|  | //===- HexagonConstExtenders.cpp ------------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "HexagonInstrInfo.h" | 
|  | #include "HexagonRegisterInfo.h" | 
|  | #include "HexagonSubtarget.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/Register.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <map> | 
|  | #include <set> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #define DEBUG_TYPE "hexagon-cext-opt" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<unsigned> CountThreshold("hexagon-cext-threshold", | 
|  | cl::init(3), cl::Hidden, cl::ZeroOrMore, | 
|  | cl::desc("Minimum number of extenders to trigger replacement")); | 
|  |  | 
|  | static cl::opt<unsigned> ReplaceLimit("hexagon-cext-limit", cl::init(0), | 
|  | cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum number of replacements")); | 
|  |  | 
|  | namespace llvm { | 
|  | void initializeHexagonConstExtendersPass(PassRegistry&); | 
|  | FunctionPass *createHexagonConstExtenders(); | 
|  | } | 
|  |  | 
|  | static int32_t adjustUp(int32_t V, uint8_t A, uint8_t O) { | 
|  | assert(isPowerOf2_32(A)); | 
|  | int32_t U = (V & -A) + O; | 
|  | return U >= V ? U : U+A; | 
|  | } | 
|  |  | 
|  | static int32_t adjustDown(int32_t V, uint8_t A, uint8_t O) { | 
|  | assert(isPowerOf2_32(A)); | 
|  | int32_t U = (V & -A) + O; | 
|  | return U <= V ? U : U-A; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct OffsetRange { | 
|  | // The range of values between Min and Max that are of form Align*N+Offset, | 
|  | // for some integer N. Min and Max are required to be of that form as well, | 
|  | // except in the case of an empty range. | 
|  | int32_t Min = INT_MIN, Max = INT_MAX; | 
|  | uint8_t Align = 1; | 
|  | uint8_t Offset = 0; | 
|  |  | 
|  | OffsetRange() = default; | 
|  | OffsetRange(int32_t L, int32_t H, uint8_t A, uint8_t O = 0) | 
|  | : Min(L), Max(H), Align(A), Offset(O) {} | 
|  | OffsetRange &intersect(OffsetRange A) { | 
|  | if (Align < A.Align) | 
|  | std::swap(*this, A); | 
|  |  | 
|  | // Align >= A.Align. | 
|  | if (Offset >= A.Offset && (Offset - A.Offset) % A.Align == 0) { | 
|  | Min = adjustUp(std::max(Min, A.Min), Align, Offset); | 
|  | Max = adjustDown(std::min(Max, A.Max), Align, Offset); | 
|  | } else { | 
|  | // Make an empty range. | 
|  | Min = 0; | 
|  | Max = -1; | 
|  | } | 
|  | // Canonicalize empty ranges. | 
|  | if (Min > Max) | 
|  | std::tie(Min, Max, Align) = std::make_tuple(0, -1, 1); | 
|  | return *this; | 
|  | } | 
|  | OffsetRange &shift(int32_t S) { | 
|  | Min += S; | 
|  | Max += S; | 
|  | Offset = (Offset+S) % Align; | 
|  | return *this; | 
|  | } | 
|  | OffsetRange &extendBy(int32_t D) { | 
|  | // If D < 0, extend Min, otherwise extend Max. | 
|  | assert(D % Align == 0); | 
|  | if (D < 0) | 
|  | Min = (INT_MIN-D < Min) ? Min+D : INT_MIN; | 
|  | else | 
|  | Max = (INT_MAX-D > Max) ? Max+D : INT_MAX; | 
|  | return *this; | 
|  | } | 
|  | bool empty() const { | 
|  | return Min > Max; | 
|  | } | 
|  | bool contains(int32_t V) const { | 
|  | return Min <= V && V <= Max && (V-Offset) % Align == 0; | 
|  | } | 
|  | bool operator==(const OffsetRange &R) const { | 
|  | return Min == R.Min && Max == R.Max && Align == R.Align; | 
|  | } | 
|  | bool operator!=(const OffsetRange &R) const { | 
|  | return !operator==(R); | 
|  | } | 
|  | bool operator<(const OffsetRange &R) const { | 
|  | if (Min != R.Min) | 
|  | return Min < R.Min; | 
|  | if (Max != R.Max) | 
|  | return Max < R.Max; | 
|  | return Align < R.Align; | 
|  | } | 
|  | static OffsetRange zero() { return {0, 0, 1}; } | 
|  | }; | 
|  |  | 
|  | struct RangeTree { | 
|  | struct Node { | 
|  | Node(const OffsetRange &R) : MaxEnd(R.Max), Range(R) {} | 
|  | unsigned Height = 1; | 
|  | unsigned Count = 1; | 
|  | int32_t MaxEnd; | 
|  | const OffsetRange &Range; | 
|  | Node *Left = nullptr, *Right = nullptr; | 
|  | }; | 
|  |  | 
|  | Node *Root = nullptr; | 
|  |  | 
|  | void add(const OffsetRange &R) { | 
|  | Root = add(Root, R); | 
|  | } | 
|  | void erase(const Node *N) { | 
|  | Root = remove(Root, N); | 
|  | delete N; | 
|  | } | 
|  | void order(SmallVectorImpl<Node*> &Seq) const { | 
|  | order(Root, Seq); | 
|  | } | 
|  | SmallVector<Node*,8> nodesWith(int32_t P, bool CheckAlign = true) { | 
|  | SmallVector<Node*,8> Nodes; | 
|  | nodesWith(Root, P, CheckAlign, Nodes); | 
|  | return Nodes; | 
|  | } | 
|  | void dump() const; | 
|  | ~RangeTree() { | 
|  | SmallVector<Node*,8> Nodes; | 
|  | order(Nodes); | 
|  | for (Node *N : Nodes) | 
|  | delete N; | 
|  | } | 
|  |  | 
|  | private: | 
|  | void dump(const Node *N) const; | 
|  | void order(Node *N, SmallVectorImpl<Node*> &Seq) const; | 
|  | void nodesWith(Node *N, int32_t P, bool CheckA, | 
|  | SmallVectorImpl<Node*> &Seq) const; | 
|  |  | 
|  | Node *add(Node *N, const OffsetRange &R); | 
|  | Node *remove(Node *N, const Node *D); | 
|  | Node *rotateLeft(Node *Lower, Node *Higher); | 
|  | Node *rotateRight(Node *Lower, Node *Higher); | 
|  | unsigned height(Node *N) { | 
|  | return N != nullptr ? N->Height : 0; | 
|  | } | 
|  | Node *update(Node *N) { | 
|  | assert(N != nullptr); | 
|  | N->Height = 1 + std::max(height(N->Left), height(N->Right)); | 
|  | if (N->Left) | 
|  | N->MaxEnd = std::max(N->MaxEnd, N->Left->MaxEnd); | 
|  | if (N->Right) | 
|  | N->MaxEnd = std::max(N->MaxEnd, N->Right->MaxEnd); | 
|  | return N; | 
|  | } | 
|  | Node *rebalance(Node *N) { | 
|  | assert(N != nullptr); | 
|  | int32_t Balance = height(N->Right) - height(N->Left); | 
|  | if (Balance < -1) | 
|  | return rotateRight(N->Left, N); | 
|  | if (Balance > 1) | 
|  | return rotateLeft(N->Right, N); | 
|  | return N; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct Loc { | 
|  | MachineBasicBlock *Block = nullptr; | 
|  | MachineBasicBlock::iterator At; | 
|  |  | 
|  | Loc(MachineBasicBlock *B, MachineBasicBlock::iterator It) | 
|  | : Block(B), At(It) { | 
|  | if (B->end() == It) { | 
|  | Pos = -1; | 
|  | } else { | 
|  | assert(It->getParent() == B); | 
|  | Pos = std::distance(B->begin(), It); | 
|  | } | 
|  | } | 
|  | bool operator<(Loc A) const { | 
|  | if (Block != A.Block) | 
|  | return Block->getNumber() < A.Block->getNumber(); | 
|  | if (A.Pos == -1) | 
|  | return Pos != A.Pos; | 
|  | return Pos != -1 && Pos < A.Pos; | 
|  | } | 
|  | private: | 
|  | int Pos = 0; | 
|  | }; | 
|  |  | 
|  | struct HexagonConstExtenders : public MachineFunctionPass { | 
|  | static char ID; | 
|  | HexagonConstExtenders() : MachineFunctionPass(ID) {} | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<MachineDominatorTree>(); | 
|  | AU.addPreserved<MachineDominatorTree>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | StringRef getPassName() const override { | 
|  | return "Hexagon constant-extender optimization"; | 
|  | } | 
|  | bool runOnMachineFunction(MachineFunction &MF) override; | 
|  |  | 
|  | private: | 
|  | struct Register { | 
|  | Register() = default; | 
|  | Register(unsigned R, unsigned S) : Reg(R), Sub(S) {} | 
|  | Register(const MachineOperand &Op) | 
|  | : Reg(Op.getReg()), Sub(Op.getSubReg()) {} | 
|  | Register &operator=(const MachineOperand &Op) { | 
|  | if (Op.isReg()) { | 
|  | Reg = Op.getReg(); | 
|  | Sub = Op.getSubReg(); | 
|  | } else if (Op.isFI()) { | 
|  | Reg = llvm::Register::index2StackSlot(Op.getIndex()); | 
|  | } | 
|  | return *this; | 
|  | } | 
|  | bool isVReg() const { | 
|  | return Reg != 0 && !llvm::Register::isStackSlot(Reg) && | 
|  | llvm::Register::isVirtualRegister(Reg); | 
|  | } | 
|  | bool isSlot() const { | 
|  | return Reg != 0 && llvm::Register::isStackSlot(Reg); | 
|  | } | 
|  | operator MachineOperand() const { | 
|  | if (isVReg()) | 
|  | return MachineOperand::CreateReg(Reg, /*Def*/false, /*Imp*/false, | 
|  | /*Kill*/false, /*Dead*/false, /*Undef*/false, | 
|  | /*EarlyClobber*/false, Sub); | 
|  | if (llvm::Register::isStackSlot(Reg)) { | 
|  | int FI = llvm::Register::stackSlot2Index(Reg); | 
|  | return MachineOperand::CreateFI(FI); | 
|  | } | 
|  | llvm_unreachable("Cannot create MachineOperand"); | 
|  | } | 
|  | bool operator==(Register R) const { return Reg == R.Reg && Sub == R.Sub; } | 
|  | bool operator!=(Register R) const { return !operator==(R); } | 
|  | bool operator<(Register R) const { | 
|  | // For std::map. | 
|  | return Reg < R.Reg || (Reg == R.Reg && Sub < R.Sub); | 
|  | } | 
|  | unsigned Reg = 0, Sub = 0; | 
|  | }; | 
|  |  | 
|  | struct ExtExpr { | 
|  | // A subexpression in which the extender is used. In general, this | 
|  | // represents an expression where adding D to the extender will be | 
|  | // equivalent to adding D to the expression as a whole. In other | 
|  | // words, expr(add(##V,D) = add(expr(##V),D). | 
|  |  | 
|  | // The original motivation for this are the io/ur addressing modes, | 
|  | // where the offset is extended. Consider the io example: | 
|  | // In memw(Rs+##V), the ##V could be replaced by a register Rt to | 
|  | // form the rr mode: memw(Rt+Rs<<0). In such case, however, the | 
|  | // register Rt must have exactly the value of ##V. If there was | 
|  | // another instruction memw(Rs+##V+4), it would need a different Rt. | 
|  | // Now, if Rt was initialized as "##V+Rs<<0", both of these | 
|  | // instructions could use the same Rt, just with different offsets. | 
|  | // Here it's clear that "initializer+4" should be the same as if | 
|  | // the offset 4 was added to the ##V in the initializer. | 
|  |  | 
|  | // The only kinds of expressions that support the requirement of | 
|  | // commuting with addition are addition and subtraction from ##V. | 
|  | // Include shifting the Rs to account for the ur addressing mode: | 
|  | //   ##Val + Rs << S | 
|  | //   ##Val - Rs | 
|  | Register Rs; | 
|  | unsigned S = 0; | 
|  | bool Neg = false; | 
|  |  | 
|  | ExtExpr() = default; | 
|  | ExtExpr(Register RS, bool NG, unsigned SH) : Rs(RS), S(SH), Neg(NG) {} | 
|  | // Expression is trivial if it does not modify the extender. | 
|  | bool trivial() const { | 
|  | return Rs.Reg == 0; | 
|  | } | 
|  | bool operator==(const ExtExpr &Ex) const { | 
|  | return Rs == Ex.Rs && S == Ex.S && Neg == Ex.Neg; | 
|  | } | 
|  | bool operator!=(const ExtExpr &Ex) const { | 
|  | return !operator==(Ex); | 
|  | } | 
|  | bool operator<(const ExtExpr &Ex) const { | 
|  | if (Rs != Ex.Rs) | 
|  | return Rs < Ex.Rs; | 
|  | if (S != Ex.S) | 
|  | return S < Ex.S; | 
|  | return !Neg && Ex.Neg; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct ExtDesc { | 
|  | MachineInstr *UseMI = nullptr; | 
|  | unsigned OpNum = -1u; | 
|  | // The subexpression in which the extender is used (e.g. address | 
|  | // computation). | 
|  | ExtExpr Expr; | 
|  | // Optional register that is assigned the value of Expr. | 
|  | Register Rd; | 
|  | // Def means that the output of the instruction may differ from the | 
|  | // original by a constant c, and that the difference can be corrected | 
|  | // by adding/subtracting c in all users of the defined register. | 
|  | bool IsDef = false; | 
|  |  | 
|  | MachineOperand &getOp() { | 
|  | return UseMI->getOperand(OpNum); | 
|  | } | 
|  | const MachineOperand &getOp() const { | 
|  | return UseMI->getOperand(OpNum); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct ExtRoot { | 
|  | union { | 
|  | const ConstantFP *CFP;  // MO_FPImmediate | 
|  | const char *SymbolName; // MO_ExternalSymbol | 
|  | const GlobalValue *GV;  // MO_GlobalAddress | 
|  | const BlockAddress *BA; // MO_BlockAddress | 
|  | int64_t ImmVal;         // MO_Immediate, MO_TargetIndex, | 
|  | // and MO_ConstantPoolIndex | 
|  | } V; | 
|  | unsigned Kind;            // Same as in MachineOperand. | 
|  | unsigned char TF;         // TargetFlags. | 
|  |  | 
|  | ExtRoot(const MachineOperand &Op); | 
|  | bool operator==(const ExtRoot &ER) const { | 
|  | return Kind == ER.Kind && V.ImmVal == ER.V.ImmVal; | 
|  | } | 
|  | bool operator!=(const ExtRoot &ER) const { | 
|  | return !operator==(ER); | 
|  | } | 
|  | bool operator<(const ExtRoot &ER) const; | 
|  | }; | 
|  |  | 
|  | struct ExtValue : public ExtRoot { | 
|  | int32_t Offset; | 
|  |  | 
|  | ExtValue(const MachineOperand &Op); | 
|  | ExtValue(const ExtDesc &ED) : ExtValue(ED.getOp()) {} | 
|  | ExtValue(const ExtRoot &ER, int32_t Off) : ExtRoot(ER), Offset(Off) {} | 
|  | bool operator<(const ExtValue &EV) const; | 
|  | bool operator==(const ExtValue &EV) const { | 
|  | return ExtRoot(*this) == ExtRoot(EV) && Offset == EV.Offset; | 
|  | } | 
|  | bool operator!=(const ExtValue &EV) const { | 
|  | return !operator==(EV); | 
|  | } | 
|  | explicit operator MachineOperand() const; | 
|  | }; | 
|  |  | 
|  | using IndexList = SetVector<unsigned>; | 
|  | using ExtenderInit = std::pair<ExtValue, ExtExpr>; | 
|  | using AssignmentMap = std::map<ExtenderInit, IndexList>; | 
|  | using LocDefList = std::vector<std::pair<Loc, IndexList>>; | 
|  |  | 
|  | const HexagonInstrInfo *HII = nullptr; | 
|  | const HexagonRegisterInfo *HRI = nullptr; | 
|  | MachineDominatorTree *MDT = nullptr; | 
|  | MachineRegisterInfo *MRI = nullptr; | 
|  | std::vector<ExtDesc> Extenders; | 
|  | std::vector<unsigned> NewRegs; | 
|  |  | 
|  | bool isStoreImmediate(unsigned Opc) const; | 
|  | bool isRegOffOpcode(unsigned ExtOpc) const ; | 
|  | unsigned getRegOffOpcode(unsigned ExtOpc) const; | 
|  | unsigned getDirectRegReplacement(unsigned ExtOpc) const; | 
|  | OffsetRange getOffsetRange(Register R, const MachineInstr &MI) const; | 
|  | OffsetRange getOffsetRange(const ExtDesc &ED) const; | 
|  | OffsetRange getOffsetRange(Register Rd) const; | 
|  |  | 
|  | void recordExtender(MachineInstr &MI, unsigned OpNum); | 
|  | void collectInstr(MachineInstr &MI); | 
|  | void collect(MachineFunction &MF); | 
|  | void assignInits(const ExtRoot &ER, unsigned Begin, unsigned End, | 
|  | AssignmentMap &IMap); | 
|  | void calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs, | 
|  | LocDefList &Defs); | 
|  | Register insertInitializer(Loc DefL, const ExtenderInit &ExtI); | 
|  | bool replaceInstrExact(const ExtDesc &ED, Register ExtR); | 
|  | bool replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI, | 
|  | Register ExtR, int32_t &Diff); | 
|  | bool replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI); | 
|  | bool replaceExtenders(const AssignmentMap &IMap); | 
|  |  | 
|  | unsigned getOperandIndex(const MachineInstr &MI, | 
|  | const MachineOperand &Op) const; | 
|  | const MachineOperand &getPredicateOp(const MachineInstr &MI) const; | 
|  | const MachineOperand &getLoadResultOp(const MachineInstr &MI) const; | 
|  | const MachineOperand &getStoredValueOp(const MachineInstr &MI) const; | 
|  |  | 
|  | friend struct PrintRegister; | 
|  | friend struct PrintExpr; | 
|  | friend struct PrintInit; | 
|  | friend struct PrintIMap; | 
|  | friend raw_ostream &operator<< (raw_ostream &OS, | 
|  | const struct PrintRegister &P); | 
|  | friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintExpr &P); | 
|  | friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintInit &P); | 
|  | friend raw_ostream &operator<< (raw_ostream &OS, const ExtDesc &ED); | 
|  | friend raw_ostream &operator<< (raw_ostream &OS, const ExtRoot &ER); | 
|  | friend raw_ostream &operator<< (raw_ostream &OS, const ExtValue &EV); | 
|  | friend raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR); | 
|  | friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintIMap &P); | 
|  | }; | 
|  |  | 
|  | using HCE = HexagonConstExtenders; | 
|  |  | 
|  | LLVM_ATTRIBUTE_UNUSED | 
|  | raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR) { | 
|  | if (OR.Min > OR.Max) | 
|  | OS << '!'; | 
|  | OS << '[' << OR.Min << ',' << OR.Max << "]a" << unsigned(OR.Align) | 
|  | << '+' << unsigned(OR.Offset); | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | struct PrintRegister { | 
|  | PrintRegister(HCE::Register R, const HexagonRegisterInfo &I) | 
|  | : Rs(R), HRI(I) {} | 
|  | HCE::Register Rs; | 
|  | const HexagonRegisterInfo &HRI; | 
|  | }; | 
|  |  | 
|  | LLVM_ATTRIBUTE_UNUSED | 
|  | raw_ostream &operator<< (raw_ostream &OS, const PrintRegister &P) { | 
|  | if (P.Rs.Reg != 0) | 
|  | OS << printReg(P.Rs.Reg, &P.HRI, P.Rs.Sub); | 
|  | else | 
|  | OS << "noreg"; | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | struct PrintExpr { | 
|  | PrintExpr(const HCE::ExtExpr &E, const HexagonRegisterInfo &I) | 
|  | : Ex(E), HRI(I) {} | 
|  | const HCE::ExtExpr &Ex; | 
|  | const HexagonRegisterInfo &HRI; | 
|  | }; | 
|  |  | 
|  | LLVM_ATTRIBUTE_UNUSED | 
|  | raw_ostream &operator<< (raw_ostream &OS, const PrintExpr &P) { | 
|  | OS << "## " << (P.Ex.Neg ? "- " : "+ "); | 
|  | if (P.Ex.Rs.Reg != 0) | 
|  | OS << printReg(P.Ex.Rs.Reg, &P.HRI, P.Ex.Rs.Sub); | 
|  | else | 
|  | OS << "__"; | 
|  | OS << " << " << P.Ex.S; | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | struct PrintInit { | 
|  | PrintInit(const HCE::ExtenderInit &EI, const HexagonRegisterInfo &I) | 
|  | : ExtI(EI), HRI(I) {} | 
|  | const HCE::ExtenderInit &ExtI; | 
|  | const HexagonRegisterInfo &HRI; | 
|  | }; | 
|  |  | 
|  | LLVM_ATTRIBUTE_UNUSED | 
|  | raw_ostream &operator<< (raw_ostream &OS, const PrintInit &P) { | 
|  | OS << '[' << P.ExtI.first << ", " | 
|  | << PrintExpr(P.ExtI.second, P.HRI) << ']'; | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | LLVM_ATTRIBUTE_UNUSED | 
|  | raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtDesc &ED) { | 
|  | assert(ED.OpNum != -1u); | 
|  | const MachineBasicBlock &MBB = *ED.getOp().getParent()->getParent(); | 
|  | const MachineFunction &MF = *MBB.getParent(); | 
|  | const auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
|  | OS << "bb#" << MBB.getNumber() << ": "; | 
|  | if (ED.Rd.Reg != 0) | 
|  | OS << printReg(ED.Rd.Reg, &HRI, ED.Rd.Sub); | 
|  | else | 
|  | OS << "__"; | 
|  | OS << " = " << PrintExpr(ED.Expr, HRI); | 
|  | if (ED.IsDef) | 
|  | OS << ", def"; | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | LLVM_ATTRIBUTE_UNUSED | 
|  | raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtRoot &ER) { | 
|  | switch (ER.Kind) { | 
|  | case MachineOperand::MO_Immediate: | 
|  | OS << "imm:" << ER.V.ImmVal; | 
|  | break; | 
|  | case MachineOperand::MO_FPImmediate: | 
|  | OS << "fpi:" << *ER.V.CFP; | 
|  | break; | 
|  | case MachineOperand::MO_ExternalSymbol: | 
|  | OS << "sym:" << *ER.V.SymbolName; | 
|  | break; | 
|  | case MachineOperand::MO_GlobalAddress: | 
|  | OS << "gad:" << ER.V.GV->getName(); | 
|  | break; | 
|  | case MachineOperand::MO_BlockAddress: | 
|  | OS << "blk:" << *ER.V.BA; | 
|  | break; | 
|  | case MachineOperand::MO_TargetIndex: | 
|  | OS << "tgi:" << ER.V.ImmVal; | 
|  | break; | 
|  | case MachineOperand::MO_ConstantPoolIndex: | 
|  | OS << "cpi:" << ER.V.ImmVal; | 
|  | break; | 
|  | case MachineOperand::MO_JumpTableIndex: | 
|  | OS << "jti:" << ER.V.ImmVal; | 
|  | break; | 
|  | default: | 
|  | OS << "???:" << ER.V.ImmVal; | 
|  | break; | 
|  | } | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | LLVM_ATTRIBUTE_UNUSED | 
|  | raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtValue &EV) { | 
|  | OS << HCE::ExtRoot(EV) << "  off:" << EV.Offset; | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | struct PrintIMap { | 
|  | PrintIMap(const HCE::AssignmentMap &M, const HexagonRegisterInfo &I) | 
|  | : IMap(M), HRI(I) {} | 
|  | const HCE::AssignmentMap &IMap; | 
|  | const HexagonRegisterInfo &HRI; | 
|  | }; | 
|  |  | 
|  | LLVM_ATTRIBUTE_UNUSED | 
|  | raw_ostream &operator<< (raw_ostream &OS, const PrintIMap &P) { | 
|  | OS << "{\n"; | 
|  | for (const std::pair<HCE::ExtenderInit,HCE::IndexList> &Q : P.IMap) { | 
|  | OS << "  " << PrintInit(Q.first, P.HRI) << " -> {"; | 
|  | for (unsigned I : Q.second) | 
|  | OS << ' ' << I; | 
|  | OS << " }\n"; | 
|  | } | 
|  | OS << "}\n"; | 
|  | return OS; | 
|  | } | 
|  | } | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(HexagonConstExtenders, "hexagon-cext-opt", | 
|  | "Hexagon constant-extender optimization", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) | 
|  | INITIALIZE_PASS_END(HexagonConstExtenders, "hexagon-cext-opt", | 
|  | "Hexagon constant-extender optimization", false, false) | 
|  |  | 
|  | static unsigned ReplaceCounter = 0; | 
|  |  | 
|  | char HCE::ID = 0; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | LLVM_DUMP_METHOD void RangeTree::dump() const { | 
|  | dbgs() << "Root: " << Root << '\n'; | 
|  | if (Root) | 
|  | dump(Root); | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD void RangeTree::dump(const Node *N) const { | 
|  | dbgs() << "Node: " << N << '\n'; | 
|  | dbgs() << "  Height: " << N->Height << '\n'; | 
|  | dbgs() << "  Count: " << N->Count << '\n'; | 
|  | dbgs() << "  MaxEnd: " << N->MaxEnd << '\n'; | 
|  | dbgs() << "  Range: " << N->Range << '\n'; | 
|  | dbgs() << "  Left: " << N->Left << '\n'; | 
|  | dbgs() << "  Right: " << N->Right << "\n\n"; | 
|  |  | 
|  | if (N->Left) | 
|  | dump(N->Left); | 
|  | if (N->Right) | 
|  | dump(N->Right); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void RangeTree::order(Node *N, SmallVectorImpl<Node*> &Seq) const { | 
|  | if (N == nullptr) | 
|  | return; | 
|  | order(N->Left, Seq); | 
|  | Seq.push_back(N); | 
|  | order(N->Right, Seq); | 
|  | } | 
|  |  | 
|  | void RangeTree::nodesWith(Node *N, int32_t P, bool CheckA, | 
|  | SmallVectorImpl<Node*> &Seq) const { | 
|  | if (N == nullptr || N->MaxEnd < P) | 
|  | return; | 
|  | nodesWith(N->Left, P, CheckA, Seq); | 
|  | if (N->Range.Min <= P) { | 
|  | if ((CheckA && N->Range.contains(P)) || (!CheckA && P <= N->Range.Max)) | 
|  | Seq.push_back(N); | 
|  | nodesWith(N->Right, P, CheckA, Seq); | 
|  | } | 
|  | } | 
|  |  | 
|  | RangeTree::Node *RangeTree::add(Node *N, const OffsetRange &R) { | 
|  | if (N == nullptr) | 
|  | return new Node(R); | 
|  |  | 
|  | if (N->Range == R) { | 
|  | N->Count++; | 
|  | return N; | 
|  | } | 
|  |  | 
|  | if (R < N->Range) | 
|  | N->Left = add(N->Left, R); | 
|  | else | 
|  | N->Right = add(N->Right, R); | 
|  | return rebalance(update(N)); | 
|  | } | 
|  |  | 
|  | RangeTree::Node *RangeTree::remove(Node *N, const Node *D) { | 
|  | assert(N != nullptr); | 
|  |  | 
|  | if (N != D) { | 
|  | assert(N->Range != D->Range && "N and D should not be equal"); | 
|  | if (D->Range < N->Range) | 
|  | N->Left = remove(N->Left, D); | 
|  | else | 
|  | N->Right = remove(N->Right, D); | 
|  | return rebalance(update(N)); | 
|  | } | 
|  |  | 
|  | // We got to the node we need to remove. If any of its children are | 
|  | // missing, simply replace it with the other child. | 
|  | if (N->Left == nullptr || N->Right == nullptr) | 
|  | return (N->Left == nullptr) ? N->Right : N->Left; | 
|  |  | 
|  | // Find the rightmost child of N->Left, remove it and plug it in place | 
|  | // of N. | 
|  | Node *M = N->Left; | 
|  | while (M->Right) | 
|  | M = M->Right; | 
|  | M->Left = remove(N->Left, M); | 
|  | M->Right = N->Right; | 
|  | return rebalance(update(M)); | 
|  | } | 
|  |  | 
|  | RangeTree::Node *RangeTree::rotateLeft(Node *Lower, Node *Higher) { | 
|  | assert(Higher->Right == Lower); | 
|  | // The Lower node is on the right from Higher. Make sure that Lower's | 
|  | // balance is greater to the right. Otherwise the rotation will create | 
|  | // an unbalanced tree again. | 
|  | if (height(Lower->Left) > height(Lower->Right)) | 
|  | Lower = rotateRight(Lower->Left, Lower); | 
|  | assert(height(Lower->Left) <= height(Lower->Right)); | 
|  | Higher->Right = Lower->Left; | 
|  | update(Higher); | 
|  | Lower->Left = Higher; | 
|  | update(Lower); | 
|  | return Lower; | 
|  | } | 
|  |  | 
|  | RangeTree::Node *RangeTree::rotateRight(Node *Lower, Node *Higher) { | 
|  | assert(Higher->Left == Lower); | 
|  | // The Lower node is on the left from Higher. Make sure that Lower's | 
|  | // balance is greater to the left. Otherwise the rotation will create | 
|  | // an unbalanced tree again. | 
|  | if (height(Lower->Left) < height(Lower->Right)) | 
|  | Lower = rotateLeft(Lower->Right, Lower); | 
|  | assert(height(Lower->Left) >= height(Lower->Right)); | 
|  | Higher->Left = Lower->Right; | 
|  | update(Higher); | 
|  | Lower->Right = Higher; | 
|  | update(Lower); | 
|  | return Lower; | 
|  | } | 
|  |  | 
|  |  | 
|  | HCE::ExtRoot::ExtRoot(const MachineOperand &Op) { | 
|  | // Always store ImmVal, since it's the field used for comparisons. | 
|  | V.ImmVal = 0; | 
|  | if (Op.isImm()) | 
|  | ; // Keep 0. Do not use Op.getImm() for value here (treat 0 as the root). | 
|  | else if (Op.isFPImm()) | 
|  | V.CFP = Op.getFPImm(); | 
|  | else if (Op.isSymbol()) | 
|  | V.SymbolName = Op.getSymbolName(); | 
|  | else if (Op.isGlobal()) | 
|  | V.GV = Op.getGlobal(); | 
|  | else if (Op.isBlockAddress()) | 
|  | V.BA = Op.getBlockAddress(); | 
|  | else if (Op.isCPI() || Op.isTargetIndex() || Op.isJTI()) | 
|  | V.ImmVal = Op.getIndex(); | 
|  | else | 
|  | llvm_unreachable("Unexpected operand type"); | 
|  |  | 
|  | Kind = Op.getType(); | 
|  | TF = Op.getTargetFlags(); | 
|  | } | 
|  |  | 
|  | bool HCE::ExtRoot::operator< (const HCE::ExtRoot &ER) const { | 
|  | if (Kind != ER.Kind) | 
|  | return Kind < ER.Kind; | 
|  | switch (Kind) { | 
|  | case MachineOperand::MO_Immediate: | 
|  | case MachineOperand::MO_TargetIndex: | 
|  | case MachineOperand::MO_ConstantPoolIndex: | 
|  | case MachineOperand::MO_JumpTableIndex: | 
|  | return V.ImmVal < ER.V.ImmVal; | 
|  | case MachineOperand::MO_FPImmediate: { | 
|  | const APFloat &ThisF = V.CFP->getValueAPF(); | 
|  | const APFloat &OtherF = ER.V.CFP->getValueAPF(); | 
|  | return ThisF.bitcastToAPInt().ult(OtherF.bitcastToAPInt()); | 
|  | } | 
|  | case MachineOperand::MO_ExternalSymbol: | 
|  | return StringRef(V.SymbolName) < StringRef(ER.V.SymbolName); | 
|  | case MachineOperand::MO_GlobalAddress: | 
|  | // Do not use GUIDs, since they depend on the source path. Moving the | 
|  | // source file to a different directory could cause different GUID | 
|  | // values for a pair of given symbols. These symbols could then compare | 
|  | // "less" in one directory, but "greater" in another. | 
|  | assert(!V.GV->getName().empty() && !ER.V.GV->getName().empty()); | 
|  | return V.GV->getName() < ER.V.GV->getName(); | 
|  | case MachineOperand::MO_BlockAddress: { | 
|  | const BasicBlock *ThisB = V.BA->getBasicBlock(); | 
|  | const BasicBlock *OtherB = ER.V.BA->getBasicBlock(); | 
|  | assert(ThisB->getParent() == OtherB->getParent()); | 
|  | const Function &F = *ThisB->getParent(); | 
|  | return std::distance(F.begin(), ThisB->getIterator()) < | 
|  | std::distance(F.begin(), OtherB->getIterator()); | 
|  | } | 
|  | } | 
|  | return V.ImmVal < ER.V.ImmVal; | 
|  | } | 
|  |  | 
|  | HCE::ExtValue::ExtValue(const MachineOperand &Op) : ExtRoot(Op) { | 
|  | if (Op.isImm()) | 
|  | Offset = Op.getImm(); | 
|  | else if (Op.isFPImm() || Op.isJTI()) | 
|  | Offset = 0; | 
|  | else if (Op.isSymbol() || Op.isGlobal() || Op.isBlockAddress() || | 
|  | Op.isCPI() || Op.isTargetIndex()) | 
|  | Offset = Op.getOffset(); | 
|  | else | 
|  | llvm_unreachable("Unexpected operand type"); | 
|  | } | 
|  |  | 
|  | bool HCE::ExtValue::operator< (const HCE::ExtValue &EV) const { | 
|  | const ExtRoot &ER = *this; | 
|  | if (!(ER == ExtRoot(EV))) | 
|  | return ER < EV; | 
|  | return Offset < EV.Offset; | 
|  | } | 
|  |  | 
|  | HCE::ExtValue::operator MachineOperand() const { | 
|  | switch (Kind) { | 
|  | case MachineOperand::MO_Immediate: | 
|  | return MachineOperand::CreateImm(V.ImmVal + Offset); | 
|  | case MachineOperand::MO_FPImmediate: | 
|  | assert(Offset == 0); | 
|  | return MachineOperand::CreateFPImm(V.CFP); | 
|  | case MachineOperand::MO_ExternalSymbol: | 
|  | assert(Offset == 0); | 
|  | return MachineOperand::CreateES(V.SymbolName, TF); | 
|  | case MachineOperand::MO_GlobalAddress: | 
|  | return MachineOperand::CreateGA(V.GV, Offset, TF); | 
|  | case MachineOperand::MO_BlockAddress: | 
|  | return MachineOperand::CreateBA(V.BA, Offset, TF); | 
|  | case MachineOperand::MO_TargetIndex: | 
|  | return MachineOperand::CreateTargetIndex(V.ImmVal, Offset, TF); | 
|  | case MachineOperand::MO_ConstantPoolIndex: | 
|  | return MachineOperand::CreateCPI(V.ImmVal, Offset, TF); | 
|  | case MachineOperand::MO_JumpTableIndex: | 
|  | assert(Offset == 0); | 
|  | return MachineOperand::CreateJTI(V.ImmVal, TF); | 
|  | default: | 
|  | llvm_unreachable("Unhandled kind"); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HCE::isStoreImmediate(unsigned Opc) const { | 
|  | switch (Opc) { | 
|  | case Hexagon::S4_storeirbt_io: | 
|  | case Hexagon::S4_storeirbf_io: | 
|  | case Hexagon::S4_storeirht_io: | 
|  | case Hexagon::S4_storeirhf_io: | 
|  | case Hexagon::S4_storeirit_io: | 
|  | case Hexagon::S4_storeirif_io: | 
|  | case Hexagon::S4_storeirb_io: | 
|  | case Hexagon::S4_storeirh_io: | 
|  | case Hexagon::S4_storeiri_io: | 
|  | return true; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HCE::isRegOffOpcode(unsigned Opc) const { | 
|  | switch (Opc) { | 
|  | case Hexagon::L2_loadrub_io: | 
|  | case Hexagon::L2_loadrb_io: | 
|  | case Hexagon::L2_loadruh_io: | 
|  | case Hexagon::L2_loadrh_io: | 
|  | case Hexagon::L2_loadri_io: | 
|  | case Hexagon::L2_loadrd_io: | 
|  | case Hexagon::L2_loadbzw2_io: | 
|  | case Hexagon::L2_loadbzw4_io: | 
|  | case Hexagon::L2_loadbsw2_io: | 
|  | case Hexagon::L2_loadbsw4_io: | 
|  | case Hexagon::L2_loadalignh_io: | 
|  | case Hexagon::L2_loadalignb_io: | 
|  | case Hexagon::L2_ploadrubt_io: | 
|  | case Hexagon::L2_ploadrubf_io: | 
|  | case Hexagon::L2_ploadrbt_io: | 
|  | case Hexagon::L2_ploadrbf_io: | 
|  | case Hexagon::L2_ploadruht_io: | 
|  | case Hexagon::L2_ploadruhf_io: | 
|  | case Hexagon::L2_ploadrht_io: | 
|  | case Hexagon::L2_ploadrhf_io: | 
|  | case Hexagon::L2_ploadrit_io: | 
|  | case Hexagon::L2_ploadrif_io: | 
|  | case Hexagon::L2_ploadrdt_io: | 
|  | case Hexagon::L2_ploadrdf_io: | 
|  | case Hexagon::S2_storerb_io: | 
|  | case Hexagon::S2_storerh_io: | 
|  | case Hexagon::S2_storerf_io: | 
|  | case Hexagon::S2_storeri_io: | 
|  | case Hexagon::S2_storerd_io: | 
|  | case Hexagon::S2_pstorerbt_io: | 
|  | case Hexagon::S2_pstorerbf_io: | 
|  | case Hexagon::S2_pstorerht_io: | 
|  | case Hexagon::S2_pstorerhf_io: | 
|  | case Hexagon::S2_pstorerft_io: | 
|  | case Hexagon::S2_pstorerff_io: | 
|  | case Hexagon::S2_pstorerit_io: | 
|  | case Hexagon::S2_pstorerif_io: | 
|  | case Hexagon::S2_pstorerdt_io: | 
|  | case Hexagon::S2_pstorerdf_io: | 
|  | case Hexagon::A2_addi: | 
|  | return true; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned HCE::getRegOffOpcode(unsigned ExtOpc) const { | 
|  | // If there exists an instruction that takes a register and offset, | 
|  | // that corresponds to the ExtOpc, return it, otherwise return 0. | 
|  | using namespace Hexagon; | 
|  | switch (ExtOpc) { | 
|  | case A2_tfrsi:    return A2_addi; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | const MCInstrDesc &D = HII->get(ExtOpc); | 
|  | if (D.mayLoad() || D.mayStore()) { | 
|  | uint64_t F = D.TSFlags; | 
|  | unsigned AM = (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask; | 
|  | switch (AM) { | 
|  | case HexagonII::Absolute: | 
|  | case HexagonII::AbsoluteSet: | 
|  | case HexagonII::BaseLongOffset: | 
|  | switch (ExtOpc) { | 
|  | case PS_loadrubabs: | 
|  | case L4_loadrub_ap: | 
|  | case L4_loadrub_ur:     return L2_loadrub_io; | 
|  | case PS_loadrbabs: | 
|  | case L4_loadrb_ap: | 
|  | case L4_loadrb_ur:      return L2_loadrb_io; | 
|  | case PS_loadruhabs: | 
|  | case L4_loadruh_ap: | 
|  | case L4_loadruh_ur:     return L2_loadruh_io; | 
|  | case PS_loadrhabs: | 
|  | case L4_loadrh_ap: | 
|  | case L4_loadrh_ur:      return L2_loadrh_io; | 
|  | case PS_loadriabs: | 
|  | case L4_loadri_ap: | 
|  | case L4_loadri_ur:      return L2_loadri_io; | 
|  | case PS_loadrdabs: | 
|  | case L4_loadrd_ap: | 
|  | case L4_loadrd_ur:      return L2_loadrd_io; | 
|  | case L4_loadbzw2_ap: | 
|  | case L4_loadbzw2_ur:    return L2_loadbzw2_io; | 
|  | case L4_loadbzw4_ap: | 
|  | case L4_loadbzw4_ur:    return L2_loadbzw4_io; | 
|  | case L4_loadbsw2_ap: | 
|  | case L4_loadbsw2_ur:    return L2_loadbsw2_io; | 
|  | case L4_loadbsw4_ap: | 
|  | case L4_loadbsw4_ur:    return L2_loadbsw4_io; | 
|  | case L4_loadalignh_ap: | 
|  | case L4_loadalignh_ur:  return L2_loadalignh_io; | 
|  | case L4_loadalignb_ap: | 
|  | case L4_loadalignb_ur:  return L2_loadalignb_io; | 
|  | case L4_ploadrubt_abs:  return L2_ploadrubt_io; | 
|  | case L4_ploadrubf_abs:  return L2_ploadrubf_io; | 
|  | case L4_ploadrbt_abs:   return L2_ploadrbt_io; | 
|  | case L4_ploadrbf_abs:   return L2_ploadrbf_io; | 
|  | case L4_ploadruht_abs:  return L2_ploadruht_io; | 
|  | case L4_ploadruhf_abs:  return L2_ploadruhf_io; | 
|  | case L4_ploadrht_abs:   return L2_ploadrht_io; | 
|  | case L4_ploadrhf_abs:   return L2_ploadrhf_io; | 
|  | case L4_ploadrit_abs:   return L2_ploadrit_io; | 
|  | case L4_ploadrif_abs:   return L2_ploadrif_io; | 
|  | case L4_ploadrdt_abs:   return L2_ploadrdt_io; | 
|  | case L4_ploadrdf_abs:   return L2_ploadrdf_io; | 
|  | case PS_storerbabs: | 
|  | case S4_storerb_ap: | 
|  | case S4_storerb_ur:     return S2_storerb_io; | 
|  | case PS_storerhabs: | 
|  | case S4_storerh_ap: | 
|  | case S4_storerh_ur:     return S2_storerh_io; | 
|  | case PS_storerfabs: | 
|  | case S4_storerf_ap: | 
|  | case S4_storerf_ur:     return S2_storerf_io; | 
|  | case PS_storeriabs: | 
|  | case S4_storeri_ap: | 
|  | case S4_storeri_ur:     return S2_storeri_io; | 
|  | case PS_storerdabs: | 
|  | case S4_storerd_ap: | 
|  | case S4_storerd_ur:     return S2_storerd_io; | 
|  | case S4_pstorerbt_abs:  return S2_pstorerbt_io; | 
|  | case S4_pstorerbf_abs:  return S2_pstorerbf_io; | 
|  | case S4_pstorerht_abs:  return S2_pstorerht_io; | 
|  | case S4_pstorerhf_abs:  return S2_pstorerhf_io; | 
|  | case S4_pstorerft_abs:  return S2_pstorerft_io; | 
|  | case S4_pstorerff_abs:  return S2_pstorerff_io; | 
|  | case S4_pstorerit_abs:  return S2_pstorerit_io; | 
|  | case S4_pstorerif_abs:  return S2_pstorerif_io; | 
|  | case S4_pstorerdt_abs:  return S2_pstorerdt_io; | 
|  | case S4_pstorerdf_abs:  return S2_pstorerdf_io; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case HexagonII::BaseImmOffset: | 
|  | if (!isStoreImmediate(ExtOpc)) | 
|  | return ExtOpc; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned HCE::getDirectRegReplacement(unsigned ExtOpc) const { | 
|  | switch (ExtOpc) { | 
|  | case Hexagon::A2_addi:          return Hexagon::A2_add; | 
|  | case Hexagon::A2_andir:         return Hexagon::A2_and; | 
|  | case Hexagon::A2_combineii:     return Hexagon::A4_combineri; | 
|  | case Hexagon::A2_orir:          return Hexagon::A2_or; | 
|  | case Hexagon::A2_paddif:        return Hexagon::A2_paddf; | 
|  | case Hexagon::A2_paddit:        return Hexagon::A2_paddt; | 
|  | case Hexagon::A2_subri:         return Hexagon::A2_sub; | 
|  | case Hexagon::A2_tfrsi:         return TargetOpcode::COPY; | 
|  | case Hexagon::A4_cmpbeqi:       return Hexagon::A4_cmpbeq; | 
|  | case Hexagon::A4_cmpbgti:       return Hexagon::A4_cmpbgt; | 
|  | case Hexagon::A4_cmpbgtui:      return Hexagon::A4_cmpbgtu; | 
|  | case Hexagon::A4_cmpheqi:       return Hexagon::A4_cmpheq; | 
|  | case Hexagon::A4_cmphgti:       return Hexagon::A4_cmphgt; | 
|  | case Hexagon::A4_cmphgtui:      return Hexagon::A4_cmphgtu; | 
|  | case Hexagon::A4_combineii:     return Hexagon::A4_combineir; | 
|  | case Hexagon::A4_combineir:     return TargetOpcode::REG_SEQUENCE; | 
|  | case Hexagon::A4_combineri:     return TargetOpcode::REG_SEQUENCE; | 
|  | case Hexagon::A4_rcmpeqi:       return Hexagon::A4_rcmpeq; | 
|  | case Hexagon::A4_rcmpneqi:      return Hexagon::A4_rcmpneq; | 
|  | case Hexagon::C2_cmoveif:       return Hexagon::A2_tfrpf; | 
|  | case Hexagon::C2_cmoveit:       return Hexagon::A2_tfrpt; | 
|  | case Hexagon::C2_cmpeqi:        return Hexagon::C2_cmpeq; | 
|  | case Hexagon::C2_cmpgti:        return Hexagon::C2_cmpgt; | 
|  | case Hexagon::C2_cmpgtui:       return Hexagon::C2_cmpgtu; | 
|  | case Hexagon::C2_muxii:         return Hexagon::C2_muxir; | 
|  | case Hexagon::C2_muxir:         return Hexagon::C2_mux; | 
|  | case Hexagon::C2_muxri:         return Hexagon::C2_mux; | 
|  | case Hexagon::C4_cmpltei:       return Hexagon::C4_cmplte; | 
|  | case Hexagon::C4_cmplteui:      return Hexagon::C4_cmplteu; | 
|  | case Hexagon::C4_cmpneqi:       return Hexagon::C4_cmpneq; | 
|  | case Hexagon::M2_accii:         return Hexagon::M2_acci;        // T -> T | 
|  | /* No M2_macsin */ | 
|  | case Hexagon::M2_macsip:        return Hexagon::M2_maci;        // T -> T | 
|  | case Hexagon::M2_mpysin:        return Hexagon::M2_mpyi; | 
|  | case Hexagon::M2_mpysip:        return Hexagon::M2_mpyi; | 
|  | case Hexagon::M2_mpysmi:        return Hexagon::M2_mpyi; | 
|  | case Hexagon::M2_naccii:        return Hexagon::M2_nacci;       // T -> T | 
|  | case Hexagon::M4_mpyri_addi:    return Hexagon::M4_mpyri_addr; | 
|  | case Hexagon::M4_mpyri_addr:    return Hexagon::M4_mpyrr_addr;  // _ -> T | 
|  | case Hexagon::M4_mpyrr_addi:    return Hexagon::M4_mpyrr_addr;  // _ -> T | 
|  | case Hexagon::S4_addaddi:       return Hexagon::M2_acci;        // _ -> T | 
|  | case Hexagon::S4_addi_asl_ri:   return Hexagon::S2_asl_i_r_acc; // T -> T | 
|  | case Hexagon::S4_addi_lsr_ri:   return Hexagon::S2_lsr_i_r_acc; // T -> T | 
|  | case Hexagon::S4_andi_asl_ri:   return Hexagon::S2_asl_i_r_and; // T -> T | 
|  | case Hexagon::S4_andi_lsr_ri:   return Hexagon::S2_lsr_i_r_and; // T -> T | 
|  | case Hexagon::S4_ori_asl_ri:    return Hexagon::S2_asl_i_r_or;  // T -> T | 
|  | case Hexagon::S4_ori_lsr_ri:    return Hexagon::S2_lsr_i_r_or;  // T -> T | 
|  | case Hexagon::S4_subaddi:       return Hexagon::M2_subacc;      // _ -> T | 
|  | case Hexagon::S4_subi_asl_ri:   return Hexagon::S2_asl_i_r_nac; // T -> T | 
|  | case Hexagon::S4_subi_lsr_ri:   return Hexagon::S2_lsr_i_r_nac; // T -> T | 
|  |  | 
|  | // Store-immediates: | 
|  | case Hexagon::S4_storeirbf_io:  return Hexagon::S2_pstorerbf_io; | 
|  | case Hexagon::S4_storeirb_io:   return Hexagon::S2_storerb_io; | 
|  | case Hexagon::S4_storeirbt_io:  return Hexagon::S2_pstorerbt_io; | 
|  | case Hexagon::S4_storeirhf_io:  return Hexagon::S2_pstorerhf_io; | 
|  | case Hexagon::S4_storeirh_io:   return Hexagon::S2_storerh_io; | 
|  | case Hexagon::S4_storeirht_io:  return Hexagon::S2_pstorerht_io; | 
|  | case Hexagon::S4_storeirif_io:  return Hexagon::S2_pstorerif_io; | 
|  | case Hexagon::S4_storeiri_io:   return Hexagon::S2_storeri_io; | 
|  | case Hexagon::S4_storeirit_io:  return Hexagon::S2_pstorerit_io; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Return the allowable deviation from the current value of Rb (i.e. the | 
|  | // range of values that can be added to the current value) which the | 
|  | // instruction MI can accommodate. | 
|  | // The instruction MI is a user of register Rb, which is defined via an | 
|  | // extender. It may be possible for MI to be tweaked to work for a register | 
|  | // defined with a slightly different value. For example | 
|  | //   ... = L2_loadrub_io Rb, 1 | 
|  | // can be modifed to be | 
|  | //   ... = L2_loadrub_io Rb', 0 | 
|  | // if Rb' = Rb+1. | 
|  | // The range for Rb would be [Min+1, Max+1], where [Min, Max] is a range | 
|  | // for L2_loadrub with offset 0. That means that Rb could be replaced with | 
|  | // Rc, where Rc-Rb belongs to [Min+1, Max+1]. | 
|  | OffsetRange HCE::getOffsetRange(Register Rb, const MachineInstr &MI) const { | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | // Instructions that are constant-extended may be replaced with something | 
|  | // else that no longer offers the same range as the original. | 
|  | if (!isRegOffOpcode(Opc) || HII->isConstExtended(MI)) | 
|  | return OffsetRange::zero(); | 
|  |  | 
|  | if (Opc == Hexagon::A2_addi) { | 
|  | const MachineOperand &Op1 = MI.getOperand(1), &Op2 = MI.getOperand(2); | 
|  | if (Rb != Register(Op1) || !Op2.isImm()) | 
|  | return OffsetRange::zero(); | 
|  | OffsetRange R = { -(1<<15)+1, (1<<15)-1, 1 }; | 
|  | return R.shift(Op2.getImm()); | 
|  | } | 
|  |  | 
|  | // HII::getBaseAndOffsetPosition returns the increment position as "offset". | 
|  | if (HII->isPostIncrement(MI)) | 
|  | return OffsetRange::zero(); | 
|  |  | 
|  | const MCInstrDesc &D = HII->get(Opc); | 
|  | assert(D.mayLoad() || D.mayStore()); | 
|  |  | 
|  | unsigned BaseP, OffP; | 
|  | if (!HII->getBaseAndOffsetPosition(MI, BaseP, OffP) || | 
|  | Rb != Register(MI.getOperand(BaseP)) || | 
|  | !MI.getOperand(OffP).isImm()) | 
|  | return OffsetRange::zero(); | 
|  |  | 
|  | uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) & | 
|  | HexagonII::MemAccesSizeMask; | 
|  | uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F)); | 
|  | unsigned L = Log2_32(A); | 
|  | unsigned S = 10+L;  // sint11_L | 
|  | int32_t Min = -alignDown((1<<S)-1, A); | 
|  |  | 
|  | // The range will be shifted by Off. To prefer non-negative offsets, | 
|  | // adjust Max accordingly. | 
|  | int32_t Off = MI.getOperand(OffP).getImm(); | 
|  | int32_t Max = Off >= 0 ? 0 : -Off; | 
|  |  | 
|  | OffsetRange R = { Min, Max, A }; | 
|  | return R.shift(Off); | 
|  | } | 
|  |  | 
|  | // Return the allowable deviation from the current value of the extender ED, | 
|  | // for which the instruction corresponding to ED can be modified without | 
|  | // using an extender. | 
|  | // The instruction uses the extender directly. It will be replaced with | 
|  | // another instruction, say MJ, where the extender will be replaced with a | 
|  | // register. MJ can allow some variability with respect to the value of | 
|  | // that register, as is the case with indexed memory instructions. | 
|  | OffsetRange HCE::getOffsetRange(const ExtDesc &ED) const { | 
|  | // The only way that there can be a non-zero range available is if | 
|  | // the instruction using ED will be converted to an indexed memory | 
|  | // instruction. | 
|  | unsigned IdxOpc = getRegOffOpcode(ED.UseMI->getOpcode()); | 
|  | switch (IdxOpc) { | 
|  | case 0: | 
|  | return OffsetRange::zero(); | 
|  | case Hexagon::A2_addi:    // s16 | 
|  | return { -32767, 32767, 1 }; | 
|  | case Hexagon::A2_subri:   // s10 | 
|  | return { -511, 511, 1 }; | 
|  | } | 
|  |  | 
|  | if (!ED.UseMI->mayLoad() && !ED.UseMI->mayStore()) | 
|  | return OffsetRange::zero(); | 
|  | const MCInstrDesc &D = HII->get(IdxOpc); | 
|  | uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) & | 
|  | HexagonII::MemAccesSizeMask; | 
|  | uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F)); | 
|  | unsigned L = Log2_32(A); | 
|  | unsigned S = 10+L;  // sint11_L | 
|  | int32_t Min = -alignDown((1<<S)-1, A); | 
|  | int32_t Max = 0;  // Force non-negative offsets. | 
|  | return { Min, Max, A }; | 
|  | } | 
|  |  | 
|  | // Get the allowable deviation from the current value of Rd by checking | 
|  | // all uses of Rd. | 
|  | OffsetRange HCE::getOffsetRange(Register Rd) const { | 
|  | OffsetRange Range; | 
|  | for (const MachineOperand &Op : MRI->use_operands(Rd.Reg)) { | 
|  | // Make sure that the register being used by this operand is identical | 
|  | // to the register that was defined: using a different subregister | 
|  | // precludes any non-trivial range. | 
|  | if (Rd != Register(Op)) | 
|  | return OffsetRange::zero(); | 
|  | Range.intersect(getOffsetRange(Rd, *Op.getParent())); | 
|  | } | 
|  | return Range; | 
|  | } | 
|  |  | 
|  | void HCE::recordExtender(MachineInstr &MI, unsigned OpNum) { | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | ExtDesc ED; | 
|  | ED.OpNum = OpNum; | 
|  |  | 
|  | bool IsLoad = MI.mayLoad(); | 
|  | bool IsStore = MI.mayStore(); | 
|  |  | 
|  | // Fixed stack slots have negative indexes, and they cannot be used | 
|  | // with TRI::stackSlot2Index and TRI::index2StackSlot. This is somewhat | 
|  | // unfortunate, but should not be a frequent thing. | 
|  | for (MachineOperand &Op : MI.operands()) | 
|  | if (Op.isFI() && Op.getIndex() < 0) | 
|  | return; | 
|  |  | 
|  | if (IsLoad || IsStore) { | 
|  | unsigned AM = HII->getAddrMode(MI); | 
|  | switch (AM) { | 
|  | // (Re: ##Off + Rb<<S) = Rd: ##Val | 
|  | case HexagonII::Absolute:       // (__: ## + __<<_) | 
|  | break; | 
|  | case HexagonII::AbsoluteSet:    // (Rd: ## + __<<_) | 
|  | ED.Rd = MI.getOperand(OpNum-1); | 
|  | ED.IsDef = true; | 
|  | break; | 
|  | case HexagonII::BaseImmOffset:  // (__: ## + Rs<<0) | 
|  | // Store-immediates are treated as non-memory operations, since | 
|  | // it's the value being stored that is extended (as opposed to | 
|  | // a part of the address). | 
|  | if (!isStoreImmediate(Opc)) | 
|  | ED.Expr.Rs = MI.getOperand(OpNum-1); | 
|  | break; | 
|  | case HexagonII::BaseLongOffset: // (__: ## + Rs<<S) | 
|  | ED.Expr.Rs = MI.getOperand(OpNum-2); | 
|  | ED.Expr.S = MI.getOperand(OpNum-1).getImm(); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unhandled memory instruction"); | 
|  | } | 
|  | } else { | 
|  | switch (Opc) { | 
|  | case Hexagon::A2_tfrsi:         // (Rd: ## + __<<_) | 
|  | ED.Rd = MI.getOperand(0); | 
|  | ED.IsDef = true; | 
|  | break; | 
|  | case Hexagon::A2_combineii:     // (Rd: ## + __<<_) | 
|  | case Hexagon::A4_combineir: | 
|  | ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_hi }; | 
|  | ED.IsDef = true; | 
|  | break; | 
|  | case Hexagon::A4_combineri:     // (Rd: ## + __<<_) | 
|  | ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_lo }; | 
|  | ED.IsDef = true; | 
|  | break; | 
|  | case Hexagon::A2_addi:          // (Rd: ## + Rs<<0) | 
|  | ED.Rd = MI.getOperand(0); | 
|  | ED.Expr.Rs = MI.getOperand(OpNum-1); | 
|  | break; | 
|  | case Hexagon::M2_accii:         // (__: ## + Rs<<0) | 
|  | case Hexagon::M2_naccii: | 
|  | case Hexagon::S4_addaddi: | 
|  | ED.Expr.Rs = MI.getOperand(OpNum-1); | 
|  | break; | 
|  | case Hexagon::A2_subri:         // (Rd: ## - Rs<<0) | 
|  | ED.Rd = MI.getOperand(0); | 
|  | ED.Expr.Rs = MI.getOperand(OpNum+1); | 
|  | ED.Expr.Neg = true; | 
|  | break; | 
|  | case Hexagon::S4_subaddi:       // (__: ## - Rs<<0) | 
|  | ED.Expr.Rs = MI.getOperand(OpNum+1); | 
|  | ED.Expr.Neg = true; | 
|  | break; | 
|  | default:                        // (__: ## + __<<_) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | ED.UseMI = &MI; | 
|  |  | 
|  | // Ignore unnamed globals. | 
|  | ExtRoot ER(ED.getOp()); | 
|  | if (ER.Kind == MachineOperand::MO_GlobalAddress) | 
|  | if (ER.V.GV->getName().empty()) | 
|  | return; | 
|  | Extenders.push_back(ED); | 
|  | } | 
|  |  | 
|  | void HCE::collectInstr(MachineInstr &MI) { | 
|  | if (!HII->isConstExtended(MI)) | 
|  | return; | 
|  |  | 
|  | // Skip some non-convertible instructions. | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | switch (Opc) { | 
|  | case Hexagon::M2_macsin:  // There is no Rx -= mpyi(Rs,Rt). | 
|  | case Hexagon::C4_addipc: | 
|  | case Hexagon::S4_or_andi: | 
|  | case Hexagon::S4_or_andix: | 
|  | case Hexagon::S4_or_ori: | 
|  | return; | 
|  | } | 
|  | recordExtender(MI, HII->getCExtOpNum(MI)); | 
|  | } | 
|  |  | 
|  | void HCE::collect(MachineFunction &MF) { | 
|  | Extenders.clear(); | 
|  | for (MachineBasicBlock &MBB : MF) { | 
|  | // Skip unreachable blocks. | 
|  | if (MBB.getNumber() == -1) | 
|  | continue; | 
|  | for (MachineInstr &MI : MBB) | 
|  | collectInstr(MI); | 
|  | } | 
|  | } | 
|  |  | 
|  | void HCE::assignInits(const ExtRoot &ER, unsigned Begin, unsigned End, | 
|  | AssignmentMap &IMap) { | 
|  | // Sanity check: make sure that all extenders in the range [Begin..End) | 
|  | // share the same root ER. | 
|  | for (unsigned I = Begin; I != End; ++I) | 
|  | assert(ER == ExtRoot(Extenders[I].getOp())); | 
|  |  | 
|  | // Construct the list of ranges, such that for each P in Ranges[I], | 
|  | // a register Reg = ER+P can be used in place of Extender[I]. If the | 
|  | // instruction allows, uses in the form of Reg+Off are considered | 
|  | // (here, Off = required_value - P). | 
|  | std::vector<OffsetRange> Ranges(End-Begin); | 
|  |  | 
|  | // For each extender that is a def, visit all uses of the defined register, | 
|  | // and produce an offset range that works for all uses. The def doesn't | 
|  | // have to be checked, because it can become dead if all uses can be updated | 
|  | // to use a different reg/offset. | 
|  | for (unsigned I = Begin; I != End; ++I) { | 
|  | const ExtDesc &ED = Extenders[I]; | 
|  | if (!ED.IsDef) | 
|  | continue; | 
|  | ExtValue EV(ED); | 
|  | LLVM_DEBUG(dbgs() << " =" << I << ". " << EV << "  " << ED << '\n'); | 
|  | assert(ED.Rd.Reg != 0); | 
|  | Ranges[I-Begin] = getOffsetRange(ED.Rd).shift(EV.Offset); | 
|  | // A2_tfrsi is a special case: it will be replaced with A2_addi, which | 
|  | // has a 16-bit signed offset. This means that A2_tfrsi not only has a | 
|  | // range coming from its uses, but also from the fact that its replacement | 
|  | // has a range as well. | 
|  | if (ED.UseMI->getOpcode() == Hexagon::A2_tfrsi) { | 
|  | int32_t D = alignDown(32767, Ranges[I-Begin].Align); // XXX hardcoded | 
|  | Ranges[I-Begin].extendBy(-D).extendBy(D); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Visit all non-def extenders. For each one, determine the offset range | 
|  | // available for it. | 
|  | for (unsigned I = Begin; I != End; ++I) { | 
|  | const ExtDesc &ED = Extenders[I]; | 
|  | if (ED.IsDef) | 
|  | continue; | 
|  | ExtValue EV(ED); | 
|  | LLVM_DEBUG(dbgs() << "  " << I << ". " << EV << "  " << ED << '\n'); | 
|  | OffsetRange Dev = getOffsetRange(ED); | 
|  | Ranges[I-Begin].intersect(Dev.shift(EV.Offset)); | 
|  | } | 
|  |  | 
|  | // Here for each I there is a corresponding Range[I]. Construct the | 
|  | // inverse map, that to each range will assign the set of indexes in | 
|  | // [Begin..End) that this range corresponds to. | 
|  | std::map<OffsetRange, IndexList> RangeMap; | 
|  | for (unsigned I = Begin; I != End; ++I) | 
|  | RangeMap[Ranges[I-Begin]].insert(I); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Ranges\n"; | 
|  | for (unsigned I = Begin; I != End; ++I) | 
|  | dbgs() << "  " << I << ". " << Ranges[I-Begin] << '\n'; | 
|  | dbgs() << "RangeMap\n"; | 
|  | for (auto &P : RangeMap) { | 
|  | dbgs() << "  " << P.first << " ->"; | 
|  | for (unsigned I : P.second) | 
|  | dbgs() << ' ' << I; | 
|  | dbgs() << '\n'; | 
|  | } | 
|  | }); | 
|  |  | 
|  | // Select the definition points, and generate the assignment between | 
|  | // these points and the uses. | 
|  |  | 
|  | // For each candidate offset, keep a pair CandData consisting of | 
|  | // the total number of ranges containing that candidate, and the | 
|  | // vector of corresponding RangeTree nodes. | 
|  | using CandData = std::pair<unsigned, SmallVector<RangeTree::Node*,8>>; | 
|  | std::map<int32_t, CandData> CandMap; | 
|  |  | 
|  | RangeTree Tree; | 
|  | for (const OffsetRange &R : Ranges) | 
|  | Tree.add(R); | 
|  | SmallVector<RangeTree::Node*,8> Nodes; | 
|  | Tree.order(Nodes); | 
|  |  | 
|  | auto MaxAlign = [](const SmallVectorImpl<RangeTree::Node*> &Nodes, | 
|  | uint8_t Align, uint8_t Offset) { | 
|  | for (RangeTree::Node *N : Nodes) { | 
|  | if (N->Range.Align <= Align || N->Range.Offset < Offset) | 
|  | continue; | 
|  | if ((N->Range.Offset - Offset) % Align != 0) | 
|  | continue; | 
|  | Align = N->Range.Align; | 
|  | Offset = N->Range.Offset; | 
|  | } | 
|  | return std::make_pair(Align, Offset); | 
|  | }; | 
|  |  | 
|  | // Construct the set of all potential definition points from the endpoints | 
|  | // of the ranges. If a given endpoint also belongs to a different range, | 
|  | // but with a higher alignment, also consider the more-highly-aligned | 
|  | // value of this endpoint. | 
|  | std::set<int32_t> CandSet; | 
|  | for (RangeTree::Node *N : Nodes) { | 
|  | const OffsetRange &R = N->Range; | 
|  | auto P0 = MaxAlign(Tree.nodesWith(R.Min, false), R.Align, R.Offset); | 
|  | CandSet.insert(R.Min); | 
|  | if (R.Align < P0.first) | 
|  | CandSet.insert(adjustUp(R.Min, P0.first, P0.second)); | 
|  | auto P1 = MaxAlign(Tree.nodesWith(R.Max, false), R.Align, R.Offset); | 
|  | CandSet.insert(R.Max); | 
|  | if (R.Align < P1.first) | 
|  | CandSet.insert(adjustDown(R.Max, P1.first, P1.second)); | 
|  | } | 
|  |  | 
|  | // Build the assignment map: candidate C -> { list of extender indexes }. | 
|  | // This has to be done iteratively: | 
|  | // - pick the candidate that covers the maximum number of extenders, | 
|  | // - add the candidate to the map, | 
|  | // - remove the extenders from the pool. | 
|  | while (true) { | 
|  | using CMap = std::map<int32_t,unsigned>; | 
|  | CMap Counts; | 
|  | for (auto It = CandSet.begin(), Et = CandSet.end(); It != Et; ) { | 
|  | auto &&V = Tree.nodesWith(*It); | 
|  | unsigned N = std::accumulate(V.begin(), V.end(), 0u, | 
|  | [](unsigned Acc, const RangeTree::Node *N) { | 
|  | return Acc + N->Count; | 
|  | }); | 
|  | if (N != 0) | 
|  | Counts.insert({*It, N}); | 
|  | It = (N != 0) ? std::next(It) : CandSet.erase(It); | 
|  | } | 
|  | if (Counts.empty()) | 
|  | break; | 
|  |  | 
|  | // Find the best candidate with respect to the number of extenders covered. | 
|  | auto BestIt = std::max_element(Counts.begin(), Counts.end(), | 
|  | [](const CMap::value_type &A, const CMap::value_type &B) { | 
|  | return A.second < B.second || | 
|  | (A.second == B.second && A < B); | 
|  | }); | 
|  | int32_t Best = BestIt->first; | 
|  | ExtValue BestV(ER, Best); | 
|  | for (RangeTree::Node *N : Tree.nodesWith(Best)) { | 
|  | for (unsigned I : RangeMap[N->Range]) | 
|  | IMap[{BestV,Extenders[I].Expr}].insert(I); | 
|  | Tree.erase(N); | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "IMap (before fixup) = " << PrintIMap(IMap, *HRI)); | 
|  |  | 
|  | // There is some ambiguity in what initializer should be used, if the | 
|  | // descriptor's subexpression is non-trivial: it can be the entire | 
|  | // subexpression (which is what has been done so far), or it can be | 
|  | // the extender's value itself, if all corresponding extenders have the | 
|  | // exact value of the initializer (i.e. require offset of 0). | 
|  |  | 
|  | // To reduce the number of initializers, merge such special cases. | 
|  | for (std::pair<const ExtenderInit,IndexList> &P : IMap) { | 
|  | // Skip trivial initializers. | 
|  | if (P.first.second.trivial()) | 
|  | continue; | 
|  | // If the corresponding trivial initializer does not exist, skip this | 
|  | // entry. | 
|  | const ExtValue &EV = P.first.first; | 
|  | AssignmentMap::iterator F = IMap.find({EV, ExtExpr()}); | 
|  | if (F == IMap.end()) | 
|  | continue; | 
|  |  | 
|  | // Finally, check if all extenders have the same value as the initializer. | 
|  | // Make sure that extenders that are a part of a stack address are not | 
|  | // merged with those that aren't. Stack addresses need an offset field | 
|  | // (to be used by frame index elimination), while non-stack expressions | 
|  | // can be replaced with forms (such as rr) that do not have such a field. | 
|  | // Example: | 
|  | // | 
|  | // Collected 3 extenders | 
|  | //  =2. imm:0  off:32968  bb#2: %7 = ## + __ << 0, def | 
|  | //   0. imm:0  off:267  bb#0: __ = ## + SS#1 << 0 | 
|  | //   1. imm:0  off:267  bb#1: __ = ## + SS#1 << 0 | 
|  | // Ranges | 
|  | //   0. [-756,267]a1+0 | 
|  | //   1. [-756,267]a1+0 | 
|  | //   2. [201,65735]a1+0 | 
|  | // RangeMap | 
|  | //   [-756,267]a1+0 -> 0 1 | 
|  | //   [201,65735]a1+0 -> 2 | 
|  | // IMap (before fixup) = { | 
|  | //   [imm:0  off:267, ## + __ << 0] -> { 2 } | 
|  | //   [imm:0  off:267, ## + SS#1 << 0] -> { 0 1 } | 
|  | // } | 
|  | // IMap (after fixup) = { | 
|  | //   [imm:0  off:267, ## + __ << 0] -> { 2 0 1 } | 
|  | //   [imm:0  off:267, ## + SS#1 << 0] -> { } | 
|  | // } | 
|  | // Inserted def in bb#0 for initializer: [imm:0  off:267, ## + __ << 0] | 
|  | //   %12:intregs = A2_tfrsi 267 | 
|  | // | 
|  | // The result was | 
|  | //   %12:intregs = A2_tfrsi 267 | 
|  | //   S4_pstorerbt_rr %3, %12, %stack.1, 0, killed %4 | 
|  | // Which became | 
|  | //   r0 = #267 | 
|  | //   if (p0.new) memb(r0+r29<<#4) = r2 | 
|  |  | 
|  | bool IsStack = any_of(F->second, [this](unsigned I) { | 
|  | return Extenders[I].Expr.Rs.isSlot(); | 
|  | }); | 
|  | auto SameValue = [&EV,this,IsStack](unsigned I) { | 
|  | const ExtDesc &ED = Extenders[I]; | 
|  | return ED.Expr.Rs.isSlot() == IsStack && | 
|  | ExtValue(ED).Offset == EV.Offset; | 
|  | }; | 
|  | if (all_of(P.second, SameValue)) { | 
|  | F->second.insert(P.second.begin(), P.second.end()); | 
|  | P.second.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "IMap (after fixup) = " << PrintIMap(IMap, *HRI)); | 
|  | } | 
|  |  | 
|  | void HCE::calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs, | 
|  | LocDefList &Defs) { | 
|  | if (Refs.empty()) | 
|  | return; | 
|  |  | 
|  | // The placement calculation is somewhat simple right now: it finds a | 
|  | // single location for the def that dominates all refs. Since this may | 
|  | // place the def far from the uses, producing several locations for | 
|  | // defs that collectively dominate all refs could be better. | 
|  | // For now only do the single one. | 
|  | DenseSet<MachineBasicBlock*> Blocks; | 
|  | DenseSet<MachineInstr*> RefMIs; | 
|  | const ExtDesc &ED0 = Extenders[Refs[0]]; | 
|  | MachineBasicBlock *DomB = ED0.UseMI->getParent(); | 
|  | RefMIs.insert(ED0.UseMI); | 
|  | Blocks.insert(DomB); | 
|  | for (unsigned i = 1, e = Refs.size(); i != e; ++i) { | 
|  | const ExtDesc &ED = Extenders[Refs[i]]; | 
|  | MachineBasicBlock *MBB = ED.UseMI->getParent(); | 
|  | RefMIs.insert(ED.UseMI); | 
|  | DomB = MDT->findNearestCommonDominator(DomB, MBB); | 
|  | Blocks.insert(MBB); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // The block DomB should be dominated by the def of each register used | 
|  | // in the initializer. | 
|  | Register Rs = ExtI.second.Rs;  // Only one reg allowed now. | 
|  | const MachineInstr *DefI = Rs.isVReg() ? MRI->getVRegDef(Rs.Reg) : nullptr; | 
|  |  | 
|  | // This should be guaranteed given that the entire expression is used | 
|  | // at each instruction in Refs. Add an assertion just in case. | 
|  | assert(!DefI || MDT->dominates(DefI->getParent(), DomB)); | 
|  | #endif | 
|  |  | 
|  | MachineBasicBlock::iterator It; | 
|  | if (Blocks.count(DomB)) { | 
|  | // Try to find the latest possible location for the def. | 
|  | MachineBasicBlock::iterator End = DomB->end(); | 
|  | for (It = DomB->begin(); It != End; ++It) | 
|  | if (RefMIs.count(&*It)) | 
|  | break; | 
|  | assert(It != End && "Should have found a ref in DomB"); | 
|  | } else { | 
|  | // DomB does not contain any refs. | 
|  | It = DomB->getFirstTerminator(); | 
|  | } | 
|  | Loc DefLoc(DomB, It); | 
|  | Defs.emplace_back(DefLoc, Refs); | 
|  | } | 
|  |  | 
|  | HCE::Register HCE::insertInitializer(Loc DefL, const ExtenderInit &ExtI) { | 
|  | llvm::Register DefR = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); | 
|  | MachineBasicBlock &MBB = *DefL.Block; | 
|  | MachineBasicBlock::iterator At = DefL.At; | 
|  | DebugLoc dl = DefL.Block->findDebugLoc(DefL.At); | 
|  | const ExtValue &EV = ExtI.first; | 
|  | MachineOperand ExtOp(EV); | 
|  |  | 
|  | const ExtExpr &Ex = ExtI.second; | 
|  | const MachineInstr *InitI = nullptr; | 
|  |  | 
|  | if (Ex.Rs.isSlot()) { | 
|  | assert(Ex.S == 0 && "Cannot have a shift of a stack slot"); | 
|  | assert(!Ex.Neg && "Cannot subtract a stack slot"); | 
|  | // DefR = PS_fi Rb,##EV | 
|  | InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::PS_fi), DefR) | 
|  | .add(MachineOperand(Ex.Rs)) | 
|  | .add(ExtOp); | 
|  | } else { | 
|  | assert((Ex.Rs.Reg == 0 || Ex.Rs.isVReg()) && "Expecting virtual register"); | 
|  | if (Ex.trivial()) { | 
|  | // DefR = ##EV | 
|  | InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_tfrsi), DefR) | 
|  | .add(ExtOp); | 
|  | } else if (Ex.S == 0) { | 
|  | if (Ex.Neg) { | 
|  | // DefR = sub(##EV,Rb) | 
|  | InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_subri), DefR) | 
|  | .add(ExtOp) | 
|  | .add(MachineOperand(Ex.Rs)); | 
|  | } else { | 
|  | // DefR = add(Rb,##EV) | 
|  | InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_addi), DefR) | 
|  | .add(MachineOperand(Ex.Rs)) | 
|  | .add(ExtOp); | 
|  | } | 
|  | } else { | 
|  | unsigned NewOpc = Ex.Neg ? Hexagon::S4_subi_asl_ri | 
|  | : Hexagon::S4_addi_asl_ri; | 
|  | // DefR = add(##EV,asl(Rb,S)) | 
|  | InitI = BuildMI(MBB, At, dl, HII->get(NewOpc), DefR) | 
|  | .add(ExtOp) | 
|  | .add(MachineOperand(Ex.Rs)) | 
|  | .addImm(Ex.S); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(InitI); | 
|  | (void)InitI; | 
|  | LLVM_DEBUG(dbgs() << "Inserted def in bb#" << MBB.getNumber() | 
|  | << " for initializer: " << PrintInit(ExtI, *HRI) << "\n  " | 
|  | << *InitI); | 
|  | return { DefR, 0 }; | 
|  | } | 
|  |  | 
|  | // Replace the extender at index Idx with the register ExtR. | 
|  | bool HCE::replaceInstrExact(const ExtDesc &ED, Register ExtR) { | 
|  | MachineInstr &MI = *ED.UseMI; | 
|  | MachineBasicBlock &MBB = *MI.getParent(); | 
|  | MachineBasicBlock::iterator At = MI.getIterator(); | 
|  | DebugLoc dl = MI.getDebugLoc(); | 
|  | unsigned ExtOpc = MI.getOpcode(); | 
|  |  | 
|  | // With a few exceptions, direct replacement amounts to creating an | 
|  | // instruction with a corresponding register opcode, with all operands | 
|  | // the same, except for the register used in place of the extender. | 
|  | unsigned RegOpc = getDirectRegReplacement(ExtOpc); | 
|  |  | 
|  | if (RegOpc == TargetOpcode::REG_SEQUENCE) { | 
|  | if (ExtOpc == Hexagon::A4_combineri) | 
|  | BuildMI(MBB, At, dl, HII->get(RegOpc)) | 
|  | .add(MI.getOperand(0)) | 
|  | .add(MI.getOperand(1)) | 
|  | .addImm(Hexagon::isub_hi) | 
|  | .add(MachineOperand(ExtR)) | 
|  | .addImm(Hexagon::isub_lo); | 
|  | else if (ExtOpc == Hexagon::A4_combineir) | 
|  | BuildMI(MBB, At, dl, HII->get(RegOpc)) | 
|  | .add(MI.getOperand(0)) | 
|  | .add(MachineOperand(ExtR)) | 
|  | .addImm(Hexagon::isub_hi) | 
|  | .add(MI.getOperand(2)) | 
|  | .addImm(Hexagon::isub_lo); | 
|  | else | 
|  | llvm_unreachable("Unexpected opcode became REG_SEQUENCE"); | 
|  | MBB.erase(MI); | 
|  | return true; | 
|  | } | 
|  | if (ExtOpc == Hexagon::C2_cmpgei || ExtOpc == Hexagon::C2_cmpgeui) { | 
|  | unsigned NewOpc = ExtOpc == Hexagon::C2_cmpgei ? Hexagon::C2_cmplt | 
|  | : Hexagon::C2_cmpltu; | 
|  | BuildMI(MBB, At, dl, HII->get(NewOpc)) | 
|  | .add(MI.getOperand(0)) | 
|  | .add(MachineOperand(ExtR)) | 
|  | .add(MI.getOperand(1)); | 
|  | MBB.erase(MI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (RegOpc != 0) { | 
|  | MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc)); | 
|  | unsigned RegN = ED.OpNum; | 
|  | // Copy all operands except the one that has the extender. | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | if (i != RegN) | 
|  | MIB.add(MI.getOperand(i)); | 
|  | else | 
|  | MIB.add(MachineOperand(ExtR)); | 
|  | } | 
|  | MIB.cloneMemRefs(MI); | 
|  | MBB.erase(MI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if ((MI.mayLoad() || MI.mayStore()) && !isStoreImmediate(ExtOpc)) { | 
|  | // For memory instructions, there is an asymmetry in the addressing | 
|  | // modes. Addressing modes allowing extenders can be replaced with | 
|  | // addressing modes that use registers, but the order of operands | 
|  | // (or even their number) may be different. | 
|  | // Replacements: | 
|  | //   BaseImmOffset (io)  -> BaseRegOffset (rr) | 
|  | //   BaseLongOffset (ur) -> BaseRegOffset (rr) | 
|  | unsigned RegOpc, Shift; | 
|  | unsigned AM = HII->getAddrMode(MI); | 
|  | if (AM == HexagonII::BaseImmOffset) { | 
|  | RegOpc = HII->changeAddrMode_io_rr(ExtOpc); | 
|  | Shift = 0; | 
|  | } else if (AM == HexagonII::BaseLongOffset) { | 
|  | // Loads:  Rd = L4_loadri_ur Rs, S, ## | 
|  | // Stores: S4_storeri_ur Rs, S, ##, Rt | 
|  | RegOpc = HII->changeAddrMode_ur_rr(ExtOpc); | 
|  | Shift = MI.getOperand(MI.mayLoad() ? 2 : 1).getImm(); | 
|  | } else { | 
|  | llvm_unreachable("Unexpected addressing mode"); | 
|  | } | 
|  | #ifndef NDEBUG | 
|  | if (RegOpc == -1u) { | 
|  | dbgs() << "\nExtOpc: " << HII->getName(ExtOpc) << " has no rr version\n"; | 
|  | llvm_unreachable("No corresponding rr instruction"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | unsigned BaseP, OffP; | 
|  | HII->getBaseAndOffsetPosition(MI, BaseP, OffP); | 
|  |  | 
|  | // Build an rr instruction: (RegOff + RegBase<<0) | 
|  | MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc)); | 
|  | // First, add the def for loads. | 
|  | if (MI.mayLoad()) | 
|  | MIB.add(getLoadResultOp(MI)); | 
|  | // Handle possible predication. | 
|  | if (HII->isPredicated(MI)) | 
|  | MIB.add(getPredicateOp(MI)); | 
|  | // Build the address. | 
|  | MIB.add(MachineOperand(ExtR));      // RegOff | 
|  | MIB.add(MI.getOperand(BaseP));      // RegBase | 
|  | MIB.addImm(Shift);                  // << Shift | 
|  | // Add the stored value for stores. | 
|  | if (MI.mayStore()) | 
|  | MIB.add(getStoredValueOp(MI)); | 
|  | MIB.cloneMemRefs(MI); | 
|  | MBB.erase(MI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | dbgs() << '\n' << MI; | 
|  | #endif | 
|  | llvm_unreachable("Unhandled exact replacement"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Replace the extender ED with a form corresponding to the initializer ExtI. | 
|  | bool HCE::replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI, | 
|  | Register ExtR, int32_t &Diff) { | 
|  | MachineInstr &MI = *ED.UseMI; | 
|  | MachineBasicBlock &MBB = *MI.getParent(); | 
|  | MachineBasicBlock::iterator At = MI.getIterator(); | 
|  | DebugLoc dl = MI.getDebugLoc(); | 
|  | unsigned ExtOpc = MI.getOpcode(); | 
|  |  | 
|  | if (ExtOpc == Hexagon::A2_tfrsi) { | 
|  | // A2_tfrsi is a special case: it's replaced with A2_addi, which introduces | 
|  | // another range. One range is the one that's common to all tfrsi's uses, | 
|  | // this one is the range of immediates in A2_addi. When calculating ranges, | 
|  | // the addi's 16-bit argument was included, so now we need to make it such | 
|  | // that the produced value is in the range for the uses alone. | 
|  | // Most of the time, simply adding Diff will make the addi produce exact | 
|  | // result, but if Diff is outside of the 16-bit range, some adjustment | 
|  | // will be needed. | 
|  | unsigned IdxOpc = getRegOffOpcode(ExtOpc); | 
|  | assert(IdxOpc == Hexagon::A2_addi); | 
|  |  | 
|  | // Clamp Diff to the 16 bit range. | 
|  | int32_t D = isInt<16>(Diff) ? Diff : (Diff > 0 ? 32767 : -32768); | 
|  | if (Diff > 32767) { | 
|  | // Split Diff into two values: one that is close to min/max int16, | 
|  | // and the other being the rest, and such that both have the same | 
|  | // "alignment" as Diff. | 
|  | uint32_t UD = Diff; | 
|  | OffsetRange R = getOffsetRange(MI.getOperand(0)); | 
|  | uint32_t A = std::min<uint32_t>(R.Align, 1u << countTrailingZeros(UD)); | 
|  | D &= ~(A-1); | 
|  | } | 
|  | BuildMI(MBB, At, dl, HII->get(IdxOpc)) | 
|  | .add(MI.getOperand(0)) | 
|  | .add(MachineOperand(ExtR)) | 
|  | .addImm(D); | 
|  | Diff -= D; | 
|  | #ifndef NDEBUG | 
|  | // Make sure the output is within allowable range for uses. | 
|  | // "Diff" is a difference in the "opposite direction", i.e. Ext - DefV, | 
|  | // not DefV - Ext, as the getOffsetRange would calculate. | 
|  | OffsetRange Uses = getOffsetRange(MI.getOperand(0)); | 
|  | if (!Uses.contains(-Diff)) | 
|  | dbgs() << "Diff: " << -Diff << " out of range " << Uses | 
|  | << " for " << MI; | 
|  | assert(Uses.contains(-Diff)); | 
|  | #endif | 
|  | MBB.erase(MI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const ExtValue &EV = ExtI.first; (void)EV; | 
|  | const ExtExpr &Ex = ExtI.second; (void)Ex; | 
|  |  | 
|  | if (ExtOpc == Hexagon::A2_addi || ExtOpc == Hexagon::A2_subri) { | 
|  | // If addi/subri are replaced with the exactly matching initializer, | 
|  | // they amount to COPY. | 
|  | // Check that the initializer is an exact match (for simplicity). | 
|  | #ifndef NDEBUG | 
|  | bool IsAddi = ExtOpc == Hexagon::A2_addi; | 
|  | const MachineOperand &RegOp = MI.getOperand(IsAddi ? 1 : 2); | 
|  | const MachineOperand &ImmOp = MI.getOperand(IsAddi ? 2 : 1); | 
|  | assert(Ex.Rs == RegOp && EV == ImmOp && Ex.Neg != IsAddi && | 
|  | "Initializer mismatch"); | 
|  | #endif | 
|  | BuildMI(MBB, At, dl, HII->get(TargetOpcode::COPY)) | 
|  | .add(MI.getOperand(0)) | 
|  | .add(MachineOperand(ExtR)); | 
|  | Diff = 0; | 
|  | MBB.erase(MI); | 
|  | return true; | 
|  | } | 
|  | if (ExtOpc == Hexagon::M2_accii || ExtOpc == Hexagon::M2_naccii || | 
|  | ExtOpc == Hexagon::S4_addaddi || ExtOpc == Hexagon::S4_subaddi) { | 
|  | // M2_accii:    add(Rt,add(Rs,V)) (tied) | 
|  | // M2_naccii:   sub(Rt,add(Rs,V)) | 
|  | // S4_addaddi:  add(Rt,add(Rs,V)) | 
|  | // S4_subaddi:  add(Rt,sub(V,Rs)) | 
|  | // Check that Rs and V match the initializer expression. The Rs+V is the | 
|  | // combination that is considered "subexpression" for V, although Rx+V | 
|  | // would also be valid. | 
|  | #ifndef NDEBUG | 
|  | bool IsSub = ExtOpc == Hexagon::S4_subaddi; | 
|  | Register Rs = MI.getOperand(IsSub ? 3 : 2); | 
|  | ExtValue V = MI.getOperand(IsSub ? 2 : 3); | 
|  | assert(EV == V && Rs == Ex.Rs && IsSub == Ex.Neg && "Initializer mismatch"); | 
|  | #endif | 
|  | unsigned NewOpc = ExtOpc == Hexagon::M2_naccii ? Hexagon::A2_sub | 
|  | : Hexagon::A2_add; | 
|  | BuildMI(MBB, At, dl, HII->get(NewOpc)) | 
|  | .add(MI.getOperand(0)) | 
|  | .add(MI.getOperand(1)) | 
|  | .add(MachineOperand(ExtR)); | 
|  | MBB.erase(MI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (MI.mayLoad() || MI.mayStore()) { | 
|  | unsigned IdxOpc = getRegOffOpcode(ExtOpc); | 
|  | assert(IdxOpc && "Expecting indexed opcode"); | 
|  | MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(IdxOpc)); | 
|  | // Construct the new indexed instruction. | 
|  | // First, add the def for loads. | 
|  | if (MI.mayLoad()) | 
|  | MIB.add(getLoadResultOp(MI)); | 
|  | // Handle possible predication. | 
|  | if (HII->isPredicated(MI)) | 
|  | MIB.add(getPredicateOp(MI)); | 
|  | // Build the address. | 
|  | MIB.add(MachineOperand(ExtR)); | 
|  | MIB.addImm(Diff); | 
|  | // Add the stored value for stores. | 
|  | if (MI.mayStore()) | 
|  | MIB.add(getStoredValueOp(MI)); | 
|  | MIB.cloneMemRefs(MI); | 
|  | MBB.erase(MI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | dbgs() << '\n' << PrintInit(ExtI, *HRI) << "  " << MI; | 
|  | #endif | 
|  | llvm_unreachable("Unhandled expr replacement"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HCE::replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI) { | 
|  | if (ReplaceLimit.getNumOccurrences()) { | 
|  | if (ReplaceLimit <= ReplaceCounter) | 
|  | return false; | 
|  | ++ReplaceCounter; | 
|  | } | 
|  | const ExtDesc &ED = Extenders[Idx]; | 
|  | assert((!ED.IsDef || ED.Rd.Reg != 0) && "Missing Rd for def"); | 
|  | const ExtValue &DefV = ExtI.first; | 
|  | assert(ExtRoot(ExtValue(ED)) == ExtRoot(DefV) && "Extender root mismatch"); | 
|  | const ExtExpr &DefEx = ExtI.second; | 
|  |  | 
|  | ExtValue EV(ED); | 
|  | int32_t Diff = EV.Offset - DefV.Offset; | 
|  | const MachineInstr &MI = *ED.UseMI; | 
|  | LLVM_DEBUG(dbgs() << __func__ << " Idx:" << Idx << " ExtR:" | 
|  | << PrintRegister(ExtR, *HRI) << " Diff:" << Diff << '\n'); | 
|  |  | 
|  | // These two addressing modes must be converted into indexed forms | 
|  | // regardless of what the initializer looks like. | 
|  | bool IsAbs = false, IsAbsSet = false; | 
|  | if (MI.mayLoad() || MI.mayStore()) { | 
|  | unsigned AM = HII->getAddrMode(MI); | 
|  | IsAbs = AM == HexagonII::Absolute; | 
|  | IsAbsSet = AM == HexagonII::AbsoluteSet; | 
|  | } | 
|  |  | 
|  | // If it's a def, remember all operands that need to be updated. | 
|  | // If ED is a def, and Diff is not 0, then all uses of the register Rd | 
|  | // defined by ED must be in the form (Rd, imm), i.e. the immediate offset | 
|  | // must follow the Rd in the operand list. | 
|  | std::vector<std::pair<MachineInstr*,unsigned>> RegOps; | 
|  | if (ED.IsDef && Diff != 0) { | 
|  | for (MachineOperand &Op : MRI->use_operands(ED.Rd.Reg)) { | 
|  | MachineInstr &UI = *Op.getParent(); | 
|  | RegOps.push_back({&UI, getOperandIndex(UI, Op)}); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Replace the instruction. | 
|  | bool Replaced = false; | 
|  | if (Diff == 0 && DefEx.trivial() && !IsAbs && !IsAbsSet) | 
|  | Replaced = replaceInstrExact(ED, ExtR); | 
|  | else | 
|  | Replaced = replaceInstrExpr(ED, ExtI, ExtR, Diff); | 
|  |  | 
|  | if (Diff != 0 && Replaced && ED.IsDef) { | 
|  | // Update offsets of the def's uses. | 
|  | for (std::pair<MachineInstr*,unsigned> P : RegOps) { | 
|  | unsigned J = P.second; | 
|  | assert(P.first->getNumOperands() > J+1 && | 
|  | P.first->getOperand(J+1).isImm()); | 
|  | MachineOperand &ImmOp = P.first->getOperand(J+1); | 
|  | ImmOp.setImm(ImmOp.getImm() + Diff); | 
|  | } | 
|  | // If it was an absolute-set instruction, the "set" part has been removed. | 
|  | // ExtR will now be the register with the extended value, and since all | 
|  | // users of Rd have been updated, all that needs to be done is to replace | 
|  | // Rd with ExtR. | 
|  | if (IsAbsSet) { | 
|  | assert(ED.Rd.Sub == 0 && ExtR.Sub == 0); | 
|  | MRI->replaceRegWith(ED.Rd.Reg, ExtR.Reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Replaced; | 
|  | } | 
|  |  | 
|  | bool HCE::replaceExtenders(const AssignmentMap &IMap) { | 
|  | LocDefList Defs; | 
|  | bool Changed = false; | 
|  |  | 
|  | for (const std::pair<ExtenderInit,IndexList> &P : IMap) { | 
|  | const IndexList &Idxs = P.second; | 
|  | if (Idxs.size() < CountThreshold) | 
|  | continue; | 
|  |  | 
|  | Defs.clear(); | 
|  | calculatePlacement(P.first, Idxs, Defs); | 
|  | for (const std::pair<Loc,IndexList> &Q : Defs) { | 
|  | Register DefR = insertInitializer(Q.first, P.first); | 
|  | NewRegs.push_back(DefR.Reg); | 
|  | for (unsigned I : Q.second) | 
|  | Changed |= replaceInstr(I, DefR, P.first); | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | unsigned HCE::getOperandIndex(const MachineInstr &MI, | 
|  | const MachineOperand &Op) const { | 
|  | for (unsigned i = 0, n = MI.getNumOperands(); i != n; ++i) | 
|  | if (&MI.getOperand(i) == &Op) | 
|  | return i; | 
|  | llvm_unreachable("Not an operand of MI"); | 
|  | } | 
|  |  | 
|  | const MachineOperand &HCE::getPredicateOp(const MachineInstr &MI) const { | 
|  | assert(HII->isPredicated(MI)); | 
|  | for (const MachineOperand &Op : MI.operands()) { | 
|  | if (!Op.isReg() || !Op.isUse() || | 
|  | MRI->getRegClass(Op.getReg()) != &Hexagon::PredRegsRegClass) | 
|  | continue; | 
|  | assert(Op.getSubReg() == 0 && "Predicate register with a subregister"); | 
|  | return Op; | 
|  | } | 
|  | llvm_unreachable("Predicate operand not found"); | 
|  | } | 
|  |  | 
|  | const MachineOperand &HCE::getLoadResultOp(const MachineInstr &MI) const { | 
|  | assert(MI.mayLoad()); | 
|  | return MI.getOperand(0); | 
|  | } | 
|  |  | 
|  | const MachineOperand &HCE::getStoredValueOp(const MachineInstr &MI) const { | 
|  | assert(MI.mayStore()); | 
|  | return MI.getOperand(MI.getNumExplicitOperands()-1); | 
|  | } | 
|  |  | 
|  | bool HCE::runOnMachineFunction(MachineFunction &MF) { | 
|  | if (skipFunction(MF.getFunction())) | 
|  | return false; | 
|  | if (MF.getFunction().hasPersonalityFn()) { | 
|  | LLVM_DEBUG(dbgs() << getPassName() << ": skipping " << MF.getName() | 
|  | << " due to exception handling\n"); | 
|  | return false; | 
|  | } | 
|  | LLVM_DEBUG(MF.print(dbgs() << "Before " << getPassName() << '\n', nullptr)); | 
|  |  | 
|  | HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); | 
|  | HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
|  | MDT = &getAnalysis<MachineDominatorTree>(); | 
|  | MRI = &MF.getRegInfo(); | 
|  | AssignmentMap IMap; | 
|  |  | 
|  | collect(MF); | 
|  | llvm::sort(Extenders, [this](const ExtDesc &A, const ExtDesc &B) { | 
|  | ExtValue VA(A), VB(B); | 
|  | if (VA != VB) | 
|  | return VA < VB; | 
|  | const MachineInstr *MA = A.UseMI; | 
|  | const MachineInstr *MB = B.UseMI; | 
|  | if (MA == MB) { | 
|  | // If it's the same instruction, compare operand numbers. | 
|  | return A.OpNum < B.OpNum; | 
|  | } | 
|  |  | 
|  | const MachineBasicBlock *BA = MA->getParent(); | 
|  | const MachineBasicBlock *BB = MB->getParent(); | 
|  | assert(BA->getNumber() != -1 && BB->getNumber() != -1); | 
|  | if (BA != BB) | 
|  | return BA->getNumber() < BB->getNumber(); | 
|  | return MDT->dominates(MA, MB); | 
|  | }); | 
|  |  | 
|  | bool Changed = false; | 
|  | LLVM_DEBUG(dbgs() << "Collected " << Extenders.size() << " extenders\n"); | 
|  | for (unsigned I = 0, E = Extenders.size(); I != E; ) { | 
|  | unsigned B = I; | 
|  | const ExtRoot &T = Extenders[B].getOp(); | 
|  | while (I != E && ExtRoot(Extenders[I].getOp()) == T) | 
|  | ++I; | 
|  |  | 
|  | IMap.clear(); | 
|  | assignInits(T, B, I, IMap); | 
|  | Changed |= replaceExtenders(IMap); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | if (Changed) | 
|  | MF.print(dbgs() << "After " << getPassName() << '\n', nullptr); | 
|  | else | 
|  | dbgs() << "No changes\n"; | 
|  | }); | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | FunctionPass *llvm::createHexagonConstExtenders() { | 
|  | return new HexagonConstExtenders(); | 
|  | } |