|  | //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // These classes wrap the information about a call or function | 
|  | // definition used to handle ABI compliancy. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "TargetInfo.h" | 
|  | #include "ABIInfo.h" | 
|  | #include "CGCXXABI.h" | 
|  | #include "CGValue.h" | 
|  | #include "CodeGenFunction.h" | 
|  | #include "clang/AST/RecordLayout.h" | 
|  | #include "clang/CodeGen/CGFunctionInfo.h" | 
|  | #include "clang/CodeGen/SwiftCallingConv.h" | 
|  | #include "clang/Frontend/CodeGenOptions.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm>    // std::sort | 
|  |  | 
|  | using namespace clang; | 
|  | using namespace CodeGen; | 
|  |  | 
|  | static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, | 
|  | llvm::Value *Array, | 
|  | llvm::Value *Value, | 
|  | unsigned FirstIndex, | 
|  | unsigned LastIndex) { | 
|  | // Alternatively, we could emit this as a loop in the source. | 
|  | for (unsigned I = FirstIndex; I <= LastIndex; ++I) { | 
|  | llvm::Value *Cell = | 
|  | Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); | 
|  | Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool isAggregateTypeForABI(QualType T) { | 
|  | return !CodeGenFunction::hasScalarEvaluationKind(T) || | 
|  | T->isMemberFunctionPointerType(); | 
|  | } | 
|  |  | 
|  | ABIArgInfo | 
|  | ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, | 
|  | llvm::Type *Padding) const { | 
|  | return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), | 
|  | ByRef, Realign, Padding); | 
|  | } | 
|  |  | 
|  | ABIArgInfo | 
|  | ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { | 
|  | return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), | 
|  | /*ByRef*/ false, Realign); | 
|  | } | 
|  |  | 
|  | Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const { | 
|  | return Address::invalid(); | 
|  | } | 
|  |  | 
|  | ABIInfo::~ABIInfo() {} | 
|  |  | 
|  | /// Does the given lowering require more than the given number of | 
|  | /// registers when expanded? | 
|  | /// | 
|  | /// This is intended to be the basis of a reasonable basic implementation | 
|  | /// of should{Pass,Return}IndirectlyForSwift. | 
|  | /// | 
|  | /// For most targets, a limit of four total registers is reasonable; this | 
|  | /// limits the amount of code required in order to move around the value | 
|  | /// in case it wasn't produced immediately prior to the call by the caller | 
|  | /// (or wasn't produced in exactly the right registers) or isn't used | 
|  | /// immediately within the callee.  But some targets may need to further | 
|  | /// limit the register count due to an inability to support that many | 
|  | /// return registers. | 
|  | static bool occupiesMoreThan(CodeGenTypes &cgt, | 
|  | ArrayRef<llvm::Type*> scalarTypes, | 
|  | unsigned maxAllRegisters) { | 
|  | unsigned intCount = 0, fpCount = 0; | 
|  | for (llvm::Type *type : scalarTypes) { | 
|  | if (type->isPointerTy()) { | 
|  | intCount++; | 
|  | } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { | 
|  | auto ptrWidth = cgt.getTarget().getPointerWidth(0); | 
|  | intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; | 
|  | } else { | 
|  | assert(type->isVectorTy() || type->isFloatingPointTy()); | 
|  | fpCount++; | 
|  | } | 
|  | } | 
|  |  | 
|  | return (intCount + fpCount > maxAllRegisters); | 
|  | } | 
|  |  | 
|  | bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, | 
|  | llvm::Type *eltTy, | 
|  | unsigned numElts) const { | 
|  | // The default implementation of this assumes that the target guarantees | 
|  | // 128-bit SIMD support but nothing more. | 
|  | return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); | 
|  | } | 
|  |  | 
|  | static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, | 
|  | CGCXXABI &CXXABI) { | 
|  | const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); | 
|  | if (!RD) | 
|  | return CGCXXABI::RAA_Default; | 
|  | return CXXABI.getRecordArgABI(RD); | 
|  | } | 
|  |  | 
|  | static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, | 
|  | CGCXXABI &CXXABI) { | 
|  | const RecordType *RT = T->getAs<RecordType>(); | 
|  | if (!RT) | 
|  | return CGCXXABI::RAA_Default; | 
|  | return getRecordArgABI(RT, CXXABI); | 
|  | } | 
|  |  | 
|  | /// Pass transparent unions as if they were the type of the first element. Sema | 
|  | /// should ensure that all elements of the union have the same "machine type". | 
|  | static QualType useFirstFieldIfTransparentUnion(QualType Ty) { | 
|  | if (const RecordType *UT = Ty->getAsUnionType()) { | 
|  | const RecordDecl *UD = UT->getDecl(); | 
|  | if (UD->hasAttr<TransparentUnionAttr>()) { | 
|  | assert(!UD->field_empty() && "sema created an empty transparent union"); | 
|  | return UD->field_begin()->getType(); | 
|  | } | 
|  | } | 
|  | return Ty; | 
|  | } | 
|  |  | 
|  | CGCXXABI &ABIInfo::getCXXABI() const { | 
|  | return CGT.getCXXABI(); | 
|  | } | 
|  |  | 
|  | ASTContext &ABIInfo::getContext() const { | 
|  | return CGT.getContext(); | 
|  | } | 
|  |  | 
|  | llvm::LLVMContext &ABIInfo::getVMContext() const { | 
|  | return CGT.getLLVMContext(); | 
|  | } | 
|  |  | 
|  | const llvm::DataLayout &ABIInfo::getDataLayout() const { | 
|  | return CGT.getDataLayout(); | 
|  | } | 
|  |  | 
|  | const TargetInfo &ABIInfo::getTarget() const { | 
|  | return CGT.getTarget(); | 
|  | } | 
|  |  | 
|  | bool ABIInfo:: isAndroid() const { return getTarget().getTriple().isAndroid(); } | 
|  |  | 
|  | bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, | 
|  | uint64_t Members) const { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD void ABIArgInfo::dump() const { | 
|  | raw_ostream &OS = llvm::errs(); | 
|  | OS << "(ABIArgInfo Kind="; | 
|  | switch (TheKind) { | 
|  | case Direct: | 
|  | OS << "Direct Type="; | 
|  | if (llvm::Type *Ty = getCoerceToType()) | 
|  | Ty->print(OS); | 
|  | else | 
|  | OS << "null"; | 
|  | break; | 
|  | case Extend: | 
|  | OS << "Extend"; | 
|  | break; | 
|  | case Ignore: | 
|  | OS << "Ignore"; | 
|  | break; | 
|  | case InAlloca: | 
|  | OS << "InAlloca Offset=" << getInAllocaFieldIndex(); | 
|  | break; | 
|  | case Indirect: | 
|  | OS << "Indirect Align=" << getIndirectAlign().getQuantity() | 
|  | << " ByVal=" << getIndirectByVal() | 
|  | << " Realign=" << getIndirectRealign(); | 
|  | break; | 
|  | case Expand: | 
|  | OS << "Expand"; | 
|  | break; | 
|  | case CoerceAndExpand: | 
|  | OS << "CoerceAndExpand Type="; | 
|  | getCoerceAndExpandType()->print(OS); | 
|  | break; | 
|  | } | 
|  | OS << ")\n"; | 
|  | } | 
|  |  | 
|  | // Dynamically round a pointer up to a multiple of the given alignment. | 
|  | static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, | 
|  | llvm::Value *Ptr, | 
|  | CharUnits Align) { | 
|  | llvm::Value *PtrAsInt = Ptr; | 
|  | // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; | 
|  | PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); | 
|  | PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, | 
|  | llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); | 
|  | PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, | 
|  | llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); | 
|  | PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, | 
|  | Ptr->getType(), | 
|  | Ptr->getName() + ".aligned"); | 
|  | return PtrAsInt; | 
|  | } | 
|  |  | 
|  | /// Emit va_arg for a platform using the common void* representation, | 
|  | /// where arguments are simply emitted in an array of slots on the stack. | 
|  | /// | 
|  | /// This version implements the core direct-value passing rules. | 
|  | /// | 
|  | /// \param SlotSize - The size and alignment of a stack slot. | 
|  | ///   Each argument will be allocated to a multiple of this number of | 
|  | ///   slots, and all the slots will be aligned to this value. | 
|  | /// \param AllowHigherAlign - The slot alignment is not a cap; | 
|  | ///   an argument type with an alignment greater than the slot size | 
|  | ///   will be emitted on a higher-alignment address, potentially | 
|  | ///   leaving one or more empty slots behind as padding.  If this | 
|  | ///   is false, the returned address might be less-aligned than | 
|  | ///   DirectAlign. | 
|  | static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, | 
|  | Address VAListAddr, | 
|  | llvm::Type *DirectTy, | 
|  | CharUnits DirectSize, | 
|  | CharUnits DirectAlign, | 
|  | CharUnits SlotSize, | 
|  | bool AllowHigherAlign) { | 
|  | // Cast the element type to i8* if necessary.  Some platforms define | 
|  | // va_list as a struct containing an i8* instead of just an i8*. | 
|  | if (VAListAddr.getElementType() != CGF.Int8PtrTy) | 
|  | VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); | 
|  |  | 
|  | llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); | 
|  |  | 
|  | // If the CC aligns values higher than the slot size, do so if needed. | 
|  | Address Addr = Address::invalid(); | 
|  | if (AllowHigherAlign && DirectAlign > SlotSize) { | 
|  | Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), | 
|  | DirectAlign); | 
|  | } else { | 
|  | Addr = Address(Ptr, SlotSize); | 
|  | } | 
|  |  | 
|  | // Advance the pointer past the argument, then store that back. | 
|  | CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); | 
|  | llvm::Value *NextPtr = | 
|  | CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, | 
|  | "argp.next"); | 
|  | CGF.Builder.CreateStore(NextPtr, VAListAddr); | 
|  |  | 
|  | // If the argument is smaller than a slot, and this is a big-endian | 
|  | // target, the argument will be right-adjusted in its slot. | 
|  | if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian()) { | 
|  | Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); | 
|  | } | 
|  |  | 
|  | Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); | 
|  | return Addr; | 
|  | } | 
|  |  | 
|  | /// Emit va_arg for a platform using the common void* representation, | 
|  | /// where arguments are simply emitted in an array of slots on the stack. | 
|  | /// | 
|  | /// \param IsIndirect - Values of this type are passed indirectly. | 
|  | /// \param ValueInfo - The size and alignment of this type, generally | 
|  | ///   computed with getContext().getTypeInfoInChars(ValueTy). | 
|  | /// \param SlotSizeAndAlign - The size and alignment of a stack slot. | 
|  | ///   Each argument will be allocated to a multiple of this number of | 
|  | ///   slots, and all the slots will be aligned to this value. | 
|  | /// \param AllowHigherAlign - The slot alignment is not a cap; | 
|  | ///   an argument type with an alignment greater than the slot size | 
|  | ///   will be emitted on a higher-alignment address, potentially | 
|  | ///   leaving one or more empty slots behind as padding. | 
|  | static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType ValueTy, bool IsIndirect, | 
|  | std::pair<CharUnits, CharUnits> ValueInfo, | 
|  | CharUnits SlotSizeAndAlign, | 
|  | bool AllowHigherAlign) { | 
|  | // The size and alignment of the value that was passed directly. | 
|  | CharUnits DirectSize, DirectAlign; | 
|  | if (IsIndirect) { | 
|  | DirectSize = CGF.getPointerSize(); | 
|  | DirectAlign = CGF.getPointerAlign(); | 
|  | } else { | 
|  | DirectSize = ValueInfo.first; | 
|  | DirectAlign = ValueInfo.second; | 
|  | } | 
|  |  | 
|  | // Cast the address we've calculated to the right type. | 
|  | llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); | 
|  | if (IsIndirect) | 
|  | DirectTy = DirectTy->getPointerTo(0); | 
|  |  | 
|  | Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, | 
|  | DirectSize, DirectAlign, | 
|  | SlotSizeAndAlign, | 
|  | AllowHigherAlign); | 
|  |  | 
|  | if (IsIndirect) { | 
|  | Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); | 
|  | } | 
|  |  | 
|  | return Addr; | 
|  |  | 
|  | } | 
|  |  | 
|  | static Address emitMergePHI(CodeGenFunction &CGF, | 
|  | Address Addr1, llvm::BasicBlock *Block1, | 
|  | Address Addr2, llvm::BasicBlock *Block2, | 
|  | const llvm::Twine &Name = "") { | 
|  | assert(Addr1.getType() == Addr2.getType()); | 
|  | llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); | 
|  | PHI->addIncoming(Addr1.getPointer(), Block1); | 
|  | PHI->addIncoming(Addr2.getPointer(), Block2); | 
|  | CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); | 
|  | return Address(PHI, Align); | 
|  | } | 
|  |  | 
|  | TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } | 
|  |  | 
|  | // If someone can figure out a general rule for this, that would be great. | 
|  | // It's probably just doomed to be platform-dependent, though. | 
|  | unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { | 
|  | // Verified for: | 
|  | //   x86-64     FreeBSD, Linux, Darwin | 
|  | //   x86-32     FreeBSD, Linux, Darwin | 
|  | //   PowerPC    Linux, Darwin | 
|  | //   ARM        Darwin (*not* EABI) | 
|  | //   AArch64    Linux | 
|  | return 32; | 
|  | } | 
|  |  | 
|  | bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, | 
|  | const FunctionNoProtoType *fnType) const { | 
|  | // The following conventions are known to require this to be false: | 
|  | //   x86_stdcall | 
|  | //   MIPS | 
|  | // For everything else, we just prefer false unless we opt out. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void | 
|  | TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, | 
|  | llvm::SmallString<24> &Opt) const { | 
|  | // This assumes the user is passing a library name like "rt" instead of a | 
|  | // filename like "librt.a/so", and that they don't care whether it's static or | 
|  | // dynamic. | 
|  | Opt = "-l"; | 
|  | Opt += Lib; | 
|  | } | 
|  |  | 
|  | static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); | 
|  |  | 
|  | /// isEmptyField - Return true iff a the field is "empty", that is it | 
|  | /// is an unnamed bit-field or an (array of) empty record(s). | 
|  | static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, | 
|  | bool AllowArrays) { | 
|  | if (FD->isUnnamedBitfield()) | 
|  | return true; | 
|  |  | 
|  | QualType FT = FD->getType(); | 
|  |  | 
|  | // Constant arrays of empty records count as empty, strip them off. | 
|  | // Constant arrays of zero length always count as empty. | 
|  | if (AllowArrays) | 
|  | while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { | 
|  | if (AT->getSize() == 0) | 
|  | return true; | 
|  | FT = AT->getElementType(); | 
|  | } | 
|  |  | 
|  | const RecordType *RT = FT->getAs<RecordType>(); | 
|  | if (!RT) | 
|  | return false; | 
|  |  | 
|  | // C++ record fields are never empty, at least in the Itanium ABI. | 
|  | // | 
|  | // FIXME: We should use a predicate for whether this behavior is true in the | 
|  | // current ABI. | 
|  | if (isa<CXXRecordDecl>(RT->getDecl())) | 
|  | return false; | 
|  |  | 
|  | return isEmptyRecord(Context, FT, AllowArrays); | 
|  | } | 
|  |  | 
|  | /// isEmptyRecord - Return true iff a structure contains only empty | 
|  | /// fields. Note that a structure with a flexible array member is not | 
|  | /// considered empty. | 
|  | static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { | 
|  | const RecordType *RT = T->getAs<RecordType>(); | 
|  | if (!RT) | 
|  | return false; | 
|  | const RecordDecl *RD = RT->getDecl(); | 
|  | if (RD->hasFlexibleArrayMember()) | 
|  | return false; | 
|  |  | 
|  | // If this is a C++ record, check the bases first. | 
|  | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) | 
|  | for (const auto &I : CXXRD->bases()) | 
|  | if (!isEmptyRecord(Context, I.getType(), true)) | 
|  | return false; | 
|  |  | 
|  | for (const auto *I : RD->fields()) | 
|  | if (!isEmptyField(Context, I, AllowArrays)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isSingleElementStruct - Determine if a structure is a "single | 
|  | /// element struct", i.e. it has exactly one non-empty field or | 
|  | /// exactly one field which is itself a single element | 
|  | /// struct. Structures with flexible array members are never | 
|  | /// considered single element structs. | 
|  | /// | 
|  | /// \return The field declaration for the single non-empty field, if | 
|  | /// it exists. | 
|  | static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { | 
|  | const RecordType *RT = T->getAs<RecordType>(); | 
|  | if (!RT) | 
|  | return nullptr; | 
|  |  | 
|  | const RecordDecl *RD = RT->getDecl(); | 
|  | if (RD->hasFlexibleArrayMember()) | 
|  | return nullptr; | 
|  |  | 
|  | const Type *Found = nullptr; | 
|  |  | 
|  | // If this is a C++ record, check the bases first. | 
|  | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { | 
|  | for (const auto &I : CXXRD->bases()) { | 
|  | // Ignore empty records. | 
|  | if (isEmptyRecord(Context, I.getType(), true)) | 
|  | continue; | 
|  |  | 
|  | // If we already found an element then this isn't a single-element struct. | 
|  | if (Found) | 
|  | return nullptr; | 
|  |  | 
|  | // If this is non-empty and not a single element struct, the composite | 
|  | // cannot be a single element struct. | 
|  | Found = isSingleElementStruct(I.getType(), Context); | 
|  | if (!Found) | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for single element. | 
|  | for (const auto *FD : RD->fields()) { | 
|  | QualType FT = FD->getType(); | 
|  |  | 
|  | // Ignore empty fields. | 
|  | if (isEmptyField(Context, FD, true)) | 
|  | continue; | 
|  |  | 
|  | // If we already found an element then this isn't a single-element | 
|  | // struct. | 
|  | if (Found) | 
|  | return nullptr; | 
|  |  | 
|  | // Treat single element arrays as the element. | 
|  | while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { | 
|  | if (AT->getSize().getZExtValue() != 1) | 
|  | break; | 
|  | FT = AT->getElementType(); | 
|  | } | 
|  |  | 
|  | if (!isAggregateTypeForABI(FT)) { | 
|  | Found = FT.getTypePtr(); | 
|  | } else { | 
|  | Found = isSingleElementStruct(FT, Context); | 
|  | if (!Found) | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We don't consider a struct a single-element struct if it has | 
|  | // padding beyond the element type. | 
|  | if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) | 
|  | return nullptr; | 
|  |  | 
|  | return Found; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, | 
|  | const ABIArgInfo &AI) { | 
|  | // This default implementation defers to the llvm backend's va_arg | 
|  | // instruction. It can handle only passing arguments directly | 
|  | // (typically only handled in the backend for primitive types), or | 
|  | // aggregates passed indirectly by pointer (NOTE: if the "byval" | 
|  | // flag has ABI impact in the callee, this implementation cannot | 
|  | // work.) | 
|  |  | 
|  | // Only a few cases are covered here at the moment -- those needed | 
|  | // by the default abi. | 
|  | llvm::Value *Val; | 
|  |  | 
|  | if (AI.isIndirect()) { | 
|  | assert(!AI.getPaddingType() && | 
|  | "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); | 
|  | assert( | 
|  | !AI.getIndirectRealign() && | 
|  | "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); | 
|  |  | 
|  | auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); | 
|  | CharUnits TyAlignForABI = TyInfo.second; | 
|  |  | 
|  | llvm::Type *BaseTy = | 
|  | llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); | 
|  | llvm::Value *Addr = | 
|  | CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); | 
|  | return Address(Addr, TyAlignForABI); | 
|  | } else { | 
|  | assert((AI.isDirect() || AI.isExtend()) && | 
|  | "Unexpected ArgInfo Kind in generic VAArg emitter!"); | 
|  |  | 
|  | assert(!AI.getInReg() && | 
|  | "Unexpected InReg seen in arginfo in generic VAArg emitter!"); | 
|  | assert(!AI.getPaddingType() && | 
|  | "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); | 
|  | assert(!AI.getDirectOffset() && | 
|  | "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); | 
|  | assert(!AI.getCoerceToType() && | 
|  | "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); | 
|  |  | 
|  | Address Temp = CGF.CreateMemTemp(Ty, "varet"); | 
|  | Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); | 
|  | CGF.Builder.CreateStore(Val, Temp); | 
|  | return Temp; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// DefaultABIInfo - The default implementation for ABI specific | 
|  | /// details. This implementation provides information which results in | 
|  | /// self-consistent and sensible LLVM IR generation, but does not | 
|  | /// conform to any particular ABI. | 
|  | class DefaultABIInfo : public ABIInfo { | 
|  | public: | 
|  | DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} | 
|  |  | 
|  | ABIArgInfo classifyReturnType(QualType RetTy) const; | 
|  | ABIArgInfo classifyArgumentType(QualType RetTy) const; | 
|  |  | 
|  | void computeInfo(CGFunctionInfo &FI) const override { | 
|  | if (!getCXXABI().classifyReturnType(FI)) | 
|  | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); | 
|  | for (auto &I : FI.arguments()) | 
|  | I.info = classifyArgumentType(I.type); | 
|  | } | 
|  |  | 
|  | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const override { | 
|  | return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { | 
|  | public: | 
|  | DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) | 
|  | : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} | 
|  | }; | 
|  |  | 
|  | ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { | 
|  | Ty = useFirstFieldIfTransparentUnion(Ty); | 
|  |  | 
|  | if (isAggregateTypeForABI(Ty)) { | 
|  | // Records with non-trivial destructors/copy-constructors should not be | 
|  | // passed by value. | 
|  | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) | 
|  | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); | 
|  |  | 
|  | return getNaturalAlignIndirect(Ty); | 
|  | } | 
|  |  | 
|  | // Treat an enum type as its underlying type. | 
|  | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) | 
|  | Ty = EnumTy->getDecl()->getIntegerType(); | 
|  |  | 
|  | return (Ty->isPromotableIntegerType() ? | 
|  | ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); | 
|  | } | 
|  |  | 
|  | ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { | 
|  | if (RetTy->isVoidType()) | 
|  | return ABIArgInfo::getIgnore(); | 
|  |  | 
|  | if (isAggregateTypeForABI(RetTy)) | 
|  | return getNaturalAlignIndirect(RetTy); | 
|  |  | 
|  | // Treat an enum type as its underlying type. | 
|  | if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) | 
|  | RetTy = EnumTy->getDecl()->getIntegerType(); | 
|  |  | 
|  | return (RetTy->isPromotableIntegerType() ? | 
|  | ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // WebAssembly ABI Implementation | 
|  | // | 
|  | // This is a very simple ABI that relies a lot on DefaultABIInfo. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | class WebAssemblyABIInfo final : public DefaultABIInfo { | 
|  | public: | 
|  | explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) | 
|  | : DefaultABIInfo(CGT) {} | 
|  |  | 
|  | private: | 
|  | ABIArgInfo classifyReturnType(QualType RetTy) const; | 
|  | ABIArgInfo classifyArgumentType(QualType Ty) const; | 
|  |  | 
|  | // DefaultABIInfo's classifyReturnType and classifyArgumentType are | 
|  | // non-virtual, but computeInfo and EmitVAArg are virtual, so we | 
|  | // overload them. | 
|  | void computeInfo(CGFunctionInfo &FI) const override { | 
|  | if (!getCXXABI().classifyReturnType(FI)) | 
|  | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); | 
|  | for (auto &Arg : FI.arguments()) | 
|  | Arg.info = classifyArgumentType(Arg.type); | 
|  | } | 
|  |  | 
|  | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const override; | 
|  | }; | 
|  |  | 
|  | class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { | 
|  | public: | 
|  | explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) | 
|  | : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} | 
|  | }; | 
|  |  | 
|  | /// \brief Classify argument of given type \p Ty. | 
|  | ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { | 
|  | Ty = useFirstFieldIfTransparentUnion(Ty); | 
|  |  | 
|  | if (isAggregateTypeForABI(Ty)) { | 
|  | // Records with non-trivial destructors/copy-constructors should not be | 
|  | // passed by value. | 
|  | if (auto RAA = getRecordArgABI(Ty, getCXXABI())) | 
|  | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); | 
|  | // Ignore empty structs/unions. | 
|  | if (isEmptyRecord(getContext(), Ty, true)) | 
|  | return ABIArgInfo::getIgnore(); | 
|  | // Lower single-element structs to just pass a regular value. TODO: We | 
|  | // could do reasonable-size multiple-element structs too, using getExpand(), | 
|  | // though watch out for things like bitfields. | 
|  | if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) | 
|  | return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); | 
|  | } | 
|  |  | 
|  | // Otherwise just do the default thing. | 
|  | return DefaultABIInfo::classifyArgumentType(Ty); | 
|  | } | 
|  |  | 
|  | ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { | 
|  | if (isAggregateTypeForABI(RetTy)) { | 
|  | // Records with non-trivial destructors/copy-constructors should not be | 
|  | // returned by value. | 
|  | if (!getRecordArgABI(RetTy, getCXXABI())) { | 
|  | // Ignore empty structs/unions. | 
|  | if (isEmptyRecord(getContext(), RetTy, true)) | 
|  | return ABIArgInfo::getIgnore(); | 
|  | // Lower single-element structs to just return a regular value. TODO: We | 
|  | // could do reasonable-size multiple-element structs too, using | 
|  | // ABIArgInfo::getDirect(). | 
|  | if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) | 
|  | return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise just do the default thing. | 
|  | return DefaultABIInfo::classifyReturnType(RetTy); | 
|  | } | 
|  |  | 
|  | Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const { | 
|  | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, | 
|  | getContext().getTypeInfoInChars(Ty), | 
|  | CharUnits::fromQuantity(4), | 
|  | /*AllowHigherAlign=*/ true); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // le32/PNaCl bitcode ABI Implementation | 
|  | // | 
|  | // This is a simplified version of the x86_32 ABI.  Arguments and return values | 
|  | // are always passed on the stack. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | class PNaClABIInfo : public ABIInfo { | 
|  | public: | 
|  | PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} | 
|  |  | 
|  | ABIArgInfo classifyReturnType(QualType RetTy) const; | 
|  | ABIArgInfo classifyArgumentType(QualType RetTy) const; | 
|  |  | 
|  | void computeInfo(CGFunctionInfo &FI) const override; | 
|  | Address EmitVAArg(CodeGenFunction &CGF, | 
|  | Address VAListAddr, QualType Ty) const override; | 
|  | }; | 
|  |  | 
|  | class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { | 
|  | public: | 
|  | PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) | 
|  | : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} | 
|  | }; | 
|  |  | 
|  | void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { | 
|  | if (!getCXXABI().classifyReturnType(FI)) | 
|  | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); | 
|  |  | 
|  | for (auto &I : FI.arguments()) | 
|  | I.info = classifyArgumentType(I.type); | 
|  | } | 
|  |  | 
|  | Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const { | 
|  | // The PNaCL ABI is a bit odd, in that varargs don't use normal | 
|  | // function classification. Structs get passed directly for varargs | 
|  | // functions, through a rewriting transform in | 
|  | // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows | 
|  | // this target to actually support a va_arg instructions with an | 
|  | // aggregate type, unlike other targets. | 
|  | return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); | 
|  | } | 
|  |  | 
|  | /// \brief Classify argument of given type \p Ty. | 
|  | ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { | 
|  | if (isAggregateTypeForABI(Ty)) { | 
|  | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) | 
|  | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); | 
|  | return getNaturalAlignIndirect(Ty); | 
|  | } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { | 
|  | // Treat an enum type as its underlying type. | 
|  | Ty = EnumTy->getDecl()->getIntegerType(); | 
|  | } else if (Ty->isFloatingType()) { | 
|  | // Floating-point types don't go inreg. | 
|  | return ABIArgInfo::getDirect(); | 
|  | } | 
|  |  | 
|  | return (Ty->isPromotableIntegerType() ? | 
|  | ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); | 
|  | } | 
|  |  | 
|  | ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { | 
|  | if (RetTy->isVoidType()) | 
|  | return ABIArgInfo::getIgnore(); | 
|  |  | 
|  | // In the PNaCl ABI we always return records/structures on the stack. | 
|  | if (isAggregateTypeForABI(RetTy)) | 
|  | return getNaturalAlignIndirect(RetTy); | 
|  |  | 
|  | // Treat an enum type as its underlying type. | 
|  | if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) | 
|  | RetTy = EnumTy->getDecl()->getIntegerType(); | 
|  |  | 
|  | return (RetTy->isPromotableIntegerType() ? | 
|  | ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); | 
|  | } | 
|  |  | 
|  | /// IsX86_MMXType - Return true if this is an MMX type. | 
|  | bool IsX86_MMXType(llvm::Type *IRType) { | 
|  | // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. | 
|  | return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && | 
|  | cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && | 
|  | IRType->getScalarSizeInBits() != 64; | 
|  | } | 
|  |  | 
|  | static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, | 
|  | StringRef Constraint, | 
|  | llvm::Type* Ty) { | 
|  | if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { | 
|  | if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { | 
|  | // Invalid MMX constraint | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); | 
|  | } | 
|  |  | 
|  | // No operation needed | 
|  | return Ty; | 
|  | } | 
|  |  | 
|  | /// Returns true if this type can be passed in SSE registers with the | 
|  | /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. | 
|  | static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { | 
|  | if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { | 
|  | if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) | 
|  | return true; | 
|  | } else if (const VectorType *VT = Ty->getAs<VectorType>()) { | 
|  | // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX | 
|  | // registers specially. | 
|  | unsigned VecSize = Context.getTypeSize(VT); | 
|  | if (VecSize == 128 || VecSize == 256 || VecSize == 512) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Returns true if this aggregate is small enough to be passed in SSE registers | 
|  | /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. | 
|  | static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { | 
|  | return NumMembers <= 4; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // X86-32 ABI Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// \brief Similar to llvm::CCState, but for Clang. | 
|  | struct CCState { | 
|  | CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} | 
|  |  | 
|  | unsigned CC; | 
|  | unsigned FreeRegs; | 
|  | unsigned FreeSSERegs; | 
|  | }; | 
|  |  | 
|  | /// X86_32ABIInfo - The X86-32 ABI information. | 
|  | class X86_32ABIInfo : public SwiftABIInfo { | 
|  | enum Class { | 
|  | Integer, | 
|  | Float | 
|  | }; | 
|  |  | 
|  | static const unsigned MinABIStackAlignInBytes = 4; | 
|  |  | 
|  | bool IsDarwinVectorABI; | 
|  | bool IsRetSmallStructInRegABI; | 
|  | bool IsWin32StructABI; | 
|  | bool IsSoftFloatABI; | 
|  | bool IsMCUABI; | 
|  | unsigned DefaultNumRegisterParameters; | 
|  |  | 
|  | static bool isRegisterSize(unsigned Size) { | 
|  | return (Size == 8 || Size == 16 || Size == 32 || Size == 64); | 
|  | } | 
|  |  | 
|  | bool isHomogeneousAggregateBaseType(QualType Ty) const override { | 
|  | // FIXME: Assumes vectorcall is in use. | 
|  | return isX86VectorTypeForVectorCall(getContext(), Ty); | 
|  | } | 
|  |  | 
|  | bool isHomogeneousAggregateSmallEnough(const Type *Ty, | 
|  | uint64_t NumMembers) const override { | 
|  | // FIXME: Assumes vectorcall is in use. | 
|  | return isX86VectorCallAggregateSmallEnough(NumMembers); | 
|  | } | 
|  |  | 
|  | bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; | 
|  |  | 
|  | /// getIndirectResult - Give a source type \arg Ty, return a suitable result | 
|  | /// such that the argument will be passed in memory. | 
|  | ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; | 
|  |  | 
|  | ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; | 
|  |  | 
|  | /// \brief Return the alignment to use for the given type on the stack. | 
|  | unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; | 
|  |  | 
|  | Class classify(QualType Ty) const; | 
|  | ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; | 
|  | ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; | 
|  | /// \brief Updates the number of available free registers, returns | 
|  | /// true if any registers were allocated. | 
|  | bool updateFreeRegs(QualType Ty, CCState &State) const; | 
|  |  | 
|  | bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, | 
|  | bool &NeedsPadding) const; | 
|  | bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; | 
|  |  | 
|  | bool canExpandIndirectArgument(QualType Ty) const; | 
|  |  | 
|  | /// \brief Rewrite the function info so that all memory arguments use | 
|  | /// inalloca. | 
|  | void rewriteWithInAlloca(CGFunctionInfo &FI) const; | 
|  |  | 
|  | void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, | 
|  | CharUnits &StackOffset, ABIArgInfo &Info, | 
|  | QualType Type) const; | 
|  |  | 
|  | public: | 
|  |  | 
|  | void computeInfo(CGFunctionInfo &FI) const override; | 
|  | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const override; | 
|  |  | 
|  | X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, | 
|  | bool RetSmallStructInRegABI, bool Win32StructABI, | 
|  | unsigned NumRegisterParameters, bool SoftFloatABI) | 
|  | : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), | 
|  | IsRetSmallStructInRegABI(RetSmallStructInRegABI), | 
|  | IsWin32StructABI(Win32StructABI), | 
|  | IsSoftFloatABI(SoftFloatABI), | 
|  | IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), | 
|  | DefaultNumRegisterParameters(NumRegisterParameters) {} | 
|  |  | 
|  | bool shouldPassIndirectlyForSwift(CharUnits totalSize, | 
|  | ArrayRef<llvm::Type*> scalars, | 
|  | bool asReturnValue) const override { | 
|  | // LLVM's x86-32 lowering currently only assigns up to three | 
|  | // integer registers and three fp registers.  Oddly, it'll use up to | 
|  | // four vector registers for vectors, but those can overlap with the | 
|  | // scalar registers. | 
|  | return occupiesMoreThan(CGT, scalars, /*total*/ 3); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { | 
|  | public: | 
|  | X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, | 
|  | bool RetSmallStructInRegABI, bool Win32StructABI, | 
|  | unsigned NumRegisterParameters, bool SoftFloatABI) | 
|  | : TargetCodeGenInfo(new X86_32ABIInfo( | 
|  | CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, | 
|  | NumRegisterParameters, SoftFloatABI)) {} | 
|  |  | 
|  | static bool isStructReturnInRegABI( | 
|  | const llvm::Triple &Triple, const CodeGenOptions &Opts); | 
|  |  | 
|  | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, | 
|  | CodeGen::CodeGenModule &CGM) const override; | 
|  |  | 
|  | int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { | 
|  | // Darwin uses different dwarf register numbers for EH. | 
|  | if (CGM.getTarget().getTriple().isOSDarwin()) return 5; | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, | 
|  | llvm::Value *Address) const override; | 
|  |  | 
|  | llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, | 
|  | StringRef Constraint, | 
|  | llvm::Type* Ty) const override { | 
|  | return X86AdjustInlineAsmType(CGF, Constraint, Ty); | 
|  | } | 
|  |  | 
|  | void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, | 
|  | std::string &Constraints, | 
|  | std::vector<llvm::Type *> &ResultRegTypes, | 
|  | std::vector<llvm::Type *> &ResultTruncRegTypes, | 
|  | std::vector<LValue> &ResultRegDests, | 
|  | std::string &AsmString, | 
|  | unsigned NumOutputs) const override; | 
|  |  | 
|  | llvm::Constant * | 
|  | getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { | 
|  | unsigned Sig = (0xeb << 0) |  // jmp rel8 | 
|  | (0x06 << 8) |  //           .+0x08 | 
|  | ('F' << 16) | | 
|  | ('T' << 24); | 
|  | return llvm::ConstantInt::get(CGM.Int32Ty, Sig); | 
|  | } | 
|  |  | 
|  | StringRef getARCRetainAutoreleasedReturnValueMarker() const override { | 
|  | return "movl\t%ebp, %ebp" | 
|  | "\t\t## marker for objc_retainAutoreleaseReturnValue"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | /// Rewrite input constraint references after adding some output constraints. | 
|  | /// In the case where there is one output and one input and we add one output, | 
|  | /// we need to replace all operand references greater than or equal to 1: | 
|  | ///     mov $0, $1 | 
|  | ///     mov eax, $1 | 
|  | /// The result will be: | 
|  | ///     mov $0, $2 | 
|  | ///     mov eax, $2 | 
|  | static void rewriteInputConstraintReferences(unsigned FirstIn, | 
|  | unsigned NumNewOuts, | 
|  | std::string &AsmString) { | 
|  | std::string Buf; | 
|  | llvm::raw_string_ostream OS(Buf); | 
|  | size_t Pos = 0; | 
|  | while (Pos < AsmString.size()) { | 
|  | size_t DollarStart = AsmString.find('$', Pos); | 
|  | if (DollarStart == std::string::npos) | 
|  | DollarStart = AsmString.size(); | 
|  | size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); | 
|  | if (DollarEnd == std::string::npos) | 
|  | DollarEnd = AsmString.size(); | 
|  | OS << StringRef(&AsmString[Pos], DollarEnd - Pos); | 
|  | Pos = DollarEnd; | 
|  | size_t NumDollars = DollarEnd - DollarStart; | 
|  | if (NumDollars % 2 != 0 && Pos < AsmString.size()) { | 
|  | // We have an operand reference. | 
|  | size_t DigitStart = Pos; | 
|  | size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); | 
|  | if (DigitEnd == std::string::npos) | 
|  | DigitEnd = AsmString.size(); | 
|  | StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); | 
|  | unsigned OperandIndex; | 
|  | if (!OperandStr.getAsInteger(10, OperandIndex)) { | 
|  | if (OperandIndex >= FirstIn) | 
|  | OperandIndex += NumNewOuts; | 
|  | OS << OperandIndex; | 
|  | } else { | 
|  | OS << OperandStr; | 
|  | } | 
|  | Pos = DigitEnd; | 
|  | } | 
|  | } | 
|  | AsmString = std::move(OS.str()); | 
|  | } | 
|  |  | 
|  | /// Add output constraints for EAX:EDX because they are return registers. | 
|  | void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( | 
|  | CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, | 
|  | std::vector<llvm::Type *> &ResultRegTypes, | 
|  | std::vector<llvm::Type *> &ResultTruncRegTypes, | 
|  | std::vector<LValue> &ResultRegDests, std::string &AsmString, | 
|  | unsigned NumOutputs) const { | 
|  | uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); | 
|  |  | 
|  | // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is | 
|  | // larger. | 
|  | if (!Constraints.empty()) | 
|  | Constraints += ','; | 
|  | if (RetWidth <= 32) { | 
|  | Constraints += "={eax}"; | 
|  | ResultRegTypes.push_back(CGF.Int32Ty); | 
|  | } else { | 
|  | // Use the 'A' constraint for EAX:EDX. | 
|  | Constraints += "=A"; | 
|  | ResultRegTypes.push_back(CGF.Int64Ty); | 
|  | } | 
|  |  | 
|  | // Truncate EAX or EAX:EDX to an integer of the appropriate size. | 
|  | llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); | 
|  | ResultTruncRegTypes.push_back(CoerceTy); | 
|  |  | 
|  | // Coerce the integer by bitcasting the return slot pointer. | 
|  | ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), | 
|  | CoerceTy->getPointerTo())); | 
|  | ResultRegDests.push_back(ReturnSlot); | 
|  |  | 
|  | rewriteInputConstraintReferences(NumOutputs, 1, AsmString); | 
|  | } | 
|  |  | 
|  | /// shouldReturnTypeInRegister - Determine if the given type should be | 
|  | /// returned in a register (for the Darwin and MCU ABI). | 
|  | bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, | 
|  | ASTContext &Context) const { | 
|  | uint64_t Size = Context.getTypeSize(Ty); | 
|  |  | 
|  | // For i386, type must be register sized. | 
|  | // For the MCU ABI, it only needs to be <= 8-byte | 
|  | if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) | 
|  | return false; | 
|  |  | 
|  | if (Ty->isVectorType()) { | 
|  | // 64- and 128- bit vectors inside structures are not returned in | 
|  | // registers. | 
|  | if (Size == 64 || Size == 128) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If this is a builtin, pointer, enum, complex type, member pointer, or | 
|  | // member function pointer it is ok. | 
|  | if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || | 
|  | Ty->isAnyComplexType() || Ty->isEnumeralType() || | 
|  | Ty->isBlockPointerType() || Ty->isMemberPointerType()) | 
|  | return true; | 
|  |  | 
|  | // Arrays are treated like records. | 
|  | if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) | 
|  | return shouldReturnTypeInRegister(AT->getElementType(), Context); | 
|  |  | 
|  | // Otherwise, it must be a record type. | 
|  | const RecordType *RT = Ty->getAs<RecordType>(); | 
|  | if (!RT) return false; | 
|  |  | 
|  | // FIXME: Traverse bases here too. | 
|  |  | 
|  | // Structure types are passed in register if all fields would be | 
|  | // passed in a register. | 
|  | for (const auto *FD : RT->getDecl()->fields()) { | 
|  | // Empty fields are ignored. | 
|  | if (isEmptyField(Context, FD, true)) | 
|  | continue; | 
|  |  | 
|  | // Check fields recursively. | 
|  | if (!shouldReturnTypeInRegister(FD->getType(), Context)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { | 
|  | // Treat complex types as the element type. | 
|  | if (const ComplexType *CTy = Ty->getAs<ComplexType>()) | 
|  | Ty = CTy->getElementType(); | 
|  |  | 
|  | // Check for a type which we know has a simple scalar argument-passing | 
|  | // convention without any padding.  (We're specifically looking for 32 | 
|  | // and 64-bit integer and integer-equivalents, float, and double.) | 
|  | if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && | 
|  | !Ty->isEnumeralType() && !Ty->isBlockPointerType()) | 
|  | return false; | 
|  |  | 
|  | uint64_t Size = Context.getTypeSize(Ty); | 
|  | return Size == 32 || Size == 64; | 
|  | } | 
|  |  | 
|  | /// Test whether an argument type which is to be passed indirectly (on the | 
|  | /// stack) would have the equivalent layout if it was expanded into separate | 
|  | /// arguments. If so, we prefer to do the latter to avoid inhibiting | 
|  | /// optimizations. | 
|  | bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { | 
|  | // We can only expand structure types. | 
|  | const RecordType *RT = Ty->getAs<RecordType>(); | 
|  | if (!RT) | 
|  | return false; | 
|  | const RecordDecl *RD = RT->getDecl(); | 
|  | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { | 
|  | if (!IsWin32StructABI ) { | 
|  | // On non-Windows, we have to conservatively match our old bitcode | 
|  | // prototypes in order to be ABI-compatible at the bitcode level. | 
|  | if (!CXXRD->isCLike()) | 
|  | return false; | 
|  | } else { | 
|  | // Don't do this for dynamic classes. | 
|  | if (CXXRD->isDynamicClass()) | 
|  | return false; | 
|  | // Don't do this if there are any non-empty bases. | 
|  | for (const CXXBaseSpecifier &Base : CXXRD->bases()) { | 
|  | if (!isEmptyRecord(getContext(), Base.getType(), /*AllowArrays=*/true)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t Size = 0; | 
|  |  | 
|  | for (const auto *FD : RD->fields()) { | 
|  | // Scalar arguments on the stack get 4 byte alignment on x86. If the | 
|  | // argument is smaller than 32-bits, expanding the struct will create | 
|  | // alignment padding. | 
|  | if (!is32Or64BitBasicType(FD->getType(), getContext())) | 
|  | return false; | 
|  |  | 
|  | // FIXME: Reject bit-fields wholesale; there are two problems, we don't know | 
|  | // how to expand them yet, and the predicate for telling if a bitfield still | 
|  | // counts as "basic" is more complicated than what we were doing previously. | 
|  | if (FD->isBitField()) | 
|  | return false; | 
|  |  | 
|  | Size += getContext().getTypeSize(FD->getType()); | 
|  | } | 
|  |  | 
|  | // We can do this if there was no alignment padding. | 
|  | return Size == getContext().getTypeSize(Ty); | 
|  | } | 
|  |  | 
|  | ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { | 
|  | // If the return value is indirect, then the hidden argument is consuming one | 
|  | // integer register. | 
|  | if (State.FreeRegs) { | 
|  | --State.FreeRegs; | 
|  | if (!IsMCUABI) | 
|  | return getNaturalAlignIndirectInReg(RetTy); | 
|  | } | 
|  | return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); | 
|  | } | 
|  |  | 
|  | ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, | 
|  | CCState &State) const { | 
|  | if (RetTy->isVoidType()) | 
|  | return ABIArgInfo::getIgnore(); | 
|  |  | 
|  | const Type *Base = nullptr; | 
|  | uint64_t NumElts = 0; | 
|  | if (State.CC == llvm::CallingConv::X86_VectorCall && | 
|  | isHomogeneousAggregate(RetTy, Base, NumElts)) { | 
|  | // The LLVM struct type for such an aggregate should lower properly. | 
|  | return ABIArgInfo::getDirect(); | 
|  | } | 
|  |  | 
|  | if (const VectorType *VT = RetTy->getAs<VectorType>()) { | 
|  | // On Darwin, some vectors are returned in registers. | 
|  | if (IsDarwinVectorABI) { | 
|  | uint64_t Size = getContext().getTypeSize(RetTy); | 
|  |  | 
|  | // 128-bit vectors are a special case; they are returned in | 
|  | // registers and we need to make sure to pick a type the LLVM | 
|  | // backend will like. | 
|  | if (Size == 128) | 
|  | return ABIArgInfo::getDirect(llvm::VectorType::get( | 
|  | llvm::Type::getInt64Ty(getVMContext()), 2)); | 
|  |  | 
|  | // Always return in register if it fits in a general purpose | 
|  | // register, or if it is 64 bits and has a single element. | 
|  | if ((Size == 8 || Size == 16 || Size == 32) || | 
|  | (Size == 64 && VT->getNumElements() == 1)) | 
|  | return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), | 
|  | Size)); | 
|  |  | 
|  | return getIndirectReturnResult(RetTy, State); | 
|  | } | 
|  |  | 
|  | return ABIArgInfo::getDirect(); | 
|  | } | 
|  |  | 
|  | if (isAggregateTypeForABI(RetTy)) { | 
|  | if (const RecordType *RT = RetTy->getAs<RecordType>()) { | 
|  | // Structures with flexible arrays are always indirect. | 
|  | if (RT->getDecl()->hasFlexibleArrayMember()) | 
|  | return getIndirectReturnResult(RetTy, State); | 
|  | } | 
|  |  | 
|  | // If specified, structs and unions are always indirect. | 
|  | if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) | 
|  | return getIndirectReturnResult(RetTy, State); | 
|  |  | 
|  | // Ignore empty structs/unions. | 
|  | if (isEmptyRecord(getContext(), RetTy, true)) | 
|  | return ABIArgInfo::getIgnore(); | 
|  |  | 
|  | // Small structures which are register sized are generally returned | 
|  | // in a register. | 
|  | if (shouldReturnTypeInRegister(RetTy, getContext())) { | 
|  | uint64_t Size = getContext().getTypeSize(RetTy); | 
|  |  | 
|  | // As a special-case, if the struct is a "single-element" struct, and | 
|  | // the field is of type "float" or "double", return it in a | 
|  | // floating-point register. (MSVC does not apply this special case.) | 
|  | // We apply a similar transformation for pointer types to improve the | 
|  | // quality of the generated IR. | 
|  | if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) | 
|  | if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) | 
|  | || SeltTy->hasPointerRepresentation()) | 
|  | return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); | 
|  |  | 
|  | // FIXME: We should be able to narrow this integer in cases with dead | 
|  | // padding. | 
|  | return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); | 
|  | } | 
|  |  | 
|  | return getIndirectReturnResult(RetTy, State); | 
|  | } | 
|  |  | 
|  | // Treat an enum type as its underlying type. | 
|  | if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) | 
|  | RetTy = EnumTy->getDecl()->getIntegerType(); | 
|  |  | 
|  | return (RetTy->isPromotableIntegerType() ? | 
|  | ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); | 
|  | } | 
|  |  | 
|  | static bool isSSEVectorType(ASTContext &Context, QualType Ty) { | 
|  | return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; | 
|  | } | 
|  |  | 
|  | static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { | 
|  | const RecordType *RT = Ty->getAs<RecordType>(); | 
|  | if (!RT) | 
|  | return 0; | 
|  | const RecordDecl *RD = RT->getDecl(); | 
|  |  | 
|  | // If this is a C++ record, check the bases first. | 
|  | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) | 
|  | for (const auto &I : CXXRD->bases()) | 
|  | if (!isRecordWithSSEVectorType(Context, I.getType())) | 
|  | return false; | 
|  |  | 
|  | for (const auto *i : RD->fields()) { | 
|  | QualType FT = i->getType(); | 
|  |  | 
|  | if (isSSEVectorType(Context, FT)) | 
|  | return true; | 
|  |  | 
|  | if (isRecordWithSSEVectorType(Context, FT)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, | 
|  | unsigned Align) const { | 
|  | // Otherwise, if the alignment is less than or equal to the minimum ABI | 
|  | // alignment, just use the default; the backend will handle this. | 
|  | if (Align <= MinABIStackAlignInBytes) | 
|  | return 0; // Use default alignment. | 
|  |  | 
|  | // On non-Darwin, the stack type alignment is always 4. | 
|  | if (!IsDarwinVectorABI) { | 
|  | // Set explicit alignment, since we may need to realign the top. | 
|  | return MinABIStackAlignInBytes; | 
|  | } | 
|  |  | 
|  | // Otherwise, if the type contains an SSE vector type, the alignment is 16. | 
|  | if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || | 
|  | isRecordWithSSEVectorType(getContext(), Ty))) | 
|  | return 16; | 
|  |  | 
|  | return MinABIStackAlignInBytes; | 
|  | } | 
|  |  | 
|  | ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, | 
|  | CCState &State) const { | 
|  | if (!ByVal) { | 
|  | if (State.FreeRegs) { | 
|  | --State.FreeRegs; // Non-byval indirects just use one pointer. | 
|  | if (!IsMCUABI) | 
|  | return getNaturalAlignIndirectInReg(Ty); | 
|  | } | 
|  | return getNaturalAlignIndirect(Ty, false); | 
|  | } | 
|  |  | 
|  | // Compute the byval alignment. | 
|  | unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; | 
|  | unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); | 
|  | if (StackAlign == 0) | 
|  | return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); | 
|  |  | 
|  | // If the stack alignment is less than the type alignment, realign the | 
|  | // argument. | 
|  | bool Realign = TypeAlign > StackAlign; | 
|  | return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), | 
|  | /*ByVal=*/true, Realign); | 
|  | } | 
|  |  | 
|  | X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { | 
|  | const Type *T = isSingleElementStruct(Ty, getContext()); | 
|  | if (!T) | 
|  | T = Ty.getTypePtr(); | 
|  |  | 
|  | if (const BuiltinType *BT = T->getAs<BuiltinType>()) { | 
|  | BuiltinType::Kind K = BT->getKind(); | 
|  | if (K == BuiltinType::Float || K == BuiltinType::Double) | 
|  | return Float; | 
|  | } | 
|  | return Integer; | 
|  | } | 
|  |  | 
|  | bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { | 
|  | if (!IsSoftFloatABI) { | 
|  | Class C = classify(Ty); | 
|  | if (C == Float) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned Size = getContext().getTypeSize(Ty); | 
|  | unsigned SizeInRegs = (Size + 31) / 32; | 
|  |  | 
|  | if (SizeInRegs == 0) | 
|  | return false; | 
|  |  | 
|  | if (!IsMCUABI) { | 
|  | if (SizeInRegs > State.FreeRegs) { | 
|  | State.FreeRegs = 0; | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | // The MCU psABI allows passing parameters in-reg even if there are | 
|  | // earlier parameters that are passed on the stack. Also, | 
|  | // it does not allow passing >8-byte structs in-register, | 
|  | // even if there are 3 free registers available. | 
|  | if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | State.FreeRegs -= SizeInRegs; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, | 
|  | bool &InReg, | 
|  | bool &NeedsPadding) const { | 
|  | // On Windows, aggregates other than HFAs are never passed in registers, and | 
|  | // they do not consume register slots. Homogenous floating-point aggregates | 
|  | // (HFAs) have already been dealt with at this point. | 
|  | if (IsWin32StructABI && isAggregateTypeForABI(Ty)) | 
|  | return false; | 
|  |  | 
|  | NeedsPadding = false; | 
|  | InReg = !IsMCUABI; | 
|  |  | 
|  | if (!updateFreeRegs(Ty, State)) | 
|  | return false; | 
|  |  | 
|  | if (IsMCUABI) | 
|  | return true; | 
|  |  | 
|  | if (State.CC == llvm::CallingConv::X86_FastCall || | 
|  | State.CC == llvm::CallingConv::X86_VectorCall) { | 
|  | if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) | 
|  | NeedsPadding = true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { | 
|  | if (!updateFreeRegs(Ty, State)) | 
|  | return false; | 
|  |  | 
|  | if (IsMCUABI) | 
|  | return false; | 
|  |  | 
|  | if (State.CC == llvm::CallingConv::X86_FastCall || | 
|  | State.CC == llvm::CallingConv::X86_VectorCall) { | 
|  | if (getContext().getTypeSize(Ty) > 32) | 
|  | return false; | 
|  |  | 
|  | return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || | 
|  | Ty->isReferenceType()); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, | 
|  | CCState &State) const { | 
|  | // FIXME: Set alignment on indirect arguments. | 
|  |  | 
|  | Ty = useFirstFieldIfTransparentUnion(Ty); | 
|  |  | 
|  | // Check with the C++ ABI first. | 
|  | const RecordType *RT = Ty->getAs<RecordType>(); | 
|  | if (RT) { | 
|  | CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); | 
|  | if (RAA == CGCXXABI::RAA_Indirect) { | 
|  | return getIndirectResult(Ty, false, State); | 
|  | } else if (RAA == CGCXXABI::RAA_DirectInMemory) { | 
|  | // The field index doesn't matter, we'll fix it up later. | 
|  | return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // vectorcall adds the concept of a homogenous vector aggregate, similar | 
|  | // to other targets. | 
|  | const Type *Base = nullptr; | 
|  | uint64_t NumElts = 0; | 
|  | if (State.CC == llvm::CallingConv::X86_VectorCall && | 
|  | isHomogeneousAggregate(Ty, Base, NumElts)) { | 
|  | if (State.FreeSSERegs >= NumElts) { | 
|  | State.FreeSSERegs -= NumElts; | 
|  | if (Ty->isBuiltinType() || Ty->isVectorType()) | 
|  | return ABIArgInfo::getDirect(); | 
|  | return ABIArgInfo::getExpand(); | 
|  | } | 
|  | return getIndirectResult(Ty, /*ByVal=*/false, State); | 
|  | } | 
|  |  | 
|  | if (isAggregateTypeForABI(Ty)) { | 
|  | // Structures with flexible arrays are always indirect. | 
|  | // FIXME: This should not be byval! | 
|  | if (RT && RT->getDecl()->hasFlexibleArrayMember()) | 
|  | return getIndirectResult(Ty, true, State); | 
|  |  | 
|  | // Ignore empty structs/unions on non-Windows. | 
|  | if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) | 
|  | return ABIArgInfo::getIgnore(); | 
|  |  | 
|  | llvm::LLVMContext &LLVMContext = getVMContext(); | 
|  | llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); | 
|  | bool NeedsPadding = false; | 
|  | bool InReg; | 
|  | if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { | 
|  | unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; | 
|  | SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); | 
|  | llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); | 
|  | if (InReg) | 
|  | return ABIArgInfo::getDirectInReg(Result); | 
|  | else | 
|  | return ABIArgInfo::getDirect(Result); | 
|  | } | 
|  | llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; | 
|  |  | 
|  | // Expand small (<= 128-bit) record types when we know that the stack layout | 
|  | // of those arguments will match the struct. This is important because the | 
|  | // LLVM backend isn't smart enough to remove byval, which inhibits many | 
|  | // optimizations. | 
|  | // Don't do this for the MCU if there are still free integer registers | 
|  | // (see X86_64 ABI for full explanation). | 
|  | if (getContext().getTypeSize(Ty) <= 4 * 32 && | 
|  | (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) | 
|  | return ABIArgInfo::getExpandWithPadding( | 
|  | State.CC == llvm::CallingConv::X86_FastCall || | 
|  | State.CC == llvm::CallingConv::X86_VectorCall, | 
|  | PaddingType); | 
|  |  | 
|  | return getIndirectResult(Ty, true, State); | 
|  | } | 
|  |  | 
|  | if (const VectorType *VT = Ty->getAs<VectorType>()) { | 
|  | // On Darwin, some vectors are passed in memory, we handle this by passing | 
|  | // it as an i8/i16/i32/i64. | 
|  | if (IsDarwinVectorABI) { | 
|  | uint64_t Size = getContext().getTypeSize(Ty); | 
|  | if ((Size == 8 || Size == 16 || Size == 32) || | 
|  | (Size == 64 && VT->getNumElements() == 1)) | 
|  | return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), | 
|  | Size)); | 
|  | } | 
|  |  | 
|  | if (IsX86_MMXType(CGT.ConvertType(Ty))) | 
|  | return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); | 
|  |  | 
|  | return ABIArgInfo::getDirect(); | 
|  | } | 
|  |  | 
|  |  | 
|  | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) | 
|  | Ty = EnumTy->getDecl()->getIntegerType(); | 
|  |  | 
|  | bool InReg = shouldPrimitiveUseInReg(Ty, State); | 
|  |  | 
|  | if (Ty->isPromotableIntegerType()) { | 
|  | if (InReg) | 
|  | return ABIArgInfo::getExtendInReg(); | 
|  | return ABIArgInfo::getExtend(); | 
|  | } | 
|  |  | 
|  | if (InReg) | 
|  | return ABIArgInfo::getDirectInReg(); | 
|  | return ABIArgInfo::getDirect(); | 
|  | } | 
|  |  | 
|  | void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { | 
|  | CCState State(FI.getCallingConvention()); | 
|  | if (IsMCUABI) | 
|  | State.FreeRegs = 3; | 
|  | else if (State.CC == llvm::CallingConv::X86_FastCall) | 
|  | State.FreeRegs = 2; | 
|  | else if (State.CC == llvm::CallingConv::X86_VectorCall) { | 
|  | State.FreeRegs = 2; | 
|  | State.FreeSSERegs = 6; | 
|  | } else if (FI.getHasRegParm()) | 
|  | State.FreeRegs = FI.getRegParm(); | 
|  | else | 
|  | State.FreeRegs = DefaultNumRegisterParameters; | 
|  |  | 
|  | if (!getCXXABI().classifyReturnType(FI)) { | 
|  | FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); | 
|  | } else if (FI.getReturnInfo().isIndirect()) { | 
|  | // The C++ ABI is not aware of register usage, so we have to check if the | 
|  | // return value was sret and put it in a register ourselves if appropriate. | 
|  | if (State.FreeRegs) { | 
|  | --State.FreeRegs;  // The sret parameter consumes a register. | 
|  | if (!IsMCUABI) | 
|  | FI.getReturnInfo().setInReg(true); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The chain argument effectively gives us another free register. | 
|  | if (FI.isChainCall()) | 
|  | ++State.FreeRegs; | 
|  |  | 
|  | bool UsedInAlloca = false; | 
|  | for (auto &I : FI.arguments()) { | 
|  | I.info = classifyArgumentType(I.type, State); | 
|  | UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); | 
|  | } | 
|  |  | 
|  | // If we needed to use inalloca for any argument, do a second pass and rewrite | 
|  | // all the memory arguments to use inalloca. | 
|  | if (UsedInAlloca) | 
|  | rewriteWithInAlloca(FI); | 
|  | } | 
|  |  | 
|  | void | 
|  | X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, | 
|  | CharUnits &StackOffset, ABIArgInfo &Info, | 
|  | QualType Type) const { | 
|  | // Arguments are always 4-byte-aligned. | 
|  | CharUnits FieldAlign = CharUnits::fromQuantity(4); | 
|  |  | 
|  | assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); | 
|  | Info = ABIArgInfo::getInAlloca(FrameFields.size()); | 
|  | FrameFields.push_back(CGT.ConvertTypeForMem(Type)); | 
|  | StackOffset += getContext().getTypeSizeInChars(Type); | 
|  |  | 
|  | // Insert padding bytes to respect alignment. | 
|  | CharUnits FieldEnd = StackOffset; | 
|  | StackOffset = FieldEnd.alignTo(FieldAlign); | 
|  | if (StackOffset != FieldEnd) { | 
|  | CharUnits NumBytes = StackOffset - FieldEnd; | 
|  | llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); | 
|  | Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); | 
|  | FrameFields.push_back(Ty); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool isArgInAlloca(const ABIArgInfo &Info) { | 
|  | // Leave ignored and inreg arguments alone. | 
|  | switch (Info.getKind()) { | 
|  | case ABIArgInfo::InAlloca: | 
|  | return true; | 
|  | case ABIArgInfo::Indirect: | 
|  | assert(Info.getIndirectByVal()); | 
|  | return true; | 
|  | case ABIArgInfo::Ignore: | 
|  | return false; | 
|  | case ABIArgInfo::Direct: | 
|  | case ABIArgInfo::Extend: | 
|  | if (Info.getInReg()) | 
|  | return false; | 
|  | return true; | 
|  | case ABIArgInfo::Expand: | 
|  | case ABIArgInfo::CoerceAndExpand: | 
|  | // These are aggregate types which are never passed in registers when | 
|  | // inalloca is involved. | 
|  | return true; | 
|  | } | 
|  | llvm_unreachable("invalid enum"); | 
|  | } | 
|  |  | 
|  | void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { | 
|  | assert(IsWin32StructABI && "inalloca only supported on win32"); | 
|  |  | 
|  | // Build a packed struct type for all of the arguments in memory. | 
|  | SmallVector<llvm::Type *, 6> FrameFields; | 
|  |  | 
|  | // The stack alignment is always 4. | 
|  | CharUnits StackAlign = CharUnits::fromQuantity(4); | 
|  |  | 
|  | CharUnits StackOffset; | 
|  | CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); | 
|  |  | 
|  | // Put 'this' into the struct before 'sret', if necessary. | 
|  | bool IsThisCall = | 
|  | FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; | 
|  | ABIArgInfo &Ret = FI.getReturnInfo(); | 
|  | if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && | 
|  | isArgInAlloca(I->info)) { | 
|  | addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); | 
|  | ++I; | 
|  | } | 
|  |  | 
|  | // Put the sret parameter into the inalloca struct if it's in memory. | 
|  | if (Ret.isIndirect() && !Ret.getInReg()) { | 
|  | CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); | 
|  | addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); | 
|  | // On Windows, the hidden sret parameter is always returned in eax. | 
|  | Ret.setInAllocaSRet(IsWin32StructABI); | 
|  | } | 
|  |  | 
|  | // Skip the 'this' parameter in ecx. | 
|  | if (IsThisCall) | 
|  | ++I; | 
|  |  | 
|  | // Put arguments passed in memory into the struct. | 
|  | for (; I != E; ++I) { | 
|  | if (isArgInAlloca(I->info)) | 
|  | addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); | 
|  | } | 
|  |  | 
|  | FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, | 
|  | /*isPacked=*/true), | 
|  | StackAlign); | 
|  | } | 
|  |  | 
|  | Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, | 
|  | Address VAListAddr, QualType Ty) const { | 
|  |  | 
|  | auto TypeInfo = getContext().getTypeInfoInChars(Ty); | 
|  |  | 
|  | // x86-32 changes the alignment of certain arguments on the stack. | 
|  | // | 
|  | // Just messing with TypeInfo like this works because we never pass | 
|  | // anything indirectly. | 
|  | TypeInfo.second = CharUnits::fromQuantity( | 
|  | getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); | 
|  |  | 
|  | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, | 
|  | TypeInfo, CharUnits::fromQuantity(4), | 
|  | /*AllowHigherAlign*/ true); | 
|  | } | 
|  |  | 
|  | bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( | 
|  | const llvm::Triple &Triple, const CodeGenOptions &Opts) { | 
|  | assert(Triple.getArch() == llvm::Triple::x86); | 
|  |  | 
|  | switch (Opts.getStructReturnConvention()) { | 
|  | case CodeGenOptions::SRCK_Default: | 
|  | break; | 
|  | case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return | 
|  | return false; | 
|  | case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Triple.isOSDarwin() || Triple.isOSIAMCU()) | 
|  | return true; | 
|  |  | 
|  | switch (Triple.getOS()) { | 
|  | case llvm::Triple::DragonFly: | 
|  | case llvm::Triple::FreeBSD: | 
|  | case llvm::Triple::OpenBSD: | 
|  | case llvm::Triple::Bitrig: | 
|  | case llvm::Triple::Win32: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, | 
|  | llvm::GlobalValue *GV, | 
|  | CodeGen::CodeGenModule &CGM) const { | 
|  | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { | 
|  | if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { | 
|  | // Get the LLVM function. | 
|  | llvm::Function *Fn = cast<llvm::Function>(GV); | 
|  |  | 
|  | // Now add the 'alignstack' attribute with a value of 16. | 
|  | llvm::AttrBuilder B; | 
|  | B.addStackAlignmentAttr(16); | 
|  | Fn->addAttributes(llvm::AttributeSet::FunctionIndex, | 
|  | llvm::AttributeSet::get(CGM.getLLVMContext(), | 
|  | llvm::AttributeSet::FunctionIndex, | 
|  | B)); | 
|  | } | 
|  | if (FD->hasAttr<AnyX86InterruptAttr>()) { | 
|  | llvm::Function *Fn = cast<llvm::Function>(GV); | 
|  | Fn->setCallingConv(llvm::CallingConv::X86_INTR); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( | 
|  | CodeGen::CodeGenFunction &CGF, | 
|  | llvm::Value *Address) const { | 
|  | CodeGen::CGBuilderTy &Builder = CGF.Builder; | 
|  |  | 
|  | llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); | 
|  |  | 
|  | // 0-7 are the eight integer registers;  the order is different | 
|  | //   on Darwin (for EH), but the range is the same. | 
|  | // 8 is %eip. | 
|  | AssignToArrayRange(Builder, Address, Four8, 0, 8); | 
|  |  | 
|  | if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { | 
|  | // 12-16 are st(0..4).  Not sure why we stop at 4. | 
|  | // These have size 16, which is sizeof(long double) on | 
|  | // platforms with 8-byte alignment for that type. | 
|  | llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); | 
|  | AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); | 
|  |  | 
|  | } else { | 
|  | // 9 is %eflags, which doesn't get a size on Darwin for some | 
|  | // reason. | 
|  | Builder.CreateAlignedStore( | 
|  | Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), | 
|  | CharUnits::One()); | 
|  |  | 
|  | // 11-16 are st(0..5).  Not sure why we stop at 5. | 
|  | // These have size 12, which is sizeof(long double) on | 
|  | // platforms with 4-byte alignment for that type. | 
|  | llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); | 
|  | AssignToArrayRange(Builder, Address, Twelve8, 11, 16); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // X86-64 ABI Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  |  | 
|  | namespace { | 
|  | /// The AVX ABI level for X86 targets. | 
|  | enum class X86AVXABILevel { | 
|  | None, | 
|  | AVX, | 
|  | AVX512 | 
|  | }; | 
|  |  | 
|  | /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. | 
|  | static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { | 
|  | switch (AVXLevel) { | 
|  | case X86AVXABILevel::AVX512: | 
|  | return 512; | 
|  | case X86AVXABILevel::AVX: | 
|  | return 256; | 
|  | case X86AVXABILevel::None: | 
|  | return 128; | 
|  | } | 
|  | llvm_unreachable("Unknown AVXLevel"); | 
|  | } | 
|  |  | 
|  | /// X86_64ABIInfo - The X86_64 ABI information. | 
|  | class X86_64ABIInfo : public SwiftABIInfo { | 
|  | enum Class { | 
|  | Integer = 0, | 
|  | SSE, | 
|  | SSEUp, | 
|  | X87, | 
|  | X87Up, | 
|  | ComplexX87, | 
|  | NoClass, | 
|  | Memory | 
|  | }; | 
|  |  | 
|  | /// merge - Implement the X86_64 ABI merging algorithm. | 
|  | /// | 
|  | /// Merge an accumulating classification \arg Accum with a field | 
|  | /// classification \arg Field. | 
|  | /// | 
|  | /// \param Accum - The accumulating classification. This should | 
|  | /// always be either NoClass or the result of a previous merge | 
|  | /// call. In addition, this should never be Memory (the caller | 
|  | /// should just return Memory for the aggregate). | 
|  | static Class merge(Class Accum, Class Field); | 
|  |  | 
|  | /// postMerge - Implement the X86_64 ABI post merging algorithm. | 
|  | /// | 
|  | /// Post merger cleanup, reduces a malformed Hi and Lo pair to | 
|  | /// final MEMORY or SSE classes when necessary. | 
|  | /// | 
|  | /// \param AggregateSize - The size of the current aggregate in | 
|  | /// the classification process. | 
|  | /// | 
|  | /// \param Lo - The classification for the parts of the type | 
|  | /// residing in the low word of the containing object. | 
|  | /// | 
|  | /// \param Hi - The classification for the parts of the type | 
|  | /// residing in the higher words of the containing object. | 
|  | /// | 
|  | void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; | 
|  |  | 
|  | /// classify - Determine the x86_64 register classes in which the | 
|  | /// given type T should be passed. | 
|  | /// | 
|  | /// \param Lo - The classification for the parts of the type | 
|  | /// residing in the low word of the containing object. | 
|  | /// | 
|  | /// \param Hi - The classification for the parts of the type | 
|  | /// residing in the high word of the containing object. | 
|  | /// | 
|  | /// \param OffsetBase - The bit offset of this type in the | 
|  | /// containing object.  Some parameters are classified different | 
|  | /// depending on whether they straddle an eightbyte boundary. | 
|  | /// | 
|  | /// \param isNamedArg - Whether the argument in question is a "named" | 
|  | /// argument, as used in AMD64-ABI 3.5.7. | 
|  | /// | 
|  | /// If a word is unused its result will be NoClass; if a type should | 
|  | /// be passed in Memory then at least the classification of \arg Lo | 
|  | /// will be Memory. | 
|  | /// | 
|  | /// The \arg Lo class will be NoClass iff the argument is ignored. | 
|  | /// | 
|  | /// If the \arg Lo class is ComplexX87, then the \arg Hi class will | 
|  | /// also be ComplexX87. | 
|  | void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, | 
|  | bool isNamedArg) const; | 
|  |  | 
|  | llvm::Type *GetByteVectorType(QualType Ty) const; | 
|  | llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, | 
|  | unsigned IROffset, QualType SourceTy, | 
|  | unsigned SourceOffset) const; | 
|  | llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, | 
|  | unsigned IROffset, QualType SourceTy, | 
|  | unsigned SourceOffset) const; | 
|  |  | 
|  | /// getIndirectResult - Give a source type \arg Ty, return a suitable result | 
|  | /// such that the argument will be returned in memory. | 
|  | ABIArgInfo getIndirectReturnResult(QualType Ty) const; | 
|  |  | 
|  | /// getIndirectResult - Give a source type \arg Ty, return a suitable result | 
|  | /// such that the argument will be passed in memory. | 
|  | /// | 
|  | /// \param freeIntRegs - The number of free integer registers remaining | 
|  | /// available. | 
|  | ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; | 
|  |  | 
|  | ABIArgInfo classifyReturnType(QualType RetTy) const; | 
|  |  | 
|  | ABIArgInfo classifyArgumentType(QualType Ty, | 
|  | unsigned freeIntRegs, | 
|  | unsigned &neededInt, | 
|  | unsigned &neededSSE, | 
|  | bool isNamedArg) const; | 
|  |  | 
|  | bool IsIllegalVectorType(QualType Ty) const; | 
|  |  | 
|  | /// The 0.98 ABI revision clarified a lot of ambiguities, | 
|  | /// unfortunately in ways that were not always consistent with | 
|  | /// certain previous compilers.  In particular, platforms which | 
|  | /// required strict binary compatibility with older versions of GCC | 
|  | /// may need to exempt themselves. | 
|  | bool honorsRevision0_98() const { | 
|  | return !getTarget().getTriple().isOSDarwin(); | 
|  | } | 
|  |  | 
|  | /// GCC classifies <1 x long long> as SSE but compatibility with older clang | 
|  | // compilers require us to classify it as INTEGER. | 
|  | bool classifyIntegerMMXAsSSE() const { | 
|  | const llvm::Triple &Triple = getTarget().getTriple(); | 
|  | if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) | 
|  | return false; | 
|  | if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | X86AVXABILevel AVXLevel; | 
|  | // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on | 
|  | // 64-bit hardware. | 
|  | bool Has64BitPointers; | 
|  |  | 
|  | public: | 
|  | X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : | 
|  | SwiftABIInfo(CGT), AVXLevel(AVXLevel), | 
|  | Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { | 
|  | } | 
|  |  | 
|  | bool isPassedUsingAVXType(QualType type) const { | 
|  | unsigned neededInt, neededSSE; | 
|  | // The freeIntRegs argument doesn't matter here. | 
|  | ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, | 
|  | /*isNamedArg*/true); | 
|  | if (info.isDirect()) { | 
|  | llvm::Type *ty = info.getCoerceToType(); | 
|  | if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) | 
|  | return (vectorTy->getBitWidth() > 128); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void computeInfo(CGFunctionInfo &FI) const override; | 
|  |  | 
|  | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const override; | 
|  | Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const override; | 
|  |  | 
|  | bool has64BitPointers() const { | 
|  | return Has64BitPointers; | 
|  | } | 
|  |  | 
|  | bool shouldPassIndirectlyForSwift(CharUnits totalSize, | 
|  | ArrayRef<llvm::Type*> scalars, | 
|  | bool asReturnValue) const override { | 
|  | return occupiesMoreThan(CGT, scalars, /*total*/ 4); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// WinX86_64ABIInfo - The Windows X86_64 ABI information. | 
|  | class WinX86_64ABIInfo : public ABIInfo { | 
|  | public: | 
|  | WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) | 
|  | : ABIInfo(CGT), | 
|  | IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} | 
|  |  | 
|  | void computeInfo(CGFunctionInfo &FI) const override; | 
|  |  | 
|  | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const override; | 
|  |  | 
|  | bool isHomogeneousAggregateBaseType(QualType Ty) const override { | 
|  | // FIXME: Assumes vectorcall is in use. | 
|  | return isX86VectorTypeForVectorCall(getContext(), Ty); | 
|  | } | 
|  |  | 
|  | bool isHomogeneousAggregateSmallEnough(const Type *Ty, | 
|  | uint64_t NumMembers) const override { | 
|  | // FIXME: Assumes vectorcall is in use. | 
|  | return isX86VectorCallAggregateSmallEnough(NumMembers); | 
|  | } | 
|  |  | 
|  | private: | 
|  | ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, | 
|  | bool IsReturnType) const; | 
|  |  | 
|  | bool IsMingw64; | 
|  | }; | 
|  |  | 
|  | class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { | 
|  | public: | 
|  | X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) | 
|  | : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} | 
|  |  | 
|  | const X86_64ABIInfo &getABIInfo() const { | 
|  | return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); | 
|  | } | 
|  |  | 
|  | int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { | 
|  | return 7; | 
|  | } | 
|  |  | 
|  | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, | 
|  | llvm::Value *Address) const override { | 
|  | llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); | 
|  |  | 
|  | // 0-15 are the 16 integer registers. | 
|  | // 16 is %rip. | 
|  | AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, | 
|  | StringRef Constraint, | 
|  | llvm::Type* Ty) const override { | 
|  | return X86AdjustInlineAsmType(CGF, Constraint, Ty); | 
|  | } | 
|  |  | 
|  | bool isNoProtoCallVariadic(const CallArgList &args, | 
|  | const FunctionNoProtoType *fnType) const override { | 
|  | // The default CC on x86-64 sets %al to the number of SSA | 
|  | // registers used, and GCC sets this when calling an unprototyped | 
|  | // function, so we override the default behavior.  However, don't do | 
|  | // that when AVX types are involved: the ABI explicitly states it is | 
|  | // undefined, and it doesn't work in practice because of how the ABI | 
|  | // defines varargs anyway. | 
|  | if (fnType->getCallConv() == CC_C) { | 
|  | bool HasAVXType = false; | 
|  | for (CallArgList::const_iterator | 
|  | it = args.begin(), ie = args.end(); it != ie; ++it) { | 
|  | if (getABIInfo().isPassedUsingAVXType(it->Ty)) { | 
|  | HasAVXType = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!HasAVXType) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); | 
|  | } | 
|  |  | 
|  | llvm::Constant * | 
|  | getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { | 
|  | unsigned Sig; | 
|  | if (getABIInfo().has64BitPointers()) | 
|  | Sig = (0xeb << 0) |  // jmp rel8 | 
|  | (0x0a << 8) |  //           .+0x0c | 
|  | ('F' << 16) | | 
|  | ('T' << 24); | 
|  | else | 
|  | Sig = (0xeb << 0) |  // jmp rel8 | 
|  | (0x06 << 8) |  //           .+0x08 | 
|  | ('F' << 16) | | 
|  | ('T' << 24); | 
|  | return llvm::ConstantInt::get(CGM.Int32Ty, Sig); | 
|  | } | 
|  |  | 
|  | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, | 
|  | CodeGen::CodeGenModule &CGM) const override { | 
|  | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { | 
|  | if (FD->hasAttr<AnyX86InterruptAttr>()) { | 
|  | llvm::Function *Fn = cast<llvm::Function>(GV); | 
|  | Fn->setCallingConv(llvm::CallingConv::X86_INTR); | 
|  | } | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { | 
|  | public: | 
|  | PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) | 
|  | : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} | 
|  |  | 
|  | void getDependentLibraryOption(llvm::StringRef Lib, | 
|  | llvm::SmallString<24> &Opt) const override { | 
|  | Opt = "\01"; | 
|  | // If the argument contains a space, enclose it in quotes. | 
|  | if (Lib.find(" ") != StringRef::npos) | 
|  | Opt += "\"" + Lib.str() + "\""; | 
|  | else | 
|  | Opt += Lib; | 
|  | } | 
|  | }; | 
|  |  | 
|  | static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { | 
|  | // If the argument does not end in .lib, automatically add the suffix. | 
|  | // If the argument contains a space, enclose it in quotes. | 
|  | // This matches the behavior of MSVC. | 
|  | bool Quote = (Lib.find(" ") != StringRef::npos); | 
|  | std::string ArgStr = Quote ? "\"" : ""; | 
|  | ArgStr += Lib; | 
|  | if (!Lib.endswith_lower(".lib")) | 
|  | ArgStr += ".lib"; | 
|  | ArgStr += Quote ? "\"" : ""; | 
|  | return ArgStr; | 
|  | } | 
|  |  | 
|  | class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { | 
|  | public: | 
|  | WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, | 
|  | bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, | 
|  | unsigned NumRegisterParameters) | 
|  | : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, | 
|  | Win32StructABI, NumRegisterParameters, false) {} | 
|  |  | 
|  | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, | 
|  | CodeGen::CodeGenModule &CGM) const override; | 
|  |  | 
|  | void getDependentLibraryOption(llvm::StringRef Lib, | 
|  | llvm::SmallString<24> &Opt) const override { | 
|  | Opt = "/DEFAULTLIB:"; | 
|  | Opt += qualifyWindowsLibrary(Lib); | 
|  | } | 
|  |  | 
|  | void getDetectMismatchOption(llvm::StringRef Name, | 
|  | llvm::StringRef Value, | 
|  | llvm::SmallString<32> &Opt) const override { | 
|  | Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; | 
|  | } | 
|  | }; | 
|  |  | 
|  | static void addStackProbeSizeTargetAttribute(const Decl *D, | 
|  | llvm::GlobalValue *GV, | 
|  | CodeGen::CodeGenModule &CGM) { | 
|  | if (D && isa<FunctionDecl>(D)) { | 
|  | if (CGM.getCodeGenOpts().StackProbeSize != 4096) { | 
|  | llvm::Function *Fn = cast<llvm::Function>(GV); | 
|  |  | 
|  | Fn->addFnAttr("stack-probe-size", | 
|  | llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, | 
|  | llvm::GlobalValue *GV, | 
|  | CodeGen::CodeGenModule &CGM) const { | 
|  | X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); | 
|  |  | 
|  | addStackProbeSizeTargetAttribute(D, GV, CGM); | 
|  | } | 
|  |  | 
|  | class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { | 
|  | public: | 
|  | WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, | 
|  | X86AVXABILevel AVXLevel) | 
|  | : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} | 
|  |  | 
|  | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, | 
|  | CodeGen::CodeGenModule &CGM) const override; | 
|  |  | 
|  | int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { | 
|  | return 7; | 
|  | } | 
|  |  | 
|  | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, | 
|  | llvm::Value *Address) const override { | 
|  | llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); | 
|  |  | 
|  | // 0-15 are the 16 integer registers. | 
|  | // 16 is %rip. | 
|  | AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void getDependentLibraryOption(llvm::StringRef Lib, | 
|  | llvm::SmallString<24> &Opt) const override { | 
|  | Opt = "/DEFAULTLIB:"; | 
|  | Opt += qualifyWindowsLibrary(Lib); | 
|  | } | 
|  |  | 
|  | void getDetectMismatchOption(llvm::StringRef Name, | 
|  | llvm::StringRef Value, | 
|  | llvm::SmallString<32> &Opt) const override { | 
|  | Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; | 
|  | } | 
|  | }; | 
|  |  | 
|  | void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D, | 
|  | llvm::GlobalValue *GV, | 
|  | CodeGen::CodeGenModule &CGM) const { | 
|  | TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); | 
|  |  | 
|  | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { | 
|  | if (FD->hasAttr<AnyX86InterruptAttr>()) { | 
|  | llvm::Function *Fn = cast<llvm::Function>(GV); | 
|  | Fn->setCallingConv(llvm::CallingConv::X86_INTR); | 
|  | } | 
|  | } | 
|  |  | 
|  | addStackProbeSizeTargetAttribute(D, GV, CGM); | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, | 
|  | Class &Hi) const { | 
|  | // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: | 
|  | // | 
|  | // (a) If one of the classes is Memory, the whole argument is passed in | 
|  | //     memory. | 
|  | // | 
|  | // (b) If X87UP is not preceded by X87, the whole argument is passed in | 
|  | //     memory. | 
|  | // | 
|  | // (c) If the size of the aggregate exceeds two eightbytes and the first | 
|  | //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole | 
|  | //     argument is passed in memory. NOTE: This is necessary to keep the | 
|  | //     ABI working for processors that don't support the __m256 type. | 
|  | // | 
|  | // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. | 
|  | // | 
|  | // Some of these are enforced by the merging logic.  Others can arise | 
|  | // only with unions; for example: | 
|  | //   union { _Complex double; unsigned; } | 
|  | // | 
|  | // Note that clauses (b) and (c) were added in 0.98. | 
|  | // | 
|  | if (Hi == Memory) | 
|  | Lo = Memory; | 
|  | if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) | 
|  | Lo = Memory; | 
|  | if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) | 
|  | Lo = Memory; | 
|  | if (Hi == SSEUp && Lo != SSE) | 
|  | Hi = SSE; | 
|  | } | 
|  |  | 
|  | X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { | 
|  | // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is | 
|  | // classified recursively so that always two fields are | 
|  | // considered. The resulting class is calculated according to | 
|  | // the classes of the fields in the eightbyte: | 
|  | // | 
|  | // (a) If both classes are equal, this is the resulting class. | 
|  | // | 
|  | // (b) If one of the classes is NO_CLASS, the resulting class is | 
|  | // the other class. | 
|  | // | 
|  | // (c) If one of the classes is MEMORY, the result is the MEMORY | 
|  | // class. | 
|  | // | 
|  | // (d) If one of the classes is INTEGER, the result is the | 
|  | // INTEGER. | 
|  | // | 
|  | // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, | 
|  | // MEMORY is used as class. | 
|  | // | 
|  | // (f) Otherwise class SSE is used. | 
|  |  | 
|  | // Accum should never be memory (we should have returned) or | 
|  | // ComplexX87 (because this cannot be passed in a structure). | 
|  | assert((Accum != Memory && Accum != ComplexX87) && | 
|  | "Invalid accumulated classification during merge."); | 
|  | if (Accum == Field || Field == NoClass) | 
|  | return Accum; | 
|  | if (Field == Memory) | 
|  | return Memory; | 
|  | if (Accum == NoClass) | 
|  | return Field; | 
|  | if (Accum == Integer || Field == Integer) | 
|  | return Integer; | 
|  | if (Field == X87 || Field == X87Up || Field == ComplexX87 || | 
|  | Accum == X87 || Accum == X87Up) | 
|  | return Memory; | 
|  | return SSE; | 
|  | } | 
|  |  | 
|  | void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, | 
|  | Class &Lo, Class &Hi, bool isNamedArg) const { | 
|  | // FIXME: This code can be simplified by introducing a simple value class for | 
|  | // Class pairs with appropriate constructor methods for the various | 
|  | // situations. | 
|  |  | 
|  | // FIXME: Some of the split computations are wrong; unaligned vectors | 
|  | // shouldn't be passed in registers for example, so there is no chance they | 
|  | // can straddle an eightbyte. Verify & simplify. | 
|  |  | 
|  | Lo = Hi = NoClass; | 
|  |  | 
|  | Class &Current = OffsetBase < 64 ? Lo : Hi; | 
|  | Current = Memory; | 
|  |  | 
|  | if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { | 
|  | BuiltinType::Kind k = BT->getKind(); | 
|  |  | 
|  | if (k == BuiltinType::Void) { | 
|  | Current = NoClass; | 
|  | } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { | 
|  | Lo = Integer; | 
|  | Hi = Integer; | 
|  | } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { | 
|  | Current = Integer; | 
|  | } else if (k == BuiltinType::Float || k == BuiltinType::Double) { | 
|  | Current = SSE; | 
|  | } else if (k == BuiltinType::LongDouble) { | 
|  | const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); | 
|  | if (LDF == &llvm::APFloat::IEEEquad) { | 
|  | Lo = SSE; | 
|  | Hi = SSEUp; | 
|  | } else if (LDF == &llvm::APFloat::x87DoubleExtended) { | 
|  | Lo = X87; | 
|  | Hi = X87Up; | 
|  | } else if (LDF == &llvm::APFloat::IEEEdouble) { | 
|  | Current = SSE; | 
|  | } else | 
|  | llvm_unreachable("unexpected long double representation!"); | 
|  | } | 
|  | // FIXME: _Decimal32 and _Decimal64 are SSE. | 
|  | // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const EnumType *ET = Ty->getAs<EnumType>()) { | 
|  | // Classify the underlying integer type. | 
|  | classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Ty->hasPointerRepresentation()) { | 
|  | Current = Integer; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Ty->isMemberPointerType()) { | 
|  | if (Ty->isMemberFunctionPointerType()) { | 
|  | if (Has64BitPointers) { | 
|  | // If Has64BitPointers, this is an {i64, i64}, so classify both | 
|  | // Lo and Hi now. | 
|  | Lo = Hi = Integer; | 
|  | } else { | 
|  | // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that | 
|  | // straddles an eightbyte boundary, Hi should be classified as well. | 
|  | uint64_t EB_FuncPtr = (OffsetBase) / 64; | 
|  | uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; | 
|  | if (EB_FuncPtr != EB_ThisAdj) { | 
|  | Lo = Hi = Integer; | 
|  | } else { | 
|  | Current = Integer; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | Current = Integer; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const VectorType *VT = Ty->getAs<VectorType>()) { | 
|  | uint64_t Size = getContext().getTypeSize(VT); | 
|  | if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { | 
|  | // gcc passes the following as integer: | 
|  | // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> | 
|  | // 2 bytes - <2 x char>, <1 x short> | 
|  | // 1 byte  - <1 x char> | 
|  | Current = Integer; | 
|  |  | 
|  | // If this type crosses an eightbyte boundary, it should be | 
|  | // split. | 
|  | uint64_t EB_Lo = (OffsetBase) / 64; | 
|  | uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; | 
|  | if (EB_Lo != EB_Hi) | 
|  | Hi = Lo; | 
|  | } else if (Size == 64) { | 
|  | QualType ElementType = VT->getElementType(); | 
|  |  | 
|  | // gcc passes <1 x double> in memory. :( | 
|  | if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) | 
|  | return; | 
|  |  | 
|  | // gcc passes <1 x long long> as SSE but clang used to unconditionally | 
|  | // pass them as integer.  For platforms where clang is the de facto | 
|  | // platform compiler, we must continue to use integer. | 
|  | if (!classifyIntegerMMXAsSSE() && | 
|  | (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || | 
|  | ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || | 
|  | ElementType->isSpecificBuiltinType(BuiltinType::Long) || | 
|  | ElementType->isSpecificBuiltinType(BuiltinType::ULong))) | 
|  | Current = Integer; | 
|  | else | 
|  | Current = SSE; | 
|  |  | 
|  | // If this type crosses an eightbyte boundary, it should be | 
|  | // split. | 
|  | if (OffsetBase && OffsetBase != 64) | 
|  | Hi = Lo; | 
|  | } else if (Size == 128 || | 
|  | (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { | 
|  | // Arguments of 256-bits are split into four eightbyte chunks. The | 
|  | // least significant one belongs to class SSE and all the others to class | 
|  | // SSEUP. The original Lo and Hi design considers that types can't be | 
|  | // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. | 
|  | // This design isn't correct for 256-bits, but since there're no cases | 
|  | // where the upper parts would need to be inspected, avoid adding | 
|  | // complexity and just consider Hi to match the 64-256 part. | 
|  | // | 
|  | // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in | 
|  | // registers if they are "named", i.e. not part of the "..." of a | 
|  | // variadic function. | 
|  | // | 
|  | // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are | 
|  | // split into eight eightbyte chunks, one SSE and seven SSEUP. | 
|  | Lo = SSE; | 
|  | Hi = SSEUp; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const ComplexType *CT = Ty->getAs<ComplexType>()) { | 
|  | QualType ET = getContext().getCanonicalType(CT->getElementType()); | 
|  |  | 
|  | uint64_t Size = getContext().getTypeSize(Ty); | 
|  | if (ET->isIntegralOrEnumerationType()) { | 
|  | if (Size <= 64) | 
|  | Current = Integer; | 
|  | else if (Size <= 128) | 
|  | Lo = Hi = Integer; | 
|  | } else if (ET == getContext().FloatTy) { | 
|  | Current = SSE; | 
|  | } else if (ET == getContext().DoubleTy) { | 
|  | Lo = Hi = SSE; | 
|  | } else if (ET == getContext().LongDoubleTy) { | 
|  | const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); | 
|  | if (LDF == &llvm::APFloat::IEEEquad) | 
|  | Current = Memory; | 
|  | else if (LDF == &llvm::APFloat::x87DoubleExtended) | 
|  | Current = ComplexX87; | 
|  | else if (LDF == &llvm::APFloat::IEEEdouble) | 
|  | Lo = Hi = SSE; | 
|  | else | 
|  | llvm_unreachable("unexpected long double representation!"); | 
|  | } | 
|  |  | 
|  | // If this complex type crosses an eightbyte boundary then it | 
|  | // should be split. | 
|  | uint64_t EB_Real = (OffsetBase) / 64; | 
|  | uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; | 
|  | if (Hi == NoClass && EB_Real != EB_Imag) | 
|  | Hi = Lo; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { | 
|  | // Arrays are treated like structures. | 
|  |  | 
|  | uint64_t Size = getContext().getTypeSize(Ty); | 
|  |  | 
|  | // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger | 
|  | // than four eightbytes, ..., it has class MEMORY. | 
|  | if (Size > 256) | 
|  | return; | 
|  |  | 
|  | // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned | 
|  | // fields, it has class MEMORY. | 
|  | // | 
|  | // Only need to check alignment of array base. | 
|  | if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) | 
|  | return; | 
|  |  | 
|  | // Otherwise implement simplified merge. We could be smarter about | 
|  | // this, but it isn't worth it and would be harder to verify. | 
|  | Current = NoClass; | 
|  | uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); | 
|  | uint64_t ArraySize = AT->getSize().getZExtValue(); | 
|  |  | 
|  | // The only case a 256-bit wide vector could be used is when the array | 
|  | // contains a single 256-bit element. Since Lo and Hi logic isn't extended | 
|  | // to work for sizes wider than 128, early check and fallback to memory. | 
|  | if (Size > 128 && EltSize != 256) | 
|  | return; | 
|  |  | 
|  | for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { | 
|  | Class FieldLo, FieldHi; | 
|  | classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); | 
|  | Lo = merge(Lo, FieldLo); | 
|  | Hi = merge(Hi, FieldHi); | 
|  | if (Lo == Memory || Hi == Memory) | 
|  | break; | 
|  | } | 
|  |  | 
|  | postMerge(Size, Lo, Hi); | 
|  | assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const RecordType *RT = Ty->getAs<RecordType>()) { | 
|  | uint64_t Size = getContext().getTypeSize(Ty); | 
|  |  | 
|  | // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger | 
|  | // than four eightbytes, ..., it has class MEMORY. | 
|  | if (Size > 256) | 
|  | return; | 
|  |  | 
|  | // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial | 
|  | // copy constructor or a non-trivial destructor, it is passed by invisible | 
|  | // reference. | 
|  | if (getRecordArgABI(RT, getCXXABI())) | 
|  | return; | 
|  |  | 
|  | const RecordDecl *RD = RT->getDecl(); | 
|  |  | 
|  | // Assume variable sized types are passed in memory. | 
|  | if (RD->hasFlexibleArrayMember()) | 
|  | return; | 
|  |  | 
|  | const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); | 
|  |  | 
|  | // Reset Lo class, this will be recomputed. | 
|  | Current = NoClass; | 
|  |  | 
|  | // If this is a C++ record, classify the bases first. | 
|  | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { | 
|  | for (const auto &I : CXXRD->bases()) { | 
|  | assert(!I.isVirtual() && !I.getType()->isDependentType() && | 
|  | "Unexpected base class!"); | 
|  | const CXXRecordDecl *Base = | 
|  | cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); | 
|  |  | 
|  | // Classify this field. | 
|  | // | 
|  | // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a | 
|  | // single eightbyte, each is classified separately. Each eightbyte gets | 
|  | // initialized to class NO_CLASS. | 
|  | Class FieldLo, FieldHi; | 
|  | uint64_t Offset = | 
|  | OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); | 
|  | classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); | 
|  | Lo = merge(Lo, FieldLo); | 
|  | Hi = merge(Hi, FieldHi); | 
|  | if (Lo == Memory || Hi == Memory) { | 
|  | postMerge(Size, Lo, Hi); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Classify the fields one at a time, merging the results. | 
|  | unsigned idx = 0; | 
|  | for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); | 
|  | i != e; ++i, ++idx) { | 
|  | uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); | 
|  | bool BitField = i->isBitField(); | 
|  |  | 
|  | // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than | 
|  | // four eightbytes, or it contains unaligned fields, it has class MEMORY. | 
|  | // | 
|  | // The only case a 256-bit wide vector could be used is when the struct | 
|  | // contains a single 256-bit element. Since Lo and Hi logic isn't extended | 
|  | // to work for sizes wider than 128, early check and fallback to memory. | 
|  | // | 
|  | if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { | 
|  | Lo = Memory; | 
|  | postMerge(Size, Lo, Hi); | 
|  | return; | 
|  | } | 
|  | // Note, skip this test for bit-fields, see below. | 
|  | if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { | 
|  | Lo = Memory; | 
|  | postMerge(Size, Lo, Hi); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Classify this field. | 
|  | // | 
|  | // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate | 
|  | // exceeds a single eightbyte, each is classified | 
|  | // separately. Each eightbyte gets initialized to class | 
|  | // NO_CLASS. | 
|  | Class FieldLo, FieldHi; | 
|  |  | 
|  | // Bit-fields require special handling, they do not force the | 
|  | // structure to be passed in memory even if unaligned, and | 
|  | // therefore they can straddle an eightbyte. | 
|  | if (BitField) { | 
|  | // Ignore padding bit-fields. | 
|  | if (i->isUnnamedBitfield()) | 
|  | continue; | 
|  |  | 
|  | uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); | 
|  | uint64_t Size = i->getBitWidthValue(getContext()); | 
|  |  | 
|  | uint64_t EB_Lo = Offset / 64; | 
|  | uint64_t EB_Hi = (Offset + Size - 1) / 64; | 
|  |  | 
|  | if (EB_Lo) { | 
|  | assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); | 
|  | FieldLo = NoClass; | 
|  | FieldHi = Integer; | 
|  | } else { | 
|  | FieldLo = Integer; | 
|  | FieldHi = EB_Hi ? Integer : NoClass; | 
|  | } | 
|  | } else | 
|  | classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); | 
|  | Lo = merge(Lo, FieldLo); | 
|  | Hi = merge(Hi, FieldHi); | 
|  | if (Lo == Memory || Hi == Memory) | 
|  | break; | 
|  | } | 
|  |  | 
|  | postMerge(Size, Lo, Hi); | 
|  | } | 
|  | } | 
|  |  | 
|  | ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { | 
|  | // If this is a scalar LLVM value then assume LLVM will pass it in the right | 
|  | // place naturally. | 
|  | if (!isAggregateTypeForABI(Ty)) { | 
|  | // Treat an enum type as its underlying type. | 
|  | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) | 
|  | Ty = EnumTy->getDecl()->getIntegerType(); | 
|  |  | 
|  | return (Ty->isPromotableIntegerType() ? | 
|  | ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); | 
|  | } | 
|  |  | 
|  | return getNaturalAlignIndirect(Ty); | 
|  | } | 
|  |  | 
|  | bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { | 
|  | if (const VectorType *VecTy = Ty->getAs<VectorType>()) { | 
|  | uint64_t Size = getContext().getTypeSize(VecTy); | 
|  | unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); | 
|  | if (Size <= 64 || Size > LargestVector) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, | 
|  | unsigned freeIntRegs) const { | 
|  | // If this is a scalar LLVM value then assume LLVM will pass it in the right | 
|  | // place naturally. | 
|  | // | 
|  | // This assumption is optimistic, as there could be free registers available | 
|  | // when we need to pass this argument in memory, and LLVM could try to pass | 
|  | // the argument in the free register. This does not seem to happen currently, | 
|  | // but this code would be much safer if we could mark the argument with | 
|  | // 'onstack'. See PR12193. | 
|  | if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { | 
|  | // Treat an enum type as its underlying type. | 
|  | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) | 
|  | Ty = EnumTy->getDecl()->getIntegerType(); | 
|  |  | 
|  | return (Ty->isPromotableIntegerType() ? | 
|  | ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); | 
|  | } | 
|  |  | 
|  | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) | 
|  | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); | 
|  |  | 
|  | // Compute the byval alignment. We specify the alignment of the byval in all | 
|  | // cases so that the mid-level optimizer knows the alignment of the byval. | 
|  | unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); | 
|  |  | 
|  | // Attempt to avoid passing indirect results using byval when possible. This | 
|  | // is important for good codegen. | 
|  | // | 
|  | // We do this by coercing the value into a scalar type which the backend can | 
|  | // handle naturally (i.e., without using byval). | 
|  | // | 
|  | // For simplicity, we currently only do this when we have exhausted all of the | 
|  | // free integer registers. Doing this when there are free integer registers | 
|  | // would require more care, as we would have to ensure that the coerced value | 
|  | // did not claim the unused register. That would require either reording the | 
|  | // arguments to the function (so that any subsequent inreg values came first), | 
|  | // or only doing this optimization when there were no following arguments that | 
|  | // might be inreg. | 
|  | // | 
|  | // We currently expect it to be rare (particularly in well written code) for | 
|  | // arguments to be passed on the stack when there are still free integer | 
|  | // registers available (this would typically imply large structs being passed | 
|  | // by value), so this seems like a fair tradeoff for now. | 
|  | // | 
|  | // We can revisit this if the backend grows support for 'onstack' parameter | 
|  | // attributes. See PR12193. | 
|  | if (freeIntRegs == 0) { | 
|  | uint64_t Size = getContext().getTypeSize(Ty); | 
|  |  | 
|  | // If this type fits in an eightbyte, coerce it into the matching integral | 
|  | // type, which will end up on the stack (with alignment 8). | 
|  | if (Align == 8 && Size <= 64) | 
|  | return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), | 
|  | Size)); | 
|  | } | 
|  |  | 
|  | return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); | 
|  | } | 
|  |  | 
|  | /// The ABI specifies that a value should be passed in a full vector XMM/YMM | 
|  | /// register. Pick an LLVM IR type that will be passed as a vector register. | 
|  | llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { | 
|  | // Wrapper structs/arrays that only contain vectors are passed just like | 
|  | // vectors; strip them off if present. | 
|  | if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) | 
|  | Ty = QualType(InnerTy, 0); | 
|  |  | 
|  | llvm::Type *IRType = CGT.ConvertType(Ty); | 
|  | if (isa<llvm::VectorType>(IRType) || | 
|  | IRType->getTypeID() == llvm::Type::FP128TyID) | 
|  | return IRType; | 
|  |  | 
|  | // We couldn't find the preferred IR vector type for 'Ty'. | 
|  | uint64_t Size = getContext().getTypeSize(Ty); | 
|  | assert((Size == 128 || Size == 256) && "Invalid type found!"); | 
|  |  | 
|  | // Return a LLVM IR vector type based on the size of 'Ty'. | 
|  | return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), | 
|  | Size / 64); | 
|  | } | 
|  |  | 
|  | /// BitsContainNoUserData - Return true if the specified [start,end) bit range | 
|  | /// is known to either be off the end of the specified type or being in | 
|  | /// alignment padding.  The user type specified is known to be at most 128 bits | 
|  | /// in size, and have passed through X86_64ABIInfo::classify with a successful | 
|  | /// classification that put one of the two halves in the INTEGER class. | 
|  | /// | 
|  | /// It is conservatively correct to return false. | 
|  | static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, | 
|  | unsigned EndBit, ASTContext &Context) { | 
|  | // If the bytes being queried are off the end of the type, there is no user | 
|  | // data hiding here.  This handles analysis of builtins, vectors and other | 
|  | // types that don't contain interesting padding. | 
|  | unsigned TySize = (unsigned)Context.getTypeSize(Ty); | 
|  | if (TySize <= StartBit) | 
|  | return true; | 
|  |  | 
|  | if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { | 
|  | unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); | 
|  | unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); | 
|  |  | 
|  | // Check each element to see if the element overlaps with the queried range. | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | // If the element is after the span we care about, then we're done.. | 
|  | unsigned EltOffset = i*EltSize; | 
|  | if (EltOffset >= EndBit) break; | 
|  |  | 
|  | unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; | 
|  | if (!BitsContainNoUserData(AT->getElementType(), EltStart, | 
|  | EndBit-EltOffset, Context)) | 
|  | return false; | 
|  | } | 
|  | // If it overlaps no elements, then it is safe to process as padding. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (const RecordType *RT = Ty->getAs<RecordType>()) { | 
|  | const RecordDecl *RD = RT->getDecl(); | 
|  | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); | 
|  |  | 
|  | // If this is a C++ record, check the bases first. | 
|  | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { | 
|  | for (const auto &I : CXXRD->bases()) { | 
|  | assert(!I.isVirtual() && !I.getType()->isDependentType() && | 
|  | "Unexpected base class!"); | 
|  | const CXXRecordDecl *Base = | 
|  | cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); | 
|  |  | 
|  | // If the base is after the span we care about, ignore it. | 
|  | unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); | 
|  | if (BaseOffset >= EndBit) continue; | 
|  |  | 
|  | unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; | 
|  | if (!BitsContainNoUserData(I.getType(), BaseStart, | 
|  | EndBit-BaseOffset, Context)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Verify that no field has data that overlaps the region of interest.  Yes | 
|  | // this could be sped up a lot by being smarter about queried fields, | 
|  | // however we're only looking at structs up to 16 bytes, so we don't care | 
|  | // much. | 
|  | unsigned idx = 0; | 
|  | for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); | 
|  | i != e; ++i, ++idx) { | 
|  | unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); | 
|  |  | 
|  | // If we found a field after the region we care about, then we're done. | 
|  | if (FieldOffset >= EndBit) break; | 
|  |  | 
|  | unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; | 
|  | if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, | 
|  | Context)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If nothing in this record overlapped the area of interest, then we're | 
|  | // clean. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a | 
|  | /// float member at the specified offset.  For example, {int,{float}} has a | 
|  | /// float at offset 4.  It is conservatively correct for this routine to return | 
|  | /// false. | 
|  | static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, | 
|  | const llvm::DataLayout &TD) { | 
|  | // Base case if we find a float. | 
|  | if (IROffset == 0 && IRType->isFloatTy()) | 
|  | return true; | 
|  |  | 
|  | // If this is a struct, recurse into the field at the specified offset. | 
|  | if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { | 
|  | const llvm::StructLayout *SL = TD.getStructLayout(STy); | 
|  | unsigned Elt = SL->getElementContainingOffset(IROffset); | 
|  | IROffset -= SL->getElementOffset(Elt); | 
|  | return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); | 
|  | } | 
|  |  | 
|  | // If this is an array, recurse into the field at the specified offset. | 
|  | if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { | 
|  | llvm::Type *EltTy = ATy->getElementType(); | 
|  | unsigned EltSize = TD.getTypeAllocSize(EltTy); | 
|  | IROffset -= IROffset/EltSize*EltSize; | 
|  | return ContainsFloatAtOffset(EltTy, IROffset, TD); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the | 
|  | /// low 8 bytes of an XMM register, corresponding to the SSE class. | 
|  | llvm::Type *X86_64ABIInfo:: | 
|  | GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, | 
|  | QualType SourceTy, unsigned SourceOffset) const { | 
|  | // The only three choices we have are either double, <2 x float>, or float. We | 
|  | // pass as float if the last 4 bytes is just padding.  This happens for | 
|  | // structs that contain 3 floats. | 
|  | if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, | 
|  | SourceOffset*8+64, getContext())) | 
|  | return llvm::Type::getFloatTy(getVMContext()); | 
|  |  | 
|  | // We want to pass as <2 x float> if the LLVM IR type contains a float at | 
|  | // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the | 
|  | // case. | 
|  | if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && | 
|  | ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) | 
|  | return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); | 
|  |  | 
|  | return llvm::Type::getDoubleTy(getVMContext()); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in | 
|  | /// an 8-byte GPR.  This means that we either have a scalar or we are talking | 
|  | /// about the high or low part of an up-to-16-byte struct.  This routine picks | 
|  | /// the best LLVM IR type to represent this, which may be i64 or may be anything | 
|  | /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, | 
|  | /// etc). | 
|  | /// | 
|  | /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for | 
|  | /// the source type.  IROffset is an offset in bytes into the LLVM IR type that | 
|  | /// the 8-byte value references.  PrefType may be null. | 
|  | /// | 
|  | /// SourceTy is the source-level type for the entire argument.  SourceOffset is | 
|  | /// an offset into this that we're processing (which is always either 0 or 8). | 
|  | /// | 
|  | llvm::Type *X86_64ABIInfo:: | 
|  | GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, | 
|  | QualType SourceTy, unsigned SourceOffset) const { | 
|  | // If we're dealing with an un-offset LLVM IR type, then it means that we're | 
|  | // returning an 8-byte unit starting with it.  See if we can safely use it. | 
|  | if (IROffset == 0) { | 
|  | // Pointers and int64's always fill the 8-byte unit. | 
|  | if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || | 
|  | IRType->isIntegerTy(64)) | 
|  | return IRType; | 
|  |  | 
|  | // If we have a 1/2/4-byte integer, we can use it only if the rest of the | 
|  | // goodness in the source type is just tail padding.  This is allowed to | 
|  | // kick in for struct {double,int} on the int, but not on | 
|  | // struct{double,int,int} because we wouldn't return the second int.  We | 
|  | // have to do this analysis on the source type because we can't depend on | 
|  | // unions being lowered a specific way etc. | 
|  | if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || | 
|  | IRType->isIntegerTy(32) || | 
|  | (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { | 
|  | unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : | 
|  | cast<llvm::IntegerType>(IRType)->getBitWidth(); | 
|  |  | 
|  | if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, | 
|  | SourceOffset*8+64, getContext())) | 
|  | return IRType; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { | 
|  | // If this is a struct, recurse into the field at the specified offset. | 
|  | const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); | 
|  | if (IROffset < SL->getSizeInBytes()) { | 
|  | unsigned FieldIdx = SL->getElementContainingOffset(IROffset); | 
|  | IROffset -= SL->getElementOffset(FieldIdx); | 
|  |  | 
|  | return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, | 
|  | SourceTy, SourceOffset); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { | 
|  | llvm::Type *EltTy = ATy->getElementType(); | 
|  | unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); | 
|  | unsigned EltOffset = IROffset/EltSize*EltSize; | 
|  | return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, | 
|  | SourceOffset); | 
|  | } | 
|  |  | 
|  | // Okay, we don't have any better idea of what to pass, so we pass this in an | 
|  | // integer register that isn't too big to fit the rest of the struct. | 
|  | unsigned TySizeInBytes = | 
|  | (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); | 
|  |  | 
|  | assert(TySizeInBytes != SourceOffset && "Empty field?"); | 
|  |  | 
|  | // It is always safe to classify this as an integer type up to i64 that | 
|  | // isn't larger than the structure. | 
|  | return llvm::IntegerType::get(getVMContext(), | 
|  | std::min(TySizeInBytes-SourceOffset, 8U)*8); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally | 
|  | /// be used as elements of a two register pair to pass or return, return a | 
|  | /// first class aggregate to represent them.  For example, if the low part of | 
|  | /// a by-value argument should be passed as i32* and the high part as float, | 
|  | /// return {i32*, float}. | 
|  | static llvm::Type * | 
|  | GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, | 
|  | const llvm::DataLayout &TD) { | 
|  | // In order to correctly satisfy the ABI, we need to the high part to start | 
|  | // at offset 8.  If the high and low parts we inferred are both 4-byte types | 
|  | // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have | 
|  | // the second element at offset 8.  Check for this: | 
|  | unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); | 
|  | unsigned HiAlign = TD.getABITypeAlignment(Hi); | 
|  | unsigned HiStart = llvm::alignTo(LoSize, HiAlign); | 
|  | assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); | 
|  |  | 
|  | // To handle this, we have to increase the size of the low part so that the | 
|  | // second element will start at an 8 byte offset.  We can't increase the size | 
|  | // of the second element because it might make us access off the end of the | 
|  | // struct. | 
|  | if (HiStart != 8) { | 
|  | // There are usually two sorts of types the ABI generation code can produce | 
|  | // for the low part of a pair that aren't 8 bytes in size: float or | 
|  | // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and | 
|  | // NaCl). | 
|  | // Promote these to a larger type. | 
|  | if (Lo->isFloatTy()) | 
|  | Lo = llvm::Type::getDoubleTy(Lo->getContext()); | 
|  | else { | 
|  | assert((Lo->isIntegerTy() || Lo->isPointerTy()) | 
|  | && "Invalid/unknown lo type"); | 
|  | Lo = llvm::Type::getInt64Ty(Lo->getContext()); | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr); | 
|  |  | 
|  |  | 
|  | // Verify that the second element is at an 8-byte offset. | 
|  | assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && | 
|  | "Invalid x86-64 argument pair!"); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | ABIArgInfo X86_64ABIInfo:: | 
|  | classifyReturnType(QualType RetTy) const { | 
|  | // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the | 
|  | // classification algorithm. | 
|  | X86_64ABIInfo::Class Lo, Hi; | 
|  | classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); | 
|  |  | 
|  | // Check some invariants. | 
|  | assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); | 
|  | assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); | 
|  |  | 
|  | llvm::Type *ResType = nullptr; | 
|  | switch (Lo) { | 
|  | case NoClass: | 
|  | if (Hi == NoClass) | 
|  | return ABIArgInfo::getIgnore(); | 
|  | // If the low part is just padding, it takes no register, leave ResType | 
|  | // null. | 
|  | assert((Hi == SSE || Hi == Integer || Hi == X87Up) && | 
|  | "Unknown missing lo part"); | 
|  | break; | 
|  |  | 
|  | case SSEUp: | 
|  | case X87Up: | 
|  | llvm_unreachable("Invalid classification for lo word."); | 
|  |  | 
|  | // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via | 
|  | // hidden argument. | 
|  | case Memory: | 
|  | return getIndirectReturnResult(RetTy); | 
|  |  | 
|  | // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next | 
|  | // available register of the sequence %rax, %rdx is used. | 
|  | case Integer: | 
|  | ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); | 
|  |  | 
|  | // If we have a sign or zero extended integer, make sure to return Extend | 
|  | // so that the parameter gets the right LLVM IR attributes. | 
|  | if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { | 
|  | // Treat an enum type as its underlying type. | 
|  | if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) | 
|  | RetTy = EnumTy->getDecl()->getIntegerType(); | 
|  |  | 
|  | if (RetTy->isIntegralOrEnumerationType() && | 
|  | RetTy->isPromotableIntegerType()) | 
|  | return ABIArgInfo::getExtend(); | 
|  | } | 
|  | break; | 
|  |  | 
|  | // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next | 
|  | // available SSE register of the sequence %xmm0, %xmm1 is used. | 
|  | case SSE: | 
|  | ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); | 
|  | break; | 
|  |  | 
|  | // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is | 
|  | // returned on the X87 stack in %st0 as 80-bit x87 number. | 
|  | case X87: | 
|  | ResType = llvm::Type::getX86_FP80Ty(getVMContext()); | 
|  | break; | 
|  |  | 
|  | // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real | 
|  | // part of the value is returned in %st0 and the imaginary part in | 
|  | // %st1. | 
|  | case ComplexX87: | 
|  | assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); | 
|  | ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), | 
|  | llvm::Type::getX86_FP80Ty(getVMContext()), | 
|  | nullptr); | 
|  | break; | 
|  | } | 
|  |  | 
|  | llvm::Type *HighPart = nullptr; | 
|  | switch (Hi) { | 
|  | // Memory was handled previously and X87 should | 
|  | // never occur as a hi class. | 
|  | case Memory: | 
|  | case X87: | 
|  | llvm_unreachable("Invalid classification for hi word."); | 
|  |  | 
|  | case ComplexX87: // Previously handled. | 
|  | case NoClass: | 
|  | break; | 
|  |  | 
|  | case Integer: | 
|  | HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); | 
|  | if (Lo == NoClass)  // Return HighPart at offset 8 in memory. | 
|  | return ABIArgInfo::getDirect(HighPart, 8); | 
|  | break; | 
|  | case SSE: | 
|  | HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); | 
|  | if (Lo == NoClass)  // Return HighPart at offset 8 in memory. | 
|  | return ABIArgInfo::getDirect(HighPart, 8); | 
|  | break; | 
|  |  | 
|  | // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte | 
|  | // is passed in the next available eightbyte chunk if the last used | 
|  | // vector register. | 
|  | // | 
|  | // SSEUP should always be preceded by SSE, just widen. | 
|  | case SSEUp: | 
|  | assert(Lo == SSE && "Unexpected SSEUp classification."); | 
|  | ResType = GetByteVectorType(RetTy); | 
|  | break; | 
|  |  | 
|  | // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is | 
|  | // returned together with the previous X87 value in %st0. | 
|  | case X87Up: | 
|  | // If X87Up is preceded by X87, we don't need to do | 
|  | // anything. However, in some cases with unions it may not be | 
|  | // preceded by X87. In such situations we follow gcc and pass the | 
|  | // extra bits in an SSE reg. | 
|  | if (Lo != X87) { | 
|  | HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); | 
|  | if (Lo == NoClass)  // Return HighPart at offset 8 in memory. | 
|  | return ABIArgInfo::getDirect(HighPart, 8); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If a high part was specified, merge it together with the low part.  It is | 
|  | // known to pass in the high eightbyte of the result.  We do this by forming a | 
|  | // first class struct aggregate with the high and low part: {low, high} | 
|  | if (HighPart) | 
|  | ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); | 
|  |  | 
|  | return ABIArgInfo::getDirect(ResType); | 
|  | } | 
|  |  | 
|  | ABIArgInfo X86_64ABIInfo::classifyArgumentType( | 
|  | QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, | 
|  | bool isNamedArg) | 
|  | const | 
|  | { | 
|  | Ty = useFirstFieldIfTransparentUnion(Ty); | 
|  |  | 
|  | X86_64ABIInfo::Class Lo, Hi; | 
|  | classify(Ty, 0, Lo, Hi, isNamedArg); | 
|  |  | 
|  | // Check some invariants. | 
|  | // FIXME: Enforce these by construction. | 
|  | assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); | 
|  | assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); | 
|  |  | 
|  | neededInt = 0; | 
|  | neededSSE = 0; | 
|  | llvm::Type *ResType = nullptr; | 
|  | switch (Lo) { | 
|  | case NoClass: | 
|  | if (Hi == NoClass) | 
|  | return ABIArgInfo::getIgnore(); | 
|  | // If the low part is just padding, it takes no register, leave ResType | 
|  | // null. | 
|  | assert((Hi == SSE || Hi == Integer || Hi == X87Up) && | 
|  | "Unknown missing lo part"); | 
|  | break; | 
|  |  | 
|  | // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument | 
|  | // on the stack. | 
|  | case Memory: | 
|  |  | 
|  | // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or | 
|  | // COMPLEX_X87, it is passed in memory. | 
|  | case X87: | 
|  | case ComplexX87: | 
|  | if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) | 
|  | ++neededInt; | 
|  | return getIndirectResult(Ty, freeIntRegs); | 
|  |  | 
|  | case SSEUp: | 
|  | case X87Up: | 
|  | llvm_unreachable("Invalid classification for lo word."); | 
|  |  | 
|  | // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next | 
|  | // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 | 
|  | // and %r9 is used. | 
|  | case Integer: | 
|  | ++neededInt; | 
|  |  | 
|  | // Pick an 8-byte type based on the preferred type. | 
|  | ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); | 
|  |  | 
|  | // If we have a sign or zero extended integer, make sure to return Extend | 
|  | // so that the parameter gets the right LLVM IR attributes. | 
|  | if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { | 
|  | // Treat an enum type as its underlying type. | 
|  | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) | 
|  | Ty = EnumTy->getDecl()->getIntegerType(); | 
|  |  | 
|  | if (Ty->isIntegralOrEnumerationType() && | 
|  | Ty->isPromotableIntegerType()) | 
|  | return ABIArgInfo::getExtend(); | 
|  | } | 
|  |  | 
|  | break; | 
|  |  | 
|  | // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next | 
|  | // available SSE register is used, the registers are taken in the | 
|  | // order from %xmm0 to %xmm7. | 
|  | case SSE: { | 
|  | llvm::Type *IRType = CGT.ConvertType(Ty); | 
|  | ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); | 
|  | ++neededSSE; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm::Type *HighPart = nullptr; | 
|  | switch (Hi) { | 
|  | // Memory was handled previously, ComplexX87 and X87 should | 
|  | // never occur as hi classes, and X87Up must be preceded by X87, | 
|  | // which is passed in memory. | 
|  | case Memory: | 
|  | case X87: | 
|  | case ComplexX87: | 
|  | llvm_unreachable("Invalid classification for hi word."); | 
|  |  | 
|  | case NoClass: break; | 
|  |  | 
|  | case Integer: | 
|  | ++neededInt; | 
|  | // Pick an 8-byte type based on the preferred type. | 
|  | HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); | 
|  |  | 
|  | if (Lo == NoClass)  // Pass HighPart at offset 8 in memory. | 
|  | return ABIArgInfo::getDirect(HighPart, 8); | 
|  | break; | 
|  |  | 
|  | // X87Up generally doesn't occur here (long double is passed in | 
|  | // memory), except in situations involving unions. | 
|  | case X87Up: | 
|  | case SSE: | 
|  | HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); | 
|  |  | 
|  | if (Lo == NoClass)  // Pass HighPart at offset 8 in memory. | 
|  | return ABIArgInfo::getDirect(HighPart, 8); | 
|  |  | 
|  | ++neededSSE; | 
|  | break; | 
|  |  | 
|  | // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the | 
|  | // eightbyte is passed in the upper half of the last used SSE | 
|  | // register.  This only happens when 128-bit vectors are passed. | 
|  | case SSEUp: | 
|  | assert(Lo == SSE && "Unexpected SSEUp classification"); | 
|  | ResType = GetByteVectorType(Ty); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If a high part was specified, merge it together with the low part.  It is | 
|  | // known to pass in the high eightbyte of the result.  We do this by forming a | 
|  | // first class struct aggregate with the high and low part: {low, high} | 
|  | if (HighPart) | 
|  | ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); | 
|  |  | 
|  | return ABIArgInfo::getDirect(ResType); | 
|  | } | 
|  |  | 
|  | void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { | 
|  |  | 
|  | if (!getCXXABI().classifyReturnType(FI)) | 
|  | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); | 
|  |  | 
|  | // Keep track of the number of assigned registers. | 
|  | unsigned freeIntRegs = 6, freeSSERegs = 8; | 
|  |  | 
|  | // If the return value is indirect, then the hidden argument is consuming one | 
|  | // integer register. | 
|  | if (FI.getReturnInfo().isIndirect()) | 
|  | --freeIntRegs; | 
|  |  | 
|  | // The chain argument effectively gives us another free register. | 
|  | if (FI.isChainCall()) | 
|  | ++freeIntRegs; | 
|  |  | 
|  | unsigned NumRequiredArgs = FI.getNumRequiredArgs(); | 
|  | // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers | 
|  | // get assigned (in left-to-right order) for passing as follows... | 
|  | unsigned ArgNo = 0; | 
|  | for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); | 
|  | it != ie; ++it, ++ArgNo) { | 
|  | bool IsNamedArg = ArgNo < NumRequiredArgs; | 
|  |  | 
|  | unsigned neededInt, neededSSE; | 
|  | it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, | 
|  | neededSSE, IsNamedArg); | 
|  |  | 
|  | // AMD64-ABI 3.2.3p3: If there are no registers available for any | 
|  | // eightbyte of an argument, the whole argument is passed on the | 
|  | // stack. If registers have already been assigned for some | 
|  | // eightbytes of such an argument, the assignments get reverted. | 
|  | if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { | 
|  | freeIntRegs -= neededInt; | 
|  | freeSSERegs -= neededSSE; | 
|  | } else { | 
|  | it->info = getIndirectResult(it->type, freeIntRegs); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, | 
|  | Address VAListAddr, QualType Ty) { | 
|  | Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( | 
|  | VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); | 
|  | llvm::Value *overflow_arg_area = | 
|  | CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); | 
|  |  | 
|  | // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 | 
|  | // byte boundary if alignment needed by type exceeds 8 byte boundary. | 
|  | // It isn't stated explicitly in the standard, but in practice we use | 
|  | // alignment greater than 16 where necessary. | 
|  | CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); | 
|  | if (Align > CharUnits::fromQuantity(8)) { | 
|  | overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, | 
|  | Align); | 
|  | } | 
|  |  | 
|  | // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. | 
|  | llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); | 
|  | llvm::Value *Res = | 
|  | CGF.Builder.CreateBitCast(overflow_arg_area, | 
|  | llvm::PointerType::getUnqual(LTy)); | 
|  |  | 
|  | // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: | 
|  | // l->overflow_arg_area + sizeof(type). | 
|  | // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to | 
|  | // an 8 byte boundary. | 
|  |  | 
|  | uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; | 
|  | llvm::Value *Offset = | 
|  | llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7); | 
|  | overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, | 
|  | "overflow_arg_area.next"); | 
|  | CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); | 
|  |  | 
|  | // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. | 
|  | return Address(Res, Align); | 
|  | } | 
|  |  | 
|  | Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const { | 
|  | // Assume that va_list type is correct; should be pointer to LLVM type: | 
|  | // struct { | 
|  | //   i32 gp_offset; | 
|  | //   i32 fp_offset; | 
|  | //   i8* overflow_arg_area; | 
|  | //   i8* reg_save_area; | 
|  | // }; | 
|  | unsigned neededInt, neededSSE; | 
|  |  | 
|  | Ty = getContext().getCanonicalType(Ty); | 
|  | ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, | 
|  | /*isNamedArg*/false); | 
|  |  | 
|  | // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed | 
|  | // in the registers. If not go to step 7. | 
|  | if (!neededInt && !neededSSE) | 
|  | return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); | 
|  |  | 
|  | // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of | 
|  | // general purpose registers needed to pass type and num_fp to hold | 
|  | // the number of floating point registers needed. | 
|  |  | 
|  | // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into | 
|  | // registers. In the case: l->gp_offset > 48 - num_gp * 8 or | 
|  | // l->fp_offset > 304 - num_fp * 16 go to step 7. | 
|  | // | 
|  | // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of | 
|  | // register save space). | 
|  |  | 
|  | llvm::Value *InRegs = nullptr; | 
|  | Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); | 
|  | llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; | 
|  | if (neededInt) { | 
|  | gp_offset_p = | 
|  | CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), | 
|  | "gp_offset_p"); | 
|  | gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); | 
|  | InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); | 
|  | InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); | 
|  | } | 
|  |  | 
|  | if (neededSSE) { | 
|  | fp_offset_p = | 
|  | CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), | 
|  | "fp_offset_p"); | 
|  | fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); | 
|  | llvm::Value *FitsInFP = | 
|  | llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); | 
|  | FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); | 
|  | InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; | 
|  | } | 
|  |  | 
|  | llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); | 
|  | llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); | 
|  | llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); | 
|  | CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); | 
|  |  | 
|  | // Emit code to load the value if it was passed in registers. | 
|  |  | 
|  | CGF.EmitBlock(InRegBlock); | 
|  |  | 
|  | // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with | 
|  | // an offset of l->gp_offset and/or l->fp_offset. This may require | 
|  | // copying to a temporary location in case the parameter is passed | 
|  | // in different register classes or requires an alignment greater | 
|  | // than 8 for general purpose registers and 16 for XMM registers. | 
|  | // | 
|  | // FIXME: This really results in shameful code when we end up needing to | 
|  | // collect arguments from different places; often what should result in a | 
|  | // simple assembling of a structure from scattered addresses has many more | 
|  | // loads than necessary. Can we clean this up? | 
|  | llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); | 
|  | llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( | 
|  | CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), | 
|  | "reg_save_area"); | 
|  |  | 
|  | Address RegAddr = Address::invalid(); | 
|  | if (neededInt && neededSSE) { | 
|  | // FIXME: Cleanup. | 
|  | assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); | 
|  | llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); | 
|  | Address Tmp = CGF.CreateMemTemp(Ty); | 
|  | Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); | 
|  | assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); | 
|  | llvm::Type *TyLo = ST->getElementType(0); | 
|  | llvm::Type *TyHi = ST->getElementType(1); | 
|  | assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && | 
|  | "Unexpected ABI info for mixed regs"); | 
|  | llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); | 
|  | llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); | 
|  | llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); | 
|  | llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); | 
|  | llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; | 
|  | llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; | 
|  |  | 
|  | // Copy the first element. | 
|  | llvm::Value *V = | 
|  | CGF.Builder.CreateDefaultAlignedLoad( | 
|  | CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); | 
|  | CGF.Builder.CreateStore(V, | 
|  | CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); | 
|  |  | 
|  | // Copy the second element. | 
|  | V = CGF.Builder.CreateDefaultAlignedLoad( | 
|  | CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); | 
|  | CharUnits Offset = CharUnits::fromQuantity( | 
|  | getDataLayout().getStructLayout(ST)->getElementOffset(1)); | 
|  | CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); | 
|  |  | 
|  | RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); | 
|  | } else if (neededInt) { | 
|  | RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), | 
|  | CharUnits::fromQuantity(8)); | 
|  | RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); | 
|  |  | 
|  | // Copy to a temporary if necessary to ensure the appropriate alignment. | 
|  | std::pair<CharUnits, CharUnits> SizeAlign = | 
|  | getContext().getTypeInfoInChars(Ty); | 
|  | uint64_t TySize = SizeAlign.first.getQuantity(); | 
|  | CharUnits TyAlign = SizeAlign.second; | 
|  |  | 
|  | // Copy into a temporary if the type is more aligned than the | 
|  | // register save area. | 
|  | if (TyAlign.getQuantity() > 8) { | 
|  | Address Tmp = CGF.CreateMemTemp(Ty); | 
|  | CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); | 
|  | RegAddr = Tmp; | 
|  | } | 
|  |  | 
|  | } else if (neededSSE == 1) { | 
|  | RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), | 
|  | CharUnits::fromQuantity(16)); | 
|  | RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); | 
|  | } else { | 
|  | assert(neededSSE == 2 && "Invalid number of needed registers!"); | 
|  | // SSE registers are spaced 16 bytes apart in the register save | 
|  | // area, we need to collect the two eightbytes together. | 
|  | // The ABI isn't explicit about this, but it seems reasonable | 
|  | // to assume that the slots are 16-byte aligned, since the stack is | 
|  | // naturally 16-byte aligned and the prologue is expected to store | 
|  | // all the SSE registers to the RSA. | 
|  | Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), | 
|  | CharUnits::fromQuantity(16)); | 
|  | Address RegAddrHi = | 
|  | CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, | 
|  | CharUnits::fromQuantity(16)); | 
|  | llvm::Type *DoubleTy = CGF.DoubleTy; | 
|  | llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr); | 
|  | llvm::Value *V; | 
|  | Address Tmp = CGF.CreateMemTemp(Ty); | 
|  | Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); | 
|  | V = CGF.Builder.CreateLoad( | 
|  | CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy)); | 
|  | CGF.Builder.CreateStore(V, | 
|  | CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); | 
|  | V = CGF.Builder.CreateLoad( | 
|  | CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy)); | 
|  | CGF.Builder.CreateStore(V, | 
|  | CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); | 
|  |  | 
|  | RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); | 
|  | } | 
|  |  | 
|  | // AMD64-ABI 3.5.7p5: Step 5. Set: | 
|  | // l->gp_offset = l->gp_offset + num_gp * 8 | 
|  | // l->fp_offset = l->fp_offset + num_fp * 16. | 
|  | if (neededInt) { | 
|  | llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); | 
|  | CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), | 
|  | gp_offset_p); | 
|  | } | 
|  | if (neededSSE) { | 
|  | llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); | 
|  | CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), | 
|  | fp_offset_p); | 
|  | } | 
|  | CGF.EmitBranch(ContBlock); | 
|  |  | 
|  | // Emit code to load the value if it was passed in memory. | 
|  |  | 
|  | CGF.EmitBlock(InMemBlock); | 
|  | Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); | 
|  |  | 
|  | // Return the appropriate result. | 
|  |  | 
|  | CGF.EmitBlock(ContBlock); | 
|  | Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, | 
|  | "vaarg.addr"); | 
|  | return ResAddr; | 
|  | } | 
|  |  | 
|  | Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const { | 
|  | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, | 
|  | CGF.getContext().getTypeInfoInChars(Ty), | 
|  | CharUnits::fromQuantity(8), | 
|  | /*allowHigherAlign*/ false); | 
|  | } | 
|  |  | 
|  | ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, | 
|  | bool IsReturnType) const { | 
|  |  | 
|  | if (Ty->isVoidType()) | 
|  | return ABIArgInfo::getIgnore(); | 
|  |  | 
|  | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) | 
|  | Ty = EnumTy->getDecl()->getIntegerType(); | 
|  |  | 
|  | TypeInfo Info = getContext().getTypeInfo(Ty); | 
|  | uint64_t Width = Info.Width; | 
|  | CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); | 
|  |  | 
|  | const RecordType *RT = Ty->getAs<RecordType>(); | 
|  | if (RT) { | 
|  | if (!IsReturnType) { | 
|  | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) | 
|  | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); | 
|  | } | 
|  |  | 
|  | if (RT->getDecl()->hasFlexibleArrayMember()) | 
|  | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); | 
|  |  | 
|  | } | 
|  |  | 
|  | // vectorcall adds the concept of a homogenous vector aggregate, similar to | 
|  | // other targets. | 
|  | const Type *Base = nullptr; | 
|  | uint64_t NumElts = 0; | 
|  | if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) { | 
|  | if (FreeSSERegs >= NumElts) { | 
|  | FreeSSERegs -= NumElts; | 
|  | if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) | 
|  | return ABIArgInfo::getDirect(); | 
|  | return ABIArgInfo::getExpand(); | 
|  | } | 
|  | return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); | 
|  | } | 
|  |  | 
|  |  | 
|  | if (Ty->isMemberPointerType()) { | 
|  | // If the member pointer is represented by an LLVM int or ptr, pass it | 
|  | // directly. | 
|  | llvm::Type *LLTy = CGT.ConvertType(Ty); | 
|  | if (LLTy->isPointerTy() || LLTy->isIntegerTy()) | 
|  | return ABIArgInfo::getDirect(); | 
|  | } | 
|  |  | 
|  | if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { | 
|  | // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is | 
|  | // not 1, 2, 4, or 8 bytes, must be passed by reference." | 
|  | if (Width > 64 || !llvm::isPowerOf2_64(Width)) | 
|  | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); | 
|  |  | 
|  | // Otherwise, coerce it to a small integer. | 
|  | return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); | 
|  | } | 
|  |  | 
|  | // Bool type is always extended to the ABI, other builtin types are not | 
|  | // extended. | 
|  | const BuiltinType *BT = Ty->getAs<BuiltinType>(); | 
|  | if (BT && BT->getKind() == BuiltinType::Bool) | 
|  | return ABIArgInfo::getExtend(); | 
|  |  | 
|  | // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It | 
|  | // passes them indirectly through memory. | 
|  | if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) { | 
|  | const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); | 
|  | if (LDF == &llvm::APFloat::x87DoubleExtended) | 
|  | return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); | 
|  | } | 
|  |  | 
|  | return ABIArgInfo::getDirect(); | 
|  | } | 
|  |  | 
|  | void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { | 
|  | bool IsVectorCall = | 
|  | FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; | 
|  |  | 
|  | // We can use up to 4 SSE return registers with vectorcall. | 
|  | unsigned FreeSSERegs = IsVectorCall ? 4 : 0; | 
|  | if (!getCXXABI().classifyReturnType(FI)) | 
|  | FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true); | 
|  |  | 
|  | // We can use up to 6 SSE register parameters with vectorcall. | 
|  | FreeSSERegs = IsVectorCall ? 6 : 0; | 
|  | for (auto &I : FI.arguments()) | 
|  | I.info = classify(I.type, FreeSSERegs, false); | 
|  | } | 
|  |  | 
|  | Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const { | 
|  | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, | 
|  | CGF.getContext().getTypeInfoInChars(Ty), | 
|  | CharUnits::fromQuantity(8), | 
|  | /*allowHigherAlign*/ false); | 
|  | } | 
|  |  | 
|  | // PowerPC-32 | 
|  | namespace { | 
|  | /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. | 
|  | class PPC32_SVR4_ABIInfo : public DefaultABIInfo { | 
|  | bool IsSoftFloatABI; | 
|  | public: | 
|  | PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) | 
|  | : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} | 
|  |  | 
|  | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const override; | 
|  | }; | 
|  |  | 
|  | class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { | 
|  | public: | 
|  | PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) | 
|  | : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} | 
|  |  | 
|  | int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { | 
|  | // This is recovered from gcc output. | 
|  | return 1; // r1 is the dedicated stack pointer | 
|  | } | 
|  |  | 
|  | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, | 
|  | llvm::Value *Address) const override; | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | // TODO: this implementation is now likely redundant with | 
|  | // DefaultABIInfo::EmitVAArg. | 
|  | Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, | 
|  | QualType Ty) const { | 
|  | const unsigned OverflowLimit = 8; | 
|  | if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { | 
|  | // TODO: Implement this. For now ignore. | 
|  | (void)CTy; | 
|  | return Address::invalid(); // FIXME? | 
|  | } | 
|  |  | 
|  | // struct __va_list_tag { | 
|  | //   unsigned char gpr; | 
|  | //   unsigned char fpr; | 
|  | //   unsigned short reserved; | 
|  | //   void *overflow_arg_area; | 
|  | //   void *reg_save_area; | 
|  | // }; | 
|  |  | 
|  | bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; | 
|  | bool isInt = | 
|  | Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); | 
|  | bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; | 
|  |  | 
|  | // All aggregates are passed indirectly?  That doesn't seem consistent | 
|  | // with the argument-lowering code. | 
|  | bool isIndirect = Ty->isAggregateType(); | 
|  |  | 
|  | CGBuilderTy &Builder = CGF.Builder; | 
|  |  | 
|  | // The calling convention either uses 1-2 GPRs or 1 FPR. | 
|  | Address NumRegsAddr = Address::invalid(); | 
|  | if (isInt || IsSoftFloatABI) { | 
|  | NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); | 
|  | } else { | 
|  | NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); | 
|  | } | 
|  |  | 
|  | llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); | 
|  |  | 
|  | // "Align" the register count when TY is i64. | 
|  | if (isI64 || (isF64 && IsSoftFloatABI)) { | 
|  | NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); | 
|  | NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); | 
|  | } | 
|  |  | 
|  | llvm::Value *CC = | 
|  | Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); | 
|  |  | 
|  | llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); | 
|  | llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); | 
|  | llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); | 
|  |  | 
|  | Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); | 
|  |  | 
|  | llvm::Type *DirectTy = CGF.ConvertType(Ty); | 
|  | if (isIndirect) DirectTy = DirectTy->getPointerTo(0); | 
|  |  | 
|  | // Case 1: consume registers. | 
|  | Address RegAddr = Address::invalid(); | 
|  | { | 
|  | CGF.EmitBlock(UsingRegs); | 
|  |  | 
|  | Address RegSaveAreaPtr = | 
|  | Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); | 
|  | RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), | 
|  | CharUnits::fromQuantity(8)); | 
|  | assert(RegAddr.getElementType() == CGF.Int8Ty); | 
|  |  | 
|  | // Floating-point registers start after the general-purpose registers. | 
|  | if (!(isInt || IsSoftFloatABI)) { | 
|  | RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, | 
|  | CharUnits::fromQuantity(32)); | 
|  | } | 
|  |  | 
|  | // Get the address of the saved value by scaling the number of | 
|  | // registers we've used by the number of | 
|  | CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); | 
|  | llvm::Value *RegOffset = | 
|  | Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); | 
|  | RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, | 
|  | RegAddr.getPointer(), RegOffset), | 
|  | RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); | 
|  | RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); | 
|  |  | 
|  | // Increase the used-register count. | 
|  | NumRegs = | 
|  | Builder.CreateAdd(NumRegs, | 
|  | Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); | 
|  | Builder.CreateStore(NumRegs, NumRegsAddr); | 
|  |  | 
|  | CGF.EmitBranch(Cont); | 
|  | } | 
|  |  | 
|  | // Case 2: consume space in the overflow area. | 
|  | Address MemAddr = Address::invalid(); | 
|  | { | 
|  | CGF.EmitBlock(UsingOverflow); | 
|  |  | 
|  | Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); | 
|  |  | 
|  | // Everything in the overflow area is rounded up to a size of at least 4. | 
|  | CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); | 
|  |  | 
|  | CharUnits Size; | 
|  | if (!isIndirect) { | 
|  | auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); | 
|  | Size = TypeInfo.first.alignTo(OverflowAreaAlign); | 
|  | } else { | 
|  | Size = CGF.getPointerSize(); | 
|  | } | 
|  |  | 
|  | Address OverflowAreaAddr = | 
|  | Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); | 
|  | Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), | 
|  | OverflowAreaAlign); | 
|  | // Round up address of argument to alignment | 
|  | CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); | 
|  | if (Align > OverflowAreaAlign) { | 
|  | llvm::Value *Ptr = OverflowArea.getPointer(); | 
|  | OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), | 
|  | Align); | 
|  | } | 
|  |  | 
|  | MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); | 
|  |  | 
|  | // Increase the overflow area. | 
|  | OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); | 
|  | Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); | 
|  | CGF.EmitBranch(Cont); | 
|  | } | 
|  |  | 
|  | CGF.EmitBlock(Cont); | 
|  |  | 
|  | // Merge the cases with a phi. | 
|  | Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, | 
|  | "vaarg.addr"); | 
|  |  | 
|  | // Load the pointer if the argument was passed indirectly. | 
|  | if (isIndirect) { | 
|  | Result = Address(Builder.CreateLoad(Result, "aggr"), | 
|  | getContext().getTypeAlignInChars(Ty)); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | bool | 
|  | PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, | 
|  | llvm::Value *Address) const { | 
|  | // This is calculated from the LLVM and GCC tables and verified | 
|  | // against gcc output.  AFAIK all ABIs use the same encoding. | 
|  |  | 
|  | CodeGen::CGBuilderTy &Builder = CGF.Builder; | 
|  |  | 
|  | llvm::IntegerType *i8 = CGF.Int8Ty; | 
|  | llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); | 
|  | llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); | 
|  | llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); | 
|  |  | 
|  | // 0-31: r0-31, the 4-byte general-purpose registers | 
|  | AssignToArrayRange(Builder, Address, Four8, 0, 31); | 
|  |  | 
|  | // 32-63: fp0-31, the 8-byte floating-point registers | 
|  | AssignToArrayRange(Builder, Address, Eight8, 32, 63); | 
|  |  | 
|  | // 64-76 are various 4-byte special-purpose registers: | 
|  | // 64: mq | 
|  | // 65: lr | 
|  | // 66: ctr | 
|  | // 67: ap | 
|  | // 68-75 cr0-7 | 
|  | // 76: xer | 
|  | AssignToArrayRange(Builder, Address, Four8, 64, 76); | 
|  |  | 
|  | // 77-108: v0-31, the 16-byte vector registers | 
|  | AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); | 
|  |  | 
|  | // 109: vrsave | 
|  | // 110: vscr | 
|  | // 111: spe_acc | 
|  | // 112: spefscr | 
|  | // 113: sfp | 
|  | AssignToArrayRange(Builder, Address, Four8, 109, 113); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // PowerPC-64 | 
|  |  | 
|  | namespace { | 
|  | /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. | 
|  | class PPC64_SVR4_ABIInfo : public ABIInfo { | 
|  | public: | 
|  | enum ABIKind { | 
|  | ELFv1 = 0, | 
|  | ELFv2 | 
|  | }; | 
|  |  | 
|  | private: | 
|  | static const unsigned GPRBits = 64; | 
|  | ABIKind Kind; | 
|  | bool HasQPX; | 
|  |  | 
|  | // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and | 
|  | // will be passed in a QPX register. | 
|  | bool IsQPXVectorTy(const Type *Ty) const { | 
|  | if (!HasQPX) | 
|  | return false; | 
|  |  | 
|  | if (const VectorType *VT = Ty->getAs<VectorType>()) { | 
|  | unsigned NumElements = VT->getNumElements(); | 
|  | if (NumElements == 1) | 
|  | return false; | 
|  |  | 
|  | if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { | 
|  | if (getContext().getTypeSize(Ty) <= 256) | 
|  | return true; | 
|  | } else if (VT->getElementType()-> | 
|  | isSpecificBuiltinType(BuiltinType::Float)) { | 
|  | if (getContext().getTypeSize(Ty) <= 128) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool IsQPXVectorTy(QualType Ty) const { | 
|  | return IsQPXVectorTy(Ty.getTypePtr()); | 
|  | } | 
|  |  | 
|  | public: | 
|  | PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX) | 
|  | : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {} | 
|  |  | 
|  | bool isPromotableTypeForABI(QualType Ty) const; | 
|  | CharUnits getParamTypeAlignment(QualType Ty) const; | 
|  |  | 
|  | ABIArgInfo classifyReturnType(QualType RetTy) const; | 
|  | ABIArgInfo classifyArgumentType(QualType Ty) const; | 
|  |  | 
|  | bool isHomogeneousAggregateBaseType(QualType Ty) const override; | 
|  | bool isHomogeneousAggregateSmallEnough(const Type *Ty, | 
|  | uint64_t Members) const override; | 
|  |  | 
|  | // TODO: We can add more logic to computeInfo to improve performance. | 
|  | // Example: For aggregate arguments that fit in a register, we could | 
|  | // use getDirectInReg (as is done below for structs containing a single | 
|  | // floating-point value) to avoid pushing them to memory on function | 
|  | // entry.  This would require changing the logic in PPCISelLowering | 
|  | // when lowering the parameters in the caller and args in the callee. | 
|  | void computeInfo(CGFunctionInfo &FI) const override { | 
|  | if (!getCXXABI().classifyReturnType(FI)) | 
|  | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); | 
|  | for (auto &I : FI.arguments()) { | 
|  | // We rely on the default argument classification for the most part. | 
|  | // One exception:  An aggregate containing a single floating-point | 
|  | // or vector item must be passed in a register if one is available. | 
|  | const Type *T = isSingleElementStruct(I.type, getContext()); | 
|  | if (T) { | 
|  | const BuiltinType *BT = T->getAs<BuiltinType>(); | 
|  | if (IsQPXVectorTy(T) || | 
|  | (T->isVectorType() && getContext().getTypeSize(T) == 128) || | 
|  | (BT && BT->isFloatingPoint())) { | 
|  | QualType QT(T, 0); | 
|  | I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | I.info = classifyArgumentType(I.type); | 
|  | } | 
|  | } | 
|  |  | 
|  | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const override; | 
|  | }; | 
|  |  | 
|  | class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { | 
|  |  | 
|  | public: | 
|  | PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, | 
|  | PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX) | 
|  | : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {} | 
|  |  | 
|  | int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { | 
|  | // This is recovered from gcc output. | 
|  | return 1; // r1 is the dedicated stack pointer | 
|  | } | 
|  |  | 
|  | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, | 
|  | llvm::Value *Address) const override; | 
|  | }; | 
|  |  | 
|  | class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { | 
|  | public: | 
|  | PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} | 
|  |  | 
|  | int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { | 
|  | // This is recovered from gcc output. | 
|  | return 1; // r1 is the dedicated stack pointer | 
|  | } | 
|  |  | 
|  | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, | 
|  | llvm::Value *Address) const override; | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | // Return true if the ABI requires Ty to be passed sign- or zero- | 
|  | // extended to 64 bits. | 
|  | bool | 
|  | PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { | 
|  | // Treat an enum type as its underlying type. | 
|  | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) | 
|  | Ty = EnumTy->getDecl()->getIntegerType(); | 
|  |  | 
|  | // Promotable integer types are required to be promoted by the ABI. | 
|  | if (Ty->isPromotableIntegerType()) | 
|  | return true; | 
|  |  | 
|  | // In addition to the usual promotable integer types, we also need to | 
|  | // extend all 32-bit types, since the ABI requires promotion to 64 bits. | 
|  | if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) | 
|  | switch (BT->getKind()) { | 
|  | case BuiltinType::Int: | 
|  | case BuiltinType::UInt: | 
|  | return true; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isAlignedParamType - Determine whether a type requires 16-byte or | 
|  | /// higher alignment in the parameter area.  Always returns at least 8. | 
|  | CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { | 
|  | // Complex types are passed just like their elements. | 
|  | if (const ComplexType *CTy = Ty->getAs<ComplexType>()) | 
|  | Ty = CTy->getElementType(); | 
|  |  | 
|  | // Only vector types of size 16 bytes need alignment (larger types are | 
|  | // passed via reference, smaller types are not aligned). | 
|  | if (IsQPXVectorTy(Ty)) { | 
|  | if (getContext().getTypeSize(Ty) > 128) | 
|  | return CharUnits::fromQuantity(32); | 
|  |  | 
|  | return CharUnits::fromQuantity(16); | 
|  | } else if (Ty->isVectorType()) { | 
|  | return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); | 
|  | } | 
|  |  | 
|  | // For single-element float/vector structs, we consider the whole type | 
|  | // to have the same alignment requirements as its single element. | 
|  | const Type *AlignAsType = nullptr; | 
|  | const Type *EltType = isSingleElementStruct(Ty, getContext()); | 
|  | if (EltType) { | 
|  | const BuiltinType *BT = EltType->getAs<BuiltinType>(); | 
|  | if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && | 
|  | getContext().getTypeSize(EltType) == 128) || | 
|  | (BT && BT->isFloatingPoint())) | 
|  | AlignAsType = EltType; | 
|  | } | 
|  |  | 
|  | // Likewise for ELFv2 homogeneous aggregates. | 
|  | const Type *Base = nullptr; | 
|  | uint64_t Members = 0; | 
|  | if (!AlignAsType && Kind == ELFv2 && | 
|  | isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) | 
|  | AlignAsType = Base; | 
|  |  | 
|  | // With special case aggregates, only vector base types need alignment. | 
|  | if (AlignAsType && IsQPXVectorTy(AlignAsType)) { | 
|  | if (getContext().getTypeSize(AlignAsType) > 128) | 
|  | return CharUnits::fromQuantity(32); | 
|  |  | 
|  | return CharUnits::fromQuantity(16); | 
|  | } else if (AlignAsType) { | 
|  | return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); | 
|  | } | 
|  |  | 
|  | // Otherwise, we only need alignment for any aggregate type that | 
|  | // has an alignment requirement of >= 16 bytes. | 
|  | if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { | 
|  | if (HasQPX && getContext().getTypeAlign(Ty) >= 256) | 
|  | return CharUnits::fromQuantity(32); | 
|  | return CharUnits::fromQuantity(16); | 
|  | } | 
|  |  | 
|  | return CharUnits::fromQuantity(8); | 
|  | } | 
|  |  | 
|  | /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous | 
|  | /// aggregate.  Base is set to the base element type, and Members is set | 
|  | /// to the number of base elements. | 
|  | bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, | 
|  | uint64_t &Members) const { | 
|  | if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { | 
|  | uint64_t NElements = AT->getSize().getZExtValue(); | 
|  | if (NElements == 0) | 
|  | return false; | 
|  | if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) | 
|  | return false; | 
|  | Members *= NElements; | 
|  | } else if (const RecordType *RT = Ty->getAs<RecordType>()) { | 
|  | const RecordDecl *RD = RT->getDecl(); | 
|  | if (RD->hasFlexibleArrayMember()) | 
|  | return false; | 
|  |  | 
|  | Members = 0; | 
|  |  | 
|  | // If this is a C++ record, check the bases first. | 
|  | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { | 
|  | for (const auto &I : CXXRD->bases()) { | 
|  | // Ignore empty records. | 
|  | if (isEmptyRecord(getContext(), I.getType(), true)) | 
|  | continue; | 
|  |  | 
|  | uint64_t FldMembers; | 
|  | if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) | 
|  | return false; | 
|  |  | 
|  | Members += FldMembers; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (const auto *FD : RD->fields()) { | 
|  | // Ignore (non-zero arrays of) empty records. | 
|  | QualType FT = FD->getType(); | 
|  | while (const ConstantArrayType *AT = | 
|  | getContext().getAsConstantArrayType(FT)) { | 
|  | if (AT->getSize().getZExtValue() == 0) | 
|  | return false; | 
|  | FT = AT->getElementType(); | 
|  | } | 
|  | if (isEmptyRecord(getContext(), FT, true)) | 
|  | continue; | 
|  |  | 
|  | // For compatibility with GCC, ignore empty bitfields in C++ mode. | 
|  | if (getContext().getLangOpts().CPlusPlus && | 
|  | FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) | 
|  | continue; | 
|  |  | 
|  | uint64_t FldMembers; | 
|  | if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) | 
|  | return false; | 
|  |  | 
|  | Members = (RD->isUnion() ? | 
|  | std::max(Members, FldMembers) : Members + FldMembers); | 
|  | } | 
|  |  | 
|  | if (!Base) | 
|  | return false; | 
|  |  | 
|  | // Ensure there is no padding. | 
|  | if (getContext().getTypeSize(Base) * Members != | 
|  | getContext().getTypeSize(Ty)) | 
|  | return false; | 
|  | } else { | 
|  | Members = 1; | 
|  | if (const ComplexType *CT = Ty->getAs<ComplexType>()) { | 
|  | Members = 2; | 
|  | Ty = CT->getElementType(); | 
|  | } | 
|  |  | 
|  | // Most ABIs only support float, double, and some vector type widths. | 
|  | if (!isHomogeneousAggregateBaseType(Ty)) | 
|  | return false; | 
|  |  | 
|  | // The base type must be the same for all members.  Types that | 
|  | // agree in both total size and mode (float vs. vector) are | 
|  | // treated as being equivalent here. | 
|  | const Type *TyPtr = Ty.getTypePtr(); | 
|  | if (!Base) { | 
|  | Base = TyPtr; | 
|  | // If it's a non-power-of-2 vector, its size is already a power-of-2, | 
|  | // so make sure to widen it explicitly. | 
|  | if (const VectorType *VT = Base->getAs<VectorType>()) { | 
|  | QualType EltTy = VT->getElementType(); | 
|  | unsigned NumElements = | 
|  | getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); | 
|  | Base = getContext() | 
|  | .getVectorType(EltTy, NumElements, VT->getVectorKind()) | 
|  | .getTypePtr(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Base->isVectorType() != TyPtr->isVectorType() || | 
|  | getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) | 
|  | return false; | 
|  | } | 
|  | return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); | 
|  | } | 
|  |  | 
|  | bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { | 
|  | // Homogeneous aggregates for ELFv2 must have base types of float, | 
|  | // double, long double, or 128-bit vectors. | 
|  | if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { | 
|  | if (BT->getKind() == BuiltinType::Float || | 
|  | BT->getKind() == BuiltinType::Double || | 
|  | BT->getKind() == BuiltinType::LongDouble) | 
|  | return true; | 
|  | } | 
|  | if (const VectorType *VT = Ty->getAs<VectorType>()) { | 
|  | if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( | 
|  | const Type *Base, uint64_t Members) const { | 
|  | // Vector types require one register, floating point types require one | 
|  | // or two registers depending on their size. | 
|  | uint32_t NumRegs = | 
|  | Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; | 
|  |  | 
|  | // Homogeneous Aggregates may occupy at most 8 registers. | 
|  | return Members * NumRegs <= 8; | 
|  | } | 
|  |  | 
|  | ABIArgInfo | 
|  | PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { | 
|  | Ty = useFirstFieldIfTransparentUnion(Ty); | 
|  |  | 
|  | if (Ty->isAnyComplexType()) | 
|  | return ABIArgInfo::getDirect(); | 
|  |  | 
|  | // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) | 
|  | // or via reference (larger than 16 bytes). | 
|  | if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { | 
|  | uint64_t Size = getContext().getTypeSize(Ty); | 
|  | if (Size > 128) | 
|  | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); | 
|  | else if (Size < 128) { | 
|  | llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); | 
|  | return ABIArgInfo::getDirect(CoerceTy); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isAggregateTypeForABI(Ty)) { | 
|  | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) | 
|  | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); | 
|  |  | 
|  | uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); | 
|  | uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); | 
|  |  | 
|  | // ELFv2 homogeneous aggregates are passed as array types. | 
|  | const Type *Base = nullptr; | 
|  | uint64_t Members = 0; | 
|  | if (Kind == ELFv2 && | 
|  | isHomogeneousAggregate(Ty, Base, Members)) { | 
|  | llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); | 
|  | llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); | 
|  | return ABIArgInfo::getDirect(CoerceTy); | 
|  | } | 
|  |  | 
|  | // If an aggregate may end up fully in registers, we do not | 
|  | // use the ByVal method, but pass the aggregate as array. | 
|  | // This is usually beneficial since we avoid forcing the | 
|  | // back-end to store the argument to memory. | 
|  | uint64_t Bits = getContext().getTypeSize(Ty); | 
|  | if (Bits > 0 && Bits <= 8 * GPRBits) { | 
|  | llvm::Type *CoerceTy; | 
|  |  | 
|  | // Types up to 8 bytes are passed as integer type (which will be | 
|  | // properly aligned in the argument save area doubleword). | 
|  | if (Bits <= GPRBits) | 
|  | CoerceTy = | 
|  | llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); | 
|  | // Larger types are passed as arrays, with the base type selected | 
|  | // according to the required alignment in the save area. | 
|  | else { | 
|  | uint64_t RegBits = ABIAlign * 8; | 
|  | uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; | 
|  | llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); | 
|  | CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); | 
|  | } | 
|  |  | 
|  | return ABIArgInfo::getDirect(CoerceTy); | 
|  | } | 
|  |  | 
|  | // All other aggregates are passed ByVal. | 
|  | return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), | 
|  | /*ByVal=*/true, | 
|  | /*Realign=*/TyAlign > ABIAlign); | 
|  | } | 
|  |  | 
|  | return (isPromotableTypeForABI(Ty) ? | 
|  | ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); | 
|  | } | 
|  |  | 
|  | ABIArgInfo | 
|  | PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { | 
|  | if (RetTy->isVoidType()) | 
|  | return ABIArgInfo::getIgnore(); | 
|  |  | 
|  | if (RetTy->isAnyComplexType()) | 
|  | return ABIArgInfo::getDirect(); | 
|  |  | 
|  | // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) | 
|  | // or via reference (larger than 16 bytes). | 
|  | if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { | 
|  | uint64_t Size = getContext().getTypeSize(RetTy); | 
|  | if (Size > 128) | 
|  | return getNaturalAlignIndirect(RetTy); | 
|  | else if (Size < 128) { | 
|  | llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); | 
|  | return ABIArgInfo::getDirect(CoerceTy); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isAggregateTypeForABI(RetTy)) { | 
|  | // ELFv2 homogeneous aggregates are returned as array types. | 
|  | const Type *Base = nullptr; | 
|  | uint64_t Members = 0; | 
|  | if (Kind == ELFv2 && | 
|  | isHomogeneousAggregate(RetTy, Base, Members)) { | 
|  | llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); | 
|  | llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); | 
|  | return ABIArgInfo::getDirect(CoerceTy); | 
|  | } | 
|  |  | 
|  | // ELFv2 small aggregates are returned in up to two registers. | 
|  | uint64_t Bits = getContext().getTypeSize(RetTy); | 
|  | if (Kind == ELFv2 && Bits <= 2 * GPRBits) { | 
|  | if (Bits == 0) | 
|  | return ABIArgInfo::getIgnore(); | 
|  |  | 
|  | llvm::Type *CoerceTy; | 
|  | if (Bits > GPRBits) { | 
|  | CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); | 
|  | CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr); | 
|  | } else | 
|  | CoerceTy = | 
|  | llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); | 
|  | return ABIArgInfo::getDirect(CoerceTy); | 
|  | } | 
|  |  | 
|  | // All other aggregates are returned indirectly. | 
|  | return getNaturalAlignIndirect(RetTy); | 
|  | } | 
|  |  | 
|  | return (isPromotableTypeForABI(RetTy) ? | 
|  | ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); | 
|  | } | 
|  |  | 
|  | // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. | 
|  | Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const { | 
|  | auto TypeInfo = getContext().getTypeInfoInChars(Ty); | 
|  | TypeInfo.second = getParamTypeAlignment(Ty); | 
|  |  | 
|  | CharUnits SlotSize = CharUnits::fromQuantity(8); | 
|  |  | 
|  | // If we have a complex type and the base type is smaller than 8 bytes, | 
|  | // the ABI calls for the real and imaginary parts to be right-adjusted | 
|  | // in separate doublewords.  However, Clang expects us to produce a | 
|  | // pointer to a structure with the two parts packed tightly.  So generate | 
|  | // loads of the real and imaginary parts relative to the va_list pointer, | 
|  | // and store them to a temporary structure. | 
|  | if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { | 
|  | CharUnits EltSize = TypeInfo.first / 2; | 
|  | if (EltSize < SlotSize) { | 
|  | Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, | 
|  | SlotSize * 2, SlotSize, | 
|  | SlotSize, /*AllowHigher*/ true); | 
|  |  | 
|  | Address RealAddr = Addr; | 
|  | Address ImagAddr = RealAddr; | 
|  | if (CGF.CGM.getDataLayout().isBigEndian()) { | 
|  | RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, | 
|  | SlotSize - EltSize); | 
|  | ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, | 
|  | 2 * SlotSize - EltSize); | 
|  | } else { | 
|  | ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); | 
|  | } | 
|  |  | 
|  | llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); | 
|  | RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); | 
|  | ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); | 
|  | llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); | 
|  | llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); | 
|  |  | 
|  | Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); | 
|  | CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), | 
|  | /*init*/ true); | 
|  | return Temp; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, just use the general rule. | 
|  | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, | 
|  | TypeInfo, SlotSize, /*AllowHigher*/ true); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, | 
|  | llvm::Value *Address) { | 
|  | // This is calculated from the LLVM and GCC tables and verified | 
|  | // against gcc output.  AFAIK all ABIs use the same encoding. | 
|  |  | 
|  | CodeGen::CGBuilderTy &Builder = CGF.Builder; | 
|  |  | 
|  | llvm::IntegerType *i8 = CGF.Int8Ty; | 
|  | llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); | 
|  | llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); | 
|  | llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); | 
|  |  | 
|  | // 0-31: r0-31, the 8-byte general-purpose registers | 
|  | AssignToArrayRange(Builder, Address, Eight8, 0, 31); | 
|  |  | 
|  | // 32-63: fp0-31, the 8-byte floating-point registers | 
|  | AssignToArrayRange(Builder, Address, Eight8, 32, 63); | 
|  |  | 
|  | // 64-76 are various 4-byte special-purpose registers: | 
|  | // 64: mq | 
|  | // 65: lr | 
|  | // 66: ctr | 
|  | // 67: ap | 
|  | // 68-75 cr0-7 | 
|  | // 76: xer | 
|  | AssignToArrayRange(Builder, Address, Four8, 64, 76); | 
|  |  | 
|  | // 77-108: v0-31, the 16-byte vector registers | 
|  | AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); | 
|  |  | 
|  | // 109: vrsave | 
|  | // 110: vscr | 
|  | // 111: spe_acc | 
|  | // 112: spefscr | 
|  | // 113: sfp | 
|  | AssignToArrayRange(Builder, Address, Four8, 109, 113); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool | 
|  | PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( | 
|  | CodeGen::CodeGenFunction &CGF, | 
|  | llvm::Value *Address) const { | 
|  |  | 
|  | return PPC64_initDwarfEHRegSizeTable(CGF, Address); | 
|  | } | 
|  |  | 
|  | bool | 
|  | PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, | 
|  | llvm::Value *Address) const { | 
|  |  | 
|  | return PPC64_initDwarfEHRegSizeTable(CGF, Address); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // AArch64 ABI Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class AArch64ABIInfo : public SwiftABIInfo { | 
|  | public: | 
|  | enum ABIKind { | 
|  | AAPCS = 0, | 
|  | DarwinPCS | 
|  | }; | 
|  |  | 
|  | private: | 
|  | ABIKind Kind; | 
|  |  | 
|  | public: | 
|  | AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) | 
|  | : SwiftABIInfo(CGT), Kind(Kind) {} | 
|  |  | 
|  | private: | 
|  | ABIKind getABIKind() const { return Kind; } | 
|  | bool isDarwinPCS() const { return Kind == DarwinPCS; } | 
|  |  | 
|  | ABIArgInfo classifyReturnType(QualType RetTy) const; | 
|  | ABIArgInfo classifyArgumentType(QualType RetTy) const; | 
|  | bool isHomogeneousAggregateBaseType(QualType Ty) const override; | 
|  | bool isHomogeneousAggregateSmallEnough(const Type *Ty, | 
|  | uint64_t Members) const override; | 
|  |  | 
|  | bool isIllegalVectorType(QualType Ty) const; | 
|  |  | 
|  | void computeInfo(CGFunctionInfo &FI) const override { | 
|  | if (!getCXXABI().classifyReturnType(FI)) | 
|  | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); | 
|  |  | 
|  | for (auto &it : FI.arguments()) | 
|  | it.info = classifyArgumentType(it.type); | 
|  | } | 
|  |  | 
|  | Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, | 
|  | CodeGenFunction &CGF) const; | 
|  |  | 
|  | Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, | 
|  | CodeGenFunction &CGF) const; | 
|  |  | 
|  | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const override { | 
|  | return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) | 
|  | : EmitAAPCSVAArg(VAListAddr, Ty, CGF); | 
|  | } | 
|  |  | 
|  | bool shouldPassIndirectlyForSwift(CharUnits totalSize, | 
|  | ArrayRef<llvm::Type*> scalars, | 
|  | bool asReturnValue) const override { | 
|  | return occupiesMoreThan(CGT, scalars, /*total*/ 4); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { | 
|  | public: | 
|  | AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) | 
|  | : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} | 
|  |  | 
|  | StringRef getARCRetainAutoreleasedReturnValueMarker() const override { | 
|  | return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; | 
|  | } | 
|  |  | 
|  | int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { | 
|  | return 31; | 
|  | } | 
|  |  | 
|  | bool doesReturnSlotInterfereWithArgs() const override { return false; } | 
|  | }; | 
|  | } | 
|  |  | 
|  | ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { | 
|  | Ty = useFirstFieldIfTransparentUnion(Ty); | 
|  |  | 
|  | // Handle illegal vector types here. | 
|  | if (isIllegalVectorType(Ty)) { | 
|  | uint64_t Size = getContext().getTypeSize(Ty); | 
|  | // Android promotes <2 x i8> to i16, not i32 | 
|  | if (isAndroid() && (Size <= 16)) { | 
|  | llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); | 
|  | return ABIArgInfo::getDirect(ResType); | 
|  | } | 
|  | if (Size <= 32) { | 
|  | llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); | 
|  | return ABIArgInfo::getDirect(ResType); | 
|  | } | 
|  | if (Size == 64) { | 
|  | llvm::Type *ResType = | 
|  | llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); | 
|  | return ABIArgInfo::getDirect(ResType); | 
|  | } | 
|  | if (Size == 128) { | 
|  | llvm::Type *ResType = | 
|  | llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); | 
|  | return ABIArgInfo::getDirect(ResType); | 
|  | } | 
|  | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); | 
|  | } | 
|  |  | 
|  | if (!isAggregateTypeForABI(Ty)) { | 
|  | // Treat an enum type as its underlying type. | 
|  | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) | 
|  | Ty = EnumTy->getDecl()->getIntegerType(); | 
|  |  | 
|  | return (Ty->isPromotableIntegerType() && isDarwinPCS() | 
|  | ? ABIArgInfo::getExtend() | 
|  | : ABIArgInfo::getDirect()); | 
|  | } | 
|  |  | 
|  | // Structures with either a non-trivial destructor or a non-trivial | 
|  | // copy constructor are always indirect. | 
|  | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { | 
|  | return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == | 
|  | CGCXXABI::RAA_DirectInMemory); | 
|  | } | 
|  |  | 
|  | // Empty records are always ignored on Darwin, but actually passed in C++ mode | 
|  | // elsewhere for GNU compatibility. | 
|  | if (isEmptyRecord(getContext(), Ty, true)) { | 
|  | if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) | 
|  | return ABIArgInfo::getIgnore(); | 
|  |  | 
|  | return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); | 
|  | } | 
|  |  | 
|  | // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. | 
|  | const Type *Base = nullptr; | 
|  | uint64_t Members = 0; | 
|  | if (isHomogeneousAggregate(Ty, Base, Members)) { | 
|  | return ABIArgInfo::getDirect( | 
|  | llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); | 
|  | } | 
|  |  | 
|  | // Aggregates <= 16 bytes are passed directly in registers or on the stack. | 
|  | uint64_t Size = getContext().getTypeSize(Ty); | 
|  | if (Size <= 128) { | 
|  | unsigned Alignment = getContext().getTypeAlign(Ty); | 
|  | Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes | 
|  |  | 
|  | // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. | 
|  | // For aggregates with 16-byte alignment, we use i128. | 
|  | if (Alignment < 128 && Size == 128) { | 
|  | llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); | 
|  | return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); | 
|  | } | 
|  | return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); | 
|  | } | 
|  |  | 
|  | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); | 
|  | } | 
|  |  | 
|  | ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { | 
|  | if (RetTy->isVoidType()) | 
|  | return ABIArgInfo::getIgnore(); | 
|  |  | 
|  | // Large vector types should be returned via memory. | 
|  | if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) | 
|  | return getNaturalAlignIndirect(RetTy); | 
|  |  | 
|  | if (!isAggregateTypeForABI(RetTy)) { | 
|  | // Treat an enum type as its underlying type. | 
|  | if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) | 
|  | RetTy = EnumTy->getDecl()->getIntegerType(); | 
|  |  | 
|  | return (RetTy->isPromotableIntegerType() && isDarwinPCS() | 
|  | ? ABIArgInfo::getExtend() | 
|  | : ABIArgInfo::getDirect()); | 
|  | } | 
|  |  | 
|  | if (isEmptyRecord(getContext(), RetTy, true)) | 
|  | return ABIArgInfo::getIgnore(); | 
|  |  | 
|  | const Type *Base = nullptr; | 
|  | uint64_t Members = 0; | 
|  | if (isHomogeneousAggregate(RetTy, Base, Members)) | 
|  | // Homogeneous Floating-point Aggregates (HFAs) are returned directly. | 
|  | return ABIArgInfo::getDirect(); | 
|  |  | 
|  | // Aggregates <= 16 bytes are returned directly in registers or on the stack. | 
|  | uint64_t Size = getContext().getTypeSize(RetTy); | 
|  | if (Size <= 128) { | 
|  | unsigned Alignment = getContext().getTypeAlign(RetTy); | 
|  | Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes | 
|  |  | 
|  | // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. | 
|  | // For aggregates with 16-byte alignment, we use i128. | 
|  | if (Alignment < 128 && Size == 128) { | 
|  | llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); | 
|  | return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); | 
|  | } | 
|  | return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); | 
|  | } | 
|  |  | 
|  | return getNaturalAlignIndirect(RetTy); | 
|  | } | 
|  |  | 
|  | /// isIllegalVectorType - check whether the vector type is legal for AArch64. | 
|  | bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { | 
|  | if (const VectorType *VT = Ty->getAs<VectorType>()) { | 
|  | // Check whether VT is legal. | 
|  | unsigned NumElements = VT->getNumElements(); | 
|  | uint64_t Size = getContext().getTypeSize(VT); | 
|  | // NumElements should be power of 2. | 
|  | if (!llvm::isPowerOf2_32(NumElements)) | 
|  | return true; | 
|  | return Size != 64 && (Size != 128 || NumElements == 1); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { | 
|  | // Homogeneous aggregates for AAPCS64 must have base types of a floating | 
|  | // point type or a short-vector type. This is the same as the 32-bit ABI, | 
|  | // but with the difference that any floating-point type is allowed, | 
|  | // including __fp16. | 
|  | if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { | 
|  | if (BT->isFloatingPoint()) | 
|  | return true; | 
|  | } else if (const VectorType *VT = Ty->getAs<VectorType>()) { | 
|  | unsigned VecSize = getContext().getTypeSize(VT); | 
|  | if (VecSize == 64 || VecSize == 128) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, | 
|  | uint64_t Members) const { | 
|  | return Members <= 4; | 
|  | } | 
|  |  | 
|  | Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, | 
|  | QualType Ty, | 
|  | CodeGenFunction &CGF) const { | 
|  | ABIArgInfo AI = classifyArgumentType(Ty); | 
|  | bool IsIndirect = AI.isIndirect(); | 
|  |  | 
|  | llvm::Type *BaseTy = CGF.ConvertType(Ty); | 
|  | if (IsIndirect) | 
|  | BaseTy = llvm::PointerType::getUnqual(BaseTy); | 
|  | else if (AI.getCoerceToType()) | 
|  | BaseTy = AI.getCoerceToType(); | 
|  |  | 
|  | unsigned NumRegs = 1; | 
|  | if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { | 
|  | BaseTy = ArrTy->getElementType(); | 
|  | NumRegs = ArrTy->getNumElements(); | 
|  | } | 
|  | bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); | 
|  |  | 
|  | // The AArch64 va_list type and handling is specified in the Procedure Call | 
|  | // Standard, section B.4: | 
|  | // | 
|  | // struct { | 
|  | //   void *__stack; | 
|  | //   void *__gr_top; | 
|  | //   void *__vr_top; | 
|  | //   int __gr_offs; | 
|  | //   int __vr_offs; | 
|  | // }; | 
|  |  | 
|  | llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); | 
|  | llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); | 
|  | llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); | 
|  | llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); | 
|  |  | 
|  | auto TyInfo = getContext().getTypeInfoInChars(Ty); | 
|  | CharUnits TyAlign = TyInfo.second; | 
|  |  | 
|  | Address reg_offs_p = Address::invalid(); | 
|  | llvm::Value *reg_offs = nullptr; | 
|  | int reg_top_index; | 
|  | CharUnits reg_top_offset; | 
|  | int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); | 
|  | if (!IsFPR) { | 
|  | // 3 is the field number of __gr_offs | 
|  | reg_offs_p = | 
|  | CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), | 
|  | "gr_offs_p"); | 
|  | reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); | 
|  | reg_top_index = 1; // field number for __gr_top | 
|  | reg_top_offset = CharUnits::fromQuantity(8); | 
|  | RegSize = llvm::alignTo(RegSize, 8); | 
|  | } else { | 
|  | // 4 is the field number of __vr_offs. | 
|  | reg_offs_p = | 
|  | CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), | 
|  | "vr_offs_p"); | 
|  | reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); | 
|  | reg_top_index = 2; // field number for __vr_top | 
|  | reg_top_offset = CharUnits::fromQuantity(16); | 
|  | RegSize = 16 * NumRegs; | 
|  | } | 
|  |  | 
|  | //======================================= | 
|  | // Find out where argument was passed | 
|  | //======================================= | 
|  |  | 
|  | // If reg_offs >= 0 we're already using the stack for this type of | 
|  | // argument. We don't want to keep updating reg_offs (in case it overflows, | 
|  | // though anyone passing 2GB of arguments, each at most 16 bytes, deserves | 
|  | // whatever they get). | 
|  | llvm::Value *UsingStack = nullptr; | 
|  | UsingStack = CGF.Builder.CreateICmpSGE( | 
|  | reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); | 
|  |  | 
|  | CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); | 
|  |  | 
|  | // Otherwise, at least some kind of argument could go in these registers, the | 
|  | // question is whether this particular type is too big. | 
|  | CGF.EmitBlock(MaybeRegBlock); | 
|  |  | 
|  | // Integer arguments may need to correct register alignment (for example a | 
|  | // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we | 
|  | // align __gr_offs to calculate the potential address. | 
|  | if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { | 
|  | int Align = TyAlign.getQuantity(); | 
|  |  | 
|  | reg_offs = CGF.Builder.CreateAdd( | 
|  | reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), | 
|  | "align_regoffs"); | 
|  | reg_offs = CGF.Builder.CreateAnd( | 
|  | reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), | 
|  | "aligned_regoffs"); | 
|  | } | 
|  |  | 
|  | // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. | 
|  | // The fact that this is done unconditionally reflects the fact that | 
|  | // allocating an argument to the stack also uses up all the remaining | 
|  | // registers of the appropriate kind. | 
|  | llvm::Value *NewOffset = nullptr; | 
|  | NewOffset = CGF.Builder.CreateAdd( | 
|  | reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); | 
|  | CGF.Builder.CreateStore(NewOffset, reg_offs_p); | 
|  |  | 
|  | // Now we're in a position to decide whether this argument really was in | 
|  | // registers or not. | 
|  | llvm::Value *InRegs = nullptr; | 
|  | InRegs = CGF.Builder.CreateICmpSLE( | 
|  | NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); | 
|  |  | 
|  | CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); | 
|  |  | 
|  | //======================================= | 
|  | // Argument was in registers | 
|  | //======================================= | 
|  |  | 
|  | // Now we emit the code for if the argument was originally passed in | 
|  | // registers. First start the appropriate block: | 
|  | CGF.EmitBlock(InRegBlock); | 
|  |  | 
|  | llvm::Value *reg_top = nullptr; | 
|  | Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, | 
|  | reg_top_offset, "reg_top_p"); | 
|  | reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); | 
|  | Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), | 
|  | CharUnits::fromQuantity(IsFPR ? 16 : 8)); | 
|  | Address RegAddr = Address::invalid(); | 
|  | llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); | 
|  |  | 
|  | if (IsIndirect) { | 
|  | // If it's been passed indirectly (actually a struct), whatever we find from | 
|  | // stored registers or on the stack will actually be a struct **. | 
|  | MemTy = llvm::PointerType::getUnqual(MemTy); | 
|  | } | 
|  |  | 
|  | const Type *Base = nullptr; | 
|  | uint64_t NumMembers = 0; | 
|  | bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); | 
|  | if (IsHFA && NumMembers > 1) { | 
|  | // Homogeneous aggregates passed in registers will have their elements split | 
|  | // and stored 16-bytes apart regardless of size (they're notionally in qN, | 
|  | // qN+1, ...). We reload and store into a temporary local variable | 
|  | // contiguously. | 
|  | assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); | 
|  | auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); | 
|  | llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); | 
|  | llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); | 
|  | Address Tmp = CGF.CreateTempAlloca(HFATy, | 
|  | std::max(TyAlign, BaseTyInfo.second)); | 
|  |  | 
|  | // On big-endian platforms, the value will be right-aligned in its slot. | 
|  | int Offset = 0; | 
|  | if (CGF.CGM.getDataLayout().isBigEndian() && | 
|  | BaseTyInfo.first.getQuantity() < 16) | 
|  | Offset = 16 - BaseTyInfo.first.getQuantity(); | 
|  |  | 
|  | for (unsigned i = 0; i < NumMembers; ++i) { | 
|  | CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); | 
|  | Address LoadAddr = | 
|  | CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); | 
|  | LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); | 
|  |  | 
|  | Address StoreAddr = | 
|  | CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); | 
|  |  | 
|  | llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); | 
|  | CGF.Builder.CreateStore(Elem, StoreAddr); | 
|  | } | 
|  |  | 
|  | RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); | 
|  | } else { | 
|  | // Otherwise the object is contiguous in memory. | 
|  |  | 
|  | // It might be right-aligned in its slot. | 
|  | CharUnits SlotSize = BaseAddr.getAlignment(); | 
|  | if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && | 
|  | (IsHFA || !isAggregateTypeForABI(Ty)) && | 
|  | TyInfo.first < SlotSize) { | 
|  | CharUnits Offset = SlotSize - TyInfo.first; | 
|  | BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); | 
|  | } | 
|  |  | 
|  | RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); | 
|  | } | 
|  |  | 
|  | CGF.EmitBranch(ContBlock); | 
|  |  | 
|  | //======================================= | 
|  | // Argument was on the stack | 
|  | //======================================= | 
|  | CGF.EmitBlock(OnStackBlock); | 
|  |  | 
|  | Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, | 
|  | CharUnits::Zero(), "stack_p"); | 
|  | llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); | 
|  |  | 
|  | // Again, stack arguments may need realignment. In this case both integer and | 
|  | // floating-point ones might be affected. | 
|  | if (!IsIndirect && TyAlign.getQuantity() > 8) { | 
|  | int Align = TyAlign.getQuantity(); | 
|  |  | 
|  | OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); | 
|  |  | 
|  | OnStackPtr = CGF.Builder.CreateAdd( | 
|  | OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), | 
|  | "align_stack"); | 
|  | OnStackPtr = CGF.Builder.CreateAnd( | 
|  | OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), | 
|  | "align_stack"); | 
|  |  | 
|  | OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); | 
|  | } | 
|  | Address OnStackAddr(OnStackPtr, | 
|  | std::max(CharUnits::fromQuantity(8), TyAlign)); | 
|  |  | 
|  | // All stack slots are multiples of 8 bytes. | 
|  | CharUnits StackSlotSize = CharUnits::fromQuantity(8); | 
|  | CharUnits StackSize; | 
|  | if (IsIndirect) | 
|  | StackSize = StackSlotSize; | 
|  | else | 
|  | StackSize = TyInfo.first.alignTo(StackSlotSize); | 
|  |  | 
|  | llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); | 
|  | llvm::Value *NewStack = | 
|  | CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); | 
|  |  | 
|  | // Write the new value of __stack for the next call to va_arg | 
|  | CGF.Builder.CreateStore(NewStack, stack_p); | 
|  |  | 
|  | if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && | 
|  | TyInfo.first < StackSlotSize) { | 
|  | CharUnits Offset = StackSlotSize - TyInfo.first; | 
|  | OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); | 
|  | } | 
|  |  | 
|  | OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); | 
|  |  | 
|  | CGF.EmitBranch(ContBlock); | 
|  |  | 
|  | //======================================= | 
|  | // Tidy up | 
|  | //======================================= | 
|  | CGF.EmitBlock(ContBlock); | 
|  |  | 
|  | Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, | 
|  | OnStackAddr, OnStackBlock, "vaargs.addr"); | 
|  |  | 
|  | if (IsIndirect) | 
|  | return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), | 
|  | TyInfo.second); | 
|  |  | 
|  | return ResAddr; | 
|  | } | 
|  |  | 
|  | Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, | 
|  | CodeGenFunction &CGF) const { | 
|  | // The backend's lowering doesn't support va_arg for aggregates or | 
|  | // illegal vector types.  Lower VAArg here for these cases and use | 
|  | // the LLVM va_arg instruction for everything else. | 
|  | if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) | 
|  | return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); | 
|  |  | 
|  | CharUnits SlotSize = CharUnits::fromQuantity(8); | 
|  |  | 
|  | // Empty records are ignored for parameter passing purposes. | 
|  | if (isEmptyRecord(getContext(), Ty, true)) { | 
|  | Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); | 
|  | Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); | 
|  | return Addr; | 
|  | } | 
|  |  | 
|  | // The size of the actual thing passed, which might end up just | 
|  | // being a pointer for indirect types. | 
|  | auto TyInfo = getContext().getTypeInfoInChars(Ty); | 
|  |  | 
|  | // Arguments bigger than 16 bytes which aren't homogeneous | 
|  | // aggregates should be passed indirectly. | 
|  | bool IsIndirect = false; | 
|  | if (TyInfo.first.getQuantity() > 16) { | 
|  | const Type *Base = nullptr; | 
|  | uint64_t Members = 0; | 
|  | IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); | 
|  | } | 
|  |  | 
|  | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, | 
|  | TyInfo, SlotSize, /*AllowHigherAlign*/ true); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // ARM ABI Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class ARMABIInfo : public SwiftABIInfo { | 
|  | public: | 
|  | enum ABIKind { | 
|  | APCS = 0, | 
|  | AAPCS = 1, | 
|  | AAPCS_VFP = 2, | 
|  | AAPCS16_VFP = 3, | 
|  | }; | 
|  |  | 
|  | private: | 
|  | ABIKind Kind; | 
|  |  | 
|  | public: | 
|  | ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) | 
|  | : SwiftABIInfo(CGT), Kind(_Kind) { | 
|  | setCCs(); | 
|  | } | 
|  |  | 
|  | bool isEABI() const { | 
|  | switch (getTarget().getTriple().getEnvironment()) { | 
|  | case llvm::Triple::Android: | 
|  | case llvm::Triple::EABI: | 
|  | case llvm::Triple::EABIHF: | 
|  | case llvm::Triple::GNUEABI: | 
|  | case llvm::Triple::GNUEABIHF: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool isEABIHF() const { | 
|  | switch (getTarget().getTriple().getEnvironment()) { | 
|  | case llvm::Triple::EABIHF: | 
|  | case llvm::Triple::GNUEABIHF: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | ABIKind getABIKind() const { return Kind; } | 
|  |  | 
|  | private: | 
|  | ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; | 
|  | ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; | 
|  | bool isIllegalVectorType(QualType Ty) const; | 
|  |  | 
|  | bool isHomogeneousAggregateBaseType(QualType Ty) const override; | 
|  | bool isHomogeneousAggregateSmallEnough(const Type *Ty, | 
|  | uint64_t Members) const override; | 
|  |  | 
|  | void computeInfo(CGFunctionInfo &FI) const override; | 
|  |  | 
|  | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const override; | 
|  |  | 
|  | llvm::CallingConv::ID getLLVMDefaultCC() const; | 
|  | llvm::CallingConv::ID getABIDefaultCC() const; | 
|  | void setCCs(); | 
|  |  | 
|  | bool shouldPassIndirectlyForSwift(CharUnits totalSize, | 
|  | ArrayRef<llvm::Type*> scalars, | 
|  | bool asReturnValue) const override { | 
|  | return occupiesMoreThan(CGT, scalars, /*total*/ 4); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class ARMTargetCodeGenInfo : public TargetCodeGenInfo { | 
|  | public: | 
|  | ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) | 
|  | :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} | 
|  |  | 
|  | const ARMABIInfo &getABIInfo() const { | 
|  | return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); | 
|  | } | 
|  |  | 
|  | int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { | 
|  | return 13; | 
|  | } | 
|  |  | 
|  | StringRef getARCRetainAutoreleasedReturnValueMarker() const override { | 
|  | return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; | 
|  | } | 
|  |  | 
|  | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, | 
|  | llvm::Value *Address) const override { | 
|  | llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); | 
|  |  | 
|  | // 0-15 are the 16 integer registers. | 
|  | AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned getSizeOfUnwindException() const override { | 
|  | if (getABIInfo().isEABI()) return 88; | 
|  | return TargetCodeGenInfo::getSizeOfUnwindException(); | 
|  | } | 
|  |  | 
|  | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, | 
|  | CodeGen::CodeGenModule &CGM) const override { | 
|  | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); | 
|  | if (!FD) | 
|  | return; | 
|  |  | 
|  | const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); | 
|  | if (!Attr) | 
|  | return; | 
|  |  | 
|  | const char *Kind; | 
|  | switch (Attr->getInterrupt()) { | 
|  | case ARMInterruptAttr::Generic: Kind = ""; break; | 
|  | case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break; | 
|  | case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break; | 
|  | case ARMInterruptAttr::SWI:     Kind = "SWI"; break; | 
|  | case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break; | 
|  | case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break; | 
|  | } | 
|  |  | 
|  | llvm::Function *Fn = cast<llvm::Function>(GV); | 
|  |  | 
|  | Fn->addFnAttr("interrupt", Kind); | 
|  |  | 
|  | ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); | 
|  | if (ABI == ARMABIInfo::APCS) | 
|  | return; | 
|  |  | 
|  | // AAPCS guarantees that sp will be 8-byte aligned on any public interface, | 
|  | // however this is not necessarily true on taking any interrupt. Instruct | 
|  | // the backend to perform a realignment as part of the function prologue. | 
|  | llvm::AttrBuilder B; | 
|  | B.addStackAlignmentAttr(8); | 
|  | Fn->addAttributes(llvm::AttributeSet::FunctionIndex, | 
|  | llvm::AttributeSet::get(CGM.getLLVMContext(), | 
|  | llvm::AttributeSet::FunctionIndex, | 
|  | B)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { | 
|  | public: | 
|  | WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) | 
|  | : ARMTargetCodeGenInfo(CGT, K) {} | 
|  |  | 
|  | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, | 
|  | CodeGen::CodeGenModule &CGM) const override; | 
|  | }; | 
|  |  | 
|  | void WindowsARMTargetCodeGenInfo::setTargetAttributes( | 
|  | const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { | 
|  | ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); | 
|  | addStackProbeSizeTargetAttribute(D, GV, CGM); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { | 
|  | if (!getCXXABI().classifyReturnType(FI)) | 
|  | FI.getReturnInfo() = | 
|  | classifyReturnType(FI.getReturnType(), FI.isVariadic()); | 
|  |  | 
|  | for (auto &I : FI.arguments()) | 
|  | I.info = classifyArgumentType(I.type, FI.isVariadic()); | 
|  |  | 
|  | // Always honor user-specified calling convention. | 
|  | if (FI.getCallingConvention() != llvm::CallingConv::C) | 
|  | return; | 
|  |  | 
|  | llvm::CallingConv::ID cc = getRuntimeCC(); | 
|  | if (cc != llvm::CallingConv::C) | 
|  | FI.setEffectiveCallingConvention(cc); | 
|  | } | 
|  |  | 
|  | /// Return the default calling convention that LLVM will use. | 
|  | llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { | 
|  | // The default calling convention that LLVM will infer. | 
|  | if (isEABIHF() || getTarget().getTriple().isWatchABI()) | 
|  | return llvm::CallingConv::ARM_AAPCS_VFP; | 
|  | else if (isEABI()) | 
|  | return llvm::CallingConv::ARM_AAPCS; | 
|  | else | 
|  | return llvm::CallingConv::ARM_APCS; | 
|  | } | 
|  |  | 
|  | /// Return the calling convention that our ABI would like us to use | 
|  | /// as the C calling convention. | 
|  | llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { | 
|  | switch (getABIKind()) { | 
|  | case APCS: return llvm::CallingConv::ARM_APCS; | 
|  | case AAPCS: return llvm::CallingConv::ARM_AAPCS; | 
|  | case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; | 
|  | case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; | 
|  | } | 
|  | llvm_unreachable("bad ABI kind"); | 
|  | } | 
|  |  | 
|  | void ARMABIInfo::setCCs() { | 
|  | assert(getRuntimeCC() == llvm::CallingConv::C); | 
|  |  | 
|  | // Don't muddy up the IR with a ton of explicit annotations if | 
|  | // they'd just match what LLVM will infer from the triple. | 
|  | llvm::CallingConv::ID abiCC = getABIDefaultCC(); | 
|  | if (abiCC != getLLVMDefaultCC()) | 
|  | RuntimeCC = abiCC; | 
|  |  | 
|  | // AAPCS apparently requires runtime support functions to be soft-float, but | 
|  | // that's almost certainly for historic reasons (Thumb1 not supporting VFP | 
|  | // most likely). It's more convenient for AAPCS16_VFP to be hard-float. | 
|  | switch (getABIKind()) { | 
|  | case APCS: | 
|  | case AAPCS16_VFP: | 
|  | if (abiCC != getLLVMDefaultCC()) | 
|  | BuiltinCC = abiCC; | 
|  | break; | 
|  | case AAPCS: | 
|  | case AAPCS_VFP: | 
|  | BuiltinCC = llvm::CallingConv::ARM_AAPCS; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, | 
|  | bool isVariadic) const { | 
|  | // 6.1.2.1 The following argument types are VFP CPRCs: | 
|  | //   A single-precision floating-point type (including promoted | 
|  | //   half-precision types); A double-precision floating-point type; | 
|  | //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate | 
|  | //   with a Base Type of a single- or double-precision floating-point type, | 
|  | //   64-bit containerized vectors or 128-bit containerized vectors with one | 
|  | //   to four Elements. | 
|  | bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; | 
|  |  | 
|  | Ty = useFirstFieldIfTransparentUnion(Ty); | 
|  |  | 
|  | // Handle illegal vector types here. | 
|  | if (isIllegalVectorType(Ty)) { | 
|  | uint64_t Size = getContext().getTypeSize(Ty); | 
|  | if (Size <= 32) { | 
|  | llvm::Type *ResType = | 
|  | llvm::Type::getInt32Ty(getVMContext()); | 
|  | return ABIArgInfo::getDirect(ResType); | 
|  | } | 
|  | if (Size == 64) { | 
|  | llvm::Type *ResType = llvm::VectorType::get( | 
|  | llvm::Type::getInt32Ty(getVMContext()), 2); | 
|  | return ABIArgInfo::getDirect(ResType); | 
|  | } | 
|  | if (Size == 128) { | 
|  | llvm::Type *ResType = llvm::VectorType::get( | 
|  | llvm::Type::getInt32Ty(getVMContext()), 4); | 
|  | return ABIArgInfo::getDirect(ResType); | 
|  | } | 
|  | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); | 
|  | } | 
|  |  | 
|  | // __fp16 gets passed as if it were an int or float, but with the top 16 bits | 
|  | // unspecified. This is not done for OpenCL as it handles the half type | 
|  | // natively, and does not need to interwork with AAPCS code. | 
|  | if (Ty->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { | 
|  | llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? | 
|  | llvm::Type::getFloatTy(getVMContext()) : | 
|  | llvm::Type::getInt32Ty(getVMContext()); | 
|  | return ABIArgInfo::getDirect(ResType); | 
|  | } | 
|  |  | 
|  | if (!isAggregateTypeForABI(Ty)) { | 
|  | // Treat an enum type as its underlying type. | 
|  | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { | 
|  | Ty = EnumTy->getDecl()->getIntegerType(); | 
|  | } | 
|  |  | 
|  | return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() | 
|  | : ABIArgInfo::getDirect()); | 
|  | } | 
|  |  | 
|  | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { | 
|  | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); | 
|  | } | 
|  |  | 
|  | // Ignore empty records. | 
|  | if (isEmptyRecord(getContext(), Ty, true)) | 
|  | return ABIArgInfo::getIgnore(); | 
|  |  | 
|  | if (IsEffectivelyAAPCS_VFP) { | 
|  | // Homogeneous Aggregates need to be expanded when we can fit the aggregate | 
|  | // into VFP registers. | 
|  | const Type *Base = nullptr; | 
|  | uint64_t Members = 0; | 
|  | if (isHomogeneousAggregate(Ty, Base, Members)) { | 
|  | assert(Base && "Base class should be set for homogeneous aggregate"); | 
|  | // Base can be a floating-point or a vector. | 
|  | return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); | 
|  | } | 
|  | } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { | 
|  | // WatchOS does have homogeneous aggregates. Note that we intentionally use | 
|  | // this convention even for a variadic function: the backend will use GPRs | 
|  | // if needed. | 
|  | const Type *Base = nullptr; | 
|  | uint64_t Members = 0; | 
|  | if (isHomogeneousAggregate(Ty, Base, Members)) { | 
|  | assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); | 
|  | llvm::Type *Ty = | 
|  | llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); | 
|  | return ABIArgInfo::getDirect(Ty, 0, nullptr, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (getABIKind() == ARMABIInfo::AAPCS16_VFP && | 
|  | getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { | 
|  | // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're | 
|  | // bigger than 128-bits, they get placed in space allocated by the caller, | 
|  | // and a pointer is passed. | 
|  | return ABIArgInfo::getIndirect( | 
|  | CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); | 
|  | } | 
|  |  | 
|  | // Support byval for ARM. | 
|  | // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at | 
|  | // most 8-byte. We realign the indirect argument if type alignment is bigger | 
|  | // than ABI alignment. | 
|  | uint64_t ABIAlign = 4; | 
|  | uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; | 
|  | if (getABIKind() == ARMABIInfo::AAPCS_VFP || | 
|  | getABIKind() == ARMABIInfo::AAPCS) | 
|  | ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); | 
|  |  | 
|  | if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { | 
|  | assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); | 
|  | return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), | 
|  | /*ByVal=*/true, | 
|  | /*Realign=*/TyAlign > ABIAlign); | 
|  | } | 
|  |  | 
|  | // Otherwise, pass by coercing to a structure of the appropriate size. | 
|  | llvm::Type* ElemTy; | 
|  | unsigned SizeRegs; | 
|  | // FIXME: Try to match the types of the arguments more accurately where | 
|  | // we can. | 
|  | if (getContext().getTypeAlign(Ty) <= 32) { | 
|  | ElemTy = llvm::Type::getInt32Ty(getVMContext()); | 
|  | SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; | 
|  | } else { | 
|  | ElemTy = llvm::Type::getInt64Ty(getVMContext()); | 
|  | SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; | 
|  | } | 
|  |  | 
|  | return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); | 
|  | } | 
|  |  | 
|  | static bool isIntegerLikeType(QualType Ty, ASTContext &Context, | 
|  | llvm::LLVMContext &VMContext) { | 
|  | // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure | 
|  | // is called integer-like if its size is less than or equal to one word, and | 
|  | // the offset of each of its addressable sub-fields is zero. | 
|  |  | 
|  | uint64_t Size = Context.getTypeSize(Ty); | 
|  |  | 
|  | // Check that the type fits in a word. | 
|  | if (Size > 32) | 
|  | return false; | 
|  |  | 
|  | // FIXME: Handle vector types! | 
|  | if (Ty->isVectorType()) | 
|  | return false; | 
|  |  | 
|  | // Float types are never treated as "integer like". | 
|  | if (Ty->isRealFloatingType()) | 
|  | return false; | 
|  |  | 
|  | // If this is a builtin or pointer type then it is ok. | 
|  | if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) | 
|  | return true; | 
|  |  | 
|  | // Small complex integer types are "integer like". | 
|  | if (const ComplexType *CT = Ty->getAs<ComplexType>()) | 
|  | return isIntegerLikeType(CT->getElementType(), Context, VMContext); | 
|  |  | 
|  | // Single element and zero sized arrays should be allowed, by the definition | 
|  | // above, but they are not. | 
|  |  | 
|  | // Otherwise, it must be a record type. | 
|  | const RecordType *RT = Ty->getAs<RecordType>(); | 
|  | if (!RT) return false; | 
|  |  | 
|  | // Ignore records with flexible arrays. | 
|  | const RecordDecl *RD = RT->getDecl(); | 
|  | if (RD->hasFlexibleArrayMember()) | 
|  | return false; | 
|  |  | 
|  | // Check that all sub-fields are at offset 0, and are themselves "integer | 
|  | // like". | 
|  | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); | 
|  |  | 
|  | bool HadField = false; | 
|  | unsigned idx = 0; | 
|  | for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); | 
|  | i != e; ++i, ++idx) { | 
|  | const FieldDecl *FD = *i; | 
|  |  | 
|  | // Bit-fields are not addressable, we only need to verify they are "integer | 
|  | // like". We still have to disallow a subsequent non-bitfield, for example: | 
|  | //   struct { int : 0; int x } | 
|  | // is non-integer like according to gcc. | 
|  | if (FD->isBitField()) { | 
|  | if (!RD->isUnion()) | 
|  | HadField = true; | 
|  |  | 
|  | if (!isIntegerLikeType(FD->getType(), Context, VMContext)) | 
|  | return false; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check if this field is at offset 0. | 
|  | if (Layout.getFieldOffset(idx) != 0) | 
|  | return false; | 
|  |  | 
|  | if (!isIntegerLikeType(FD->getType(), Context, VMContext)) | 
|  | return false; | 
|  |  | 
|  | // Only allow at most one field in a structure. This doesn't match the | 
|  | // wording above, but follows gcc in situations with a field following an | 
|  | // empty structure. | 
|  | if (!RD->isUnion()) { | 
|  | if (HadField) | 
|  | return false; | 
|  |  | 
|  | HadField = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, | 
|  | bool isVariadic) const { | 
|  | bool IsEffectivelyAAPCS_VFP = | 
|  | (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; | 
|  |  | 
|  | if (RetTy->isVoidType()) | 
|  | return ABIArgInfo::getIgnore(); | 
|  |  | 
|  | // Large vector types should be returned via memory. | 
|  | if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { | 
|  | return getNaturalAlignIndirect(RetTy); | 
|  | } | 
|  |  | 
|  | // __fp16 gets returned as if it were an int or float, but with the top 16 | 
|  | // bits unspecified. This is not done for OpenCL as it handles the half type | 
|  | // natively, and does not need to interwork with AAPCS code. | 
|  | if (RetTy->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { | 
|  | llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? | 
|  | llvm::Type::getFloatTy(getVMContext()) : | 
|  | llvm::Type::getInt32Ty(getVMContext()); | 
|  | return ABIArgInfo::getDirect(ResType); | 
|  | } | 
|  |  | 
|  | if (!isAggregateTypeForABI(RetTy)) { | 
|  | // Treat an enum type as its underlying type. | 
|  | if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) | 
|  | RetTy = EnumTy->getDecl()->getIntegerType(); | 
|  |  | 
|  | return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() | 
|  | : ABIArgInfo::getDirect(); | 
|  | } | 
|  |  | 
|  | // Are we following APCS? | 
|  | if (getABIKind() == APCS) { | 
|  | if (isEmptyRecord(getContext(), RetTy, false)) | 
|  | return ABIArgInfo::getIgnore(); | 
|  |  | 
|  | // Complex types are all returned as packed integers. | 
|  | // | 
|  | // FIXME: Consider using 2 x vector types if the back end handles them | 
|  | // correctly. | 
|  | if (RetTy->isAnyComplexType()) | 
|  | return ABIArgInfo::getDirect(llvm::IntegerType::get( | 
|  | getVMContext(), getContext().getTypeSize(RetTy))); | 
|  |  | 
|  | // Integer like structures are returned in r0. | 
|  | if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { | 
|  | // Return in the smallest viable integer type. | 
|  | uint64_t Size = getContext().getTypeSize(RetTy); | 
|  | if (Size <= 8) | 
|  | return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); | 
|  | if (Size <= 16) | 
|  | return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); | 
|  | return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); | 
|  | } | 
|  |  | 
|  | // Otherwise return in memory. | 
|  | return getNaturalAlignIndirect(RetTy); | 
|  | } | 
|  |  | 
|  | // Otherwise this is an AAPCS variant. | 
|  |  | 
|  | if (isEmptyRecord(getContext(), RetTy, true)) | 
|  | return ABIArgInfo::getIgnore(); | 
|  |  | 
|  | // Check for homogeneous aggregates with AAPCS-VFP. | 
|  | if (IsEffectivelyAAPCS_VFP) { | 
|  | const Type *Base = nullptr; | 
|  | uint64_t Members = 0; | 
|  | if (isHomogeneousAggregate(RetTy, Base, Members)) { | 
|  | assert(Base && "Base class should be set for homogeneous aggregate"); | 
|  | // Homogeneous Aggregates are returned directly. | 
|  | return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Aggregates <= 4 bytes are returned in r0; other aggregates | 
|  | // are returned indirectly. | 
|  | uint64_t Size = getContext().getTypeSize(RetTy); | 
|  | if (Size <= 32) { | 
|  | if (getDataLayout().isBigEndian()) | 
|  | // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) | 
|  | return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); | 
|  |  | 
|  | // Return in the smallest viable integer type. | 
|  | if (Size <= 8) | 
|  | return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); | 
|  | if (Size <= 16) | 
|  | return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); | 
|  | return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); | 
|  | } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { | 
|  | llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); | 
|  | llvm::Type *CoerceTy = | 
|  | llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); | 
|  | return ABIArgInfo::getDirect(CoerceTy); | 
|  | } | 
|  |  | 
|  | return getNaturalAlignIndirect(RetTy); | 
|  | } | 
|  |  | 
|  | /// isIllegalVector - check whether Ty is an illegal vector type. | 
|  | bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { | 
|  | if (const VectorType *VT = Ty->getAs<VectorType> ()) { | 
|  | if (isAndroid()) { | 
|  | // Android shipped using Clang 3.1, which supported a slightly different | 
|  | // vector ABI. The primary differences were that 3-element vector types | 
|  | // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path | 
|  | // accepts that legacy behavior for Android only. | 
|  | // Check whether VT is legal. | 
|  | unsigned NumElements = VT->getNumElements(); | 
|  | // NumElements should be power of 2 or equal to 3. | 
|  | if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) | 
|  | return true; | 
|  | } else { | 
|  | // Check whether VT is legal. | 
|  | unsigned NumElements = VT->getNumElements(); | 
|  | uint64_t Size = getContext().getTypeSize(VT); | 
|  | // NumElements should be power of 2. | 
|  | if (!llvm::isPowerOf2_32(NumElements)) | 
|  | return true; | 
|  | // Size should be greater than 32 bits. | 
|  | return Size <= 32; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { | 
|  | // Homogeneous aggregates for AAPCS-VFP must have base types of float, | 
|  | // double, or 64-bit or 128-bit vectors. | 
|  | if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { | 
|  | if (BT->getKind() == BuiltinType::Float || | 
|  | BT->getKind() == BuiltinType::Double || | 
|  | BT->getKind() == BuiltinType::LongDouble) | 
|  | return true; | 
|  | } else if (const VectorType *VT = Ty->getAs<VectorType>()) { | 
|  | unsigned VecSize = getContext().getTypeSize(VT); | 
|  | if (VecSize == 64 || VecSize == 128) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, | 
|  | uint64_t Members) const { | 
|  | return Members <= 4; | 
|  | } | 
|  |  | 
|  | Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const { | 
|  | CharUnits SlotSize = CharUnits::fromQuantity(4); | 
|  |  | 
|  | // Empty records are ignored for parameter passing purposes. | 
|  | if (isEmptyRecord(getContext(), Ty, true)) { | 
|  | Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); | 
|  | Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); | 
|  | return Addr; | 
|  | } | 
|  |  | 
|  | auto TyInfo = getContext().getTypeInfoInChars(Ty); | 
|  | CharUnits TyAlignForABI = TyInfo.second; | 
|  |  | 
|  | // Use indirect if size of the illegal vector is bigger than 16 bytes. | 
|  | bool IsIndirect = false; | 
|  | const Type *Base = nullptr; | 
|  | uint64_t Members = 0; | 
|  | if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { | 
|  | IsIndirect = true; | 
|  |  | 
|  | // ARMv7k passes structs bigger than 16 bytes indirectly, in space | 
|  | // allocated by the caller. | 
|  | } else if (TyInfo.first > CharUnits::fromQuantity(16) && | 
|  | getABIKind() == ARMABIInfo::AAPCS16_VFP && | 
|  | !isHomogeneousAggregate(Ty, Base, Members)) { | 
|  | IsIndirect = true; | 
|  |  | 
|  | // Otherwise, bound the type's ABI alignment. | 
|  | // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for | 
|  | // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. | 
|  | // Our callers should be prepared to handle an under-aligned address. | 
|  | } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || | 
|  | getABIKind() == ARMABIInfo::AAPCS) { | 
|  | TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); | 
|  | TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); | 
|  | } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { | 
|  | // ARMv7k allows type alignment up to 16 bytes. | 
|  | TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); | 
|  | TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); | 
|  | } else { | 
|  | TyAlignForABI = CharUnits::fromQuantity(4); | 
|  | } | 
|  | TyInfo.second = TyAlignForABI; | 
|  |  | 
|  | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, | 
|  | SlotSize, /*AllowHigherAlign*/ true); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // NVPTX ABI Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class NVPTXABIInfo : public ABIInfo { | 
|  | public: | 
|  | NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} | 
|  |  | 
|  | ABIArgInfo classifyReturnType(QualType RetTy) const; | 
|  | ABIArgInfo classifyArgumentType(QualType Ty) const; | 
|  |  | 
|  | void computeInfo(CGFunctionInfo &FI) const override; | 
|  | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const override; | 
|  | }; | 
|  |  | 
|  | class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { | 
|  | public: | 
|  | NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) | 
|  | : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} | 
|  |  | 
|  | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, | 
|  | CodeGen::CodeGenModule &M) const override; | 
|  | private: | 
|  | // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the | 
|  | // resulting MDNode to the nvvm.annotations MDNode. | 
|  | static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); | 
|  | }; | 
|  |  | 
|  | ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { | 
|  | if (RetTy->isVoidType()) | 
|  | return ABIArgInfo::getIgnore(); | 
|  |  | 
|  | // note: this is different from default ABI | 
|  | if (!RetTy->isScalarType()) | 
|  | return ABIArgInfo::getDirect(); | 
|  |  | 
|  | // Treat an enum type as its underlying type. | 
|  | if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) | 
|  | RetTy = EnumTy->getDecl()->getIntegerType(); | 
|  |  | 
|  | return (RetTy->isPromotableIntegerType() ? | 
|  | ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); | 
|  | } | 
|  |  | 
|  | ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { | 
|  | // Treat an enum type as its underlying type. | 
|  | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) | 
|  | Ty = EnumTy->getDecl()->getIntegerType(); | 
|  |  | 
|  | // Return aggregates type as indirect by value | 
|  | if (isAggregateTypeForABI(Ty)) | 
|  | return getNaturalAlignIndirect(Ty, /* byval */ true); | 
|  |  | 
|  | return (Ty->isPromotableIntegerType() ? | 
|  | ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); | 
|  | } | 
|  |  | 
|  | void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { | 
|  | if (!getCXXABI().classifyReturnType(FI)) | 
|  | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); | 
|  | for (auto &I : FI.arguments()) | 
|  | I.info = classifyArgumentType(I.type); | 
|  |  | 
|  | // Always honor user-specified calling convention. | 
|  | if (FI.getCallingConvention() != llvm::CallingConv::C) | 
|  | return; | 
|  |  | 
|  | FI.setEffectiveCallingConvention(getRuntimeCC()); | 
|  | } | 
|  |  | 
|  | Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const { | 
|  | llvm_unreachable("NVPTX does not support varargs"); | 
|  | } | 
|  |  | 
|  | void NVPTXTargetCodeGenInfo:: | 
|  | setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, | 
|  | CodeGen::CodeGenModule &M) const{ | 
|  | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); | 
|  | if (!FD) return; | 
|  |  | 
|  | llvm::Function *F = cast<llvm::Function>(GV); | 
|  |  | 
|  | // Perform special handling in OpenCL mode | 
|  | if (M.getLangOpts().OpenCL) { | 
|  | // Use OpenCL function attributes to check for kernel functions | 
|  | // By default, all functions are device functions | 
|  | if (FD->hasAttr<OpenCLKernelAttr>()) { | 
|  | // OpenCL __kernel functions get kernel metadata | 
|  | // Create !{<func-ref>, metadata !"kernel", i32 1} node | 
|  | addNVVMMetadata(F, "kernel", 1); | 
|  | // And kernel functions are not subject to inlining | 
|  | F->addFnAttr(llvm::Attribute::NoInline); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Perform special handling in CUDA mode. | 
|  | if (M.getLangOpts().CUDA) { | 
|  | // CUDA __global__ functions get a kernel metadata entry.  Since | 
|  | // __global__ functions cannot be called from the device, we do not | 
|  | // need to set the noinline attribute. | 
|  | if (FD->hasAttr<CUDAGlobalAttr>()) { | 
|  | // Create !{<func-ref>, metadata !"kernel", i32 1} node | 
|  | addNVVMMetadata(F, "kernel", 1); | 
|  | } | 
|  | if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { | 
|  | // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node | 
|  | llvm::APSInt MaxThreads(32); | 
|  | MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); | 
|  | if (MaxThreads > 0) | 
|  | addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); | 
|  |  | 
|  | // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was | 
|  | // not specified in __launch_bounds__ or if the user specified a 0 value, | 
|  | // we don't have to add a PTX directive. | 
|  | if (Attr->getMinBlocks()) { | 
|  | llvm::APSInt MinBlocks(32); | 
|  | MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); | 
|  | if (MinBlocks > 0) | 
|  | // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node | 
|  | addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, | 
|  | int Operand) { | 
|  | llvm::Module *M = F->getParent(); | 
|  | llvm::LLVMContext &Ctx = M->getContext(); | 
|  |  | 
|  | // Get "nvvm.annotations" metadata node | 
|  | llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); | 
|  |  | 
|  | llvm::Metadata *MDVals[] = { | 
|  | llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), | 
|  | llvm::ConstantAsMetadata::get( | 
|  | llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; | 
|  | // Append metadata to nvvm.annotations | 
|  | MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // SystemZ ABI Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class SystemZABIInfo : public SwiftABIInfo { | 
|  | bool HasVector; | 
|  |  | 
|  | public: | 
|  | SystemZABIInfo(CodeGenTypes &CGT, bool HV) | 
|  | : SwiftABIInfo(CGT), HasVector(HV) {} | 
|  |  | 
|  | bool isPromotableIntegerType(QualType Ty) const; | 
|  | bool isCompoundType(QualType Ty) const; | 
|  | bool isVectorArgumentType(QualType Ty) const; | 
|  | bool isFPArgumentType(QualType Ty) const; | 
|  | QualType GetSingleElementType(QualType Ty) const; | 
|  |  | 
|  | ABIArgInfo classifyReturnType(QualType RetTy) const; | 
|  | ABIArgInfo classifyArgumentType(QualType ArgTy) const; | 
|  |  | 
|  | void computeInfo(CGFunctionInfo &FI) const override { | 
|  | if (!getCXXABI().classifyReturnType(FI)) | 
|  | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); | 
|  | for (auto &I : FI.arguments()) | 
|  | I.info = classifyArgumentType(I.type); | 
|  | } | 
|  |  | 
|  | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const override; | 
|  |  | 
|  | bool shouldPassIndirectlyForSwift(CharUnits totalSize, | 
|  | ArrayRef<llvm::Type*> scalars, | 
|  | bool asReturnValue) const override { | 
|  | return occupiesMoreThan(CGT, scalars, /*total*/ 4); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { | 
|  | public: | 
|  | SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) | 
|  | : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { | 
|  | // Treat an enum type as its underlying type. | 
|  | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) | 
|  | Ty = EnumTy->getDecl()->getIntegerType(); | 
|  |  | 
|  | // Promotable integer types are required to be promoted by the ABI. | 
|  | if (Ty->isPromotableIntegerType()) | 
|  | return true; | 
|  |  | 
|  | // 32-bit values must also be promoted. | 
|  | if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) | 
|  | switch (BT->getKind()) { | 
|  | case BuiltinType::Int: | 
|  | case BuiltinType::UInt: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SystemZABIInfo::isCompoundType(QualType Ty) const { | 
|  | return (Ty->isAnyComplexType() || | 
|  | Ty->isVectorType() || | 
|  | isAggregateTypeForABI(Ty)); | 
|  | } | 
|  |  | 
|  | bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { | 
|  | return (HasVector && | 
|  | Ty->isVectorType() && | 
|  | getContext().getTypeSize(Ty) <= 128); | 
|  | } | 
|  |  | 
|  | bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { | 
|  | if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) | 
|  | switch (BT->getKind()) { | 
|  | case BuiltinType::Float: | 
|  | case BuiltinType::Double: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { | 
|  | if (const RecordType *RT = Ty->getAsStructureType()) { | 
|  | const RecordDecl *RD = RT->getDecl(); | 
|  | QualType Found; | 
|  |  | 
|  | // If this is a C++ record, check the bases first. | 
|  | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) | 
|  | for (const auto &I : CXXRD->bases()) { | 
|  | QualType Base = I.getType(); | 
|  |  | 
|  | // Empty bases don't affect things either way. | 
|  | if (isEmptyRecord(getContext(), Base, true)) | 
|  | continue; | 
|  |  | 
|  | if (!Found.isNull()) | 
|  | return Ty; | 
|  | Found = GetSingleElementType(Base); | 
|  | } | 
|  |  | 
|  | // Check the fields. | 
|  | for (const auto *FD : RD->fields()) { | 
|  | // For compatibility with GCC, ignore empty bitfields in C++ mode. | 
|  | // Unlike isSingleElementStruct(), empty structure and array fields | 
|  | // do count.  So do anonymous bitfields that aren't zero-sized. | 
|  | if (getContext().getLangOpts().CPlusPlus && | 
|  | FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) | 
|  | continue; | 
|  |  | 
|  | // Unlike isSingleElementStruct(), arrays do not count. | 
|  | // Nested structures still do though. | 
|  | if (!Found.isNull()) | 
|  | return Ty; | 
|  | Found = GetSingleElementType(FD->getType()); | 
|  | } | 
|  |  | 
|  | // Unlike isSingleElementStruct(), trailing padding is allowed. | 
|  | // An 8-byte aligned struct s { float f; } is passed as a double. | 
|  | if (!Found.isNull()) | 
|  | return Found; | 
|  | } | 
|  |  | 
|  | return Ty; | 
|  | } | 
|  |  | 
|  | Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const { | 
|  | // Assume that va_list type is correct; should be pointer to LLVM type: | 
|  | // struct { | 
|  | //   i64 __gpr; | 
|  | //   i64 __fpr; | 
|  | //   i8 *__overflow_arg_area; | 
|  | //   i8 *__reg_save_area; | 
|  | // }; | 
|  |  | 
|  | // Every non-vector argument occupies 8 bytes and is passed by preference | 
|  | // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are | 
|  | // always passed on the stack. | 
|  | Ty = getContext().getCanonicalType(Ty); | 
|  | auto TyInfo = getContext().getTypeInfoInChars(Ty); | 
|  | llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); | 
|  | llvm::Type *DirectTy = ArgTy; | 
|  | ABIArgInfo AI = classifyArgumentType(Ty); | 
|  | bool IsIndirect = AI.isIndirect(); | 
|  | bool InFPRs = false; | 
|  | bool IsVector = false; | 
|  | CharUnits UnpaddedSize; | 
|  | CharUnits DirectAlign; | 
|  | if (IsIndirect) { | 
|  | DirectTy = llvm::PointerType::getUnqual(DirectTy); | 
|  | UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); | 
|  | } else { | 
|  | if (AI.getCoerceToType()) | 
|  | ArgTy = AI.getCoerceToType(); | 
|  | InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); | 
|  | IsVector = ArgTy->isVectorTy(); | 
|  | UnpaddedSize = TyInfo.first; | 
|  | DirectAlign = TyInfo.second; | 
|  | } | 
|  | CharUnits PaddedSize = CharUnits::fromQuantity(8); | 
|  | if (IsVector && UnpaddedSize > PaddedSize) | 
|  | PaddedSize = CharUnits::fromQuantity(16); | 
|  | assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); | 
|  |  | 
|  | CharUnits Padding = (PaddedSize - UnpaddedSize); | 
|  |  | 
|  | llvm::Type *IndexTy = CGF.Int64Ty; | 
|  | llvm::Value *PaddedSizeV = | 
|  | llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); | 
|  |  | 
|  | if (IsVector) { | 
|  | // Work out the address of a vector argument on the stack. | 
|  | // Vector arguments are always passed in the high bits of a | 
|  | // single (8 byte) or double (16 byte) stack slot. | 
|  | Address OverflowArgAreaPtr = | 
|  | CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), | 
|  | "overflow_arg_area_ptr"); | 
|  | Address OverflowArgArea = | 
|  | Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), | 
|  | TyInfo.second); | 
|  | Address MemAddr = | 
|  | CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); | 
|  |  | 
|  | // Update overflow_arg_area_ptr pointer | 
|  | llvm::Value *NewOverflowArgArea = | 
|  | CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, | 
|  | "overflow_arg_area"); | 
|  | CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); | 
|  |  | 
|  | return MemAddr; | 
|  | } | 
|  |  | 
|  | assert(PaddedSize.getQuantity() == 8); | 
|  |  | 
|  | unsigned MaxRegs, RegCountField, RegSaveIndex; | 
|  | CharUnits RegPadding; | 
|  | if (InFPRs) { | 
|  | MaxRegs = 4; // Maximum of 4 FPR arguments | 
|  | RegCountField = 1; // __fpr | 
|  | RegSaveIndex = 16; // save offset for f0 | 
|  | RegPadding = CharUnits(); // floats are passed in the high bits of an FPR | 
|  | } else { | 
|  | MaxRegs = 5; // Maximum of 5 GPR arguments | 
|  | RegCountField = 0; // __gpr | 
|  | RegSaveIndex = 2; // save offset for r2 | 
|  | RegPadding = Padding; // values are passed in the low bits of a GPR | 
|  | } | 
|  |  | 
|  | Address RegCountPtr = CGF.Builder.CreateStructGEP( | 
|  | VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), | 
|  | "reg_count_ptr"); | 
|  | llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); | 
|  | llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); | 
|  | llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, | 
|  | "fits_in_regs"); | 
|  |  | 
|  | llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); | 
|  | llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); | 
|  | llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); | 
|  | CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); | 
|  |  | 
|  | // Emit code to load the value if it was passed in registers. | 
|  | CGF.EmitBlock(InRegBlock); | 
|  |  | 
|  | // Work out the address of an argument register. | 
|  | llvm::Value *ScaledRegCount = | 
|  | CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); | 
|  | llvm::Value *RegBase = | 
|  | llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() | 
|  | + RegPadding.getQuantity()); | 
|  | llvm::Value *RegOffset = | 
|  | CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); | 
|  | Address RegSaveAreaPtr = | 
|  | CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), | 
|  | "reg_save_area_ptr"); | 
|  | llvm::Value *RegSaveArea = | 
|  | CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); | 
|  | Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, | 
|  | "raw_reg_addr"), | 
|  | PaddedSize); | 
|  | Address RegAddr = | 
|  | CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); | 
|  |  | 
|  | // Update the register count | 
|  | llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); | 
|  | llvm::Value *NewRegCount = | 
|  | CGF.Builder.CreateAdd(RegCount, One, "reg_count"); | 
|  | CGF.Builder.CreateStore(NewRegCount, RegCountPtr); | 
|  | CGF.EmitBranch(ContBlock); | 
|  |  | 
|  | // Emit code to load the value if it was passed in memory. | 
|  | CGF.EmitBlock(InMemBlock); | 
|  |  | 
|  | // Work out the address of a stack argument. | 
|  | Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( | 
|  | VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); | 
|  | Address OverflowArgArea = | 
|  | Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), | 
|  | PaddedSize); | 
|  | Address RawMemAddr = | 
|  | CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); | 
|  | Address MemAddr = | 
|  | CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); | 
|  |  | 
|  | // Update overflow_arg_area_ptr pointer | 
|  | llvm::Value *NewOverflowArgArea = | 
|  | CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, | 
|  | "overflow_arg_area"); | 
|  | CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); | 
|  | CGF.EmitBranch(ContBlock); | 
|  |  | 
|  | // Return the appropriate result. | 
|  | CGF.EmitBlock(ContBlock); | 
|  | Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, | 
|  | MemAddr, InMemBlock, "va_arg.addr"); | 
|  |  | 
|  | if (IsIndirect) | 
|  | ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), | 
|  | TyInfo.second); | 
|  |  | 
|  | return ResAddr; | 
|  | } | 
|  |  | 
|  | ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { | 
|  | if (RetTy->isVoidType()) | 
|  | return ABIArgInfo::getIgnore(); | 
|  | if (isVectorArgumentType(RetTy)) | 
|  | return ABIArgInfo::getDirect(); | 
|  | if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) | 
|  | return getNaturalAlignIndirect(RetTy); | 
|  | return (isPromotableIntegerType(RetTy) ? | 
|  | ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); | 
|  | } | 
|  |  | 
|  | ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { | 
|  | // Handle the generic C++ ABI. | 
|  | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) | 
|  | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); | 
|  |  | 
|  | // Integers and enums are extended to full register width. | 
|  | if (isPromotableIntegerType(Ty)) | 
|  | return ABIArgInfo::getExtend(); | 
|  |  | 
|  | // Handle vector types and vector-like structure types.  Note that | 
|  | // as opposed to float-like structure types, we do not allow any | 
|  | // padding for vector-like structures, so verify the sizes match. | 
|  | uint64_t Size = getContext().getTypeSize(Ty); | 
|  | QualType SingleElementTy = GetSingleElementType(Ty); | 
|  | if (isVectorArgumentType(SingleElementTy) && | 
|  | getContext().getTypeSize(SingleElementTy) == Size) | 
|  | return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); | 
|  |  | 
|  | // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. | 
|  | if (Size != 8 && Size != 16 && Size != 32 && Size != 64) | 
|  | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); | 
|  |  | 
|  | // Handle small structures. | 
|  | if (const RecordType *RT = Ty->getAs<RecordType>()) { | 
|  | // Structures with flexible arrays have variable length, so really | 
|  | // fail the size test above. | 
|  | const RecordDecl *RD = RT->getDecl(); | 
|  | if (RD->hasFlexibleArrayMember()) | 
|  | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); | 
|  |  | 
|  | // The structure is passed as an unextended integer, a float, or a double. | 
|  | llvm::Type *PassTy; | 
|  | if (isFPArgumentType(SingleElementTy)) { | 
|  | assert(Size == 32 || Size == 64); | 
|  | if (Size == 32) | 
|  | PassTy = llvm::Type::getFloatTy(getVMContext()); | 
|  | else | 
|  | PassTy = llvm::Type::getDoubleTy(getVMContext()); | 
|  | } else | 
|  | PassTy = llvm::IntegerType::get(getVMContext(), Size); | 
|  | return ABIArgInfo::getDirect(PassTy); | 
|  | } | 
|  |  | 
|  | // Non-structure compounds are passed indirectly. | 
|  | if (isCompoundType(Ty)) | 
|  | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); | 
|  |  | 
|  | return ABIArgInfo::getDirect(nullptr); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // MSP430 ABI Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { | 
|  | public: | 
|  | MSP430TargetCodeGenInfo(CodeGenTypes &CGT) | 
|  | : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} | 
|  | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, | 
|  | CodeGen::CodeGenModule &M) const override; | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D, | 
|  | llvm::GlobalValue *GV, | 
|  | CodeGen::CodeGenModule &M) const { | 
|  | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { | 
|  | if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { | 
|  | // Handle 'interrupt' attribute: | 
|  | llvm::Function *F = cast<llvm::Function>(GV); | 
|  |  | 
|  | // Step 1: Set ISR calling convention. | 
|  | F->setCallingConv(llvm::CallingConv::MSP430_INTR); | 
|  |  | 
|  | // Step 2: Add attributes goodness. | 
|  | F->addFnAttr(llvm::Attribute::NoInline); | 
|  |  | 
|  | // Step 3: Emit ISR vector alias. | 
|  | unsigned Num = attr->getNumber() / 2; | 
|  | llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, | 
|  | "__isr_" + Twine(Num), F); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // MIPS ABI Implementation.  This works for both little-endian and | 
|  | // big-endian variants. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | class MipsABIInfo : public ABIInfo { | 
|  | bool IsO32; | 
|  | unsigned MinABIStackAlignInBytes, StackAlignInBytes; | 
|  | void CoerceToIntArgs(uint64_t TySize, | 
|  | SmallVectorImpl<llvm::Type *> &ArgList) const; | 
|  | llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; | 
|  | llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; | 
|  | llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; | 
|  | public: | 
|  | MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : | 
|  | ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), | 
|  | StackAlignInBytes(IsO32 ? 8 : 16) {} | 
|  |  | 
|  | ABIArgInfo classifyReturnType(QualType RetTy) const; | 
|  | ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; | 
|  | void computeInfo(CGFunctionInfo &FI) const override; | 
|  | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const override; | 
|  | bool shouldSignExtUnsignedType(QualType Ty) const override; | 
|  | }; | 
|  |  | 
|  | class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { | 
|  | unsigned SizeOfUnwindException; | 
|  | public: | 
|  | MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) | 
|  | : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), | 
|  | SizeOfUnwindException(IsO32 ? 24 : 32) {} | 
|  |  | 
|  | int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { | 
|  | return 29; | 
|  | } | 
|  |  | 
|  | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, | 
|  | CodeGen::CodeGenModule &CGM) const override { | 
|  | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); | 
|  | if (!FD) return; | 
|  | llvm::Function *Fn = cast<llvm::Function>(GV); | 
|  | if (FD->hasAttr<Mips16Attr>()) { | 
|  | Fn->addFnAttr("mips16"); | 
|  | } | 
|  | else if (FD->hasAttr<NoMips16Attr>()) { | 
|  | Fn->addFnAttr("nomips16"); | 
|  | } | 
|  |  | 
|  | const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); | 
|  | if (!Attr) | 
|  | return; | 
|  |  | 
|  | const char *Kind; | 
|  | switch (Attr->getInterrupt()) { | 
|  | case MipsInterruptAttr::eic:     Kind = "eic"; break; | 
|  | case MipsInterruptAttr::sw0:     Kind = "sw0"; break; | 
|  | case MipsInterruptAttr::sw1:     Kind = "sw1"; break; | 
|  | case MipsInterruptAttr::hw0:     Kind = "hw0"; break; | 
|  | case MipsInterruptAttr::hw1:     Kind = "hw1"; break; | 
|  | case MipsInterruptAttr::hw2:     Kind = "hw2"; break; | 
|  | case MipsInterruptAttr::hw3:     Kind = "hw3"; break; | 
|  | case MipsInterruptAttr::hw4:     Kind = "hw4"; break; | 
|  | case MipsInterruptAttr::hw5:     Kind = "hw5"; break; | 
|  | } | 
|  |  | 
|  | Fn->addFnAttr("interrupt", Kind); | 
|  |  | 
|  | } | 
|  |  | 
|  | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, | 
|  | llvm::Value *Address) const override; | 
|  |  | 
|  | unsigned getSizeOfUnwindException() const override { | 
|  | return SizeOfUnwindException; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | void MipsABIInfo::CoerceToIntArgs( | 
|  | uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { | 
|  | llvm::IntegerType *IntTy = | 
|  | llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); | 
|  |  | 
|  | // Add (TySize / MinABIStackAlignInBytes) args of IntTy. | 
|  | for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) | 
|  | ArgList.push_back(IntTy); | 
|  |  | 
|  | // If necessary, add one more integer type to ArgList. | 
|  | unsigned R = TySize % (MinABIStackAlignInBytes * 8); | 
|  |  | 
|  | if (R) | 
|  | ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); | 
|  | } | 
|  |  | 
|  | // In N32/64, an aligned double precision floating point field is passed in | 
|  | // a register. | 
|  | llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { | 
|  | SmallVector<llvm::Type*, 8> ArgList, IntArgList; | 
|  |  | 
|  | if (IsO32) { | 
|  | CoerceToIntArgs(TySize, ArgList); | 
|  | return llvm::StructType::get(getVMContext(), ArgList); | 
|  | } | 
|  |  | 
|  | if (Ty->isComplexType()) | 
|  | return CGT.ConvertType(Ty); | 
|  |  | 
|  | const RecordType *RT = Ty->getAs<RecordType>(); | 
|  |  | 
|  | // Unions/vectors are passed in integer registers. | 
|  | if (!RT || !RT->isStructureOrClassType()) { | 
|  | CoerceToIntArgs(TySize, ArgList); | 
|  | return llvm::StructType::get(getVMContext(), ArgList); | 
|  | } | 
|  |  | 
|  | const RecordDecl *RD = RT->getDecl(); | 
|  | const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); | 
|  | assert(!(TySize % 8) && "Size of structure must be multiple of 8."); | 
|  |  | 
|  | uint64_t LastOffset = 0; | 
|  | unsigned idx = 0; | 
|  | llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); | 
|  |  | 
|  | // Iterate over fields in the struct/class and check if there are any aligned | 
|  | // double fields. | 
|  | for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); | 
|  | i != e; ++i, ++idx) { | 
|  | const QualType Ty = i->getType(); | 
|  | const BuiltinType *BT = Ty->getAs<BuiltinType>(); | 
|  |  | 
|  | if (!BT || BT->getKind() != BuiltinType::Double) | 
|  | continue; | 
|  |  | 
|  | uint64_t Offset = Layout.getFieldOffset(idx); | 
|  | if (Offset % 64) // Ignore doubles that are not aligned. | 
|  | continue; | 
|  |  | 
|  | // Add ((Offset - LastOffset) / 64) args of type i64. | 
|  | for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) | 
|  | ArgList.push_back(I64); | 
|  |  | 
|  | // Add double type. | 
|  | ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); | 
|  | LastOffset = Offset + 64; | 
|  | } | 
|  |  | 
|  | CoerceToIntArgs(TySize - LastOffset, IntArgList); | 
|  | ArgList.append(IntArgList.begin(), IntArgList.end()); | 
|  |  | 
|  | return llvm::StructType::get(getVMContext(), ArgList); | 
|  | } | 
|  |  | 
|  | llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, | 
|  | uint64_t Offset) const { | 
|  | if (OrigOffset + MinABIStackAlignInBytes > Offset) | 
|  | return nullptr; | 
|  |  | 
|  | return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); | 
|  | } | 
|  |  | 
|  | ABIArgInfo | 
|  | MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { | 
|  | Ty = useFirstFieldIfTransparentUnion(Ty); | 
|  |  | 
|  | uint64_t OrigOffset = Offset; | 
|  | uint64_t TySize = getContext().getTypeSize(Ty); | 
|  | uint64_t Align = getContext().getTypeAlign(Ty) / 8; | 
|  |  | 
|  | Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), | 
|  | (uint64_t)StackAlignInBytes); | 
|  | unsigned CurrOffset = llvm::alignTo(Offset, Align); | 
|  | Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; | 
|  |  | 
|  | if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { | 
|  | // Ignore empty aggregates. | 
|  | if (TySize == 0) | 
|  | return ABIArgInfo::getIgnore(); | 
|  |  | 
|  | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { | 
|  | Offset = OrigOffset + MinABIStackAlignInBytes; | 
|  | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); | 
|  | } | 
|  |  | 
|  | // If we have reached here, aggregates are passed directly by coercing to | 
|  | // another structure type. Padding is inserted if the offset of the | 
|  | // aggregate is unaligned. | 
|  | ABIArgInfo ArgInfo = | 
|  | ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, | 
|  | getPaddingType(OrigOffset, CurrOffset)); | 
|  | ArgInfo.setInReg(true); | 
|  | return ArgInfo; | 
|  | } | 
|  |  | 
|  | // Treat an enum type as its underlying type. | 
|  | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) | 
|  | Ty = EnumTy->getDecl()->getIntegerType(); | 
|  |  | 
|  | // All integral types are promoted to the GPR width. | 
|  | if (Ty->isIntegralOrEnumerationType()) | 
|  | return ABIArgInfo::getExtend(); | 
|  |  | 
|  | return ABIArgInfo::getDirect( | 
|  | nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); | 
|  | } | 
|  |  | 
|  | llvm::Type* | 
|  | MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { | 
|  | const RecordType *RT = RetTy->getAs<RecordType>(); | 
|  | SmallVector<llvm::Type*, 8> RTList; | 
|  |  | 
|  | if (RT && RT->isStructureOrClassType()) { | 
|  | const RecordDecl *RD = RT->getDecl(); | 
|  | const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); | 
|  | unsigned FieldCnt = Layout.getFieldCount(); | 
|  |  | 
|  | // N32/64 returns struct/classes in floating point registers if the | 
|  | // following conditions are met: | 
|  | // 1. The size of the struct/class is no larger than 128-bit. | 
|  | // 2. The struct/class has one or two fields all of which are floating | 
|  | //    point types. | 
|  | // 3. The offset of the first field is zero (this follows what gcc does). | 
|  | // | 
|  | // Any other composite results are returned in integer registers. | 
|  | // | 
|  | if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { | 
|  | RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); | 
|  | for (; b != e; ++b) { | 
|  | const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); | 
|  |  | 
|  | if (!BT || !BT->isFloatingPoint()) | 
|  | break; | 
|  |  | 
|  | RTList.push_back(CGT.ConvertType(b->getType())); | 
|  | } | 
|  |  | 
|  | if (b == e) | 
|  | return llvm::StructType::get(getVMContext(), RTList, | 
|  | RD->hasAttr<PackedAttr>()); | 
|  |  | 
|  | RTList.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | CoerceToIntArgs(Size, RTList); | 
|  | return llvm::StructType::get(getVMContext(), RTList); | 
|  | } | 
|  |  | 
|  | ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { | 
|  | uint64_t Size = getContext().getTypeSize(RetTy); | 
|  |  | 
|  | if (RetTy->isVoidType()) | 
|  | return ABIArgInfo::getIgnore(); | 
|  |  | 
|  | // O32 doesn't treat zero-sized structs differently from other structs. | 
|  | // However, N32/N64 ignores zero sized return values. | 
|  | if (!IsO32 && Size == 0) | 
|  | return ABIArgInfo::getIgnore(); | 
|  |  | 
|  | if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { | 
|  | if (Size <= 128) { | 
|  | if (RetTy->isAnyComplexType()) | 
|  | return ABIArgInfo::getDirect(); | 
|  |  | 
|  | // O32 returns integer vectors in registers and N32/N64 returns all small | 
|  | // aggregates in registers. | 
|  | if (!IsO32 || | 
|  | (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { | 
|  | ABIArgInfo ArgInfo = | 
|  | ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); | 
|  | ArgInfo.setInReg(true); | 
|  | return ArgInfo; | 
|  | } | 
|  | } | 
|  |  | 
|  | return getNaturalAlignIndirect(RetTy); | 
|  | } | 
|  |  | 
|  | // Treat an enum type as its underlying type. | 
|  | if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) | 
|  | RetTy = EnumTy->getDecl()->getIntegerType(); | 
|  |  | 
|  | return (RetTy->isPromotableIntegerType() ? | 
|  | ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); | 
|  | } | 
|  |  | 
|  | void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { | 
|  | ABIArgInfo &RetInfo = FI.getReturnInfo(); | 
|  | if (!getCXXABI().classifyReturnType(FI)) | 
|  | RetInfo = classifyReturnType(FI.getReturnType()); | 
|  |  | 
|  | // Check if a pointer to an aggregate is passed as a hidden argument. | 
|  | uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; | 
|  |  | 
|  | for (auto &I : FI.arguments()) | 
|  | I.info = classifyArgumentType(I.type, Offset); | 
|  | } | 
|  |  | 
|  | Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType OrigTy) const { | 
|  | QualType Ty = OrigTy; | 
|  |  | 
|  | // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. | 
|  | // Pointers are also promoted in the same way but this only matters for N32. | 
|  | unsigned SlotSizeInBits = IsO32 ? 32 : 64; | 
|  | unsigned PtrWidth = getTarget().getPointerWidth(0); | 
|  | bool DidPromote = false; | 
|  | if ((Ty->isIntegerType() && | 
|  | getContext().getIntWidth(Ty) < SlotSizeInBits) || | 
|  | (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { | 
|  | DidPromote = true; | 
|  | Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, | 
|  | Ty->isSignedIntegerType()); | 
|  | } | 
|  |  | 
|  | auto TyInfo = getContext().getTypeInfoInChars(Ty); | 
|  |  | 
|  | // The alignment of things in the argument area is never larger than | 
|  | // StackAlignInBytes. | 
|  | TyInfo.second = | 
|  | std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); | 
|  |  | 
|  | // MinABIStackAlignInBytes is the size of argument slots on the stack. | 
|  | CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); | 
|  |  | 
|  | Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, | 
|  | TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); | 
|  |  | 
|  |  | 
|  | // If there was a promotion, "unpromote" into a temporary. | 
|  | // TODO: can we just use a pointer into a subset of the original slot? | 
|  | if (DidPromote) { | 
|  | Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); | 
|  | llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); | 
|  |  | 
|  | // Truncate down to the right width. | 
|  | llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() | 
|  | : CGF.IntPtrTy); | 
|  | llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); | 
|  | if (OrigTy->isPointerType()) | 
|  | V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); | 
|  |  | 
|  | CGF.Builder.CreateStore(V, Temp); | 
|  | Addr = Temp; | 
|  | } | 
|  |  | 
|  | return Addr; | 
|  | } | 
|  |  | 
|  | bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const { | 
|  | int TySize = getContext().getTypeSize(Ty); | 
|  |  | 
|  | // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. | 
|  | if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool | 
|  | MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, | 
|  | llvm::Value *Address) const { | 
|  | // This information comes from gcc's implementation, which seems to | 
|  | // as canonical as it gets. | 
|  |  | 
|  | // Everything on MIPS is 4 bytes.  Double-precision FP registers | 
|  | // are aliased to pairs of single-precision FP registers. | 
|  | llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); | 
|  |  | 
|  | // 0-31 are the general purpose registers, $0 - $31. | 
|  | // 32-63 are the floating-point registers, $f0 - $f31. | 
|  | // 64 and 65 are the multiply/divide registers, $hi and $lo. | 
|  | // 66 is the (notional, I think) register for signal-handler return. | 
|  | AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); | 
|  |  | 
|  | // 67-74 are the floating-point status registers, $fcc0 - $fcc7. | 
|  | // They are one bit wide and ignored here. | 
|  |  | 
|  | // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. | 
|  | // (coprocessor 1 is the FP unit) | 
|  | // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. | 
|  | // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. | 
|  | // 176-181 are the DSP accumulator registers. | 
|  | AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. | 
|  | // Currently subclassed only to implement custom OpenCL C function attribute | 
|  | // handling. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { | 
|  | public: | 
|  | TCETargetCodeGenInfo(CodeGenTypes &CGT) | 
|  | : DefaultTargetCodeGenInfo(CGT) {} | 
|  |  | 
|  | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, | 
|  | CodeGen::CodeGenModule &M) const override; | 
|  | }; | 
|  |  | 
|  | void TCETargetCodeGenInfo::setTargetAttributes( | 
|  | const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { | 
|  | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); | 
|  | if (!FD) return; | 
|  |  | 
|  | llvm::Function *F = cast<llvm::Function>(GV); | 
|  |  | 
|  | if (M.getLangOpts().OpenCL) { | 
|  | if (FD->hasAttr<OpenCLKernelAttr>()) { | 
|  | // OpenCL C Kernel functions are not subject to inlining | 
|  | F->addFnAttr(llvm::Attribute::NoInline); | 
|  | const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); | 
|  | if (Attr) { | 
|  | // Convert the reqd_work_group_size() attributes to metadata. | 
|  | llvm::LLVMContext &Context = F->getContext(); | 
|  | llvm::NamedMDNode *OpenCLMetadata = | 
|  | M.getModule().getOrInsertNamedMetadata( | 
|  | "opencl.kernel_wg_size_info"); | 
|  |  | 
|  | SmallVector<llvm::Metadata *, 5> Operands; | 
|  | Operands.push_back(llvm::ConstantAsMetadata::get(F)); | 
|  |  | 
|  | Operands.push_back( | 
|  | llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( | 
|  | M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); | 
|  | Operands.push_back( | 
|  | llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( | 
|  | M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); | 
|  | Operands.push_back( | 
|  | llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( | 
|  | M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); | 
|  |  | 
|  | // Add a boolean constant operand for "required" (true) or "hint" | 
|  | // (false) for implementing the work_group_size_hint attr later. | 
|  | // Currently always true as the hint is not yet implemented. | 
|  | Operands.push_back( | 
|  | llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); | 
|  | OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Hexagon ABI Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class HexagonABIInfo : public ABIInfo { | 
|  |  | 
|  |  | 
|  | public: | 
|  | HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} | 
|  |  | 
|  | private: | 
|  |  | 
|  | ABIArgInfo classifyReturnType(QualType RetTy) const; | 
|  | ABIArgInfo classifyArgumentType(QualType RetTy) const; | 
|  |  | 
|  | void computeInfo(CGFunctionInfo &FI) const override; | 
|  |  | 
|  | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const override; | 
|  | }; | 
|  |  | 
|  | class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { | 
|  | public: | 
|  | HexagonTargetCodeGenInfo(CodeGenTypes &CGT) | 
|  | :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} | 
|  |  | 
|  | int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { | 
|  | return 29; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { | 
|  | if (!getCXXABI().classifyReturnType(FI)) | 
|  | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); | 
|  | for (auto &I : FI.arguments()) | 
|  | I.info = classifyArgumentType(I.type); | 
|  | } | 
|  |  | 
|  | ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { | 
|  | if (!isAggregateTypeForABI(Ty)) { | 
|  | // Treat an enum type as its underlying type. | 
|  | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) | 
|  | Ty = EnumTy->getDecl()->getIntegerType(); | 
|  |  | 
|  | return (Ty->isPromotableIntegerType() ? | 
|  | ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); | 
|  | } | 
|  |  | 
|  | // Ignore empty records. | 
|  | if (isEmptyRecord(getContext(), Ty, true)) | 
|  | return ABIArgInfo::getIgnore(); | 
|  |  | 
|  | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) | 
|  | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); | 
|  |  | 
|  | uint64_t Size = getContext().getTypeSize(Ty); | 
|  | if (Size > 64) | 
|  | return getNaturalAlignIndirect(Ty, /*ByVal=*/true); | 
|  | // Pass in the smallest viable integer type. | 
|  | else if (Size > 32) | 
|  | return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); | 
|  | else if (Size > 16) | 
|  | return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); | 
|  | else if (Size > 8) | 
|  | return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); | 
|  | else | 
|  | return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); | 
|  | } | 
|  |  | 
|  | ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { | 
|  | if (RetTy->isVoidType()) | 
|  | return ABIArgInfo::getIgnore(); | 
|  |  | 
|  | // Large vector types should be returned via memory. | 
|  | if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) | 
|  | return getNaturalAlignIndirect(RetTy); | 
|  |  | 
|  | if (!isAggregateTypeForABI(RetTy)) { | 
|  | // Treat an enum type as its underlying type. | 
|  | if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) | 
|  | RetTy = EnumTy->getDecl()->getIntegerType(); | 
|  |  | 
|  | return (RetTy->isPromotableIntegerType() ? | 
|  | ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); | 
|  | } | 
|  |  | 
|  | if (isEmptyRecord(getContext(), RetTy, true)) | 
|  | return ABIArgInfo::getIgnore(); | 
|  |  | 
|  | // Aggregates <= 8 bytes are returned in r0; other aggregates | 
|  | // are returned indirectly. | 
|  | uint64_t Size = getContext().getTypeSize(RetTy); | 
|  | if (Size <= 64) { | 
|  | // Return in the smallest viable integer type. | 
|  | if (Size <= 8) | 
|  | return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); | 
|  | if (Size <= 16) | 
|  | return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); | 
|  | if (Size <= 32) | 
|  | return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); | 
|  | return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); | 
|  | } | 
|  |  | 
|  | return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); | 
|  | } | 
|  |  | 
|  | Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const { | 
|  | // FIXME: Someone needs to audit that this handle alignment correctly. | 
|  | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, | 
|  | getContext().getTypeInfoInChars(Ty), | 
|  | CharUnits::fromQuantity(4), | 
|  | /*AllowHigherAlign*/ true); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Lanai ABI Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | class LanaiABIInfo : public DefaultABIInfo { | 
|  | public: | 
|  | LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} | 
|  |  | 
|  | bool shouldUseInReg(QualType Ty, CCState &State) const; | 
|  |  | 
|  | void computeInfo(CGFunctionInfo &FI) const override { | 
|  | CCState State(FI.getCallingConvention()); | 
|  | // Lanai uses 4 registers to pass arguments unless the function has the | 
|  | // regparm attribute set. | 
|  | if (FI.getHasRegParm()) { | 
|  | State.FreeRegs = FI.getRegParm(); | 
|  | } else { | 
|  | State.FreeRegs = 4; | 
|  | } | 
|  |  | 
|  | if (!getCXXABI().classifyReturnType(FI)) | 
|  | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); | 
|  | for (auto &I : FI.arguments()) | 
|  | I.info = classifyArgumentType(I.type, State); | 
|  | } | 
|  |  | 
|  | ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; | 
|  | ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { | 
|  | unsigned Size = getContext().getTypeSize(Ty); | 
|  | unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; | 
|  |  | 
|  | if (SizeInRegs == 0) | 
|  | return false; | 
|  |  | 
|  | if (SizeInRegs > State.FreeRegs) { | 
|  | State.FreeRegs = 0; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | State.FreeRegs -= SizeInRegs; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, | 
|  | CCState &State) const { | 
|  | if (!ByVal) { | 
|  | if (State.FreeRegs) { | 
|  | --State.FreeRegs; // Non-byval indirects just use one pointer. | 
|  | return getNaturalAlignIndirectInReg(Ty); | 
|  | } | 
|  | return getNaturalAlignIndirect(Ty, false); | 
|  | } | 
|  |  | 
|  | // Compute the byval alignment. | 
|  | const unsigned MinABIStackAlignInBytes = 4; | 
|  | unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; | 
|  | return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, | 
|  | /*Realign=*/TypeAlign > | 
|  | MinABIStackAlignInBytes); | 
|  | } | 
|  |  | 
|  | ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, | 
|  | CCState &State) const { | 
|  | // Check with the C++ ABI first. | 
|  | const RecordType *RT = Ty->getAs<RecordType>(); | 
|  | if (RT) { | 
|  | CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); | 
|  | if (RAA == CGCXXABI::RAA_Indirect) { | 
|  | return getIndirectResult(Ty, /*ByVal=*/false, State); | 
|  | } else if (RAA == CGCXXABI::RAA_DirectInMemory) { | 
|  | return getNaturalAlignIndirect(Ty, /*ByRef=*/true); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isAggregateTypeForABI(Ty)) { | 
|  | // Structures with flexible arrays are always indirect. | 
|  | if (RT && RT->getDecl()->hasFlexibleArrayMember()) | 
|  | return getIndirectResult(Ty, /*ByVal=*/true, State); | 
|  |  | 
|  | // Ignore empty structs/unions. | 
|  | if (isEmptyRecord(getContext(), Ty, true)) | 
|  | return ABIArgInfo::getIgnore(); | 
|  |  | 
|  | llvm::LLVMContext &LLVMContext = getVMContext(); | 
|  | unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; | 
|  | if (SizeInRegs <= State.FreeRegs) { | 
|  | llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); | 
|  | SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); | 
|  | llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); | 
|  | State.FreeRegs -= SizeInRegs; | 
|  | return ABIArgInfo::getDirectInReg(Result); | 
|  | } else { | 
|  | State.FreeRegs = 0; | 
|  | } | 
|  | return getIndirectResult(Ty, true, State); | 
|  | } | 
|  |  | 
|  | // Treat an enum type as its underlying type. | 
|  | if (const auto *EnumTy = Ty->getAs<EnumType>()) | 
|  | Ty = EnumTy->getDecl()->getIntegerType(); | 
|  |  | 
|  | bool InReg = shouldUseInReg(Ty, State); | 
|  | if (Ty->isPromotableIntegerType()) { | 
|  | if (InReg) | 
|  | return ABIArgInfo::getDirectInReg(); | 
|  | return ABIArgInfo::getExtend(); | 
|  | } | 
|  | if (InReg) | 
|  | return ABIArgInfo::getDirectInReg(); | 
|  | return ABIArgInfo::getDirect(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { | 
|  | public: | 
|  | LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) | 
|  | : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} | 
|  | }; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // AMDGPU ABI Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { | 
|  | public: | 
|  | AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) | 
|  | : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} | 
|  | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, | 
|  | CodeGen::CodeGenModule &M) const override; | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | void AMDGPUTargetCodeGenInfo::setTargetAttributes( | 
|  | const Decl *D, | 
|  | llvm::GlobalValue *GV, | 
|  | CodeGen::CodeGenModule &M) const { | 
|  | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); | 
|  | if (!FD) | 
|  | return; | 
|  |  | 
|  | if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { | 
|  | llvm::Function *F = cast<llvm::Function>(GV); | 
|  | uint32_t NumVGPR = Attr->getNumVGPR(); | 
|  | if (NumVGPR != 0) | 
|  | F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR)); | 
|  | } | 
|  |  | 
|  | if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { | 
|  | llvm::Function *F = cast<llvm::Function>(GV); | 
|  | unsigned NumSGPR = Attr->getNumSGPR(); | 
|  | if (NumSGPR != 0) | 
|  | F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // SPARC v9 ABI Implementation. | 
|  | // Based on the SPARC Compliance Definition version 2.4.1. | 
|  | // | 
|  | // Function arguments a mapped to a nominal "parameter array" and promoted to | 
|  | // registers depending on their type. Each argument occupies 8 or 16 bytes in | 
|  | // the array, structs larger than 16 bytes are passed indirectly. | 
|  | // | 
|  | // One case requires special care: | 
|  | // | 
|  | //   struct mixed { | 
|  | //     int i; | 
|  | //     float f; | 
|  | //   }; | 
|  | // | 
|  | // When a struct mixed is passed by value, it only occupies 8 bytes in the | 
|  | // parameter array, but the int is passed in an integer register, and the float | 
|  | // is passed in a floating point register. This is represented as two arguments | 
|  | // with the LLVM IR inreg attribute: | 
|  | // | 
|  | //   declare void f(i32 inreg %i, float inreg %f) | 
|  | // | 
|  | // The code generator will only allocate 4 bytes from the parameter array for | 
|  | // the inreg arguments. All other arguments are allocated a multiple of 8 | 
|  | // bytes. | 
|  | // | 
|  | namespace { | 
|  | class SparcV9ABIInfo : public ABIInfo { | 
|  | public: | 
|  | SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} | 
|  |  | 
|  | private: | 
|  | ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; | 
|  | void computeInfo(CGFunctionInfo &FI) const override; | 
|  | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const override; | 
|  |  | 
|  | // Coercion type builder for structs passed in registers. The coercion type | 
|  | // serves two purposes: | 
|  | // | 
|  | // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' | 
|  | //    in registers. | 
|  | // 2. Expose aligned floating point elements as first-level elements, so the | 
|  | //    code generator knows to pass them in floating point registers. | 
|  | // | 
|  | // We also compute the InReg flag which indicates that the struct contains | 
|  | // aligned 32-bit floats. | 
|  | // | 
|  | struct CoerceBuilder { | 
|  | llvm::LLVMContext &Context; | 
|  | const llvm::DataLayout &DL; | 
|  | SmallVector<llvm::Type*, 8> Elems; | 
|  | uint64_t Size; | 
|  | bool InReg; | 
|  |  | 
|  | CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) | 
|  | : Context(c), DL(dl), Size(0), InReg(false) {} | 
|  |  | 
|  | // Pad Elems with integers until Size is ToSize. | 
|  | void pad(uint64_t ToSize) { | 
|  | assert(ToSize >= Size && "Cannot remove elements"); | 
|  | if (ToSize == Size) | 
|  | return; | 
|  |  | 
|  | // Finish the current 64-bit word. | 
|  | uint64_t Aligned = llvm::alignTo(Size, 64); | 
|  | if (Aligned > Size && Aligned <= ToSize) { | 
|  | Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); | 
|  | Size = Aligned; | 
|  | } | 
|  |  | 
|  | // Add whole 64-bit words. | 
|  | while (Size + 64 <= ToSize) { | 
|  | Elems.push_back(llvm::Type::getInt64Ty(Context)); | 
|  | Size += 64; | 
|  | } | 
|  |  | 
|  | // Final in-word padding. | 
|  | if (Size < ToSize) { | 
|  | Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); | 
|  | Size = ToSize; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add a floating point element at Offset. | 
|  | void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { | 
|  | // Unaligned floats are treated as integers. | 
|  | if (Offset % Bits) | 
|  | return; | 
|  | // The InReg flag is only required if there are any floats < 64 bits. | 
|  | if (Bits < 64) | 
|  | InReg = true; | 
|  | pad(Offset); | 
|  | Elems.push_back(Ty); | 
|  | Size = Offset + Bits; | 
|  | } | 
|  |  | 
|  | // Add a struct type to the coercion type, starting at Offset (in bits). | 
|  | void addStruct(uint64_t Offset, llvm::StructType *StrTy) { | 
|  | const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); | 
|  | for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { | 
|  | llvm::Type *ElemTy = StrTy->getElementType(i); | 
|  | uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); | 
|  | switch (ElemTy->getTypeID()) { | 
|  | case llvm::Type::StructTyID: | 
|  | addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); | 
|  | break; | 
|  | case llvm::Type::FloatTyID: | 
|  | addFloat(ElemOffset, ElemTy, 32); | 
|  | break; | 
|  | case llvm::Type::DoubleTyID: | 
|  | addFloat(ElemOffset, ElemTy, 64); | 
|  | break; | 
|  | case llvm::Type::FP128TyID: | 
|  | addFloat(ElemOffset, ElemTy, 128); | 
|  | break; | 
|  | case llvm::Type::PointerTyID: | 
|  | if (ElemOffset % 64 == 0) { | 
|  | pad(ElemOffset); | 
|  | Elems.push_back(ElemTy); | 
|  | Size += 64; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if Ty is a usable substitute for the coercion type. | 
|  | bool isUsableType(llvm::StructType *Ty) const { | 
|  | return llvm::makeArrayRef(Elems) == Ty->elements(); | 
|  | } | 
|  |  | 
|  | // Get the coercion type as a literal struct type. | 
|  | llvm::Type *getType() const { | 
|  | if (Elems.size() == 1) | 
|  | return Elems.front(); | 
|  | else | 
|  | return llvm::StructType::get(Context, Elems); | 
|  | } | 
|  | }; | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | ABIArgInfo | 
|  | SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { | 
|  | if (Ty->isVoidType()) | 
|  | return ABIArgInfo::getIgnore(); | 
|  |  | 
|  | uint64_t Size = getContext().getTypeSize(Ty); | 
|  |  | 
|  | // Anything too big to fit in registers is passed with an explicit indirect | 
|  | // pointer / sret pointer. | 
|  | if (Size > SizeLimit) | 
|  | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); | 
|  |  | 
|  | // Treat an enum type as its underlying type. | 
|  | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) | 
|  | Ty = EnumTy->getDecl()->getIntegerType(); | 
|  |  | 
|  | // Integer types smaller than a register are extended. | 
|  | if (Size < 64 && Ty->isIntegerType()) | 
|  | return ABIArgInfo::getExtend(); | 
|  |  | 
|  | // Other non-aggregates go in registers. | 
|  | if (!isAggregateTypeForABI(Ty)) | 
|  | return ABIArgInfo::getDirect(); | 
|  |  | 
|  | // If a C++ object has either a non-trivial copy constructor or a non-trivial | 
|  | // destructor, it is passed with an explicit indirect pointer / sret pointer. | 
|  | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) | 
|  | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); | 
|  |  | 
|  | // This is a small aggregate type that should be passed in registers. | 
|  | // Build a coercion type from the LLVM struct type. | 
|  | llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); | 
|  | if (!StrTy) | 
|  | return ABIArgInfo::getDirect(); | 
|  |  | 
|  | CoerceBuilder CB(getVMContext(), getDataLayout()); | 
|  | CB.addStruct(0, StrTy); | 
|  | CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); | 
|  |  | 
|  | // Try to use the original type for coercion. | 
|  | llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); | 
|  |  | 
|  | if (CB.InReg) | 
|  | return ABIArgInfo::getDirectInReg(CoerceTy); | 
|  | else | 
|  | return ABIArgInfo::getDirect(CoerceTy); | 
|  | } | 
|  |  | 
|  | Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const { | 
|  | ABIArgInfo AI = classifyType(Ty, 16 * 8); | 
|  | llvm::Type *ArgTy = CGT.ConvertType(Ty); | 
|  | if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) | 
|  | AI.setCoerceToType(ArgTy); | 
|  |  | 
|  | CharUnits SlotSize = CharUnits::fromQuantity(8); | 
|  |  | 
|  | CGBuilderTy &Builder = CGF.Builder; | 
|  | Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); | 
|  | llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); | 
|  |  | 
|  | auto TypeInfo = getContext().getTypeInfoInChars(Ty); | 
|  |  | 
|  | Address ArgAddr = Address::invalid(); | 
|  | CharUnits Stride; | 
|  | switch (AI.getKind()) { | 
|  | case ABIArgInfo::Expand: | 
|  | case ABIArgInfo::CoerceAndExpand: | 
|  | case ABIArgInfo::InAlloca: | 
|  | llvm_unreachable("Unsupported ABI kind for va_arg"); | 
|  |  | 
|  | case ABIArgInfo::Extend: { | 
|  | Stride = SlotSize; | 
|  | CharUnits Offset = SlotSize - TypeInfo.first; | 
|  | ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ABIArgInfo::Direct: { | 
|  | auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); | 
|  | Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); | 
|  | ArgAddr = Addr; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ABIArgInfo::Indirect: | 
|  | Stride = SlotSize; | 
|  | ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); | 
|  | ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), | 
|  | TypeInfo.second); | 
|  | break; | 
|  |  | 
|  | case ABIArgInfo::Ignore: | 
|  | return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); | 
|  | } | 
|  |  | 
|  | // Update VAList. | 
|  | llvm::Value *NextPtr = | 
|  | Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); | 
|  | Builder.CreateStore(NextPtr, VAListAddr); | 
|  |  | 
|  | return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); | 
|  | } | 
|  |  | 
|  | void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { | 
|  | FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); | 
|  | for (auto &I : FI.arguments()) | 
|  | I.info = classifyType(I.type, 16 * 8); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { | 
|  | public: | 
|  | SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) | 
|  | : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} | 
|  |  | 
|  | int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { | 
|  | return 14; | 
|  | } | 
|  |  | 
|  | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, | 
|  | llvm::Value *Address) const override; | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | bool | 
|  | SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, | 
|  | llvm::Value *Address) const { | 
|  | // This is calculated from the LLVM and GCC tables and verified | 
|  | // against gcc output.  AFAIK all ABIs use the same encoding. | 
|  |  | 
|  | CodeGen::CGBuilderTy &Builder = CGF.Builder; | 
|  |  | 
|  | llvm::IntegerType *i8 = CGF.Int8Ty; | 
|  | llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); | 
|  | llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); | 
|  |  | 
|  | // 0-31: the 8-byte general-purpose registers | 
|  | AssignToArrayRange(Builder, Address, Eight8, 0, 31); | 
|  |  | 
|  | // 32-63: f0-31, the 4-byte floating-point registers | 
|  | AssignToArrayRange(Builder, Address, Four8, 32, 63); | 
|  |  | 
|  | //   Y   = 64 | 
|  | //   PSR = 65 | 
|  | //   WIM = 66 | 
|  | //   TBR = 67 | 
|  | //   PC  = 68 | 
|  | //   NPC = 69 | 
|  | //   FSR = 70 | 
|  | //   CSR = 71 | 
|  | AssignToArrayRange(Builder, Address, Eight8, 64, 71); | 
|  |  | 
|  | // 72-87: d0-15, the 8-byte floating-point registers | 
|  | AssignToArrayRange(Builder, Address, Eight8, 72, 87); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // XCore ABI Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// A SmallStringEnc instance is used to build up the TypeString by passing | 
|  | /// it by reference between functions that append to it. | 
|  | typedef llvm::SmallString<128> SmallStringEnc; | 
|  |  | 
|  | /// TypeStringCache caches the meta encodings of Types. | 
|  | /// | 
|  | /// The reason for caching TypeStrings is two fold: | 
|  | ///   1. To cache a type's encoding for later uses; | 
|  | ///   2. As a means to break recursive member type inclusion. | 
|  | /// | 
|  | /// A cache Entry can have a Status of: | 
|  | ///   NonRecursive:   The type encoding is not recursive; | 
|  | ///   Recursive:      The type encoding is recursive; | 
|  | ///   Incomplete:     An incomplete TypeString; | 
|  | ///   IncompleteUsed: An incomplete TypeString that has been used in a | 
|  | ///                   Recursive type encoding. | 
|  | /// | 
|  | /// A NonRecursive entry will have all of its sub-members expanded as fully | 
|  | /// as possible. Whilst it may contain types which are recursive, the type | 
|  | /// itself is not recursive and thus its encoding may be safely used whenever | 
|  | /// the type is encountered. | 
|  | /// | 
|  | /// A Recursive entry will have all of its sub-members expanded as fully as | 
|  | /// possible. The type itself is recursive and it may contain other types which | 
|  | /// are recursive. The Recursive encoding must not be used during the expansion | 
|  | /// of a recursive type's recursive branch. For simplicity the code uses | 
|  | /// IncompleteCount to reject all usage of Recursive encodings for member types. | 
|  | /// | 
|  | /// An Incomplete entry is always a RecordType and only encodes its | 
|  | /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and | 
|  | /// are placed into the cache during type expansion as a means to identify and | 
|  | /// handle recursive inclusion of types as sub-members. If there is recursion | 
|  | /// the entry becomes IncompleteUsed. | 
|  | /// | 
|  | /// During the expansion of a RecordType's members: | 
|  | /// | 
|  | ///   If the cache contains a NonRecursive encoding for the member type, the | 
|  | ///   cached encoding is used; | 
|  | /// | 
|  | ///   If the cache contains a Recursive encoding for the member type, the | 
|  | ///   cached encoding is 'Swapped' out, as it may be incorrect, and... | 
|  | /// | 
|  | ///   If the member is a RecordType, an Incomplete encoding is placed into the | 
|  | ///   cache to break potential recursive inclusion of itself as a sub-member; | 
|  | /// | 
|  | ///   Once a member RecordType has been expanded, its temporary incomplete | 
|  | ///   entry is removed from the cache. If a Recursive encoding was swapped out | 
|  | ///   it is swapped back in; | 
|  | /// | 
|  | ///   If an incomplete entry is used to expand a sub-member, the incomplete | 
|  | ///   entry is marked as IncompleteUsed. The cache keeps count of how many | 
|  | ///   IncompleteUsed entries it currently contains in IncompleteUsedCount; | 
|  | /// | 
|  | ///   If a member's encoding is found to be a NonRecursive or Recursive viz: | 
|  | ///   IncompleteUsedCount==0, the member's encoding is added to the cache. | 
|  | ///   Else the member is part of a recursive type and thus the recursion has | 
|  | ///   been exited too soon for the encoding to be correct for the member. | 
|  | /// | 
|  | class TypeStringCache { | 
|  | enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; | 
|  | struct Entry { | 
|  | std::string Str;     // The encoded TypeString for the type. | 
|  | enum Status State;   // Information about the encoding in 'Str'. | 
|  | std::string Swapped; // A temporary place holder for a Recursive encoding | 
|  | // during the expansion of RecordType's members. | 
|  | }; | 
|  | std::map<const IdentifierInfo *, struct Entry> Map; | 
|  | unsigned IncompleteCount;     // Number of Incomplete entries in the Map. | 
|  | unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. | 
|  | public: | 
|  | TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} | 
|  | void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); | 
|  | bool removeIncomplete(const IdentifierInfo *ID); | 
|  | void addIfComplete(const IdentifierInfo *ID, StringRef Str, | 
|  | bool IsRecursive); | 
|  | StringRef lookupStr(const IdentifierInfo *ID); | 
|  | }; | 
|  |  | 
|  | /// TypeString encodings for enum & union fields must be order. | 
|  | /// FieldEncoding is a helper for this ordering process. | 
|  | class FieldEncoding { | 
|  | bool HasName; | 
|  | std::string Enc; | 
|  | public: | 
|  | FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} | 
|  | StringRef str() {return Enc.c_str();} | 
|  | bool operator<(const FieldEncoding &rhs) const { | 
|  | if (HasName != rhs.HasName) return HasName; | 
|  | return Enc < rhs.Enc; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class XCoreABIInfo : public DefaultABIInfo { | 
|  | public: | 
|  | XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} | 
|  | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const override; | 
|  | }; | 
|  |  | 
|  | class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { | 
|  | mutable TypeStringCache TSC; | 
|  | public: | 
|  | XCoreTargetCodeGenInfo(CodeGenTypes &CGT) | 
|  | :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} | 
|  | void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, | 
|  | CodeGen::CodeGenModule &M) const override; | 
|  | }; | 
|  |  | 
|  | } // End anonymous namespace. | 
|  |  | 
|  | // TODO: this implementation is likely now redundant with the default | 
|  | // EmitVAArg. | 
|  | Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, | 
|  | QualType Ty) const { | 
|  | CGBuilderTy &Builder = CGF.Builder; | 
|  |  | 
|  | // Get the VAList. | 
|  | CharUnits SlotSize = CharUnits::fromQuantity(4); | 
|  | Address AP(Builder.CreateLoad(VAListAddr), SlotSize); | 
|  |  | 
|  | // Handle the argument. | 
|  | ABIArgInfo AI = classifyArgumentType(Ty); | 
|  | CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); | 
|  | llvm::Type *ArgTy = CGT.ConvertType(Ty); | 
|  | if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) | 
|  | AI.setCoerceToType(ArgTy); | 
|  | llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); | 
|  |  | 
|  | Address Val = Address::invalid(); | 
|  | CharUnits ArgSize = CharUnits::Zero(); | 
|  | switch (AI.getKind()) { | 
|  | case ABIArgInfo::Expand: | 
|  | case ABIArgInfo::CoerceAndExpand: | 
|  | case ABIArgInfo::InAlloca: | 
|  | llvm_unreachable("Unsupported ABI kind for va_arg"); | 
|  | case ABIArgInfo::Ignore: | 
|  | Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); | 
|  | ArgSize = CharUnits::Zero(); | 
|  | break; | 
|  | case ABIArgInfo::Extend: | 
|  | case ABIArgInfo::Direct: | 
|  | Val = Builder.CreateBitCast(AP, ArgPtrTy); | 
|  | ArgSize = CharUnits::fromQuantity( | 
|  | getDataLayout().getTypeAllocSize(AI.getCoerceToType())); | 
|  | ArgSize = ArgSize.alignTo(SlotSize); | 
|  | break; | 
|  | case ABIArgInfo::Indirect: | 
|  | Val = Builder.CreateElementBitCast(AP, ArgPtrTy); | 
|  | Val = Address(Builder.CreateLoad(Val), TypeAlign); | 
|  | ArgSize = SlotSize; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Increment the VAList. | 
|  | if (!ArgSize.isZero()) { | 
|  | llvm::Value *APN = | 
|  | Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); | 
|  | Builder.CreateStore(APN, VAListAddr); | 
|  | } | 
|  |  | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | /// During the expansion of a RecordType, an incomplete TypeString is placed | 
|  | /// into the cache as a means to identify and break recursion. | 
|  | /// If there is a Recursive encoding in the cache, it is swapped out and will | 
|  | /// be reinserted by removeIncomplete(). | 
|  | /// All other types of encoding should have been used rather than arriving here. | 
|  | void TypeStringCache::addIncomplete(const IdentifierInfo *ID, | 
|  | std::string StubEnc) { | 
|  | if (!ID) | 
|  | return; | 
|  | Entry &E = Map[ID]; | 
|  | assert( (E.Str.empty() || E.State == Recursive) && | 
|  | "Incorrectly use of addIncomplete"); | 
|  | assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); | 
|  | E.Swapped.swap(E.Str); // swap out the Recursive | 
|  | E.Str.swap(StubEnc); | 
|  | E.State = Incomplete; | 
|  | ++IncompleteCount; | 
|  | } | 
|  |  | 
|  | /// Once the RecordType has been expanded, the temporary incomplete TypeString | 
|  | /// must be removed from the cache. | 
|  | /// If a Recursive was swapped out by addIncomplete(), it will be replaced. | 
|  | /// Returns true if the RecordType was defined recursively. | 
|  | bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { | 
|  | if (!ID) | 
|  | return false; | 
|  | auto I = Map.find(ID); | 
|  | assert(I != Map.end() && "Entry not present"); | 
|  | Entry &E = I->second; | 
|  | assert( (E.State == Incomplete || | 
|  | E.State == IncompleteUsed) && | 
|  | "Entry must be an incomplete type"); | 
|  | bool IsRecursive = false; | 
|  | if (E.State == IncompleteUsed) { | 
|  | // We made use of our Incomplete encoding, thus we are recursive. | 
|  | IsRecursive = true; | 
|  | --IncompleteUsedCount; | 
|  | } | 
|  | if (E.Swapped.empty()) | 
|  | Map.erase(I); | 
|  | else { | 
|  | // Swap the Recursive back. | 
|  | E.Swapped.swap(E.Str); | 
|  | E.Swapped.clear(); | 
|  | E.State = Recursive; | 
|  | } | 
|  | --IncompleteCount; | 
|  | return IsRecursive; | 
|  | } | 
|  |  | 
|  | /// Add the encoded TypeString to the cache only if it is NonRecursive or | 
|  | /// Recursive (viz: all sub-members were expanded as fully as possible). | 
|  | void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, | 
|  | bool IsRecursive) { | 
|  | if (!ID || IncompleteUsedCount) | 
|  | return; // No key or it is is an incomplete sub-type so don't add. | 
|  | Entry &E = Map[ID]; | 
|  | if (IsRecursive && !E.Str.empty()) { | 
|  | assert(E.State==Recursive && E.Str.size() == Str.size() && | 
|  | "This is not the same Recursive entry"); | 
|  | // The parent container was not recursive after all, so we could have used | 
|  | // this Recursive sub-member entry after all, but we assumed the worse when | 
|  | // we started viz: IncompleteCount!=0. | 
|  | return; | 
|  | } | 
|  | assert(E.Str.empty() && "Entry already present"); | 
|  | E.Str = Str.str(); | 
|  | E.State = IsRecursive? Recursive : NonRecursive; | 
|  | } | 
|  |  | 
|  | /// Return a cached TypeString encoding for the ID. If there isn't one, or we | 
|  | /// are recursively expanding a type (IncompleteCount != 0) and the cached | 
|  | /// encoding is Recursive, return an empty StringRef. | 
|  | StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { | 
|  | if (!ID) | 
|  | return StringRef();   // We have no key. | 
|  | auto I = Map.find(ID); | 
|  | if (I == Map.end()) | 
|  | return StringRef();   // We have no encoding. | 
|  | Entry &E = I->second; | 
|  | if (E.State == Recursive && IncompleteCount) | 
|  | return StringRef();   // We don't use Recursive encodings for member types. | 
|  |  | 
|  | if (E.State == Incomplete) { | 
|  | // The incomplete type is being used to break out of recursion. | 
|  | E.State = IncompleteUsed; | 
|  | ++IncompleteUsedCount; | 
|  | } | 
|  | return E.Str.c_str(); | 
|  | } | 
|  |  | 
|  | /// The XCore ABI includes a type information section that communicates symbol | 
|  | /// type information to the linker. The linker uses this information to verify | 
|  | /// safety/correctness of things such as array bound and pointers et al. | 
|  | /// The ABI only requires C (and XC) language modules to emit TypeStrings. | 
|  | /// This type information (TypeString) is emitted into meta data for all global | 
|  | /// symbols: definitions, declarations, functions & variables. | 
|  | /// | 
|  | /// The TypeString carries type, qualifier, name, size & value details. | 
|  | /// Please see 'Tools Development Guide' section 2.16.2 for format details: | 
|  | /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf | 
|  | /// The output is tested by test/CodeGen/xcore-stringtype.c. | 
|  | /// | 
|  | static bool getTypeString(SmallStringEnc &Enc, const Decl *D, | 
|  | CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); | 
|  |  | 
|  | /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. | 
|  | void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, | 
|  | CodeGen::CodeGenModule &CGM) const { | 
|  | SmallStringEnc Enc; | 
|  | if (getTypeString(Enc, D, CGM, TSC)) { | 
|  | llvm::LLVMContext &Ctx = CGM.getModule().getContext(); | 
|  | llvm::SmallVector<llvm::Metadata *, 2> MDVals; | 
|  | MDVals.push_back(llvm::ConstantAsMetadata::get(GV)); | 
|  | MDVals.push_back(llvm::MDString::get(Ctx, Enc.str())); | 
|  | llvm::NamedMDNode *MD = | 
|  | CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); | 
|  | MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // SPIR ABI Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { | 
|  | public: | 
|  | SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) | 
|  | : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} | 
|  | void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, | 
|  | CodeGen::CodeGenModule &M) const override; | 
|  | }; | 
|  | } // End anonymous namespace. | 
|  |  | 
|  | /// Emit SPIR specific metadata: OpenCL and SPIR version. | 
|  | void SPIRTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, | 
|  | CodeGen::CodeGenModule &CGM) const { | 
|  | llvm::LLVMContext &Ctx = CGM.getModule().getContext(); | 
|  | llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx); | 
|  | llvm::Module &M = CGM.getModule(); | 
|  | // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the | 
|  | // opencl.spir.version named metadata. | 
|  | llvm::Metadata *SPIRVerElts[] = { | 
|  | llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 2)), | 
|  | llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 0))}; | 
|  | llvm::NamedMDNode *SPIRVerMD = | 
|  | M.getOrInsertNamedMetadata("opencl.spir.version"); | 
|  | SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); | 
|  | // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the | 
|  | // opencl.ocl.version named metadata node. | 
|  | llvm::Metadata *OCLVerElts[] = { | 
|  | llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( | 
|  | Int32Ty, CGM.getLangOpts().OpenCLVersion / 100)), | 
|  | llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( | 
|  | Int32Ty, (CGM.getLangOpts().OpenCLVersion % 100) / 10))}; | 
|  | llvm::NamedMDNode *OCLVerMD = | 
|  | M.getOrInsertNamedMetadata("opencl.ocl.version"); | 
|  | OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); | 
|  | } | 
|  |  | 
|  | static bool appendType(SmallStringEnc &Enc, QualType QType, | 
|  | const CodeGen::CodeGenModule &CGM, | 
|  | TypeStringCache &TSC); | 
|  |  | 
|  | /// Helper function for appendRecordType(). | 
|  | /// Builds a SmallVector containing the encoded field types in declaration | 
|  | /// order. | 
|  | static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, | 
|  | const RecordDecl *RD, | 
|  | const CodeGen::CodeGenModule &CGM, | 
|  | TypeStringCache &TSC) { | 
|  | for (const auto *Field : RD->fields()) { | 
|  | SmallStringEnc Enc; | 
|  | Enc += "m("; | 
|  | Enc += Field->getName(); | 
|  | Enc += "){"; | 
|  | if (Field->isBitField()) { | 
|  | Enc += "b("; | 
|  | llvm::raw_svector_ostream OS(Enc); | 
|  | OS << Field->getBitWidthValue(CGM.getContext()); | 
|  | Enc += ':'; | 
|  | } | 
|  | if (!appendType(Enc, Field->getType(), CGM, TSC)) | 
|  | return false; | 
|  | if (Field->isBitField()) | 
|  | Enc += ')'; | 
|  | Enc += '}'; | 
|  | FE.emplace_back(!Field->getName().empty(), Enc); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Appends structure and union types to Enc and adds encoding to cache. | 
|  | /// Recursively calls appendType (via extractFieldType) for each field. | 
|  | /// Union types have their fields ordered according to the ABI. | 
|  | static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, | 
|  | const CodeGen::CodeGenModule &CGM, | 
|  | TypeStringCache &TSC, const IdentifierInfo *ID) { | 
|  | // Append the cached TypeString if we have one. | 
|  | StringRef TypeString = TSC.lookupStr(ID); | 
|  | if (!TypeString.empty()) { | 
|  | Enc += TypeString; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Start to emit an incomplete TypeString. | 
|  | size_t Start = Enc.size(); | 
|  | Enc += (RT->isUnionType()? 'u' : 's'); | 
|  | Enc += '('; | 
|  | if (ID) | 
|  | Enc += ID->getName(); | 
|  | Enc += "){"; | 
|  |  | 
|  | // We collect all encoded fields and order as necessary. | 
|  | bool IsRecursive = false; | 
|  | const RecordDecl *RD = RT->getDecl()->getDefinition(); | 
|  | if (RD && !RD->field_empty()) { | 
|  | // An incomplete TypeString stub is placed in the cache for this RecordType | 
|  | // so that recursive calls to this RecordType will use it whilst building a | 
|  | // complete TypeString for this RecordType. | 
|  | SmallVector<FieldEncoding, 16> FE; | 
|  | std::string StubEnc(Enc.substr(Start).str()); | 
|  | StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString. | 
|  | TSC.addIncomplete(ID, std::move(StubEnc)); | 
|  | if (!extractFieldType(FE, RD, CGM, TSC)) { | 
|  | (void) TSC.removeIncomplete(ID); | 
|  | return false; | 
|  | } | 
|  | IsRecursive = TSC.removeIncomplete(ID); | 
|  | // The ABI requires unions to be sorted but not structures. | 
|  | // See FieldEncoding::operator< for sort algorithm. | 
|  | if (RT->isUnionType()) | 
|  | std::sort(FE.begin(), FE.end()); | 
|  | // We can now complete the TypeString. | 
|  | unsigned E = FE.size(); | 
|  | for (unsigned I = 0; I != E; ++I) { | 
|  | if (I) | 
|  | Enc += ','; | 
|  | Enc += FE[I].str(); | 
|  | } | 
|  | } | 
|  | Enc += '}'; | 
|  | TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Appends enum types to Enc and adds the encoding to the cache. | 
|  | static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, | 
|  | TypeStringCache &TSC, | 
|  | const IdentifierInfo *ID) { | 
|  | // Append the cached TypeString if we have one. | 
|  | StringRef TypeString = TSC.lookupStr(ID); | 
|  | if (!TypeString.empty()) { | 
|  | Enc += TypeString; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | size_t Start = Enc.size(); | 
|  | Enc += "e("; | 
|  | if (ID) | 
|  | Enc += ID->getName(); | 
|  | Enc += "){"; | 
|  |  | 
|  | // We collect all encoded enumerations and order them alphanumerically. | 
|  | if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { | 
|  | SmallVector<FieldEncoding, 16> FE; | 
|  | for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; | 
|  | ++I) { | 
|  | SmallStringEnc EnumEnc; | 
|  | EnumEnc += "m("; | 
|  | EnumEnc += I->getName(); | 
|  | EnumEnc += "){"; | 
|  | I->getInitVal().toString(EnumEnc); | 
|  | EnumEnc += '}'; | 
|  | FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); | 
|  | } | 
|  | std::sort(FE.begin(), FE.end()); | 
|  | unsigned E = FE.size(); | 
|  | for (unsigned I = 0; I != E; ++I) { | 
|  | if (I) | 
|  | Enc += ','; | 
|  | Enc += FE[I].str(); | 
|  | } | 
|  | } | 
|  | Enc += '}'; | 
|  | TSC.addIfComplete(ID, Enc.substr(Start), false); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Appends type's qualifier to Enc. | 
|  | /// This is done prior to appending the type's encoding. | 
|  | static void appendQualifier(SmallStringEnc &Enc, QualType QT) { | 
|  | // Qualifiers are emitted in alphabetical order. | 
|  | static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; | 
|  | int Lookup = 0; | 
|  | if (QT.isConstQualified()) | 
|  | Lookup += 1<<0; | 
|  | if (QT.isRestrictQualified()) | 
|  | Lookup += 1<<1; | 
|  | if (QT.isVolatileQualified()) | 
|  | Lookup += 1<<2; | 
|  | Enc += Table[Lookup]; | 
|  | } | 
|  |  | 
|  | /// Appends built-in types to Enc. | 
|  | static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { | 
|  | const char *EncType; | 
|  | switch (BT->getKind()) { | 
|  | case BuiltinType::Void: | 
|  | EncType = "0"; | 
|  | break; | 
|  | case BuiltinType::Bool: | 
|  | EncType = "b"; | 
|  | break; | 
|  | case BuiltinType::Char_U: | 
|  | EncType = "uc"; | 
|  | break; | 
|  | case BuiltinType::UChar: | 
|  | EncType = "uc"; | 
|  | break; | 
|  | case BuiltinType::SChar: | 
|  | EncType = "sc"; | 
|  | break; | 
|  | case BuiltinType::UShort: | 
|  | EncType = "us"; | 
|  | break; | 
|  | case BuiltinType::Short: | 
|  | EncType = "ss"; | 
|  | break; | 
|  | case BuiltinType::UInt: | 
|  | EncType = "ui"; | 
|  | break; | 
|  | case BuiltinType::Int: | 
|  | EncType = "si"; | 
|  | break; | 
|  | case BuiltinType::ULong: | 
|  | EncType = "ul"; | 
|  | break; | 
|  | case BuiltinType::Long: | 
|  | EncType = "sl"; | 
|  | break; | 
|  | case BuiltinType::ULongLong: | 
|  | EncType = "ull"; | 
|  | break; | 
|  | case BuiltinType::LongLong: | 
|  | EncType = "sll"; | 
|  | break; | 
|  | case BuiltinType::Float: | 
|  | EncType = "ft"; | 
|  | break; | 
|  | case BuiltinType::Double: | 
|  | EncType = "d"; | 
|  | break; | 
|  | case BuiltinType::LongDouble: | 
|  | EncType = "ld"; | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | Enc += EncType; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Appends a pointer encoding to Enc before calling appendType for the pointee. | 
|  | static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, | 
|  | const CodeGen::CodeGenModule &CGM, | 
|  | TypeStringCache &TSC) { | 
|  | Enc += "p("; | 
|  | if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) | 
|  | return false; | 
|  | Enc += ')'; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Appends array encoding to Enc before calling appendType for the element. | 
|  | static bool appendArrayType(SmallStringEnc &Enc, QualType QT, | 
|  | const ArrayType *AT, | 
|  | const CodeGen::CodeGenModule &CGM, | 
|  | TypeStringCache &TSC, StringRef NoSizeEnc) { | 
|  | if (AT->getSizeModifier() != ArrayType::Normal) | 
|  | return false; | 
|  | Enc += "a("; | 
|  | if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) | 
|  | CAT->getSize().toStringUnsigned(Enc); | 
|  | else | 
|  | Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". | 
|  | Enc += ':'; | 
|  | // The Qualifiers should be attached to the type rather than the array. | 
|  | appendQualifier(Enc, QT); | 
|  | if (!appendType(Enc, AT->getElementType(), CGM, TSC)) | 
|  | return false; | 
|  | Enc += ')'; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Appends a function encoding to Enc, calling appendType for the return type | 
|  | /// and the arguments. | 
|  | static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, | 
|  | const CodeGen::CodeGenModule &CGM, | 
|  | TypeStringCache &TSC) { | 
|  | Enc += "f{"; | 
|  | if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) | 
|  | return false; | 
|  | Enc += "}("; | 
|  | if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { | 
|  | // N.B. we are only interested in the adjusted param types. | 
|  | auto I = FPT->param_type_begin(); | 
|  | auto E = FPT->param_type_end(); | 
|  | if (I != E) { | 
|  | do { | 
|  | if (!appendType(Enc, *I, CGM, TSC)) | 
|  | return false; | 
|  | ++I; | 
|  | if (I != E) | 
|  | Enc += ','; | 
|  | } while (I != E); | 
|  | if (FPT->isVariadic()) | 
|  | Enc += ",va"; | 
|  | } else { | 
|  | if (FPT->isVariadic()) | 
|  | Enc += "va"; | 
|  | else | 
|  | Enc += '0'; | 
|  | } | 
|  | } | 
|  | Enc += ')'; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Handles the type's qualifier before dispatching a call to handle specific | 
|  | /// type encodings. | 
|  | static bool appendType(SmallStringEnc &Enc, QualType QType, | 
|  | const CodeGen::CodeGenModule &CGM, | 
|  | TypeStringCache &TSC) { | 
|  |  | 
|  | QualType QT = QType.getCanonicalType(); | 
|  |  | 
|  | if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) | 
|  | // The Qualifiers should be attached to the type rather than the array. | 
|  | // Thus we don't call appendQualifier() here. | 
|  | return appendArrayType(Enc, QT, AT, CGM, TSC, ""); | 
|  |  | 
|  | appendQualifier(Enc, QT); | 
|  |  | 
|  | if (const BuiltinType *BT = QT->getAs<BuiltinType>()) | 
|  | return appendBuiltinType(Enc, BT); | 
|  |  | 
|  | if (const PointerType *PT = QT->getAs<PointerType>()) | 
|  | return appendPointerType(Enc, PT, CGM, TSC); | 
|  |  | 
|  | if (const EnumType *ET = QT->getAs<EnumType>()) | 
|  | return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); | 
|  |  | 
|  | if (const RecordType *RT = QT->getAsStructureType()) | 
|  | return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); | 
|  |  | 
|  | if (const RecordType *RT = QT->getAsUnionType()) | 
|  | return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); | 
|  |  | 
|  | if (const FunctionType *FT = QT->getAs<FunctionType>()) | 
|  | return appendFunctionType(Enc, FT, CGM, TSC); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool getTypeString(SmallStringEnc &Enc, const Decl *D, | 
|  | CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { | 
|  | if (!D) | 
|  | return false; | 
|  |  | 
|  | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | if (FD->getLanguageLinkage() != CLanguageLinkage) | 
|  | return false; | 
|  | return appendType(Enc, FD->getType(), CGM, TSC); | 
|  | } | 
|  |  | 
|  | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
|  | if (VD->getLanguageLinkage() != CLanguageLinkage) | 
|  | return false; | 
|  | QualType QT = VD->getType().getCanonicalType(); | 
|  | if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { | 
|  | // Global ArrayTypes are given a size of '*' if the size is unknown. | 
|  | // The Qualifiers should be attached to the type rather than the array. | 
|  | // Thus we don't call appendQualifier() here. | 
|  | return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); | 
|  | } | 
|  | return appendType(Enc, QT, CGM, TSC); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Driver code | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | const llvm::Triple &CodeGenModule::getTriple() const { | 
|  | return getTarget().getTriple(); | 
|  | } | 
|  |  | 
|  | bool CodeGenModule::supportsCOMDAT() const { | 
|  | return getTriple().supportsCOMDAT(); | 
|  | } | 
|  |  | 
|  | const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { | 
|  | if (TheTargetCodeGenInfo) | 
|  | return *TheTargetCodeGenInfo; | 
|  |  | 
|  | // Helper to set the unique_ptr while still keeping the return value. | 
|  | auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { | 
|  | this->TheTargetCodeGenInfo.reset(P); | 
|  | return *P; | 
|  | }; | 
|  |  | 
|  | const llvm::Triple &Triple = getTarget().getTriple(); | 
|  | switch (Triple.getArch()) { | 
|  | default: | 
|  | return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); | 
|  |  | 
|  | case llvm::Triple::le32: | 
|  | return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); | 
|  | case llvm::Triple::mips: | 
|  | case llvm::Triple::mipsel: | 
|  | if (Triple.getOS() == llvm::Triple::NaCl) | 
|  | return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); | 
|  | return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); | 
|  |  | 
|  | case llvm::Triple::mips64: | 
|  | case llvm::Triple::mips64el: | 
|  | return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); | 
|  |  | 
|  | case llvm::Triple::aarch64: | 
|  | case llvm::Triple::aarch64_be: { | 
|  | AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; | 
|  | if (getTarget().getABI() == "darwinpcs") | 
|  | Kind = AArch64ABIInfo::DarwinPCS; | 
|  |  | 
|  | return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); | 
|  | } | 
|  |  | 
|  | case llvm::Triple::wasm32: | 
|  | case llvm::Triple::wasm64: | 
|  | return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); | 
|  |  | 
|  | case llvm::Triple::arm: | 
|  | case llvm::Triple::armeb: | 
|  | case llvm::Triple::thumb: | 
|  | case llvm::Triple::thumbeb: { | 
|  | if (Triple.getOS() == llvm::Triple::Win32) { | 
|  | return SetCGInfo( | 
|  | new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); | 
|  | } | 
|  |  | 
|  | ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; | 
|  | StringRef ABIStr = getTarget().getABI(); | 
|  | if (ABIStr == "apcs-gnu") | 
|  | Kind = ARMABIInfo::APCS; | 
|  | else if (ABIStr == "aapcs16") | 
|  | Kind = ARMABIInfo::AAPCS16_VFP; | 
|  | else if (CodeGenOpts.FloatABI == "hard" || | 
|  | (CodeGenOpts.FloatABI != "soft" && | 
|  | (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || | 
|  | Triple.getEnvironment() == llvm::Triple::EABIHF))) | 
|  | Kind = ARMABIInfo::AAPCS_VFP; | 
|  |  | 
|  | return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); | 
|  | } | 
|  |  | 
|  | case llvm::Triple::ppc: | 
|  | return SetCGInfo( | 
|  | new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); | 
|  | case llvm::Triple::ppc64: | 
|  | if (Triple.isOSBinFormatELF()) { | 
|  | PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; | 
|  | if (getTarget().getABI() == "elfv2") | 
|  | Kind = PPC64_SVR4_ABIInfo::ELFv2; | 
|  | bool HasQPX = getTarget().getABI() == "elfv1-qpx"; | 
|  |  | 
|  | return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX)); | 
|  | } else | 
|  | return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); | 
|  | case llvm::Triple::ppc64le: { | 
|  | assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); | 
|  | PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; | 
|  | if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") | 
|  | Kind = PPC64_SVR4_ABIInfo::ELFv1; | 
|  | bool HasQPX = getTarget().getABI() == "elfv1-qpx"; | 
|  |  | 
|  | return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX)); | 
|  | } | 
|  |  | 
|  | case llvm::Triple::nvptx: | 
|  | case llvm::Triple::nvptx64: | 
|  | return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); | 
|  |  | 
|  | case llvm::Triple::msp430: | 
|  | return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); | 
|  |  | 
|  | case llvm::Triple::systemz: { | 
|  | bool HasVector = getTarget().getABI() == "vector"; | 
|  | return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); | 
|  | } | 
|  |  | 
|  | case llvm::Triple::tce: | 
|  | return SetCGInfo(new TCETargetCodeGenInfo(Types)); | 
|  |  | 
|  | case llvm::Triple::x86: { | 
|  | bool IsDarwinVectorABI = Triple.isOSDarwin(); | 
|  | bool RetSmallStructInRegABI = | 
|  | X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); | 
|  | bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); | 
|  |  | 
|  | if (Triple.getOS() == llvm::Triple::Win32) { | 
|  | return SetCGInfo(new WinX86_32TargetCodeGenInfo( | 
|  | Types, IsDarwinVectorABI, RetSmallStructInRegABI, | 
|  | IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); | 
|  | } else { | 
|  | return SetCGInfo(new X86_32TargetCodeGenInfo( | 
|  | Types, IsDarwinVectorABI, RetSmallStructInRegABI, | 
|  | IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, | 
|  | CodeGenOpts.FloatABI == "soft")); | 
|  | } | 
|  | } | 
|  |  | 
|  | case llvm::Triple::x86_64: { | 
|  | StringRef ABI = getTarget().getABI(); | 
|  | X86AVXABILevel AVXLevel = | 
|  | (ABI == "avx512" | 
|  | ? X86AVXABILevel::AVX512 | 
|  | : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); | 
|  |  | 
|  | switch (Triple.getOS()) { | 
|  | case llvm::Triple::Win32: | 
|  | return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); | 
|  | case llvm::Triple::PS4: | 
|  | return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); | 
|  | default: | 
|  | return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); | 
|  | } | 
|  | } | 
|  | case llvm::Triple::hexagon: | 
|  | return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); | 
|  | case llvm::Triple::lanai: | 
|  | return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); | 
|  | case llvm::Triple::r600: | 
|  | return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); | 
|  | case llvm::Triple::amdgcn: | 
|  | return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); | 
|  | case llvm::Triple::sparcv9: | 
|  | return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); | 
|  | case llvm::Triple::xcore: | 
|  | return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); | 
|  | case llvm::Triple::spir: | 
|  | case llvm::Triple::spir64: | 
|  | return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); | 
|  | } | 
|  | } |