|  | //===- llvm/Analysis/MaximumSpanningTree.h - Interface ----------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This module privides means for calculating a maximum spanning tree for a | 
|  | // given set of weighted edges. The type parameter T is the type of a node. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H | 
|  | #define LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H | 
|  |  | 
|  | #include "llvm/BasicBlock.h" | 
|  | #include "llvm/ADT/EquivalenceClasses.h" | 
|  | #include <vector> | 
|  | #include <algorithm> | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | /// MaximumSpanningTree - A MST implementation. | 
|  | /// The type parameter T determines the type of the nodes of the graph. | 
|  | template <typename T> | 
|  | class MaximumSpanningTree { | 
|  |  | 
|  | // A comparing class for comparing weighted edges. | 
|  | template <typename CT> | 
|  | struct EdgeWeightCompare { | 
|  | bool operator()(typename MaximumSpanningTree<CT>::EdgeWeight X, | 
|  | typename MaximumSpanningTree<CT>::EdgeWeight Y) const { | 
|  | if (X.second > Y.second) return true; | 
|  | if (X.second < Y.second) return false; | 
|  | if (const BasicBlock *BBX = dyn_cast<BasicBlock>(X.first.first)) { | 
|  | if (const BasicBlock *BBY = dyn_cast<BasicBlock>(Y.first.first)) { | 
|  | if (BBX->size() > BBY->size()) return true; | 
|  | if (BBX->size() < BBY->size()) return false; | 
|  | } | 
|  | } | 
|  | if (const BasicBlock *BBX = dyn_cast<BasicBlock>(X.first.second)) { | 
|  | if (const BasicBlock *BBY = dyn_cast<BasicBlock>(Y.first.second)) { | 
|  | if (BBX->size() > BBY->size()) return true; | 
|  | if (BBX->size() < BBY->size()) return false; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | public: | 
|  | typedef std::pair<const T*, const T*> Edge; | 
|  | typedef std::pair<Edge, double> EdgeWeight; | 
|  | typedef std::vector<EdgeWeight> EdgeWeights; | 
|  | protected: | 
|  | typedef std::vector<Edge> MaxSpanTree; | 
|  |  | 
|  | MaxSpanTree MST; | 
|  |  | 
|  | public: | 
|  | static char ID; // Class identification, replacement for typeinfo | 
|  |  | 
|  | /// MaximumSpanningTree() - Takes a vector of weighted edges and returns a | 
|  | /// spanning tree. | 
|  | MaximumSpanningTree(EdgeWeights &EdgeVector) { | 
|  |  | 
|  | std::stable_sort(EdgeVector.begin(), EdgeVector.end(), EdgeWeightCompare<T>()); | 
|  |  | 
|  | // Create spanning tree, Forest contains a special data structure | 
|  | // that makes checking if two nodes are already in a common (sub-)tree | 
|  | // fast and cheap. | 
|  | EquivalenceClasses<const T*> Forest; | 
|  | for (typename EdgeWeights::iterator EWi = EdgeVector.begin(), | 
|  | EWe = EdgeVector.end(); EWi != EWe; ++EWi) { | 
|  | Edge e = (*EWi).first; | 
|  |  | 
|  | Forest.insert(e.first); | 
|  | Forest.insert(e.second); | 
|  | } | 
|  |  | 
|  | // Iterate over the sorted edges, biggest first. | 
|  | for (typename EdgeWeights::iterator EWi = EdgeVector.begin(), | 
|  | EWe = EdgeVector.end(); EWi != EWe; ++EWi) { | 
|  | Edge e = (*EWi).first; | 
|  |  | 
|  | if (Forest.findLeader(e.first) != Forest.findLeader(e.second)) { | 
|  | Forest.unionSets(e.first, e.second); | 
|  | // So we know now that the edge is not already in a subtree, so we push | 
|  | // the edge to the MST. | 
|  | MST.push_back(e); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | typename MaxSpanTree::iterator begin() { | 
|  | return MST.begin(); | 
|  | } | 
|  |  | 
|  | typename MaxSpanTree::iterator end() { | 
|  | return MST.end(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // End llvm namespace | 
|  |  | 
|  | #endif |