Fast) | 
|  | StackSize = GetAlignedArgumentStackSize(StackSize, DAG); | 
|  |  | 
|  | // If the function takes variable number of arguments, make a frame index for | 
|  | // the start of the first vararg value... for expansion of llvm.va_start. | 
|  | if (isVarArg) { | 
|  | if (Is64Bit || CC != CallingConv::X86_FastCall) { | 
|  | VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize); | 
|  | } | 
|  | if (Is64Bit) { | 
|  | unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0; | 
|  |  | 
|  | // FIXME: We should really autogenerate these arrays | 
|  | static const unsigned GPR64ArgRegsWin64[] = { | 
|  | X86::RCX, X86::RDX, X86::R8,  X86::R9 | 
|  | }; | 
|  | static const unsigned XMMArgRegsWin64[] = { | 
|  | X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3 | 
|  | }; | 
|  | static const unsigned GPR64ArgRegs64Bit[] = { | 
|  | X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 | 
|  | }; | 
|  | static const unsigned XMMArgRegs64Bit[] = { | 
|  | X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, | 
|  | X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 | 
|  | }; | 
|  | const unsigned *GPR64ArgRegs, *XMMArgRegs; | 
|  |  | 
|  | if (IsWin64) { | 
|  | TotalNumIntRegs = 4; TotalNumXMMRegs = 4; | 
|  | GPR64ArgRegs = GPR64ArgRegsWin64; | 
|  | XMMArgRegs = XMMArgRegsWin64; | 
|  | } else { | 
|  | TotalNumIntRegs = 6; TotalNumXMMRegs = 8; | 
|  | GPR64ArgRegs = GPR64ArgRegs64Bit; | 
|  | XMMArgRegs = XMMArgRegs64Bit; | 
|  | } | 
|  | unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, | 
|  | TotalNumIntRegs); | 
|  | unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, | 
|  | TotalNumXMMRegs); | 
|  |  | 
|  | bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat); | 
|  | assert(!(NumXMMRegs && !Subtarget->hasSSE1()) && | 
|  | "SSE register cannot be used when SSE is disabled!"); | 
|  | assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) && | 
|  | "SSE register cannot be used when SSE is disabled!"); | 
|  | if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1()) | 
|  | // Kernel mode asks for SSE to be disabled, so don't push them | 
|  | // on the stack. | 
|  | TotalNumXMMRegs = 0; | 
|  |  | 
|  | // For X86-64, if there are vararg parameters that are passed via | 
|  | // registers, then we must store them to their spots on the stack so they | 
|  | // may be loaded by deferencing the result of va_next. | 
|  | VarArgsGPOffset = NumIntRegs * 8; | 
|  | VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16; | 
|  | RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 + | 
|  | TotalNumXMMRegs * 16, 16); | 
|  |  | 
|  | // Store the integer parameter registers. | 
|  | SmallVector<SDValue, 8> MemOps; | 
|  | SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy()); | 
|  | SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN, | 
|  | DAG.getIntPtrConstant(VarArgsGPOffset)); | 
|  | for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) { | 
|  | unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs], | 
|  | X86::GR64RegisterClass); | 
|  | SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::i64); | 
|  | SDValue Store = | 
|  | DAG.getStore(Val.getValue(1), dl, Val, FIN, | 
|  | PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0); | 
|  | MemOps.push_back(Store); | 
|  | FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN, | 
|  | DAG.getIntPtrConstant(8)); | 
|  | } | 
|  |  | 
|  | // Now store the XMM (fp + vector) parameter registers. | 
|  | FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN, | 
|  | DAG.getIntPtrConstant(VarArgsFPOffset)); | 
|  | for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) { | 
|  | unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs], | 
|  | X86::VR128RegisterClass); | 
|  | SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::v4f32); | 
|  | SDValue Store = | 
|  | DAG.getStore(Val.getValue(1), dl, Val, FIN, | 
|  | PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0); | 
|  | MemOps.push_back(Store); | 
|  | FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN, | 
|  | DAG.getIntPtrConstant(16)); | 
|  | } | 
|  | if (!MemOps.empty()) | 
|  | Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | &MemOps[0], MemOps.size()); | 
|  | } | 
|  | } | 
|  |  | 
|  | ArgValues.push_back(Root); | 
|  |  | 
|  | // Some CCs need callee pop. | 
|  | if (IsCalleePop(isVarArg, CC)) { | 
|  | BytesToPopOnReturn  = StackSize; // Callee pops everything. | 
|  | BytesCallerReserves = 0; | 
|  | } else { | 
|  | BytesToPopOnReturn  = 0; // Callee pops nothing. | 
|  | // If this is an sret function, the return should pop the hidden pointer. | 
|  | if (!Is64Bit && CC != CallingConv::Fast && ArgsAreStructReturn(Op)) | 
|  | BytesToPopOnReturn = 4; | 
|  | BytesCallerReserves = StackSize; | 
|  | } | 
|  |  | 
|  | if (!Is64Bit) { | 
|  | RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only. | 
|  | if (CC == CallingConv::X86_FastCall) | 
|  | VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs. | 
|  | } | 
|  |  | 
|  | FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn); | 
|  |  | 
|  | // Return the new list of results. | 
|  | return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(), | 
|  | &ArgValues[0], ArgValues.size()).getValue(Op.getResNo()); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG, | 
|  | const SDValue &StackPtr, | 
|  | const CCValAssign &VA, | 
|  | SDValue Chain, | 
|  | SDValue Arg, ISD::ArgFlagsTy Flags) { | 
|  | DebugLoc dl = TheCall->getDebugLoc(); | 
|  | unsigned LocMemOffset = VA.getLocMemOffset(); | 
|  | SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); | 
|  | PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); | 
|  | if (Flags.isByVal()) { | 
|  | return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl); | 
|  | } | 
|  | return DAG.getStore(Chain, dl, Arg, PtrOff, | 
|  | PseudoSourceValue::getStack(), LocMemOffset); | 
|  | } | 
|  |  | 
|  | /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call | 
|  | /// optimization is performed and it is required. | 
|  | SDValue | 
|  | X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG, | 
|  | SDValue &OutRetAddr, | 
|  | SDValue Chain, | 
|  | bool IsTailCall, | 
|  | bool Is64Bit, | 
|  | int FPDiff, | 
|  | DebugLoc dl) { | 
|  | if (!IsTailCall || FPDiff==0) return Chain; | 
|  |  | 
|  | // Adjust the Return address stack slot. | 
|  | MVT VT = getPointerTy(); | 
|  | OutRetAddr = getReturnAddressFrameIndex(DAG); | 
|  |  | 
|  | // Load the "old" Return address. | 
|  | OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0); | 
|  | return SDValue(OutRetAddr.getNode(), 1); | 
|  | } | 
|  |  | 
|  | /// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call | 
|  | /// optimization is performed and it is required (FPDiff!=0). | 
|  | static SDValue | 
|  | EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF, | 
|  | SDValue Chain, SDValue RetAddrFrIdx, | 
|  | bool Is64Bit, int FPDiff, DebugLoc dl) { | 
|  | // Store the return address to the appropriate stack slot. | 
|  | if (!FPDiff) return Chain; | 
|  | // Calculate the new stack slot for the return address. | 
|  | int SlotSize = Is64Bit ? 8 : 4; | 
|  | int NewReturnAddrFI = | 
|  | MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize); | 
|  | MVT VT = Is64Bit ? MVT::i64 : MVT::i32; | 
|  | SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT); | 
|  | Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx, | 
|  | PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0); | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | CallSDNode *TheCall = cast<CallSDNode>(Op.getNode()); | 
|  | SDValue Chain       = TheCall->getChain(); | 
|  | unsigned CC         = TheCall->getCallingConv(); | 
|  | bool isVarArg       = TheCall->isVarArg(); | 
|  | bool IsTailCall     = TheCall->isTailCall() && | 
|  | CC == CallingConv::Fast && PerformTailCallOpt; | 
|  | SDValue Callee      = TheCall->getCallee(); | 
|  | bool Is64Bit        = Subtarget->is64Bit(); | 
|  | bool IsStructRet    = CallIsStructReturn(TheCall); | 
|  | DebugLoc dl         = TheCall->getDebugLoc(); | 
|  |  | 
|  | assert(!(isVarArg && CC == CallingConv::Fast) && | 
|  | "Var args not supported with calling convention fastcc"); | 
|  |  | 
|  | // Analyze operands of the call, assigning locations to each operand. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext()); | 
|  | CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC)); | 
|  |  | 
|  | // Get a count of how many bytes are to be pushed on the stack. | 
|  | unsigned NumBytes = CCInfo.getNextStackOffset(); | 
|  | if (PerformTailCallOpt && CC == CallingConv::Fast) | 
|  | NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG); | 
|  |  | 
|  | int FPDiff = 0; | 
|  | if (IsTailCall) { | 
|  | // Lower arguments at fp - stackoffset + fpdiff. | 
|  | unsigned NumBytesCallerPushed = | 
|  | MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn(); | 
|  | FPDiff = NumBytesCallerPushed - NumBytes; | 
|  |  | 
|  | // Set the delta of movement of the returnaddr stackslot. | 
|  | // But only set if delta is greater than previous delta. | 
|  | if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta())) | 
|  | MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff); | 
|  | } | 
|  |  | 
|  | Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); | 
|  |  | 
|  | SDValue RetAddrFrIdx; | 
|  | // Load return adress for tail calls. | 
|  | Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit, | 
|  | FPDiff, dl); | 
|  |  | 
|  | SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; | 
|  | SmallVector<SDValue, 8> MemOpChains; | 
|  | SDValue StackPtr; | 
|  |  | 
|  | // Walk the register/memloc assignments, inserting copies/loads.  In the case | 
|  | // of tail call optimization arguments are handle later. | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | SDValue Arg = TheCall->getArg(i); | 
|  | ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i); | 
|  | bool isByVal = Flags.isByVal(); | 
|  |  | 
|  | // Promote the value if needed. | 
|  | switch (VA.getLocInfo()) { | 
|  | default: llvm_unreachable("Unknown loc info!"); | 
|  | case CCValAssign::Full: break; | 
|  | case CCValAssign::SExt: | 
|  | Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::ZExt: | 
|  | Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); | 
|  | break; | 
|  | case CCValAssign::AExt: | 
|  | Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (VA.isRegLoc()) { | 
|  | if (Is64Bit) { | 
|  | MVT RegVT = VA.getLocVT(); | 
|  | if (RegVT.isVector() && RegVT.getSizeInBits() == 64) | 
|  | switch (VA.getLocReg()) { | 
|  | default: | 
|  | break; | 
|  | case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX: | 
|  | case X86::R8: { | 
|  | // Special case: passing MMX values in GPR registers. | 
|  | Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg); | 
|  | break; | 
|  | } | 
|  | case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3: | 
|  | case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: { | 
|  | // Special case: passing MMX values in XMM registers. | 
|  | Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg); | 
|  | Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg); | 
|  | Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); | 
|  | } else { | 
|  | if (!IsTailCall || (IsTailCall && isByVal)) { | 
|  | assert(VA.isMemLoc()); | 
|  | if (StackPtr.getNode() == 0) | 
|  | StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy()); | 
|  |  | 
|  | MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA, | 
|  | Chain, Arg, Flags)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MemOpChains.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | &MemOpChains[0], MemOpChains.size()); | 
|  |  | 
|  | // Build a sequence of copy-to-reg nodes chained together with token chain | 
|  | // and flag operands which copy the outgoing args into registers. | 
|  | SDValue InFlag; | 
|  | // Tail call byval lowering might overwrite argument registers so in case of | 
|  | // tail call optimization the copies to registers are lowered later. | 
|  | if (!IsTailCall) | 
|  | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { | 
|  | Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, | 
|  | RegsToPass[i].second, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  |  | 
|  | if (Subtarget->isPICStyleGOT()) { | 
|  | // ELF / PIC requires GOT in the EBX register before function calls via PLT | 
|  | // GOT pointer. | 
|  | if (!IsTailCall) { | 
|  | Chain = DAG.getCopyToReg(Chain, dl, X86::EBX, | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, | 
|  | DebugLoc::getUnknownLoc(), | 
|  | getPointerTy()), | 
|  | InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } else { | 
|  | // If we are tail calling and generating PIC/GOT style code load the | 
|  | // address of the callee into ECX. The value in ecx is used as target of | 
|  | // the tail jump. This is done to circumvent the ebx/callee-saved problem | 
|  | // for tail calls on PIC/GOT architectures. Normally we would just put the | 
|  | // address of GOT into ebx and then call target@PLT. But for tail calls | 
|  | // ebx would be restored (since ebx is callee saved) before jumping to the | 
|  | // target@PLT. | 
|  |  | 
|  | // Note: The actual moving to ECX is done further down. | 
|  | GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); | 
|  | if (G && !G->getGlobal()->hasHiddenVisibility() && | 
|  | !G->getGlobal()->hasProtectedVisibility()) | 
|  | Callee = LowerGlobalAddress(Callee, DAG); | 
|  | else if (isa<ExternalSymbolSDNode>(Callee)) | 
|  | Callee = LowerExternalSymbol(Callee, DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Is64Bit && isVarArg) { | 
|  | // From AMD64 ABI document: | 
|  | // For calls that may call functions that use varargs or stdargs | 
|  | // (prototype-less calls or calls to functions containing ellipsis (...) in | 
|  | // the declaration) %al is used as hidden argument to specify the number | 
|  | // of SSE registers used. The contents of %al do not need to match exactly | 
|  | // the number of registers, but must be an ubound on the number of SSE | 
|  | // registers used and is in the range 0 - 8 inclusive. | 
|  |  | 
|  | // FIXME: Verify this on Win64 | 
|  | // Count the number of XMM registers allocated. | 
|  | static const unsigned XMMArgRegs[] = { | 
|  | X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, | 
|  | X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 | 
|  | }; | 
|  | unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); | 
|  | assert((Subtarget->hasSSE1() || !NumXMMRegs) | 
|  | && "SSE registers cannot be used when SSE is disabled"); | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain, dl, X86::AL, | 
|  | DAG.getConstant(NumXMMRegs, MVT::i8), InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  |  | 
|  | // For tail calls lower the arguments to the 'real' stack slot. | 
|  | if (IsTailCall) { | 
|  | SmallVector<SDValue, 8> MemOpChains2; | 
|  | SDValue FIN; | 
|  | int FI = 0; | 
|  | // Do not flag preceeding copytoreg stuff together with the following stuff. | 
|  | InFlag = SDValue(); | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | if (!VA.isRegLoc()) { | 
|  | assert(VA.isMemLoc()); | 
|  | SDValue Arg = TheCall->getArg(i); | 
|  | ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i); | 
|  | // Create frame index. | 
|  | int32_t Offset = VA.getLocMemOffset()+FPDiff; | 
|  | uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8; | 
|  | FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset); | 
|  | FIN = DAG.getFrameIndex(FI, getPointerTy()); | 
|  |  | 
|  | if (Flags.isByVal()) { | 
|  | // Copy relative to framepointer. | 
|  | SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset()); | 
|  | if (StackPtr.getNode() == 0) | 
|  | StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, | 
|  | getPointerTy()); | 
|  | Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source); | 
|  |  | 
|  | MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain, | 
|  | Flags, DAG, dl)); | 
|  | } else { | 
|  | // Store relative to framepointer. | 
|  | MemOpChains2.push_back( | 
|  | DAG.getStore(Chain, dl, Arg, FIN, | 
|  | PseudoSourceValue::getFixedStack(FI), 0)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MemOpChains2.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | &MemOpChains2[0], MemOpChains2.size()); | 
|  |  | 
|  | // Copy arguments to their registers. | 
|  | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { | 
|  | Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, | 
|  | RegsToPass[i].second, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  | InFlag =SDValue(); | 
|  |  | 
|  | // Store the return address to the appropriate stack slot. | 
|  | Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit, | 
|  | FPDiff, dl); | 
|  | } | 
|  |  | 
|  | // If the callee is a GlobalAddress node (quite common, every direct call is) | 
|  | // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. | 
|  | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { | 
|  | // We should use extra load for direct calls to dllimported functions in | 
|  | // non-JIT mode. | 
|  | GlobalValue *GV = G->getGlobal(); | 
|  | if (!GV->hasDLLImportLinkage()) { | 
|  | unsigned char OpFlags = 0; | 
|  |  | 
|  | // On ELF targets, in both X86-64 and X86-32 mode, direct calls to | 
|  | // external symbols most go through the PLT in PIC mode.  If the symbol | 
|  | // has hidden or protected visibility, or if it is static or local, then | 
|  | // we don't need to use the PLT - we can directly call it. | 
|  | if (Subtarget->isTargetELF() && | 
|  | getTargetMachine().getRelocationModel() == Reloc::PIC_ && | 
|  | GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) { | 
|  | OpFlags = X86II::MO_PLT; | 
|  | } else if (Subtarget->isPICStyleStubAny() && | 
|  | (GV->isDeclaration() || GV->isWeakForLinker()) && | 
|  | Subtarget->getDarwinVers() < 9) { | 
|  | // PC-relative references to external symbols should go through $stub, | 
|  | // unless we're building with the leopard linker or later, which | 
|  | // automatically synthesizes these stubs. | 
|  | OpFlags = X86II::MO_DARWIN_STUB; | 
|  | } | 
|  |  | 
|  | Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(), | 
|  | G->getOffset(), OpFlags); | 
|  | } | 
|  | } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { | 
|  | unsigned char OpFlags = 0; | 
|  |  | 
|  | // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external | 
|  | // symbols should go through the PLT. | 
|  | if (Subtarget->isTargetELF() && | 
|  | getTargetMachine().getRelocationModel() == Reloc::PIC_) { | 
|  | OpFlags = X86II::MO_PLT; | 
|  | } else if (Subtarget->isPICStyleStubAny() && | 
|  | Subtarget->getDarwinVers() < 9) { | 
|  | // PC-relative references to external symbols should go through $stub, | 
|  | // unless we're building with the leopard linker or later, which | 
|  | // automatically synthesizes these stubs. | 
|  | OpFlags = X86II::MO_DARWIN_STUB; | 
|  | } | 
|  |  | 
|  | Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(), | 
|  | OpFlags); | 
|  | } else if (IsTailCall) { | 
|  | unsigned Opc = Is64Bit ? X86::R11 : X86::EAX; | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain,  dl, | 
|  | DAG.getRegister(Opc, getPointerTy()), | 
|  | Callee,InFlag); | 
|  | Callee = DAG.getRegister(Opc, getPointerTy()); | 
|  | // Add register as live out. | 
|  | DAG.getMachineFunction().getRegInfo().addLiveOut(Opc); | 
|  | } | 
|  |  | 
|  | // Returns a chain & a flag for retval copy to use. | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); | 
|  | SmallVector<SDValue, 8> Ops; | 
|  |  | 
|  | if (IsTailCall) { | 
|  | Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), | 
|  | DAG.getIntPtrConstant(0, true), InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | // Returns a chain & a flag for retval copy to use. | 
|  | NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); | 
|  | Ops.clear(); | 
|  | } | 
|  |  | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Callee); | 
|  |  | 
|  | if (IsTailCall) | 
|  | Ops.push_back(DAG.getConstant(FPDiff, MVT::i32)); | 
|  |  | 
|  | // Add argument registers to the end of the list so that they are known live | 
|  | // into the call. | 
|  | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) | 
|  | Ops.push_back(DAG.getRegister(RegsToPass[i].first, | 
|  | RegsToPass[i].second.getValueType())); | 
|  |  | 
|  | // Add an implicit use GOT pointer in EBX. | 
|  | if (!IsTailCall && Subtarget->isPICStyleGOT()) | 
|  | Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy())); | 
|  |  | 
|  | // Add an implicit use of AL for x86 vararg functions. | 
|  | if (Is64Bit && isVarArg) | 
|  | Ops.push_back(DAG.getRegister(X86::AL, MVT::i8)); | 
|  |  | 
|  | if (InFlag.getNode()) | 
|  | Ops.push_back(InFlag); | 
|  |  | 
|  | if (IsTailCall) { | 
|  | assert(InFlag.getNode() && | 
|  | "Flag must be set. Depend on flag being set in LowerRET"); | 
|  | Chain = DAG.getNode(X86ISD::TAILCALL, dl, | 
|  | TheCall->getVTList(), &Ops[0], Ops.size()); | 
|  |  | 
|  | return SDValue(Chain.getNode(), Op.getResNo()); | 
|  | } | 
|  |  | 
|  | Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size()); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | // Create the CALLSEQ_END node. | 
|  | unsigned NumBytesForCalleeToPush; | 
|  | if (IsCalleePop(isVarArg, CC)) | 
|  | NumBytesForCalleeToPush = NumBytes;    // Callee pops everything | 
|  | else if (!Is64Bit && CC != CallingConv::Fast && IsStructRet) | 
|  | // If this is is a call to a struct-return function, the callee | 
|  | // pops the hidden struct pointer, so we have to push it back. | 
|  | // This is common for Darwin/X86, Linux & Mingw32 targets. | 
|  | NumBytesForCalleeToPush = 4; | 
|  | else | 
|  | NumBytesForCalleeToPush = 0;  // Callee pops nothing. | 
|  |  | 
|  | // Returns a flag for retval copy to use. | 
|  | Chain = DAG.getCALLSEQ_END(Chain, | 
|  | DAG.getIntPtrConstant(NumBytes, true), | 
|  | DAG.getIntPtrConstant(NumBytesForCalleeToPush, | 
|  | true), | 
|  | InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | // Handle result values, copying them out of physregs into vregs that we | 
|  | // return. | 
|  | return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG), | 
|  | Op.getResNo()); | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                Fast Calling Convention (tail call) implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | //  Like std call, callee cleans arguments, convention except that ECX is | 
|  | //  reserved for storing the tail called function address. Only 2 registers are | 
|  | //  free for argument passing (inreg). Tail call optimization is performed | 
|  | //  provided: | 
|  | //                * tailcallopt is enabled | 
|  | //                * caller/callee are fastcc | 
|  | //  On X86_64 architecture with GOT-style position independent code only local | 
|  | //  (within module) calls are supported at the moment. | 
|  | //  To keep the stack aligned according to platform abi the function | 
|  | //  GetAlignedArgumentStackSize ensures that argument delta is always multiples | 
|  | //  of stack alignment. (Dynamic linkers need this - darwin's dyld for example) | 
|  | //  If a tail called function callee has more arguments than the caller the | 
|  | //  caller needs to make sure that there is room to move the RETADDR to. This is | 
|  | //  achieved by reserving an area the size of the argument delta right after the | 
|  | //  original REtADDR, but before the saved framepointer or the spilled registers | 
|  | //  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4) | 
|  | //  stack layout: | 
|  | //    arg1 | 
|  | //    arg2 | 
|  | //    RETADDR | 
|  | //    [ new RETADDR | 
|  | //      move area ] | 
|  | //    (possible EBP) | 
|  | //    ESI | 
|  | //    EDI | 
|  | //    local1 .. | 
|  |  | 
|  | /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned | 
|  | /// for a 16 byte align requirement. | 
|  | unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize, | 
|  | SelectionDAG& DAG) { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const TargetMachine &TM = MF.getTarget(); | 
|  | const TargetFrameInfo &TFI = *TM.getFrameInfo(); | 
|  | unsigned StackAlignment = TFI.getStackAlignment(); | 
|  | uint64_t AlignMask = StackAlignment - 1; | 
|  | int64_t Offset = StackSize; | 
|  | uint64_t SlotSize = TD->getPointerSize(); | 
|  | if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) { | 
|  | // Number smaller than 12 so just add the difference. | 
|  | Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask)); | 
|  | } else { | 
|  | // Mask out lower bits, add stackalignment once plus the 12 bytes. | 
|  | Offset = ((~AlignMask) & Offset) + StackAlignment + | 
|  | (StackAlignment-SlotSize); | 
|  | } | 
|  | return Offset; | 
|  | } | 
|  |  | 
|  | /// IsEligibleForTailCallElimination - Check to see whether the next instruction | 
|  | /// following the call is a return. A function is eligible if caller/callee | 
|  | /// calling conventions match, currently only fastcc supports tail calls, and | 
|  | /// the function CALL is immediatly followed by a RET. | 
|  | bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall, | 
|  | SDValue Ret, | 
|  | SelectionDAG& DAG) const { | 
|  | if (!PerformTailCallOpt) | 
|  | return false; | 
|  |  | 
|  | if (CheckTailCallReturnConstraints(TheCall, Ret)) { | 
|  | unsigned CallerCC = | 
|  | DAG.getMachineFunction().getFunction()->getCallingConv(); | 
|  | unsigned CalleeCC = TheCall->getCallingConv(); | 
|  | if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | FastISel * | 
|  | X86TargetLowering::createFastISel(MachineFunction &mf, | 
|  | MachineModuleInfo *mmo, | 
|  | DwarfWriter *dw, | 
|  | DenseMap<const Value *, unsigned> &vm, | 
|  | DenseMap<const BasicBlock *, | 
|  | MachineBasicBlock *> &bm, | 
|  | DenseMap<const AllocaInst *, int> &am | 
|  | #ifndef NDEBUG | 
|  | , SmallSet<Instruction*, 8> &cil | 
|  | #endif | 
|  | ) { | 
|  | return X86::createFastISel(mf, mmo, dw, vm, bm, am | 
|  | #ifndef NDEBUG | 
|  | , cil | 
|  | #endif | 
|  | ); | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           Other Lowering Hooks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  |  | 
|  | SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | int ReturnAddrIndex = FuncInfo->getRAIndex(); | 
|  |  | 
|  | if (ReturnAddrIndex == 0) { | 
|  | // Set up a frame object for the return address. | 
|  | uint64_t SlotSize = TD->getPointerSize(); | 
|  | ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize); | 
|  | FuncInfo->setRAIndex(ReturnAddrIndex); | 
|  | } | 
|  |  | 
|  | return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy()); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86 | 
|  | /// specific condition code, returning the condition code and the LHS/RHS of the | 
|  | /// comparison to make. | 
|  | static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP, | 
|  | SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) { | 
|  | if (!isFP) { | 
|  | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { | 
|  | if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) { | 
|  | // X > -1   -> X == 0, jump !sign. | 
|  | RHS = DAG.getConstant(0, RHS.getValueType()); | 
|  | return X86::COND_NS; | 
|  | } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) { | 
|  | // X < 0   -> X == 0, jump on sign. | 
|  | return X86::COND_S; | 
|  | } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) { | 
|  | // X < 1   -> X <= 0 | 
|  | RHS = DAG.getConstant(0, RHS.getValueType()); | 
|  | return X86::COND_LE; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (SetCCOpcode) { | 
|  | default: llvm_unreachable("Invalid integer condition!"); | 
|  | case ISD::SETEQ:  return X86::COND_E; | 
|  | case ISD::SETGT:  return X86::COND_G; | 
|  | case ISD::SETGE:  return X86::COND_GE; | 
|  | case ISD::SETLT:  return X86::COND_L; | 
|  | case ISD::SETLE:  return X86::COND_LE; | 
|  | case ISD::SETNE:  return X86::COND_NE; | 
|  | case ISD::SETULT: return X86::COND_B; | 
|  | case ISD::SETUGT: return X86::COND_A; | 
|  | case ISD::SETULE: return X86::COND_BE; | 
|  | case ISD::SETUGE: return X86::COND_AE; | 
|  | } | 
|  | } | 
|  |  | 
|  | // First determine if it is required or is profitable to flip the operands. | 
|  |  | 
|  | // If LHS is a foldable load, but RHS is not, flip the condition. | 
|  | if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) && | 
|  | !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) { | 
|  | SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode); | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  |  | 
|  | switch (SetCCOpcode) { | 
|  | default: break; | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETOLE: | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETUGE: | 
|  | std::swap(LHS, RHS); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // On a floating point condition, the flags are set as follows: | 
|  | // ZF  PF  CF   op | 
|  | //  0 | 0 | 0 | X > Y | 
|  | //  0 | 0 | 1 | X < Y | 
|  | //  1 | 0 | 0 | X == Y | 
|  | //  1 | 1 | 1 | unordered | 
|  | switch (SetCCOpcode) { | 
|  | default: llvm_unreachable("Condcode should be pre-legalized away"); | 
|  | case ISD::SETUEQ: | 
|  | case ISD::SETEQ:   return X86::COND_E; | 
|  | case ISD::SETOLT:              // flipped | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT:   return X86::COND_A; | 
|  | case ISD::SETOLE:              // flipped | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETGE:   return X86::COND_AE; | 
|  | case ISD::SETUGT:              // flipped | 
|  | case ISD::SETULT: | 
|  | case ISD::SETLT:   return X86::COND_B; | 
|  | case ISD::SETUGE:              // flipped | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE:   return X86::COND_BE; | 
|  | case ISD::SETONE: | 
|  | case ISD::SETNE:   return X86::COND_NE; | 
|  | case ISD::SETUO:   return X86::COND_P; | 
|  | case ISD::SETO:    return X86::COND_NP; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// hasFPCMov - is there a floating point cmov for the specific X86 condition | 
|  | /// code. Current x86 isa includes the following FP cmov instructions: | 
|  | /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. | 
|  | static bool hasFPCMov(unsigned X86CC) { | 
|  | switch (X86CC) { | 
|  | default: | 
|  | return false; | 
|  | case X86::COND_B: | 
|  | case X86::COND_BE: | 
|  | case X86::COND_E: | 
|  | case X86::COND_P: | 
|  | case X86::COND_A: | 
|  | case X86::COND_AE: | 
|  | case X86::COND_NE: | 
|  | case X86::COND_NP: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isUndefOrInRange - Return true if Val is undef or if its value falls within | 
|  | /// the specified range (L, H]. | 
|  | static bool isUndefOrInRange(int Val, int Low, int Hi) { | 
|  | return (Val < 0) || (Val >= Low && Val < Hi); | 
|  | } | 
|  |  | 
|  | /// isUndefOrEqual - Val is either less than zero (undef) or equal to the | 
|  | /// specified value. | 
|  | static bool isUndefOrEqual(int Val, int CmpVal) { | 
|  | if (Val < 0 || Val == CmpVal) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that | 
|  | /// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference | 
|  | /// the second operand. | 
|  | static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, MVT VT) { | 
|  | if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16) | 
|  | return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4); | 
|  | if (VT == MVT::v2f64 || VT == MVT::v2i64) | 
|  | return (Mask[0] < 2 && Mask[1] < 2); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) { | 
|  | SmallVector<int, 8> M; | 
|  | N->getMask(M); | 
|  | return ::isPSHUFDMask(M, N->getValueType(0)); | 
|  | } | 
|  |  | 
|  | /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that | 
|  | /// is suitable for input to PSHUFHW. | 
|  | static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, MVT VT) { | 
|  | if (VT != MVT::v8i16) | 
|  | return false; | 
|  |  | 
|  | // Lower quadword copied in order or undef. | 
|  | for (int i = 0; i != 4; ++i) | 
|  | if (Mask[i] >= 0 && Mask[i] != i) | 
|  | return false; | 
|  |  | 
|  | // Upper quadword shuffled. | 
|  | for (int i = 4; i != 8; ++i) | 
|  | if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) { | 
|  | SmallVector<int, 8> M; | 
|  | N->getMask(M); | 
|  | return ::isPSHUFHWMask(M, N->getValueType(0)); | 
|  | } | 
|  |  | 
|  | /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that | 
|  | /// is suitable for input to PSHUFLW. | 
|  | static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, MVT VT) { | 
|  | if (VT != MVT::v8i16) | 
|  | return false; | 
|  |  | 
|  | // Upper quadword copied in order. | 
|  | for (int i = 4; i != 8; ++i) | 
|  | if (Mask[i] >= 0 && Mask[i] != i) | 
|  | return false; | 
|  |  | 
|  | // Lower quadword shuffled. | 
|  | for (int i = 0; i != 4; ++i) | 
|  | if (Mask[i] >= 4) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) { | 
|  | SmallVector<int, 8> M; | 
|  | N->getMask(M); | 
|  | return ::isPSHUFLWMask(M, N->getValueType(0)); | 
|  | } | 
|  |  | 
|  | /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to SHUFP*. | 
|  | static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, MVT VT) { | 
|  | int NumElems = VT.getVectorNumElements(); | 
|  | if (NumElems != 2 && NumElems != 4) | 
|  | return false; | 
|  |  | 
|  | int Half = NumElems / 2; | 
|  | for (int i = 0; i < Half; ++i) | 
|  | if (!isUndefOrInRange(Mask[i], 0, NumElems)) | 
|  | return false; | 
|  | for (int i = Half; i < NumElems; ++i) | 
|  | if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86::isSHUFPMask(ShuffleVectorSDNode *N) { | 
|  | SmallVector<int, 8> M; | 
|  | N->getMask(M); | 
|  | return ::isSHUFPMask(M, N->getValueType(0)); | 
|  | } | 
|  |  | 
|  | /// isCommutedSHUFP - Returns true if the shuffle mask is exactly | 
|  | /// the reverse of what x86 shuffles want. x86 shuffles requires the lower | 
|  | /// half elements to come from vector 1 (which would equal the dest.) and | 
|  | /// the upper half to come from vector 2. | 
|  | static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, MVT VT) { | 
|  | int NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | if (NumElems != 2 && NumElems != 4) | 
|  | return false; | 
|  |  | 
|  | int Half = NumElems / 2; | 
|  | for (int i = 0; i < Half; ++i) | 
|  | if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2)) | 
|  | return false; | 
|  | for (int i = Half; i < NumElems; ++i) | 
|  | if (!isUndefOrInRange(Mask[i], 0, NumElems)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isCommutedSHUFP(ShuffleVectorSDNode *N) { | 
|  | SmallVector<int, 8> M; | 
|  | N->getMask(M); | 
|  | return isCommutedSHUFPMask(M, N->getValueType(0)); | 
|  | } | 
|  |  | 
|  | /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVHLPS. | 
|  | bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) { | 
|  | if (N->getValueType(0).getVectorNumElements() != 4) | 
|  | return false; | 
|  |  | 
|  | // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3 | 
|  | return isUndefOrEqual(N->getMaskElt(0), 6) && | 
|  | isUndefOrEqual(N->getMaskElt(1), 7) && | 
|  | isUndefOrEqual(N->getMaskElt(2), 2) && | 
|  | isUndefOrEqual(N->getMaskElt(3), 3); | 
|  | } | 
|  |  | 
|  | /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. | 
|  | bool X86::isMOVLPMask(ShuffleVectorSDNode *N) { | 
|  | unsigned NumElems = N->getValueType(0).getVectorNumElements(); | 
|  |  | 
|  | if (NumElems != 2 && NumElems != 4) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0; i < NumElems/2; ++i) | 
|  | if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems)) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = NumElems/2; i < NumElems; ++i) | 
|  | if (!isUndefOrEqual(N->getMaskElt(i), i)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D} | 
|  | /// and MOVLHPS. | 
|  | bool X86::isMOVHPMask(ShuffleVectorSDNode *N) { | 
|  | unsigned NumElems = N->getValueType(0).getVectorNumElements(); | 
|  |  | 
|  | if (NumElems != 2 && NumElems != 4) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0; i < NumElems/2; ++i) | 
|  | if (!isUndefOrEqual(N->getMaskElt(i), i)) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0; i < NumElems/2; ++i) | 
|  | if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form | 
|  | /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef, | 
|  | /// <2, 3, 2, 3> | 
|  | bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) { | 
|  | unsigned NumElems = N->getValueType(0).getVectorNumElements(); | 
|  |  | 
|  | if (NumElems != 4) | 
|  | return false; | 
|  |  | 
|  | return isUndefOrEqual(N->getMaskElt(0), 2) && | 
|  | isUndefOrEqual(N->getMaskElt(1), 3) && | 
|  | isUndefOrEqual(N->getMaskElt(2), 2) && | 
|  | isUndefOrEqual(N->getMaskElt(3), 3); | 
|  | } | 
|  |  | 
|  | /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to UNPCKL. | 
|  | static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, MVT VT, | 
|  | bool V2IsSplat = false) { | 
|  | int NumElts = VT.getVectorNumElements(); | 
|  | if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) | 
|  | return false; | 
|  |  | 
|  | for (int i = 0, j = 0; i != NumElts; i += 2, ++j) { | 
|  | int BitI  = Mask[i]; | 
|  | int BitI1 = Mask[i+1]; | 
|  | if (!isUndefOrEqual(BitI, j)) | 
|  | return false; | 
|  | if (V2IsSplat) { | 
|  | if (!isUndefOrEqual(BitI1, NumElts)) | 
|  | return false; | 
|  | } else { | 
|  | if (!isUndefOrEqual(BitI1, j + NumElts)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) { | 
|  | SmallVector<int, 8> M; | 
|  | N->getMask(M); | 
|  | return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat); | 
|  | } | 
|  |  | 
|  | /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to UNPCKH. | 
|  | static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, MVT VT, | 
|  | bool V2IsSplat = false) { | 
|  | int NumElts = VT.getVectorNumElements(); | 
|  | if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) | 
|  | return false; | 
|  |  | 
|  | for (int i = 0, j = 0; i != NumElts; i += 2, ++j) { | 
|  | int BitI  = Mask[i]; | 
|  | int BitI1 = Mask[i+1]; | 
|  | if (!isUndefOrEqual(BitI, j + NumElts/2)) | 
|  | return false; | 
|  | if (V2IsSplat) { | 
|  | if (isUndefOrEqual(BitI1, NumElts)) | 
|  | return false; | 
|  | } else { | 
|  | if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) { | 
|  | SmallVector<int, 8> M; | 
|  | N->getMask(M); | 
|  | return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat); | 
|  | } | 
|  |  | 
|  | /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form | 
|  | /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, | 
|  | /// <0, 0, 1, 1> | 
|  | static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, MVT VT) { | 
|  | int NumElems = VT.getVectorNumElements(); | 
|  | if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) | 
|  | return false; | 
|  |  | 
|  | for (int i = 0, j = 0; i != NumElems; i += 2, ++j) { | 
|  | int BitI  = Mask[i]; | 
|  | int BitI1 = Mask[i+1]; | 
|  | if (!isUndefOrEqual(BitI, j)) | 
|  | return false; | 
|  | if (!isUndefOrEqual(BitI1, j)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) { | 
|  | SmallVector<int, 8> M; | 
|  | N->getMask(M); | 
|  | return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0)); | 
|  | } | 
|  |  | 
|  | /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form | 
|  | /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef, | 
|  | /// <2, 2, 3, 3> | 
|  | static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, MVT VT) { | 
|  | int NumElems = VT.getVectorNumElements(); | 
|  | if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) | 
|  | return false; | 
|  |  | 
|  | for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) { | 
|  | int BitI  = Mask[i]; | 
|  | int BitI1 = Mask[i+1]; | 
|  | if (!isUndefOrEqual(BitI, j)) | 
|  | return false; | 
|  | if (!isUndefOrEqual(BitI1, j)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) { | 
|  | SmallVector<int, 8> M; | 
|  | N->getMask(M); | 
|  | return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0)); | 
|  | } | 
|  |  | 
|  | /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVSS, | 
|  | /// MOVSD, and MOVD, i.e. setting the lowest element. | 
|  | static bool isMOVLMask(const SmallVectorImpl<int> &Mask, MVT VT) { | 
|  | if (VT.getVectorElementType().getSizeInBits() < 32) | 
|  | return false; | 
|  |  | 
|  | int NumElts = VT.getVectorNumElements(); | 
|  |  | 
|  | if (!isUndefOrEqual(Mask[0], NumElts)) | 
|  | return false; | 
|  |  | 
|  | for (int i = 1; i < NumElts; ++i) | 
|  | if (!isUndefOrEqual(Mask[i], i)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86::isMOVLMask(ShuffleVectorSDNode *N) { | 
|  | SmallVector<int, 8> M; | 
|  | N->getMask(M); | 
|  | return ::isMOVLMask(M, N->getValueType(0)); | 
|  | } | 
|  |  | 
|  | /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse | 
|  | /// of what x86 movss want. X86 movs requires the lowest  element to be lowest | 
|  | /// element of vector 2 and the other elements to come from vector 1 in order. | 
|  | static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, MVT VT, | 
|  | bool V2IsSplat = false, bool V2IsUndef = false) { | 
|  | int NumOps = VT.getVectorNumElements(); | 
|  | if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16) | 
|  | return false; | 
|  |  | 
|  | if (!isUndefOrEqual(Mask[0], 0)) | 
|  | return false; | 
|  |  | 
|  | for (int i = 1; i < NumOps; ++i) | 
|  | if (!(isUndefOrEqual(Mask[i], i+NumOps) || | 
|  | (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) || | 
|  | (V2IsSplat && isUndefOrEqual(Mask[i], NumOps)))) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false, | 
|  | bool V2IsUndef = false) { | 
|  | SmallVector<int, 8> M; | 
|  | N->getMask(M); | 
|  | return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef); | 
|  | } | 
|  |  | 
|  | /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVSHDUP. | 
|  | bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) { | 
|  | if (N->getValueType(0).getVectorNumElements() != 4) | 
|  | return false; | 
|  |  | 
|  | // Expect 1, 1, 3, 3 | 
|  | for (unsigned i = 0; i < 2; ++i) { | 
|  | int Elt = N->getMaskElt(i); | 
|  | if (Elt >= 0 && Elt != 1) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HasHi = false; | 
|  | for (unsigned i = 2; i < 4; ++i) { | 
|  | int Elt = N->getMaskElt(i); | 
|  | if (Elt >= 0 && Elt != 3) | 
|  | return false; | 
|  | if (Elt == 3) | 
|  | HasHi = true; | 
|  | } | 
|  | // Don't use movshdup if it can be done with a shufps. | 
|  | // FIXME: verify that matching u, u, 3, 3 is what we want. | 
|  | return HasHi; | 
|  | } | 
|  |  | 
|  | /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVSLDUP. | 
|  | bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) { | 
|  | if (N->getValueType(0).getVectorNumElements() != 4) | 
|  | return false; | 
|  |  | 
|  | // Expect 0, 0, 2, 2 | 
|  | for (unsigned i = 0; i < 2; ++i) | 
|  | if (N->getMaskElt(i) > 0) | 
|  | return false; | 
|  |  | 
|  | bool HasHi = false; | 
|  | for (unsigned i = 2; i < 4; ++i) { | 
|  | int Elt = N->getMaskElt(i); | 
|  | if (Elt >= 0 && Elt != 2) | 
|  | return false; | 
|  | if (Elt == 2) | 
|  | HasHi = true; | 
|  | } | 
|  | // Don't use movsldup if it can be done with a shufps. | 
|  | return HasHi; | 
|  | } | 
|  |  | 
|  | /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVDDUP. | 
|  | bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) { | 
|  | int e = N->getValueType(0).getVectorNumElements() / 2; | 
|  |  | 
|  | for (int i = 0; i < e; ++i) | 
|  | if (!isUndefOrEqual(N->getMaskElt(i), i)) | 
|  | return false; | 
|  | for (int i = 0; i < e; ++i) | 
|  | if (!isUndefOrEqual(N->getMaskElt(e+i), i)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle | 
|  | /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP* | 
|  | /// instructions. | 
|  | unsigned X86::getShuffleSHUFImmediate(SDNode *N) { | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); | 
|  | int NumOperands = SVOp->getValueType(0).getVectorNumElements(); | 
|  |  | 
|  | unsigned Shift = (NumOperands == 4) ? 2 : 1; | 
|  | unsigned Mask = 0; | 
|  | for (int i = 0; i < NumOperands; ++i) { | 
|  | int Val = SVOp->getMaskElt(NumOperands-i-1); | 
|  | if (Val < 0) Val = 0; | 
|  | if (Val >= NumOperands) Val -= NumOperands; | 
|  | Mask |= Val; | 
|  | if (i != NumOperands - 1) | 
|  | Mask <<= Shift; | 
|  | } | 
|  | return Mask; | 
|  | } | 
|  |  | 
|  | /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle | 
|  | /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW | 
|  | /// instructions. | 
|  | unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) { | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); | 
|  | unsigned Mask = 0; | 
|  | // 8 nodes, but we only care about the last 4. | 
|  | for (unsigned i = 7; i >= 4; --i) { | 
|  | int Val = SVOp->getMaskElt(i); | 
|  | if (Val >= 0) | 
|  | Mask |= (Val - 4); | 
|  | if (i != 4) | 
|  | Mask <<= 2; | 
|  | } | 
|  | return Mask; | 
|  | } | 
|  |  | 
|  | /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle | 
|  | /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW | 
|  | /// instructions. | 
|  | unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) { | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); | 
|  | unsigned Mask = 0; | 
|  | // 8 nodes, but we only care about the first 4. | 
|  | for (int i = 3; i >= 0; --i) { | 
|  | int Val = SVOp->getMaskElt(i); | 
|  | if (Val >= 0) | 
|  | Mask |= Val; | 
|  | if (i != 0) | 
|  | Mask <<= 2; | 
|  | } | 
|  | return Mask; | 
|  | } | 
|  |  | 
|  | /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in | 
|  | /// their permute mask. | 
|  | static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp, | 
|  | SelectionDAG &DAG) { | 
|  | MVT VT = SVOp->getValueType(0); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SmallVector<int, 8> MaskVec; | 
|  |  | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | int idx = SVOp->getMaskElt(i); | 
|  | if (idx < 0) | 
|  | MaskVec.push_back(idx); | 
|  | else if (idx < (int)NumElems) | 
|  | MaskVec.push_back(idx + NumElems); | 
|  | else | 
|  | MaskVec.push_back(idx - NumElems); | 
|  | } | 
|  | return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1), | 
|  | SVOp->getOperand(0), &MaskVec[0]); | 
|  | } | 
|  |  | 
|  | /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming | 
|  | /// the two vector operands have swapped position. | 
|  | static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, MVT VT) { | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | int idx = Mask[i]; | 
|  | if (idx < 0) | 
|  | continue; | 
|  | else if (idx < (int)NumElems) | 
|  | Mask[i] = idx + NumElems; | 
|  | else | 
|  | Mask[i] = idx - NumElems; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ShouldXformToMOVHLPS - Return true if the node should be transformed to | 
|  | /// match movhlps. The lower half elements should come from upper half of | 
|  | /// V1 (and in order), and the upper half elements should come from the upper | 
|  | /// half of V2 (and in order). | 
|  | static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) { | 
|  | if (Op->getValueType(0).getVectorNumElements() != 4) | 
|  | return false; | 
|  | for (unsigned i = 0, e = 2; i != e; ++i) | 
|  | if (!isUndefOrEqual(Op->getMaskElt(i), i+2)) | 
|  | return false; | 
|  | for (unsigned i = 2; i != 4; ++i) | 
|  | if (!isUndefOrEqual(Op->getMaskElt(i), i+4)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isScalarLoadToVector - Returns true if the node is a scalar load that | 
|  | /// is promoted to a vector. It also returns the LoadSDNode by reference if | 
|  | /// required. | 
|  | static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) { | 
|  | if (N->getOpcode() != ISD::SCALAR_TO_VECTOR) | 
|  | return false; | 
|  | N = N->getOperand(0).getNode(); | 
|  | if (!ISD::isNON_EXTLoad(N)) | 
|  | return false; | 
|  | if (LD) | 
|  | *LD = cast<LoadSDNode>(N); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to | 
|  | /// match movlp{s|d}. The lower half elements should come from lower half of | 
|  | /// V1 (and in order), and the upper half elements should come from the upper | 
|  | /// half of V2 (and in order). And since V1 will become the source of the | 
|  | /// MOVLP, it must be either a vector load or a scalar load to vector. | 
|  | static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, | 
|  | ShuffleVectorSDNode *Op) { | 
|  | if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1)) | 
|  | return false; | 
|  | // Is V2 is a vector load, don't do this transformation. We will try to use | 
|  | // load folding shufps op. | 
|  | if (ISD::isNON_EXTLoad(V2)) | 
|  | return false; | 
|  |  | 
|  | unsigned NumElems = Op->getValueType(0).getVectorNumElements(); | 
|  |  | 
|  | if (NumElems != 2 && NumElems != 4) | 
|  | return false; | 
|  | for (unsigned i = 0, e = NumElems/2; i != e; ++i) | 
|  | if (!isUndefOrEqual(Op->getMaskElt(i), i)) | 
|  | return false; | 
|  | for (unsigned i = NumElems/2; i != NumElems; ++i) | 
|  | if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are | 
|  | /// all the same. | 
|  | static bool isSplatVector(SDNode *N) { | 
|  | if (N->getOpcode() != ISD::BUILD_VECTOR) | 
|  | return false; | 
|  |  | 
|  | SDValue SplatValue = N->getOperand(0); | 
|  | for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) | 
|  | if (N->getOperand(i) != SplatValue) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isZeroNode - Returns true if Elt is a constant zero or a floating point | 
|  | /// constant +0.0. | 
|  | static inline bool isZeroNode(SDValue Elt) { | 
|  | return ((isa<ConstantSDNode>(Elt) && | 
|  | cast<ConstantSDNode>(Elt)->getZExtValue() == 0) || | 
|  | (isa<ConstantFPSDNode>(Elt) && | 
|  | cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero())); | 
|  | } | 
|  |  | 
|  | /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved | 
|  | /// to an zero vector. | 
|  | /// FIXME: move to dag combiner / method on ShuffleVectorSDNode | 
|  | static bool isZeroShuffle(ShuffleVectorSDNode *N) { | 
|  | SDValue V1 = N->getOperand(0); | 
|  | SDValue V2 = N->getOperand(1); | 
|  | unsigned NumElems = N->getValueType(0).getVectorNumElements(); | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | int Idx = N->getMaskElt(i); | 
|  | if (Idx >= (int)NumElems) { | 
|  | unsigned Opc = V2.getOpcode(); | 
|  | if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode())) | 
|  | continue; | 
|  | if (Opc != ISD::BUILD_VECTOR || !isZeroNode(V2.getOperand(Idx-NumElems))) | 
|  | return false; | 
|  | } else if (Idx >= 0) { | 
|  | unsigned Opc = V1.getOpcode(); | 
|  | if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode())) | 
|  | continue; | 
|  | if (Opc != ISD::BUILD_VECTOR || !isZeroNode(V1.getOperand(Idx))) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// getZeroVector - Returns a vector of specified type with all zero elements. | 
|  | /// | 
|  | static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG, | 
|  | DebugLoc dl) { | 
|  | assert(VT.isVector() && "Expected a vector type"); | 
|  |  | 
|  | // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest | 
|  | // type.  This ensures they get CSE'd. | 
|  | SDValue Vec; | 
|  | if (VT.getSizeInBits() == 64) { // MMX | 
|  | SDValue Cst = DAG.getTargetConstant(0, MVT::i32); | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst); | 
|  | } else if (HasSSE2) {  // SSE2 | 
|  | SDValue Cst = DAG.getTargetConstant(0, MVT::i32); | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); | 
|  | } else { // SSE1 | 
|  | SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32); | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst); | 
|  | } | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec); | 
|  | } | 
|  |  | 
|  | /// getOnesVector - Returns a vector of specified type with all bits set. | 
|  | /// | 
|  | static SDValue getOnesVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) { | 
|  | assert(VT.isVector() && "Expected a vector type"); | 
|  |  | 
|  | // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest | 
|  | // type.  This ensures they get CSE'd. | 
|  | SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32); | 
|  | SDValue Vec; | 
|  | if (VT.getSizeInBits() == 64)  // MMX | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst); | 
|  | else                                              // SSE | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements | 
|  | /// that point to V2 points to its first element. | 
|  | static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { | 
|  | MVT VT = SVOp->getValueType(0); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | bool Changed = false; | 
|  | SmallVector<int, 8> MaskVec; | 
|  | SVOp->getMask(MaskVec); | 
|  |  | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | if (MaskVec[i] > (int)NumElems) { | 
|  | MaskVec[i] = NumElems; | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | if (Changed) | 
|  | return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0), | 
|  | SVOp->getOperand(1), &MaskVec[0]); | 
|  | return SDValue(SVOp, 0); | 
|  | } | 
|  |  | 
|  | /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd | 
|  | /// operation of specified width. | 
|  | static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1, | 
|  | SDValue V2) { | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SmallVector<int, 8> Mask; | 
|  | Mask.push_back(NumElems); | 
|  | for (unsigned i = 1; i != NumElems; ++i) | 
|  | Mask.push_back(i); | 
|  | return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); | 
|  | } | 
|  |  | 
|  | /// getUnpackl - Returns a vector_shuffle node for an unpackl operation. | 
|  | static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1, | 
|  | SDValue V2) { | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SmallVector<int, 8> Mask; | 
|  | for (unsigned i = 0, e = NumElems/2; i != e; ++i) { | 
|  | Mask.push_back(i); | 
|  | Mask.push_back(i + NumElems); | 
|  | } | 
|  | return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); | 
|  | } | 
|  |  | 
|  | /// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation. | 
|  | static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1, | 
|  | SDValue V2) { | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | unsigned Half = NumElems/2; | 
|  | SmallVector<int, 8> Mask; | 
|  | for (unsigned i = 0; i != Half; ++i) { | 
|  | Mask.push_back(i + Half); | 
|  | Mask.push_back(i + NumElems + Half); | 
|  | } | 
|  | return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); | 
|  | } | 
|  |  | 
|  | /// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32. | 
|  | static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG, | 
|  | bool HasSSE2) { | 
|  | if (SV->getValueType(0).getVectorNumElements() <= 4) | 
|  | return SDValue(SV, 0); | 
|  |  | 
|  | MVT PVT = MVT::v4f32; | 
|  | MVT VT = SV->getValueType(0); | 
|  | DebugLoc dl = SV->getDebugLoc(); | 
|  | SDValue V1 = SV->getOperand(0); | 
|  | int NumElems = VT.getVectorNumElements(); | 
|  | int EltNo = SV->getSplatIndex(); | 
|  |  | 
|  | // unpack elements to the correct location | 
|  | while (NumElems > 4) { | 
|  | if (EltNo < NumElems/2) { | 
|  | V1 = getUnpackl(DAG, dl, VT, V1, V1); | 
|  | } else { | 
|  | V1 = getUnpackh(DAG, dl, VT, V1, V1); | 
|  | EltNo -= NumElems/2; | 
|  | } | 
|  | NumElems >>= 1; | 
|  | } | 
|  |  | 
|  | // Perform the splat. | 
|  | int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo }; | 
|  | V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1); | 
|  | V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1); | 
|  | } | 
|  |  | 
|  | /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified | 
|  | /// vector of zero or undef vector.  This produces a shuffle where the low | 
|  | /// element of V2 is swizzled into the zero/undef vector, landing at element | 
|  | /// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3). | 
|  | static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx, | 
|  | bool isZero, bool HasSSE2, | 
|  | SelectionDAG &DAG) { | 
|  | MVT VT = V2.getValueType(); | 
|  | SDValue V1 = isZero | 
|  | ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SmallVector<int, 16> MaskVec; | 
|  | for (unsigned i = 0; i != NumElems; ++i) | 
|  | // If this is the insertion idx, put the low elt of V2 here. | 
|  | MaskVec.push_back(i == Idx ? NumElems : i); | 
|  | return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]); | 
|  | } | 
|  |  | 
|  | /// getNumOfConsecutiveZeros - Return the number of elements in a result of | 
|  | /// a shuffle that is zero. | 
|  | static | 
|  | unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems, | 
|  | bool Low, SelectionDAG &DAG) { | 
|  | unsigned NumZeros = 0; | 
|  | for (int i = 0; i < NumElems; ++i) { | 
|  | unsigned Index = Low ? i : NumElems-i-1; | 
|  | int Idx = SVOp->getMaskElt(Index); | 
|  | if (Idx < 0) { | 
|  | ++NumZeros; | 
|  | continue; | 
|  | } | 
|  | SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index); | 
|  | if (Elt.getNode() && isZeroNode(Elt)) | 
|  | ++NumZeros; | 
|  | else | 
|  | break; | 
|  | } | 
|  | return NumZeros; | 
|  | } | 
|  |  | 
|  | /// isVectorShift - Returns true if the shuffle can be implemented as a | 
|  | /// logical left or right shift of a vector. | 
|  | /// FIXME: split into pslldqi, psrldqi, palignr variants. | 
|  | static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, | 
|  | bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { | 
|  | int NumElems = SVOp->getValueType(0).getVectorNumElements(); | 
|  |  | 
|  | isLeft = true; | 
|  | unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG); | 
|  | if (!NumZeros) { | 
|  | isLeft = false; | 
|  | NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG); | 
|  | if (!NumZeros) | 
|  | return false; | 
|  | } | 
|  | bool SeenV1 = false; | 
|  | bool SeenV2 = false; | 
|  | for (int i = NumZeros; i < NumElems; ++i) { | 
|  | int Val = isLeft ? (i - NumZeros) : i; | 
|  | int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros)); | 
|  | if (Idx < 0) | 
|  | continue; | 
|  | if (Idx < NumElems) | 
|  | SeenV1 = true; | 
|  | else { | 
|  | Idx -= NumElems; | 
|  | SeenV2 = true; | 
|  | } | 
|  | if (Idx != Val) | 
|  | return false; | 
|  | } | 
|  | if (SeenV1 && SeenV2) | 
|  | return false; | 
|  |  | 
|  | ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1); | 
|  | ShAmt = NumZeros; | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8. | 
|  | /// | 
|  | static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros, | 
|  | unsigned NumNonZero, unsigned NumZero, | 
|  | SelectionDAG &DAG, TargetLowering &TLI) { | 
|  | if (NumNonZero > 8) | 
|  | return SDValue(); | 
|  |  | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | SDValue V(0, 0); | 
|  | bool First = true; | 
|  | for (unsigned i = 0; i < 16; ++i) { | 
|  | bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; | 
|  | if (ThisIsNonZero && First) { | 
|  | if (NumZero) | 
|  | V = getZeroVector(MVT::v8i16, true, DAG, dl); | 
|  | else | 
|  | V = DAG.getUNDEF(MVT::v8i16); | 
|  | First = false; | 
|  | } | 
|  |  | 
|  | if ((i & 1) != 0) { | 
|  | SDValue ThisElt(0, 0), LastElt(0, 0); | 
|  | bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; | 
|  | if (LastIsNonZero) { | 
|  | LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl, | 
|  | MVT::i16, Op.getOperand(i-1)); | 
|  | } | 
|  | if (ThisIsNonZero) { | 
|  | ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i)); | 
|  | ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16, | 
|  | ThisElt, DAG.getConstant(8, MVT::i8)); | 
|  | if (LastIsNonZero) | 
|  | ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt); | 
|  | } else | 
|  | ThisElt = LastElt; | 
|  |  | 
|  | if (ThisElt.getNode()) | 
|  | V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt, | 
|  | DAG.getIntPtrConstant(i/2)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V); | 
|  | } | 
|  |  | 
|  | /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16. | 
|  | /// | 
|  | static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros, | 
|  | unsigned NumNonZero, unsigned NumZero, | 
|  | SelectionDAG &DAG, TargetLowering &TLI) { | 
|  | if (NumNonZero > 4) | 
|  | return SDValue(); | 
|  |  | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | SDValue V(0, 0); | 
|  | bool First = true; | 
|  | for (unsigned i = 0; i < 8; ++i) { | 
|  | bool isNonZero = (NonZeros & (1 << i)) != 0; | 
|  | if (isNonZero) { | 
|  | if (First) { | 
|  | if (NumZero) | 
|  | V = getZeroVector(MVT::v8i16, true, DAG, dl); | 
|  | else | 
|  | V = DAG.getUNDEF(MVT::v8i16); | 
|  | First = false; | 
|  | } | 
|  | V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, | 
|  | MVT::v8i16, V, Op.getOperand(i), | 
|  | DAG.getIntPtrConstant(i)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// getVShift - Return a vector logical shift node. | 
|  | /// | 
|  | static SDValue getVShift(bool isLeft, MVT VT, SDValue SrcOp, | 
|  | unsigned NumBits, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI, DebugLoc dl) { | 
|  | bool isMMX = VT.getSizeInBits() == 64; | 
|  | MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64; | 
|  | unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL; | 
|  | SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, VT, | 
|  | DAG.getNode(Opc, dl, ShVT, SrcOp, | 
|  | DAG.getConstant(NumBits, TLI.getShiftAmountTy()))); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) { | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | // All zero's are handled with pxor, all one's are handled with pcmpeqd. | 
|  | if (ISD::isBuildVectorAllZeros(Op.getNode()) | 
|  | || ISD::isBuildVectorAllOnes(Op.getNode())) { | 
|  | // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to | 
|  | // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are | 
|  | // eliminated on x86-32 hosts. | 
|  | if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32) | 
|  | return Op; | 
|  |  | 
|  | if (ISD::isBuildVectorAllOnes(Op.getNode())) | 
|  | return getOnesVector(Op.getValueType(), DAG, dl); | 
|  | return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl); | 
|  | } | 
|  |  | 
|  | MVT VT = Op.getValueType(); | 
|  | MVT EVT = VT.getVectorElementType(); | 
|  | unsigned EVTBits = EVT.getSizeInBits(); | 
|  |  | 
|  | unsigned NumElems = Op.getNumOperands(); | 
|  | unsigned NumZero  = 0; | 
|  | unsigned NumNonZero = 0; | 
|  | unsigned NonZeros = 0; | 
|  | bool IsAllConstants = true; | 
|  | SmallSet<SDValue, 8> Values; | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | SDValue Elt = Op.getOperand(i); | 
|  | if (Elt.getOpcode() == ISD::UNDEF) | 
|  | continue; | 
|  | Values.insert(Elt); | 
|  | if (Elt.getOpcode() != ISD::Constant && | 
|  | Elt.getOpcode() != ISD::ConstantFP) | 
|  | IsAllConstants = false; | 
|  | if (isZeroNode(Elt)) | 
|  | NumZero++; | 
|  | else { | 
|  | NonZeros |= (1 << i); | 
|  | NumNonZero++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NumNonZero == 0) { | 
|  | // All undef vector. Return an UNDEF.  All zero vectors were handled above. | 
|  | return DAG.getUNDEF(VT); | 
|  | } | 
|  |  | 
|  | // Special case for single non-zero, non-undef, element. | 
|  | if (NumNonZero == 1) { | 
|  | unsigned Idx = CountTrailingZeros_32(NonZeros); | 
|  | SDValue Item = Op.getOperand(Idx); | 
|  |  | 
|  | // If this is an insertion of an i64 value on x86-32, and if the top bits of | 
|  | // the value are obviously zero, truncate the value to i32 and do the | 
|  | // insertion that way.  Only do this if the value is non-constant or if the | 
|  | // value is a constant being inserted into element 0.  It is cheaper to do | 
|  | // a constant pool load than it is to do a movd + shuffle. | 
|  | if (EVT == MVT::i64 && !Subtarget->is64Bit() && | 
|  | (!IsAllConstants || Idx == 0)) { | 
|  | if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) { | 
|  | // Handle MMX and SSE both. | 
|  | MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32; | 
|  | unsigned VecElts = VT == MVT::v2i64 ? 4 : 2; | 
|  |  | 
|  | // Truncate the value (which may itself be a constant) to i32, and | 
|  | // convert it to a vector with movd (S2V+shuffle to zero extend). | 
|  | Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item); | 
|  | Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item); | 
|  | Item = getShuffleVectorZeroOrUndef(Item, 0, true, | 
|  | Subtarget->hasSSE2(), DAG); | 
|  |  | 
|  | // Now we have our 32-bit value zero extended in the low element of | 
|  | // a vector.  If Idx != 0, swizzle it into place. | 
|  | if (Idx != 0) { | 
|  | SmallVector<int, 4> Mask; | 
|  | Mask.push_back(Idx); | 
|  | for (unsigned i = 1; i != VecElts; ++i) | 
|  | Mask.push_back(i); | 
|  | Item = DAG.getVectorShuffle(VecVT, dl, Item, | 
|  | DAG.getUNDEF(Item.getValueType()), | 
|  | &Mask[0]); | 
|  | } | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have a constant or non-constant insertion into the low element of | 
|  | // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into | 
|  | // the rest of the elements.  This will be matched as movd/movq/movss/movsd | 
|  | // depending on what the source datatype is. | 
|  | if (Idx == 0) { | 
|  | if (NumZero == 0) { | 
|  | return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); | 
|  | } else if (EVT == MVT::i32 || EVT == MVT::f32 || EVT == MVT::f64 || | 
|  | (EVT == MVT::i64 && Subtarget->is64Bit())) { | 
|  | Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); | 
|  | // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. | 
|  | return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(), | 
|  | DAG); | 
|  | } else if (EVT == MVT::i16 || EVT == MVT::i8) { | 
|  | Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item); | 
|  | MVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32; | 
|  | Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item); | 
|  | Item = getShuffleVectorZeroOrUndef(Item, 0, true, | 
|  | Subtarget->hasSSE2(), DAG); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Is it a vector logical left shift? | 
|  | if (NumElems == 2 && Idx == 1 && | 
|  | isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) { | 
|  | unsigned NumBits = VT.getSizeInBits(); | 
|  | return getVShift(true, VT, | 
|  | DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, | 
|  | VT, Op.getOperand(1)), | 
|  | NumBits/2, DAG, *this, dl); | 
|  | } | 
|  |  | 
|  | if (IsAllConstants) // Otherwise, it's better to do a constpool load. | 
|  | return SDValue(); | 
|  |  | 
|  | // Otherwise, if this is a vector with i32 or f32 elements, and the element | 
|  | // is a non-constant being inserted into an element other than the low one, | 
|  | // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka | 
|  | // movd/movss) to move this into the low element, then shuffle it into | 
|  | // place. | 
|  | if (EVTBits == 32) { | 
|  | Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); | 
|  |  | 
|  | // Turn it into a shuffle of zero and zero-extended scalar to vector. | 
|  | Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, | 
|  | Subtarget->hasSSE2(), DAG); | 
|  | SmallVector<int, 8> MaskVec; | 
|  | for (unsigned i = 0; i < NumElems; i++) | 
|  | MaskVec.push_back(i == Idx ? 0 : 1); | 
|  | return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Splat is obviously ok. Let legalizer expand it to a shuffle. | 
|  | if (Values.size() == 1) | 
|  | return SDValue(); | 
|  |  | 
|  | // A vector full of immediates; various special cases are already | 
|  | // handled, so this is best done with a single constant-pool load. | 
|  | if (IsAllConstants) | 
|  | return SDValue(); | 
|  |  | 
|  | // Let legalizer expand 2-wide build_vectors. | 
|  | if (EVTBits == 64) { | 
|  | if (NumNonZero == 1) { | 
|  | // One half is zero or undef. | 
|  | unsigned Idx = CountTrailingZeros_32(NonZeros); | 
|  | SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, | 
|  | Op.getOperand(Idx)); | 
|  | return getShuffleVectorZeroOrUndef(V2, Idx, true, | 
|  | Subtarget->hasSSE2(), DAG); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // If element VT is < 32 bits, convert it to inserts into a zero vector. | 
|  | if (EVTBits == 8 && NumElems == 16) { | 
|  | SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG, | 
|  | *this); | 
|  | if (V.getNode()) return V; | 
|  | } | 
|  |  | 
|  | if (EVTBits == 16 && NumElems == 8) { | 
|  | SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG, | 
|  | *this); | 
|  | if (V.getNode()) return V; | 
|  | } | 
|  |  | 
|  | // If element VT is == 32 bits, turn it into a number of shuffles. | 
|  | SmallVector<SDValue, 8> V; | 
|  | V.resize(NumElems); | 
|  | if (NumElems == 4 && NumZero > 0) { | 
|  | for (unsigned i = 0; i < 4; ++i) { | 
|  | bool isZero = !(NonZeros & (1 << i)); | 
|  | if (isZero) | 
|  | V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl); | 
|  | else | 
|  | V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0; i < 2; ++i) { | 
|  | switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { | 
|  | default: break; | 
|  | case 0: | 
|  | V[i] = V[i*2];  // Must be a zero vector. | 
|  | break; | 
|  | case 1: | 
|  | V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]); | 
|  | break; | 
|  | case 2: | 
|  | V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]); | 
|  | break; | 
|  | case 3: | 
|  | V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<int, 8> MaskVec; | 
|  | bool Reverse = (NonZeros & 0x3) == 2; | 
|  | for (unsigned i = 0; i < 2; ++i) | 
|  | MaskVec.push_back(Reverse ? 1-i : i); | 
|  | Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2; | 
|  | for (unsigned i = 0; i < 2; ++i) | 
|  | MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems); | 
|  | return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]); | 
|  | } | 
|  |  | 
|  | if (Values.size() > 2) { | 
|  | // If we have SSE 4.1, Expand into a number of inserts unless the number of | 
|  | // values to be inserted is equal to the number of elements, in which case | 
|  | // use the unpack code below in the hopes of matching the consecutive elts | 
|  | // load merge pattern for shuffles. | 
|  | // FIXME: We could probably just check that here directly. | 
|  | if (Values.size() < NumElems && VT.getSizeInBits() == 128 && | 
|  | getSubtarget()->hasSSE41()) { | 
|  | V[0] = DAG.getUNDEF(VT); | 
|  | for (unsigned i = 0; i < NumElems; ++i) | 
|  | if (Op.getOperand(i).getOpcode() != ISD::UNDEF) | 
|  | V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0], | 
|  | Op.getOperand(i), DAG.getIntPtrConstant(i)); | 
|  | return V[0]; | 
|  | } | 
|  | // Expand into a number of unpckl*. | 
|  | // e.g. for v4f32 | 
|  | //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0> | 
|  | //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1> | 
|  | //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0> | 
|  | for (unsigned i = 0; i < NumElems; ++i) | 
|  | V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); | 
|  | NumElems >>= 1; | 
|  | while (NumElems != 0) { | 
|  | for (unsigned i = 0; i < NumElems; ++i) | 
|  | V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]); | 
|  | NumElems >>= 1; | 
|  | } | 
|  | return V[0]; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // v8i16 shuffles - Prefer shuffles in the following order: | 
|  | // 1. [all]   pshuflw, pshufhw, optional move | 
|  | // 2. [ssse3] 1 x pshufb | 
|  | // 3. [ssse3] 2 x pshufb + 1 x por | 
|  | // 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw) | 
|  | static | 
|  | SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp, | 
|  | SelectionDAG &DAG, X86TargetLowering &TLI) { | 
|  | SDValue V1 = SVOp->getOperand(0); | 
|  | SDValue V2 = SVOp->getOperand(1); | 
|  | DebugLoc dl = SVOp->getDebugLoc(); | 
|  | SmallVector<int, 8> MaskVals; | 
|  |  | 
|  | // Determine if more than 1 of the words in each of the low and high quadwords | 
|  | // of the result come from the same quadword of one of the two inputs.  Undef | 
|  | // mask values count as coming from any quadword, for better codegen. | 
|  | SmallVector<unsigned, 4> LoQuad(4); | 
|  | SmallVector<unsigned, 4> HiQuad(4); | 
|  | BitVector InputQuads(4); | 
|  | for (unsigned i = 0; i < 8; ++i) { | 
|  | SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad; | 
|  | int EltIdx = SVOp->getMaskElt(i); | 
|  | MaskVals.push_back(EltIdx); | 
|  | if (EltIdx < 0) { | 
|  | ++Quad[0]; | 
|  | ++Quad[1]; | 
|  | ++Quad[2]; | 
|  | ++Quad[3]; | 
|  | continue; | 
|  | } | 
|  | ++Quad[EltIdx / 4]; | 
|  | InputQuads.set(EltIdx / 4); | 
|  | } | 
|  |  | 
|  | int BestLoQuad = -1; | 
|  | unsigned MaxQuad = 1; | 
|  | for (unsigned i = 0; i < 4; ++i) { | 
|  | if (LoQuad[i] > MaxQuad) { | 
|  | BestLoQuad = i; | 
|  | MaxQuad = LoQuad[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | int BestHiQuad = -1; | 
|  | MaxQuad = 1; | 
|  | for (unsigned i = 0; i < 4; ++i) { | 
|  | if (HiQuad[i] > MaxQuad) { | 
|  | BestHiQuad = i; | 
|  | MaxQuad = HiQuad[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // For SSSE3, If all 8 words of the result come from only 1 quadword of each | 
|  | // of the two input vectors, shuffle them into one input vector so only a | 
|  | // single pshufb instruction is necessary. If There are more than 2 input | 
|  | // quads, disable the next transformation since it does not help SSSE3. | 
|  | bool V1Used = InputQuads[0] || InputQuads[1]; | 
|  | bool V2Used = InputQuads[2] || InputQuads[3]; | 
|  | if (TLI.getSubtarget()->hasSSSE3()) { | 
|  | if (InputQuads.count() == 2 && V1Used && V2Used) { | 
|  | BestLoQuad = InputQuads.find_first(); | 
|  | BestHiQuad = InputQuads.find_next(BestLoQuad); | 
|  | } | 
|  | if (InputQuads.count() > 2) { | 
|  | BestLoQuad = -1; | 
|  | BestHiQuad = -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update | 
|  | // the shuffle mask.  If a quad is scored as -1, that means that it contains | 
|  | // words from all 4 input quadwords. | 
|  | SDValue NewV; | 
|  | if (BestLoQuad >= 0 || BestHiQuad >= 0) { | 
|  | SmallVector<int, 8> MaskV; | 
|  | MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad); | 
|  | MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad); | 
|  | NewV = DAG.getVectorShuffle(MVT::v2i64, dl, | 
|  | DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1), | 
|  | DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]); | 
|  | NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV); | 
|  |  | 
|  | // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the | 
|  | // source words for the shuffle, to aid later transformations. | 
|  | bool AllWordsInNewV = true; | 
|  | bool InOrder[2] = { true, true }; | 
|  | for (unsigned i = 0; i != 8; ++i) { | 
|  | int idx = MaskVals[i]; | 
|  | if (idx != (int)i) | 
|  | InOrder[i/4] = false; | 
|  | if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad) | 
|  | continue; | 
|  | AllWordsInNewV = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV; | 
|  | if (AllWordsInNewV) { | 
|  | for (int i = 0; i != 8; ++i) { | 
|  | int idx = MaskVals[i]; | 
|  | if (idx < 0) | 
|  | continue; | 
|  | idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4; | 
|  | if ((idx != i) && idx < 4) | 
|  | pshufhw = false; | 
|  | if ((idx != i) && idx > 3) | 
|  | pshuflw = false; | 
|  | } | 
|  | V1 = NewV; | 
|  | V2Used = false; | 
|  | BestLoQuad = 0; | 
|  | BestHiQuad = 1; | 
|  | } | 
|  |  | 
|  | // If we've eliminated the use of V2, and the new mask is a pshuflw or | 
|  | // pshufhw, that's as cheap as it gets.  Return the new shuffle. | 
|  | if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) { | 
|  | return DAG.getVectorShuffle(MVT::v8i16, dl, NewV, | 
|  | DAG.getUNDEF(MVT::v8i16), &MaskVals[0]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have SSSE3, and all words of the result are from 1 input vector, | 
|  | // case 2 is generated, otherwise case 3 is generated.  If no SSSE3 | 
|  | // is present, fall back to case 4. | 
|  | if (TLI.getSubtarget()->hasSSSE3()) { | 
|  | SmallVector<SDValue,16> pshufbMask; | 
|  |  | 
|  | // If we have elements from both input vectors, set the high bit of the | 
|  | // shuffle mask element to zero out elements that come from V2 in the V1 | 
|  | // mask, and elements that come from V1 in the V2 mask, so that the two | 
|  | // results can be OR'd together. | 
|  | bool TwoInputs = V1Used && V2Used; | 
|  | for (unsigned i = 0; i != 8; ++i) { | 
|  | int EltIdx = MaskVals[i] * 2; | 
|  | if (TwoInputs && (EltIdx >= 16)) { | 
|  | pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); | 
|  | pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); | 
|  | continue; | 
|  | } | 
|  | pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8)); | 
|  | pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8)); | 
|  | } | 
|  | V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1); | 
|  | V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, dl, | 
|  | MVT::v16i8, &pshufbMask[0], 16)); | 
|  | if (!TwoInputs) | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1); | 
|  |  | 
|  | // Calculate the shuffle mask for the second input, shuffle it, and | 
|  | // OR it with the first shuffled input. | 
|  | pshufbMask.clear(); | 
|  | for (unsigned i = 0; i != 8; ++i) { | 
|  | int EltIdx = MaskVals[i] * 2; | 
|  | if (EltIdx < 16) { | 
|  | pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); | 
|  | pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); | 
|  | continue; | 
|  | } | 
|  | pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8)); | 
|  | pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8)); | 
|  | } | 
|  | V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2); | 
|  | V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, dl, | 
|  | MVT::v16i8, &pshufbMask[0], 16)); | 
|  | V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1); | 
|  | } | 
|  |  | 
|  | // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order, | 
|  | // and update MaskVals with new element order. | 
|  | BitVector InOrder(8); | 
|  | if (BestLoQuad >= 0) { | 
|  | SmallVector<int, 8> MaskV; | 
|  | for (int i = 0; i != 4; ++i) { | 
|  | int idx = MaskVals[i]; | 
|  | if (idx < 0) { | 
|  | MaskV.push_back(-1); | 
|  | InOrder.set(i); | 
|  | } else if ((idx / 4) == BestLoQuad) { | 
|  | MaskV.push_back(idx & 3); | 
|  | InOrder.set(i); | 
|  | } else { | 
|  | MaskV.push_back(-1); | 
|  | } | 
|  | } | 
|  | for (unsigned i = 4; i != 8; ++i) | 
|  | MaskV.push_back(i); | 
|  | NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), | 
|  | &MaskV[0]); | 
|  | } | 
|  |  | 
|  | // If BestHi >= 0, generate a pshufhw to put the high elements in order, | 
|  | // and update MaskVals with the new element order. | 
|  | if (BestHiQuad >= 0) { | 
|  | SmallVector<int, 8> MaskV; | 
|  | for (unsigned i = 0; i != 4; ++i) | 
|  | MaskV.push_back(i); | 
|  | for (unsigned i = 4; i != 8; ++i) { | 
|  | int idx = MaskVals[i]; | 
|  | if (idx < 0) { | 
|  | MaskV.push_back(-1); | 
|  | InOrder.set(i); | 
|  | } else if ((idx / 4) == BestHiQuad) { | 
|  | MaskV.push_back((idx & 3) + 4); | 
|  | InOrder.set(i); | 
|  | } else { | 
|  | MaskV.push_back(-1); | 
|  | } | 
|  | } | 
|  | NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), | 
|  | &MaskV[0]); | 
|  | } | 
|  |  | 
|  | // In case BestHi & BestLo were both -1, which means each quadword has a word | 
|  | // from each of the four input quadwords, calculate the InOrder bitvector now | 
|  | // before falling through to the insert/extract cleanup. | 
|  | if (BestLoQuad == -1 && BestHiQuad == -1) { | 
|  | NewV = V1; | 
|  | for (int i = 0; i != 8; ++i) | 
|  | if (MaskVals[i] < 0 || MaskVals[i] == i) | 
|  | InOrder.set(i); | 
|  | } | 
|  |  | 
|  | // The other elements are put in the right place using pextrw and pinsrw. | 
|  | for (unsigned i = 0; i != 8; ++i) { | 
|  | if (InOrder[i]) | 
|  | continue; | 
|  | int EltIdx = MaskVals[i]; | 
|  | if (EltIdx < 0) | 
|  | continue; | 
|  | SDValue ExtOp = (EltIdx < 8) | 
|  | ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1, | 
|  | DAG.getIntPtrConstant(EltIdx)) | 
|  | : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2, | 
|  | DAG.getIntPtrConstant(EltIdx - 8)); | 
|  | NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp, | 
|  | DAG.getIntPtrConstant(i)); | 
|  | } | 
|  | return NewV; | 
|  | } | 
|  |  | 
|  | // v16i8 shuffles - Prefer shuffles in the following order: | 
|  | // 1. [ssse3] 1 x pshufb | 
|  | // 2. [ssse3] 2 x pshufb + 1 x por | 
|  | // 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw | 
|  | static | 
|  | SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp, | 
|  | SelectionDAG &DAG, X86TargetLowering &TLI) { | 
|  | SDValue V1 = SVOp->getOperand(0); | 
|  | SDValue V2 = SVOp->getOperand(1); | 
|  | DebugLoc dl = SVOp->getDebugLoc(); | 
|  | SmallVector<int, 16> MaskVals; | 
|  | SVOp->getMask(MaskVals); | 
|  |  | 
|  | // If we have SSSE3, case 1 is generated when all result bytes come from | 
|  | // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is | 
|  | // present, fall back to case 3. | 
|  | // FIXME: kill V2Only once shuffles are canonizalized by getNode. | 
|  | bool V1Only = true; | 
|  | bool V2Only = true; | 
|  | for (unsigned i = 0; i < 16; ++i) { | 
|  | int EltIdx = MaskVals[i]; | 
|  | if (EltIdx < 0) | 
|  | continue; | 
|  | if (EltIdx < 16) | 
|  | V2Only = false; | 
|  | else | 
|  | V1Only = false; | 
|  | } | 
|  |  | 
|  | // If SSSE3, use 1 pshufb instruction per vector with elements in the result. | 
|  | if (TLI.getSubtarget()->hasSSSE3()) { | 
|  | SmallVector<SDValue,16> pshufbMask; | 
|  |  | 
|  | // If all result elements are from one input vector, then only translate | 
|  | // undef mask values to 0x80 (zero out result) in the pshufb mask. | 
|  | // | 
|  | // Otherwise, we have elements from both input vectors, and must zero out | 
|  | // elements that come from V2 in the first mask, and V1 in the second mask | 
|  | // so that we can OR them together. | 
|  | bool TwoInputs = !(V1Only || V2Only); | 
|  | for (unsigned i = 0; i != 16; ++i) { | 
|  | int EltIdx = MaskVals[i]; | 
|  | if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) { | 
|  | pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); | 
|  | continue; | 
|  | } | 
|  | pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8)); | 
|  | } | 
|  | // If all the elements are from V2, assign it to V1 and return after | 
|  | // building the first pshufb. | 
|  | if (V2Only) | 
|  | V1 = V2; | 
|  | V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, dl, | 
|  | MVT::v16i8, &pshufbMask[0], 16)); | 
|  | if (!TwoInputs) | 
|  | return V1; | 
|  |  | 
|  | // Calculate the shuffle mask for the second input, shuffle it, and | 
|  | // OR it with the first shuffled input. | 
|  | pshufbMask.clear(); | 
|  | for (unsigned i = 0; i != 16; ++i) { | 
|  | int EltIdx = MaskVals[i]; | 
|  | if (EltIdx < 16) { | 
|  | pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); | 
|  | continue; | 
|  | } | 
|  | pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8)); | 
|  | } | 
|  | V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, dl, | 
|  | MVT::v16i8, &pshufbMask[0], 16)); | 
|  | return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2); | 
|  | } | 
|  |  | 
|  | // No SSSE3 - Calculate in place words and then fix all out of place words | 
|  | // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from | 
|  | // the 16 different words that comprise the two doublequadword input vectors. | 
|  | V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1); | 
|  | V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2); | 
|  | SDValue NewV = V2Only ? V2 : V1; | 
|  | for (int i = 0; i != 8; ++i) { | 
|  | int Elt0 = MaskVals[i*2]; | 
|  | int Elt1 = MaskVals[i*2+1]; | 
|  |  | 
|  | // This word of the result is all undef, skip it. | 
|  | if (Elt0 < 0 && Elt1 < 0) | 
|  | continue; | 
|  |  | 
|  | // This word of the result is already in the correct place, skip it. | 
|  | if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1)) | 
|  | continue; | 
|  | if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17)) | 
|  | continue; | 
|  |  | 
|  | SDValue Elt0Src = Elt0 < 16 ? V1 : V2; | 
|  | SDValue Elt1Src = Elt1 < 16 ? V1 : V2; | 
|  | SDValue InsElt; | 
|  |  | 
|  | // If Elt0 and Elt1 are defined, are consecutive, and can be load | 
|  | // using a single extract together, load it and store it. | 
|  | if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) { | 
|  | InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src, | 
|  | DAG.getIntPtrConstant(Elt1 / 2)); | 
|  | NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt, | 
|  | DAG.getIntPtrConstant(i)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If Elt1 is defined, extract it from the appropriate source.  If the | 
|  | // source byte is not also odd, shift the extracted word left 8 bits | 
|  | // otherwise clear the bottom 8 bits if we need to do an or. | 
|  | if (Elt1 >= 0) { | 
|  | InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src, | 
|  | DAG.getIntPtrConstant(Elt1 / 2)); | 
|  | if ((Elt1 & 1) == 0) | 
|  | InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt, | 
|  | DAG.getConstant(8, TLI.getShiftAmountTy())); | 
|  | else if (Elt0 >= 0) | 
|  | InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt, | 
|  | DAG.getConstant(0xFF00, MVT::i16)); | 
|  | } | 
|  | // If Elt0 is defined, extract it from the appropriate source.  If the | 
|  | // source byte is not also even, shift the extracted word right 8 bits. If | 
|  | // Elt1 was also defined, OR the extracted values together before | 
|  | // inserting them in the result. | 
|  | if (Elt0 >= 0) { | 
|  | SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, | 
|  | Elt0Src, DAG.getIntPtrConstant(Elt0 / 2)); | 
|  | if ((Elt0 & 1) != 0) | 
|  | InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0, | 
|  | DAG.getConstant(8, TLI.getShiftAmountTy())); | 
|  | else if (Elt1 >= 0) | 
|  | InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0, | 
|  | DAG.getConstant(0x00FF, MVT::i16)); | 
|  | InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0) | 
|  | : InsElt0; | 
|  | } | 
|  | NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt, | 
|  | DAG.getIntPtrConstant(i)); | 
|  | } | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV); | 
|  | } | 
|  |  | 
|  | /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide | 
|  | /// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be | 
|  | /// done when every pair / quad of shuffle mask elements point to elements in | 
|  | /// the right sequence. e.g. | 
|  | /// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15> | 
|  | static | 
|  | SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp, | 
|  | SelectionDAG &DAG, | 
|  | TargetLowering &TLI, DebugLoc dl) { | 
|  | MVT VT = SVOp->getValueType(0); | 
|  | SDValue V1 = SVOp->getOperand(0); | 
|  | SDValue V2 = SVOp->getOperand(1); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | unsigned NewWidth = (NumElems == 4) ? 2 : 4; | 
|  | MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth); | 
|  | MVT MaskEltVT = MaskVT.getVectorElementType(); | 
|  | MVT NewVT = MaskVT; | 
|  | switch (VT.getSimpleVT()) { | 
|  | default: assert(false && "Unexpected!"); | 
|  | case MVT::v4f32: NewVT = MVT::v2f64; break; | 
|  | case MVT::v4i32: NewVT = MVT::v2i64; break; | 
|  | case MVT::v8i16: NewVT = MVT::v4i32; break; | 
|  | case MVT::v16i8: NewVT = MVT::v4i32; break; | 
|  | } | 
|  |  | 
|  | if (NewWidth == 2) { | 
|  | if (VT.isInteger()) | 
|  | NewVT = MVT::v2i64; | 
|  | else | 
|  | NewVT = MVT::v2f64; | 
|  | } | 
|  | int Scale = NumElems / NewWidth; | 
|  | SmallVector<int, 8> MaskVec; | 
|  | for (unsigned i = 0; i < NumElems; i += Scale) { | 
|  | int StartIdx = -1; | 
|  | for (int j = 0; j < Scale; ++j) { | 
|  | int EltIdx = SVOp->getMaskElt(i+j); | 
|  | if (EltIdx < 0) | 
|  | continue; | 
|  | if (StartIdx == -1) | 
|  | StartIdx = EltIdx - (EltIdx % Scale); | 
|  | if (EltIdx != StartIdx + j) | 
|  | return SDValue(); | 
|  | } | 
|  | if (StartIdx == -1) | 
|  | MaskVec.push_back(-1); | 
|  | else | 
|  | MaskVec.push_back(StartIdx / Scale); | 
|  | } | 
|  |  | 
|  | V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1); | 
|  | V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2); | 
|  | return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]); | 
|  | } | 
|  |  | 
|  | /// getVZextMovL - Return a zero-extending vector move low node. | 
|  | /// | 
|  | static SDValue getVZextMovL(MVT VT, MVT OpVT, | 
|  | SDValue SrcOp, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget, DebugLoc dl) { | 
|  | if (VT == MVT::v2f64 || VT == MVT::v4f32) { | 
|  | LoadSDNode *LD = NULL; | 
|  | if (!isScalarLoadToVector(SrcOp.getNode(), &LD)) | 
|  | LD = dyn_cast<LoadSDNode>(SrcOp); | 
|  | if (!LD) { | 
|  | // movssrr and movsdrr do not clear top bits. Try to use movd, movq | 
|  | // instead. | 
|  | MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32; | 
|  | if ((EVT != MVT::i64 || Subtarget->is64Bit()) && | 
|  | SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR && | 
|  | SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT && | 
|  | SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) { | 
|  | // PR2108 | 
|  | OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32; | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, VT, | 
|  | DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT, | 
|  | DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, | 
|  | OpVT, | 
|  | SrcOp.getOperand(0) | 
|  | .getOperand(0)))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, VT, | 
|  | DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT, | 
|  | DAG.getNode(ISD::BIT_CONVERT, dl, | 
|  | OpVT, SrcOp))); | 
|  | } | 
|  |  | 
|  | /// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of | 
|  | /// shuffles. | 
|  | static SDValue | 
|  | LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { | 
|  | SDValue V1 = SVOp->getOperand(0); | 
|  | SDValue V2 = SVOp->getOperand(1); | 
|  | DebugLoc dl = SVOp->getDebugLoc(); | 
|  | MVT VT = SVOp->getValueType(0); | 
|  |  | 
|  | SmallVector<std::pair<int, int>, 8> Locs; | 
|  | Locs.resize(4); | 
|  | SmallVector<int, 8> Mask1(4U, -1); | 
|  | SmallVector<int, 8> PermMask; | 
|  | SVOp->getMask(PermMask); | 
|  |  | 
|  | unsigned NumHi = 0; | 
|  | unsigned NumLo = 0; | 
|  | for (unsigned i = 0; i != 4; ++i) { | 
|  | int Idx = PermMask[i]; | 
|  | if (Idx < 0) { | 
|  | Locs[i] = std::make_pair(-1, -1); | 
|  | } else { | 
|  | assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!"); | 
|  | if (Idx < 4) { | 
|  | Locs[i] = std::make_pair(0, NumLo); | 
|  | Mask1[NumLo] = Idx; | 
|  | NumLo++; | 
|  | } else { | 
|  | Locs[i] = std::make_pair(1, NumHi); | 
|  | if (2+NumHi < 4) | 
|  | Mask1[2+NumHi] = Idx; | 
|  | NumHi++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NumLo <= 2 && NumHi <= 2) { | 
|  | // If no more than two elements come from either vector. This can be | 
|  | // implemented with two shuffles. First shuffle gather the elements. | 
|  | // The second shuffle, which takes the first shuffle as both of its | 
|  | // vector operands, put the elements into the right order. | 
|  | V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); | 
|  |  | 
|  | SmallVector<int, 8> Mask2(4U, -1); | 
|  |  | 
|  | for (unsigned i = 0; i != 4; ++i) { | 
|  | if (Locs[i].first == -1) | 
|  | continue; | 
|  | else { | 
|  | unsigned Idx = (i < 2) ? 0 : 4; | 
|  | Idx += Locs[i].first * 2 + Locs[i].second; | 
|  | Mask2[i] = Idx; | 
|  | } | 
|  | } | 
|  |  | 
|  | return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]); | 
|  | } else if (NumLo == 3 || NumHi == 3) { | 
|  | // Otherwise, we must have three elements from one vector, call it X, and | 
|  | // one element from the other, call it Y.  First, use a shufps to build an | 
|  | // intermediate vector with the one element from Y and the element from X | 
|  | // that will be in the same half in the final destination (the indexes don't | 
|  | // matter). Then, use a shufps to build the final vector, taking the half | 
|  | // containing the element from Y from the intermediate, and the other half | 
|  | // from X. | 
|  | if (NumHi == 3) { | 
|  | // Normalize it so the 3 elements come from V1. | 
|  | CommuteVectorShuffleMask(PermMask, VT); | 
|  | std::swap(V1, V2); | 
|  | } | 
|  |  | 
|  | // Find the element from V2. | 
|  | unsigned HiIndex; | 
|  | for (HiIndex = 0; HiIndex < 3; ++HiIndex) { | 
|  | int Val = PermMask[HiIndex]; | 
|  | if (Val < 0) | 
|  | continue; | 
|  | if (Val >= 4) | 
|  | break; | 
|  | } | 
|  |  | 
|  | Mask1[0] = PermMask[HiIndex]; | 
|  | Mask1[1] = -1; | 
|  | Mask1[2] = PermMask[HiIndex^1]; | 
|  | Mask1[3] = -1; | 
|  | V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); | 
|  |  | 
|  | if (HiIndex >= 2) { | 
|  | Mask1[0] = PermMask[0]; | 
|  | Mask1[1] = PermMask[1]; | 
|  | Mask1[2] = HiIndex & 1 ? 6 : 4; | 
|  | Mask1[3] = HiIndex & 1 ? 4 : 6; | 
|  | return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); | 
|  | } else { | 
|  | Mask1[0] = HiIndex & 1 ? 2 : 0; | 
|  | Mask1[1] = HiIndex & 1 ? 0 : 2; | 
|  | Mask1[2] = PermMask[2]; | 
|  | Mask1[3] = PermMask[3]; | 
|  | if (Mask1[2] >= 0) | 
|  | Mask1[2] += 4; | 
|  | if (Mask1[3] >= 0) | 
|  | Mask1[3] += 4; | 
|  | return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Break it into (shuffle shuffle_hi, shuffle_lo). | 
|  | Locs.clear(); | 
|  | SmallVector<int,8> LoMask(4U, -1); | 
|  | SmallVector<int,8> HiMask(4U, -1); | 
|  |  | 
|  | SmallVector<int,8> *MaskPtr = &LoMask; | 
|  | unsigned MaskIdx = 0; | 
|  | unsigned LoIdx = 0; | 
|  | unsigned HiIdx = 2; | 
|  | for (unsigned i = 0; i != 4; ++i) { | 
|  | if (i == 2) { | 
|  | MaskPtr = &HiMask; | 
|  | MaskIdx = 1; | 
|  | LoIdx = 0; | 
|  | HiIdx = 2; | 
|  | } | 
|  | int Idx = PermMask[i]; | 
|  | if (Idx < 0) { | 
|  | Locs[i] = std::make_pair(-1, -1); | 
|  | } else if (Idx < 4) { | 
|  | Locs[i] = std::make_pair(MaskIdx, LoIdx); | 
|  | (*MaskPtr)[LoIdx] = Idx; | 
|  | LoIdx++; | 
|  | } else { | 
|  | Locs[i] = std::make_pair(MaskIdx, HiIdx); | 
|  | (*MaskPtr)[HiIdx] = Idx; | 
|  | HiIdx++; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]); | 
|  | SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]); | 
|  | SmallVector<int, 8> MaskOps; | 
|  | for (unsigned i = 0; i != 4; ++i) { | 
|  | if (Locs[i].first == -1) { | 
|  | MaskOps.push_back(-1); | 
|  | } else { | 
|  | unsigned Idx = Locs[i].first * 4 + Locs[i].second; | 
|  | MaskOps.push_back(Idx); | 
|  | } | 
|  | } | 
|  | return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) { | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | SDValue V1 = Op.getOperand(0); | 
|  | SDValue V2 = Op.getOperand(1); | 
|  | MVT VT = Op.getValueType(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | bool isMMX = VT.getSizeInBits() == 64; | 
|  | bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; | 
|  | bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; | 
|  | bool V1IsSplat = false; | 
|  | bool V2IsSplat = false; | 
|  |  | 
|  | if (isZeroShuffle(SVOp)) | 
|  | return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl); | 
|  |  | 
|  | // Promote splats to v4f32. | 
|  | if (SVOp->isSplat()) { | 
|  | if (isMMX || NumElems < 4) | 
|  | return Op; | 
|  | return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2()); | 
|  | } | 
|  |  | 
|  | // If the shuffle can be profitably rewritten as a narrower shuffle, then | 
|  | // do it! | 
|  | if (VT == MVT::v8i16 || VT == MVT::v16i8) { | 
|  | SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl); | 
|  | if (NewOp.getNode()) | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, VT, | 
|  | LowerVECTOR_SHUFFLE(NewOp, DAG)); | 
|  | } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) { | 
|  | // FIXME: Figure out a cleaner way to do this. | 
|  | // Try to make use of movq to zero out the top part. | 
|  | if (ISD::isBuildVectorAllZeros(V2.getNode())) { | 
|  | SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl); | 
|  | if (NewOp.getNode()) { | 
|  | if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false)) | 
|  | return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0), | 
|  | DAG, Subtarget, dl); | 
|  | } | 
|  | } else if (ISD::isBuildVectorAllZeros(V1.getNode())) { | 
|  | SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl); | 
|  | if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp))) | 
|  | return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1), | 
|  | DAG, Subtarget, dl); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (X86::isPSHUFDMask(SVOp)) | 
|  | return Op; | 
|  |  | 
|  | // Check if this can be converted into a logical shift. | 
|  | bool isLeft = false; | 
|  | unsigned ShAmt = 0; | 
|  | SDValue ShVal; | 
|  | bool isShift = getSubtarget()->hasSSE2() && | 
|  | isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt); | 
|  | if (isShift && ShVal.hasOneUse()) { | 
|  | // If the shifted value has multiple uses, it may be cheaper to use | 
|  | // v_set0 + movlhps or movhlps, etc. | 
|  | MVT EVT = VT.getVectorElementType(); | 
|  | ShAmt *= EVT.getSizeInBits(); | 
|  | return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl); | 
|  | } | 
|  |  | 
|  | if (X86::isMOVLMask(SVOp)) { | 
|  | if (V1IsUndef) | 
|  | return V2; | 
|  | if (ISD::isBuildVectorAllZeros(V1.getNode())) | 
|  | return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl); | 
|  | if (!isMMX) | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | // FIXME: fold these into legal mask. | 
|  | if (!isMMX && (X86::isMOVSHDUPMask(SVOp) || | 
|  | X86::isMOVSLDUPMask(SVOp) || | 
|  | X86::isMOVHLPSMask(SVOp) || | 
|  | X86::isMOVHPMask(SVOp) || | 
|  | X86::isMOVLPMask(SVOp))) | 
|  | return Op; | 
|  |  | 
|  | if (ShouldXformToMOVHLPS(SVOp) || | 
|  | ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp)) | 
|  | return CommuteVectorShuffle(SVOp, DAG); | 
|  |  | 
|  | if (isShift) { | 
|  | // No better options. Use a vshl / vsrl. | 
|  | MVT EVT = VT.getVectorElementType(); | 
|  | ShAmt *= EVT.getSizeInBits(); | 
|  | return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl); | 
|  | } | 
|  |  | 
|  | bool Commuted = false; | 
|  | // FIXME: This should also accept a bitcast of a splat?  Be careful, not | 
|  | // 1,1,1,1 -> v8i16 though. | 
|  | V1IsSplat = isSplatVector(V1.getNode()); | 
|  | V2IsSplat = isSplatVector(V2.getNode()); | 
|  |  | 
|  | // Canonicalize the splat or undef, if present, to be on the RHS. | 
|  | if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) { | 
|  | Op = CommuteVectorShuffle(SVOp, DAG); | 
|  | SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | V1 = SVOp->getOperand(0); | 
|  | V2 = SVOp->getOperand(1); | 
|  | std::swap(V1IsSplat, V2IsSplat); | 
|  | std::swap(V1IsUndef, V2IsUndef); | 
|  | Commuted = true; | 
|  | } | 
|  |  | 
|  | if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) { | 
|  | // Shuffling low element of v1 into undef, just return v1. | 
|  | if (V2IsUndef) | 
|  | return V1; | 
|  | // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which | 
|  | // the instruction selector will not match, so get a canonical MOVL with | 
|  | // swapped operands to undo the commute. | 
|  | return getMOVL(DAG, dl, VT, V2, V1); | 
|  | } | 
|  |  | 
|  | if (X86::isUNPCKL_v_undef_Mask(SVOp) || | 
|  | X86::isUNPCKH_v_undef_Mask(SVOp) || | 
|  | X86::isUNPCKLMask(SVOp) || | 
|  | X86::isUNPCKHMask(SVOp)) | 
|  | return Op; | 
|  |  | 
|  | if (V2IsSplat) { | 
|  | // Normalize mask so all entries that point to V2 points to its first | 
|  | // element then try to match unpck{h|l} again. If match, return a | 
|  | // new vector_shuffle with the corrected mask. | 
|  | SDValue NewMask = NormalizeMask(SVOp, DAG); | 
|  | ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask); | 
|  | if (NSVOp != SVOp) { | 
|  | if (X86::isUNPCKLMask(NSVOp, true)) { | 
|  | return NewMask; | 
|  | } else if (X86::isUNPCKHMask(NSVOp, true)) { | 
|  | return NewMask; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Commuted) { | 
|  | // Commute is back and try unpck* again. | 
|  | // FIXME: this seems wrong. | 
|  | SDValue NewOp = CommuteVectorShuffle(SVOp, DAG); | 
|  | ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp); | 
|  | if (X86::isUNPCKL_v_undef_Mask(NewSVOp) || | 
|  | X86::isUNPCKH_v_undef_Mask(NewSVOp) || | 
|  | X86::isUNPCKLMask(NewSVOp) || | 
|  | X86::isUNPCKHMask(NewSVOp)) | 
|  | return NewOp; | 
|  | } | 
|  |  | 
|  | // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle. | 
|  |  | 
|  | // Normalize the node to match x86 shuffle ops if needed | 
|  | if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp)) | 
|  | return CommuteVectorShuffle(SVOp, DAG); | 
|  |  | 
|  | // Check for legal shuffle and return? | 
|  | SmallVector<int, 16> PermMask; | 
|  | SVOp->getMask(PermMask); | 
|  | if (isShuffleMaskLegal(PermMask, VT)) | 
|  | return Op; | 
|  |  | 
|  | // Handle v8i16 specifically since SSE can do byte extraction and insertion. | 
|  | if (VT == MVT::v8i16) { | 
|  | SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this); | 
|  | if (NewOp.getNode()) | 
|  | return NewOp; | 
|  | } | 
|  |  | 
|  | if (VT == MVT::v16i8) { | 
|  | SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this); | 
|  | if (NewOp.getNode()) | 
|  | return NewOp; | 
|  | } | 
|  |  | 
|  | // Handle all 4 wide cases with a number of shuffles except for MMX. | 
|  | if (NumElems == 4 && !isMMX) | 
|  | return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, | 
|  | SelectionDAG &DAG) { | 
|  | MVT VT = Op.getValueType(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | if (VT.getSizeInBits() == 8) { | 
|  | SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32, | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, | 
|  | DAG.getValueType(VT)); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); | 
|  | } else if (VT.getSizeInBits() == 16) { | 
|  | unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | // If Idx is 0, it's cheaper to do a move instead of a pextrw. | 
|  | if (Idx == 0) | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, | 
|  | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, | 
|  | DAG.getNode(ISD::BIT_CONVERT, dl, | 
|  | MVT::v4i32, | 
|  | Op.getOperand(0)), | 
|  | Op.getOperand(1))); | 
|  | SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32, | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, | 
|  | DAG.getValueType(VT)); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); | 
|  | } else if (VT == MVT::f32) { | 
|  | // EXTRACTPS outputs to a GPR32 register which will require a movd to copy | 
|  | // the result back to FR32 register. It's only worth matching if the | 
|  | // result has a single use which is a store or a bitcast to i32.  And in | 
|  | // the case of a store, it's not worth it if the index is a constant 0, | 
|  | // because a MOVSSmr can be used instead, which is smaller and faster. | 
|  | if (!Op.hasOneUse()) | 
|  | return SDValue(); | 
|  | SDNode *User = *Op.getNode()->use_begin(); | 
|  | if ((User->getOpcode() != ISD::STORE || | 
|  | (isa<ConstantSDNode>(Op.getOperand(1)) && | 
|  | cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) && | 
|  | (User->getOpcode() != ISD::BIT_CONVERT || | 
|  | User->getValueType(0) != MVT::i32)) | 
|  | return SDValue(); | 
|  | SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, | 
|  | DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, | 
|  | Op.getOperand(0)), | 
|  | Op.getOperand(1)); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract); | 
|  | } else if (VT == MVT::i32) { | 
|  | // ExtractPS works with constant index. | 
|  | if (isa<ConstantSDNode>(Op.getOperand(1))) | 
|  | return Op; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { | 
|  | if (!isa<ConstantSDNode>(Op.getOperand(1))) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Subtarget->hasSSE41()) { | 
|  | SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG); | 
|  | if (Res.getNode()) | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | MVT VT = Op.getValueType(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | // TODO: handle v16i8. | 
|  | if (VT.getSizeInBits() == 16) { | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | if (Idx == 0) | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, | 
|  | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, | 
|  | DAG.getNode(ISD::BIT_CONVERT, dl, | 
|  | MVT::v4i32, Vec), | 
|  | Op.getOperand(1))); | 
|  | // Transform it so it match pextrw which produces a 32-bit result. | 
|  | MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1); | 
|  | SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EVT, | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EVT, Extract, | 
|  | DAG.getValueType(VT)); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); | 
|  | } else if (VT.getSizeInBits() == 32) { | 
|  | unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | if (Idx == 0) | 
|  | return Op; | 
|  |  | 
|  | // SHUFPS the element to the lowest double word, then movss. | 
|  | int Mask[4] = { Idx, -1, -1, -1 }; | 
|  | MVT VVT = Op.getOperand(0).getValueType(); | 
|  | SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), | 
|  | DAG.getUNDEF(VVT), Mask); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } else if (VT.getSizeInBits() == 64) { | 
|  | // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b | 
|  | // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught | 
|  | //        to match extract_elt for f64. | 
|  | unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | if (Idx == 0) | 
|  | return Op; | 
|  |  | 
|  | // UNPCKHPD the element to the lowest double word, then movsd. | 
|  | // Note if the lower 64 bits of the result of the UNPCKHPD is then stored | 
|  | // to a f64mem, the whole operation is folded into a single MOVHPDmr. | 
|  | int Mask[2] = { 1, -1 }; | 
|  | MVT VVT = Op.getOperand(0).getValueType(); | 
|  | SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), | 
|  | DAG.getUNDEF(VVT), Mask); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){ | 
|  | MVT VT = Op.getValueType(); | 
|  | MVT EVT = VT.getVectorElementType(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | SDValue N1 = Op.getOperand(1); | 
|  | SDValue N2 = Op.getOperand(2); | 
|  |  | 
|  | if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) && | 
|  | isa<ConstantSDNode>(N2)) { | 
|  | unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB | 
|  | : X86ISD::PINSRW; | 
|  | // Transform it so it match pinsr{b,w} which expects a GR32 as its second | 
|  | // argument. | 
|  | if (N1.getValueType() != MVT::i32) | 
|  | N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); | 
|  | if (N2.getValueType() != MVT::i32) | 
|  | N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue()); | 
|  | return DAG.getNode(Opc, dl, VT, N0, N1, N2); | 
|  | } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) { | 
|  | // Bits [7:6] of the constant are the source select.  This will always be | 
|  | //  zero here.  The DAG Combiner may combine an extract_elt index into these | 
|  | //  bits.  For example (insert (extract, 3), 2) could be matched by putting | 
|  | //  the '3' into bits [7:6] of X86ISD::INSERTPS. | 
|  | // Bits [5:4] of the constant are the destination select.  This is the | 
|  | //  value of the incoming immediate. | 
|  | // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may | 
|  | //   combine either bitwise AND or insert of float 0.0 to set these bits. | 
|  | N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4); | 
|  | // Create this as a scalar to vector.. | 
|  | N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1); | 
|  | return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2); | 
|  | } else if (EVT == MVT::i32 && isa<ConstantSDNode>(N2)) { | 
|  | // PINSR* works with constant index. | 
|  | return Op; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { | 
|  | MVT VT = Op.getValueType(); | 
|  | MVT EVT = VT.getVectorElementType(); | 
|  |  | 
|  | if (Subtarget->hasSSE41()) | 
|  | return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG); | 
|  |  | 
|  | if (EVT == MVT::i8) | 
|  | return SDValue(); | 
|  |  | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | SDValue N1 = Op.getOperand(1); | 
|  | SDValue N2 = Op.getOperand(2); | 
|  |  | 
|  | if (EVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) { | 
|  | // Transform it so it match pinsrw which expects a 16-bit value in a GR32 | 
|  | // as its second argument. | 
|  | if (N1.getValueType() != MVT::i32) | 
|  | N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); | 
|  | if (N2.getValueType() != MVT::i32) | 
|  | N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue()); | 
|  | return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) { | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | if (Op.getValueType() == MVT::v2f32) | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32, | 
|  | DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32, | 
|  | DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, | 
|  | Op.getOperand(0)))); | 
|  |  | 
|  | SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0)); | 
|  | MVT VT = MVT::v2i32; | 
|  | switch (Op.getValueType().getSimpleVT()) { | 
|  | default: break; | 
|  | case MVT::v16i8: | 
|  | case MVT::v8i16: | 
|  | VT = MVT::v4i32; | 
|  | break; | 
|  | } | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), | 
|  | DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt)); | 
|  | } | 
|  |  | 
|  | // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as | 
|  | // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is | 
|  | // one of the above mentioned nodes. It has to be wrapped because otherwise | 
|  | // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only | 
|  | // be used to form addressing mode. These wrapped nodes will be selected | 
|  | // into MOV32ri. | 
|  | SDValue | 
|  | X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) { | 
|  | ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); | 
|  |  | 
|  | // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the | 
|  | // global base reg. | 
|  | unsigned char OpFlag = 0; | 
|  | unsigned WrapperKind = X86ISD::Wrapper; | 
|  |  | 
|  | if (Subtarget->isPICStyleRIPRel() && | 
|  | getTargetMachine().getCodeModel() == CodeModel::Small) | 
|  | WrapperKind = X86ISD::WrapperRIP; | 
|  | else if (Subtarget->isPICStyleGOT()) | 
|  | OpFlag = X86II::MO_GOTOFF; | 
|  | else if (Subtarget->isPICStyleStubPIC()) | 
|  | OpFlag = X86II::MO_PIC_BASE_OFFSET; | 
|  |  | 
|  | SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(), | 
|  | CP->getAlignment(), | 
|  | CP->getOffset(), OpFlag); | 
|  | DebugLoc DL = CP->getDebugLoc(); | 
|  | Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); | 
|  | // With PIC, the address is actually $g + Offset. | 
|  | if (OpFlag) { | 
|  | Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, | 
|  | DebugLoc::getUnknownLoc(), getPointerTy()), | 
|  | Result); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) { | 
|  | JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); | 
|  |  | 
|  | // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the | 
|  | // global base reg. | 
|  | unsigned char OpFlag = 0; | 
|  | unsigned WrapperKind = X86ISD::Wrapper; | 
|  |  | 
|  | if (Subtarget->isPICStyleRIPRel() && | 
|  | getTargetMachine().getCodeModel() == CodeModel::Small) | 
|  | WrapperKind = X86ISD::WrapperRIP; | 
|  | else if (Subtarget->isPICStyleGOT()) | 
|  | OpFlag = X86II::MO_GOTOFF; | 
|  | else if (Subtarget->isPICStyleStubPIC()) | 
|  | OpFlag = X86II::MO_PIC_BASE_OFFSET; | 
|  |  | 
|  | SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(), | 
|  | OpFlag); | 
|  | DebugLoc DL = JT->getDebugLoc(); | 
|  | Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); | 
|  |  | 
|  | // With PIC, the address is actually $g + Offset. | 
|  | if (OpFlag) { | 
|  | Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, | 
|  | DebugLoc::getUnknownLoc(), getPointerTy()), | 
|  | Result); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) { | 
|  | const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); | 
|  |  | 
|  | // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the | 
|  | // global base reg. | 
|  | unsigned char OpFlag = 0; | 
|  | unsigned WrapperKind = X86ISD::Wrapper; | 
|  | if (Subtarget->isPICStyleRIPRel() && | 
|  | getTargetMachine().getCodeModel() == CodeModel::Small) | 
|  | WrapperKind = X86ISD::WrapperRIP; | 
|  | else if (Subtarget->isPICStyleGOT()) | 
|  | OpFlag = X86II::MO_GOTOFF; | 
|  | else if (Subtarget->isPICStyleStubPIC()) | 
|  | OpFlag = X86II::MO_PIC_BASE_OFFSET; | 
|  |  | 
|  | SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag); | 
|  |  | 
|  | DebugLoc DL = Op.getDebugLoc(); | 
|  | Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); | 
|  |  | 
|  |  | 
|  | // With PIC, the address is actually $g + Offset. | 
|  | if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && | 
|  | !Subtarget->is64Bit()) { | 
|  | Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, | 
|  | DebugLoc::getUnknownLoc(), | 
|  | getPointerTy()), | 
|  | Result); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl, | 
|  | int64_t Offset, | 
|  | SelectionDAG &DAG) const { | 
|  | // Create the TargetGlobalAddress node, folding in the constant | 
|  | // offset if it is legal. | 
|  | unsigned char OpFlags = | 
|  | Subtarget->ClassifyGlobalReference(GV, getTargetMachine()); | 
|  | SDValue Result; | 
|  | if (OpFlags == X86II::MO_NO_FLAG && isInt32(Offset)) { | 
|  | // A direct static reference to a global. | 
|  | Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset); | 
|  | Offset = 0; | 
|  | } else { | 
|  | Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags); | 
|  | } | 
|  |  | 
|  | if (Subtarget->isPICStyleRIPRel() && | 
|  | getTargetMachine().getCodeModel() == CodeModel::Small) | 
|  | Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result); | 
|  | else | 
|  | Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result); | 
|  |  | 
|  | // With PIC, the address is actually $g + Offset. | 
|  | if (isGlobalRelativeToPICBase(OpFlags)) { | 
|  | Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()), | 
|  | Result); | 
|  | } | 
|  |  | 
|  | // For globals that require a load from a stub to get the address, emit the | 
|  | // load. | 
|  | if (isGlobalStubReference(OpFlags)) | 
|  | Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result, | 
|  | PseudoSourceValue::getGOT(), 0); | 
|  |  | 
|  | // If there was a non-zero offset that we didn't fold, create an explicit | 
|  | // addition for it. | 
|  | if (Offset != 0) | 
|  | Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result, | 
|  | DAG.getConstant(Offset, getPointerTy())); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) { | 
|  | const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); | 
|  | int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); | 
|  | return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG); | 
|  | } | 
|  |  | 
|  | static SDValue | 
|  | GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA, | 
|  | SDValue *InFlag, const MVT PtrVT, unsigned ReturnReg, | 
|  | unsigned char OperandFlags) { | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); | 
|  | DebugLoc dl = GA->getDebugLoc(); | 
|  | SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), | 
|  | GA->getValueType(0), | 
|  | GA->getOffset(), | 
|  | OperandFlags); | 
|  | if (InFlag) { | 
|  | SDValue Ops[] = { Chain,  TGA, *InFlag }; | 
|  | Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3); | 
|  | } else { | 
|  | SDValue Ops[]  = { Chain, TGA }; | 
|  | Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2); | 
|  | } | 
|  | SDValue Flag = Chain.getValue(1); | 
|  | return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag); | 
|  | } | 
|  |  | 
|  | // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit | 
|  | static SDValue | 
|  | LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG, | 
|  | const MVT PtrVT) { | 
|  | SDValue InFlag; | 
|  | DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better | 
|  | SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, | 
|  | DebugLoc::getUnknownLoc(), | 
|  | PtrVT), InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD); | 
|  | } | 
|  |  | 
|  | // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit | 
|  | static SDValue | 
|  | LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG, | 
|  | const MVT PtrVT) { | 
|  | return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, | 
|  | X86::RAX, X86II::MO_TLSGD); | 
|  | } | 
|  |  | 
|  | // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or | 
|  | // "local exec" model. | 
|  | static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, | 
|  | const MVT PtrVT, TLSModel::Model model, | 
|  | bool is64Bit) { | 
|  | DebugLoc dl = GA->getDebugLoc(); | 
|  | // Get the Thread Pointer | 
|  | SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress, | 
|  | DebugLoc::getUnknownLoc(), PtrVT, | 
|  | DAG.getRegister(is64Bit? X86::FS : X86::GS, | 
|  | MVT::i32)); | 
|  |  | 
|  | SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base, | 
|  | NULL, 0); | 
|  |  | 
|  | unsigned char OperandFlags = 0; | 
|  | // Most TLS accesses are not RIP relative, even on x86-64.  One exception is | 
|  | // initialexec. | 
|  | unsigned WrapperKind = X86ISD::Wrapper; | 
|  | if (model == TLSModel::LocalExec) { | 
|  | OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF; | 
|  | } else if (is64Bit) { | 
|  | assert(model == TLSModel::InitialExec); | 
|  | OperandFlags = X86II::MO_GOTTPOFF; | 
|  | WrapperKind = X86ISD::WrapperRIP; | 
|  | } else { | 
|  | assert(model == TLSModel::InitialExec); | 
|  | OperandFlags = X86II::MO_INDNTPOFF; | 
|  | } | 
|  |  | 
|  | // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial | 
|  | // exec) | 
|  | SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0), | 
|  | GA->getOffset(), OperandFlags); | 
|  | SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); | 
|  |  | 
|  | if (model == TLSModel::InitialExec) | 
|  | Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset, | 
|  | PseudoSourceValue::getGOT(), 0); | 
|  |  | 
|  | // The address of the thread local variable is the add of the thread | 
|  | // pointer with the offset of the variable. | 
|  | return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) { | 
|  | // TODO: implement the "local dynamic" model | 
|  | // TODO: implement the "initial exec"model for pic executables | 
|  | assert(Subtarget->isTargetELF() && | 
|  | "TLS not implemented for non-ELF targets"); | 
|  | GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); | 
|  | const GlobalValue *GV = GA->getGlobal(); | 
|  |  | 
|  | // If GV is an alias then use the aliasee for determining | 
|  | // thread-localness. | 
|  | if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) | 
|  | GV = GA->resolveAliasedGlobal(false); | 
|  |  | 
|  | TLSModel::Model model = getTLSModel(GV, | 
|  | getTargetMachine().getRelocationModel()); | 
|  |  | 
|  | switch (model) { | 
|  | case TLSModel::GeneralDynamic: | 
|  | case TLSModel::LocalDynamic: // not implemented | 
|  | if (Subtarget->is64Bit()) | 
|  | return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy()); | 
|  | return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy()); | 
|  |  | 
|  | case TLSModel::InitialExec: | 
|  | case TLSModel::LocalExec: | 
|  | return LowerToTLSExecModel(GA, DAG, getPointerTy(), model, | 
|  | Subtarget->is64Bit()); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unreachable"); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and | 
|  | /// take a 2 x i32 value to shift plus a shift amount. | 
|  | SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) { | 
|  | assert(Op.getNumOperands() == 3 && "Not a double-shift!"); | 
|  | MVT VT = Op.getValueType(); | 
|  | unsigned VTBits = VT.getSizeInBits(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; | 
|  | SDValue ShOpLo = Op.getOperand(0); | 
|  | SDValue ShOpHi = Op.getOperand(1); | 
|  | SDValue ShAmt  = Op.getOperand(2); | 
|  | SDValue Tmp1 = isSRA ? | 
|  | DAG.getNode(ISD::SRA, dl, VT, ShOpHi, | 
|  | DAG.getConstant(VTBits - 1, MVT::i8)) : | 
|  | DAG.getConstant(0, VT); | 
|  |  | 
|  | SDValue Tmp2, Tmp3; | 
|  | if (Op.getOpcode() == ISD::SHL_PARTS) { | 
|  | Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt); | 
|  | Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); | 
|  | } else { | 
|  | Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt); | 
|  | Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt); | 
|  | } | 
|  |  | 
|  | SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt, | 
|  | DAG.getConstant(VTBits, MVT::i8)); | 
|  | SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT, | 
|  | AndNode, DAG.getConstant(0, MVT::i8)); | 
|  |  | 
|  | SDValue Hi, Lo; | 
|  | SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8); | 
|  | SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond }; | 
|  | SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond }; | 
|  |  | 
|  | if (Op.getOpcode() == ISD::SHL_PARTS) { | 
|  | Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4); | 
|  | Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4); | 
|  | } else { | 
|  | Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4); | 
|  | Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4); | 
|  | } | 
|  |  | 
|  | SDValue Ops[2] = { Lo, Hi }; | 
|  | return DAG.getMergeValues(Ops, 2, dl); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) { | 
|  | MVT SrcVT = Op.getOperand(0).getValueType(); | 
|  |  | 
|  | if (SrcVT.isVector()) { | 
|  | if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) { | 
|  | return Op; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 && | 
|  | "Unknown SINT_TO_FP to lower!"); | 
|  |  | 
|  | // These are really Legal; return the operand so the caller accepts it as | 
|  | // Legal. | 
|  | if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType())) | 
|  | return Op; | 
|  | if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) && | 
|  | Subtarget->is64Bit()) { | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | unsigned Size = SrcVT.getSizeInBits()/8; | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); | 
|  | SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  | SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), | 
|  | StackSlot, | 
|  | PseudoSourceValue::getFixedStack(SSFI), 0); | 
|  | return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::BuildFILD(SDValue Op, MVT SrcVT, SDValue Chain, | 
|  | SDValue StackSlot, | 
|  | SelectionDAG &DAG) { | 
|  | // Build the FILD | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | SDVTList Tys; | 
|  | bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType()); | 
|  | if (useSSE) | 
|  | Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag); | 
|  | else | 
|  | Tys = DAG.getVTList(Op.getValueType(), MVT::Other); | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(StackSlot); | 
|  | Ops.push_back(DAG.getValueType(SrcVT)); | 
|  | SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl, | 
|  | Tys, &Ops[0], Ops.size()); | 
|  |  | 
|  | if (useSSE) { | 
|  | Chain = Result.getValue(1); | 
|  | SDValue InFlag = Result.getValue(2); | 
|  |  | 
|  | // FIXME: Currently the FST is flagged to the FILD_FLAG. This | 
|  | // shouldn't be necessary except that RFP cannot be live across | 
|  | // multiple blocks. When stackifier is fixed, they can be uncoupled. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); | 
|  | SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  | Tys = DAG.getVTList(MVT::Other); | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Result); | 
|  | Ops.push_back(StackSlot); | 
|  | Ops.push_back(DAG.getValueType(Op.getValueType())); | 
|  | Ops.push_back(InFlag); | 
|  | Chain = DAG.getNode(X86ISD::FST, dl, Tys, &Ops[0], Ops.size()); | 
|  | Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot, | 
|  | PseudoSourceValue::getFixedStack(SSFI), 0); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion. | 
|  | SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) { | 
|  | // This algorithm is not obvious. Here it is in C code, more or less: | 
|  | /* | 
|  | double uint64_to_double( uint32_t hi, uint32_t lo ) { | 
|  | static const __m128i exp = { 0x4330000045300000ULL, 0 }; | 
|  | static const __m128d bias = { 0x1.0p84, 0x1.0p52 }; | 
|  |  | 
|  | // Copy ints to xmm registers. | 
|  | __m128i xh = _mm_cvtsi32_si128( hi ); | 
|  | __m128i xl = _mm_cvtsi32_si128( lo ); | 
|  |  | 
|  | // Combine into low half of a single xmm register. | 
|  | __m128i x = _mm_unpacklo_epi32( xh, xl ); | 
|  | __m128d d; | 
|  | double sd; | 
|  |  | 
|  | // Merge in appropriate exponents to give the integer bits the right | 
|  | // magnitude. | 
|  | x = _mm_unpacklo_epi32( x, exp ); | 
|  |  | 
|  | // Subtract away the biases to deal with the IEEE-754 double precision | 
|  | // implicit 1. | 
|  | d = _mm_sub_pd( (__m128d) x, bias ); | 
|  |  | 
|  | // All conversions up to here are exact. The correctly rounded result is | 
|  | // calculated using the current rounding mode using the following | 
|  | // horizontal add. | 
|  | d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) ); | 
|  | _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this | 
|  | // store doesn't really need to be here (except | 
|  | // maybe to zero the other double) | 
|  | return sd; | 
|  | } | 
|  | */ | 
|  |  | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | LLVMContext *Context = DAG.getContext(); | 
|  |  | 
|  | // Build some magic constants. | 
|  | std::vector<Constant*> CV0; | 
|  | CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000))); | 
|  | CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000))); | 
|  | CV0.push_back(ConstantInt::get(*Context, APInt(32, 0))); | 
|  | CV0.push_back(ConstantInt::get(*Context, APInt(32, 0))); | 
|  | Constant *C0 = Context->getConstantVector(CV0); | 
|  | SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16); | 
|  |  | 
|  | std::vector<Constant*> CV1; | 
|  | CV1.push_back( | 
|  | ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL)))); | 
|  | CV1.push_back( | 
|  | ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL)))); | 
|  | Constant *C1 = Context->getConstantVector(CV1); | 
|  | SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16); | 
|  |  | 
|  | SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, | 
|  | DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, | 
|  | Op.getOperand(0), | 
|  | DAG.getIntPtrConstant(1))); | 
|  | SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, | 
|  | DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, | 
|  | Op.getOperand(0), | 
|  | DAG.getIntPtrConstant(0))); | 
|  | SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2); | 
|  | SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0, | 
|  | PseudoSourceValue::getConstantPool(), 0, | 
|  | false, 16); | 
|  | SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0); | 
|  | SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2); | 
|  | SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1, | 
|  | PseudoSourceValue::getConstantPool(), 0, | 
|  | false, 16); | 
|  | SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1); | 
|  |  | 
|  | // Add the halves; easiest way is to swap them into another reg first. | 
|  | int ShufMask[2] = { 1, -1 }; | 
|  | SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub, | 
|  | DAG.getUNDEF(MVT::v2f64), ShufMask); | 
|  | SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } | 
|  |  | 
|  | // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion. | 
|  | SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) { | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | // FP constant to bias correct the final result. | 
|  | SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), | 
|  | MVT::f64); | 
|  |  | 
|  | // Load the 32-bit value into an XMM register. | 
|  | SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, | 
|  | DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, | 
|  | Op.getOperand(0), | 
|  | DAG.getIntPtrConstant(0))); | 
|  |  | 
|  | Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, | 
|  | DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load), | 
|  | DAG.getIntPtrConstant(0)); | 
|  |  | 
|  | // Or the load with the bias. | 
|  | SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, | 
|  | DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, | 
|  | DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, | 
|  | MVT::v2f64, Load)), | 
|  | DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, | 
|  | DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, | 
|  | MVT::v2f64, Bias))); | 
|  | Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, | 
|  | DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or), | 
|  | DAG.getIntPtrConstant(0)); | 
|  |  | 
|  | // Subtract the bias. | 
|  | SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias); | 
|  |  | 
|  | // Handle final rounding. | 
|  | MVT DestVT = Op.getValueType(); | 
|  |  | 
|  | if (DestVT.bitsLT(MVT::f64)) { | 
|  | return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } else if (DestVT.bitsGT(MVT::f64)) { | 
|  | return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); | 
|  | } | 
|  |  | 
|  | // Handle final rounding. | 
|  | return Sub; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) { | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't | 
|  | // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform | 
|  | // the optimization here. | 
|  | if (DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0); | 
|  |  | 
|  | MVT SrcVT = N0.getValueType(); | 
|  | if (SrcVT == MVT::i64) { | 
|  | // We only handle SSE2 f64 target here; caller can expand the rest. | 
|  | if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64) | 
|  | return SDValue(); | 
|  |  | 
|  | return LowerUINT_TO_FP_i64(Op, DAG); | 
|  | } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) { | 
|  | return LowerUINT_TO_FP_i32(Op, DAG); | 
|  | } | 
|  |  | 
|  | assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!"); | 
|  |  | 
|  | // Make a 64-bit buffer, and use it to build an FILD. | 
|  | SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64); | 
|  | SDValue WordOff = DAG.getConstant(4, getPointerTy()); | 
|  | SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl, | 
|  | getPointerTy(), StackSlot, WordOff); | 
|  | SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), | 
|  | StackSlot, NULL, 0); | 
|  | SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32), | 
|  | OffsetSlot, NULL, 0); | 
|  | return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG); | 
|  | } | 
|  |  | 
|  | std::pair<SDValue,SDValue> X86TargetLowering:: | 
|  | FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) { | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | MVT DstTy = Op.getValueType(); | 
|  |  | 
|  | if (!IsSigned) { | 
|  | assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT"); | 
|  | DstTy = MVT::i64; | 
|  | } | 
|  |  | 
|  | assert(DstTy.getSimpleVT() <= MVT::i64 && | 
|  | DstTy.getSimpleVT() >= MVT::i16 && | 
|  | "Unknown FP_TO_SINT to lower!"); | 
|  |  | 
|  | // These are really Legal. | 
|  | if (DstTy == MVT::i32 && | 
|  | isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) | 
|  | return std::make_pair(SDValue(), SDValue()); | 
|  | if (Subtarget->is64Bit() && | 
|  | DstTy == MVT::i64 && | 
|  | isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) | 
|  | return std::make_pair(SDValue(), SDValue()); | 
|  |  | 
|  | // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary | 
|  | // stack slot. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | unsigned MemSize = DstTy.getSizeInBits()/8; | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); | 
|  | SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  |  | 
|  | unsigned Opc; | 
|  | switch (DstTy.getSimpleVT()) { | 
|  | default: llvm_unreachable("Invalid FP_TO_SINT to lower!"); | 
|  | case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; | 
|  | case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; | 
|  | case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; | 
|  | } | 
|  |  | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  | SDValue Value = Op.getOperand(0); | 
|  | if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) { | 
|  | assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!"); | 
|  | Chain = DAG.getStore(Chain, dl, Value, StackSlot, | 
|  | PseudoSourceValue::getFixedStack(SSFI), 0); | 
|  | SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other); | 
|  | SDValue Ops[] = { | 
|  | Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType()) | 
|  | }; | 
|  | Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3); | 
|  | Chain = Value.getValue(1); | 
|  | SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); | 
|  | StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  | } | 
|  |  | 
|  | // Build the FP_TO_INT*_IN_MEM | 
|  | SDValue Ops[] = { Chain, Value, StackSlot }; | 
|  | SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3); | 
|  |  | 
|  | return std::make_pair(FIST, StackSlot); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) { | 
|  | if (Op.getValueType().isVector()) { | 
|  | if (Op.getValueType() == MVT::v2i32 && | 
|  | Op.getOperand(0).getValueType() == MVT::v2f64) { | 
|  | return Op; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true); | 
|  | SDValue FIST = Vals.first, StackSlot = Vals.second; | 
|  | // If FP_TO_INTHelper failed, the node is actually supposed to be Legal. | 
|  | if (FIST.getNode() == 0) return Op; | 
|  |  | 
|  | // Load the result. | 
|  | return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(), | 
|  | FIST, StackSlot, NULL, 0); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) { | 
|  | std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false); | 
|  | SDValue FIST = Vals.first, StackSlot = Vals.second; | 
|  | assert(FIST.getNode() && "Unexpected failure"); | 
|  |  | 
|  | // Load the result. | 
|  | return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(), | 
|  | FIST, StackSlot, NULL, 0); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) { | 
|  | LLVMContext *Context = DAG.getContext(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | MVT VT = Op.getValueType(); | 
|  | MVT EltVT = VT; | 
|  | if (VT.isVector()) | 
|  | EltVT = VT.getVectorElementType(); | 
|  | std::vector<Constant*> CV; | 
|  | if (EltVT == MVT::f64) { | 
|  | Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))); | 
|  | CV.push_back(C); | 
|  | CV.push_back(C); | 
|  | } else { | 
|  | Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))); | 
|  | CV.push_back(C); | 
|  | CV.push_back(C); | 
|  | CV.push_back(C); | 
|  | CV.push_back(C); | 
|  | } | 
|  | Constant *C = Context->getConstantVector(CV); | 
|  | SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); | 
|  | SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, | 
|  | PseudoSourceValue::getConstantPool(), 0, | 
|  | false, 16); | 
|  | return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) { | 
|  | LLVMContext *Context = DAG.getContext(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | MVT VT = Op.getValueType(); | 
|  | MVT EltVT = VT; | 
|  | unsigned EltNum = 1; | 
|  | if (VT.isVector()) { | 
|  | EltVT = VT.getVectorElementType(); | 
|  | EltNum = VT.getVectorNumElements(); | 
|  | } | 
|  | std::vector<Constant*> CV; | 
|  | if (EltVT == MVT::f64) { | 
|  | Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))); | 
|  | CV.push_back(C); | 
|  | CV.push_back(C); | 
|  | } else { | 
|  | Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))); | 
|  | CV.push_back(C); | 
|  | CV.push_back(C); | 
|  | CV.push_back(C); | 
|  | CV.push_back(C); | 
|  | } | 
|  | Constant *C = Context->getConstantVector(CV); | 
|  | SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); | 
|  | SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, | 
|  | PseudoSourceValue::getConstantPool(), 0, | 
|  | false, 16); | 
|  | if (VT.isVector()) { | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, VT, | 
|  | DAG.getNode(ISD::XOR, dl, MVT::v2i64, | 
|  | DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, | 
|  | Op.getOperand(0)), | 
|  | DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask))); | 
|  | } else { | 
|  | return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) { | 
|  | LLVMContext *Context = DAG.getContext(); | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | MVT VT = Op.getValueType(); | 
|  | MVT SrcVT = Op1.getValueType(); | 
|  |  | 
|  | // If second operand is smaller, extend it first. | 
|  | if (SrcVT.bitsLT(VT)) { | 
|  | Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1); | 
|  | SrcVT = VT; | 
|  | } | 
|  | // And if it is bigger, shrink it first. | 
|  | if (SrcVT.bitsGT(VT)) { | 
|  | Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1)); | 
|  | SrcVT = VT; | 
|  | } | 
|  |  | 
|  | // At this point the operands and the result should have the same | 
|  | // type, and that won't be f80 since that is not custom lowered. | 
|  |  | 
|  | // First get the sign bit of second operand. | 
|  | std::vector<Constant*> CV; | 
|  | if (SrcVT == MVT::f64) { | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)))); | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0)))); | 
|  | } else { | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)))); | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); | 
|  | } | 
|  | Constant *C = Context->getConstantVector(CV); | 
|  | SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); | 
|  | SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx, | 
|  | PseudoSourceValue::getConstantPool(), 0, | 
|  | false, 16); | 
|  | SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1); | 
|  |  | 
|  | // Shift sign bit right or left if the two operands have different types. | 
|  | if (SrcVT.bitsGT(VT)) { | 
|  | // Op0 is MVT::f32, Op1 is MVT::f64. | 
|  | SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit); | 
|  | SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit, | 
|  | DAG.getConstant(32, MVT::i32)); | 
|  | SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit); | 
|  | SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } | 
|  |  | 
|  | // Clear first operand sign bit. | 
|  | CV.clear(); | 
|  | if (VT == MVT::f64) { | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))))); | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0)))); | 
|  | } else { | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))))); | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); | 
|  | } | 
|  | C = Context->getConstantVector(CV); | 
|  | CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); | 
|  | SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, | 
|  | PseudoSourceValue::getConstantPool(), 0, | 
|  | false, 16); | 
|  | SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2); | 
|  |  | 
|  | // Or the value with the sign bit. | 
|  | return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit); | 
|  | } | 
|  |  | 
|  | /// Emit nodes that will be selected as "test Op0,Op0", or something | 
|  | /// equivalent. | 
|  | SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, | 
|  | SelectionDAG &DAG) { | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | // CF and OF aren't always set the way we want. Determine which | 
|  | // of these we need. | 
|  | bool NeedCF = false; | 
|  | bool NeedOF = false; | 
|  | switch (X86CC) { | 
|  | case X86::COND_A: case X86::COND_AE: | 
|  | case X86::COND_B: case X86::COND_BE: | 
|  | NeedCF = true; | 
|  | break; | 
|  | case X86::COND_G: case X86::COND_GE: | 
|  | case X86::COND_L: case X86::COND_LE: | 
|  | case X86::COND_O: case X86::COND_NO: | 
|  | NeedOF = true; | 
|  | break; | 
|  | default: break; | 
|  | } | 
|  |  | 
|  | // See if we can use the EFLAGS value from the operand instead of | 
|  | // doing a separate TEST. TEST always sets OF and CF to 0, so unless | 
|  | // we prove that the arithmetic won't overflow, we can't use OF or CF. | 
|  | if (Op.getResNo() == 0 && !NeedOF && !NeedCF) { | 
|  | unsigned Opcode = 0; | 
|  | unsigned NumOperands = 0; | 
|  | switch (Op.getNode()->getOpcode()) { | 
|  | case ISD::ADD: | 
|  | // Due to an isel shortcoming, be conservative if this add is likely to | 
|  | // be selected as part of a load-modify-store instruction. When the root | 
|  | // node in a match is a store, isel doesn't know how to remap non-chain | 
|  | // non-flag uses of other nodes in the match, such as the ADD in this | 
|  | // case. This leads to the ADD being left around and reselected, with | 
|  | // the result being two adds in the output. | 
|  | for (SDNode::use_iterator UI = Op.getNode()->use_begin(), | 
|  | UE = Op.getNode()->use_end(); UI != UE; ++UI) | 
|  | if (UI->getOpcode() == ISD::STORE) | 
|  | goto default_case; | 
|  | if (ConstantSDNode *C = | 
|  | dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) { | 
|  | // An add of one will be selected as an INC. | 
|  | if (C->getAPIntValue() == 1) { | 
|  | Opcode = X86ISD::INC; | 
|  | NumOperands = 1; | 
|  | break; | 
|  | } | 
|  | // An add of negative one (subtract of one) will be selected as a DEC. | 
|  | if (C->getAPIntValue().isAllOnesValue()) { | 
|  | Opcode = X86ISD::DEC; | 
|  | NumOperands = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Otherwise use a regular EFLAGS-setting add. | 
|  | Opcode = X86ISD::ADD; | 
|  | NumOperands = 2; | 
|  | break; | 
|  | case ISD::SUB: | 
|  | // Due to the ISEL shortcoming noted above, be conservative if this sub is | 
|  | // likely to be selected as part of a load-modify-store instruction. | 
|  | for (SDNode::use_iterator UI = Op.getNode()->use_begin(), | 
|  | UE = Op.getNode()->use_end(); UI != UE; ++UI) | 
|  | if (UI->getOpcode() == ISD::STORE) | 
|  | goto default_case; | 
|  | // Otherwise use a regular EFLAGS-setting sub. | 
|  | Opcode = X86ISD::SUB; | 
|  | NumOperands = 2; | 
|  | break; | 
|  | case X86ISD::ADD: | 
|  | case X86ISD::SUB: | 
|  | case X86ISD::INC: | 
|  | case X86ISD::DEC: | 
|  | return SDValue(Op.getNode(), 1); | 
|  | default: | 
|  | default_case: | 
|  | break; | 
|  | } | 
|  | if (Opcode != 0) { | 
|  | SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); | 
|  | SmallVector<SDValue, 4> Ops; | 
|  | for (unsigned i = 0; i != NumOperands; ++i) | 
|  | Ops.push_back(Op.getOperand(i)); | 
|  | SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands); | 
|  | DAG.ReplaceAllUsesWith(Op, New); | 
|  | return SDValue(New.getNode(), 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise just emit a CMP with 0, which is the TEST pattern. | 
|  | return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, | 
|  | DAG.getConstant(0, Op.getValueType())); | 
|  | } | 
|  |  | 
|  | /// Emit nodes that will be selected as "cmp Op0,Op1", or something | 
|  | /// equivalent. | 
|  | SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, | 
|  | SelectionDAG &DAG) { | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1)) | 
|  | if (C->getAPIntValue() == 0) | 
|  | return EmitTest(Op0, X86CC, DAG); | 
|  |  | 
|  | DebugLoc dl = Op0.getDebugLoc(); | 
|  | return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) { | 
|  | assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer"); | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); | 
|  |  | 
|  | // Lower (X & (1 << N)) == 0 to BT(X, N). | 
|  | // Lower ((X >>u N) & 1) != 0 to BT(X, N). | 
|  | // Lower ((X >>s N) & 1) != 0 to BT(X, N). | 
|  | if (Op0.getOpcode() == ISD::AND && | 
|  | Op0.hasOneUse() && | 
|  | Op1.getOpcode() == ISD::Constant && | 
|  | cast<ConstantSDNode>(Op1)->getZExtValue() == 0 && | 
|  | (CC == ISD::SETEQ || CC == ISD::SETNE)) { | 
|  | SDValue LHS, RHS; | 
|  | if (Op0.getOperand(1).getOpcode() == ISD::SHL) { | 
|  | if (ConstantSDNode *Op010C = | 
|  | dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0))) | 
|  | if (Op010C->getZExtValue() == 1) { | 
|  | LHS = Op0.getOperand(0); | 
|  | RHS = Op0.getOperand(1).getOperand(1); | 
|  | } | 
|  | } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) { | 
|  | if (ConstantSDNode *Op000C = | 
|  | dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0))) | 
|  | if (Op000C->getZExtValue() == 1) { | 
|  | LHS = Op0.getOperand(1); | 
|  | RHS = Op0.getOperand(0).getOperand(1); | 
|  | } | 
|  | } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) { | 
|  | ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1)); | 
|  | SDValue AndLHS = Op0.getOperand(0); | 
|  | if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) { | 
|  | LHS = AndLHS.getOperand(0); | 
|  | RHS = AndLHS.getOperand(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LHS.getNode()) { | 
|  | // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT | 
|  | // instruction.  Since the shift amount is in-range-or-undefined, we know | 
|  | // that doing a bittest on the i16 value is ok.  We extend to i32 because | 
|  | // the encoding for the i16 version is larger than the i32 version. | 
|  | if (LHS.getValueType() == MVT::i8) | 
|  | LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS); | 
|  |  | 
|  | // If the operand types disagree, extend the shift amount to match.  Since | 
|  | // BT ignores high bits (like shifts) we can use anyextend. | 
|  | if (LHS.getValueType() != RHS.getValueType()) | 
|  | RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS); | 
|  |  | 
|  | SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS); | 
|  | unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B; | 
|  | return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, | 
|  | DAG.getConstant(Cond, MVT::i8), BT); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool isFP = Op.getOperand(1).getValueType().isFloatingPoint(); | 
|  | unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG); | 
|  |  | 
|  | SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG); | 
|  | return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, | 
|  | DAG.getConstant(X86CC, MVT::i8), Cond); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) { | 
|  | SDValue Cond; | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | SDValue CC = Op.getOperand(2); | 
|  | MVT VT = Op.getValueType(); | 
|  | ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); | 
|  | bool isFP = Op.getOperand(1).getValueType().isFloatingPoint(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | if (isFP) { | 
|  | unsigned SSECC = 8; | 
|  | MVT VT0 = Op0.getValueType(); | 
|  | assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64); | 
|  | unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD; | 
|  | bool Swap = false; | 
|  |  | 
|  | switch (SetCCOpcode) { | 
|  | default: break; | 
|  | case ISD::SETOEQ: | 
|  | case ISD::SETEQ:  SSECC = 0; break; | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT: Swap = true; // Fallthrough | 
|  | case ISD::SETLT: | 
|  | case ISD::SETOLT: SSECC = 1; break; | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETGE: Swap = true; // Fallthrough | 
|  | case ISD::SETLE: | 
|  | case ISD::SETOLE: SSECC = 2; break; | 
|  | case ISD::SETUO:  SSECC = 3; break; | 
|  | case ISD::SETUNE: | 
|  | case ISD::SETNE:  SSECC = 4; break; | 
|  | case ISD::SETULE: Swap = true; | 
|  | case ISD::SETUGE: SSECC = 5; break; | 
|  | case ISD::SETULT: Swap = true; | 
|  | case ISD::SETUGT: SSECC = 6; break; | 
|  | case ISD::SETO:   SSECC = 7; break; | 
|  | } | 
|  | if (Swap) | 
|  | std::swap(Op0, Op1); | 
|  |  | 
|  | // In the two special cases we can't handle, emit two comparisons. | 
|  | if (SSECC == 8) { | 
|  | if (SetCCOpcode == ISD::SETUEQ) { | 
|  | SDValue UNORD, EQ; | 
|  | UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8)); | 
|  | EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8)); | 
|  | return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ); | 
|  | } | 
|  | else if (SetCCOpcode == ISD::SETONE) { | 
|  | SDValue ORD, NEQ; | 
|  | ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8)); | 
|  | NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8)); | 
|  | return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ); | 
|  | } | 
|  | llvm_unreachable("Illegal FP comparison"); | 
|  | } | 
|  | // Handle all other FP comparisons here. | 
|  | return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8)); | 
|  | } | 
|  |  | 
|  | // We are handling one of the integer comparisons here.  Since SSE only has | 
|  | // GT and EQ comparisons for integer, swapping operands and multiple | 
|  | // operations may be required for some comparisons. | 
|  | unsigned Opc = 0, EQOpc = 0, GTOpc = 0; | 
|  | bool Swap = false, Invert = false, FlipSigns = false; | 
|  |  | 
|  | switch (VT.getSimpleVT()) { | 
|  | default: break; | 
|  | case MVT::v8i8: | 
|  | case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break; | 
|  | case MVT::v4i16: | 
|  | case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break; | 
|  | case MVT::v2i32: | 
|  | case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break; | 
|  | case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break; | 
|  | } | 
|  |  | 
|  | switch (SetCCOpcode) { | 
|  | default: break; | 
|  | case ISD::SETNE:  Invert = true; | 
|  | case ISD::SETEQ:  Opc = EQOpc; break; | 
|  | case ISD::SETLT:  Swap = true; | 
|  | case ISD::SETGT:  Opc = GTOpc; break; | 
|  | case ISD::SETGE:  Swap = true; | 
|  | case ISD::SETLE:  Opc = GTOpc; Invert = true; break; | 
|  | case ISD::SETULT: Swap = true; | 
|  | case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break; | 
|  | case ISD::SETUGE: Swap = true; | 
|  | case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break; | 
|  | } | 
|  | if (Swap) | 
|  | std::swap(Op0, Op1); | 
|  |  | 
|  | // Since SSE has no unsigned integer comparisons, we need to flip  the sign | 
|  | // bits of the inputs before performing those operations. | 
|  | if (FlipSigns) { | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), | 
|  | EltVT); | 
|  | std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit); | 
|  | SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0], | 
|  | SignBits.size()); | 
|  | Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec); | 
|  | Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec); | 
|  | } | 
|  |  | 
|  | SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1); | 
|  |  | 
|  | // If the logical-not of the result is required, perform that now. | 
|  | if (Invert) | 
|  | Result = DAG.getNOT(dl, Result, VT); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // isX86LogicalCmp - Return true if opcode is a X86 logical comparison. | 
|  | static bool isX86LogicalCmp(SDValue Op) { | 
|  | unsigned Opc = Op.getNode()->getOpcode(); | 
|  | if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) | 
|  | return true; | 
|  | if (Op.getResNo() == 1 && | 
|  | (Opc == X86ISD::ADD || | 
|  | Opc == X86ISD::SUB || | 
|  | Opc == X86ISD::SMUL || | 
|  | Opc == X86ISD::UMUL || | 
|  | Opc == X86ISD::INC || | 
|  | Opc == X86ISD::DEC)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) { | 
|  | bool addTest = true; | 
|  | SDValue Cond  = Op.getOperand(0); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | SDValue CC; | 
|  |  | 
|  | if (Cond.getOpcode() == ISD::SETCC) | 
|  | Cond = LowerSETCC(Cond, DAG); | 
|  |  | 
|  | // If condition flag is set by a X86ISD::CMP, then use it as the condition | 
|  | // setting operand in place of the X86ISD::SETCC. | 
|  | if (Cond.getOpcode() == X86ISD::SETCC) { | 
|  | CC = Cond.getOperand(0); | 
|  |  | 
|  | SDValue Cmp = Cond.getOperand(1); | 
|  | unsigned Opc = Cmp.getOpcode(); | 
|  | MVT VT = Op.getValueType(); | 
|  |  | 
|  | bool IllegalFPCMov = false; | 
|  | if (VT.isFloatingPoint() && !VT.isVector() && | 
|  | !isScalarFPTypeInSSEReg(VT))  // FPStack? | 
|  | IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue()); | 
|  |  | 
|  | if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) || | 
|  | Opc == X86ISD::BT) { // FIXME | 
|  | Cond = Cmp; | 
|  | addTest = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (addTest) { | 
|  | CC = DAG.getConstant(X86::COND_NE, MVT::i8); | 
|  | Cond = EmitTest(Cond, X86::COND_NE, DAG); | 
|  | } | 
|  |  | 
|  | SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag); | 
|  | SmallVector<SDValue, 4> Ops; | 
|  | // X86ISD::CMOV means set the result (which is operand 1) to the RHS if | 
|  | // condition is true. | 
|  | Ops.push_back(Op.getOperand(2)); | 
|  | Ops.push_back(Op.getOperand(1)); | 
|  | Ops.push_back(CC); | 
|  | Ops.push_back(Cond); | 
|  | return DAG.getNode(X86ISD::CMOV, dl, VTs, &Ops[0], Ops.size()); | 
|  | } | 
|  |  | 
|  | // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or | 
|  | // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart | 
|  | // from the AND / OR. | 
|  | static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) { | 
|  | Opc = Op.getOpcode(); | 
|  | if (Opc != ISD::OR && Opc != ISD::AND) | 
|  | return false; | 
|  | return (Op.getOperand(0).getOpcode() == X86ISD::SETCC && | 
|  | Op.getOperand(0).hasOneUse() && | 
|  | Op.getOperand(1).getOpcode() == X86ISD::SETCC && | 
|  | Op.getOperand(1).hasOneUse()); | 
|  | } | 
|  |  | 
|  | // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and | 
|  | // 1 and that the SETCC node has a single use. | 
|  | static bool isXor1OfSetCC(SDValue Op) { | 
|  | if (Op.getOpcode() != ISD::XOR) | 
|  | return false; | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); | 
|  | if (N1C && N1C->getAPIntValue() == 1) { | 
|  | return Op.getOperand(0).getOpcode() == X86ISD::SETCC && | 
|  | Op.getOperand(0).hasOneUse(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) { | 
|  | bool addTest = true; | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Cond  = Op.getOperand(1); | 
|  | SDValue Dest  = Op.getOperand(2); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | SDValue CC; | 
|  |  | 
|  | if (Cond.getOpcode() == ISD::SETCC) | 
|  | Cond = LowerSETCC(Cond, DAG); | 
|  | #if 0 | 
|  | // FIXME: LowerXALUO doesn't handle these!! | 
|  | else if (Cond.getOpcode() == X86ISD::ADD  || | 
|  | Cond.getOpcode() == X86ISD::SUB  || | 
|  | Cond.getOpcode() == X86ISD::SMUL || | 
|  | Cond.getOpcode() == X86ISD::UMUL) | 
|  | Cond = LowerXALUO(Cond, DAG); | 
|  | #endif | 
|  |  | 
|  | // If condition flag is set by a X86ISD::CMP, then use it as the condition | 
|  | // setting operand in place of the X86ISD::SETCC. | 
|  | if (Cond.getOpcode() == X86ISD::SETCC) { | 
|  | CC = Cond.getOperand(0); | 
|  |  | 
|  | SDValue Cmp = Cond.getOperand(1); | 
|  | unsigned Opc = Cmp.getOpcode(); | 
|  | // FIXME: WHY THE SPECIAL CASING OF LogicalCmp?? | 
|  | if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) { | 
|  | Cond = Cmp; | 
|  | addTest = false; | 
|  | } else { | 
|  | switch (cast<ConstantSDNode>(CC)->getZExtValue()) { | 
|  | default: break; | 
|  | case X86::COND_O: | 
|  | case X86::COND_B: | 
|  | // These can only come from an arithmetic instruction with overflow, | 
|  | // e.g. SADDO, UADDO. | 
|  | Cond = Cond.getNode()->getOperand(1); | 
|  | addTest = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | unsigned CondOpc; | 
|  | if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) { | 
|  | SDValue Cmp = Cond.getOperand(0).getOperand(1); | 
|  | if (CondOpc == ISD::OR) { | 
|  | // Also, recognize the pattern generated by an FCMP_UNE. We can emit | 
|  | // two branches instead of an explicit OR instruction with a | 
|  | // separate test. | 
|  | if (Cmp == Cond.getOperand(1).getOperand(1) && | 
|  | isX86LogicalCmp(Cmp)) { | 
|  | CC = Cond.getOperand(0).getOperand(0); | 
|  | Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), | 
|  | Chain, Dest, CC, Cmp); | 
|  | CC = Cond.getOperand(1).getOperand(0); | 
|  | Cond = Cmp; | 
|  | addTest = false; | 
|  | } | 
|  | } else { // ISD::AND | 
|  | // Also, recognize the pattern generated by an FCMP_OEQ. We can emit | 
|  | // two branches instead of an explicit AND instruction with a | 
|  | // separate test. However, we only do this if this block doesn't | 
|  | // have a fall-through edge, because this requires an explicit | 
|  | // jmp when the condition is false. | 
|  | if (Cmp == Cond.getOperand(1).getOperand(1) && | 
|  | isX86LogicalCmp(Cmp) && | 
|  | Op.getNode()->hasOneUse()) { | 
|  | X86::CondCode CCode = | 
|  | (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); | 
|  | CCode = X86::GetOppositeBranchCondition(CCode); | 
|  | CC = DAG.getConstant(CCode, MVT::i8); | 
|  | SDValue User = SDValue(*Op.getNode()->use_begin(), 0); | 
|  | // Look for an unconditional branch following this conditional branch. | 
|  | // We need this because we need to reverse the successors in order | 
|  | // to implement FCMP_OEQ. | 
|  | if (User.getOpcode() == ISD::BR) { | 
|  | SDValue FalseBB = User.getOperand(1); | 
|  | SDValue NewBR = | 
|  | DAG.UpdateNodeOperands(User, User.getOperand(0), Dest); | 
|  | assert(NewBR == User); | 
|  | Dest = FalseBB; | 
|  |  | 
|  | Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), | 
|  | Chain, Dest, CC, Cmp); | 
|  | X86::CondCode CCode = | 
|  | (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0); | 
|  | CCode = X86::GetOppositeBranchCondition(CCode); | 
|  | CC = DAG.getConstant(CCode, MVT::i8); | 
|  | Cond = Cmp; | 
|  | addTest = false; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) { | 
|  | // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition. | 
|  | // It should be transformed during dag combiner except when the condition | 
|  | // is set by a arithmetics with overflow node. | 
|  | X86::CondCode CCode = | 
|  | (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); | 
|  | CCode = X86::GetOppositeBranchCondition(CCode); | 
|  | CC = DAG.getConstant(CCode, MVT::i8); | 
|  | Cond = Cond.getOperand(0).getOperand(1); | 
|  | addTest = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (addTest) { | 
|  | CC = DAG.getConstant(X86::COND_NE, MVT::i8); | 
|  | Cond = EmitTest(Cond, X86::COND_NE, DAG); | 
|  | } | 
|  | return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), | 
|  | Chain, Dest, CC, Cond); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets. | 
|  | // Calls to _alloca is needed to probe the stack when allocating more than 4k | 
|  | // bytes in one go. Touching the stack at 4K increments is necessary to ensure | 
|  | // that the guard pages used by the OS virtual memory manager are allocated in | 
|  | // correct sequence. | 
|  | SDValue | 
|  | X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, | 
|  | SelectionDAG &DAG) { | 
|  | assert(Subtarget->isTargetCygMing() && | 
|  | "This should be used only on Cygwin/Mingw targets"); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | // Get the inputs. | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Size  = Op.getOperand(1); | 
|  | // FIXME: Ensure alignment here | 
|  |  | 
|  | SDValue Flag; | 
|  |  | 
|  | MVT IntPtr = getPointerTy(); | 
|  | MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32; | 
|  |  | 
|  | Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag); | 
|  | Flag = Chain.getValue(1); | 
|  |  | 
|  | SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); | 
|  | SDValue Ops[] = { Chain, | 
|  | DAG.getTargetExternalSymbol("_alloca", IntPtr), | 
|  | DAG.getRegister(X86::EAX, IntPtr), | 
|  | DAG.getRegister(X86StackPtr, SPTy), | 
|  | Flag }; | 
|  | Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5); | 
|  | Flag = Chain.getValue(1); | 
|  |  | 
|  | Chain = DAG.getCALLSEQ_END(Chain, | 
|  | DAG.getIntPtrConstant(0, true), | 
|  | DAG.getIntPtrConstant(0, true), | 
|  | Flag); | 
|  |  | 
|  | Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1); | 
|  |  | 
|  | SDValue Ops1[2] = { Chain.getValue(0), Chain }; | 
|  | return DAG.getMergeValues(Ops1, 2, dl); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl, | 
|  | SDValue Chain, | 
|  | SDValue Dst, SDValue Src, | 
|  | SDValue Size, unsigned Align, | 
|  | const Value *DstSV, | 
|  | uint64_t DstSVOff) { | 
|  | ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); | 
|  |  | 
|  | // If not DWORD aligned or size is more than the threshold, call the library. | 
|  | // The libc version is likely to be faster for these cases. It can use the | 
|  | // address value and run time information about the CPU. | 
|  | if ((Align & 3) != 0 || | 
|  | !ConstantSize || | 
|  | ConstantSize->getZExtValue() > | 
|  | getSubtarget()->getMaxInlineSizeThreshold()) { | 
|  | SDValue InFlag(0, 0); | 
|  |  | 
|  | // Check to see if there is a specialized entry-point for memory zeroing. | 
|  | ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src); | 
|  |  | 
|  | if (const char *bzeroEntry =  V && | 
|  | V->isNullValue() ? Subtarget->getBZeroEntry() : 0) { | 
|  | MVT IntPtr = getPointerTy(); | 
|  | const Type *IntPtrTy = TD->getIntPtrType(); | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | Entry.Node = Dst; | 
|  | Entry.Ty = IntPtrTy; | 
|  | Args.push_back(Entry); | 
|  | Entry.Node = Size; | 
|  | Args.push_back(Entry); | 
|  | std::pair<SDValue,SDValue> CallResult = | 
|  | LowerCallTo(Chain, Type::VoidTy, false, false, false, false, | 
|  | 0, CallingConv::C, false, | 
|  | DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl); | 
|  | return CallResult.second; | 
|  | } | 
|  |  | 
|  | // Otherwise have the target-independent code call memset. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | uint64_t SizeVal = ConstantSize->getZExtValue(); | 
|  | SDValue InFlag(0, 0); | 
|  | MVT AVT; | 
|  | SDValue Count; | 
|  | ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src); | 
|  | unsigned BytesLeft = 0; | 
|  | bool TwoRepStos = false; | 
|  | if (ValC) { | 
|  | unsigned ValReg; | 
|  | uint64_t Val = ValC->getZExtValue() & 255; | 
|  |  | 
|  | // If the value is a constant, then we can potentially use larger sets. | 
|  | switch (Align & 3) { | 
|  | case 2:   // WORD aligned | 
|  | AVT = MVT::i16; | 
|  | ValReg = X86::AX; | 
|  | Val = (Val << 8) | Val; | 
|  | break; | 
|  | case 0:  // DWORD aligned | 
|  | AVT = MVT::i32; | 
|  | ValReg = X86::EAX; | 
|  | Val = (Val << 8)  | Val; | 
|  | Val = (Val << 16) | Val; | 
|  | if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned | 
|  | AVT = MVT::i64; | 
|  | ValReg = X86::RAX; | 
|  | Val = (Val << 32) | Val; | 
|  | } | 
|  | break; | 
|  | default:  // Byte aligned | 
|  | AVT = MVT::i8; | 
|  | ValReg = X86::AL; | 
|  | Count = DAG.getIntPtrConstant(SizeVal); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (AVT.bitsGT(MVT::i8)) { | 
|  | unsigned UBytes = AVT.getSizeInBits() / 8; | 
|  | Count = DAG.getIntPtrConstant(SizeVal / UBytes); | 
|  | BytesLeft = SizeVal % UBytes; | 
|  | } | 
|  |  | 
|  | Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT), | 
|  | InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } else { | 
|  | AVT = MVT::i8; | 
|  | Count  = DAG.getIntPtrConstant(SizeVal); | 
|  | Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX : | 
|  | X86::ECX, | 
|  | Count, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI : | 
|  | X86::EDI, | 
|  | Dst, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(DAG.getValueType(AVT)); | 
|  | Ops.push_back(InFlag); | 
|  | Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size()); | 
|  |  | 
|  | if (TwoRepStos) { | 
|  | InFlag = Chain.getValue(1); | 
|  | Count  = Size; | 
|  | MVT CVT = Count.getValueType(); | 
|  | SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count, | 
|  | DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT)); | 
|  | Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX : | 
|  | X86::ECX, | 
|  | Left, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | Tys = DAG.getVTList(MVT::Other, MVT::Flag); | 
|  | Ops.clear(); | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(DAG.getValueType(MVT::i8)); | 
|  | Ops.push_back(InFlag); | 
|  | Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size()); | 
|  | } else if (BytesLeft) { | 
|  | // Handle the last 1 - 7 bytes. | 
|  | unsigned Offset = SizeVal - BytesLeft; | 
|  | MVT AddrVT = Dst.getValueType(); | 
|  | MVT SizeVT = Size.getValueType(); | 
|  |  | 
|  | Chain = DAG.getMemset(Chain, dl, | 
|  | DAG.getNode(ISD::ADD, dl, AddrVT, Dst, | 
|  | DAG.getConstant(Offset, AddrVT)), | 
|  | Src, | 
|  | DAG.getConstant(BytesLeft, SizeVT), | 
|  | Align, DstSV, DstSVOff + Offset); | 
|  | } | 
|  |  | 
|  | // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain. | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl, | 
|  | SDValue Chain, SDValue Dst, SDValue Src, | 
|  | SDValue Size, unsigned Align, | 
|  | bool AlwaysInline, | 
|  | const Value *DstSV, uint64_t DstSVOff, | 
|  | const Value *SrcSV, uint64_t SrcSVOff) { | 
|  | // This requires the copy size to be a constant, preferrably | 
|  | // within a subtarget-specific limit. | 
|  | ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); | 
|  | if (!ConstantSize) | 
|  | return SDValue(); | 
|  | uint64_t SizeVal = ConstantSize->getZExtValue(); | 
|  | if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold()) | 
|  | return SDValue(); | 
|  |  | 
|  | /// If not DWORD aligned, call the library. | 
|  | if ((Align & 3) != 0) | 
|  | return SDValue(); | 
|  |  | 
|  | // DWORD aligned | 
|  | MVT AVT = MVT::i32; | 
|  | if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned | 
|  | AVT = MVT::i64; | 
|  |  | 
|  | unsigned UBytes = AVT.getSizeInBits() / 8; | 
|  | unsigned CountVal = SizeVal / UBytes; | 
|  | SDValue Count = DAG.getIntPtrConstant(CountVal); | 
|  | unsigned BytesLeft = SizeVal % UBytes; | 
|  |  | 
|  | SDValue InFlag(0, 0); | 
|  | Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX : | 
|  | X86::ECX, | 
|  | Count, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI : | 
|  | X86::EDI, | 
|  | Dst, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI : | 
|  | X86::ESI, | 
|  | Src, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(DAG.getValueType(AVT)); | 
|  | Ops.push_back(InFlag); | 
|  | SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, &Ops[0], Ops.size()); | 
|  |  | 
|  | SmallVector<SDValue, 4> Results; | 
|  | Results.push_back(RepMovs); | 
|  | if (BytesLeft) { | 
|  | // Handle the last 1 - 7 bytes. | 
|  | unsigned Offset = SizeVal - BytesLeft; | 
|  | MVT DstVT = Dst.getValueType(); | 
|  | MVT SrcVT = Src.getValueType(); | 
|  | MVT SizeVT = Size.getValueType(); | 
|  | Results.push_back(DAG.getMemcpy(Chain, dl, | 
|  | DAG.getNode(ISD::ADD, dl, DstVT, Dst, | 
|  | DAG.getConstant(Offset, DstVT)), | 
|  | DAG.getNode(ISD::ADD, dl, SrcVT, Src, | 
|  | DAG.getConstant(Offset, SrcVT)), | 
|  | DAG.getConstant(BytesLeft, SizeVT), | 
|  | Align, AlwaysInline, | 
|  | DstSV, DstSVOff + Offset, | 
|  | SrcSV, SrcSVOff + Offset)); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | &Results[0], Results.size()); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) { | 
|  | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | if (!Subtarget->is64Bit()) { | 
|  | // vastart just stores the address of the VarArgsFrameIndex slot into the | 
|  | // memory location argument. | 
|  | SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); | 
|  | return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0); | 
|  | } | 
|  |  | 
|  | // __va_list_tag: | 
|  | //   gp_offset         (0 - 6 * 8) | 
|  | //   fp_offset         (48 - 48 + 8 * 16) | 
|  | //   overflow_arg_area (point to parameters coming in memory). | 
|  | //   reg_save_area | 
|  | SmallVector<SDValue, 8> MemOps; | 
|  | SDValue FIN = Op.getOperand(1); | 
|  | // Store gp_offset | 
|  | SDValue Store = DAG.getStore(Op.getOperand(0), dl, | 
|  | DAG.getConstant(VarArgsGPOffset, MVT::i32), | 
|  | FIN, SV, 0); | 
|  | MemOps.push_back(Store); | 
|  |  | 
|  | // Store fp_offset | 
|  | FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), | 
|  | FIN, DAG.getIntPtrConstant(4)); | 
|  | Store = DAG.getStore(Op.getOperand(0), dl, | 
|  | DAG.getConstant(VarArgsFPOffset, MVT::i32), | 
|  | FIN, SV, 0); | 
|  | MemOps.push_back(Store); | 
|  |  | 
|  | // Store ptr to overflow_arg_area | 
|  | FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), | 
|  | FIN, DAG.getIntPtrConstant(4)); | 
|  | SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); | 
|  | Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0); | 
|  | MemOps.push_back(Store); | 
|  |  | 
|  | // Store ptr to reg_save_area. | 
|  | FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), | 
|  | FIN, DAG.getIntPtrConstant(8)); | 
|  | SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy()); | 
|  | Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0); | 
|  | MemOps.push_back(Store); | 
|  | return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | &MemOps[0], MemOps.size()); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) { | 
|  | // X86-64 va_list is a struct { i32, i32, i8*, i8* }. | 
|  | assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!"); | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue SrcPtr = Op.getOperand(1); | 
|  | SDValue SrcSV = Op.getOperand(2); | 
|  |  | 
|  | llvm_report_error("VAArgInst is not yet implemented for x86-64!"); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) { | 
|  | // X86-64 va_list is a struct { i32, i32, i8*, i8* }. | 
|  | assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!"); | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue DstPtr = Op.getOperand(1); | 
|  | SDValue SrcPtr = Op.getOperand(2); | 
|  | const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); | 
|  | const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr, | 
|  | DAG.getIntPtrConstant(24), 8, false, | 
|  | DstSV, 0, SrcSV, 0); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) { | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | switch (IntNo) { | 
|  | default: return SDValue();    // Don't custom lower most intrinsics. | 
|  | // Comparison intrinsics. | 
|  | case Intrinsic::x86_sse_comieq_ss: | 
|  | case Intrinsic::x86_sse_comilt_ss: | 
|  | case Intrinsic::x86_sse_comile_ss: | 
|  | case Intrinsic::x86_sse_comigt_ss: | 
|  | case Intrinsic::x86_sse_comige_ss: | 
|  | case Intrinsic::x86_sse_comineq_ss: | 
|  | case Intrinsic::x86_sse_ucomieq_ss: | 
|  | case Intrinsic::x86_sse_ucomilt_ss: | 
|  | case Intrinsic::x86_sse_ucomile_ss: | 
|  | case Intrinsic::x86_sse_ucomigt_ss: | 
|  | case Intrinsic::x86_sse_ucomige_ss: | 
|  | case Intrinsic::x86_sse_ucomineq_ss: | 
|  | case Intrinsic::x86_sse2_comieq_sd: | 
|  | case Intrinsic::x86_sse2_comilt_sd: | 
|  | case Intrinsic::x86_sse2_comile_sd: | 
|  | case Intrinsic::x86_sse2_comigt_sd: | 
|  | case Intrinsic::x86_sse2_comige_sd: | 
|  | case Intrinsic::x86_sse2_comineq_sd: | 
|  | case Intrinsic::x86_sse2_ucomieq_sd: | 
|  | case Intrinsic::x86_sse2_ucomilt_sd: | 
|  | case Intrinsic::x86_sse2_ucomile_sd: | 
|  | case Intrinsic::x86_sse2_ucomigt_sd: | 
|  | case Intrinsic::x86_sse2_ucomige_sd: | 
|  | case Intrinsic::x86_sse2_ucomineq_sd: { | 
|  | unsigned Opc = 0; | 
|  | ISD::CondCode CC = ISD::SETCC_INVALID; | 
|  | switch (IntNo) { | 
|  | default: break; | 
|  | case Intrinsic::x86_sse_comieq_ss: | 
|  | case Intrinsic::x86_sse2_comieq_sd: | 
|  | Opc = X86ISD::COMI; | 
|  | CC = ISD::SETEQ; | 
|  | break; | 
|  | case Intrinsic::x86_sse_comilt_ss: | 
|  | case Intrinsic::x86_sse2_comilt_sd: | 
|  | Opc = X86ISD::COMI; | 
|  | CC = ISD::SETLT; | 
|  | break; | 
|  | case Intrinsic::x86_sse_comile_ss: | 
|  | case Intrinsic::x86_sse2_comile_sd: | 
|  | Opc = X86ISD::COMI; | 
|  | CC = ISD::SETLE; | 
|  | break; | 
|  | case Intrinsic::x86_sse_comigt_ss: | 
|  | case Intrinsic::x86_sse2_comigt_sd: | 
|  | Opc = X86ISD::COMI; | 
|  | CC = ISD::SETGT; | 
|  | break; | 
|  | case Intrinsic::x86_sse_comige_ss: | 
|  | case Intrinsic::x86_sse2_comige_sd: | 
|  | Opc = X86ISD::COMI; | 
|  | CC = ISD::SETGE; | 
|  | break; | 
|  | case Intrinsic::x86_sse_comineq_ss: | 
|  | case Intrinsic::x86_sse2_comineq_sd: | 
|  | Opc = X86ISD::COMI; | 
|  | CC = ISD::SETNE; | 
|  | break; | 
|  | case Intrinsic::x86_sse_ucomieq_ss: | 
|  | case Intrinsic::x86_sse2_ucomieq_sd: | 
|  | Opc = X86ISD::UCOMI; | 
|  | CC = ISD::SETEQ; | 
|  | break; | 
|  | case Intrinsic::x86_sse_ucomilt_ss: | 
|  | case Intrinsic::x86_sse2_ucomilt_sd: | 
|  | Opc = X86ISD::UCOMI; | 
|  | CC = ISD::SETLT; | 
|  | break; | 
|  | case Intrinsic::x86_sse_ucomile_ss: | 
|  | case Intrinsic::x86_sse2_ucomile_sd: | 
|  | Opc = X86ISD::UCOMI; | 
|  | CC = ISD::SETLE; | 
|  | break; | 
|  | case Intrinsic::x86_sse_ucomigt_ss: | 
|  | case Intrinsic::x86_sse2_ucomigt_sd: | 
|  | Opc = X86ISD::UCOMI; | 
|  | CC = ISD::SETGT; | 
|  | break; | 
|  | case Intrinsic::x86_sse_ucomige_ss: | 
|  | case Intrinsic::x86_sse2_ucomige_sd: | 
|  | Opc = X86ISD::UCOMI; | 
|  | CC = ISD::SETGE; | 
|  | break; | 
|  | case Intrinsic::x86_sse_ucomineq_ss: | 
|  | case Intrinsic::x86_sse2_ucomineq_sd: | 
|  | Opc = X86ISD::UCOMI; | 
|  | CC = ISD::SETNE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue LHS = Op.getOperand(1); | 
|  | SDValue RHS = Op.getOperand(2); | 
|  | unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG); | 
|  | SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS); | 
|  | SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, | 
|  | DAG.getConstant(X86CC, MVT::i8), Cond); | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); | 
|  | } | 
|  |  | 
|  | // Fix vector shift instructions where the last operand is a non-immediate | 
|  | // i32 value. | 
|  | case Intrinsic::x86_sse2_pslli_w: | 
|  | case Intrinsic::x86_sse2_pslli_d: | 
|  | case Intrinsic::x86_sse2_pslli_q: | 
|  | case Intrinsic::x86_sse2_psrli_w: | 
|  | case Intrinsic::x86_sse2_psrli_d: | 
|  | case Intrinsic::x86_sse2_psrli_q: | 
|  | case Intrinsic::x86_sse2_psrai_w: | 
|  | case Intrinsic::x86_sse2_psrai_d: | 
|  | case Intrinsic::x86_mmx_pslli_w: | 
|  | case Intrinsic::x86_mmx_pslli_d: | 
|  | case Intrinsic::x86_mmx_pslli_q: | 
|  | case Intrinsic::x86_mmx_psrli_w: | 
|  | case Intrinsic::x86_mmx_psrli_d: | 
|  | case Intrinsic::x86_mmx_psrli_q: | 
|  | case Intrinsic::x86_mmx_psrai_w: | 
|  | case Intrinsic::x86_mmx_psrai_d: { | 
|  | SDValue ShAmt = Op.getOperand(2); | 
|  | if (isa<ConstantSDNode>(ShAmt)) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned NewIntNo = 0; | 
|  | MVT ShAmtVT = MVT::v4i32; | 
|  | switch (IntNo) { | 
|  | case Intrinsic::x86_sse2_pslli_w: | 
|  | NewIntNo = Intrinsic::x86_sse2_psll_w; | 
|  | break; | 
|  | case Intrinsic::x86_sse2_pslli_d: | 
|  | NewIntNo = Intrinsic::x86_sse2_psll_d; | 
|  | break; | 
|  | case Intrinsic::x86_sse2_pslli_q: | 
|  | NewIntNo = Intrinsic::x86_sse2_psll_q; | 
|  | break; | 
|  | case Intrinsic::x86_sse2_psrli_w: | 
|  | NewIntNo = Intrinsic::x86_sse2_psrl_w; | 
|  | break; | 
|  | case Intrinsic::x86_sse2_psrli_d: | 
|  | NewIntNo = Intrinsic::x86_sse2_psrl_d; | 
|  | break; | 
|  | case Intrinsic::x86_sse2_psrli_q: | 
|  | NewIntNo = Intrinsic::x86_sse2_psrl_q; | 
|  | break; | 
|  | case Intrinsic::x86_sse2_psrai_w: | 
|  | NewIntNo = Intrinsic::x86_sse2_psra_w; | 
|  | break; | 
|  | case Intrinsic::x86_sse2_psrai_d: | 
|  | NewIntNo = Intrinsic::x86_sse2_psra_d; | 
|  | break; | 
|  | default: { | 
|  | ShAmtVT = MVT::v2i32; | 
|  | switch (IntNo) { | 
|  | case Intrinsic::x86_mmx_pslli_w: | 
|  | NewIntNo = Intrinsic::x86_mmx_psll_w; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_pslli_d: | 
|  | NewIntNo = Intrinsic::x86_mmx_psll_d; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_pslli_q: | 
|  | NewIntNo = Intrinsic::x86_mmx_psll_q; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_psrli_w: | 
|  | NewIntNo = Intrinsic::x86_mmx_psrl_w; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_psrli_d: | 
|  | NewIntNo = Intrinsic::x86_mmx_psrl_d; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_psrli_q: | 
|  | NewIntNo = Intrinsic::x86_mmx_psrl_q; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_psrai_w: | 
|  | NewIntNo = Intrinsic::x86_mmx_psra_w; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_psrai_d: | 
|  | NewIntNo = Intrinsic::x86_mmx_psra_d; | 
|  | break; | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | MVT VT = Op.getValueType(); | 
|  | ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, | 
|  | DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, ShAmtVT, ShAmt)); | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, | 
|  | DAG.getConstant(NewIntNo, MVT::i32), | 
|  | Op.getOperand(1), ShAmt); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) { | 
|  | unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | if (Depth > 0) { | 
|  | SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); | 
|  | SDValue Offset = | 
|  | DAG.getConstant(TD->getPointerSize(), | 
|  | Subtarget->is64Bit() ? MVT::i64 : MVT::i32); | 
|  | return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), | 
|  | DAG.getNode(ISD::ADD, dl, getPointerTy(), | 
|  | FrameAddr, Offset), | 
|  | NULL, 0); | 
|  | } | 
|  |  | 
|  | // Just load the return address. | 
|  | SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); | 
|  | return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), | 
|  | RetAddrFI, NULL, 0); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) { | 
|  | MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | MFI->setFrameAddressIsTaken(true); | 
|  | MVT VT = Op.getValueType(); | 
|  | DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful | 
|  | unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP; | 
|  | SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); | 
|  | while (Depth--) | 
|  | FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0); | 
|  | return FrameAddr; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op, | 
|  | SelectionDAG &DAG) { | 
|  | return DAG.getIntPtrConstant(2*TD->getPointerSize()); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) | 
|  | { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | SDValue Chain     = Op.getOperand(0); | 
|  | SDValue Offset    = Op.getOperand(1); | 
|  | SDValue Handler   = Op.getOperand(2); | 
|  | DebugLoc dl       = Op.getDebugLoc(); | 
|  |  | 
|  | SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP, | 
|  | getPointerTy()); | 
|  | unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX); | 
|  |  | 
|  | SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame, | 
|  | DAG.getIntPtrConstant(-TD->getPointerSize())); | 
|  | StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset); | 
|  | Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0); | 
|  | Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr); | 
|  | MF.getRegInfo().addLiveOut(StoreAddrReg); | 
|  |  | 
|  | return DAG.getNode(X86ISD::EH_RETURN, dl, | 
|  | MVT::Other, | 
|  | Chain, DAG.getRegister(StoreAddrReg, getPointerTy())); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op, | 
|  | SelectionDAG &DAG) { | 
|  | SDValue Root = Op.getOperand(0); | 
|  | SDValue Trmp = Op.getOperand(1); // trampoline | 
|  | SDValue FPtr = Op.getOperand(2); // nested function | 
|  | SDValue Nest = Op.getOperand(3); // 'nest' parameter value | 
|  | DebugLoc dl  = Op.getDebugLoc(); | 
|  |  | 
|  | const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); | 
|  |  | 
|  | const X86InstrInfo *TII = | 
|  | ((X86TargetMachine&)getTargetMachine()).getInstrInfo(); | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | SDValue OutChains[6]; | 
|  |  | 
|  | // Large code-model. | 
|  |  | 
|  | const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r); | 
|  | const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri); | 
|  |  | 
|  | const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10); | 
|  | const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11); | 
|  |  | 
|  | const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix | 
|  |  | 
|  | // Load the pointer to the nested function into R11. | 
|  | unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11 | 
|  | SDValue Addr = Trmp; | 
|  | OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), | 
|  | Addr, TrmpAddr, 0); | 
|  |  | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, | 
|  | DAG.getConstant(2, MVT::i64)); | 
|  | OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2); | 
|  |  | 
|  | // Load the 'nest' parameter value into R10. | 
|  | // R10 is specified in X86CallingConv.td | 
|  | OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10 | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, | 
|  | DAG.getConstant(10, MVT::i64)); | 
|  | OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), | 
|  | Addr, TrmpAddr, 10); | 
|  |  | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, | 
|  | DAG.getConstant(12, MVT::i64)); | 
|  | OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2); | 
|  |  | 
|  | // Jump to the nested function. | 
|  | OpCode = (JMP64r << 8) | REX_WB; // jmpq *... | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, | 
|  | DAG.getConstant(20, MVT::i64)); | 
|  | OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), | 
|  | Addr, TrmpAddr, 20); | 
|  |  | 
|  | unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11 | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, | 
|  | DAG.getConstant(22, MVT::i64)); | 
|  | OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr, | 
|  | TrmpAddr, 22); | 
|  |  | 
|  | SDValue Ops[] = | 
|  | { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) }; | 
|  | return DAG.getMergeValues(Ops, 2, dl); | 
|  | } else { | 
|  | const Function *Func = | 
|  | cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue()); | 
|  | unsigned CC = Func->getCallingConv(); | 
|  | unsigned NestReg; | 
|  |  | 
|  | switch (CC) { | 
|  | default: | 
|  | llvm_unreachable("Unsupported calling convention"); | 
|  | case CallingConv::C: | 
|  | case CallingConv::X86_StdCall: { | 
|  | // Pass 'nest' parameter in ECX. | 
|  | // Must be kept in sync with X86CallingConv.td | 
|  | NestReg = X86::ECX; | 
|  |  | 
|  | // Check that ECX wasn't needed by an 'inreg' parameter. | 
|  | const FunctionType *FTy = Func->getFunctionType(); | 
|  | const AttrListPtr &Attrs = Func->getAttributes(); | 
|  |  | 
|  | if (!Attrs.isEmpty() && !Func->isVarArg()) { | 
|  | unsigned InRegCount = 0; | 
|  | unsigned Idx = 1; | 
|  |  | 
|  | for (FunctionType::param_iterator I = FTy->param_begin(), | 
|  | E = FTy->param_end(); I != E; ++I, ++Idx) | 
|  | if (Attrs.paramHasAttr(Idx, Attribute::InReg)) | 
|  | // FIXME: should only count parameters that are lowered to integers. | 
|  | InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32; | 
|  |  | 
|  | if (InRegCount > 2) { | 
|  | llvm_report_error("Nest register in use - reduce number of inreg parameters!"); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case CallingConv::X86_FastCall: | 
|  | case CallingConv::Fast: | 
|  | // Pass 'nest' parameter in EAX. | 
|  | // Must be kept in sync with X86CallingConv.td | 
|  | NestReg = X86::EAX; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue OutChains[4]; | 
|  | SDValue Addr, Disp; | 
|  |  | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, | 
|  | DAG.getConstant(10, MVT::i32)); | 
|  | Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr); | 
|  |  | 
|  | const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri); | 
|  | const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg); | 
|  | OutChains[0] = DAG.getStore(Root, dl, | 
|  | DAG.getConstant(MOV32ri|N86Reg, MVT::i8), | 
|  | Trmp, TrmpAddr, 0); | 
|  |  | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, | 
|  | DAG.getConstant(1, MVT::i32)); | 
|  | OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1); | 
|  |  | 
|  | const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP); | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, | 
|  | DAG.getConstant(5, MVT::i32)); | 
|  | OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr, | 
|  | TrmpAddr, 5, false, 1); | 
|  |  | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, | 
|  | DAG.getConstant(6, MVT::i32)); | 
|  | OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1); | 
|  |  | 
|  | SDValue Ops[] = | 
|  | { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) }; | 
|  | return DAG.getMergeValues(Ops, 2, dl); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) { | 
|  | /* | 
|  | The rounding mode is in bits 11:10 of FPSR, and has the following | 
|  | settings: | 
|  | 00 Round to nearest | 
|  | 01 Round to -inf | 
|  | 10 Round to +inf | 
|  | 11 Round to 0 | 
|  |  | 
|  | FLT_ROUNDS, on the other hand, expects the following: | 
|  | -1 Undefined | 
|  | 0 Round to 0 | 
|  | 1 Round to nearest | 
|  | 2 Round to +inf | 
|  | 3 Round to -inf | 
|  |  | 
|  | To perform the conversion, we do: | 
|  | (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3) | 
|  | */ | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const TargetMachine &TM = MF.getTarget(); | 
|  | const TargetFrameInfo &TFI = *TM.getFrameInfo(); | 
|  | unsigned StackAlignment = TFI.getStackAlignment(); | 
|  | MVT VT = Op.getValueType(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | // Save FP Control Word to stack slot | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment); | 
|  | SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  |  | 
|  | SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other, | 
|  | DAG.getEntryNode(), StackSlot); | 
|  |  | 
|  | // Load FP Control Word from stack slot | 
|  | SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0); | 
|  |  | 
|  | // Transform as necessary | 
|  | SDValue CWD1 = | 
|  | DAG.getNode(ISD::SRL, dl, MVT::i16, | 
|  | DAG.getNode(ISD::AND, dl, MVT::i16, | 
|  | CWD, DAG.getConstant(0x800, MVT::i16)), | 
|  | DAG.getConstant(11, MVT::i8)); | 
|  | SDValue CWD2 = | 
|  | DAG.getNode(ISD::SRL, dl, MVT::i16, | 
|  | DAG.getNode(ISD::AND, dl, MVT::i16, | 
|  | CWD, DAG.getConstant(0x400, MVT::i16)), | 
|  | DAG.getConstant(9, MVT::i8)); | 
|  |  | 
|  | SDValue RetVal = | 
|  | DAG.getNode(ISD::AND, dl, MVT::i16, | 
|  | DAG.getNode(ISD::ADD, dl, MVT::i16, | 
|  | DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2), | 
|  | DAG.getConstant(1, MVT::i16)), | 
|  | DAG.getConstant(3, MVT::i16)); | 
|  |  | 
|  |  | 
|  | return DAG.getNode((VT.getSizeInBits() < 16 ? | 
|  | ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) { | 
|  | MVT VT = Op.getValueType(); | 
|  | MVT OpVT = VT; | 
|  | unsigned NumBits = VT.getSizeInBits(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | Op = Op.getOperand(0); | 
|  | if (VT == MVT::i8) { | 
|  | // Zero extend to i32 since there is not an i8 bsr. | 
|  | OpVT = MVT::i32; | 
|  | Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); | 
|  | } | 
|  |  | 
|  | // Issue a bsr (scan bits in reverse) which also sets EFLAGS. | 
|  | SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); | 
|  | Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op); | 
|  |  | 
|  | // If src is zero (i.e. bsr sets ZF), returns NumBits. | 
|  | SmallVector<SDValue, 4> Ops; | 
|  | Ops.push_back(Op); | 
|  | Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT)); | 
|  | Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8)); | 
|  | Ops.push_back(Op.getValue(1)); | 
|  | Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4); | 
|  |  | 
|  | // Finally xor with NumBits-1. | 
|  | Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT)); | 
|  |  | 
|  | if (VT == MVT::i8) | 
|  | Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) { | 
|  | MVT VT = Op.getValueType(); | 
|  | MVT OpVT = VT; | 
|  | unsigned NumBits = VT.getSizeInBits(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | Op = Op.getOperand(0); | 
|  | if (VT == MVT::i8) { | 
|  | OpVT = MVT::i32; | 
|  | Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); | 
|  | } | 
|  |  | 
|  | // Issue a bsf (scan bits forward) which also sets EFLAGS. | 
|  | SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); | 
|  | Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op); | 
|  |  | 
|  | // If src is zero (i.e. bsf sets ZF), returns NumBits. | 
|  | SmallVector<SDValue, 4> Ops; | 
|  | Ops.push_back(Op); | 
|  | Ops.push_back(DAG.getConstant(NumBits, OpVT)); | 
|  | Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8)); | 
|  | Ops.push_back(Op.getValue(1)); | 
|  | Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4); | 
|  |  | 
|  | if (VT == MVT::i8) | 
|  | Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) { | 
|  | MVT VT = Op.getValueType(); | 
|  | assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply"); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32); | 
|  | //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32); | 
|  | //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b ); | 
|  | //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi ); | 
|  | //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b ); | 
|  | // | 
|  | //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 ); | 
|  | //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 ); | 
|  | //  return AloBlo + AloBhi + AhiBlo; | 
|  |  | 
|  | SDValue A = Op.getOperand(0); | 
|  | SDValue B = Op.getOperand(1); | 
|  |  | 
|  | SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32), | 
|  | A, DAG.getConstant(32, MVT::i32)); | 
|  | SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32), | 
|  | B, DAG.getConstant(32, MVT::i32)); | 
|  | SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32), | 
|  | A, B); | 
|  | SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32), | 
|  | A, Bhi); | 
|  | SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32), | 
|  | Ahi, B); | 
|  | AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32), | 
|  | AloBhi, DAG.getConstant(32, MVT::i32)); | 
|  | AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32), | 
|  | AhiBlo, DAG.getConstant(32, MVT::i32)); | 
|  | SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi); | 
|  | Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  |  | 
|  | SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) { | 
|  | // Lower the "add/sub/mul with overflow" instruction into a regular ins plus | 
|  | // a "setcc" instruction that checks the overflow flag. The "brcond" lowering | 
|  | // looks for this combo and may remove the "setcc" instruction if the "setcc" | 
|  | // has only one use. | 
|  | SDNode *N = Op.getNode(); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | unsigned BaseOp = 0; | 
|  | unsigned Cond = 0; | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | default: llvm_unreachable("Unknown ovf instruction!"); | 
|  | case ISD::SADDO: | 
|  | // A subtract of one will be selected as a INC. Note that INC doesn't | 
|  | // set CF, so we can't do this for UADDO. | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) | 
|  | if (C->getAPIntValue() == 1) { | 
|  | BaseOp = X86ISD::INC; | 
|  | Cond = X86::COND_O; | 
|  | break; | 
|  | } | 
|  | BaseOp = X86ISD::ADD; | 
|  | Cond = X86::COND_O; | 
|  | break; | 
|  | case ISD::UADDO: | 
|  | BaseOp = X86ISD::ADD; | 
|  | Cond = X86::COND_B; | 
|  | break; | 
|  | case ISD::SSUBO: | 
|  | // A subtract of one will be selected as a DEC. Note that DEC doesn't | 
|  | // set CF, so we can't do this for USUBO. | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) | 
|  | if (C->getAPIntValue() == 1) { | 
|  | BaseOp = X86ISD::DEC; | 
|  | Cond = X86::COND_O; | 
|  | break; | 
|  | } | 
|  | BaseOp = X86ISD::SUB; | 
|  | Cond = X86::COND_O; | 
|  | break; | 
|  | case ISD::USUBO: | 
|  | BaseOp = X86ISD::SUB; | 
|  | Cond = X86::COND_B; | 
|  | break; | 
|  | case ISD::SMULO: | 
|  | BaseOp = X86ISD::SMUL; | 
|  | Cond = X86::COND_O; | 
|  | break; | 
|  | case ISD::UMULO: | 
|  | BaseOp = X86ISD::UMUL; | 
|  | Cond = X86::COND_B; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Also sets EFLAGS. | 
|  | SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); | 
|  | SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS); | 
|  |  | 
|  | SDValue SetCC = | 
|  | DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1), | 
|  | DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1)); | 
|  |  | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC); | 
|  | return Sum; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) { | 
|  | MVT T = Op.getValueType(); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | unsigned Reg = 0; | 
|  | unsigned size = 0; | 
|  | switch(T.getSimpleVT()) { | 
|  | default: | 
|  | assert(false && "Invalid value type!"); | 
|  | case MVT::i8:  Reg = X86::AL;  size = 1; break; | 
|  | case MVT::i16: Reg = X86::AX;  size = 2; break; | 
|  | case MVT::i32: Reg = X86::EAX; size = 4; break; | 
|  | case MVT::i64: | 
|  | assert(Subtarget->is64Bit() && "Node not type legal!"); | 
|  | Reg = X86::RAX; size = 8; | 
|  | break; | 
|  | } | 
|  | SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg, | 
|  | Op.getOperand(2), SDValue()); | 
|  | SDValue Ops[] = { cpIn.getValue(0), | 
|  | Op.getOperand(1), | 
|  | Op.getOperand(3), | 
|  | DAG.getTargetConstant(size, MVT::i8), | 
|  | cpIn.getValue(1) }; | 
|  | SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); | 
|  | SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5); | 
|  | SDValue cpOut = | 
|  | DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1)); | 
|  | return cpOut; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op, | 
|  | SelectionDAG &DAG) { | 
|  | assert(Subtarget->is64Bit() && "Result not type legalized?"); | 
|  | SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); | 
|  | SDValue TheChain = Op.getOperand(0); | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  | SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1); | 
|  | SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1)); | 
|  | SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64, | 
|  | rax.getValue(2)); | 
|  | SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx, | 
|  | DAG.getConstant(32, MVT::i8)); | 
|  | SDValue Ops[] = { | 
|  | DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp), | 
|  | rdx.getValue(1) | 
|  | }; | 
|  | return DAG.getMergeValues(Ops, 2, dl); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) { | 
|  | SDNode *Node = Op.getNode(); | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  | MVT T = Node->getValueType(0); | 
|  | SDValue negOp = DAG.getNode(ISD::SUB, dl, T, | 
|  | DAG.getConstant(0, T), Node->getOperand(2)); | 
|  | return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, | 
|  | cast<AtomicSDNode>(Node)->getMemoryVT(), | 
|  | Node->getOperand(0), | 
|  | Node->getOperand(1), negOp, | 
|  | cast<AtomicSDNode>(Node)->getSrcValue(), | 
|  | cast<AtomicSDNode>(Node)->getAlignment()); | 
|  | } | 
|  |  | 
|  | /// LowerOperation - Provide custom lowering hooks for some operations. | 
|  | /// | 
|  | SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { | 
|  | switch (Op.getOpcode()) { | 
|  | default: llvm_unreachable("Should not custom lower this!"); | 
|  | case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG); | 
|  | case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG); | 
|  | case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG); | 
|  | case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG); | 
|  | case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); | 
|  | case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG); | 
|  | case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG); | 
|  | case ISD::ConstantPool:       return LowerConstantPool(Op, DAG); | 
|  | case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG); | 
|  | case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG); | 
|  | case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG); | 
|  | case ISD::SHL_PARTS: | 
|  | case ISD::SRA_PARTS: | 
|  | case ISD::SRL_PARTS:          return LowerShift(Op, DAG); | 
|  | case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG); | 
|  | case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG); | 
|  | case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG); | 
|  | case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG); | 
|  | case ISD::FABS:               return LowerFABS(Op, DAG); | 
|  | case ISD::FNEG:               return LowerFNEG(Op, DAG); | 
|  | case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG); | 
|  | case ISD::SETCC:              return LowerSETCC(Op, DAG); | 
|  | case ISD::VSETCC:             return LowerVSETCC(Op, DAG); | 
|  | case ISD::SELECT:             return LowerSELECT(Op, DAG); | 
|  | case ISD::BRCOND:             return LowerBRCOND(Op, DAG); | 
|  | case ISD::JumpTable:          return LowerJumpTable(Op, DAG); | 
|  | case ISD::CALL:               return LowerCALL(Op, DAG); | 
|  | case ISD::RET:                return LowerRET(Op, DAG); | 
|  | case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG); | 
|  | case ISD::VASTART:            return LowerVASTART(Op, DAG); | 
|  | case ISD::VAARG:              return LowerVAARG(Op, DAG); | 
|  | case ISD::VACOPY:             return LowerVACOPY(Op, DAG); | 
|  | case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); | 
|  | case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG); | 
|  | case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG); | 
|  | case ISD::FRAME_TO_ARGS_OFFSET: | 
|  | return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); | 
|  | case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); | 
|  | case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG); | 
|  | case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG); | 
|  | case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG); | 
|  | case ISD::CTLZ:               return LowerCTLZ(Op, DAG); | 
|  | case ISD::CTTZ:               return LowerCTTZ(Op, DAG); | 
|  | case ISD::MUL:                return LowerMUL_V2I64(Op, DAG); | 
|  | case ISD::SADDO: | 
|  | case ISD::UADDO: | 
|  | case ISD::SSUBO: | 
|  | case ISD::USUBO: | 
|  | case ISD::SMULO: | 
|  | case ISD::UMULO:              return LowerXALUO(Op, DAG); | 
|  | case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86TargetLowering:: | 
|  | ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results, | 
|  | SelectionDAG &DAG, unsigned NewOp) { | 
|  | MVT T = Node->getValueType(0); | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  | assert (T == MVT::i64 && "Only know how to expand i64 atomics"); | 
|  |  | 
|  | SDValue Chain = Node->getOperand(0); | 
|  | SDValue In1 = Node->getOperand(1); | 
|  | SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, | 
|  | Node->getOperand(2), DAG.getIntPtrConstant(0)); | 
|  | SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, | 
|  | Node->getOperand(2), DAG.getIntPtrConstant(1)); | 
|  | // This is a generalized SDNode, not an AtomicSDNode, so it doesn't | 
|  | // have a MemOperand.  Pass the info through as a normal operand. | 
|  | SDValue LSI = DAG.getMemOperand(cast<MemSDNode>(Node)->getMemOperand()); | 
|  | SDValue Ops[] = { Chain, In1, In2L, In2H, LSI }; | 
|  | SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); | 
|  | SDValue Result = DAG.getNode(NewOp, dl, Tys, Ops, 5); | 
|  | SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)}; | 
|  | Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2)); | 
|  | Results.push_back(Result.getValue(2)); | 
|  | } | 
|  |  | 
|  | /// ReplaceNodeResults - Replace a node with an illegal result type | 
|  | /// with a new node built out of custom code. | 
|  | void X86TargetLowering::ReplaceNodeResults(SDNode *N, | 
|  | SmallVectorImpl<SDValue>&Results, | 
|  | SelectionDAG &DAG) { | 
|  | DebugLoc dl = N->getDebugLoc(); | 
|  | switch (N->getOpcode()) { | 
|  | default: | 
|  | assert(false && "Do not know how to custom type legalize this operation!"); | 
|  | return; | 
|  | case ISD::FP_TO_SINT: { | 
|  | std::pair<SDValue,SDValue> Vals = | 
|  | FP_TO_INTHelper(SDValue(N, 0), DAG, true); | 
|  | SDValue FIST = Vals.first, StackSlot = Vals.second; | 
|  | if (FIST.getNode() != 0) { | 
|  | MVT VT = N->getValueType(0); | 
|  | // Return a load from the stack slot. | 
|  | Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0)); | 
|  | } | 
|  | return; | 
|  | } | 
|  | case ISD::READCYCLECOUNTER: { | 
|  | SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); | 
|  | SDValue TheChain = N->getOperand(0); | 
|  | SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1); | 
|  | SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32, | 
|  | rd.getValue(1)); | 
|  | SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32, | 
|  | eax.getValue(2)); | 
|  | // Use a buildpair to merge the two 32-bit values into a 64-bit one. | 
|  | SDValue Ops[] = { eax, edx }; | 
|  | Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2)); | 
|  | Results.push_back(edx.getValue(1)); | 
|  | return; | 
|  | } | 
|  | case ISD::ATOMIC_CMP_SWAP: { | 
|  | MVT T = N->getValueType(0); | 
|  | assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap"); | 
|  | SDValue cpInL, cpInH; | 
|  | cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2), | 
|  | DAG.getConstant(0, MVT::i32)); | 
|  | cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2), | 
|  | DAG.getConstant(1, MVT::i32)); | 
|  | cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue()); | 
|  | cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH, | 
|  | cpInL.getValue(1)); | 
|  | SDValue swapInL, swapInH; | 
|  | swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3), | 
|  | DAG.getConstant(0, MVT::i32)); | 
|  | swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3), | 
|  | DAG.getConstant(1, MVT::i32)); | 
|  | swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL, | 
|  | cpInH.getValue(1)); | 
|  | swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH, | 
|  | swapInL.getValue(1)); | 
|  | SDValue Ops[] = { swapInH.getValue(0), | 
|  | N->getOperand(1), | 
|  | swapInH.getValue(1) }; | 
|  | SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); | 
|  | SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3); | 
|  | SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX, | 
|  | MVT::i32, Result.getValue(1)); | 
|  | SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX, | 
|  | MVT::i32, cpOutL.getValue(2)); | 
|  | SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)}; | 
|  | Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2)); | 
|  | Results.push_back(cpOutH.getValue(1)); | 
|  | return; | 
|  | } | 
|  | case ISD::ATOMIC_LOAD_ADD: | 
|  | ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG); | 
|  | return; | 
|  | case ISD::ATOMIC_LOAD_AND: | 
|  | ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG); | 
|  | return; | 
|  | case ISD::ATOMIC_LOAD_NAND: | 
|  | ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG); | 
|  | return; | 
|  | case ISD::ATOMIC_LOAD_OR: | 
|  | ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG); | 
|  | return; | 
|  | case ISD::ATOMIC_LOAD_SUB: | 
|  | ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG); | 
|  | return; | 
|  | case ISD::ATOMIC_LOAD_XOR: | 
|  | ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG); | 
|  | return; | 
|  | case ISD::ATOMIC_SWAP: | 
|  | ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { | 
|  | switch (Opcode) { | 
|  | default: return NULL; | 
|  | case X86ISD::BSF:                return "X86ISD::BSF"; | 
|  | case X86ISD::BSR:                return "X86ISD::BSR"; | 
|  | case X86ISD::SHLD:               return "X86ISD::SHLD"; | 
|  | case X86ISD::SHRD:               return "X86ISD::SHRD"; | 
|  | case X86ISD::FAND:               return "X86ISD::FAND"; | 
|  | case X86ISD::FOR:                return "X86ISD::FOR"; | 
|  | case X86ISD::FXOR:               return "X86ISD::FXOR"; | 
|  | case X86ISD::FSRL:               return "X86ISD::FSRL"; | 
|  | case X86ISD::FILD:               return "X86ISD::FILD"; | 
|  | case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG"; | 
|  | case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; | 
|  | case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; | 
|  | case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; | 
|  | case X86ISD::FLD:                return "X86ISD::FLD"; | 
|  | case X86ISD::FST:                return "X86ISD::FST"; | 
|  | case X86ISD::CALL:               return "X86ISD::CALL"; | 
|  | case X86ISD::TAILCALL:           return "X86ISD::TAILCALL"; | 
|  | case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG"; | 
|  | case X86ISD::BT:                 return "X86ISD::BT"; | 
|  | case X86ISD::CMP:                return "X86ISD::CMP"; | 
|  | case X86ISD::COMI:               return "X86ISD::COMI"; | 
|  | case X86ISD::UCOMI:              return "X86ISD::UCOMI"; | 
|  | case X86ISD::SETCC:              return "X86ISD::SETCC"; | 
|  | case X86ISD::CMOV:               return "X86ISD::CMOV"; | 
|  | case X86ISD::BRCOND:             return "X86ISD::BRCOND"; | 
|  | case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG"; | 
|  | case X86ISD::REP_STOS:           return "X86ISD::REP_STOS"; | 
|  | case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS"; | 
|  | case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg"; | 
|  | case X86ISD::Wrapper:            return "X86ISD::Wrapper"; | 
|  | case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP"; | 
|  | case X86ISD::PEXTRB:             return "X86ISD::PEXTRB"; | 
|  | case X86ISD::PEXTRW:             return "X86ISD::PEXTRW"; | 
|  | case X86ISD::INSERTPS:           return "X86ISD::INSERTPS"; | 
|  | case X86ISD::PINSRB:             return "X86ISD::PINSRB"; | 
|  | case X86ISD::PINSRW:             return "X86ISD::PINSRW"; | 
|  | case X86ISD::PSHUFB:             return "X86ISD::PSHUFB"; | 
|  | case X86ISD::FMAX:               return "X86ISD::FMAX"; | 
|  | case X86ISD::FMIN:               return "X86ISD::FMIN"; | 
|  | case X86ISD::FRSQRT:             return "X86ISD::FRSQRT"; | 
|  | case X86ISD::FRCP:               return "X86ISD::FRCP"; | 
|  | case X86ISD::TLSADDR:            return "X86ISD::TLSADDR"; | 
|  | case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress"; | 
|  | case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN"; | 
|  | case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN"; | 
|  | case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m"; | 
|  | case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG"; | 
|  | case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG"; | 
|  | case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG"; | 
|  | case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG"; | 
|  | case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG"; | 
|  | case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG"; | 
|  | case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG"; | 
|  | case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG"; | 
|  | case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL"; | 
|  | case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD"; | 
|  | case X86ISD::VSHL:               return "X86ISD::VSHL"; | 
|  | case X86ISD::VSRL:               return "X86ISD::VSRL"; | 
|  | case X86ISD::CMPPD:              return "X86ISD::CMPPD"; | 
|  | case X86ISD::CMPPS:              return "X86ISD::CMPPS"; | 
|  | case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB"; | 
|  | case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW"; | 
|  | case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD"; | 
|  | case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ"; | 
|  | case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB"; | 
|  | case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW"; | 
|  | case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD"; | 
|  | case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ"; | 
|  | case X86ISD::ADD:                return "X86ISD::ADD"; | 
|  | case X86ISD::SUB:                return "X86ISD::SUB"; | 
|  | case X86ISD::SMUL:               return "X86ISD::SMUL"; | 
|  | case X86ISD::UMUL:               return "X86ISD::UMUL"; | 
|  | case X86ISD::INC:                return "X86ISD::INC"; | 
|  | case X86ISD::DEC:                return "X86ISD::DEC"; | 
|  | case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM"; | 
|  | } | 
|  | } | 
|  |  | 
|  | // isLegalAddressingMode - Return true if the addressing mode represented | 
|  | // by AM is legal for this target, for a load/store of the specified type. | 
|  | bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM, | 
|  | const Type *Ty) const { | 
|  | // X86 supports extremely general addressing modes. | 
|  |  | 
|  | // X86 allows a sign-extended 32-bit immediate field as a displacement. | 
|  | if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1) | 
|  | return false; | 
|  |  | 
|  | if (AM.BaseGV) { | 
|  | unsigned GVFlags = | 
|  | Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine()); | 
|  |  | 
|  | // If a reference to this global requires an extra load, we can't fold it. | 
|  | if (isGlobalStubReference(GVFlags)) | 
|  | return false; | 
|  |  | 
|  | // If BaseGV requires a register for the PIC base, we cannot also have a | 
|  | // BaseReg specified. | 
|  | if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags)) | 
|  | return false; | 
|  |  | 
|  | // X86-64 only supports addr of globals in small code model. | 
|  | if (Subtarget->is64Bit()) { | 
|  | if (getTargetMachine().getCodeModel() != CodeModel::Small) | 
|  | return false; | 
|  | // If lower 4G is not available, then we must use rip-relative addressing. | 
|  | if (AM.BaseOffs || AM.Scale > 1) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (AM.Scale) { | 
|  | case 0: | 
|  | case 1: | 
|  | case 2: | 
|  | case 4: | 
|  | case 8: | 
|  | // These scales always work. | 
|  | break; | 
|  | case 3: | 
|  | case 5: | 
|  | case 9: | 
|  | // These scales are formed with basereg+scalereg.  Only accept if there is | 
|  | // no basereg yet. | 
|  | if (AM.HasBaseReg) | 
|  | return false; | 
|  | break; | 
|  | default:  // Other stuff never works. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const { | 
|  | if (!Ty1->isInteger() || !Ty2->isInteger()) | 
|  | return false; | 
|  | unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); | 
|  | unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); | 
|  | if (NumBits1 <= NumBits2) | 
|  | return false; | 
|  | return Subtarget->is64Bit() || NumBits1 < 64; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const { | 
|  | if (!VT1.isInteger() || !VT2.isInteger()) | 
|  | return false; | 
|  | unsigned NumBits1 = VT1.getSizeInBits(); | 
|  | unsigned NumBits2 = VT2.getSizeInBits(); | 
|  | if (NumBits1 <= NumBits2) | 
|  | return false; | 
|  | return Subtarget->is64Bit() || NumBits1 < 64; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const { | 
|  | // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. | 
|  | return Ty1 == Type::Int32Ty && Ty2 == Type::Int64Ty && Subtarget->is64Bit(); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isZExtFree(MVT VT1, MVT VT2) const { | 
|  | // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. | 
|  | return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit(); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isNarrowingProfitable(MVT VT1, MVT VT2) const { | 
|  | // i16 instructions are longer (0x66 prefix) and potentially slower. | 
|  | return !(VT1 == MVT::i32 && VT2 == MVT::i16); | 
|  | } | 
|  |  | 
|  | /// isShuffleMaskLegal - Targets can use this to indicate that they only | 
|  | /// support *some* VECTOR_SHUFFLE operations, those with specific masks. | 
|  | /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values | 
|  | /// are assumed to be legal. | 
|  | bool | 
|  | X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, | 
|  | MVT VT) const { | 
|  | // Only do shuffles on 128-bit vector types for now. | 
|  | if (VT.getSizeInBits() == 64) | 
|  | return false; | 
|  |  | 
|  | // FIXME: pshufb, blends, palignr, shifts. | 
|  | return (VT.getVectorNumElements() == 2 || | 
|  | ShuffleVectorSDNode::isSplatMask(&M[0], VT) || | 
|  | isMOVLMask(M, VT) || | 
|  | isSHUFPMask(M, VT) || | 
|  | isPSHUFDMask(M, VT) || | 
|  | isPSHUFHWMask(M, VT) || | 
|  | isPSHUFLWMask(M, VT) || | 
|  | isUNPCKLMask(M, VT) || | 
|  | isUNPCKHMask(M, VT) || | 
|  | isUNPCKL_v_undef_Mask(M, VT) || | 
|  | isUNPCKH_v_undef_Mask(M, VT)); | 
|  | } | 
|  |  | 
|  | bool | 
|  | X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask, | 
|  | MVT VT) const { | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | // FIXME: This collection of masks seems suspect. | 
|  | if (NumElts == 2) | 
|  | return true; | 
|  | if (NumElts == 4 && VT.getSizeInBits() == 128) { | 
|  | return (isMOVLMask(Mask, VT)  || | 
|  | isCommutedMOVLMask(Mask, VT, true) || | 
|  | isSHUFPMask(Mask, VT) || | 
|  | isCommutedSHUFPMask(Mask, VT)); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           X86 Scheduler Hooks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // private utility function | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr, | 
|  | MachineBasicBlock *MBB, | 
|  | unsigned regOpc, | 
|  | unsigned immOpc, | 
|  | unsigned LoadOpc, | 
|  | unsigned CXchgOpc, | 
|  | unsigned copyOpc, | 
|  | unsigned notOpc, | 
|  | unsigned EAXreg, | 
|  | TargetRegisterClass *RC, | 
|  | bool invSrc) const { | 
|  | // For the atomic bitwise operator, we generate | 
|  | //   thisMBB: | 
|  | //   newMBB: | 
|  | //     ld  t1 = [bitinstr.addr] | 
|  | //     op  t2 = t1, [bitinstr.val] | 
|  | //     mov EAX = t1 | 
|  | //     lcs dest = [bitinstr.addr], t2  [EAX is implicit] | 
|  | //     bz  newMBB | 
|  | //     fallthrough -->nextMBB | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  | const BasicBlock *LLVM_BB = MBB->getBasicBlock(); | 
|  | MachineFunction::iterator MBBIter = MBB; | 
|  | ++MBBIter; | 
|  |  | 
|  | /// First build the CFG | 
|  | MachineFunction *F = MBB->getParent(); | 
|  | MachineBasicBlock *thisMBB = MBB; | 
|  | MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(MBBIter, newMBB); | 
|  | F->insert(MBBIter, nextMBB); | 
|  |  | 
|  | // Move all successors to thisMBB to nextMBB | 
|  | nextMBB->transferSuccessors(thisMBB); | 
|  |  | 
|  | // Update thisMBB to fall through to newMBB | 
|  | thisMBB->addSuccessor(newMBB); | 
|  |  | 
|  | // newMBB jumps to itself and fall through to nextMBB | 
|  | newMBB->addSuccessor(nextMBB); | 
|  | newMBB->addSuccessor(newMBB); | 
|  |  | 
|  | // Insert instructions into newMBB based on incoming instruction | 
|  | assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 && | 
|  | "unexpected number of operands"); | 
|  | DebugLoc dl = bInstr->getDebugLoc(); | 
|  | MachineOperand& destOper = bInstr->getOperand(0); | 
|  | MachineOperand* argOpers[2 + X86AddrNumOperands]; | 
|  | int numArgs = bInstr->getNumOperands() - 1; | 
|  | for (int i=0; i < numArgs; ++i) | 
|  | argOpers[i] = &bInstr->getOperand(i+1); | 
|  |  | 
|  | // x86 address has 4 operands: base, index, scale, and displacement | 
|  | int lastAddrIndx = X86AddrNumOperands - 1; // [0,3] | 
|  | int valArgIndx = lastAddrIndx + 1; | 
|  |  | 
|  | unsigned t1 = F->getRegInfo().createVirtualRegister(RC); | 
|  | MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1); | 
|  | for (int i=0; i <= lastAddrIndx; ++i) | 
|  | (*MIB).addOperand(*argOpers[i]); | 
|  |  | 
|  | unsigned tt = F->getRegInfo().createVirtualRegister(RC); | 
|  | if (invSrc) { | 
|  | MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1); | 
|  | } | 
|  | else | 
|  | tt = t1; | 
|  |  | 
|  | unsigned t2 = F->getRegInfo().createVirtualRegister(RC); | 
|  | assert((argOpers[valArgIndx]->isReg() || | 
|  | argOpers[valArgIndx]->isImm()) && | 
|  | "invalid operand"); | 
|  | if (argOpers[valArgIndx]->isReg()) | 
|  | MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2); | 
|  | else | 
|  | MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2); | 
|  | MIB.addReg(tt); | 
|  | (*MIB).addOperand(*argOpers[valArgIndx]); | 
|  |  | 
|  | MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg); | 
|  | MIB.addReg(t1); | 
|  |  | 
|  | MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc)); | 
|  | for (int i=0; i <= lastAddrIndx; ++i) | 
|  | (*MIB).addOperand(*argOpers[i]); | 
|  | MIB.addReg(t2); | 
|  | assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand"); | 
|  | (*MIB).addMemOperand(*F, *bInstr->memoperands_begin()); | 
|  |  | 
|  | MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg()); | 
|  | MIB.addReg(EAXreg); | 
|  |  | 
|  | // insert branch | 
|  | BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB); | 
|  |  | 
|  | F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now. | 
|  | return nextMBB; | 
|  | } | 
|  |  | 
|  | // private utility function:  64 bit atomics on 32 bit host. | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr, | 
|  | MachineBasicBlock *MBB, | 
|  | unsigned regOpcL, | 
|  | unsigned regOpcH, | 
|  | unsigned immOpcL, | 
|  | unsigned immOpcH, | 
|  | bool invSrc) const { | 
|  | // For the atomic bitwise operator, we generate | 
|  | //   thisMBB (instructions are in pairs, except cmpxchg8b) | 
|  | //     ld t1,t2 = [bitinstr.addr] | 
|  | //   newMBB: | 
|  | //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4) | 
|  | //     op  t5, t6 <- out1, out2, [bitinstr.val] | 
|  | //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val]) | 
|  | //     mov ECX, EBX <- t5, t6 | 
|  | //     mov EAX, EDX <- t1, t2 | 
|  | //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit] | 
|  | //     mov t3, t4 <- EAX, EDX | 
|  | //     bz  newMBB | 
|  | //     result in out1, out2 | 
|  | //     fallthrough -->nextMBB | 
|  |  | 
|  | const TargetRegisterClass *RC = X86::GR32RegisterClass; | 
|  | const unsigned LoadOpc = X86::MOV32rm; | 
|  | const unsigned copyOpc = X86::MOV32rr; | 
|  | const unsigned NotOpc = X86::NOT32r; | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  | const BasicBlock *LLVM_BB = MBB->getBasicBlock(); | 
|  | MachineFunction::iterator MBBIter = MBB; | 
|  | ++MBBIter; | 
|  |  | 
|  | /// First build the CFG | 
|  | MachineFunction *F = MBB->getParent(); | 
|  | MachineBasicBlock *thisMBB = MBB; | 
|  | MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(MBBIter, newMBB); | 
|  | F->insert(MBBIter, nextMBB); | 
|  |  | 
|  | // Move all successors to thisMBB to nextMBB | 
|  | nextMBB->transferSuccessors(thisMBB); | 
|  |  | 
|  | // Update thisMBB to fall through to newMBB | 
|  | thisMBB->addSuccessor(newMBB); | 
|  |  | 
|  | // newMBB jumps to itself and fall through to nextMBB | 
|  | newMBB->addSuccessor(nextMBB); | 
|  | newMBB->addSuccessor(newMBB); | 
|  |  | 
|  | DebugLoc dl = bInstr->getDebugLoc(); | 
|  | // Insert instructions into newMBB based on incoming instruction | 
|  | // There are 8 "real" operands plus 9 implicit def/uses, ignored here. | 
|  | assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 && | 
|  | "unexpected number of operands"); | 
|  | MachineOperand& dest1Oper = bInstr->getOperand(0); | 
|  | MachineOperand& dest2Oper = bInstr->getOperand(1); | 
|  | MachineOperand* argOpers[2 + X86AddrNumOperands]; | 
|  | for (int i=0; i < 2 + X86AddrNumOperands; ++i) | 
|  | argOpers[i] = &bInstr->getOperand(i+2); | 
|  |  | 
|  | // x86 address has 4 operands: base, index, scale, and displacement | 
|  | int lastAddrIndx = X86AddrNumOperands - 1; // [0,3] | 
|  |  | 
|  | unsigned t1 = F->getRegInfo().createVirtualRegister(RC); | 
|  | MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1); | 
|  | for (int i=0; i <= lastAddrIndx; ++i) | 
|  | (*MIB).addOperand(*argOpers[i]); | 
|  | unsigned t2 = F->getRegInfo().createVirtualRegister(RC); | 
|  | MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2); | 
|  | // add 4 to displacement. | 
|  | for (int i=0; i <= lastAddrIndx-2; ++i) | 
|  | (*MIB).addOperand(*argOpers[i]); | 
|  | MachineOperand newOp3 = *(argOpers[3]); | 
|  | if (newOp3.isImm()) | 
|  | newOp3.setImm(newOp3.getImm()+4); | 
|  | else | 
|  | newOp3.setOffset(newOp3.getOffset()+4); | 
|  | (*MIB).addOperand(newOp3); | 
|  | (*MIB).addOperand(*argOpers[lastAddrIndx]); | 
|  |  | 
|  | // t3/4 are defined later, at the bottom of the loop | 
|  | unsigned t3 = F->getRegInfo().createVirtualRegister(RC); | 
|  | unsigned t4 = F->getRegInfo().createVirtualRegister(RC); | 
|  | BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg()) | 
|  | .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB); | 
|  | BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg()) | 
|  | .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB); | 
|  |  | 
|  | unsigned tt1 = F->getRegInfo().createVirtualRegister(RC); | 
|  | unsigned tt2 = F->getRegInfo().createVirtualRegister(RC); | 
|  | if (invSrc) { | 
|  | MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt1).addReg(t1); | 
|  | MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt2).addReg(t2); | 
|  | } else { | 
|  | tt1 = t1; | 
|  | tt2 = t2; | 
|  | } | 
|  |  | 
|  | int valArgIndx = lastAddrIndx + 1; | 
|  | assert((argOpers[valArgIndx]->isReg() || | 
|  | argOpers[valArgIndx]->isImm()) && | 
|  | "invalid operand"); | 
|  | unsigned t5 = F->getRegInfo().createVirtualRegister(RC); | 
|  | unsigned t6 = F->getRegInfo().createVirtualRegister(RC); | 
|  | if (argOpers[valArgIndx]->isReg()) | 
|  | MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5); | 
|  | else | 
|  | MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5); | 
|  | if (regOpcL != X86::MOV32rr) | 
|  | MIB.addReg(tt1); | 
|  | (*MIB).addOperand(*argOpers[valArgIndx]); | 
|  | assert(argOpers[valArgIndx + 1]->isReg() == | 
|  | argOpers[valArgIndx]->isReg()); | 
|  | assert(argOpers[valArgIndx + 1]->isImm() == | 
|  | argOpers[valArgIndx]->isImm()); | 
|  | if (argOpers[valArgIndx + 1]->isReg()) | 
|  | MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6); | 
|  | else | 
|  | MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6); | 
|  | if (regOpcH != X86::MOV32rr) | 
|  | MIB.addReg(tt2); | 
|  | (*MIB).addOperand(*argOpers[valArgIndx + 1]); | 
|  |  | 
|  | MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX); | 
|  | MIB.addReg(t1); | 
|  | MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX); | 
|  | MIB.addReg(t2); | 
|  |  | 
|  | MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX); | 
|  | MIB.addReg(t5); | 
|  | MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX); | 
|  | MIB.addReg(t6); | 
|  |  | 
|  | MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B)); | 
|  | for (int i=0; i <= lastAddrIndx; ++i) | 
|  | (*MIB).addOperand(*argOpers[i]); | 
|  |  | 
|  | assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand"); | 
|  | (*MIB).addMemOperand(*F, *bInstr->memoperands_begin()); | 
|  |  | 
|  | MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3); | 
|  | MIB.addReg(X86::EAX); | 
|  | MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4); | 
|  | MIB.addReg(X86::EDX); | 
|  |  | 
|  | // insert branch | 
|  | BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB); | 
|  |  | 
|  | F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now. | 
|  | return nextMBB; | 
|  | } | 
|  |  | 
|  | // private utility function | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr, | 
|  | MachineBasicBlock *MBB, | 
|  | unsigned cmovOpc) const { | 
|  | // For the atomic min/max operator, we generate | 
|  | //   thisMBB: | 
|  | //   newMBB: | 
|  | //     ld t1 = [min/max.addr] | 
|  | //     mov t2 = [min/max.val] | 
|  | //     cmp  t1, t2 | 
|  | //     cmov[cond] t2 = t1 | 
|  | //     mov EAX = t1 | 
|  | //     lcs dest = [bitinstr.addr], t2  [EAX is implicit] | 
|  | //     bz   newMBB | 
|  | //     fallthrough -->nextMBB | 
|  | // | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  | const BasicBlock *LLVM_BB = MBB->getBasicBlock(); | 
|  | MachineFunction::iterator MBBIter = MBB; | 
|  | ++MBBIter; | 
|  |  | 
|  | /// First build the CFG | 
|  | MachineFunction *F = MBB->getParent(); | 
|  | MachineBasicBlock *thisMBB = MBB; | 
|  | MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(MBBIter, newMBB); | 
|  | F->insert(MBBIter, nextMBB); | 
|  |  | 
|  | // Move all successors to thisMBB to nextMBB | 
|  | nextMBB->transferSuccessors(thisMBB); | 
|  |  | 
|  | // Update thisMBB to fall through to newMBB | 
|  | thisMBB->addSuccessor(newMBB); | 
|  |  | 
|  | // newMBB jumps to newMBB and fall through to nextMBB | 
|  | newMBB->addSuccessor(nextMBB); | 
|  | newMBB->addSuccessor(newMBB); | 
|  |  | 
|  | DebugLoc dl = mInstr->getDebugLoc(); | 
|  | // Insert instructions into newMBB based on incoming instruction | 
|  | assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 && | 
|  | "unexpected number of operands"); | 
|  | MachineOperand& destOper = mInstr->getOperand(0); | 
|  | MachineOperand* argOpers[2 + X86AddrNumOperands]; | 
|  | int numArgs = mInstr->getNumOperands() - 1; | 
|  | for (int i=0; i < numArgs; ++i) | 
|  | argOpers[i] = &mInstr->getOperand(i+1); | 
|  |  | 
|  | // x86 address has 4 operands: base, index, scale, and displacement | 
|  | int lastAddrIndx = X86AddrNumOperands - 1; // [0,3] | 
|  | int valArgIndx = lastAddrIndx + 1; | 
|  |  | 
|  | unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); | 
|  | MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1); | 
|  | for (int i=0; i <= lastAddrIndx; ++i) | 
|  | (*MIB).addOperand(*argOpers[i]); | 
|  |  | 
|  | // We only support register and immediate values | 
|  | assert((argOpers[valArgIndx]->isReg() || | 
|  | argOpers[valArgIndx]->isImm()) && | 
|  | "invalid operand"); | 
|  |  | 
|  | unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); | 
|  | if (argOpers[valArgIndx]->isReg()) | 
|  | MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2); | 
|  | else | 
|  | MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2); | 
|  | (*MIB).addOperand(*argOpers[valArgIndx]); | 
|  |  | 
|  | MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX); | 
|  | MIB.addReg(t1); | 
|  |  | 
|  | MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr)); | 
|  | MIB.addReg(t1); | 
|  | MIB.addReg(t2); | 
|  |  | 
|  | // Generate movc | 
|  | unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); | 
|  | MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3); | 
|  | MIB.addReg(t2); | 
|  | MIB.addReg(t1); | 
|  |  | 
|  | // Cmp and exchange if none has modified the memory location | 
|  | MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32)); | 
|  | for (int i=0; i <= lastAddrIndx; ++i) | 
|  | (*MIB).addOperand(*argOpers[i]); | 
|  | MIB.addReg(t3); | 
|  | assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand"); | 
|  | (*MIB).addMemOperand(*F, *mInstr->memoperands_begin()); | 
|  |  | 
|  | MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg()); | 
|  | MIB.addReg(X86::EAX); | 
|  |  | 
|  | // insert branch | 
|  | BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB); | 
|  |  | 
|  | F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now. | 
|  | return nextMBB; | 
|  | } | 
|  |  | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | DebugLoc dl = MI->getDebugLoc(); | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  | switch (MI->getOpcode()) { | 
|  | default: assert(false && "Unexpected instr type to insert"); | 
|  | case X86::CMOV_V1I64: | 
|  | case X86::CMOV_FR32: | 
|  | case X86::CMOV_FR64: | 
|  | case X86::CMOV_V4F32: | 
|  | case X86::CMOV_V2F64: | 
|  | case X86::CMOV_V2I64: { | 
|  | // To "insert" a SELECT_CC instruction, we actually have to insert the | 
|  | // diamond control-flow pattern.  The incoming instruction knows the | 
|  | // destination vreg to set, the condition code register to branch on, the | 
|  | // true/false values to select between, and a branch opcode to use. | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  | MachineFunction::iterator It = BB; | 
|  | ++It; | 
|  |  | 
|  | //  thisMBB: | 
|  | //  ... | 
|  | //   TrueVal = ... | 
|  | //   cmpTY ccX, r1, r2 | 
|  | //   bCC copy1MBB | 
|  | //   fallthrough --> copy0MBB | 
|  | MachineBasicBlock *thisMBB = BB; | 
|  | MachineFunction *F = BB->getParent(); | 
|  | MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | unsigned Opc = | 
|  | X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm()); | 
|  | BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB); | 
|  | F->insert(It, copy0MBB); | 
|  | F->insert(It, sinkMBB); | 
|  | // Update machine-CFG edges by transferring all successors of the current | 
|  | // block to the new block which will contain the Phi node for the select. | 
|  | sinkMBB->transferSuccessors(BB); | 
|  |  | 
|  | // Add the true and fallthrough blocks as its successors. | 
|  | BB->addSuccessor(copy0MBB); | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | //  copy0MBB: | 
|  | //   %FalseValue = ... | 
|  | //   # fallthrough to sinkMBB | 
|  | BB = copy0MBB; | 
|  |  | 
|  | // Update machine-CFG edges | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | //  sinkMBB: | 
|  | //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] | 
|  | //  ... | 
|  | BB = sinkMBB; | 
|  | BuildMI(BB, dl, TII->get(X86::PHI), MI->getOperand(0).getReg()) | 
|  | .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) | 
|  | .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); | 
|  |  | 
|  | F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | case X86::FP32_TO_INT16_IN_MEM: | 
|  | case X86::FP32_TO_INT32_IN_MEM: | 
|  | case X86::FP32_TO_INT64_IN_MEM: | 
|  | case X86::FP64_TO_INT16_IN_MEM: | 
|  | case X86::FP64_TO_INT32_IN_MEM: | 
|  | case X86::FP64_TO_INT64_IN_MEM: | 
|  | case X86::FP80_TO_INT16_IN_MEM: | 
|  | case X86::FP80_TO_INT32_IN_MEM: | 
|  | case X86::FP80_TO_INT64_IN_MEM: { | 
|  | // Change the floating point control register to use "round towards zero" | 
|  | // mode when truncating to an integer value. | 
|  | MachineFunction *F = BB->getParent(); | 
|  | int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); | 
|  | addFrameReference(BuildMI(BB, dl, TII->get(X86::FNSTCW16m)), CWFrameIdx); | 
|  |  | 
|  | // Load the old value of the high byte of the control word... | 
|  | unsigned OldCW = | 
|  | F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass); | 
|  | addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16rm), OldCW), | 
|  | CWFrameIdx); | 
|  |  | 
|  | // Set the high part to be round to zero... | 
|  | addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mi)), CWFrameIdx) | 
|  | .addImm(0xC7F); | 
|  |  | 
|  | // Reload the modified control word now... | 
|  | addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx); | 
|  |  | 
|  | // Restore the memory image of control word to original value | 
|  | addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mr)), CWFrameIdx) | 
|  | .addReg(OldCW); | 
|  |  | 
|  | // Get the X86 opcode to use. | 
|  | unsigned Opc; | 
|  | switch (MI->getOpcode()) { | 
|  | default: llvm_unreachable("illegal opcode!"); | 
|  | case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break; | 
|  | case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break; | 
|  | case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break; | 
|  | case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break; | 
|  | case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break; | 
|  | case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break; | 
|  | case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break; | 
|  | case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break; | 
|  | case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break; | 
|  | } | 
|  |  | 
|  | X86AddressMode AM; | 
|  | MachineOperand &Op = MI->getOperand(0); | 
|  | if (Op.isReg()) { | 
|  | AM.BaseType = X86AddressMode::RegBase; | 
|  | AM.Base.Reg = Op.getReg(); | 
|  | } else { | 
|  | AM.BaseType = X86AddressMode::FrameIndexBase; | 
|  | AM.Base.FrameIndex = Op.getIndex(); | 
|  | } | 
|  | Op = MI->getOperand(1); | 
|  | if (Op.isImm()) | 
|  | AM.Scale = Op.getImm(); | 
|  | Op = MI->getOperand(2); | 
|  | if (Op.isImm()) | 
|  | AM.IndexReg = Op.getImm(); | 
|  | Op = MI->getOperand(3); | 
|  | if (Op.isGlobal()) { | 
|  | AM.GV = Op.getGlobal(); | 
|  | } else { | 
|  | AM.Disp = Op.getImm(); | 
|  | } | 
|  | addFullAddress(BuildMI(BB, dl, TII->get(Opc)), AM) | 
|  | .addReg(MI->getOperand(X86AddrNumOperands).getReg()); | 
|  |  | 
|  | // Reload the original control word now. | 
|  | addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx); | 
|  |  | 
|  | F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  | case X86::ATOMAND32: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr, | 
|  | X86::AND32ri, X86::MOV32rm, | 
|  | X86::LCMPXCHG32, X86::MOV32rr, | 
|  | X86::NOT32r, X86::EAX, | 
|  | X86::GR32RegisterClass); | 
|  | case X86::ATOMOR32: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr, | 
|  | X86::OR32ri, X86::MOV32rm, | 
|  | X86::LCMPXCHG32, X86::MOV32rr, | 
|  | X86::NOT32r, X86::EAX, | 
|  | X86::GR32RegisterClass); | 
|  | case X86::ATOMXOR32: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr, | 
|  | X86::XOR32ri, X86::MOV32rm, | 
|  | X86::LCMPXCHG32, X86::MOV32rr, | 
|  | X86::NOT32r, X86::EAX, | 
|  | X86::GR32RegisterClass); | 
|  | case X86::ATOMNAND32: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr, | 
|  | X86::AND32ri, X86::MOV32rm, | 
|  | X86::LCMPXCHG32, X86::MOV32rr, | 
|  | X86::NOT32r, X86::EAX, | 
|  | X86::GR32RegisterClass, true); | 
|  | case X86::ATOMMIN32: | 
|  | return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr); | 
|  | case X86::ATOMMAX32: | 
|  | return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr); | 
|  | case X86::ATOMUMIN32: | 
|  | return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr); | 
|  | case X86::ATOMUMAX32: | 
|  | return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr); | 
|  |  | 
|  | case X86::ATOMAND16: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr, | 
|  | X86::AND16ri, X86::MOV16rm, | 
|  | X86::LCMPXCHG16, X86::MOV16rr, | 
|  | X86::NOT16r, X86::AX, | 
|  | X86::GR16RegisterClass); | 
|  | case X86::ATOMOR16: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr, | 
|  | X86::OR16ri, X86::MOV16rm, | 
|  | X86::LCMPXCHG16, X86::MOV16rr, | 
|  | X86::NOT16r, X86::AX, | 
|  | X86::GR16RegisterClass); | 
|  | case X86::ATOMXOR16: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr, | 
|  | X86::XOR16ri, X86::MOV16rm, | 
|  | X86::LCMPXCHG16, X86::MOV16rr, | 
|  | X86::NOT16r, X86::AX, | 
|  | X86::GR16RegisterClass); | 
|  | case X86::ATOMNAND16: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr, | 
|  | X86::AND16ri, X86::MOV16rm, | 
|  | X86::LCMPXCHG16, X86::MOV16rr, | 
|  | X86::NOT16r, X86::AX, | 
|  | X86::GR16RegisterClass, true); | 
|  | case X86::ATOMMIN16: | 
|  | return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr); | 
|  | case X86::ATOMMAX16: | 
|  | return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr); | 
|  | case X86::ATOMUMIN16: | 
|  | return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr); | 
|  | case X86::ATOMUMAX16: | 
|  | return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr); | 
|  |  | 
|  | case X86::ATOMAND8: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr, | 
|  | X86::AND8ri, X86::MOV8rm, | 
|  | X86::LCMPXCHG8, X86::MOV8rr, | 
|  | X86::NOT8r, X86::AL, | 
|  | X86::GR8RegisterClass); | 
|  | case X86::ATOMOR8: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr, | 
|  | X86::OR8ri, X86::MOV8rm, | 
|  | X86::LCMPXCHG8, X86::MOV8rr, | 
|  | X86::NOT8r, X86::AL, | 
|  | X86::GR8RegisterClass); | 
|  | case X86::ATOMXOR8: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr, | 
|  | X86::XOR8ri, X86::MOV8rm, | 
|  | X86::LCMPXCHG8, X86::MOV8rr, | 
|  | X86::NOT8r, X86::AL, | 
|  | X86::GR8RegisterClass); | 
|  | case X86::ATOMNAND8: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr, | 
|  | X86::AND8ri, X86::MOV8rm, | 
|  | X86::LCMPXCHG8, X86::MOV8rr, | 
|  | X86::NOT8r, X86::AL, | 
|  | X86::GR8RegisterClass, true); | 
|  | // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way. | 
|  | // This group is for 64-bit host. | 
|  | case X86::ATOMAND64: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr, | 
|  | X86::AND64ri32, X86::MOV64rm, | 
|  | X86::LCMPXCHG64, X86::MOV64rr, | 
|  | X86::NOT64r, X86::RAX, | 
|  | X86::GR64RegisterClass); | 
|  | case X86::ATOMOR64: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr, | 
|  | X86::OR64ri32, X86::MOV64rm, | 
|  | X86::LCMPXCHG64, X86::MOV64rr, | 
|  | X86::NOT64r, X86::RAX, | 
|  | X86::GR64RegisterClass); | 
|  | case X86::ATOMXOR64: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr, | 
|  | X86::XOR64ri32, X86::MOV64rm, | 
|  | X86::LCMPXCHG64, X86::MOV64rr, | 
|  | X86::NOT64r, X86::RAX, | 
|  | X86::GR64RegisterClass); | 
|  | case X86::ATOMNAND64: | 
|  | return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr, | 
|  | X86::AND64ri32, X86::MOV64rm, | 
|  | X86::LCMPXCHG64, X86::MOV64rr, | 
|  | X86::NOT64r, X86::RAX, | 
|  | X86::GR64RegisterClass, true); | 
|  | case X86::ATOMMIN64: | 
|  | return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr); | 
|  | case X86::ATOMMAX64: | 
|  | return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr); | 
|  | case X86::ATOMUMIN64: | 
|  | return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr); | 
|  | case X86::ATOMUMAX64: | 
|  | return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr); | 
|  |  | 
|  | // This group does 64-bit operations on a 32-bit host. | 
|  | case X86::ATOMAND6432: | 
|  | return EmitAtomicBit6432WithCustomInserter(MI, BB, | 
|  | X86::AND32rr, X86::AND32rr, | 
|  | X86::AND32ri, X86::AND32ri, | 
|  | false); | 
|  | case X86::ATOMOR6432: | 
|  | return EmitAtomicBit6432WithCustomInserter(MI, BB, | 
|  | X86::OR32rr, X86::OR32rr, | 
|  | X86::OR32ri, X86::OR32ri, | 
|  | false); | 
|  | case X86::ATOMXOR6432: | 
|  | return EmitAtomicBit6432WithCustomInserter(MI, BB, | 
|  | X86::XOR32rr, X86::XOR32rr, | 
|  | X86::XOR32ri, X86::XOR32ri, | 
|  | false); | 
|  | case X86::ATOMNAND6432: | 
|  | return EmitAtomicBit6432WithCustomInserter(MI, BB, | 
|  | X86::AND32rr, X86::AND32rr, | 
|  | X86::AND32ri, X86::AND32ri, | 
|  | true); | 
|  | case X86::ATOMADD6432: | 
|  | return EmitAtomicBit6432WithCustomInserter(MI, BB, | 
|  | X86::ADD32rr, X86::ADC32rr, | 
|  | X86::ADD32ri, X86::ADC32ri, | 
|  | false); | 
|  | case X86::ATOMSUB6432: | 
|  | return EmitAtomicBit6432WithCustomInserter(MI, BB, | 
|  | X86::SUB32rr, X86::SBB32rr, | 
|  | X86::SUB32ri, X86::SBB32ri, | 
|  | false); | 
|  | case X86::ATOMSWAP6432: | 
|  | return EmitAtomicBit6432WithCustomInserter(MI, BB, | 
|  | X86::MOV32rr, X86::MOV32rr, | 
|  | X86::MOV32ri, X86::MOV32ri, | 
|  | false); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           X86 Optimization Hooks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, | 
|  | const APInt &Mask, | 
|  | APInt &KnownZero, | 
|  | APInt &KnownOne, | 
|  | const SelectionDAG &DAG, | 
|  | unsigned Depth) const { | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | assert((Opc >= ISD::BUILTIN_OP_END || | 
|  | Opc == ISD::INTRINSIC_WO_CHAIN || | 
|  | Opc == ISD::INTRINSIC_W_CHAIN || | 
|  | Opc == ISD::INTRINSIC_VOID) && | 
|  | "Should use MaskedValueIsZero if you don't know whether Op" | 
|  | " is a target node!"); | 
|  |  | 
|  | KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything. | 
|  | switch (Opc) { | 
|  | default: break; | 
|  | case X86ISD::ADD: | 
|  | case X86ISD::SUB: | 
|  | case X86ISD::SMUL: | 
|  | case X86ISD::UMUL: | 
|  | case X86ISD::INC: | 
|  | case X86ISD::DEC: | 
|  | // These nodes' second result is a boolean. | 
|  | if (Op.getResNo() == 0) | 
|  | break; | 
|  | // Fallthrough | 
|  | case X86ISD::SETCC: | 
|  | KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(), | 
|  | Mask.getBitWidth() - 1); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the | 
|  | /// node is a GlobalAddress + offset. | 
|  | bool X86TargetLowering::isGAPlusOffset(SDNode *N, | 
|  | GlobalValue* &GA, int64_t &Offset) const{ | 
|  | if (N->getOpcode() == X86ISD::Wrapper) { | 
|  | if (isa<GlobalAddressSDNode>(N->getOperand(0))) { | 
|  | GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal(); | 
|  | Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return TargetLowering::isGAPlusOffset(N, GA, Offset); | 
|  | } | 
|  |  | 
|  | static bool isBaseAlignmentOfN(unsigned N, SDNode *Base, | 
|  | const TargetLowering &TLI) { | 
|  | GlobalValue *GV; | 
|  | int64_t Offset = 0; | 
|  | if (TLI.isGAPlusOffset(Base, GV, Offset)) | 
|  | return (GV->getAlignment() >= N && (Offset % N) == 0); | 
|  | // DAG combine handles the stack object case. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems, | 
|  | MVT EVT, LoadSDNode *&LDBase, | 
|  | unsigned &LastLoadedElt, | 
|  | SelectionDAG &DAG, MachineFrameInfo *MFI, | 
|  | const TargetLowering &TLI) { | 
|  | LDBase = NULL; | 
|  | LastLoadedElt = -1U; | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | if (N->getMaskElt(i) < 0) { | 
|  | if (!LDBase) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SDValue Elt = DAG.getShuffleScalarElt(N, i); | 
|  | if (!Elt.getNode() || | 
|  | (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode()))) | 
|  | return false; | 
|  | if (!LDBase) { | 
|  | if (Elt.getNode()->getOpcode() == ISD::UNDEF) | 
|  | return false; | 
|  | LDBase = cast<LoadSDNode>(Elt.getNode()); | 
|  | LastLoadedElt = i; | 
|  | continue; | 
|  | } | 
|  | if (Elt.getOpcode() == ISD::UNDEF) | 
|  | continue; | 
|  |  | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Elt); | 
|  | if (!TLI.isConsecutiveLoad(LD, LDBase, EVT.getSizeInBits()/8, i, MFI)) | 
|  | return false; | 
|  | LastLoadedElt = i; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// PerformShuffleCombine - Combine a vector_shuffle that is equal to | 
|  | /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load | 
|  | /// if the load addresses are consecutive, non-overlapping, and in the right | 
|  | /// order.  In the case of v2i64, it will see if it can rewrite the | 
|  | /// shuffle to be an appropriate build vector so it can take advantage of | 
|  | // performBuildVectorCombine. | 
|  | static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI) { | 
|  | DebugLoc dl = N->getDebugLoc(); | 
|  | MVT VT = N->getValueType(0); | 
|  | MVT EVT = VT.getVectorElementType(); | 
|  | ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | if (VT.getSizeInBits() != 128) | 
|  | return SDValue(); | 
|  |  | 
|  | // Try to combine a vector_shuffle into a 128-bit load. | 
|  | MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | LoadSDNode *LD = NULL; | 
|  | unsigned LastLoadedElt; | 
|  | if (!EltsFromConsecutiveLoads(SVN, NumElems, EVT, LD, LastLoadedElt, DAG, | 
|  | MFI, TLI)) | 
|  | return SDValue(); | 
|  |  | 
|  | if (LastLoadedElt == NumElems - 1) { | 
|  | if (isBaseAlignmentOfN(16, LD->getBasePtr().getNode(), TLI)) | 
|  | return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(), | 
|  | LD->getSrcValue(), LD->getSrcValueOffset(), | 
|  | LD->isVolatile()); | 
|  | return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(), | 
|  | LD->getSrcValue(), LD->getSrcValueOffset(), | 
|  | LD->isVolatile(), LD->getAlignment()); | 
|  | } else if (NumElems == 4 && LastLoadedElt == 1) { | 
|  | SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other); | 
|  | SDValue Ops[] = { LD->getChain(), LD->getBasePtr() }; | 
|  | SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes. | 
|  | static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | DebugLoc DL = N->getDebugLoc(); | 
|  | SDValue Cond = N->getOperand(0); | 
|  | // Get the LHS/RHS of the select. | 
|  | SDValue LHS = N->getOperand(1); | 
|  | SDValue RHS = N->getOperand(2); | 
|  |  | 
|  | // If we have SSE[12] support, try to form min/max nodes. | 
|  | if (Subtarget->hasSSE2() && | 
|  | (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) && | 
|  | Cond.getOpcode() == ISD::SETCC) { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); | 
|  |  | 
|  | unsigned Opcode = 0; | 
|  | if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) { | 
|  | switch (CC) { | 
|  | default: break; | 
|  | case ISD::SETOLE: // (X <= Y) ? X : Y -> min | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE: | 
|  | if (!UnsafeFPMath) break; | 
|  | // FALL THROUGH. | 
|  | case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min | 
|  | case ISD::SETLT: | 
|  | Opcode = X86ISD::FMIN; | 
|  | break; | 
|  |  | 
|  | case ISD::SETOGT: // (X > Y) ? X : Y -> max | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETGT: | 
|  | if (!UnsafeFPMath) break; | 
|  | // FALL THROUGH. | 
|  | case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max | 
|  | case ISD::SETGE: | 
|  | Opcode = X86ISD::FMAX; | 
|  | break; | 
|  | } | 
|  | } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) { | 
|  | switch (CC) { | 
|  | default: break; | 
|  | case ISD::SETOGT: // (X > Y) ? Y : X -> min | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETGT: | 
|  | if (!UnsafeFPMath) break; | 
|  | // FALL THROUGH. | 
|  | case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min | 
|  | case ISD::SETGE: | 
|  | Opcode = X86ISD::FMIN; | 
|  | break; | 
|  |  | 
|  | case ISD::SETOLE:   // (X <= Y) ? Y : X -> max | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE: | 
|  | if (!UnsafeFPMath) break; | 
|  | // FALL THROUGH. | 
|  | case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max | 
|  | case ISD::SETLT: | 
|  | Opcode = X86ISD::FMAX; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Opcode) | 
|  | return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS); | 
|  | } | 
|  |  | 
|  | // If this is a select between two integer constants, try to do some | 
|  | // optimizations. | 
|  | if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) { | 
|  | if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS)) | 
|  | // Don't do this for crazy integer types. | 
|  | if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) { | 
|  | // If this is efficiently invertible, canonicalize the LHSC/RHSC values | 
|  | // so that TrueC (the true value) is larger than FalseC. | 
|  | bool NeedsCondInvert = false; | 
|  |  | 
|  | if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) && | 
|  | // Efficiently invertible. | 
|  | (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible. | 
|  | (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible. | 
|  | isa<ConstantSDNode>(Cond.getOperand(1))))) { | 
|  | NeedsCondInvert = true; | 
|  | std::swap(TrueC, FalseC); | 
|  | } | 
|  |  | 
|  | // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0. | 
|  | if (FalseC->getAPIntValue() == 0 && | 
|  | TrueC->getAPIntValue().isPowerOf2()) { | 
|  | if (NeedsCondInvert) // Invert the condition if needed. | 
|  | Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, | 
|  | DAG.getConstant(1, Cond.getValueType())); | 
|  |  | 
|  | // Zero extend the condition if needed. | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond); | 
|  |  | 
|  | unsigned ShAmt = TrueC->getAPIntValue().logBase2(); | 
|  | return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond, | 
|  | DAG.getConstant(ShAmt, MVT::i8)); | 
|  | } | 
|  |  | 
|  | // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. | 
|  | if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { | 
|  | if (NeedsCondInvert) // Invert the condition if needed. | 
|  | Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, | 
|  | DAG.getConstant(1, Cond.getValueType())); | 
|  |  | 
|  | // Zero extend the condition if needed. | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, | 
|  | FalseC->getValueType(0), Cond); | 
|  | return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, | 
|  | SDValue(FalseC, 0)); | 
|  | } | 
|  |  | 
|  | // Optimize cases that will turn into an LEA instruction.  This requires | 
|  | // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). | 
|  | if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { | 
|  | uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); | 
|  | if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; | 
|  |  | 
|  | bool isFastMultiplier = false; | 
|  | if (Diff < 10) { | 
|  | switch ((unsigned char)Diff) { | 
|  | default: break; | 
|  | case 1:  // result = add base, cond | 
|  | case 2:  // result = lea base(    , cond*2) | 
|  | case 3:  // result = lea base(cond, cond*2) | 
|  | case 4:  // result = lea base(    , cond*4) | 
|  | case 5:  // result = lea base(cond, cond*4) | 
|  | case 8:  // result = lea base(    , cond*8) | 
|  | case 9:  // result = lea base(cond, cond*8) | 
|  | isFastMultiplier = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isFastMultiplier) { | 
|  | APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); | 
|  | if (NeedsCondInvert) // Invert the condition if needed. | 
|  | Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, | 
|  | DAG.getConstant(1, Cond.getValueType())); | 
|  |  | 
|  | // Zero extend the condition if needed. | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), | 
|  | Cond); | 
|  | // Scale the condition by the difference. | 
|  | if (Diff != 1) | 
|  | Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, | 
|  | DAG.getConstant(Diff, Cond.getValueType())); | 
|  |  | 
|  | // Add the base if non-zero. | 
|  | if (FalseC->getAPIntValue() != 0) | 
|  | Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, | 
|  | SDValue(FalseC, 0)); | 
|  | return Cond; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL] | 
|  | static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI) { | 
|  | DebugLoc DL = N->getDebugLoc(); | 
|  |  | 
|  | // If the flag operand isn't dead, don't touch this CMOV. | 
|  | if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty()) | 
|  | return SDValue(); | 
|  |  | 
|  | // If this is a select between two integer constants, try to do some | 
|  | // optimizations.  Note that the operands are ordered the opposite of SELECT | 
|  | // operands. | 
|  | if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) { | 
|  | if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) { | 
|  | // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is | 
|  | // larger than FalseC (the false value). | 
|  | X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2); | 
|  |  | 
|  | if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) { | 
|  | CC = X86::GetOppositeBranchCondition(CC); | 
|  | std::swap(TrueC, FalseC); | 
|  | } | 
|  |  | 
|  | // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0. | 
|  | // This is efficient for any integer data type (including i8/i16) and | 
|  | // shift amount. | 
|  | if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) { | 
|  | SDValue Cond = N->getOperand(3); | 
|  | Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, | 
|  | DAG.getConstant(CC, MVT::i8), Cond); | 
|  |  | 
|  | // Zero extend the condition if needed. | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond); | 
|  |  | 
|  | unsigned ShAmt = TrueC->getAPIntValue().logBase2(); | 
|  | Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond, | 
|  | DAG.getConstant(ShAmt, MVT::i8)); | 
|  | if (N->getNumValues() == 2)  // Dead flag value? | 
|  | return DCI.CombineTo(N, Cond, SDValue()); | 
|  | return Cond; | 
|  | } | 
|  |  | 
|  | // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient | 
|  | // for any integer data type, including i8/i16. | 
|  | if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { | 
|  | SDValue Cond = N->getOperand(3); | 
|  | Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, | 
|  | DAG.getConstant(CC, MVT::i8), Cond); | 
|  |  | 
|  | // Zero extend the condition if needed. | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, | 
|  | FalseC->getValueType(0), Cond); | 
|  | Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, | 
|  | SDValue(FalseC, 0)); | 
|  |  | 
|  | if (N->getNumValues() == 2)  // Dead flag value? | 
|  | return DCI.CombineTo(N, Cond, SDValue()); | 
|  | return Cond; | 
|  | } | 
|  |  | 
|  | // Optimize cases that will turn into an LEA instruction.  This requires | 
|  | // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). | 
|  | if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { | 
|  | uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); | 
|  | if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; | 
|  |  | 
|  | bool isFastMultiplier = false; | 
|  | if (Diff < 10) { | 
|  | switch ((unsigned char)Diff) { | 
|  | default: break; | 
|  | case 1:  // result = add base, cond | 
|  | case 2:  // result = lea base(    , cond*2) | 
|  | case 3:  // result = lea base(cond, cond*2) | 
|  | case 4:  // result = lea base(    , cond*4) | 
|  | case 5:  // result = lea base(cond, cond*4) | 
|  | case 8:  // result = lea base(    , cond*8) | 
|  | case 9:  // result = lea base(cond, cond*8) | 
|  | isFastMultiplier = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isFastMultiplier) { | 
|  | APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); | 
|  | SDValue Cond = N->getOperand(3); | 
|  | Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, | 
|  | DAG.getConstant(CC, MVT::i8), Cond); | 
|  | // Zero extend the condition if needed. | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), | 
|  | Cond); | 
|  | // Scale the condition by the difference. | 
|  | if (Diff != 1) | 
|  | Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, | 
|  | DAG.getConstant(Diff, Cond.getValueType())); | 
|  |  | 
|  | // Add the base if non-zero. | 
|  | if (FalseC->getAPIntValue() != 0) | 
|  | Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, | 
|  | SDValue(FalseC, 0)); | 
|  | if (N->getNumValues() == 2)  // Dead flag value? | 
|  | return DCI.CombineTo(N, Cond, SDValue()); | 
|  | return Cond; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// PerformMulCombine - Optimize a single multiply with constant into two | 
|  | /// in order to implement it with two cheaper instructions, e.g. | 
|  | /// LEA + SHL, LEA + LEA. | 
|  | static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI) { | 
|  | if (DAG.getMachineFunction(). | 
|  | getFunction()->hasFnAttr(Attribute::OptimizeForSize)) | 
|  | return SDValue(); | 
|  |  | 
|  | if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) | 
|  | return SDValue(); | 
|  |  | 
|  | MVT VT = N->getValueType(0); | 
|  | if (VT != MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | if (!C) | 
|  | return SDValue(); | 
|  | uint64_t MulAmt = C->getZExtValue(); | 
|  | if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9) | 
|  | return SDValue(); | 
|  |  | 
|  | uint64_t MulAmt1 = 0; | 
|  | uint64_t MulAmt2 = 0; | 
|  | if ((MulAmt % 9) == 0) { | 
|  | MulAmt1 = 9; | 
|  | MulAmt2 = MulAmt / 9; | 
|  | } else if ((MulAmt % 5) == 0) { | 
|  | MulAmt1 = 5; | 
|  | MulAmt2 = MulAmt / 5; | 
|  | } else if ((MulAmt % 3) == 0) { | 
|  | MulAmt1 = 3; | 
|  | MulAmt2 = MulAmt / 3; | 
|  | } | 
|  | if (MulAmt2 && | 
|  | (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){ | 
|  | DebugLoc DL = N->getDebugLoc(); | 
|  |  | 
|  | if (isPowerOf2_64(MulAmt2) && | 
|  | !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD)) | 
|  | // If second multiplifer is pow2, issue it first. We want the multiply by | 
|  | // 3, 5, or 9 to be folded into the addressing mode unless the lone use | 
|  | // is an add. | 
|  | std::swap(MulAmt1, MulAmt2); | 
|  |  | 
|  | SDValue NewMul; | 
|  | if (isPowerOf2_64(MulAmt1)) | 
|  | NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), | 
|  | DAG.getConstant(Log2_64(MulAmt1), MVT::i8)); | 
|  | else | 
|  | NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0), | 
|  | DAG.getConstant(MulAmt1, VT)); | 
|  |  | 
|  | if (isPowerOf2_64(MulAmt2)) | 
|  | NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul, | 
|  | DAG.getConstant(Log2_64(MulAmt2), MVT::i8)); | 
|  | else | 
|  | NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul, | 
|  | DAG.getConstant(MulAmt2, VT)); | 
|  |  | 
|  | // Do not add new nodes to DAG combiner worklist. | 
|  | DCI.CombineTo(N, NewMul, false); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts | 
|  | ///                       when possible. | 
|  | static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | // On X86 with SSE2 support, we can transform this to a vector shift if | 
|  | // all elements are shifted by the same amount.  We can't do this in legalize | 
|  | // because the a constant vector is typically transformed to a constant pool | 
|  | // so we have no knowledge of the shift amount. | 
|  | if (!Subtarget->hasSSE2()) | 
|  | return SDValue(); | 
|  |  | 
|  | MVT VT = N->getValueType(0); | 
|  | if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue ShAmtOp = N->getOperand(1); | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | DebugLoc DL = N->getDebugLoc(); | 
|  | SDValue BaseShAmt; | 
|  | if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) { | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | unsigned i = 0; | 
|  | for (; i != NumElts; ++i) { | 
|  | SDValue Arg = ShAmtOp.getOperand(i); | 
|  | if (Arg.getOpcode() == ISD::UNDEF) continue; | 
|  | BaseShAmt = Arg; | 
|  | break; | 
|  | } | 
|  | for (; i != NumElts; ++i) { | 
|  | SDValue Arg = ShAmtOp.getOperand(i); | 
|  | if (Arg.getOpcode() == ISD::UNDEF) continue; | 
|  | if (Arg != BaseShAmt) { | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  | } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE && | 
|  | cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) { | 
|  | BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } else | 
|  | return SDValue(); | 
|  |  | 
|  | if (EltVT.bitsGT(MVT::i32)) | 
|  | BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt); | 
|  | else if (EltVT.bitsLT(MVT::i32)) | 
|  | BaseShAmt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, BaseShAmt); | 
|  |  | 
|  | // The shift amount is identical so we can do a vector shift. | 
|  | SDValue  ValOp = N->getOperand(0); | 
|  | switch (N->getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Unknown shift opcode!"); | 
|  | break; | 
|  | case ISD::SHL: | 
|  | if (VT == MVT::v2i64) | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32), | 
|  | ValOp, BaseShAmt); | 
|  | if (VT == MVT::v4i32) | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32), | 
|  | ValOp, BaseShAmt); | 
|  | if (VT == MVT::v8i16) | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), | 
|  | ValOp, BaseShAmt); | 
|  | break; | 
|  | case ISD::SRA: | 
|  | if (VT == MVT::v4i32) | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32), | 
|  | ValOp, BaseShAmt); | 
|  | if (VT == MVT::v8i16) | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32), | 
|  | ValOp, BaseShAmt); | 
|  | break; | 
|  | case ISD::SRL: | 
|  | if (VT == MVT::v2i64) | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32), | 
|  | ValOp, BaseShAmt); | 
|  | if (VT == MVT::v4i32) | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32), | 
|  | ValOp, BaseShAmt); | 
|  | if (VT ==  MVT::v8i16) | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, | 
|  | DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32), | 
|  | ValOp, BaseShAmt); | 
|  | break; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// PerformSTORECombine - Do target-specific dag combines on STORE nodes. | 
|  | static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering | 
|  | // the FP state in cases where an emms may be missing. | 
|  | // A preferable solution to the general problem is to figure out the right | 
|  | // places to insert EMMS.  This qualifies as a quick hack. | 
|  |  | 
|  | // Similarly, turn load->store of i64 into double load/stores in 32-bit mode. | 
|  | StoreSDNode *St = cast<StoreSDNode>(N); | 
|  | MVT VT = St->getValue().getValueType(); | 
|  | if (VT.getSizeInBits() != 64) | 
|  | return SDValue(); | 
|  |  | 
|  | const Function *F = DAG.getMachineFunction().getFunction(); | 
|  | bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat); | 
|  | bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps | 
|  | && Subtarget->hasSSE2(); | 
|  | if ((VT.isVector() || | 
|  | (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) && | 
|  | isa<LoadSDNode>(St->getValue()) && | 
|  | !cast<LoadSDNode>(St->getValue())->isVolatile() && | 
|  | St->getChain().hasOneUse() && !St->isVolatile()) { | 
|  | SDNode* LdVal = St->getValue().getNode(); | 
|  | LoadSDNode *Ld = 0; | 
|  | int TokenFactorIndex = -1; | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | SDNode* ChainVal = St->getChain().getNode(); | 
|  | // Must be a store of a load.  We currently handle two cases:  the load | 
|  | // is a direct child, and it's under an intervening TokenFactor.  It is | 
|  | // possible to dig deeper under nested TokenFactors. | 
|  | if (ChainVal == LdVal) | 
|  | Ld = cast<LoadSDNode>(St->getChain()); | 
|  | else if (St->getValue().hasOneUse() && | 
|  | ChainVal->getOpcode() == ISD::TokenFactor) { | 
|  | for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) { | 
|  | if (ChainVal->getOperand(i).getNode() == LdVal) { | 
|  | TokenFactorIndex = i; | 
|  | Ld = cast<LoadSDNode>(St->getValue()); | 
|  | } else | 
|  | Ops.push_back(ChainVal->getOperand(i)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Ld || !ISD::isNormalLoad(Ld)) | 
|  | return SDValue(); | 
|  |  | 
|  | // If this is not the MMX case, i.e. we are just turning i64 load/store | 
|  | // into f64 load/store, avoid the transformation if there are multiple | 
|  | // uses of the loaded value. | 
|  | if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0)) | 
|  | return SDValue(); | 
|  |  | 
|  | DebugLoc LdDL = Ld->getDebugLoc(); | 
|  | DebugLoc StDL = N->getDebugLoc(); | 
|  | // If we are a 64-bit capable x86, lower to a single movq load/store pair. | 
|  | // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store | 
|  | // pair instead. | 
|  | if (Subtarget->is64Bit() || F64IsLegal) { | 
|  | MVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64; | 
|  | SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), | 
|  | Ld->getBasePtr(), Ld->getSrcValue(), | 
|  | Ld->getSrcValueOffset(), Ld->isVolatile(), | 
|  | Ld->getAlignment()); | 
|  | SDValue NewChain = NewLd.getValue(1); | 
|  | if (TokenFactorIndex != -1) { | 
|  | Ops.push_back(NewChain); | 
|  | NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0], | 
|  | Ops.size()); | 
|  | } | 
|  | return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(), | 
|  | St->getSrcValue(), St->getSrcValueOffset(), | 
|  | St->isVolatile(), St->getAlignment()); | 
|  | } | 
|  |  | 
|  | // Otherwise, lower to two pairs of 32-bit loads / stores. | 
|  | SDValue LoAddr = Ld->getBasePtr(); | 
|  | SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr, | 
|  | DAG.getConstant(4, MVT::i32)); | 
|  |  | 
|  | SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr, | 
|  | Ld->getSrcValue(), Ld->getSrcValueOffset(), | 
|  | Ld->isVolatile(), Ld->getAlignment()); | 
|  | SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr, | 
|  | Ld->getSrcValue(), Ld->getSrcValueOffset()+4, | 
|  | Ld->isVolatile(), | 
|  | MinAlign(Ld->getAlignment(), 4)); | 
|  |  | 
|  | SDValue NewChain = LoLd.getValue(1); | 
|  | if (TokenFactorIndex != -1) { | 
|  | Ops.push_back(LoLd); | 
|  | Ops.push_back(HiLd); | 
|  | NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0], | 
|  | Ops.size()); | 
|  | } | 
|  |  | 
|  | LoAddr = St->getBasePtr(); | 
|  | HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr, | 
|  | DAG.getConstant(4, MVT::i32)); | 
|  |  | 
|  | SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr, | 
|  | St->getSrcValue(), St->getSrcValueOffset(), | 
|  | St->isVolatile(), St->getAlignment()); | 
|  | SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr, | 
|  | St->getSrcValue(), | 
|  | St->getSrcValueOffset() + 4, | 
|  | St->isVolatile(), | 
|  | MinAlign(St->getAlignment(), 4)); | 
|  | return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and | 
|  | /// X86ISD::FXOR nodes. | 
|  | static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR); | 
|  | // F[X]OR(0.0, x) -> x | 
|  | // F[X]OR(x, 0.0) -> x | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) | 
|  | if (C->getValueAPF().isPosZero()) | 
|  | return N->getOperand(1); | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) | 
|  | if (C->getValueAPF().isPosZero()) | 
|  | return N->getOperand(0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes. | 
|  | static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | // FAND(0.0, x) -> 0.0 | 
|  | // FAND(x, 0.0) -> 0.0 | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) | 
|  | if (C->getValueAPF().isPosZero()) | 
|  | return N->getOperand(0); | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) | 
|  | if (C->getValueAPF().isPosZero()) | 
|  | return N->getOperand(1); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformBTCombine(SDNode *N, | 
|  | SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI) { | 
|  | // BT ignores high bits in the bit index operand. | 
|  | SDValue Op1 = N->getOperand(1); | 
|  | if (Op1.hasOneUse()) { | 
|  | unsigned BitWidth = Op1.getValueSizeInBits(); | 
|  | APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth)); | 
|  | APInt KnownZero, KnownOne; | 
|  | TargetLowering::TargetLoweringOpt TLO(DAG); | 
|  | TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) || | 
|  | TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO)) | 
|  | DCI.CommitTargetLoweringOpt(TLO); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | SDValue Op = N->getOperand(0); | 
|  | if (Op.getOpcode() == ISD::BIT_CONVERT) | 
|  | Op = Op.getOperand(0); | 
|  | MVT VT = N->getValueType(0), OpVT = Op.getValueType(); | 
|  | if (Op.getOpcode() == X86ISD::VZEXT_LOAD && | 
|  | VT.getVectorElementType().getSizeInBits() == | 
|  | OpVT.getVectorElementType().getSizeInBits()) { | 
|  | return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // On X86 and X86-64, atomic operations are lowered to locked instructions. | 
|  | // Locked instructions, in turn, have implicit fence semantics (all memory | 
|  | // operations are flushed before issuing the locked instruction, and the | 
|  | // are not buffered), so we can fold away the common pattern of | 
|  | // fence-atomic-fence. | 
|  | static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) { | 
|  | SDValue atomic = N->getOperand(0); | 
|  | switch (atomic.getOpcode()) { | 
|  | case ISD::ATOMIC_CMP_SWAP: | 
|  | case ISD::ATOMIC_SWAP: | 
|  | case ISD::ATOMIC_LOAD_ADD: | 
|  | case ISD::ATOMIC_LOAD_SUB: | 
|  | case ISD::ATOMIC_LOAD_AND: | 
|  | case ISD::ATOMIC_LOAD_OR: | 
|  | case ISD::ATOMIC_LOAD_XOR: | 
|  | case ISD::ATOMIC_LOAD_NAND: | 
|  | case ISD::ATOMIC_LOAD_MIN: | 
|  | case ISD::ATOMIC_LOAD_MAX: | 
|  | case ISD::ATOMIC_LOAD_UMIN: | 
|  | case ISD::ATOMIC_LOAD_UMAX: | 
|  | break; | 
|  | default: | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue fence = atomic.getOperand(0); | 
|  | if (fence.getOpcode() != ISD::MEMBARRIER) | 
|  | return SDValue(); | 
|  |  | 
|  | switch (atomic.getOpcode()) { | 
|  | case ISD::ATOMIC_CMP_SWAP: | 
|  | return DAG.UpdateNodeOperands(atomic, fence.getOperand(0), | 
|  | atomic.getOperand(1), atomic.getOperand(2), | 
|  | atomic.getOperand(3)); | 
|  | case ISD::ATOMIC_SWAP: | 
|  | case ISD::ATOMIC_LOAD_ADD: | 
|  | case ISD::ATOMIC_LOAD_SUB: | 
|  | case ISD::ATOMIC_LOAD_AND: | 
|  | case ISD::ATOMIC_LOAD_OR: | 
|  | case ISD::ATOMIC_LOAD_XOR: | 
|  | case ISD::ATOMIC_LOAD_NAND: | 
|  | case ISD::ATOMIC_LOAD_MIN: | 
|  | case ISD::ATOMIC_LOAD_MAX: | 
|  | case ISD::ATOMIC_LOAD_UMIN: | 
|  | case ISD::ATOMIC_LOAD_UMAX: | 
|  | return DAG.UpdateNodeOperands(atomic, fence.getOperand(0), | 
|  | atomic.getOperand(1), atomic.getOperand(2)); | 
|  | default: | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::PerformDAGCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this); | 
|  | case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget); | 
|  | case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI); | 
|  | case ISD::MUL:            return PerformMulCombine(N, DAG, DCI); | 
|  | case ISD::SHL: | 
|  | case ISD::SRA: | 
|  | case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget); | 
|  | case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget); | 
|  | case X86ISD::FXOR: | 
|  | case X86ISD::FOR:         return PerformFORCombine(N, DAG); | 
|  | case X86ISD::FAND:        return PerformFANDCombine(N, DAG); | 
|  | case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI); | 
|  | case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG); | 
|  | case ISD::MEMBARRIER:     return PerformMEMBARRIERCombine(N, DAG); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           X86 Inline Assembly Support | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static bool LowerToBSwap(CallInst *CI) { | 
|  | // FIXME: this should verify that we are targetting a 486 or better.  If not, | 
|  | // we will turn this bswap into something that will be lowered to logical ops | 
|  | // instead of emitting the bswap asm.  For now, we don't support 486 or lower | 
|  | // so don't worry about this. | 
|  |  | 
|  | // Verify this is a simple bswap. | 
|  | if (CI->getNumOperands() != 2 || | 
|  | CI->getType() != CI->getOperand(1)->getType() || | 
|  | !CI->getType()->isInteger()) | 
|  | return false; | 
|  |  | 
|  | const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType()); | 
|  | if (!Ty || Ty->getBitWidth() % 16 != 0) | 
|  | return false; | 
|  |  | 
|  | // Okay, we can do this xform, do so now. | 
|  | const Type *Tys[] = { Ty }; | 
|  | Module *M = CI->getParent()->getParent()->getParent(); | 
|  | Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1); | 
|  |  | 
|  | Value *Op = CI->getOperand(1); | 
|  | Op = CallInst::Create(Int, Op, CI->getName(), CI); | 
|  |  | 
|  | CI->replaceAllUsesWith(Op); | 
|  | CI->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const { | 
|  | InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue()); | 
|  | std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints(); | 
|  |  | 
|  | std::string AsmStr = IA->getAsmString(); | 
|  |  | 
|  | // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a" | 
|  | std::vector<std::string> AsmPieces; | 
|  | SplitString(AsmStr, AsmPieces, "\n");  // ; as separator? | 
|  |  | 
|  | switch (AsmPieces.size()) { | 
|  | default: return false; | 
|  | case 1: | 
|  | AsmStr = AsmPieces[0]; | 
|  | AsmPieces.clear(); | 
|  | SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace. | 
|  |  | 
|  | // bswap $0 | 
|  | if (AsmPieces.size() == 2 && | 
|  | (AsmPieces[0] == "bswap" || | 
|  | AsmPieces[0] == "bswapq" || | 
|  | AsmPieces[0] == "bswapl") && | 
|  | (AsmPieces[1] == "$0" || | 
|  | AsmPieces[1] == "${0:q}")) { | 
|  | // No need to check constraints, nothing other than the equivalent of | 
|  | // "=r,0" would be valid here. | 
|  | return LowerToBSwap(CI); | 
|  | } | 
|  | // rorw $$8, ${0:w}  -->  llvm.bswap.i16 | 
|  | if (CI->getType() == Type::Int16Ty && | 
|  | AsmPieces.size() == 3 && | 
|  | AsmPieces[0] == "rorw" && | 
|  | AsmPieces[1] == "$$8," && | 
|  | AsmPieces[2] == "${0:w}" && | 
|  | IA->getConstraintString() == "=r,0,~{dirflag},~{fpsr},~{flags},~{cc}") { | 
|  | return LowerToBSwap(CI); | 
|  | } | 
|  | break; | 
|  | case 3: | 
|  | if (CI->getType() == Type::Int64Ty && Constraints.size() >= 2 && | 
|  | Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" && | 
|  | Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") { | 
|  | // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64 | 
|  | std::vector<std::string> Words; | 
|  | SplitString(AsmPieces[0], Words, " \t"); | 
|  | if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") { | 
|  | Words.clear(); | 
|  | SplitString(AsmPieces[1], Words, " \t"); | 
|  | if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") { | 
|  | Words.clear(); | 
|  | SplitString(AsmPieces[2], Words, " \t,"); | 
|  | if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" && | 
|  | Words[2] == "%edx") { | 
|  | return LowerToBSwap(CI); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /// getConstraintType - Given a constraint letter, return the type of | 
|  | /// constraint it is for this target. | 
|  | X86TargetLowering::ConstraintType | 
|  | X86TargetLowering::getConstraintType(const std::string &Constraint) const { | 
|  | if (Constraint.size() == 1) { | 
|  | switch (Constraint[0]) { | 
|  | case 'A': | 
|  | return C_Register; | 
|  | case 'f': | 
|  | case 'r': | 
|  | case 'R': | 
|  | case 'l': | 
|  | case 'q': | 
|  | case 'Q': | 
|  | case 'x': | 
|  | case 'y': | 
|  | case 'Y': | 
|  | return C_RegisterClass; | 
|  | case 'e': | 
|  | case 'Z': | 
|  | return C_Other; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | return TargetLowering::getConstraintType(Constraint); | 
|  | } | 
|  |  | 
|  | /// LowerXConstraint - try to replace an X constraint, which matches anything, | 
|  | /// with another that has more specific requirements based on the type of the | 
|  | /// corresponding operand. | 
|  | const char *X86TargetLowering:: | 
|  | LowerXConstraint(MVT ConstraintVT) const { | 
|  | // FP X constraints get lowered to SSE1/2 registers if available, otherwise | 
|  | // 'f' like normal targets. | 
|  | if (ConstraintVT.isFloatingPoint()) { | 
|  | if (Subtarget->hasSSE2()) | 
|  | return "Y"; | 
|  | if (Subtarget->hasSSE1()) | 
|  | return "x"; | 
|  | } | 
|  |  | 
|  | return TargetLowering::LowerXConstraint(ConstraintVT); | 
|  | } | 
|  |  | 
|  | /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops | 
|  | /// vector.  If it is invalid, don't add anything to Ops. | 
|  | void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op, | 
|  | char Constraint, | 
|  | bool hasMemory, | 
|  | std::vector<SDValue>&Ops, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Result(0, 0); | 
|  |  | 
|  | switch (Constraint) { | 
|  | default: break; | 
|  | case 'I': | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if (C->getZExtValue() <= 31) { | 
|  | Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'J': | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if (C->getZExtValue() <= 63) { | 
|  | Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'K': | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if ((int8_t)C->getSExtValue() == C->getSExtValue()) { | 
|  | Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'N': | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if (C->getZExtValue() <= 255) { | 
|  | Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'e': { | 
|  | // 32-bit signed value | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | const ConstantInt *CI = C->getConstantIntValue(); | 
|  | if (CI->isValueValidForType(Type::Int32Ty, C->getSExtValue())) { | 
|  | // Widen to 64 bits here to get it sign extended. | 
|  | Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64); | 
|  | break; | 
|  | } | 
|  | // FIXME gcc accepts some relocatable values here too, but only in certain | 
|  | // memory models; it's complicated. | 
|  | } | 
|  | return; | 
|  | } | 
|  | case 'Z': { | 
|  | // 32-bit unsigned value | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | const ConstantInt *CI = C->getConstantIntValue(); | 
|  | if (CI->isValueValidForType(Type::Int32Ty, C->getZExtValue())) { | 
|  | Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | // FIXME gcc accepts some relocatable values here too, but only in certain | 
|  | // memory models; it's complicated. | 
|  | return; | 
|  | } | 
|  | case 'i': { | 
|  | // Literal immediates are always ok. | 
|  | if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) { | 
|  | // Widen to 64 bits here to get it sign extended. | 
|  | Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we are in non-pic codegen mode, we allow the address of a global (with | 
|  | // an optional displacement) to be used with 'i'. | 
|  | GlobalAddressSDNode *GA = 0; | 
|  | int64_t Offset = 0; | 
|  |  | 
|  | // Match either (GA), (GA+C), (GA+C1+C2), etc. | 
|  | while (1) { | 
|  | if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) { | 
|  | Offset += GA->getOffset(); | 
|  | break; | 
|  | } else if (Op.getOpcode() == ISD::ADD) { | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | Offset += C->getZExtValue(); | 
|  | Op = Op.getOperand(0); | 
|  | continue; | 
|  | } | 
|  | } else if (Op.getOpcode() == ISD::SUB) { | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | Offset += -C->getZExtValue(); | 
|  | Op = Op.getOperand(0); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, this isn't something we can handle, reject it. | 
|  | return; | 
|  | } | 
|  |  | 
|  | GlobalValue *GV = GA->getGlobal(); | 
|  | // If we require an extra load to get this address, as in PIC mode, we | 
|  | // can't accept it. | 
|  | if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV, | 
|  | getTargetMachine()))) | 
|  | return; | 
|  |  | 
|  | if (hasMemory) | 
|  | Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG); | 
|  | else | 
|  | Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset); | 
|  | Result = Op; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Result.getNode()) { | 
|  | Ops.push_back(Result); | 
|  | return; | 
|  | } | 
|  | return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory, | 
|  | Ops, DAG); | 
|  | } | 
|  |  | 
|  | std::vector<unsigned> X86TargetLowering:: | 
|  | getRegClassForInlineAsmConstraint(const std::string &Constraint, | 
|  | MVT VT) const { | 
|  | if (Constraint.size() == 1) { | 
|  | // FIXME: not handling fp-stack yet! | 
|  | switch (Constraint[0]) {      // GCC X86 Constraint Letters | 
|  | default: break;  // Unknown constraint letter | 
|  | case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode. | 
|  | if (Subtarget->is64Bit()) { | 
|  | if (VT == MVT::i32) | 
|  | return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, | 
|  | X86::ESI, X86::EDI, X86::R8D, X86::R9D, | 
|  | X86::R10D,X86::R11D,X86::R12D, | 
|  | X86::R13D,X86::R14D,X86::R15D, | 
|  | X86::EBP, X86::ESP, 0); | 
|  | else if (VT == MVT::i16) | 
|  | return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX, | 
|  | X86::SI,  X86::DI,  X86::R8W,X86::R9W, | 
|  | X86::R10W,X86::R11W,X86::R12W, | 
|  | X86::R13W,X86::R14W,X86::R15W, | 
|  | X86::BP,  X86::SP, 0); | 
|  | else if (VT == MVT::i8) | 
|  | return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL, | 
|  | X86::SIL, X86::DIL, X86::R8B,X86::R9B, | 
|  | X86::R10B,X86::R11B,X86::R12B, | 
|  | X86::R13B,X86::R14B,X86::R15B, | 
|  | X86::BPL, X86::SPL, 0); | 
|  |  | 
|  | else if (VT == MVT::i64) | 
|  | return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, | 
|  | X86::RSI, X86::RDI, X86::R8,  X86::R9, | 
|  | X86::R10, X86::R11, X86::R12, | 
|  | X86::R13, X86::R14, X86::R15, | 
|  | X86::RBP, X86::RSP, 0); | 
|  |  | 
|  | break; | 
|  | } | 
|  | // 32-bit fallthrough | 
|  | case 'Q':   // Q_REGS | 
|  | if (VT == MVT::i32) | 
|  | return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0); | 
|  | else if (VT == MVT::i16) | 
|  | return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0); | 
|  | else if (VT == MVT::i8) | 
|  | return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0); | 
|  | else if (VT == MVT::i64) | 
|  | return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return std::vector<unsigned>(); | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass*> | 
|  | X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, | 
|  | MVT VT) const { | 
|  | // First, see if this is a constraint that directly corresponds to an LLVM | 
|  | // register class. | 
|  | if (Constraint.size() == 1) { | 
|  | // GCC Constraint Letters | 
|  | switch (Constraint[0]) { | 
|  | default: break; | 
|  | case 'r':   // GENERAL_REGS | 
|  | case 'R':   // LEGACY_REGS | 
|  | case 'l':   // INDEX_REGS | 
|  | if (VT == MVT::i8) | 
|  | return std::make_pair(0U, X86::GR8RegisterClass); | 
|  | if (VT == MVT::i16) | 
|  | return std::make_pair(0U, X86::GR16RegisterClass); | 
|  | if (VT == MVT::i32 || !Subtarget->is64Bit()) | 
|  | return std::make_pair(0U, X86::GR32RegisterClass); | 
|  | return std::make_pair(0U, X86::GR64RegisterClass); | 
|  | case 'f':  // FP Stack registers. | 
|  | // If SSE is enabled for this VT, use f80 to ensure the isel moves the | 
|  | // value to the correct fpstack register class. | 
|  | if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT)) | 
|  | return std::make_pair(0U, X86::RFP32RegisterClass); | 
|  | if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT)) | 
|  | return std::make_pair(0U, X86::RFP64RegisterClass); | 
|  | return std::make_pair(0U, X86::RFP80RegisterClass); | 
|  | case 'y':   // MMX_REGS if MMX allowed. | 
|  | if (!Subtarget->hasMMX()) break; | 
|  | return std::make_pair(0U, X86::VR64RegisterClass); | 
|  | case 'Y':   // SSE_REGS if SSE2 allowed | 
|  | if (!Subtarget->hasSSE2()) break; | 
|  | // FALL THROUGH. | 
|  | case 'x':   // SSE_REGS if SSE1 allowed | 
|  | if (!Subtarget->hasSSE1()) break; | 
|  |  | 
|  | switch (VT.getSimpleVT()) { | 
|  | default: break; | 
|  | // Scalar SSE types. | 
|  | case MVT::f32: | 
|  | case MVT::i32: | 
|  | return std::make_pair(0U, X86::FR32RegisterClass); | 
|  | case MVT::f64: | 
|  | case MVT::i64: | 
|  | return std::make_pair(0U, X86::FR64RegisterClass); | 
|  | // Vector types. | 
|  | case MVT::v16i8: | 
|  | case MVT::v8i16: | 
|  | case MVT::v4i32: | 
|  | case MVT::v2i64: | 
|  | case MVT::v4f32: | 
|  | case MVT::v2f64: | 
|  | return std::make_pair(0U, X86::VR128RegisterClass); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Use the default implementation in TargetLowering to convert the register | 
|  | // constraint into a member of a register class. | 
|  | std::pair<unsigned, const TargetRegisterClass*> Res; | 
|  | Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); | 
|  |  | 
|  | // Not found as a standard register? | 
|  | if (Res.second == 0) { | 
|  | // GCC calls "st(0)" just plain "st". | 
|  | if (StringsEqualNoCase("{st}", Constraint)) { | 
|  | Res.first = X86::ST0; | 
|  | Res.second = X86::RFP80RegisterClass; | 
|  | } | 
|  | // 'A' means EAX + EDX. | 
|  | if (Constraint == "A") { | 
|  | Res.first = X86::EAX; | 
|  | Res.second = X86::GRADRegisterClass; | 
|  | } | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // Otherwise, check to see if this is a register class of the wrong value | 
|  | // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to | 
|  | // turn into {ax},{dx}. | 
|  | if (Res.second->hasType(VT)) | 
|  | return Res;   // Correct type already, nothing to do. | 
|  |  | 
|  | // All of the single-register GCC register classes map their values onto | 
|  | // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we | 
|  | // really want an 8-bit or 32-bit register, map to the appropriate register | 
|  | // class and return the appropriate register. | 
|  | if (Res.second == X86::GR16RegisterClass) { | 
|  | if (VT == MVT::i8) { | 
|  | unsigned DestReg = 0; | 
|  | switch (Res.first) { | 
|  | default: break; | 
|  | case X86::AX: DestReg = X86::AL; break; | 
|  | case X86::DX: DestReg = X86::DL; break; | 
|  | case X86::CX: DestReg = X86::CL; break; | 
|  | case X86::BX: DestReg = X86::BL; break; | 
|  | } | 
|  | if (DestReg) { | 
|  | Res.first = DestReg; | 
|  | Res.second = X86::GR8RegisterClass; | 
|  | } | 
|  | } else if (VT == MVT::i32) { | 
|  | unsigned DestReg = 0; | 
|  | switch (Res.first) { | 
|  | default: break; | 
|  | case X86::AX: DestReg = X86::EAX; break; | 
|  | case X86::DX: DestReg = X86::EDX; break; | 
|  | case X86::CX: DestReg = X86::ECX; break; | 
|  | case X86::BX: DestReg = X86::EBX; break; | 
|  | case X86::SI: DestReg = X86::ESI; break; | 
|  | case X86::DI: DestReg = X86::EDI; break; | 
|  | case X86::BP: DestReg = X86::EBP; break; | 
|  | case X86::SP: DestReg = X86::ESP; break; | 
|  | } | 
|  | if (DestReg) { | 
|  | Res.first = DestReg; | 
|  | Res.second = X86::GR32RegisterClass; | 
|  | } | 
|  | } else if (VT == MVT::i64) { | 
|  | unsigned DestReg = 0; | 
|  | switch (Res.first) { | 
|  | default: break; | 
|  | case X86::AX: DestReg = X86::RAX; break; | 
|  | case X86::DX: DestReg = X86::RDX; break; | 
|  | case X86::CX: DestReg = X86::RCX; break; | 
|  | case X86::BX: DestReg = X86::RBX; break; | 
|  | case X86::SI: DestReg = X86::RSI; break; | 
|  | case X86::DI: DestReg = X86::RDI; break; | 
|  | case X86::BP: DestReg = X86::RBP; break; | 
|  | case X86::SP: DestReg = X86::RSP; break; | 
|  | } | 
|  | if (DestReg) { | 
|  | Res.first = DestReg; | 
|  | Res.second = X86::GR64RegisterClass; | 
|  | } | 
|  | } | 
|  | } else if (Res.second == X86::FR32RegisterClass || | 
|  | Res.second == X86::FR64RegisterClass || | 
|  | Res.second == X86::VR128RegisterClass) { | 
|  | // Handle references to XMM physical registers that got mapped into the | 
|  | // wrong class.  This can happen with constraints like {xmm0} where the | 
|  | // target independent register mapper will just pick the first match it can | 
|  | // find, ignoring the required type. | 
|  | if (VT == MVT::f32) | 
|  | Res.second = X86::FR32RegisterClass; | 
|  | else if (VT == MVT::f64) | 
|  | Res.second = X86::FR64RegisterClass; | 
|  | else if (X86::VR128RegisterClass->hasType(VT)) | 
|  | Res.second = X86::VR128RegisterClass; | 
|  | } | 
|  |  | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           X86 Widen vector type | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// getWidenVectorType: given a vector type, returns the type to widen | 
|  | /// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself. | 
|  | /// If there is no vector type that we want to widen to, returns MVT::Other | 
|  | /// When and where to widen is target dependent based on the cost of | 
|  | /// scalarizing vs using the wider vector type. | 
|  |  | 
|  | MVT X86TargetLowering::getWidenVectorType(MVT VT) const { | 
|  | assert(VT.isVector()); | 
|  | if (isTypeLegal(VT)) | 
|  | return VT; | 
|  |  | 
|  | // TODO: In computeRegisterProperty, we can compute the list of legal vector | 
|  | //       type based on element type.  This would speed up our search (though | 
|  | //       it may not be worth it since the size of the list is relatively | 
|  | //       small). | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | unsigned NElts = VT.getVectorNumElements(); | 
|  |  | 
|  | // On X86, it make sense to widen any vector wider than 1 | 
|  | if (NElts <= 1) | 
|  | return MVT::Other; | 
|  |  | 
|  | for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE; | 
|  | nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { | 
|  | MVT SVT = (MVT::SimpleValueType)nVT; | 
|  |  | 
|  | if (isTypeLegal(SVT) && | 
|  | SVT.getVectorElementType() == EltVT && | 
|  | SVT.getVectorNumElements() > NElts) | 
|  | return SVT; | 
|  | } | 
|  | return MVT::Other; | 
|  | } |