|  | //===- HexagonCommonGEP.cpp -----------------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "commgep" | 
|  |  | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/FoldingSet.h" | 
|  | #include "llvm/ADT/GraphTraits.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/PostDominators.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Use.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/IR/Verifier.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Allocator.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <map> | 
|  | #include <set> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true), | 
|  | cl::Hidden, cl::ZeroOrMore); | 
|  |  | 
|  | static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden, | 
|  | cl::ZeroOrMore); | 
|  |  | 
|  | static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true), | 
|  | cl::Hidden, cl::ZeroOrMore); | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | void initializeHexagonCommonGEPPass(PassRegistry&); | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct GepNode; | 
|  | using NodeSet = std::set<GepNode *>; | 
|  | using NodeToValueMap = std::map<GepNode *, Value *>; | 
|  | using NodeVect = std::vector<GepNode *>; | 
|  | using NodeChildrenMap = std::map<GepNode *, NodeVect>; | 
|  | using UseSet = SetVector<Use *>; | 
|  | using NodeToUsesMap = std::map<GepNode *, UseSet>; | 
|  |  | 
|  | // Numbering map for gep nodes. Used to keep track of ordering for | 
|  | // gep nodes. | 
|  | struct NodeOrdering { | 
|  | NodeOrdering() = default; | 
|  |  | 
|  | void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); } | 
|  | void clear() { Map.clear(); } | 
|  |  | 
|  | bool operator()(const GepNode *N1, const GepNode *N2) const { | 
|  | auto F1 = Map.find(N1), F2 = Map.find(N2); | 
|  | assert(F1 != Map.end() && F2 != Map.end()); | 
|  | return F1->second < F2->second; | 
|  | } | 
|  |  | 
|  | private: | 
|  | std::map<const GepNode *, unsigned> Map; | 
|  | unsigned LastNum = 0; | 
|  | }; | 
|  |  | 
|  | class HexagonCommonGEP : public FunctionPass { | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | HexagonCommonGEP() : FunctionPass(ID) { | 
|  | initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override; | 
|  | StringRef getPassName() const override { return "Hexagon Common GEP"; } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | AU.addPreserved<DominatorTreeWrapperPass>(); | 
|  | AU.addRequired<PostDominatorTreeWrapperPass>(); | 
|  | AU.addPreserved<PostDominatorTreeWrapperPass>(); | 
|  | AU.addRequired<LoopInfoWrapperPass>(); | 
|  | AU.addPreserved<LoopInfoWrapperPass>(); | 
|  | FunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | private: | 
|  | using ValueToNodeMap = std::map<Value *, GepNode *>; | 
|  | using ValueVect = std::vector<Value *>; | 
|  | using NodeToValuesMap = std::map<GepNode *, ValueVect>; | 
|  |  | 
|  | void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order); | 
|  | bool isHandledGepForm(GetElementPtrInst *GepI); | 
|  | void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM); | 
|  | void collect(); | 
|  | void common(); | 
|  |  | 
|  | BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM, | 
|  | NodeToValueMap &Loc); | 
|  | BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM, | 
|  | NodeToValueMap &Loc); | 
|  | bool isInvariantIn(Value *Val, Loop *L); | 
|  | bool isInvariantIn(GepNode *Node, Loop *L); | 
|  | bool isInMainPath(BasicBlock *B, Loop *L); | 
|  | BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM, | 
|  | NodeToValueMap &Loc); | 
|  | void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc); | 
|  | void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM, | 
|  | NodeToValueMap &Loc); | 
|  | void computeNodePlacement(NodeToValueMap &Loc); | 
|  |  | 
|  | Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At, | 
|  | BasicBlock *LocB); | 
|  | void getAllUsersForNode(GepNode *Node, ValueVect &Values, | 
|  | NodeChildrenMap &NCM); | 
|  | void materialize(NodeToValueMap &Loc); | 
|  |  | 
|  | void removeDeadCode(); | 
|  |  | 
|  | NodeVect Nodes; | 
|  | NodeToUsesMap Uses; | 
|  | NodeOrdering NodeOrder;   // Node ordering, for deterministic behavior. | 
|  | SpecificBumpPtrAllocator<GepNode> *Mem; | 
|  | LLVMContext *Ctx; | 
|  | LoopInfo *LI; | 
|  | DominatorTree *DT; | 
|  | PostDominatorTree *PDT; | 
|  | Function *Fn; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char HexagonCommonGEP::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP", | 
|  | false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP", | 
|  | false, false) | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct GepNode { | 
|  | enum { | 
|  | None      = 0, | 
|  | Root      = 0x01, | 
|  | Internal  = 0x02, | 
|  | Used      = 0x04, | 
|  | InBounds  = 0x08 | 
|  | }; | 
|  |  | 
|  | uint32_t Flags = 0; | 
|  | union { | 
|  | GepNode *Parent; | 
|  | Value *BaseVal; | 
|  | }; | 
|  | Value *Idx = nullptr; | 
|  | Type *PTy = nullptr;  // Type of the pointer operand. | 
|  |  | 
|  | GepNode() : Parent(nullptr) {} | 
|  | GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) { | 
|  | if (Flags & Root) | 
|  | BaseVal = N->BaseVal; | 
|  | else | 
|  | Parent = N->Parent; | 
|  | } | 
|  |  | 
|  | friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN); | 
|  | }; | 
|  |  | 
|  | Type *next_type(Type *Ty, Value *Idx) { | 
|  | if (auto *PTy = dyn_cast<PointerType>(Ty)) | 
|  | return PTy->getElementType(); | 
|  | // Advance the type. | 
|  | if (!Ty->isStructTy()) { | 
|  | Type *NexTy = cast<SequentialType>(Ty)->getElementType(); | 
|  | return NexTy; | 
|  | } | 
|  | // Otherwise it is a struct type. | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(Idx); | 
|  | assert(CI && "Struct type with non-constant index"); | 
|  | int64_t i = CI->getValue().getSExtValue(); | 
|  | Type *NextTy = cast<StructType>(Ty)->getElementType(i); | 
|  | return NextTy; | 
|  | } | 
|  |  | 
|  | raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) { | 
|  | OS << "{ {"; | 
|  | bool Comma = false; | 
|  | if (GN.Flags & GepNode::Root) { | 
|  | OS << "root"; | 
|  | Comma = true; | 
|  | } | 
|  | if (GN.Flags & GepNode::Internal) { | 
|  | if (Comma) | 
|  | OS << ','; | 
|  | OS << "internal"; | 
|  | Comma = true; | 
|  | } | 
|  | if (GN.Flags & GepNode::Used) { | 
|  | if (Comma) | 
|  | OS << ','; | 
|  | OS << "used"; | 
|  | } | 
|  | if (GN.Flags & GepNode::InBounds) { | 
|  | if (Comma) | 
|  | OS << ','; | 
|  | OS << "inbounds"; | 
|  | } | 
|  | OS << "} "; | 
|  | if (GN.Flags & GepNode::Root) | 
|  | OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')'; | 
|  | else | 
|  | OS << "Parent:" << GN.Parent; | 
|  |  | 
|  | OS << " Idx:"; | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx)) | 
|  | OS << CI->getValue().getSExtValue(); | 
|  | else if (GN.Idx->hasName()) | 
|  | OS << GN.Idx->getName(); | 
|  | else | 
|  | OS << "<anon> =" << *GN.Idx; | 
|  |  | 
|  | OS << " PTy:"; | 
|  | if (GN.PTy->isStructTy()) { | 
|  | StructType *STy = cast<StructType>(GN.PTy); | 
|  | if (!STy->isLiteral()) | 
|  | OS << GN.PTy->getStructName(); | 
|  | else | 
|  | OS << "<anon-struct>:" << *STy; | 
|  | } | 
|  | else | 
|  | OS << *GN.PTy; | 
|  | OS << " }"; | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | template <typename NodeContainer> | 
|  | void dump_node_container(raw_ostream &OS, const NodeContainer &S) { | 
|  | using const_iterator = typename NodeContainer::const_iterator; | 
|  |  | 
|  | for (const_iterator I = S.begin(), E = S.end(); I != E; ++I) | 
|  | OS << *I << ' ' << **I << '\n'; | 
|  | } | 
|  |  | 
|  | raw_ostream &operator<< (raw_ostream &OS, | 
|  | const NodeVect &S) LLVM_ATTRIBUTE_UNUSED; | 
|  | raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) { | 
|  | dump_node_container(OS, S); | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | raw_ostream &operator<< (raw_ostream &OS, | 
|  | const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED; | 
|  | raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){ | 
|  | using const_iterator = NodeToUsesMap::const_iterator; | 
|  |  | 
|  | for (const_iterator I = M.begin(), E = M.end(); I != E; ++I) { | 
|  | const UseSet &Us = I->second; | 
|  | OS << I->first << " -> #" << Us.size() << '{'; | 
|  | for (UseSet::const_iterator J = Us.begin(), F = Us.end(); J != F; ++J) { | 
|  | User *R = (*J)->getUser(); | 
|  | if (R->hasName()) | 
|  | OS << ' ' << R->getName(); | 
|  | else | 
|  | OS << " <?>(" << *R << ')'; | 
|  | } | 
|  | OS << " }\n"; | 
|  | } | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | struct in_set { | 
|  | in_set(const NodeSet &S) : NS(S) {} | 
|  |  | 
|  | bool operator() (GepNode *N) const { | 
|  | return NS.find(N) != NS.end(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const NodeSet &NS; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) { | 
|  | return A.Allocate(); | 
|  | } | 
|  |  | 
|  | void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root, | 
|  | ValueVect &Order) { | 
|  | // Compute block ordering for a typical DT-based traversal of the flow | 
|  | // graph: "before visiting a block, all of its dominators must have been | 
|  | // visited". | 
|  |  | 
|  | Order.push_back(Root); | 
|  | for (auto *DTN : children<DomTreeNode*>(DT->getNode(Root))) | 
|  | getBlockTraversalOrder(DTN->getBlock(), Order); | 
|  | } | 
|  |  | 
|  | bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) { | 
|  | // No vector GEPs. | 
|  | if (!GepI->getType()->isPointerTy()) | 
|  | return false; | 
|  | // No GEPs without any indices.  (Is this possible?) | 
|  | if (GepI->idx_begin() == GepI->idx_end()) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI, | 
|  | ValueToNodeMap &NM) { | 
|  | LLVM_DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n'); | 
|  | GepNode *N = new (*Mem) GepNode; | 
|  | Value *PtrOp = GepI->getPointerOperand(); | 
|  | uint32_t InBounds = GepI->isInBounds() ? GepNode::InBounds : 0; | 
|  | ValueToNodeMap::iterator F = NM.find(PtrOp); | 
|  | if (F == NM.end()) { | 
|  | N->BaseVal = PtrOp; | 
|  | N->Flags |= GepNode::Root | InBounds; | 
|  | } else { | 
|  | // If PtrOp was a GEP instruction, it must have already been processed. | 
|  | // The ValueToNodeMap entry for it is the last gep node in the generated | 
|  | // chain. Link to it here. | 
|  | N->Parent = F->second; | 
|  | } | 
|  | N->PTy = PtrOp->getType(); | 
|  | N->Idx = *GepI->idx_begin(); | 
|  |  | 
|  | // Collect the list of users of this GEP instruction. Will add it to the | 
|  | // last node created for it. | 
|  | UseSet Us; | 
|  | for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end(); | 
|  | UI != UE; ++UI) { | 
|  | // Check if this gep is used by anything other than other geps that | 
|  | // we will process. | 
|  | if (isa<GetElementPtrInst>(*UI)) { | 
|  | GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI); | 
|  | if (isHandledGepForm(UserG)) | 
|  | continue; | 
|  | } | 
|  | Us.insert(&UI.getUse()); | 
|  | } | 
|  | Nodes.push_back(N); | 
|  | NodeOrder.insert(N); | 
|  |  | 
|  | // Skip the first index operand, since we only handle 0. This dereferences | 
|  | // the pointer operand. | 
|  | GepNode *PN = N; | 
|  | Type *PtrTy = cast<PointerType>(PtrOp->getType())->getElementType(); | 
|  | for (User::op_iterator OI = GepI->idx_begin()+1, OE = GepI->idx_end(); | 
|  | OI != OE; ++OI) { | 
|  | Value *Op = *OI; | 
|  | GepNode *Nx = new (*Mem) GepNode; | 
|  | Nx->Parent = PN;  // Link Nx to the previous node. | 
|  | Nx->Flags |= GepNode::Internal | InBounds; | 
|  | Nx->PTy = PtrTy; | 
|  | Nx->Idx = Op; | 
|  | Nodes.push_back(Nx); | 
|  | NodeOrder.insert(Nx); | 
|  | PN = Nx; | 
|  |  | 
|  | PtrTy = next_type(PtrTy, Op); | 
|  | } | 
|  |  | 
|  | // After last node has been created, update the use information. | 
|  | if (!Us.empty()) { | 
|  | PN->Flags |= GepNode::Used; | 
|  | Uses[PN].insert(Us.begin(), Us.end()); | 
|  | } | 
|  |  | 
|  | // Link the last node with the originating GEP instruction. This is to | 
|  | // help with linking chained GEP instructions. | 
|  | NM.insert(std::make_pair(GepI, PN)); | 
|  | } | 
|  |  | 
|  | void HexagonCommonGEP::collect() { | 
|  | // Establish depth-first traversal order of the dominator tree. | 
|  | ValueVect BO; | 
|  | getBlockTraversalOrder(&Fn->front(), BO); | 
|  |  | 
|  | // The creation of gep nodes requires DT-traversal. When processing a GEP | 
|  | // instruction that uses another GEP instruction as the base pointer, the | 
|  | // gep node for the base pointer should already exist. | 
|  | ValueToNodeMap NM; | 
|  | for (ValueVect::iterator I = BO.begin(), E = BO.end(); I != E; ++I) { | 
|  | BasicBlock *B = cast<BasicBlock>(*I); | 
|  | for (BasicBlock::iterator J = B->begin(), F = B->end(); J != F; ++J) { | 
|  | if (!isa<GetElementPtrInst>(J)) | 
|  | continue; | 
|  | GetElementPtrInst *GepI = cast<GetElementPtrInst>(J); | 
|  | if (isHandledGepForm(GepI)) | 
|  | processGepInst(GepI, NM); | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes); | 
|  | } | 
|  |  | 
|  | static void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM, | 
|  | NodeVect &Roots) { | 
|  | using const_iterator = NodeVect::const_iterator; | 
|  |  | 
|  | for (const_iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { | 
|  | GepNode *N = *I; | 
|  | if (N->Flags & GepNode::Root) { | 
|  | Roots.push_back(N); | 
|  | continue; | 
|  | } | 
|  | GepNode *PN = N->Parent; | 
|  | NCM[PN].push_back(N); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM, | 
|  | NodeSet &Nodes) { | 
|  | NodeVect Work; | 
|  | Work.push_back(Root); | 
|  | Nodes.insert(Root); | 
|  |  | 
|  | while (!Work.empty()) { | 
|  | NodeVect::iterator First = Work.begin(); | 
|  | GepNode *N = *First; | 
|  | Work.erase(First); | 
|  | NodeChildrenMap::iterator CF = NCM.find(N); | 
|  | if (CF != NCM.end()) { | 
|  | Work.insert(Work.end(), CF->second.begin(), CF->second.end()); | 
|  | Nodes.insert(CF->second.begin(), CF->second.end()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | using NodeSymRel = std::set<NodeSet>; | 
|  | using NodePair = std::pair<GepNode *, GepNode *>; | 
|  | using NodePairSet = std::set<NodePair>; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | static const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) { | 
|  | for (NodeSymRel::iterator I = Rel.begin(), E = Rel.end(); I != E; ++I) | 
|  | if (I->count(N)) | 
|  | return &*I; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Create an ordered pair of GepNode pointers. The pair will be used in | 
|  | // determining equality. The only purpose of the ordering is to eliminate | 
|  | // duplication due to the commutativity of equality/non-equality. | 
|  | static NodePair node_pair(GepNode *N1, GepNode *N2) { | 
|  | uintptr_t P1 = uintptr_t(N1), P2 = uintptr_t(N2); | 
|  | if (P1 <= P2) | 
|  | return std::make_pair(N1, N2); | 
|  | return std::make_pair(N2, N1); | 
|  | } | 
|  |  | 
|  | static unsigned node_hash(GepNode *N) { | 
|  | // Include everything except flags and parent. | 
|  | FoldingSetNodeID ID; | 
|  | ID.AddPointer(N->Idx); | 
|  | ID.AddPointer(N->PTy); | 
|  | return ID.ComputeHash(); | 
|  | } | 
|  |  | 
|  | static bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq, | 
|  | NodePairSet &Ne) { | 
|  | // Don't cache the result for nodes with different hashes. The hash | 
|  | // comparison is fast enough. | 
|  | if (node_hash(N1) != node_hash(N2)) | 
|  | return false; | 
|  |  | 
|  | NodePair NP = node_pair(N1, N2); | 
|  | NodePairSet::iterator FEq = Eq.find(NP); | 
|  | if (FEq != Eq.end()) | 
|  | return true; | 
|  | NodePairSet::iterator FNe = Ne.find(NP); | 
|  | if (FNe != Ne.end()) | 
|  | return false; | 
|  | // Not previously compared. | 
|  | bool Root1 = N1->Flags & GepNode::Root; | 
|  | bool Root2 = N2->Flags & GepNode::Root; | 
|  | NodePair P = node_pair(N1, N2); | 
|  | // If the Root flag has different values, the nodes are different. | 
|  | // If both nodes are root nodes, but their base pointers differ, | 
|  | // they are different. | 
|  | if (Root1 != Root2 || (Root1 && N1->BaseVal != N2->BaseVal)) { | 
|  | Ne.insert(P); | 
|  | return false; | 
|  | } | 
|  | // Here the root flags are identical, and for root nodes the | 
|  | // base pointers are equal, so the root nodes are equal. | 
|  | // For non-root nodes, compare their parent nodes. | 
|  | if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) { | 
|  | Eq.insert(P); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void HexagonCommonGEP::common() { | 
|  | // The essence of this commoning is finding gep nodes that are equal. | 
|  | // To do this we need to compare all pairs of nodes. To save time, | 
|  | // first, partition the set of all nodes into sets of potentially equal | 
|  | // nodes, and then compare pairs from within each partition. | 
|  | using NodeSetMap = std::map<unsigned, NodeSet>; | 
|  | NodeSetMap MaybeEq; | 
|  |  | 
|  | for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { | 
|  | GepNode *N = *I; | 
|  | unsigned H = node_hash(N); | 
|  | MaybeEq[H].insert(N); | 
|  | } | 
|  |  | 
|  | // Compute the equivalence relation for the gep nodes.  Use two caches, | 
|  | // one for equality and the other for non-equality. | 
|  | NodeSymRel EqRel;  // Equality relation (as set of equivalence classes). | 
|  | NodePairSet Eq, Ne;  // Caches. | 
|  | for (NodeSetMap::iterator I = MaybeEq.begin(), E = MaybeEq.end(); | 
|  | I != E; ++I) { | 
|  | NodeSet &S = I->second; | 
|  | for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) { | 
|  | GepNode *N = *NI; | 
|  | // If node already has a class, then the class must have been created | 
|  | // in a prior iteration of this loop. Since equality is transitive, | 
|  | // nothing more will be added to that class, so skip it. | 
|  | if (node_class(N, EqRel)) | 
|  | continue; | 
|  |  | 
|  | // Create a new class candidate now. | 
|  | NodeSet C; | 
|  | for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ) | 
|  | if (node_eq(N, *NJ, Eq, Ne)) | 
|  | C.insert(*NJ); | 
|  | // If Tmp is empty, N would be the only element in it. Don't bother | 
|  | // creating a class for it then. | 
|  | if (!C.empty()) { | 
|  | C.insert(N);  // Finalize the set before adding it to the relation. | 
|  | std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C); | 
|  | (void)Ins; | 
|  | assert(Ins.second && "Cannot add a class"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Gep node equality:\n"; | 
|  | for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I) | 
|  | dbgs() << "{ " << I->first << ", " << I->second << " }\n"; | 
|  |  | 
|  | dbgs() << "Gep equivalence classes:\n"; | 
|  | for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) { | 
|  | dbgs() << '{'; | 
|  | const NodeSet &S = *I; | 
|  | for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) { | 
|  | if (J != S.begin()) | 
|  | dbgs() << ','; | 
|  | dbgs() << ' ' << *J; | 
|  | } | 
|  | dbgs() << " }\n"; | 
|  | } | 
|  | }); | 
|  |  | 
|  | // Create a projection from a NodeSet to the minimal element in it. | 
|  | using ProjMap = std::map<const NodeSet *, GepNode *>; | 
|  | ProjMap PM; | 
|  | for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) { | 
|  | const NodeSet &S = *I; | 
|  | GepNode *Min = *std::min_element(S.begin(), S.end(), NodeOrder); | 
|  | std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min)); | 
|  | (void)Ins; | 
|  | assert(Ins.second && "Cannot add minimal element"); | 
|  |  | 
|  | // Update the min element's flags, and user list. | 
|  | uint32_t Flags = 0; | 
|  | UseSet &MinUs = Uses[Min]; | 
|  | for (NodeSet::iterator J = S.begin(), F = S.end(); J != F; ++J) { | 
|  | GepNode *N = *J; | 
|  | uint32_t NF = N->Flags; | 
|  | // If N is used, append all original values of N to the list of | 
|  | // original values of Min. | 
|  | if (NF & GepNode::Used) | 
|  | MinUs.insert(Uses[N].begin(), Uses[N].end()); | 
|  | Flags |= NF; | 
|  | } | 
|  | if (MinUs.empty()) | 
|  | Uses.erase(Min); | 
|  |  | 
|  | // The collected flags should include all the flags from the min element. | 
|  | assert((Min->Flags & Flags) == Min->Flags); | 
|  | Min->Flags = Flags; | 
|  | } | 
|  |  | 
|  | // Commoning: for each non-root gep node, replace "Parent" with the | 
|  | // selected (minimum) node from the corresponding equivalence class. | 
|  | // If a given parent does not have an equivalence class, leave it | 
|  | // unchanged (it means that it's the only element in its class). | 
|  | for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { | 
|  | GepNode *N = *I; | 
|  | if (N->Flags & GepNode::Root) | 
|  | continue; | 
|  | const NodeSet *PC = node_class(N->Parent, EqRel); | 
|  | if (!PC) | 
|  | continue; | 
|  | ProjMap::iterator F = PM.find(PC); | 
|  | if (F == PM.end()) | 
|  | continue; | 
|  | // Found a replacement, use it. | 
|  | GepNode *Rep = F->second; | 
|  | N->Parent = Rep; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes); | 
|  |  | 
|  | // Finally, erase the nodes that are no longer used. | 
|  | NodeSet Erase; | 
|  | for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { | 
|  | GepNode *N = *I; | 
|  | const NodeSet *PC = node_class(N, EqRel); | 
|  | if (!PC) | 
|  | continue; | 
|  | ProjMap::iterator F = PM.find(PC); | 
|  | if (F == PM.end()) | 
|  | continue; | 
|  | if (N == F->second) | 
|  | continue; | 
|  | // Node for removal. | 
|  | Erase.insert(*I); | 
|  | } | 
|  | NodeVect::iterator NewE = remove_if(Nodes, in_set(Erase)); | 
|  | Nodes.resize(std::distance(Nodes.begin(), NewE)); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | static BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) { | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "NCD of {"; | 
|  | for (typename T::iterator I = Blocks.begin(), E = Blocks.end(); I != E; | 
|  | ++I) { | 
|  | if (!*I) | 
|  | continue; | 
|  | BasicBlock *B = cast<BasicBlock>(*I); | 
|  | dbgs() << ' ' << B->getName(); | 
|  | } | 
|  | dbgs() << " }\n"; | 
|  | }); | 
|  |  | 
|  | // Allow null basic blocks in Blocks.  In such cases, return nullptr. | 
|  | typename T::iterator I = Blocks.begin(), E = Blocks.end(); | 
|  | if (I == E || !*I) | 
|  | return nullptr; | 
|  | BasicBlock *Dom = cast<BasicBlock>(*I); | 
|  | while (++I != E) { | 
|  | BasicBlock *B = cast_or_null<BasicBlock>(*I); | 
|  | Dom = B ? DT->findNearestCommonDominator(Dom, B) : nullptr; | 
|  | if (!Dom) | 
|  | return nullptr; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "computed:" << Dom->getName() << '\n'); | 
|  | return Dom; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | static BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) { | 
|  | // If two blocks, A and B, dominate a block C, then A dominates B, | 
|  | // or B dominates A. | 
|  | typename T::iterator I = Blocks.begin(), E = Blocks.end(); | 
|  | // Find the first non-null block. | 
|  | while (I != E && !*I) | 
|  | ++I; | 
|  | if (I == E) | 
|  | return DT->getRoot(); | 
|  | BasicBlock *DomB = cast<BasicBlock>(*I); | 
|  | while (++I != E) { | 
|  | if (!*I) | 
|  | continue; | 
|  | BasicBlock *B = cast<BasicBlock>(*I); | 
|  | if (DT->dominates(B, DomB)) | 
|  | continue; | 
|  | if (!DT->dominates(DomB, B)) | 
|  | return nullptr; | 
|  | DomB = B; | 
|  | } | 
|  | return DomB; | 
|  | } | 
|  |  | 
|  | // Find the first use in B of any value from Values. If no such use, | 
|  | // return B->end(). | 
|  | template <typename T> | 
|  | static BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) { | 
|  | BasicBlock::iterator FirstUse = B->end(), BEnd = B->end(); | 
|  |  | 
|  | using iterator = typename T::iterator; | 
|  |  | 
|  | for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) { | 
|  | Value *V = *I; | 
|  | // If V is used in a PHI node, the use belongs to the incoming block, | 
|  | // not the block with the PHI node. In the incoming block, the use | 
|  | // would be considered as being at the end of it, so it cannot | 
|  | // influence the position of the first use (which is assumed to be | 
|  | // at the end to start with). | 
|  | if (isa<PHINode>(V)) | 
|  | continue; | 
|  | if (!isa<Instruction>(V)) | 
|  | continue; | 
|  | Instruction *In = cast<Instruction>(V); | 
|  | if (In->getParent() != B) | 
|  | continue; | 
|  | BasicBlock::iterator It = In->getIterator(); | 
|  | if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd)) | 
|  | FirstUse = It; | 
|  | } | 
|  | return FirstUse; | 
|  | } | 
|  |  | 
|  | static bool is_empty(const BasicBlock *B) { | 
|  | return B->empty() || (&*B->begin() == B->getTerminator()); | 
|  | } | 
|  |  | 
|  | BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node, | 
|  | NodeChildrenMap &NCM, NodeToValueMap &Loc) { | 
|  | LLVM_DEBUG(dbgs() << "Loc for node:" << Node << '\n'); | 
|  | // Recalculate the placement for Node, assuming that the locations of | 
|  | // its children in Loc are valid. | 
|  | // Return nullptr if there is no valid placement for Node (for example, it | 
|  | // uses an index value that is not available at the location required | 
|  | // to dominate all children, etc.). | 
|  |  | 
|  | // Find the nearest common dominator for: | 
|  | // - all users, if the node is used, and | 
|  | // - all children. | 
|  | ValueVect Bs; | 
|  | if (Node->Flags & GepNode::Used) { | 
|  | // Append all blocks with uses of the original values to the | 
|  | // block vector Bs. | 
|  | NodeToUsesMap::iterator UF = Uses.find(Node); | 
|  | assert(UF != Uses.end() && "Used node with no use information"); | 
|  | UseSet &Us = UF->second; | 
|  | for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) { | 
|  | Use *U = *I; | 
|  | User *R = U->getUser(); | 
|  | if (!isa<Instruction>(R)) | 
|  | continue; | 
|  | BasicBlock *PB = isa<PHINode>(R) | 
|  | ? cast<PHINode>(R)->getIncomingBlock(*U) | 
|  | : cast<Instruction>(R)->getParent(); | 
|  | Bs.push_back(PB); | 
|  | } | 
|  | } | 
|  | // Append the location of each child. | 
|  | NodeChildrenMap::iterator CF = NCM.find(Node); | 
|  | if (CF != NCM.end()) { | 
|  | NodeVect &Cs = CF->second; | 
|  | for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) { | 
|  | GepNode *CN = *I; | 
|  | NodeToValueMap::iterator LF = Loc.find(CN); | 
|  | // If the child is only used in GEP instructions (i.e. is not used in | 
|  | // non-GEP instructions), the nearest dominator computed for it may | 
|  | // have been null. In such case it won't have a location available. | 
|  | if (LF == Loc.end()) | 
|  | continue; | 
|  | Bs.push_back(LF->second); | 
|  | } | 
|  | } | 
|  |  | 
|  | BasicBlock *DomB = nearest_common_dominator(DT, Bs); | 
|  | if (!DomB) | 
|  | return nullptr; | 
|  | // Check if the index used by Node dominates the computed dominator. | 
|  | Instruction *IdxI = dyn_cast<Instruction>(Node->Idx); | 
|  | if (IdxI && !DT->dominates(IdxI->getParent(), DomB)) | 
|  | return nullptr; | 
|  |  | 
|  | // Avoid putting nodes into empty blocks. | 
|  | while (is_empty(DomB)) { | 
|  | DomTreeNode *N = (*DT)[DomB]->getIDom(); | 
|  | if (!N) | 
|  | break; | 
|  | DomB = N->getBlock(); | 
|  | } | 
|  |  | 
|  | // Otherwise, DomB is fine. Update the location map. | 
|  | Loc[Node] = DomB; | 
|  | return DomB; | 
|  | } | 
|  |  | 
|  | BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node, | 
|  | NodeChildrenMap &NCM, NodeToValueMap &Loc) { | 
|  | LLVM_DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n'); | 
|  | // Recalculate the placement of Node, after recursively recalculating the | 
|  | // placements of all its children. | 
|  | NodeChildrenMap::iterator CF = NCM.find(Node); | 
|  | if (CF != NCM.end()) { | 
|  | NodeVect &Cs = CF->second; | 
|  | for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) | 
|  | recalculatePlacementRec(*I, NCM, Loc); | 
|  | } | 
|  | BasicBlock *LB = recalculatePlacement(Node, NCM, Loc); | 
|  | LLVM_DEBUG(dbgs() << "LocRec end for node:" << Node << '\n'); | 
|  | return LB; | 
|  | } | 
|  |  | 
|  | bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) { | 
|  | if (isa<Constant>(Val) || isa<Argument>(Val)) | 
|  | return true; | 
|  | Instruction *In = dyn_cast<Instruction>(Val); | 
|  | if (!In) | 
|  | return false; | 
|  | BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent(); | 
|  | return DT->properlyDominates(DefB, HdrB); | 
|  | } | 
|  |  | 
|  | bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) { | 
|  | if (Node->Flags & GepNode::Root) | 
|  | if (!isInvariantIn(Node->BaseVal, L)) | 
|  | return false; | 
|  | return isInvariantIn(Node->Idx, L); | 
|  | } | 
|  |  | 
|  | bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) { | 
|  | BasicBlock *HB = L->getHeader(); | 
|  | BasicBlock *LB = L->getLoopLatch(); | 
|  | // B must post-dominate the loop header or dominate the loop latch. | 
|  | if (PDT->dominates(B, HB)) | 
|  | return true; | 
|  | if (LB && DT->dominates(B, LB)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static BasicBlock *preheader(DominatorTree *DT, Loop *L) { | 
|  | if (BasicBlock *PH = L->getLoopPreheader()) | 
|  | return PH; | 
|  | if (!OptSpeculate) | 
|  | return nullptr; | 
|  | DomTreeNode *DN = DT->getNode(L->getHeader()); | 
|  | if (!DN) | 
|  | return nullptr; | 
|  | return DN->getIDom()->getBlock(); | 
|  | } | 
|  |  | 
|  | BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node, | 
|  | NodeChildrenMap &NCM, NodeToValueMap &Loc) { | 
|  | // Find the "topmost" location for Node: it must be dominated by both, | 
|  | // its parent (or the BaseVal, if it's a root node), and by the index | 
|  | // value. | 
|  | ValueVect Bs; | 
|  | if (Node->Flags & GepNode::Root) { | 
|  | if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal)) | 
|  | Bs.push_back(PIn->getParent()); | 
|  | } else { | 
|  | Bs.push_back(Loc[Node->Parent]); | 
|  | } | 
|  | if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx)) | 
|  | Bs.push_back(IIn->getParent()); | 
|  | BasicBlock *TopB = nearest_common_dominatee(DT, Bs); | 
|  |  | 
|  | // Traverse the loop nest upwards until we find a loop in which Node | 
|  | // is no longer invariant, or until we get to the upper limit of Node's | 
|  | // placement. The traversal will also stop when a suitable "preheader" | 
|  | // cannot be found for a given loop. The "preheader" may actually be | 
|  | // a regular block outside of the loop (i.e. not guarded), in which case | 
|  | // the Node will be speculated. | 
|  | // For nodes that are not in the main path of the containing loop (i.e. | 
|  | // are not executed in each iteration), do not move them out of the loop. | 
|  | BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]); | 
|  | if (LocB) { | 
|  | Loop *Lp = LI->getLoopFor(LocB); | 
|  | while (Lp) { | 
|  | if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp)) | 
|  | break; | 
|  | BasicBlock *NewLoc = preheader(DT, Lp); | 
|  | if (!NewLoc || !DT->dominates(TopB, NewLoc)) | 
|  | break; | 
|  | Lp = Lp->getParentLoop(); | 
|  | LocB = NewLoc; | 
|  | } | 
|  | } | 
|  | Loc[Node] = LocB; | 
|  |  | 
|  | // Recursively compute the locations of all children nodes. | 
|  | NodeChildrenMap::iterator CF = NCM.find(Node); | 
|  | if (CF != NCM.end()) { | 
|  | NodeVect &Cs = CF->second; | 
|  | for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) | 
|  | adjustForInvariance(*I, NCM, Loc); | 
|  | } | 
|  | return LocB; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct LocationAsBlock { | 
|  | LocationAsBlock(const NodeToValueMap &L) : Map(L) {} | 
|  |  | 
|  | const NodeToValueMap ⤅ | 
|  | }; | 
|  |  | 
|  | raw_ostream &operator<< (raw_ostream &OS, | 
|  | const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ; | 
|  | raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) { | 
|  | for (NodeToValueMap::const_iterator I = Loc.Map.begin(), E = Loc.Map.end(); | 
|  | I != E; ++I) { | 
|  | OS << I->first << " -> "; | 
|  | BasicBlock *B = cast<BasicBlock>(I->second); | 
|  | OS << B->getName() << '(' << B << ')'; | 
|  | OS << '\n'; | 
|  | } | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | inline bool is_constant(GepNode *N) { | 
|  | return isa<ConstantInt>(N->Idx); | 
|  | } | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U, | 
|  | NodeToValueMap &Loc) { | 
|  | User *R = U->getUser(); | 
|  | LLVM_DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: " << *R | 
|  | << '\n'); | 
|  | BasicBlock *PB = cast<Instruction>(R)->getParent(); | 
|  |  | 
|  | GepNode *N = Node; | 
|  | GepNode *C = nullptr, *NewNode = nullptr; | 
|  | while (is_constant(N) && !(N->Flags & GepNode::Root)) { | 
|  | // XXX if (single-use) dont-replicate; | 
|  | GepNode *NewN = new (*Mem) GepNode(N); | 
|  | Nodes.push_back(NewN); | 
|  | Loc[NewN] = PB; | 
|  |  | 
|  | if (N == Node) | 
|  | NewNode = NewN; | 
|  | NewN->Flags &= ~GepNode::Used; | 
|  | if (C) | 
|  | C->Parent = NewN; | 
|  | C = NewN; | 
|  | N = N->Parent; | 
|  | } | 
|  | if (!NewNode) | 
|  | return; | 
|  |  | 
|  | // Move over all uses that share the same user as U from Node to NewNode. | 
|  | NodeToUsesMap::iterator UF = Uses.find(Node); | 
|  | assert(UF != Uses.end()); | 
|  | UseSet &Us = UF->second; | 
|  | UseSet NewUs; | 
|  | for (Use *U : Us) { | 
|  | if (U->getUser() == R) | 
|  | NewUs.insert(U); | 
|  | } | 
|  | for (Use *U : NewUs) | 
|  | Us.remove(U); // erase takes an iterator. | 
|  |  | 
|  | if (Us.empty()) { | 
|  | Node->Flags &= ~GepNode::Used; | 
|  | Uses.erase(UF); | 
|  | } | 
|  |  | 
|  | // Should at least have U in NewUs. | 
|  | NewNode->Flags |= GepNode::Used; | 
|  | LLVM_DEBUG(dbgs() << "new node: " << NewNode << "  " << *NewNode << '\n'); | 
|  | assert(!NewUs.empty()); | 
|  | Uses[NewNode] = NewUs; | 
|  | } | 
|  |  | 
|  | void HexagonCommonGEP::separateConstantChains(GepNode *Node, | 
|  | NodeChildrenMap &NCM, NodeToValueMap &Loc) { | 
|  | // First approximation: extract all chains. | 
|  | NodeSet Ns; | 
|  | nodes_for_root(Node, NCM, Ns); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n'); | 
|  | // Collect all used nodes together with the uses from loads and stores, | 
|  | // where the GEP node could be folded into the load/store instruction. | 
|  | NodeToUsesMap FNs; // Foldable nodes. | 
|  | for (NodeSet::iterator I = Ns.begin(), E = Ns.end(); I != E; ++I) { | 
|  | GepNode *N = *I; | 
|  | if (!(N->Flags & GepNode::Used)) | 
|  | continue; | 
|  | NodeToUsesMap::iterator UF = Uses.find(N); | 
|  | assert(UF != Uses.end()); | 
|  | UseSet &Us = UF->second; | 
|  | // Loads/stores that use the node N. | 
|  | UseSet LSs; | 
|  | for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) { | 
|  | Use *U = *J; | 
|  | User *R = U->getUser(); | 
|  | // We're interested in uses that provide the address. It can happen | 
|  | // that the value may also be provided via GEP, but we won't handle | 
|  | // those cases here for now. | 
|  | if (LoadInst *Ld = dyn_cast<LoadInst>(R)) { | 
|  | unsigned PtrX = LoadInst::getPointerOperandIndex(); | 
|  | if (&Ld->getOperandUse(PtrX) == U) | 
|  | LSs.insert(U); | 
|  | } else if (StoreInst *St = dyn_cast<StoreInst>(R)) { | 
|  | unsigned PtrX = StoreInst::getPointerOperandIndex(); | 
|  | if (&St->getOperandUse(PtrX) == U) | 
|  | LSs.insert(U); | 
|  | } | 
|  | } | 
|  | // Even if the total use count is 1, separating the chain may still be | 
|  | // beneficial, since the constant chain may be longer than the GEP alone | 
|  | // would be (e.g. if the parent node has a constant index and also has | 
|  | // other children). | 
|  | if (!LSs.empty()) | 
|  | FNs.insert(std::make_pair(N, LSs)); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs); | 
|  |  | 
|  | for (NodeToUsesMap::iterator I = FNs.begin(), E = FNs.end(); I != E; ++I) { | 
|  | GepNode *N = I->first; | 
|  | UseSet &Us = I->second; | 
|  | for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) | 
|  | separateChainForNode(N, *J, Loc); | 
|  | } | 
|  | } | 
|  |  | 
|  | void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) { | 
|  | // Compute the inverse of the Node.Parent links. Also, collect the set | 
|  | // of root nodes. | 
|  | NodeChildrenMap NCM; | 
|  | NodeVect Roots; | 
|  | invert_find_roots(Nodes, NCM, Roots); | 
|  |  | 
|  | // Compute the initial placement determined by the users' locations, and | 
|  | // the locations of the child nodes. | 
|  | for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I) | 
|  | recalculatePlacementRec(*I, NCM, Loc); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc)); | 
|  |  | 
|  | if (OptEnableInv) { | 
|  | for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I) | 
|  | adjustForInvariance(*I, NCM, Loc); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Node placement after adjustment for invariance:\n" | 
|  | << LocationAsBlock(Loc)); | 
|  | } | 
|  | if (OptEnableConst) { | 
|  | for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I) | 
|  | separateConstantChains(*I, NCM, Loc); | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "Node use information:\n" << Uses); | 
|  |  | 
|  | // At the moment, there is no further refinement of the initial placement. | 
|  | // Such a refinement could include splitting the nodes if they are placed | 
|  | // too far from some of its users. | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc)); | 
|  | } | 
|  |  | 
|  | Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At, | 
|  | BasicBlock *LocB) { | 
|  | LLVM_DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName() | 
|  | << " for nodes:\n" | 
|  | << NA); | 
|  | unsigned Num = NA.size(); | 
|  | GepNode *RN = NA[0]; | 
|  | assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root"); | 
|  |  | 
|  | GetElementPtrInst *NewInst = nullptr; | 
|  | Value *Input = RN->BaseVal; | 
|  | Value **IdxList = new Value*[Num+1]; | 
|  | unsigned nax = 0; | 
|  | do { | 
|  | unsigned IdxC = 0; | 
|  | // If the type of the input of the first node is not a pointer, | 
|  | // we need to add an artificial i32 0 to the indices (because the | 
|  | // actual input in the IR will be a pointer). | 
|  | if (!NA[nax]->PTy->isPointerTy()) { | 
|  | Type *Int32Ty = Type::getInt32Ty(*Ctx); | 
|  | IdxList[IdxC++] = ConstantInt::get(Int32Ty, 0); | 
|  | } | 
|  |  | 
|  | // Keep adding indices from NA until we have to stop and generate | 
|  | // an "intermediate" GEP. | 
|  | while (++nax <= Num) { | 
|  | GepNode *N = NA[nax-1]; | 
|  | IdxList[IdxC++] = N->Idx; | 
|  | if (nax < Num) { | 
|  | // We have to stop, if the expected type of the output of this node | 
|  | // is not the same as the input type of the next node. | 
|  | Type *NextTy = next_type(N->PTy, N->Idx); | 
|  | if (NextTy != NA[nax]->PTy) | 
|  | break; | 
|  | } | 
|  | } | 
|  | ArrayRef<Value*> A(IdxList, IdxC); | 
|  | Type *InpTy = Input->getType(); | 
|  | Type *ElTy = cast<PointerType>(InpTy->getScalarType())->getElementType(); | 
|  | NewInst = GetElementPtrInst::Create(ElTy, Input, A, "cgep", &*At); | 
|  | NewInst->setIsInBounds(RN->Flags & GepNode::InBounds); | 
|  | LLVM_DEBUG(dbgs() << "new GEP: " << *NewInst << '\n'); | 
|  | Input = NewInst; | 
|  | } while (nax <= Num); | 
|  |  | 
|  | delete[] IdxList; | 
|  | return NewInst; | 
|  | } | 
|  |  | 
|  | void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values, | 
|  | NodeChildrenMap &NCM) { | 
|  | NodeVect Work; | 
|  | Work.push_back(Node); | 
|  |  | 
|  | while (!Work.empty()) { | 
|  | NodeVect::iterator First = Work.begin(); | 
|  | GepNode *N = *First; | 
|  | Work.erase(First); | 
|  | if (N->Flags & GepNode::Used) { | 
|  | NodeToUsesMap::iterator UF = Uses.find(N); | 
|  | assert(UF != Uses.end() && "No use information for used node"); | 
|  | UseSet &Us = UF->second; | 
|  | for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) | 
|  | Values.push_back((*I)->getUser()); | 
|  | } | 
|  | NodeChildrenMap::iterator CF = NCM.find(N); | 
|  | if (CF != NCM.end()) { | 
|  | NodeVect &Cs = CF->second; | 
|  | Work.insert(Work.end(), Cs.begin(), Cs.end()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void HexagonCommonGEP::materialize(NodeToValueMap &Loc) { | 
|  | LLVM_DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n'); | 
|  | NodeChildrenMap NCM; | 
|  | NodeVect Roots; | 
|  | // Compute the inversion again, since computing placement could alter | 
|  | // "parent" relation between nodes. | 
|  | invert_find_roots(Nodes, NCM, Roots); | 
|  |  | 
|  | while (!Roots.empty()) { | 
|  | NodeVect::iterator First = Roots.begin(); | 
|  | GepNode *Root = *First, *Last = *First; | 
|  | Roots.erase(First); | 
|  |  | 
|  | NodeVect NA;  // Nodes to assemble. | 
|  | // Append to NA all child nodes up to (and including) the first child | 
|  | // that: | 
|  | // (1) has more than 1 child, or | 
|  | // (2) is used, or | 
|  | // (3) has a child located in a different block. | 
|  | bool LastUsed = false; | 
|  | unsigned LastCN = 0; | 
|  | // The location may be null if the computation failed (it can legitimately | 
|  | // happen for nodes created from dead GEPs). | 
|  | Value *LocV = Loc[Last]; | 
|  | if (!LocV) | 
|  | continue; | 
|  | BasicBlock *LastB = cast<BasicBlock>(LocV); | 
|  | do { | 
|  | NA.push_back(Last); | 
|  | LastUsed = (Last->Flags & GepNode::Used); | 
|  | if (LastUsed) | 
|  | break; | 
|  | NodeChildrenMap::iterator CF = NCM.find(Last); | 
|  | LastCN = (CF != NCM.end()) ? CF->second.size() : 0; | 
|  | if (LastCN != 1) | 
|  | break; | 
|  | GepNode *Child = CF->second.front(); | 
|  | BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]); | 
|  | if (ChildB != nullptr && LastB != ChildB) | 
|  | break; | 
|  | Last = Child; | 
|  | } while (true); | 
|  |  | 
|  | BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator(); | 
|  | if (LastUsed || LastCN > 0) { | 
|  | ValueVect Urs; | 
|  | getAllUsersForNode(Root, Urs, NCM); | 
|  | BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB); | 
|  | if (FirstUse != LastB->end()) | 
|  | InsertAt = FirstUse; | 
|  | } | 
|  |  | 
|  | // Generate a new instruction for NA. | 
|  | Value *NewInst = fabricateGEP(NA, InsertAt, LastB); | 
|  |  | 
|  | // Convert all the children of Last node into roots, and append them | 
|  | // to the Roots list. | 
|  | if (LastCN > 0) { | 
|  | NodeVect &Cs = NCM[Last]; | 
|  | for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) { | 
|  | GepNode *CN = *I; | 
|  | CN->Flags &= ~GepNode::Internal; | 
|  | CN->Flags |= GepNode::Root; | 
|  | CN->BaseVal = NewInst; | 
|  | Roots.push_back(CN); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Lastly, if the Last node was used, replace all uses with the new GEP. | 
|  | // The uses reference the original GEP values. | 
|  | if (LastUsed) { | 
|  | NodeToUsesMap::iterator UF = Uses.find(Last); | 
|  | assert(UF != Uses.end() && "No use information found"); | 
|  | UseSet &Us = UF->second; | 
|  | for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) { | 
|  | Use *U = *I; | 
|  | U->set(NewInst); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void HexagonCommonGEP::removeDeadCode() { | 
|  | ValueVect BO; | 
|  | BO.push_back(&Fn->front()); | 
|  |  | 
|  | for (unsigned i = 0; i < BO.size(); ++i) { | 
|  | BasicBlock *B = cast<BasicBlock>(BO[i]); | 
|  | for (auto DTN : children<DomTreeNode*>(DT->getNode(B))) | 
|  | BO.push_back(DTN->getBlock()); | 
|  | } | 
|  |  | 
|  | for (unsigned i = BO.size(); i > 0; --i) { | 
|  | BasicBlock *B = cast<BasicBlock>(BO[i-1]); | 
|  | BasicBlock::InstListType &IL = B->getInstList(); | 
|  |  | 
|  | using reverse_iterator = BasicBlock::InstListType::reverse_iterator; | 
|  |  | 
|  | ValueVect Ins; | 
|  | for (reverse_iterator I = IL.rbegin(), E = IL.rend(); I != E; ++I) | 
|  | Ins.push_back(&*I); | 
|  | for (ValueVect::iterator I = Ins.begin(), E = Ins.end(); I != E; ++I) { | 
|  | Instruction *In = cast<Instruction>(*I); | 
|  | if (isInstructionTriviallyDead(In)) | 
|  | In->eraseFromParent(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HexagonCommonGEP::runOnFunction(Function &F) { | 
|  | if (skipFunction(F)) | 
|  | return false; | 
|  |  | 
|  | // For now bail out on C++ exception handling. | 
|  | for (Function::iterator A = F.begin(), Z = F.end(); A != Z; ++A) | 
|  | for (BasicBlock::iterator I = A->begin(), E = A->end(); I != E; ++I) | 
|  | if (isa<InvokeInst>(I) || isa<LandingPadInst>(I)) | 
|  | return false; | 
|  |  | 
|  | Fn = &F; | 
|  | DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  | PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); | 
|  | LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | 
|  | Ctx = &F.getContext(); | 
|  |  | 
|  | Nodes.clear(); | 
|  | Uses.clear(); | 
|  | NodeOrder.clear(); | 
|  |  | 
|  | SpecificBumpPtrAllocator<GepNode> Allocator; | 
|  | Mem = &Allocator; | 
|  |  | 
|  | collect(); | 
|  | common(); | 
|  |  | 
|  | NodeToValueMap Loc; | 
|  | computeNodePlacement(Loc); | 
|  | materialize(Loc); | 
|  | removeDeadCode(); | 
|  |  | 
|  | #ifdef EXPENSIVE_CHECKS | 
|  | // Run this only when expensive checks are enabled. | 
|  | verifyFunction(F); | 
|  | #endif | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | FunctionPass *createHexagonCommonGEP() { | 
|  | return new HexagonCommonGEP(); | 
|  | } | 
|  |  | 
|  | } // end namespace llvm |