|  | //===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the C++ related Decl classes. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/AST/DeclTemplate.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/ASTMutationListener.h" | 
|  | #include "clang/AST/CXXInheritance.h" | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/TypeLoc.h" | 
|  | #include "clang/Basic/IdentifierTable.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | using namespace clang; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Decl Allocation/Deallocation Method Implementations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D) | 
|  | : UserDeclaredConstructor(false), UserDeclaredCopyConstructor(false), | 
|  | UserDeclaredMoveConstructor(false), UserDeclaredCopyAssignment(false), | 
|  | UserDeclaredMoveAssignment(false), UserDeclaredDestructor(false), | 
|  | Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false), | 
|  | Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true), | 
|  | HasPrivateFields(false), HasProtectedFields(false), HasPublicFields(false), | 
|  | HasMutableFields(false), HasTrivialDefaultConstructor(true), | 
|  | HasConstExprNonCopyMoveConstructor(false), HasTrivialCopyConstructor(true), | 
|  | HasTrivialMoveConstructor(true), HasTrivialCopyAssignment(true), | 
|  | HasTrivialMoveAssignment(true), HasTrivialDestructor(true), | 
|  | HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false), | 
|  | UserProvidedDefaultConstructor(false), DeclaredDefaultConstructor(false), | 
|  | DeclaredCopyConstructor(false), DeclaredMoveConstructor(false), | 
|  | DeclaredCopyAssignment(false), DeclaredMoveAssignment(false), | 
|  | DeclaredDestructor(false), NumBases(0), NumVBases(0), Bases(), VBases(), | 
|  | Definition(D), FirstFriend(0) { | 
|  | } | 
|  |  | 
|  | CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC, | 
|  | SourceLocation StartLoc, SourceLocation IdLoc, | 
|  | IdentifierInfo *Id, CXXRecordDecl *PrevDecl) | 
|  | : RecordDecl(K, TK, DC, StartLoc, IdLoc, Id, PrevDecl), | 
|  | DefinitionData(PrevDecl ? PrevDecl->DefinitionData : 0), | 
|  | TemplateOrInstantiation() { } | 
|  |  | 
|  | CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK, | 
|  | DeclContext *DC, SourceLocation StartLoc, | 
|  | SourceLocation IdLoc, IdentifierInfo *Id, | 
|  | CXXRecordDecl* PrevDecl, | 
|  | bool DelayTypeCreation) { | 
|  | CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, StartLoc, IdLoc, | 
|  | Id, PrevDecl); | 
|  |  | 
|  | // FIXME: DelayTypeCreation seems like such a hack | 
|  | if (!DelayTypeCreation) | 
|  | C.getTypeDeclType(R, PrevDecl); | 
|  | return R; | 
|  | } | 
|  |  | 
|  | CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, EmptyShell Empty) { | 
|  | return new (C) CXXRecordDecl(CXXRecord, TTK_Struct, 0, SourceLocation(), | 
|  | SourceLocation(), 0, 0); | 
|  | } | 
|  |  | 
|  | void | 
|  | CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases, | 
|  | unsigned NumBases) { | 
|  | ASTContext &C = getASTContext(); | 
|  |  | 
|  | // C++ [dcl.init.aggr]p1: | 
|  | //   An aggregate is an array or a class (clause 9) with [...] | 
|  | //   no base classes [...]. | 
|  | data().Aggregate = false; | 
|  |  | 
|  | if (!data().Bases.isOffset() && data().NumBases > 0) | 
|  | C.Deallocate(data().getBases()); | 
|  |  | 
|  | // The set of seen virtual base types. | 
|  | llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes; | 
|  |  | 
|  | // The virtual bases of this class. | 
|  | SmallVector<const CXXBaseSpecifier *, 8> VBases; | 
|  |  | 
|  | data().Bases = new(C) CXXBaseSpecifier [NumBases]; | 
|  | data().NumBases = NumBases; | 
|  | for (unsigned i = 0; i < NumBases; ++i) { | 
|  | data().getBases()[i] = *Bases[i]; | 
|  | // Keep track of inherited vbases for this base class. | 
|  | const CXXBaseSpecifier *Base = Bases[i]; | 
|  | QualType BaseType = Base->getType(); | 
|  | // Skip dependent types; we can't do any checking on them now. | 
|  | if (BaseType->isDependentType()) | 
|  | continue; | 
|  | CXXRecordDecl *BaseClassDecl | 
|  | = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); | 
|  |  | 
|  | // C++ [dcl.init.aggr]p1: | 
|  | //   An aggregate is [...] a class with [...] no base classes [...]. | 
|  | data().Aggregate = false; | 
|  |  | 
|  | // C++ [class]p4: | 
|  | //   A POD-struct is an aggregate class... | 
|  | data().PlainOldData = false; | 
|  |  | 
|  | // A class with a non-empty base class is not empty. | 
|  | // FIXME: Standard ref? | 
|  | if (!BaseClassDecl->isEmpty()) { | 
|  | if (!data().Empty) { | 
|  | // C++0x [class]p7: | 
|  | //   A standard-layout class is a class that: | 
|  | //    [...] | 
|  | //    -- either has no non-static data members in the most derived | 
|  | //       class and at most one base class with non-static data members, | 
|  | //       or has no base classes with non-static data members, and | 
|  | // If this is the second non-empty base, then neither of these two | 
|  | // clauses can be true. | 
|  | data().IsStandardLayout = false; | 
|  | } | 
|  |  | 
|  | data().Empty = false; | 
|  | data().HasNoNonEmptyBases = false; | 
|  | } | 
|  |  | 
|  | // C++ [class.virtual]p1: | 
|  | //   A class that declares or inherits a virtual function is called a | 
|  | //   polymorphic class. | 
|  | if (BaseClassDecl->isPolymorphic()) | 
|  | data().Polymorphic = true; | 
|  |  | 
|  | // C++0x [class]p7: | 
|  | //   A standard-layout class is a class that: [...] | 
|  | //    -- has no non-standard-layout base classes | 
|  | if (!BaseClassDecl->isStandardLayout()) | 
|  | data().IsStandardLayout = false; | 
|  |  | 
|  | // Record if this base is the first non-literal field or base. | 
|  | if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType()) | 
|  | data().HasNonLiteralTypeFieldsOrBases = true; | 
|  |  | 
|  | // Now go through all virtual bases of this base and add them. | 
|  | for (CXXRecordDecl::base_class_iterator VBase = | 
|  | BaseClassDecl->vbases_begin(), | 
|  | E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) { | 
|  | // Add this base if it's not already in the list. | 
|  | if (SeenVBaseTypes.insert(C.getCanonicalType(VBase->getType()))) | 
|  | VBases.push_back(VBase); | 
|  | } | 
|  |  | 
|  | if (Base->isVirtual()) { | 
|  | // Add this base if it's not already in the list. | 
|  | if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType))) | 
|  | VBases.push_back(Base); | 
|  |  | 
|  | // C++0x [meta.unary.prop] is_empty: | 
|  | //    T is a class type, but not a union type, with ... no virtual base | 
|  | //    classes | 
|  | data().Empty = false; | 
|  |  | 
|  | // C++ [class.ctor]p5: | 
|  | //   A default constructor is trivial [...] if: | 
|  | //    -- its class has [...] no virtual bases | 
|  | data().HasTrivialDefaultConstructor = false; | 
|  |  | 
|  | // C++0x [class.copy]p13: | 
|  | //   A copy/move constructor for class X is trivial if it is neither | 
|  | //   user-provided nor deleted and if | 
|  | //    -- class X has no virtual functions and no virtual base classes, and | 
|  | data().HasTrivialCopyConstructor = false; | 
|  | data().HasTrivialMoveConstructor = false; | 
|  |  | 
|  | // C++0x [class.copy]p27: | 
|  | //   A copy/move assignment operator for class X is trivial if it is | 
|  | //   neither user-provided nor deleted and if | 
|  | //    -- class X has no virtual functions and no virtual base classes, and | 
|  | data().HasTrivialCopyAssignment = false; | 
|  | data().HasTrivialMoveAssignment = false; | 
|  |  | 
|  | // C++0x [class]p7: | 
|  | //   A standard-layout class is a class that: [...] | 
|  | //    -- has [...] no virtual base classes | 
|  | data().IsStandardLayout = false; | 
|  | } else { | 
|  | // C++ [class.ctor]p5: | 
|  | //   A default constructor is trivial [...] if: | 
|  | //    -- all the direct base classes of its class have trivial default | 
|  | //       constructors. | 
|  | if (!BaseClassDecl->hasTrivialDefaultConstructor()) | 
|  | data().HasTrivialDefaultConstructor = false; | 
|  |  | 
|  | // C++0x [class.copy]p13: | 
|  | //   A copy/move constructor for class X is trivial if [...] | 
|  | //    [...] | 
|  | //    -- the constructor selected to copy/move each direct base class | 
|  | //       subobject is trivial, and | 
|  | // FIXME: C++0x: We need to only consider the selected constructor | 
|  | // instead of all of them. | 
|  | if (!BaseClassDecl->hasTrivialCopyConstructor()) | 
|  | data().HasTrivialCopyConstructor = false; | 
|  | if (!BaseClassDecl->hasTrivialMoveConstructor()) | 
|  | data().HasTrivialMoveConstructor = false; | 
|  |  | 
|  | // C++0x [class.copy]p27: | 
|  | //   A copy/move assignment operator for class X is trivial if [...] | 
|  | //    [...] | 
|  | //    -- the assignment operator selected to copy/move each direct base | 
|  | //       class subobject is trivial, and | 
|  | // FIXME: C++0x: We need to only consider the selected operator instead | 
|  | // of all of them. | 
|  | if (!BaseClassDecl->hasTrivialCopyAssignment()) | 
|  | data().HasTrivialCopyAssignment = false; | 
|  | if (!BaseClassDecl->hasTrivialMoveAssignment()) | 
|  | data().HasTrivialMoveAssignment = false; | 
|  | } | 
|  |  | 
|  | // C++ [class.ctor]p3: | 
|  | //   A destructor is trivial if all the direct base classes of its class | 
|  | //   have trivial destructors. | 
|  | if (!BaseClassDecl->hasTrivialDestructor()) | 
|  | data().HasTrivialDestructor = false; | 
|  |  | 
|  | // A class has an Objective-C object member if... or any of its bases | 
|  | // has an Objective-C object member. | 
|  | if (BaseClassDecl->hasObjectMember()) | 
|  | setHasObjectMember(true); | 
|  |  | 
|  | // Keep track of the presence of mutable fields. | 
|  | if (BaseClassDecl->hasMutableFields()) | 
|  | data().HasMutableFields = true; | 
|  | } | 
|  |  | 
|  | if (VBases.empty()) | 
|  | return; | 
|  |  | 
|  | // Create base specifier for any direct or indirect virtual bases. | 
|  | data().VBases = new (C) CXXBaseSpecifier[VBases.size()]; | 
|  | data().NumVBases = VBases.size(); | 
|  | for (int I = 0, E = VBases.size(); I != E; ++I) | 
|  | data().getVBases()[I] = *VBases[I]; | 
|  | } | 
|  |  | 
|  | /// Callback function for CXXRecordDecl::forallBases that acknowledges | 
|  | /// that it saw a base class. | 
|  | static bool SawBase(const CXXRecordDecl *, void *) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool CXXRecordDecl::hasAnyDependentBases() const { | 
|  | if (!isDependentContext()) | 
|  | return false; | 
|  |  | 
|  | return !forallBases(SawBase, 0); | 
|  | } | 
|  |  | 
|  | bool CXXRecordDecl::hasConstCopyConstructor() const { | 
|  | return getCopyConstructor(Qualifiers::Const) != 0; | 
|  | } | 
|  |  | 
|  | bool CXXRecordDecl::isTriviallyCopyable() const { | 
|  | // C++0x [class]p5: | 
|  | //   A trivially copyable class is a class that: | 
|  | //   -- has no non-trivial copy constructors, | 
|  | if (!hasTrivialCopyConstructor()) return false; | 
|  | //   -- has no non-trivial move constructors, | 
|  | if (!hasTrivialMoveConstructor()) return false; | 
|  | //   -- has no non-trivial copy assignment operators, | 
|  | if (!hasTrivialCopyAssignment()) return false; | 
|  | //   -- has no non-trivial move assignment operators, and | 
|  | if (!hasTrivialMoveAssignment()) return false; | 
|  | //   -- has a trivial destructor. | 
|  | if (!hasTrivialDestructor()) return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Perform a simplistic form of overload resolution that only considers | 
|  | /// cv-qualifiers on a single parameter, and return the best overload candidate | 
|  | /// (if there is one). | 
|  | static CXXMethodDecl * | 
|  | GetBestOverloadCandidateSimple( | 
|  | const SmallVectorImpl<std::pair<CXXMethodDecl *, Qualifiers> > &Cands) { | 
|  | if (Cands.empty()) | 
|  | return 0; | 
|  | if (Cands.size() == 1) | 
|  | return Cands[0].first; | 
|  |  | 
|  | unsigned Best = 0, N = Cands.size(); | 
|  | for (unsigned I = 1; I != N; ++I) | 
|  | if (Cands[Best].second.compatiblyIncludes(Cands[I].second)) | 
|  | Best = I; | 
|  |  | 
|  | for (unsigned I = 1; I != N; ++I) | 
|  | if (Cands[Best].second.compatiblyIncludes(Cands[I].second)) | 
|  | return 0; | 
|  |  | 
|  | return Cands[Best].first; | 
|  | } | 
|  |  | 
|  | CXXConstructorDecl *CXXRecordDecl::getCopyConstructor(unsigned TypeQuals) const{ | 
|  | ASTContext &Context = getASTContext(); | 
|  | QualType ClassType | 
|  | = Context.getTypeDeclType(const_cast<CXXRecordDecl*>(this)); | 
|  | DeclarationName ConstructorName | 
|  | = Context.DeclarationNames.getCXXConstructorName( | 
|  | Context.getCanonicalType(ClassType)); | 
|  | unsigned FoundTQs; | 
|  | SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found; | 
|  | DeclContext::lookup_const_iterator Con, ConEnd; | 
|  | for (llvm::tie(Con, ConEnd) = this->lookup(ConstructorName); | 
|  | Con != ConEnd; ++Con) { | 
|  | // C++ [class.copy]p2: | 
|  | //   A non-template constructor for class X is a copy constructor if [...] | 
|  | if (isa<FunctionTemplateDecl>(*Con)) | 
|  | continue; | 
|  |  | 
|  | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); | 
|  | if (Constructor->isCopyConstructor(FoundTQs)) { | 
|  | if (((TypeQuals & Qualifiers::Const) == (FoundTQs & Qualifiers::Const)) || | 
|  | (!(TypeQuals & Qualifiers::Const) && (FoundTQs & Qualifiers::Const))) | 
|  | Found.push_back(std::make_pair( | 
|  | const_cast<CXXConstructorDecl *>(Constructor), | 
|  | Qualifiers::fromCVRMask(FoundTQs))); | 
|  | } | 
|  | } | 
|  |  | 
|  | return cast_or_null<CXXConstructorDecl>( | 
|  | GetBestOverloadCandidateSimple(Found)); | 
|  | } | 
|  |  | 
|  | CXXConstructorDecl *CXXRecordDecl::getMoveConstructor() const { | 
|  | for (ctor_iterator I = ctor_begin(), E = ctor_end(); I != E; ++I) | 
|  | if (I->isMoveConstructor()) | 
|  | return *I; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | CXXMethodDecl *CXXRecordDecl::getCopyAssignmentOperator(bool ArgIsConst) const { | 
|  | ASTContext &Context = getASTContext(); | 
|  | QualType Class = Context.getTypeDeclType(const_cast<CXXRecordDecl *>(this)); | 
|  | DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); | 
|  |  | 
|  | SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found; | 
|  | DeclContext::lookup_const_iterator Op, OpEnd; | 
|  | for (llvm::tie(Op, OpEnd) = this->lookup(Name); Op != OpEnd; ++Op) { | 
|  | // C++ [class.copy]p9: | 
|  | //   A user-declared copy assignment operator is a non-static non-template | 
|  | //   member function of class X with exactly one parameter of type X, X&, | 
|  | //   const X&, volatile X& or const volatile X&. | 
|  | const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op); | 
|  | if (!Method || Method->isStatic() || Method->getPrimaryTemplate()) | 
|  | continue; | 
|  |  | 
|  | const FunctionProtoType *FnType | 
|  | = Method->getType()->getAs<FunctionProtoType>(); | 
|  | assert(FnType && "Overloaded operator has no prototype."); | 
|  | // Don't assert on this; an invalid decl might have been left in the AST. | 
|  | if (FnType->getNumArgs() != 1 || FnType->isVariadic()) | 
|  | continue; | 
|  |  | 
|  | QualType ArgType = FnType->getArgType(0); | 
|  | Qualifiers Quals; | 
|  | if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()) { | 
|  | ArgType = Ref->getPointeeType(); | 
|  | // If we have a const argument and we have a reference to a non-const, | 
|  | // this function does not match. | 
|  | if (ArgIsConst && !ArgType.isConstQualified()) | 
|  | continue; | 
|  |  | 
|  | Quals = ArgType.getQualifiers(); | 
|  | } else { | 
|  | // By-value copy-assignment operators are treated like const X& | 
|  | // copy-assignment operators. | 
|  | Quals = Qualifiers::fromCVRMask(Qualifiers::Const); | 
|  | } | 
|  |  | 
|  | if (!Context.hasSameUnqualifiedType(ArgType, Class)) | 
|  | continue; | 
|  |  | 
|  | // Save this copy-assignment operator. It might be "the one". | 
|  | Found.push_back(std::make_pair(const_cast<CXXMethodDecl *>(Method), Quals)); | 
|  | } | 
|  |  | 
|  | // Use a simplistic form of overload resolution to find the candidate. | 
|  | return GetBestOverloadCandidateSimple(Found); | 
|  | } | 
|  |  | 
|  | CXXMethodDecl *CXXRecordDecl::getMoveAssignmentOperator() const { | 
|  | for (method_iterator I = method_begin(), E = method_end(); I != E; ++I) | 
|  | if (I->isMoveAssignmentOperator()) | 
|  | return *I; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void CXXRecordDecl::markedVirtualFunctionPure() { | 
|  | // C++ [class.abstract]p2: | 
|  | //   A class is abstract if it has at least one pure virtual function. | 
|  | data().Abstract = true; | 
|  | } | 
|  |  | 
|  | void CXXRecordDecl::addedMember(Decl *D) { | 
|  | // Ignore friends and invalid declarations. | 
|  | if (D->getFriendObjectKind() || D->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); | 
|  | if (FunTmpl) | 
|  | D = FunTmpl->getTemplatedDecl(); | 
|  |  | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { | 
|  | if (Method->isVirtual()) { | 
|  | // C++ [dcl.init.aggr]p1: | 
|  | //   An aggregate is an array or a class with [...] no virtual functions. | 
|  | data().Aggregate = false; | 
|  |  | 
|  | // C++ [class]p4: | 
|  | //   A POD-struct is an aggregate class... | 
|  | data().PlainOldData = false; | 
|  |  | 
|  | // Virtual functions make the class non-empty. | 
|  | // FIXME: Standard ref? | 
|  | data().Empty = false; | 
|  |  | 
|  | // C++ [class.virtual]p1: | 
|  | //   A class that declares or inherits a virtual function is called a | 
|  | //   polymorphic class. | 
|  | data().Polymorphic = true; | 
|  |  | 
|  | // C++0x [class.ctor]p5 | 
|  | //   A default constructor is trivial [...] if: | 
|  | //    -- its class has no virtual functions [...] | 
|  | data().HasTrivialDefaultConstructor = false; | 
|  |  | 
|  | // C++0x [class.copy]p13: | 
|  | //   A copy/move constructor for class X is trivial if [...] | 
|  | //    -- class X has no virtual functions [...] | 
|  | data().HasTrivialCopyConstructor = false; | 
|  | data().HasTrivialMoveConstructor = false; | 
|  |  | 
|  | // C++0x [class.copy]p27: | 
|  | //   A copy/move assignment operator for class X is trivial if [...] | 
|  | //    -- class X has no virtual functions [...] | 
|  | data().HasTrivialCopyAssignment = false; | 
|  | data().HasTrivialMoveAssignment = false; | 
|  | // FIXME: Destructor? | 
|  |  | 
|  | // C++0x [class]p7: | 
|  | //   A standard-layout class is a class that: [...] | 
|  | //    -- has no virtual functions | 
|  | data().IsStandardLayout = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (D->isImplicit()) { | 
|  | // Notify that an implicit member was added after the definition | 
|  | // was completed. | 
|  | if (!isBeingDefined()) | 
|  | if (ASTMutationListener *L = getASTMutationListener()) | 
|  | L->AddedCXXImplicitMember(data().Definition, D); | 
|  |  | 
|  | // If this is a special member function, note that it was added and then | 
|  | // return early. | 
|  | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { | 
|  | if (Constructor->isDefaultConstructor()) | 
|  | data().DeclaredDefaultConstructor = true; | 
|  | else if (Constructor->isCopyConstructor()) | 
|  | data().DeclaredCopyConstructor = true; | 
|  | else if (Constructor->isMoveConstructor()) | 
|  | data().DeclaredMoveConstructor = true; | 
|  | else | 
|  | goto NotASpecialMember; | 
|  | return; | 
|  | } else if (isa<CXXDestructorDecl>(D)) { | 
|  | data().DeclaredDestructor = true; | 
|  | return; | 
|  | } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { | 
|  | if (Method->isCopyAssignmentOperator()) | 
|  | data().DeclaredCopyAssignment = true; | 
|  | else if (Method->isMoveAssignmentOperator()) | 
|  | data().DeclaredMoveAssignment = true; | 
|  | else | 
|  | goto NotASpecialMember; | 
|  | return; | 
|  | } | 
|  |  | 
|  | NotASpecialMember:; | 
|  | // Any other implicit declarations are handled like normal declarations. | 
|  | } | 
|  |  | 
|  | // Handle (user-declared) constructors. | 
|  | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { | 
|  | // Note that we have a user-declared constructor. | 
|  | data().UserDeclaredConstructor = true; | 
|  |  | 
|  | // FIXME: Under C++0x, /only/ special member functions may be user-provided. | 
|  | //        This is probably a defect. | 
|  | bool UserProvided = false; | 
|  |  | 
|  | // C++0x [class.ctor]p5: | 
|  | //   A default constructor is trivial if it is not user-provided [...] | 
|  | if (Constructor->isDefaultConstructor()) { | 
|  | data().DeclaredDefaultConstructor = true; | 
|  | if (Constructor->isUserProvided()) { | 
|  | data().HasTrivialDefaultConstructor = false; | 
|  | data().UserProvidedDefaultConstructor = true; | 
|  | UserProvided = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Note when we have a user-declared copy or move constructor, which will | 
|  | // suppress the implicit declaration of those constructors. | 
|  | if (!FunTmpl) { | 
|  | if (Constructor->isCopyConstructor()) { | 
|  | data().UserDeclaredCopyConstructor = true; | 
|  | data().DeclaredCopyConstructor = true; | 
|  |  | 
|  | // C++0x [class.copy]p13: | 
|  | //   A copy/move constructor for class X is trivial if it is not | 
|  | //   user-provided [...] | 
|  | if (Constructor->isUserProvided()) { | 
|  | data().HasTrivialCopyConstructor = false; | 
|  | UserProvided = true; | 
|  | } | 
|  | } else if (Constructor->isMoveConstructor()) { | 
|  | data().UserDeclaredMoveConstructor = true; | 
|  | data().DeclaredMoveConstructor = true; | 
|  |  | 
|  | // C++0x [class.copy]p13: | 
|  | //   A copy/move constructor for class X is trivial if it is not | 
|  | //   user-provided [...] | 
|  | if (Constructor->isUserProvided()) { | 
|  | data().HasTrivialMoveConstructor = false; | 
|  | UserProvided = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (Constructor->isConstExpr() && | 
|  | !Constructor->isCopyOrMoveConstructor()) { | 
|  | // Record if we see any constexpr constructors which are niether copy | 
|  | // nor move constructors. | 
|  | data().HasConstExprNonCopyMoveConstructor = true; | 
|  | } | 
|  |  | 
|  | // C++ [dcl.init.aggr]p1: | 
|  | //   An aggregate is an array or a class with no user-declared | 
|  | //   constructors [...]. | 
|  | // C++0x [dcl.init.aggr]p1: | 
|  | //   An aggregate is an array or a class with no user-provided | 
|  | //   constructors [...]. | 
|  | if (!getASTContext().getLangOptions().CPlusPlus0x || UserProvided) | 
|  | data().Aggregate = false; | 
|  |  | 
|  | // C++ [class]p4: | 
|  | //   A POD-struct is an aggregate class [...] | 
|  | // Since the POD bit is meant to be C++03 POD-ness, clear it even if the | 
|  | // type is technically an aggregate in C++0x since it wouldn't be in 03. | 
|  | data().PlainOldData = false; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle (user-declared) destructors. | 
|  | if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) { | 
|  | data().DeclaredDestructor = true; | 
|  | data().UserDeclaredDestructor = true; | 
|  |  | 
|  | // C++ [class]p4: | 
|  | //   A POD-struct is an aggregate class that has [...] no user-defined | 
|  | //   destructor. | 
|  | // This bit is the C++03 POD bit, not the 0x one. | 
|  | data().PlainOldData = false; | 
|  |  | 
|  | // C++0x [class.dtor]p5: | 
|  | //   A destructor is trivial if it is not user-provided and [...] | 
|  | if (DD->isUserProvided()) | 
|  | data().HasTrivialDestructor = false; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle (user-declared) member functions. | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { | 
|  | if (Method->isCopyAssignmentOperator()) { | 
|  | // C++ [class]p4: | 
|  | //   A POD-struct is an aggregate class that [...] has no user-defined | 
|  | //   copy assignment operator [...]. | 
|  | // This is the C++03 bit only. | 
|  | data().PlainOldData = false; | 
|  |  | 
|  | // This is a copy assignment operator. | 
|  |  | 
|  | // Suppress the implicit declaration of a copy constructor. | 
|  | data().UserDeclaredCopyAssignment = true; | 
|  | data().DeclaredCopyAssignment = true; | 
|  |  | 
|  | // C++0x [class.copy]p27: | 
|  | //   A copy/move assignment operator for class X is trivial if it is | 
|  | //   neither user-provided nor deleted [...] | 
|  | if (Method->isUserProvided()) | 
|  | data().HasTrivialCopyAssignment = false; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Method->isMoveAssignmentOperator()) { | 
|  | // This is an extension in C++03 mode, but we'll keep consistency by | 
|  | // taking a move assignment operator to induce non-POD-ness | 
|  | data().PlainOldData = false; | 
|  |  | 
|  | // This is a move assignment operator. | 
|  | data().UserDeclaredMoveAssignment = true; | 
|  | data().DeclaredMoveAssignment = true; | 
|  |  | 
|  | // C++0x [class.copy]p27: | 
|  | //   A copy/move assignment operator for class X is trivial if it is | 
|  | //   neither user-provided nor deleted [...] | 
|  | if (Method->isUserProvided()) | 
|  | data().HasTrivialMoveAssignment = false; | 
|  | } | 
|  |  | 
|  | // Keep the list of conversion functions up-to-date. | 
|  | if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) { | 
|  | // We don't record specializations. | 
|  | if (Conversion->getPrimaryTemplate()) | 
|  | return; | 
|  |  | 
|  | // FIXME: We intentionally don't use the decl's access here because it | 
|  | // hasn't been set yet.  That's really just a misdesign in Sema. | 
|  |  | 
|  | if (FunTmpl) { | 
|  | if (FunTmpl->getPreviousDeclaration()) | 
|  | data().Conversions.replace(FunTmpl->getPreviousDeclaration(), | 
|  | FunTmpl); | 
|  | else | 
|  | data().Conversions.addDecl(FunTmpl); | 
|  | } else { | 
|  | if (Conversion->getPreviousDeclaration()) | 
|  | data().Conversions.replace(Conversion->getPreviousDeclaration(), | 
|  | Conversion); | 
|  | else | 
|  | data().Conversions.addDecl(Conversion); | 
|  | } | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle non-static data members. | 
|  | if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) { | 
|  | // C++ [dcl.init.aggr]p1: | 
|  | //   An aggregate is an array or a class (clause 9) with [...] no | 
|  | //   private or protected non-static data members (clause 11). | 
|  | // | 
|  | // A POD must be an aggregate. | 
|  | if (D->getAccess() == AS_private || D->getAccess() == AS_protected) { | 
|  | data().Aggregate = false; | 
|  | data().PlainOldData = false; | 
|  | } | 
|  |  | 
|  | // C++0x [class]p7: | 
|  | //   A standard-layout class is a class that: | 
|  | //    [...] | 
|  | //    -- has the same access control for all non-static data members, | 
|  | switch (D->getAccess()) { | 
|  | case AS_private:    data().HasPrivateFields = true;   break; | 
|  | case AS_protected:  data().HasProtectedFields = true; break; | 
|  | case AS_public:     data().HasPublicFields = true;    break; | 
|  | case AS_none:       assert(0 && "Invalid access specifier"); | 
|  | }; | 
|  | if ((data().HasPrivateFields + data().HasProtectedFields + | 
|  | data().HasPublicFields) > 1) | 
|  | data().IsStandardLayout = false; | 
|  |  | 
|  | // Keep track of the presence of mutable fields. | 
|  | if (Field->isMutable()) | 
|  | data().HasMutableFields = true; | 
|  |  | 
|  | // C++0x [class]p9: | 
|  | //   A POD struct is a class that is both a trivial class and a | 
|  | //   standard-layout class, and has no non-static data members of type | 
|  | //   non-POD struct, non-POD union (or array of such types). | 
|  | // | 
|  | // Automatic Reference Counting: the presence of a member of Objective-C pointer type | 
|  | // that does not explicitly have no lifetime makes the class a non-POD. | 
|  | // However, we delay setting PlainOldData to false in this case so that | 
|  | // Sema has a chance to diagnostic causes where the same class will be | 
|  | // non-POD with Automatic Reference Counting but a POD without Instant Objects. | 
|  | // In this case, the class will become a non-POD class when we complete | 
|  | // the definition. | 
|  | ASTContext &Context = getASTContext(); | 
|  | QualType T = Context.getBaseElementType(Field->getType()); | 
|  | if (T->isObjCRetainableType() || T.isObjCGCStrong()) { | 
|  | if (!Context.getLangOptions().ObjCAutoRefCount || | 
|  | T.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) | 
|  | setHasObjectMember(true); | 
|  | } else if (!T.isPODType(Context)) | 
|  | data().PlainOldData = false; | 
|  |  | 
|  | if (T->isReferenceType()) { | 
|  | data().HasTrivialDefaultConstructor = false; | 
|  |  | 
|  | // C++0x [class]p7: | 
|  | //   A standard-layout class is a class that: | 
|  | //    -- has no non-static data members of type [...] reference, | 
|  | data().IsStandardLayout = false; | 
|  | } | 
|  |  | 
|  | // Record if this field is the first non-literal field or base. | 
|  | if (!hasNonLiteralTypeFieldsOrBases() && !T->isLiteralType()) | 
|  | data().HasNonLiteralTypeFieldsOrBases = true; | 
|  |  | 
|  | if (Field->hasInClassInitializer()) { | 
|  | // C++0x [class]p5: | 
|  | //   A default constructor is trivial if [...] no non-static data member | 
|  | //   of its class has a brace-or-equal-initializer. | 
|  | data().HasTrivialDefaultConstructor = false; | 
|  |  | 
|  | // C++0x [dcl.init.aggr]p1: | 
|  | //   An aggregate is a [...] class with [...] no | 
|  | //   brace-or-equal-initializers for non-static data members. | 
|  | data().Aggregate = false; | 
|  |  | 
|  | // C++0x [class]p10: | 
|  | //   A POD struct is [...] a trivial class. | 
|  | data().PlainOldData = false; | 
|  | } | 
|  |  | 
|  | if (const RecordType *RecordTy = T->getAs<RecordType>()) { | 
|  | CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl()); | 
|  | if (FieldRec->getDefinition()) { | 
|  | // C++0x [class.ctor]p5: | 
|  | //   A defulat constructor is trivial [...] if: | 
|  | //    -- for all the non-static data members of its class that are of | 
|  | //       class type (or array thereof), each such class has a trivial | 
|  | //       default constructor. | 
|  | if (!FieldRec->hasTrivialDefaultConstructor()) | 
|  | data().HasTrivialDefaultConstructor = false; | 
|  |  | 
|  | // C++0x [class.copy]p13: | 
|  | //   A copy/move constructor for class X is trivial if [...] | 
|  | //    [...] | 
|  | //    -- for each non-static data member of X that is of class type (or | 
|  | //       an array thereof), the constructor selected to copy/move that | 
|  | //       member is trivial; | 
|  | // FIXME: C++0x: We don't correctly model 'selected' constructors. | 
|  | if (!FieldRec->hasTrivialCopyConstructor()) | 
|  | data().HasTrivialCopyConstructor = false; | 
|  | if (!FieldRec->hasTrivialMoveConstructor()) | 
|  | data().HasTrivialMoveConstructor = false; | 
|  |  | 
|  | // C++0x [class.copy]p27: | 
|  | //   A copy/move assignment operator for class X is trivial if [...] | 
|  | //    [...] | 
|  | //    -- for each non-static data member of X that is of class type (or | 
|  | //       an array thereof), the assignment operator selected to | 
|  | //       copy/move that member is trivial; | 
|  | // FIXME: C++0x: We don't correctly model 'selected' operators. | 
|  | if (!FieldRec->hasTrivialCopyAssignment()) | 
|  | data().HasTrivialCopyAssignment = false; | 
|  | if (!FieldRec->hasTrivialMoveAssignment()) | 
|  | data().HasTrivialMoveAssignment = false; | 
|  |  | 
|  | if (!FieldRec->hasTrivialDestructor()) | 
|  | data().HasTrivialDestructor = false; | 
|  | if (FieldRec->hasObjectMember()) | 
|  | setHasObjectMember(true); | 
|  |  | 
|  | // C++0x [class]p7: | 
|  | //   A standard-layout class is a class that: | 
|  | //    -- has no non-static data members of type non-standard-layout | 
|  | //       class (or array of such types) [...] | 
|  | if (!FieldRec->isStandardLayout()) | 
|  | data().IsStandardLayout = false; | 
|  |  | 
|  | // C++0x [class]p7: | 
|  | //   A standard-layout class is a class that: | 
|  | //    [...] | 
|  | //    -- has no base classes of the same type as the first non-static | 
|  | //       data member. | 
|  | // We don't want to expend bits in the state of the record decl | 
|  | // tracking whether this is the first non-static data member so we | 
|  | // cheat a bit and use some of the existing state: the empty bit. | 
|  | // Virtual bases and virtual methods make a class non-empty, but they | 
|  | // also make it non-standard-layout so we needn't check here. | 
|  | // A non-empty base class may leave the class standard-layout, but not | 
|  | // if we have arrived here, and have at least on non-static data | 
|  | // member. If IsStandardLayout remains true, then the first non-static | 
|  | // data member must come through here with Empty still true, and Empty | 
|  | // will subsequently be set to false below. | 
|  | if (data().IsStandardLayout && data().Empty) { | 
|  | for (CXXRecordDecl::base_class_const_iterator BI = bases_begin(), | 
|  | BE = bases_end(); | 
|  | BI != BE; ++BI) { | 
|  | if (Context.hasSameUnqualifiedType(BI->getType(), T)) { | 
|  | data().IsStandardLayout = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Keep track of the presence of mutable fields. | 
|  | if (FieldRec->hasMutableFields()) | 
|  | data().HasMutableFields = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++0x [class]p7: | 
|  | //   A standard-layout class is a class that: | 
|  | //    [...] | 
|  | //    -- either has no non-static data members in the most derived | 
|  | //       class and at most one base class with non-static data members, | 
|  | //       or has no base classes with non-static data members, and | 
|  | // At this point we know that we have a non-static data member, so the last | 
|  | // clause holds. | 
|  | if (!data().HasNoNonEmptyBases) | 
|  | data().IsStandardLayout = false; | 
|  |  | 
|  | // If this is not a zero-length bit-field, then the class is not empty. | 
|  | if (data().Empty) { | 
|  | if (!Field->getBitWidth()) | 
|  | data().Empty = false; | 
|  | else if (!Field->getBitWidth()->isTypeDependent() && | 
|  | !Field->getBitWidth()->isValueDependent()) { | 
|  | llvm::APSInt Bits; | 
|  | if (Field->getBitWidth()->isIntegerConstantExpr(Bits, Context)) | 
|  | if (!!Bits) | 
|  | data().Empty = false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle using declarations of conversion functions. | 
|  | if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D)) | 
|  | if (Shadow->getDeclName().getNameKind() | 
|  | == DeclarationName::CXXConversionFunctionName) | 
|  | data().Conversions.addDecl(Shadow, Shadow->getAccess()); | 
|  | } | 
|  |  | 
|  | static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) { | 
|  | QualType T; | 
|  | if (isa<UsingShadowDecl>(Conv)) | 
|  | Conv = cast<UsingShadowDecl>(Conv)->getTargetDecl(); | 
|  | if (FunctionTemplateDecl *ConvTemp = dyn_cast<FunctionTemplateDecl>(Conv)) | 
|  | T = ConvTemp->getTemplatedDecl()->getResultType(); | 
|  | else | 
|  | T = cast<CXXConversionDecl>(Conv)->getConversionType(); | 
|  | return Context.getCanonicalType(T); | 
|  | } | 
|  |  | 
|  | /// Collect the visible conversions of a base class. | 
|  | /// | 
|  | /// \param Base a base class of the class we're considering | 
|  | /// \param InVirtual whether this base class is a virtual base (or a base | 
|  | ///   of a virtual base) | 
|  | /// \param Access the access along the inheritance path to this base | 
|  | /// \param ParentHiddenTypes the conversions provided by the inheritors | 
|  | ///   of this base | 
|  | /// \param Output the set to which to add conversions from non-virtual bases | 
|  | /// \param VOutput the set to which to add conversions from virtual bases | 
|  | /// \param HiddenVBaseCs the set of conversions which were hidden in a | 
|  | ///   virtual base along some inheritance path | 
|  | static void CollectVisibleConversions(ASTContext &Context, | 
|  | CXXRecordDecl *Record, | 
|  | bool InVirtual, | 
|  | AccessSpecifier Access, | 
|  | const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes, | 
|  | UnresolvedSetImpl &Output, | 
|  | UnresolvedSetImpl &VOutput, | 
|  | llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) { | 
|  | // The set of types which have conversions in this class or its | 
|  | // subclasses.  As an optimization, we don't copy the derived set | 
|  | // unless it might change. | 
|  | const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes; | 
|  | llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer; | 
|  |  | 
|  | // Collect the direct conversions and figure out which conversions | 
|  | // will be hidden in the subclasses. | 
|  | UnresolvedSetImpl &Cs = *Record->getConversionFunctions(); | 
|  | if (!Cs.empty()) { | 
|  | HiddenTypesBuffer = ParentHiddenTypes; | 
|  | HiddenTypes = &HiddenTypesBuffer; | 
|  |  | 
|  | for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I) { | 
|  | bool Hidden = | 
|  | !HiddenTypesBuffer.insert(GetConversionType(Context, I.getDecl())); | 
|  |  | 
|  | // If this conversion is hidden and we're in a virtual base, | 
|  | // remember that it's hidden along some inheritance path. | 
|  | if (Hidden && InVirtual) | 
|  | HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())); | 
|  |  | 
|  | // If this conversion isn't hidden, add it to the appropriate output. | 
|  | else if (!Hidden) { | 
|  | AccessSpecifier IAccess | 
|  | = CXXRecordDecl::MergeAccess(Access, I.getAccess()); | 
|  |  | 
|  | if (InVirtual) | 
|  | VOutput.addDecl(I.getDecl(), IAccess); | 
|  | else | 
|  | Output.addDecl(I.getDecl(), IAccess); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Collect information recursively from any base classes. | 
|  | for (CXXRecordDecl::base_class_iterator | 
|  | I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) { | 
|  | const RecordType *RT = I->getType()->getAs<RecordType>(); | 
|  | if (!RT) continue; | 
|  |  | 
|  | AccessSpecifier BaseAccess | 
|  | = CXXRecordDecl::MergeAccess(Access, I->getAccessSpecifier()); | 
|  | bool BaseInVirtual = InVirtual || I->isVirtual(); | 
|  |  | 
|  | CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess, | 
|  | *HiddenTypes, Output, VOutput, HiddenVBaseCs); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Collect the visible conversions of a class. | 
|  | /// | 
|  | /// This would be extremely straightforward if it weren't for virtual | 
|  | /// bases.  It might be worth special-casing that, really. | 
|  | static void CollectVisibleConversions(ASTContext &Context, | 
|  | CXXRecordDecl *Record, | 
|  | UnresolvedSetImpl &Output) { | 
|  | // The collection of all conversions in virtual bases that we've | 
|  | // found.  These will be added to the output as long as they don't | 
|  | // appear in the hidden-conversions set. | 
|  | UnresolvedSet<8> VBaseCs; | 
|  |  | 
|  | // The set of conversions in virtual bases that we've determined to | 
|  | // be hidden. | 
|  | llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs; | 
|  |  | 
|  | // The set of types hidden by classes derived from this one. | 
|  | llvm::SmallPtrSet<CanQualType, 8> HiddenTypes; | 
|  |  | 
|  | // Go ahead and collect the direct conversions and add them to the | 
|  | // hidden-types set. | 
|  | UnresolvedSetImpl &Cs = *Record->getConversionFunctions(); | 
|  | Output.append(Cs.begin(), Cs.end()); | 
|  | for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I) | 
|  | HiddenTypes.insert(GetConversionType(Context, I.getDecl())); | 
|  |  | 
|  | // Recursively collect conversions from base classes. | 
|  | for (CXXRecordDecl::base_class_iterator | 
|  | I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) { | 
|  | const RecordType *RT = I->getType()->getAs<RecordType>(); | 
|  | if (!RT) continue; | 
|  |  | 
|  | CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()), | 
|  | I->isVirtual(), I->getAccessSpecifier(), | 
|  | HiddenTypes, Output, VBaseCs, HiddenVBaseCs); | 
|  | } | 
|  |  | 
|  | // Add any unhidden conversions provided by virtual bases. | 
|  | for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end(); | 
|  | I != E; ++I) { | 
|  | if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()))) | 
|  | Output.addDecl(I.getDecl(), I.getAccess()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getVisibleConversionFunctions - get all conversion functions visible | 
|  | /// in current class; including conversion function templates. | 
|  | const UnresolvedSetImpl *CXXRecordDecl::getVisibleConversionFunctions() { | 
|  | // If root class, all conversions are visible. | 
|  | if (bases_begin() == bases_end()) | 
|  | return &data().Conversions; | 
|  | // If visible conversion list is already evaluated, return it. | 
|  | if (data().ComputedVisibleConversions) | 
|  | return &data().VisibleConversions; | 
|  | CollectVisibleConversions(getASTContext(), this, data().VisibleConversions); | 
|  | data().ComputedVisibleConversions = true; | 
|  | return &data().VisibleConversions; | 
|  | } | 
|  |  | 
|  | void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) { | 
|  | // This operation is O(N) but extremely rare.  Sema only uses it to | 
|  | // remove UsingShadowDecls in a class that were followed by a direct | 
|  | // declaration, e.g.: | 
|  | //   class A : B { | 
|  | //     using B::operator int; | 
|  | //     operator int(); | 
|  | //   }; | 
|  | // This is uncommon by itself and even more uncommon in conjunction | 
|  | // with sufficiently large numbers of directly-declared conversions | 
|  | // that asymptotic behavior matters. | 
|  |  | 
|  | UnresolvedSetImpl &Convs = *getConversionFunctions(); | 
|  | for (unsigned I = 0, E = Convs.size(); I != E; ++I) { | 
|  | if (Convs[I].getDecl() == ConvDecl) { | 
|  | Convs.erase(I); | 
|  | assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end() | 
|  | && "conversion was found multiple times in unresolved set"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm_unreachable("conversion not found in set!"); | 
|  | } | 
|  |  | 
|  | CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const { | 
|  | if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) | 
|  | return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom()); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const { | 
|  | return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>(); | 
|  | } | 
|  |  | 
|  | void | 
|  | CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD, | 
|  | TemplateSpecializationKind TSK) { | 
|  | assert(TemplateOrInstantiation.isNull() && | 
|  | "Previous template or instantiation?"); | 
|  | assert(!isa<ClassTemplateSpecializationDecl>(this)); | 
|  | TemplateOrInstantiation | 
|  | = new (getASTContext()) MemberSpecializationInfo(RD, TSK); | 
|  | } | 
|  |  | 
|  | TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{ | 
|  | if (const ClassTemplateSpecializationDecl *Spec | 
|  | = dyn_cast<ClassTemplateSpecializationDecl>(this)) | 
|  | return Spec->getSpecializationKind(); | 
|  |  | 
|  | if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) | 
|  | return MSInfo->getTemplateSpecializationKind(); | 
|  |  | 
|  | return TSK_Undeclared; | 
|  | } | 
|  |  | 
|  | void | 
|  | CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) { | 
|  | if (ClassTemplateSpecializationDecl *Spec | 
|  | = dyn_cast<ClassTemplateSpecializationDecl>(this)) { | 
|  | Spec->setSpecializationKind(TSK); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { | 
|  | MSInfo->setTemplateSpecializationKind(TSK); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(false && "Not a class template or member class specialization"); | 
|  | } | 
|  |  | 
|  | CXXDestructorDecl *CXXRecordDecl::getDestructor() const { | 
|  | ASTContext &Context = getASTContext(); | 
|  | QualType ClassType = Context.getTypeDeclType(this); | 
|  |  | 
|  | DeclarationName Name | 
|  | = Context.DeclarationNames.getCXXDestructorName( | 
|  | Context.getCanonicalType(ClassType)); | 
|  |  | 
|  | DeclContext::lookup_const_iterator I, E; | 
|  | llvm::tie(I, E) = lookup(Name); | 
|  | if (I == E) | 
|  | return 0; | 
|  |  | 
|  | CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(*I); | 
|  | return Dtor; | 
|  | } | 
|  |  | 
|  | void CXXRecordDecl::completeDefinition() { | 
|  | completeDefinition(0); | 
|  | } | 
|  |  | 
|  | void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) { | 
|  | RecordDecl::completeDefinition(); | 
|  |  | 
|  | if (hasObjectMember() && getASTContext().getLangOptions().ObjCAutoRefCount) { | 
|  | // Objective-C Automatic Reference Counting: | 
|  | //   If a class has a non-static data member of Objective-C pointer | 
|  | //   type (or array thereof), it is a non-POD type and its | 
|  | //   default constructor (if any), copy constructor, copy assignment | 
|  | //   operator, and destructor are non-trivial. | 
|  | struct DefinitionData &Data = data(); | 
|  | Data.PlainOldData = false; | 
|  | Data.HasTrivialDefaultConstructor = false; | 
|  | Data.HasTrivialCopyConstructor = false; | 
|  | Data.HasTrivialCopyAssignment = false; | 
|  | Data.HasTrivialDestructor = false; | 
|  | } | 
|  |  | 
|  | // If the class may be abstract (but hasn't been marked as such), check for | 
|  | // any pure final overriders. | 
|  | if (mayBeAbstract()) { | 
|  | CXXFinalOverriderMap MyFinalOverriders; | 
|  | if (!FinalOverriders) { | 
|  | getFinalOverriders(MyFinalOverriders); | 
|  | FinalOverriders = &MyFinalOverriders; | 
|  | } | 
|  |  | 
|  | bool Done = false; | 
|  | for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(), | 
|  | MEnd = FinalOverriders->end(); | 
|  | M != MEnd && !Done; ++M) { | 
|  | for (OverridingMethods::iterator SO = M->second.begin(), | 
|  | SOEnd = M->second.end(); | 
|  | SO != SOEnd && !Done; ++SO) { | 
|  | assert(SO->second.size() > 0 && | 
|  | "All virtual functions have overridding virtual functions"); | 
|  |  | 
|  | // C++ [class.abstract]p4: | 
|  | //   A class is abstract if it contains or inherits at least one | 
|  | //   pure virtual function for which the final overrider is pure | 
|  | //   virtual. | 
|  | if (SO->second.front().Method->isPure()) { | 
|  | data().Abstract = true; | 
|  | Done = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set access bits correctly on the directly-declared conversions. | 
|  | for (UnresolvedSetIterator I = data().Conversions.begin(), | 
|  | E = data().Conversions.end(); | 
|  | I != E; ++I) | 
|  | data().Conversions.setAccess(I, (*I)->getAccess()); | 
|  | } | 
|  |  | 
|  | bool CXXRecordDecl::mayBeAbstract() const { | 
|  | if (data().Abstract || isInvalidDecl() || !data().Polymorphic || | 
|  | isDependentContext()) | 
|  | return false; | 
|  |  | 
|  | for (CXXRecordDecl::base_class_const_iterator B = bases_begin(), | 
|  | BEnd = bases_end(); | 
|  | B != BEnd; ++B) { | 
|  | CXXRecordDecl *BaseDecl | 
|  | = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl()); | 
|  | if (BaseDecl->isAbstract()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | CXXMethodDecl * | 
|  | CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, | 
|  | SourceLocation StartLoc, | 
|  | const DeclarationNameInfo &NameInfo, | 
|  | QualType T, TypeSourceInfo *TInfo, | 
|  | bool isStatic, StorageClass SCAsWritten, bool isInline, | 
|  | SourceLocation EndLocation) { | 
|  | return new (C) CXXMethodDecl(CXXMethod, RD, StartLoc, NameInfo, T, TInfo, | 
|  | isStatic, SCAsWritten, isInline, EndLocation); | 
|  | } | 
|  |  | 
|  | bool CXXMethodDecl::isUsualDeallocationFunction() const { | 
|  | if (getOverloadedOperator() != OO_Delete && | 
|  | getOverloadedOperator() != OO_Array_Delete) | 
|  | return false; | 
|  |  | 
|  | // C++ [basic.stc.dynamic.deallocation]p2: | 
|  | //   A template instance is never a usual deallocation function, | 
|  | //   regardless of its signature. | 
|  | if (getPrimaryTemplate()) | 
|  | return false; | 
|  |  | 
|  | // C++ [basic.stc.dynamic.deallocation]p2: | 
|  | //   If a class T has a member deallocation function named operator delete | 
|  | //   with exactly one parameter, then that function is a usual (non-placement) | 
|  | //   deallocation function. [...] | 
|  | if (getNumParams() == 1) | 
|  | return true; | 
|  |  | 
|  | // C++ [basic.stc.dynamic.deallocation]p2: | 
|  | //   [...] If class T does not declare such an operator delete but does | 
|  | //   declare a member deallocation function named operator delete with | 
|  | //   exactly two parameters, the second of which has type std::size_t (18.1), | 
|  | //   then this function is a usual deallocation function. | 
|  | ASTContext &Context = getASTContext(); | 
|  | if (getNumParams() != 2 || | 
|  | !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(), | 
|  | Context.getSizeType())) | 
|  | return false; | 
|  |  | 
|  | // This function is a usual deallocation function if there are no | 
|  | // single-parameter deallocation functions of the same kind. | 
|  | for (DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName()); | 
|  | R.first != R.second; ++R.first) { | 
|  | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*R.first)) | 
|  | if (FD->getNumParams() == 1) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool CXXMethodDecl::isCopyAssignmentOperator() const { | 
|  | // C++0x [class.copy]p17: | 
|  | //  A user-declared copy assignment operator X::operator= is a non-static | 
|  | //  non-template member function of class X with exactly one parameter of | 
|  | //  type X, X&, const X&, volatile X& or const volatile X&. | 
|  | if (/*operator=*/getOverloadedOperator() != OO_Equal || | 
|  | /*non-static*/ isStatic() || | 
|  | /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate()) | 
|  | return false; | 
|  |  | 
|  | QualType ParamType = getParamDecl(0)->getType(); | 
|  | if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>()) | 
|  | ParamType = Ref->getPointeeType(); | 
|  |  | 
|  | ASTContext &Context = getASTContext(); | 
|  | QualType ClassType | 
|  | = Context.getCanonicalType(Context.getTypeDeclType(getParent())); | 
|  | return Context.hasSameUnqualifiedType(ClassType, ParamType); | 
|  | } | 
|  |  | 
|  | bool CXXMethodDecl::isMoveAssignmentOperator() const { | 
|  | // C++0x [class.copy]p19: | 
|  | //  A user-declared move assignment operator X::operator= is a non-static | 
|  | //  non-template member function of class X with exactly one parameter of type | 
|  | //  X&&, const X&&, volatile X&&, or const volatile X&&. | 
|  | if (getOverloadedOperator() != OO_Equal || isStatic() || | 
|  | getPrimaryTemplate() || getDescribedFunctionTemplate()) | 
|  | return false; | 
|  |  | 
|  | QualType ParamType = getParamDecl(0)->getType(); | 
|  | if (!isa<RValueReferenceType>(ParamType)) | 
|  | return false; | 
|  | ParamType = ParamType->getPointeeType(); | 
|  |  | 
|  | ASTContext &Context = getASTContext(); | 
|  | QualType ClassType | 
|  | = Context.getCanonicalType(Context.getTypeDeclType(getParent())); | 
|  | return Context.hasSameUnqualifiedType(ClassType, ParamType); | 
|  | } | 
|  |  | 
|  | void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) { | 
|  | assert(MD->isCanonicalDecl() && "Method is not canonical!"); | 
|  | assert(!MD->getParent()->isDependentContext() && | 
|  | "Can't add an overridden method to a class template!"); | 
|  |  | 
|  | getASTContext().addOverriddenMethod(this, MD); | 
|  | } | 
|  |  | 
|  | CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const { | 
|  | return getASTContext().overridden_methods_begin(this); | 
|  | } | 
|  |  | 
|  | CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const { | 
|  | return getASTContext().overridden_methods_end(this); | 
|  | } | 
|  |  | 
|  | unsigned CXXMethodDecl::size_overridden_methods() const { | 
|  | return getASTContext().overridden_methods_size(this); | 
|  | } | 
|  |  | 
|  | QualType CXXMethodDecl::getThisType(ASTContext &C) const { | 
|  | // C++ 9.3.2p1: The type of this in a member function of a class X is X*. | 
|  | // If the member function is declared const, the type of this is const X*, | 
|  | // if the member function is declared volatile, the type of this is | 
|  | // volatile X*, and if the member function is declared const volatile, | 
|  | // the type of this is const volatile X*. | 
|  |  | 
|  | assert(isInstance() && "No 'this' for static methods!"); | 
|  |  | 
|  | QualType ClassTy = C.getTypeDeclType(getParent()); | 
|  | ClassTy = C.getQualifiedType(ClassTy, | 
|  | Qualifiers::fromCVRMask(getTypeQualifiers())); | 
|  | return C.getPointerType(ClassTy); | 
|  | } | 
|  |  | 
|  | bool CXXMethodDecl::hasInlineBody() const { | 
|  | // If this function is a template instantiation, look at the template from | 
|  | // which it was instantiated. | 
|  | const FunctionDecl *CheckFn = getTemplateInstantiationPattern(); | 
|  | if (!CheckFn) | 
|  | CheckFn = this; | 
|  |  | 
|  | const FunctionDecl *fn; | 
|  | return CheckFn->hasBody(fn) && !fn->isOutOfLine(); | 
|  | } | 
|  |  | 
|  | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, | 
|  | TypeSourceInfo *TInfo, bool IsVirtual, | 
|  | SourceLocation L, Expr *Init, | 
|  | SourceLocation R, | 
|  | SourceLocation EllipsisLoc) | 
|  | : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init), | 
|  | LParenLoc(L), RParenLoc(R), IsVirtual(IsVirtual), IsWritten(false), | 
|  | SourceOrderOrNumArrayIndices(0) | 
|  | { | 
|  | } | 
|  |  | 
|  | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, | 
|  | FieldDecl *Member, | 
|  | SourceLocation MemberLoc, | 
|  | SourceLocation L, Expr *Init, | 
|  | SourceLocation R) | 
|  | : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), | 
|  | LParenLoc(L), RParenLoc(R), IsVirtual(false), | 
|  | IsWritten(false), SourceOrderOrNumArrayIndices(0) | 
|  | { | 
|  | } | 
|  |  | 
|  | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, | 
|  | IndirectFieldDecl *Member, | 
|  | SourceLocation MemberLoc, | 
|  | SourceLocation L, Expr *Init, | 
|  | SourceLocation R) | 
|  | : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), | 
|  | LParenLoc(L), RParenLoc(R), IsVirtual(false), | 
|  | IsWritten(false), SourceOrderOrNumArrayIndices(0) | 
|  | { | 
|  | } | 
|  |  | 
|  | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, | 
|  | SourceLocation D, SourceLocation L, | 
|  | CXXConstructorDecl *Target, Expr *Init, | 
|  | SourceLocation R) | 
|  | : Initializee(Target), MemberOrEllipsisLocation(D), Init(Init), | 
|  | LParenLoc(L), RParenLoc(R), IsVirtual(false), | 
|  | IsWritten(false), SourceOrderOrNumArrayIndices(0) | 
|  | { | 
|  | } | 
|  |  | 
|  | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, | 
|  | FieldDecl *Member, | 
|  | SourceLocation MemberLoc, | 
|  | SourceLocation L, Expr *Init, | 
|  | SourceLocation R, | 
|  | VarDecl **Indices, | 
|  | unsigned NumIndices) | 
|  | : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), | 
|  | LParenLoc(L), RParenLoc(R), IsVirtual(false), | 
|  | IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices) | 
|  | { | 
|  | VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1); | 
|  | memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *)); | 
|  | } | 
|  |  | 
|  | CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context, | 
|  | FieldDecl *Member, | 
|  | SourceLocation MemberLoc, | 
|  | SourceLocation L, Expr *Init, | 
|  | SourceLocation R, | 
|  | VarDecl **Indices, | 
|  | unsigned NumIndices) { | 
|  | void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) + | 
|  | sizeof(VarDecl *) * NumIndices, | 
|  | llvm::alignOf<CXXCtorInitializer>()); | 
|  | return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R, | 
|  | Indices, NumIndices); | 
|  | } | 
|  |  | 
|  | TypeLoc CXXCtorInitializer::getBaseClassLoc() const { | 
|  | if (isBaseInitializer()) | 
|  | return Initializee.get<TypeSourceInfo*>()->getTypeLoc(); | 
|  | else | 
|  | return TypeLoc(); | 
|  | } | 
|  |  | 
|  | const Type *CXXCtorInitializer::getBaseClass() const { | 
|  | if (isBaseInitializer()) | 
|  | return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr(); | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SourceLocation CXXCtorInitializer::getSourceLocation() const { | 
|  | if (isAnyMemberInitializer() || isDelegatingInitializer()) | 
|  | return getMemberLocation(); | 
|  |  | 
|  | if (isInClassMemberInitializer()) | 
|  | return getAnyMember()->getLocation(); | 
|  |  | 
|  | return getBaseClassLoc().getLocalSourceRange().getBegin(); | 
|  | } | 
|  |  | 
|  | SourceRange CXXCtorInitializer::getSourceRange() const { | 
|  | if (isInClassMemberInitializer()) { | 
|  | FieldDecl *D = getAnyMember(); | 
|  | if (Expr *I = D->getInClassInitializer()) | 
|  | return I->getSourceRange(); | 
|  | return SourceRange(); | 
|  | } | 
|  |  | 
|  | return SourceRange(getSourceLocation(), getRParenLoc()); | 
|  | } | 
|  |  | 
|  | CXXConstructorDecl * | 
|  | CXXConstructorDecl::Create(ASTContext &C, EmptyShell Empty) { | 
|  | return new (C) CXXConstructorDecl(0, SourceLocation(), DeclarationNameInfo(), | 
|  | QualType(), 0, false, false, false); | 
|  | } | 
|  |  | 
|  | CXXConstructorDecl * | 
|  | CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD, | 
|  | SourceLocation StartLoc, | 
|  | const DeclarationNameInfo &NameInfo, | 
|  | QualType T, TypeSourceInfo *TInfo, | 
|  | bool isExplicit, | 
|  | bool isInline, | 
|  | bool isImplicitlyDeclared) { | 
|  | assert(NameInfo.getName().getNameKind() | 
|  | == DeclarationName::CXXConstructorName && | 
|  | "Name must refer to a constructor"); | 
|  | return new (C) CXXConstructorDecl(RD, StartLoc, NameInfo, T, TInfo, | 
|  | isExplicit, isInline, isImplicitlyDeclared); | 
|  | } | 
|  |  | 
|  | bool CXXConstructorDecl::isDefaultConstructor() const { | 
|  | // C++ [class.ctor]p5: | 
|  | //   A default constructor for a class X is a constructor of class | 
|  | //   X that can be called without an argument. | 
|  | return (getNumParams() == 0) || | 
|  | (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg()); | 
|  | } | 
|  |  | 
|  | bool | 
|  | CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const { | 
|  | return isCopyOrMoveConstructor(TypeQuals) && | 
|  | getParamDecl(0)->getType()->isLValueReferenceType(); | 
|  | } | 
|  |  | 
|  | bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const { | 
|  | return isCopyOrMoveConstructor(TypeQuals) && | 
|  | getParamDecl(0)->getType()->isRValueReferenceType(); | 
|  | } | 
|  |  | 
|  | /// \brief Determine whether this is a copy or move constructor. | 
|  | bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const { | 
|  | // C++ [class.copy]p2: | 
|  | //   A non-template constructor for class X is a copy constructor | 
|  | //   if its first parameter is of type X&, const X&, volatile X& or | 
|  | //   const volatile X&, and either there are no other parameters | 
|  | //   or else all other parameters have default arguments (8.3.6). | 
|  | // C++0x [class.copy]p3: | 
|  | //   A non-template constructor for class X is a move constructor if its | 
|  | //   first parameter is of type X&&, const X&&, volatile X&&, or | 
|  | //   const volatile X&&, and either there are no other parameters or else | 
|  | //   all other parameters have default arguments. | 
|  | if ((getNumParams() < 1) || | 
|  | (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) || | 
|  | (getPrimaryTemplate() != 0) || | 
|  | (getDescribedFunctionTemplate() != 0)) | 
|  | return false; | 
|  |  | 
|  | const ParmVarDecl *Param = getParamDecl(0); | 
|  |  | 
|  | // Do we have a reference type? | 
|  | const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>(); | 
|  | if (!ParamRefType) | 
|  | return false; | 
|  |  | 
|  | // Is it a reference to our class type? | 
|  | ASTContext &Context = getASTContext(); | 
|  |  | 
|  | CanQualType PointeeType | 
|  | = Context.getCanonicalType(ParamRefType->getPointeeType()); | 
|  | CanQualType ClassTy | 
|  | = Context.getCanonicalType(Context.getTagDeclType(getParent())); | 
|  | if (PointeeType.getUnqualifiedType() != ClassTy) | 
|  | return false; | 
|  |  | 
|  | // FIXME: other qualifiers? | 
|  |  | 
|  | // We have a copy or move constructor. | 
|  | TypeQuals = PointeeType.getCVRQualifiers(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const { | 
|  | // C++ [class.conv.ctor]p1: | 
|  | //   A constructor declared without the function-specifier explicit | 
|  | //   that can be called with a single parameter specifies a | 
|  | //   conversion from the type of its first parameter to the type of | 
|  | //   its class. Such a constructor is called a converting | 
|  | //   constructor. | 
|  | if (isExplicit() && !AllowExplicit) | 
|  | return false; | 
|  |  | 
|  | return (getNumParams() == 0 && | 
|  | getType()->getAs<FunctionProtoType>()->isVariadic()) || | 
|  | (getNumParams() == 1) || | 
|  | (getNumParams() > 1 && getParamDecl(1)->hasDefaultArg()); | 
|  | } | 
|  |  | 
|  | bool CXXConstructorDecl::isSpecializationCopyingObject() const { | 
|  | if ((getNumParams() < 1) || | 
|  | (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) || | 
|  | (getPrimaryTemplate() == 0) || | 
|  | (getDescribedFunctionTemplate() != 0)) | 
|  | return false; | 
|  |  | 
|  | const ParmVarDecl *Param = getParamDecl(0); | 
|  |  | 
|  | ASTContext &Context = getASTContext(); | 
|  | CanQualType ParamType = Context.getCanonicalType(Param->getType()); | 
|  |  | 
|  | // Is it the same as our our class type? | 
|  | CanQualType ClassTy | 
|  | = Context.getCanonicalType(Context.getTagDeclType(getParent())); | 
|  | if (ParamType.getUnqualifiedType() != ClassTy) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const { | 
|  | // Hack: we store the inherited constructor in the overridden method table | 
|  | method_iterator It = begin_overridden_methods(); | 
|  | if (It == end_overridden_methods()) | 
|  | return 0; | 
|  |  | 
|  | return cast<CXXConstructorDecl>(*It); | 
|  | } | 
|  |  | 
|  | void | 
|  | CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){ | 
|  | // Hack: we store the inherited constructor in the overridden method table | 
|  | assert(size_overridden_methods() == 0 && "Base ctor already set."); | 
|  | addOverriddenMethod(BaseCtor); | 
|  | } | 
|  |  | 
|  | CXXDestructorDecl * | 
|  | CXXDestructorDecl::Create(ASTContext &C, EmptyShell Empty) { | 
|  | return new (C) CXXDestructorDecl(0, SourceLocation(), DeclarationNameInfo(), | 
|  | QualType(), 0, false, false); | 
|  | } | 
|  |  | 
|  | CXXDestructorDecl * | 
|  | CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD, | 
|  | SourceLocation StartLoc, | 
|  | const DeclarationNameInfo &NameInfo, | 
|  | QualType T, TypeSourceInfo *TInfo, | 
|  | bool isInline, | 
|  | bool isImplicitlyDeclared) { | 
|  | assert(NameInfo.getName().getNameKind() | 
|  | == DeclarationName::CXXDestructorName && | 
|  | "Name must refer to a destructor"); | 
|  | return new (C) CXXDestructorDecl(RD, StartLoc, NameInfo, T, TInfo, isInline, | 
|  | isImplicitlyDeclared); | 
|  | } | 
|  |  | 
|  | CXXConversionDecl * | 
|  | CXXConversionDecl::Create(ASTContext &C, EmptyShell Empty) { | 
|  | return new (C) CXXConversionDecl(0, SourceLocation(), DeclarationNameInfo(), | 
|  | QualType(), 0, false, false, | 
|  | SourceLocation()); | 
|  | } | 
|  |  | 
|  | CXXConversionDecl * | 
|  | CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD, | 
|  | SourceLocation StartLoc, | 
|  | const DeclarationNameInfo &NameInfo, | 
|  | QualType T, TypeSourceInfo *TInfo, | 
|  | bool isInline, bool isExplicit, | 
|  | SourceLocation EndLocation) { | 
|  | assert(NameInfo.getName().getNameKind() | 
|  | == DeclarationName::CXXConversionFunctionName && | 
|  | "Name must refer to a conversion function"); | 
|  | return new (C) CXXConversionDecl(RD, StartLoc, NameInfo, T, TInfo, | 
|  | isInline, isExplicit, EndLocation); | 
|  | } | 
|  |  | 
|  | LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C, | 
|  | DeclContext *DC, | 
|  | SourceLocation ExternLoc, | 
|  | SourceLocation LangLoc, | 
|  | LanguageIDs Lang, | 
|  | SourceLocation RBraceLoc) { | 
|  | return new (C) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, RBraceLoc); | 
|  | } | 
|  |  | 
|  | UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation L, | 
|  | SourceLocation NamespaceLoc, | 
|  | NestedNameSpecifierLoc QualifierLoc, | 
|  | SourceLocation IdentLoc, | 
|  | NamedDecl *Used, | 
|  | DeclContext *CommonAncestor) { | 
|  | if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used)) | 
|  | Used = NS->getOriginalNamespace(); | 
|  | return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc, | 
|  | IdentLoc, Used, CommonAncestor); | 
|  | } | 
|  |  | 
|  | NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() { | 
|  | if (NamespaceAliasDecl *NA = | 
|  | dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace)) | 
|  | return NA->getNamespace(); | 
|  | return cast_or_null<NamespaceDecl>(NominatedNamespace); | 
|  | } | 
|  |  | 
|  | NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation UsingLoc, | 
|  | SourceLocation AliasLoc, | 
|  | IdentifierInfo *Alias, | 
|  | NestedNameSpecifierLoc QualifierLoc, | 
|  | SourceLocation IdentLoc, | 
|  | NamedDecl *Namespace) { | 
|  | if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace)) | 
|  | Namespace = NS->getOriginalNamespace(); | 
|  | return new (C) NamespaceAliasDecl(DC, UsingLoc, AliasLoc, Alias, | 
|  | QualifierLoc, IdentLoc, Namespace); | 
|  | } | 
|  |  | 
|  | UsingDecl *UsingShadowDecl::getUsingDecl() const { | 
|  | const UsingShadowDecl *Shadow = this; | 
|  | while (const UsingShadowDecl *NextShadow = | 
|  | dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow)) | 
|  | Shadow = NextShadow; | 
|  | return cast<UsingDecl>(Shadow->UsingOrNextShadow); | 
|  | } | 
|  |  | 
|  | void UsingDecl::addShadowDecl(UsingShadowDecl *S) { | 
|  | assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() && | 
|  | "declaration already in set"); | 
|  | assert(S->getUsingDecl() == this); | 
|  |  | 
|  | if (FirstUsingShadow) | 
|  | S->UsingOrNextShadow = FirstUsingShadow; | 
|  | FirstUsingShadow = S; | 
|  | } | 
|  |  | 
|  | void UsingDecl::removeShadowDecl(UsingShadowDecl *S) { | 
|  | assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() && | 
|  | "declaration not in set"); | 
|  | assert(S->getUsingDecl() == this); | 
|  |  | 
|  | // Remove S from the shadow decl chain. This is O(n) but hopefully rare. | 
|  |  | 
|  | if (FirstUsingShadow == S) { | 
|  | FirstUsingShadow = dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow); | 
|  | S->UsingOrNextShadow = this; | 
|  | return; | 
|  | } | 
|  |  | 
|  | UsingShadowDecl *Prev = FirstUsingShadow; | 
|  | while (Prev->UsingOrNextShadow != S) | 
|  | Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow); | 
|  | Prev->UsingOrNextShadow = S->UsingOrNextShadow; | 
|  | S->UsingOrNextShadow = this; | 
|  | } | 
|  |  | 
|  | UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL, | 
|  | NestedNameSpecifierLoc QualifierLoc, | 
|  | const DeclarationNameInfo &NameInfo, | 
|  | bool IsTypeNameArg) { | 
|  | return new (C) UsingDecl(DC, UL, QualifierLoc, NameInfo, IsTypeNameArg); | 
|  | } | 
|  |  | 
|  | UnresolvedUsingValueDecl * | 
|  | UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation UsingLoc, | 
|  | NestedNameSpecifierLoc QualifierLoc, | 
|  | const DeclarationNameInfo &NameInfo) { | 
|  | return new (C) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc, | 
|  | QualifierLoc, NameInfo); | 
|  | } | 
|  |  | 
|  | UnresolvedUsingTypenameDecl * | 
|  | UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation UsingLoc, | 
|  | SourceLocation TypenameLoc, | 
|  | NestedNameSpecifierLoc QualifierLoc, | 
|  | SourceLocation TargetNameLoc, | 
|  | DeclarationName TargetName) { | 
|  | return new (C) UnresolvedUsingTypenameDecl(DC, UsingLoc, TypenameLoc, | 
|  | QualifierLoc, TargetNameLoc, | 
|  | TargetName.getAsIdentifierInfo()); | 
|  | } | 
|  |  | 
|  | StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation StaticAssertLoc, | 
|  | Expr *AssertExpr, | 
|  | StringLiteral *Message, | 
|  | SourceLocation RParenLoc) { | 
|  | return new (C) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message, | 
|  | RParenLoc); | 
|  | } | 
|  |  | 
|  | static const char *getAccessName(AccessSpecifier AS) { | 
|  | switch (AS) { | 
|  | default: | 
|  | case AS_none: | 
|  | assert("Invalid access specifier!"); | 
|  | return 0; | 
|  | case AS_public: | 
|  | return "public"; | 
|  | case AS_private: | 
|  | return "private"; | 
|  | case AS_protected: | 
|  | return "protected"; | 
|  | } | 
|  | } | 
|  |  | 
|  | const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB, | 
|  | AccessSpecifier AS) { | 
|  | return DB << getAccessName(AS); | 
|  | } |