| // $Id$ -*- C++ -*-- |
| //*************************************************************************** |
| // File: |
| // SparcInternals.h |
| // |
| // Purpose: |
| // This file defines stuff that is to be private to the Sparc |
| // backend, but is shared among different portions of the backend. |
| //**************************************************************************/ |
| |
| |
| #ifndef SPARC_INTERNALS_H |
| #define SPARC_INTERNALS_H |
| |
| |
| #include "SparcRegClassInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/MachineInstrInfo.h" |
| #include "llvm/Target/MachineSchedInfo.h" |
| #include "llvm/Target/MachineFrameInfo.h" |
| #include "llvm/Target/MachineCacheInfo.h" |
| #include "llvm/CodeGen/RegClass.h" |
| #include "llvm/Type.h" |
| |
| #include <sys/types.h> |
| |
| class UltraSparc; |
| |
| // OpCodeMask definitions for the Sparc V9 |
| // |
| const OpCodeMask Immed = 0x00002000; // immed or reg operand? |
| const OpCodeMask Annul = 0x20000000; // annul delay instr? |
| const OpCodeMask PredictTaken = 0x00080000; // predict branch taken? |
| |
| |
| enum SparcInstrSchedClass { |
| SPARC_NONE, /* Instructions with no scheduling restrictions */ |
| SPARC_IEUN, /* Integer class that can use IEU0 or IEU1 */ |
| SPARC_IEU0, /* Integer class IEU0 */ |
| SPARC_IEU1, /* Integer class IEU1 */ |
| SPARC_FPM, /* FP Multiply or Divide instructions */ |
| SPARC_FPA, /* All other FP instructions */ |
| SPARC_CTI, /* Control-transfer instructions */ |
| SPARC_LD, /* Load instructions */ |
| SPARC_ST, /* Store instructions */ |
| SPARC_SINGLE, /* Instructions that must issue by themselves */ |
| |
| SPARC_INV, /* This should stay at the end for the next value */ |
| SPARC_NUM_SCHED_CLASSES = SPARC_INV |
| }; |
| |
| |
| //--------------------------------------------------------------------------- |
| // enum SparcMachineOpCode. |
| // const MachineInstrDescriptor SparcMachineInstrDesc[] |
| // |
| // Purpose: |
| // Description of UltraSparc machine instructions. |
| // |
| //--------------------------------------------------------------------------- |
| |
| enum SparcMachineOpCode { |
| #define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \ |
| NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS) \ |
| ENUM, |
| #include "SparcInstr.def" |
| |
| // End-of-array marker |
| INVALID_OPCODE, |
| NUM_REAL_OPCODES = PHI, // number of valid opcodes |
| NUM_TOTAL_OPCODES = INVALID_OPCODE |
| }; |
| |
| |
| // Array of machine instruction descriptions... |
| extern const MachineInstrDescriptor SparcMachineInstrDesc[]; |
| |
| |
| //--------------------------------------------------------------------------- |
| // class UltraSparcInstrInfo |
| // |
| // Purpose: |
| // Information about individual instructions. |
| // Most information is stored in the SparcMachineInstrDesc array above. |
| // Other information is computed on demand, and most such functions |
| // default to member functions in base class MachineInstrInfo. |
| //--------------------------------------------------------------------------- |
| |
| class UltraSparcInstrInfo : public MachineInstrInfo { |
| public: |
| /*ctor*/ UltraSparcInstrInfo(const TargetMachine& tgt); |
| |
| virtual bool hasResultInterlock (MachineOpCode opCode) const |
| { |
| // All UltraSPARC instructions have interlocks (note that delay slots |
| // are not considered here). |
| // However, instructions that use the result of an FCMP produce a |
| // 9-cycle stall if they are issued less than 3 cycles after the FCMP. |
| // Force the compiler to insert a software interlock (i.e., gap of |
| // 2 other groups, including NOPs if necessary). |
| return (opCode == FCMPS || opCode == FCMPD || opCode == FCMPQ); |
| } |
| |
| //------------------------------------------------------------------------- |
| // Code generation support for creating individual machine instructions |
| //------------------------------------------------------------------------- |
| |
| // Create an instruction sequence to put the constant `val' into |
| // the virtual register `dest'. The generated instructions are |
| // returned in `minstrVec'. Any temporary registers (TmpInstruction) |
| // created are returned in `tempVec'. |
| // |
| virtual void CreateCodeToLoadConst(Value* val, |
| Instruction* dest, |
| vector<MachineInstr*>& minstrVec, |
| vector<TmpInstruction*>& tempVec) const; |
| |
| |
| // Create an instruction sequence to copy an integer value `val' |
| // to a floating point value `dest' by copying to memory and back. |
| // val must be an integral type. dest must be a Float or Double. |
| // The generated instructions are returned in `minstrVec'. |
| // Any temp. registers (TmpInstruction) created are returned in `tempVec'. |
| // |
| virtual void CreateCodeToCopyIntToFloat(Method* method, |
| Value* val, |
| Instruction* dest, |
| vector<MachineInstr*>& minstrVec, |
| vector<TmpInstruction*>& tempVec, |
| TargetMachine& target) const; |
| |
| // Similarly, create an instruction sequence to copy an FP value |
| // `val' to an integer value `dest' by copying to memory and back. |
| // See the previous function for information about return values. |
| // |
| virtual void CreateCodeToCopyFloatToInt(Method* method, |
| Value* val, |
| Instruction* dest, |
| vector<MachineInstr*>& minstrVec, |
| vector<TmpInstruction*>& tempVec, |
| TargetMachine& target) const; |
| |
| // create copy instruction(s) |
| virtual void |
| CreateCopyInstructionsByType(const TargetMachine& target, |
| Value* src, |
| Instruction* dest, |
| vector<MachineInstr*>& minstrVec) const; |
| |
| |
| }; |
| |
| |
| //---------------------------------------------------------------------------- |
| // class UltraSparcRegInfo |
| // |
| //---------------------------------------------------------------------------- |
| |
| |
| class LiveRange; |
| class UltraSparc; |
| class PhyRegAlloc; |
| |
| |
| class UltraSparcRegInfo : public MachineRegInfo |
| { |
| |
| private: |
| |
| // The actual register classes in the Sparc |
| |
| enum RegClassIDs { |
| IntRegClassID, |
| FloatRegClassID, |
| IntCCRegClassID, |
| FloatCCRegClassID |
| }; |
| |
| |
| // Type of registers available in Sparc. There can be several reg types |
| // in the same class. For instace, the float reg class has Single/Double |
| // types |
| enum RegTypes { |
| IntRegType, |
| FPSingleRegType, |
| FPDoubleRegType, |
| IntCCRegType, |
| FloatCCRegType |
| }; |
| |
| // the size of a value (int, float, etc..) stored in the stack frame |
| |
| |
| |
| // WARNING: If the above enum order must be changed, also modify |
| // getRegisterClassOfValue method below since it assumes this particular |
| // order for efficiency. |
| |
| |
| // reverse pointer to get info about the ultra sparc machine |
| const UltraSparc *const UltraSparcInfo; |
| |
| // Both int and float rguments can be passed in 6 int regs - |
| // %o0 to %o5 (cannot be changed) |
| unsigned const NumOfIntArgRegs; |
| unsigned const NumOfFloatArgRegs; |
| int const InvalidRegNum; |
| int SizeOfOperandOnStack; |
| |
| |
| |
| //void setCallArgColor(LiveRange *const LR, const unsigned RegNo) const; |
| |
| void setCallOrRetArgCol(LiveRange *const LR, const unsigned RegNo, |
| const MachineInstr *MI,AddedInstrMapType &AIMap)const; |
| |
| MachineInstr * getCopy2RegMI(const Value *SrcVal, const unsigned Reg, |
| unsigned RegClassID) const ; |
| |
| |
| void suggestReg4RetAddr(const MachineInstr * RetMI, |
| LiveRangeInfo& LRI) const; |
| |
| void suggestReg4CallAddr(const MachineInstr * CallMI, LiveRangeInfo& LRI, |
| vector<RegClass *> RCList) const; |
| |
| |
| Value *getValue4ReturnAddr( const MachineInstr * MInst ) const ; |
| |
| int getRegType(const LiveRange *const LR) const { |
| |
| unsigned Typ; |
| |
| switch( (LR->getRegClass())->getID() ) { |
| |
| case IntRegClassID: return IntRegType; |
| |
| case FloatRegClassID: |
| Typ = LR->getTypeID(); |
| if( Typ == Type::FloatTyID ) |
| return FPSingleRegType; |
| else if( Typ == Type::DoubleTyID ) |
| return FPDoubleRegType; |
| else assert(0 && "Unknown type in FloatRegClass"); |
| |
| case IntCCRegClassID: return IntCCRegType; |
| |
| case FloatCCRegClassID: return FloatCCRegType ; |
| |
| default: assert( 0 && "Unknown reg class ID"); |
| return 0; |
| } |
| |
| } |
| |
| int getRegType(const Value *const Val) const { |
| |
| unsigned Typ; |
| |
| switch( getRegClassIDOfValue(Val) ) { |
| |
| case IntRegClassID: return IntRegType; |
| |
| case FloatRegClassID: |
| Typ = (Val->getType())->getPrimitiveID(); |
| if( Typ == Type::FloatTyID ) |
| return FPSingleRegType; |
| else if( Typ == Type::DoubleTyID ) |
| return FPDoubleRegType; |
| else assert(0 && "Unknown type in FloatRegClass"); |
| |
| case IntCCRegClassID: return IntCCRegType; |
| |
| case FloatCCRegClassID: return FloatCCRegType ; |
| |
| default: assert( 0 && "Unknown reg class ID"); |
| return 0; |
| } |
| |
| } |
| |
| |
| int getRegType(int reg) const { |
| if( reg < 32 ) |
| return IntRegType; |
| else if ( reg < (32 + 32) ) |
| return FPSingleRegType; |
| else if ( reg < (64 + 32) ) |
| return FPDoubleRegType; |
| else if( reg < (64+32+4) ) |
| return FloatCCRegType; |
| else if( reg < (64+32+4+2) ) |
| return IntCCRegType; |
| else |
| assert(0 && "Invalid register number in getRegType"); |
| } |
| |
| |
| |
| // ***TODO: See this method is necessary |
| |
| MachineInstr * cpValue2RegMI(Value * Val, const unsigned DestReg, |
| const int RegType) const; |
| |
| const Value *getCallInstRetAddr(const MachineInstr *CallMI) const; |
| const unsigned getCallInstNumArgs(const MachineInstr *CallMI) const; |
| |
| |
| MachineInstr * cpCCR2IntMI(const unsigned IntReg) const; |
| MachineInstr * cpInt2CCRMI(const unsigned IntReg) const; |
| |
| |
| |
| void moveInst2OrdVec(vector<MachineInstr *> &OrdVec, MachineInstr *UnordInst, |
| PhyRegAlloc &PRA ) const; |
| |
| void OrderAddedInstrns( vector<MachineInstr *> &UnordVec, |
| vector<MachineInstr *> &OrdVec, |
| PhyRegAlloc &PRA) const; |
| |
| |
| |
| |
| |
| |
| |
| public: |
| |
| |
| UltraSparcRegInfo(const TargetMachine& tgt ) : MachineRegInfo(tgt), |
| UltraSparcInfo(& (const UltraSparc&) tgt), |
| NumOfIntArgRegs(6), |
| NumOfFloatArgRegs(32), |
| InvalidRegNum(1000), |
| SizeOfOperandOnStack(8) |
| { |
| MachineRegClassArr.push_back( new SparcIntRegClass(IntRegClassID) ); |
| MachineRegClassArr.push_back( new SparcFloatRegClass(FloatRegClassID) ); |
| MachineRegClassArr.push_back( new SparcIntCCRegClass(IntCCRegClassID) ); |
| MachineRegClassArr.push_back( new SparcFloatCCRegClass(FloatCCRegClassID)); |
| |
| assert( SparcFloatRegOrder::StartOfNonVolatileRegs == 32 && |
| "32 Float regs are used for float arg passing"); |
| |
| } |
| |
| // ***** TODO Delete |
| ~UltraSparcRegInfo(void) { } // empty destructor |
| |
| |
| inline const UltraSparc & getUltraSparcInfo() const { |
| return *UltraSparcInfo; |
| } |
| |
| |
| |
| inline unsigned getRegClassIDOfValue (const Value *const Val, |
| bool isCCReg = false) const { |
| |
| Type::PrimitiveID ty = (Val->getType())->getPrimitiveID(); |
| |
| unsigned res; |
| |
| if( (ty && ty <= Type::LongTyID) || (ty == Type::LabelTyID) || |
| (ty == Type::MethodTyID) || (ty == Type::PointerTyID) ) |
| res = IntRegClassID; // sparc int reg (ty=0: void) |
| else if( ty <= Type::DoubleTyID) |
| res = FloatRegClassID; // sparc float reg class |
| else { |
| cerr << "TypeID: " << ty << endl; |
| assert(0 && "Cannot resolve register class for type"); |
| return 0; |
| } |
| |
| if(isCCReg) |
| return res + 2; // corresponidng condition code regiser |
| else |
| return res; |
| } |
| |
| // returns the register tha contains always zero |
| // this is the unified register number |
| inline int getZeroRegNum() const { return SparcIntRegOrder::g0; } |
| |
| // returns the reg used for pushing the address when a method is called. |
| // This can be used for other purposes between calls |
| unsigned getCallAddressReg() const { return SparcIntRegOrder::o7; } |
| |
| |
| // and when we return from a method. It should be made sure that this |
| // register contains the return value when a return instruction is reached. |
| unsigned getReturnAddressReg() const { return SparcIntRegOrder::i7; } |
| |
| void suggestRegs4MethodArgs(const Method *const Meth, |
| LiveRangeInfo& LRI) const; |
| |
| void suggestRegs4CallArgs(const MachineInstr *const CallMI, |
| LiveRangeInfo& LRI, vector<RegClass *> RCL) const; |
| |
| void suggestReg4RetValue(const MachineInstr *const RetMI, |
| LiveRangeInfo& LRI ) const; |
| |
| |
| void colorMethodArgs(const Method *const Meth, LiveRangeInfo& LRI, |
| AddedInstrns *const FirstAI) const; |
| |
| void colorCallArgs(const MachineInstr *const CallMI, LiveRangeInfo& LRI, |
| AddedInstrns *const CallAI, PhyRegAlloc &PRA) const; |
| |
| void colorRetValue(const MachineInstr *const RetI, LiveRangeInfo& LRI, |
| AddedInstrns *const RetAI) const; |
| |
| |
| // bool handleSpecialMInstr(const MachineInstr * MInst, |
| // LiveRangeInfo& LRI, vector<RegClass *> RCL) const; |
| |
| |
| static void printReg(const LiveRange *const LR) ; |
| |
| // this method provides a unique number for each register |
| inline int getUnifiedRegNum(int RegClassID, int reg) const { |
| |
| if( RegClassID == IntRegClassID && reg < 32 ) |
| return reg; |
| else if ( RegClassID == FloatRegClassID && reg < 64) |
| return reg + 32; // we have 32 int regs |
| else if( RegClassID == FloatCCRegClassID && reg < 4) |
| return reg + 32 + 64; // 32 int, 64 float |
| else if( RegClassID == IntCCRegClassID ) |
| return 4+ 32 + 64; // only int cc reg |
| else if (reg==InvalidRegNum) |
| return InvalidRegNum; |
| else |
| assert(0 && "Invalid register class or reg number"); |
| return 0; |
| } |
| |
| // given the unified register number, this gives the name |
| inline const string getUnifiedRegName(int reg) const { |
| if( reg < 32 ) |
| return SparcIntRegOrder::getRegName(reg); |
| else if ( reg < (64 + 32) ) |
| return SparcFloatRegOrder::getRegName( reg - 32); |
| else if( reg < (64+32+4) ) |
| return SparcFloatCCRegOrder::getRegName( reg -32 - 64); |
| else if( reg < (64+32+4+2) ) // two names: %xcc and %ccr |
| return SparcIntCCRegOrder::getRegName( reg -32 - 64 - 4); |
| else if (reg== InvalidRegNum) //****** TODO: Remove */ |
| return "<*NoReg*>"; |
| else |
| assert(0 && "Invalid register number"); |
| return ""; |
| } |
| |
| inline unsigned int getRegNumInCallersWindow(int reg) { |
| if (reg == InvalidRegNum || reg >= 32) |
| return reg; |
| return SparcIntRegOrder::getRegNumInCallersWindow(reg); |
| } |
| |
| inline bool mustBeRemappedInCallersWindow(int reg) { |
| return (reg != InvalidRegNum && reg < 32); |
| } |
| |
| const Value * getCallInstRetVal(const MachineInstr *CallMI) const; |
| |
| MachineInstr * cpReg2RegMI(const unsigned SrcReg, const unsigned DestReg, |
| const int RegType) const; |
| |
| MachineInstr * cpReg2MemMI(const unsigned SrcReg, const unsigned DestPtrReg, |
| const int Offset, const int RegType) const; |
| |
| MachineInstr * cpMem2RegMI(const unsigned SrcPtrReg, const int Offset, |
| const unsigned DestReg, const int RegType) const; |
| |
| MachineInstr* cpValue2Value(Value *Src, Value *Dest) const; |
| |
| |
| inline bool isRegVolatile(const int RegClassID, const int Reg) const { |
| return (MachineRegClassArr[RegClassID])->isRegVolatile(Reg); |
| } |
| |
| |
| inline unsigned getFramePointer() const { |
| return SparcIntRegOrder::i6; |
| } |
| |
| inline unsigned getStackPointer() const { |
| return SparcIntRegOrder::o6; |
| } |
| |
| inline int getInvalidRegNum() const { |
| return InvalidRegNum; |
| } |
| |
| |
| void insertCallerSavingCode(const MachineInstr *MInst, |
| const BasicBlock *BB, PhyRegAlloc &PRA ) const; |
| |
| |
| }; |
| |
| |
| |
| /*--------------------------------------------------------------------------- |
| Scheduling guidelines for SPARC IIi: |
| |
| I-Cache alignment rules (pg 326) |
| -- Align a branch target instruction so that it's entire group is within |
| the same cache line (may be 1-4 instructions). |
| ** Don't let a branch that is predicted taken be the last instruction |
| on an I-cache line: delay slot will need an entire line to be fetched |
| -- Make a FP instruction or a branch be the 4th instruction in a group. |
| For branches, there are tradeoffs in reordering to make this happen |
| (see pg. 327). |
| ** Don't put a branch in a group that crosses a 32-byte boundary! |
| An artificial branch is inserted after every 32 bytes, and having |
| another branch will force the group to be broken into 2 groups. |
| |
| iTLB rules: |
| -- Don't let a loop span two memory pages, if possible |
| |
| Branch prediction performance: |
| -- Don't make the branch in a delay slot the target of a branch |
| -- Try not to have 2 predicted branches within a group of 4 instructions |
| (because each such group has a single branch target field). |
| -- Try to align branches in slots 0, 2, 4 or 6 of a cache line (to avoid |
| the wrong prediction bits being used in some cases). |
| |
| D-Cache timing constraints: |
| -- Signed int loads of less than 64 bits have 3 cycle latency, not 2 |
| -- All other loads that hit in D-Cache have 2 cycle latency |
| -- All loads are returned IN ORDER, so a D-Cache miss will delay a later hit |
| -- Mis-aligned loads or stores cause a trap. In particular, replace |
| mis-aligned FP double precision l/s with 2 single-precision l/s. |
| -- Simulations of integer codes show increase in avg. group size of |
| 33% when code (including esp. non-faulting loads) is moved across |
| one branch, and 50% across 2 branches. |
| |
| E-Cache timing constraints: |
| -- Scheduling for E-cache (D-Cache misses) is effective (due to load buffering) |
| |
| Store buffer timing constraints: |
| -- Stores can be executed in same cycle as instruction producing the value |
| -- Stores are buffered and have lower priority for E-cache until |
| highwater mark is reached in the store buffer (5 stores) |
| |
| Pipeline constraints: |
| -- Shifts can only use IEU0. |
| -- CC setting instructions can only use IEU1. |
| -- Several other instructions must only use IEU1: |
| EDGE(?), ARRAY(?), CALL, JMPL, BPr, PST, and FCMP. |
| -- Two instructions cannot store to the same register file in a single cycle |
| (single write port per file). |
| |
| Issue and grouping constraints: |
| -- FP and branch instructions must use slot 4. |
| -- Shift instructions cannot be grouped with other IEU0-specific instructions. |
| -- CC setting instructions cannot be grouped with other IEU1-specific instrs. |
| -- Several instructions must be issued in a single-instruction group: |
| MOVcc or MOVr, MULs/x and DIVs/x, SAVE/RESTORE, many others |
| -- A CALL or JMPL breaks a group, ie, is not combined with subsequent instrs. |
| -- |
| -- |
| |
| Branch delay slot scheduling rules: |
| -- A CTI couple (two back-to-back CTI instructions in the dynamic stream) |
| has a 9-instruction penalty: the entire pipeline is flushed when the |
| second instruction reaches stage 9 (W-Writeback). |
| -- Avoid putting multicycle instructions, and instructions that may cause |
| load misses, in the delay slot of an annulling branch. |
| -- Avoid putting WR, SAVE..., RESTORE and RETURN instructions in the |
| delay slot of an annulling branch. |
| |
| *--------------------------------------------------------------------------- */ |
| |
| //--------------------------------------------------------------------------- |
| // List of CPUResources for UltraSPARC IIi. |
| //--------------------------------------------------------------------------- |
| |
| const CPUResource AllIssueSlots( "All Instr Slots", 4); |
| const CPUResource IntIssueSlots( "Int Instr Slots", 3); |
| const CPUResource First3IssueSlots("Instr Slots 0-3", 3); |
| const CPUResource LSIssueSlots( "Load-Store Instr Slot", 1); |
| const CPUResource CTIIssueSlots( "Ctrl Transfer Instr Slot", 1); |
| const CPUResource FPAIssueSlots( "Int Instr Slot 1", 1); |
| const CPUResource FPMIssueSlots( "Int Instr Slot 1", 1); |
| |
| // IEUN instructions can use either Alu and should use IAluN. |
| // IEU0 instructions must use Alu 1 and should use both IAluN and IAlu0. |
| // IEU1 instructions must use Alu 2 and should use both IAluN and IAlu1. |
| const CPUResource IAluN("Int ALU 1or2", 2); |
| const CPUResource IAlu0("Int ALU 1", 1); |
| const CPUResource IAlu1("Int ALU 2", 1); |
| |
| const CPUResource LSAluC1("Load/Store Unit Addr Cycle", 1); |
| const CPUResource LSAluC2("Load/Store Unit Issue Cycle", 1); |
| const CPUResource LdReturn("Load Return Unit", 1); |
| |
| const CPUResource FPMAluC1("FP Mul/Div Alu Cycle 1", 1); |
| const CPUResource FPMAluC2("FP Mul/Div Alu Cycle 2", 1); |
| const CPUResource FPMAluC3("FP Mul/Div Alu Cycle 3", 1); |
| |
| const CPUResource FPAAluC1("FP Other Alu Cycle 1", 1); |
| const CPUResource FPAAluC2("FP Other Alu Cycle 2", 1); |
| const CPUResource FPAAluC3("FP Other Alu Cycle 3", 1); |
| |
| const CPUResource IRegReadPorts("Int Reg ReadPorts", INT_MAX); // CHECK |
| const CPUResource IRegWritePorts("Int Reg WritePorts", 2); // CHECK |
| const CPUResource FPRegReadPorts("FP Reg Read Ports", INT_MAX); // CHECK |
| const CPUResource FPRegWritePorts("FP Reg Write Ports", 1); // CHECK |
| |
| const CPUResource CTIDelayCycle( "CTI delay cycle", 1); |
| const CPUResource FCMPDelayCycle("FCMP delay cycle", 1); |
| |
| |
| //--------------------------------------------------------------------------- |
| // const InstrClassRUsage SparcRUsageDesc[] |
| // |
| // Purpose: |
| // Resource usage information for instruction in each scheduling class. |
| // The InstrRUsage Objects for individual classes are specified first. |
| // Note that fetch and decode are decoupled from the execution pipelines |
| // via an instr buffer, so they are not included in the cycles below. |
| //--------------------------------------------------------------------------- |
| |
| const InstrClassRUsage NoneClassRUsage = { |
| SPARC_NONE, |
| /*totCycles*/ 7, |
| |
| /* maxIssueNum */ 4, |
| /* isSingleIssue */ false, |
| /* breaksGroup */ false, |
| /* numBubbles */ 0, |
| |
| /*numSlots*/ 4, |
| /* feasibleSlots[] */ { 0, 1, 2, 3 }, |
| |
| /*numEntries*/ 0, |
| /* V[] */ { |
| /*Cycle G */ |
| /*Ccle E */ |
| /*Cycle C */ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle W */ |
| } |
| }; |
| |
| const InstrClassRUsage IEUNClassRUsage = { |
| SPARC_IEUN, |
| /*totCycles*/ 7, |
| |
| /* maxIssueNum */ 3, |
| /* isSingleIssue */ false, |
| /* breaksGroup */ false, |
| /* numBubbles */ 0, |
| |
| /*numSlots*/ 3, |
| /* feasibleSlots[] */ { 0, 1, 2 }, |
| |
| /*numEntries*/ 4, |
| /* V[] */ { |
| /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, |
| { IntIssueSlots.rid, 0, 1 }, |
| /*Cycle E */ { IAluN.rid, 1, 1 }, |
| /*Cycle C */ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle W */ { IRegWritePorts.rid, 6, 1 } |
| } |
| }; |
| |
| const InstrClassRUsage IEU0ClassRUsage = { |
| SPARC_IEU0, |
| /*totCycles*/ 7, |
| |
| /* maxIssueNum */ 1, |
| /* isSingleIssue */ false, |
| /* breaksGroup */ false, |
| /* numBubbles */ 0, |
| |
| /*numSlots*/ 3, |
| /* feasibleSlots[] */ { 0, 1, 2 }, |
| |
| /*numEntries*/ 5, |
| /* V[] */ { |
| /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, |
| { IntIssueSlots.rid, 0, 1 }, |
| /*Cycle E */ { IAluN.rid, 1, 1 }, |
| { IAlu0.rid, 1, 1 }, |
| /*Cycle C */ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle W */ { IRegWritePorts.rid, 6, 1 } |
| } |
| }; |
| |
| const InstrClassRUsage IEU1ClassRUsage = { |
| SPARC_IEU1, |
| /*totCycles*/ 7, |
| |
| /* maxIssueNum */ 1, |
| /* isSingleIssue */ false, |
| /* breaksGroup */ false, |
| /* numBubbles */ 0, |
| |
| /*numSlots*/ 3, |
| /* feasibleSlots[] */ { 0, 1, 2 }, |
| |
| /*numEntries*/ 5, |
| /* V[] */ { |
| /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, |
| { IntIssueSlots.rid, 0, 1 }, |
| /*Cycle E */ { IAluN.rid, 1, 1 }, |
| { IAlu1.rid, 1, 1 }, |
| /*Cycle C */ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle W */ { IRegWritePorts.rid, 6, 1 } |
| } |
| }; |
| |
| const InstrClassRUsage FPMClassRUsage = { |
| SPARC_FPM, |
| /*totCycles*/ 7, |
| |
| /* maxIssueNum */ 1, |
| /* isSingleIssue */ false, |
| /* breaksGroup */ false, |
| /* numBubbles */ 0, |
| |
| /*numSlots*/ 4, |
| /* feasibleSlots[] */ { 0, 1, 2, 3 }, |
| |
| /*numEntries*/ 7, |
| /* V[] */ { |
| /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, |
| { FPMIssueSlots.rid, 0, 1 }, |
| /*Cycle E */ { FPRegReadPorts.rid, 1, 1 }, |
| /*Cycle C */ { FPMAluC1.rid, 2, 1 }, |
| /*Cycle N1*/ { FPMAluC2.rid, 3, 1 }, |
| /*Cycle N1*/ { FPMAluC3.rid, 4, 1 }, |
| /*Cycle N1*/ |
| /*Cycle W */ { FPRegWritePorts.rid, 6, 1 } |
| } |
| }; |
| |
| const InstrClassRUsage FPAClassRUsage = { |
| SPARC_FPA, |
| /*totCycles*/ 7, |
| |
| /* maxIssueNum */ 1, |
| /* isSingleIssue */ false, |
| /* breaksGroup */ false, |
| /* numBubbles */ 0, |
| |
| /*numSlots*/ 4, |
| /* feasibleSlots[] */ { 0, 1, 2, 3 }, |
| |
| /*numEntries*/ 7, |
| /* V[] */ { |
| /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, |
| { FPAIssueSlots.rid, 0, 1 }, |
| /*Cycle E */ { FPRegReadPorts.rid, 1, 1 }, |
| /*Cycle C */ { FPAAluC1.rid, 2, 1 }, |
| /*Cycle N1*/ { FPAAluC2.rid, 3, 1 }, |
| /*Cycle N1*/ { FPAAluC3.rid, 4, 1 }, |
| /*Cycle N1*/ |
| /*Cycle W */ { FPRegWritePorts.rid, 6, 1 } |
| } |
| }; |
| |
| const InstrClassRUsage LDClassRUsage = { |
| SPARC_LD, |
| /*totCycles*/ 7, |
| |
| /* maxIssueNum */ 1, |
| /* isSingleIssue */ false, |
| /* breaksGroup */ false, |
| /* numBubbles */ 0, |
| |
| /*numSlots*/ 3, |
| /* feasibleSlots[] */ { 0, 1, 2, }, |
| |
| /*numEntries*/ 6, |
| /* V[] */ { |
| /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, |
| { First3IssueSlots.rid, 0, 1 }, |
| { LSIssueSlots.rid, 0, 1 }, |
| /*Cycle E */ { LSAluC1.rid, 1, 1 }, |
| /*Cycle C */ { LSAluC2.rid, 2, 1 }, |
| { LdReturn.rid, 2, 1 }, |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle W */ { IRegWritePorts.rid, 6, 1 } |
| } |
| }; |
| |
| const InstrClassRUsage STClassRUsage = { |
| SPARC_ST, |
| /*totCycles*/ 7, |
| |
| /* maxIssueNum */ 1, |
| /* isSingleIssue */ false, |
| /* breaksGroup */ false, |
| /* numBubbles */ 0, |
| |
| /*numSlots*/ 3, |
| /* feasibleSlots[] */ { 0, 1, 2 }, |
| |
| /*numEntries*/ 4, |
| /* V[] */ { |
| /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, |
| { First3IssueSlots.rid, 0, 1 }, |
| { LSIssueSlots.rid, 0, 1 }, |
| /*Cycle E */ { LSAluC1.rid, 1, 1 }, |
| /*Cycle C */ { LSAluC2.rid, 2, 1 } |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle W */ |
| } |
| }; |
| |
| const InstrClassRUsage CTIClassRUsage = { |
| SPARC_CTI, |
| /*totCycles*/ 7, |
| |
| /* maxIssueNum */ 1, |
| /* isSingleIssue */ false, |
| /* breaksGroup */ false, |
| /* numBubbles */ 0, |
| |
| /*numSlots*/ 4, |
| /* feasibleSlots[] */ { 0, 1, 2, 3 }, |
| |
| /*numEntries*/ 4, |
| /* V[] */ { |
| /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, |
| { CTIIssueSlots.rid, 0, 1 }, |
| /*Cycle E */ { IAlu0.rid, 1, 1 }, |
| /*Cycles E-C */ { CTIDelayCycle.rid, 1, 2 } |
| /*Cycle C */ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle W */ |
| } |
| }; |
| |
| const InstrClassRUsage SingleClassRUsage = { |
| SPARC_SINGLE, |
| /*totCycles*/ 7, |
| |
| /* maxIssueNum */ 1, |
| /* isSingleIssue */ true, |
| /* breaksGroup */ false, |
| /* numBubbles */ 0, |
| |
| /*numSlots*/ 1, |
| /* feasibleSlots[] */ { 0 }, |
| |
| /*numEntries*/ 5, |
| /* V[] */ { |
| /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, |
| { AllIssueSlots.rid, 0, 1 }, |
| { AllIssueSlots.rid, 0, 1 }, |
| { AllIssueSlots.rid, 0, 1 }, |
| /*Cycle E */ { IAlu0.rid, 1, 1 } |
| /*Cycle C */ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle W */ |
| } |
| }; |
| |
| |
| const InstrClassRUsage SparcRUsageDesc[] = { |
| NoneClassRUsage, |
| IEUNClassRUsage, |
| IEU0ClassRUsage, |
| IEU1ClassRUsage, |
| FPMClassRUsage, |
| FPAClassRUsage, |
| CTIClassRUsage, |
| LDClassRUsage, |
| STClassRUsage, |
| SingleClassRUsage |
| }; |
| |
| |
| //--------------------------------------------------------------------------- |
| // const InstrIssueDelta SparcInstrIssueDeltas[] |
| // |
| // Purpose: |
| // Changes to issue restrictions information in InstrClassRUsage for |
| // instructions that differ from other instructions in their class. |
| //--------------------------------------------------------------------------- |
| |
| const InstrIssueDelta SparcInstrIssueDeltas[] = { |
| |
| // opCode, isSingleIssue, breaksGroup, numBubbles |
| |
| // Special cases for single-issue only |
| // Other single issue cases are below. |
| //{ LDDA, true, true, 0 }, |
| //{ STDA, true, true, 0 }, |
| //{ LDDF, true, true, 0 }, |
| //{ LDDFA, true, true, 0 }, |
| { ADDC, true, true, 0 }, |
| { ADDCcc, true, true, 0 }, |
| { SUBC, true, true, 0 }, |
| { SUBCcc, true, true, 0 }, |
| //{ LDSTUB, true, true, 0 }, |
| //{ SWAP, true, true, 0 }, |
| //{ SWAPA, true, true, 0 }, |
| //{ CAS, true, true, 0 }, |
| //{ CASA, true, true, 0 }, |
| //{ CASX, true, true, 0 }, |
| //{ CASXA, true, true, 0 }, |
| //{ LDFSR, true, true, 0 }, |
| //{ LDFSRA, true, true, 0 }, |
| //{ LDXFSR, true, true, 0 }, |
| //{ LDXFSRA, true, true, 0 }, |
| //{ STFSR, true, true, 0 }, |
| //{ STFSRA, true, true, 0 }, |
| //{ STXFSR, true, true, 0 }, |
| //{ STXFSRA, true, true, 0 }, |
| //{ SAVED, true, true, 0 }, |
| //{ RESTORED, true, true, 0 }, |
| //{ FLUSH, true, true, 9 }, |
| //{ FLUSHW, true, true, 9 }, |
| //{ ALIGNADDR, true, true, 0 }, |
| { RETURN, true, true, 0 }, |
| //{ DONE, true, true, 0 }, |
| //{ RETRY, true, true, 0 }, |
| //{ TCC, true, true, 0 }, |
| //{ SHUTDOWN, true, true, 0 }, |
| |
| // Special cases for breaking group *before* |
| // CURRENTLY NOT SUPPORTED! |
| { CALL, false, false, 0 }, |
| { JMPLCALL, false, false, 0 }, |
| { JMPLRET, false, false, 0 }, |
| |
| // Special cases for breaking the group *after* |
| { MULX, true, true, (4+34)/2 }, |
| { FDIVS, false, true, 0 }, |
| { FDIVD, false, true, 0 }, |
| { FDIVQ, false, true, 0 }, |
| { FSQRTS, false, true, 0 }, |
| { FSQRTD, false, true, 0 }, |
| { FSQRTQ, false, true, 0 }, |
| //{ FCMP{LE,GT,NE,EQ}, false, true, 0 }, |
| |
| // Instructions that introduce bubbles |
| //{ MULScc, true, true, 2 }, |
| //{ SMULcc, true, true, (4+18)/2 }, |
| //{ UMULcc, true, true, (4+19)/2 }, |
| { SDIVX, true, true, 68 }, |
| { UDIVX, true, true, 68 }, |
| //{ SDIVcc, true, true, 36 }, |
| //{ UDIVcc, true, true, 37 }, |
| { WRCCR, true, true, 4 }, |
| //{ WRPR, true, true, 4 }, |
| //{ RDCCR, true, true, 0 }, // no bubbles after, but see below |
| //{ RDPR, true, true, 0 }, |
| }; |
| |
| |
| //--------------------------------------------------------------------------- |
| // const InstrRUsageDelta SparcInstrUsageDeltas[] |
| // |
| // Purpose: |
| // Changes to resource usage information in InstrClassRUsage for |
| // instructions that differ from other instructions in their class. |
| //--------------------------------------------------------------------------- |
| |
| const InstrRUsageDelta SparcInstrUsageDeltas[] = { |
| |
| // MachineOpCode, Resource, Start cycle, Num cycles |
| |
| // |
| // JMPL counts as a load/store instruction for issue! |
| // |
| { JMPLCALL, LSIssueSlots.rid, 0, 1 }, |
| { JMPLRET, LSIssueSlots.rid, 0, 1 }, |
| |
| // |
| // Many instructions cannot issue for the next 2 cycles after an FCMP |
| // We model that with a fake resource FCMPDelayCycle. |
| // |
| { FCMPS, FCMPDelayCycle.rid, 1, 3 }, |
| { FCMPD, FCMPDelayCycle.rid, 1, 3 }, |
| { FCMPQ, FCMPDelayCycle.rid, 1, 3 }, |
| |
| { MULX, FCMPDelayCycle.rid, 1, 1 }, |
| { SDIVX, FCMPDelayCycle.rid, 1, 1 }, |
| { UDIVX, FCMPDelayCycle.rid, 1, 1 }, |
| //{ SMULcc, FCMPDelayCycle.rid, 1, 1 }, |
| //{ UMULcc, FCMPDelayCycle.rid, 1, 1 }, |
| //{ SDIVcc, FCMPDelayCycle.rid, 1, 1 }, |
| //{ UDIVcc, FCMPDelayCycle.rid, 1, 1 }, |
| { STD, FCMPDelayCycle.rid, 1, 1 }, |
| { FMOVRSZ, FCMPDelayCycle.rid, 1, 1 }, |
| { FMOVRSLEZ,FCMPDelayCycle.rid, 1, 1 }, |
| { FMOVRSLZ, FCMPDelayCycle.rid, 1, 1 }, |
| { FMOVRSNZ, FCMPDelayCycle.rid, 1, 1 }, |
| { FMOVRSGZ, FCMPDelayCycle.rid, 1, 1 }, |
| { FMOVRSGEZ,FCMPDelayCycle.rid, 1, 1 }, |
| |
| // |
| // Some instructions are stalled in the GROUP stage if a CTI is in |
| // the E or C stage. We model that with a fake resource CTIDelayCycle. |
| // |
| { LDD, CTIDelayCycle.rid, 1, 1 }, |
| //{ LDDA, CTIDelayCycle.rid, 1, 1 }, |
| //{ LDDSTUB, CTIDelayCycle.rid, 1, 1 }, |
| //{ LDDSTUBA, CTIDelayCycle.rid, 1, 1 }, |
| //{ SWAP, CTIDelayCycle.rid, 1, 1 }, |
| //{ SWAPA, CTIDelayCycle.rid, 1, 1 }, |
| //{ CAS, CTIDelayCycle.rid, 1, 1 }, |
| //{ CASA, CTIDelayCycle.rid, 1, 1 }, |
| //{ CASX, CTIDelayCycle.rid, 1, 1 }, |
| //{ CASXA, CTIDelayCycle.rid, 1, 1 }, |
| |
| // |
| // Signed int loads of less than dword size return data in cycle N1 (not C) |
| // and put all loads in consecutive cycles into delayed load return mode. |
| // |
| { LDSB, LdReturn.rid, 2, -1 }, |
| { LDSB, LdReturn.rid, 3, 1 }, |
| |
| { LDSH, LdReturn.rid, 2, -1 }, |
| { LDSH, LdReturn.rid, 3, 1 }, |
| |
| { LDSW, LdReturn.rid, 2, -1 }, |
| { LDSW, LdReturn.rid, 3, 1 }, |
| |
| // |
| // RDPR from certain registers and RD from any register are not dispatchable |
| // until four clocks after they reach the head of the instr. buffer. |
| // Together with their single-issue requirement, this means all four issue |
| // slots are effectively blocked for those cycles, plus the issue cycle. |
| // This does not increase the latency of the instruction itself. |
| // |
| { RDCCR, AllIssueSlots.rid, 0, 5 }, |
| { RDCCR, AllIssueSlots.rid, 0, 5 }, |
| { RDCCR, AllIssueSlots.rid, 0, 5 }, |
| { RDCCR, AllIssueSlots.rid, 0, 5 }, |
| |
| #undef EXPLICIT_BUBBLES_NEEDED |
| #ifdef EXPLICIT_BUBBLES_NEEDED |
| // |
| // MULScc inserts one bubble. |
| // This means it breaks the current group (captured in UltraSparcSchedInfo) |
| // *and occupies all issue slots for the next cycle |
| // |
| //{ MULScc, AllIssueSlots.rid, 2, 2-1 }, |
| //{ MULScc, AllIssueSlots.rid, 2, 2-1 }, |
| //{ MULScc, AllIssueSlots.rid, 2, 2-1 }, |
| //{ MULScc, AllIssueSlots.rid, 2, 2-1 }, |
| |
| // |
| // SMULcc inserts between 4 and 18 bubbles, depending on #leading 0s in rs1. |
| // We just model this with a simple average. |
| // |
| //{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 }, |
| //{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 }, |
| //{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 }, |
| //{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 }, |
| |
| // SMULcc inserts between 4 and 19 bubbles, depending on #leading 0s in rs1. |
| //{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 }, |
| //{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 }, |
| //{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 }, |
| //{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 }, |
| |
| // |
| // MULX inserts between 4 and 34 bubbles, depending on #leading 0s in rs1. |
| // |
| { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 }, |
| { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 }, |
| { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 }, |
| { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 }, |
| |
| // |
| // SDIVcc inserts 36 bubbles. |
| // |
| //{ SDIVcc, AllIssueSlots.rid, 2, 36-1 }, |
| //{ SDIVcc, AllIssueSlots.rid, 2, 36-1 }, |
| //{ SDIVcc, AllIssueSlots.rid, 2, 36-1 }, |
| //{ SDIVcc, AllIssueSlots.rid, 2, 36-1 }, |
| |
| // UDIVcc inserts 37 bubbles. |
| //{ UDIVcc, AllIssueSlots.rid, 2, 37-1 }, |
| //{ UDIVcc, AllIssueSlots.rid, 2, 37-1 }, |
| //{ UDIVcc, AllIssueSlots.rid, 2, 37-1 }, |
| //{ UDIVcc, AllIssueSlots.rid, 2, 37-1 }, |
| |
| // |
| // SDIVX inserts 68 bubbles. |
| // |
| { SDIVX, AllIssueSlots.rid, 2, 68-1 }, |
| { SDIVX, AllIssueSlots.rid, 2, 68-1 }, |
| { SDIVX, AllIssueSlots.rid, 2, 68-1 }, |
| { SDIVX, AllIssueSlots.rid, 2, 68-1 }, |
| |
| // |
| // UDIVX inserts 68 bubbles. |
| // |
| { UDIVX, AllIssueSlots.rid, 2, 68-1 }, |
| { UDIVX, AllIssueSlots.rid, 2, 68-1 }, |
| { UDIVX, AllIssueSlots.rid, 2, 68-1 }, |
| { UDIVX, AllIssueSlots.rid, 2, 68-1 }, |
| |
| // |
| // WR inserts 4 bubbles. |
| // |
| //{ WR, AllIssueSlots.rid, 2, 68-1 }, |
| //{ WR, AllIssueSlots.rid, 2, 68-1 }, |
| //{ WR, AllIssueSlots.rid, 2, 68-1 }, |
| //{ WR, AllIssueSlots.rid, 2, 68-1 }, |
| |
| // |
| // WRPR inserts 4 bubbles. |
| // |
| //{ WRPR, AllIssueSlots.rid, 2, 68-1 }, |
| //{ WRPR, AllIssueSlots.rid, 2, 68-1 }, |
| //{ WRPR, AllIssueSlots.rid, 2, 68-1 }, |
| //{ WRPR, AllIssueSlots.rid, 2, 68-1 }, |
| |
| // |
| // DONE inserts 9 bubbles. |
| // |
| //{ DONE, AllIssueSlots.rid, 2, 9-1 }, |
| //{ DONE, AllIssueSlots.rid, 2, 9-1 }, |
| //{ DONE, AllIssueSlots.rid, 2, 9-1 }, |
| //{ DONE, AllIssueSlots.rid, 2, 9-1 }, |
| |
| // |
| // RETRY inserts 9 bubbles. |
| // |
| //{ RETRY, AllIssueSlots.rid, 2, 9-1 }, |
| //{ RETRY, AllIssueSlots.rid, 2, 9-1 }, |
| //{ RETRY, AllIssueSlots.rid, 2, 9-1 }, |
| //{ RETRY, AllIssueSlots.rid, 2, 9-1 }, |
| |
| #endif /*EXPLICIT_BUBBLES_NEEDED */ |
| }; |
| |
| |
| |
| // Additional delays to be captured in code: |
| // 1. RDPR from several state registers (page 349) |
| // 2. RD from *any* register (page 349) |
| // 3. Writes to TICK, PSTATE, TL registers and FLUSH{W} instr (page 349) |
| // 4. Integer store can be in same group as instr producing value to store. |
| // 5. BICC and BPICC can be in the same group as instr producing CC (pg 350) |
| // 6. FMOVr cannot be in the same or next group as an IEU instr (pg 351). |
| // 7. The second instr. of a CTI group inserts 9 bubbles (pg 351) |
| // 8. WR{PR}, SVAE, SAVED, RESTORE, RESTORED, RETURN, RETRY, and DONE that |
| // follow an annulling branch cannot be issued in the same group or in |
| // the 3 groups following the branch. |
| // 9. A predicted annulled load does not stall dependent instructions. |
| // Other annulled delay slot instructions *do* stall dependents, so |
| // nothing special needs to be done for them during scheduling. |
| //10. Do not put a load use that may be annulled in the same group as the |
| // branch. The group will stall until the load returns. |
| //11. Single-prec. FP loads lock 2 registers, for dependency checking. |
| // |
| // |
| // Additional delays we cannot or will not capture: |
| // 1. If DCTI is last word of cache line, it is delayed until next line can be |
| // fetched. Also, other DCTI alignment-related delays (pg 352) |
| // 2. Load-after-store is delayed by 7 extra cycles if load hits in D-Cache. |
| // Also, several other store-load and load-store conflicts (pg 358) |
| // 3. MEMBAR, LD{X}FSR, LDD{A} and a bunch of other load stalls (pg 358) |
| // 4. There can be at most 8 outstanding buffered store instructions |
| // (including some others like MEMBAR, LDSTUB, CAS{AX}, and FLUSH) |
| |
| |
| |
| //--------------------------------------------------------------------------- |
| // class UltraSparcSchedInfo |
| // |
| // Purpose: |
| // Interface to instruction scheduling information for UltraSPARC. |
| // The parameter values above are based on UltraSPARC IIi. |
| //--------------------------------------------------------------------------- |
| |
| |
| class UltraSparcSchedInfo: public MachineSchedInfo { |
| public: |
| /*ctor*/ UltraSparcSchedInfo (const TargetMachine& tgt); |
| /*dtor*/ virtual ~UltraSparcSchedInfo () {} |
| protected: |
| virtual void initializeResources (); |
| }; |
| |
| |
| //--------------------------------------------------------------------------- |
| // class UltraSparcFrameInfo |
| // |
| // Purpose: |
| // Interface to stack frame layout info for the UltraSPARC. |
| // Starting offsets for each area of the stack frame are aligned at |
| // a multiple of getStackFrameSizeAlignment(). |
| //--------------------------------------------------------------------------- |
| |
| class UltraSparcFrameInfo: public MachineFrameInfo { |
| public: |
| /*ctor*/ UltraSparcFrameInfo(const TargetMachine& tgt) : MachineFrameInfo(tgt) {} |
| |
| public: |
| int getStackFrameSizeAlignment () const { return StackFrameSizeAlignment;} |
| int getMinStackFrameSize () const { return MinStackFrameSize; } |
| int getNumFixedOutgoingArgs () const { return NumFixedOutgoingArgs; } |
| int getSizeOfEachArgOnStack () const { return SizeOfEachArgOnStack; } |
| bool argsOnStackHaveFixedSize () const { return true; } |
| |
| // |
| // These methods compute offsets using the frame contents for a |
| // particular method. The frame contents are obtained from the |
| // MachineCodeInfoForMethod object for the given method. |
| // |
| int getFirstIncomingArgOffset (MachineCodeForMethod& mcInfo, |
| bool& pos) const |
| { |
| pos = true; // arguments area grows upwards |
| return FirstIncomingArgOffsetFromFP; |
| } |
| int getFirstOutgoingArgOffset (MachineCodeForMethod& mcInfo, |
| bool& pos) const |
| { |
| pos = true; // arguments area grows upwards |
| return FirstOutgoingArgOffsetFromSP; |
| } |
| int getFirstOptionalOutgoingArgOffset(MachineCodeForMethod& mcInfo, |
| bool& pos)const |
| { |
| pos = true; // arguments area grows upwards |
| return FirstOptionalOutgoingArgOffsetFromSP; |
| } |
| |
| int getFirstAutomaticVarOffset (MachineCodeForMethod& mcInfo, |
| bool& pos) const; |
| int getRegSpillAreaOffset (MachineCodeForMethod& mcInfo, |
| bool& pos) const; |
| int getTmpAreaOffset (MachineCodeForMethod& mcInfo, |
| bool& pos) const; |
| int getDynamicAreaOffset (MachineCodeForMethod& mcInfo, |
| bool& pos) const; |
| |
| // |
| // These methods specify the base register used for each stack area |
| // (generally FP or SP) |
| // |
| virtual int getIncomingArgBaseRegNum() const { |
| return (int) target.getRegInfo().getFramePointer(); |
| } |
| virtual int getOutgoingArgBaseRegNum() const { |
| return (int) target.getRegInfo().getStackPointer(); |
| } |
| virtual int getOptionalOutgoingArgBaseRegNum() const { |
| return (int) target.getRegInfo().getStackPointer(); |
| } |
| virtual int getAutomaticVarBaseRegNum() const { |
| return (int) target.getRegInfo().getFramePointer(); |
| } |
| virtual int getRegSpillAreaBaseRegNum() const { |
| return (int) target.getRegInfo().getFramePointer(); |
| } |
| virtual int getDynamicAreaBaseRegNum() const { |
| return (int) target.getRegInfo().getStackPointer(); |
| } |
| |
| private: |
| // All stack addresses must be offset by 0x7ff (2047) on Sparc V9. |
| static const int OFFSET = (int) 0x7ff; |
| static const int StackFrameSizeAlignment = 16; |
| static const int MinStackFrameSize = 176; |
| static const int NumFixedOutgoingArgs = 6; |
| static const int SizeOfEachArgOnStack = 8; |
| static const int StaticAreaOffsetFromFP = 0 + OFFSET; |
| static const int FirstIncomingArgOffsetFromFP = 128 + OFFSET; |
| static const int FirstOptionalIncomingArgOffsetFromFP = 176 + OFFSET; |
| static const int FirstOutgoingArgOffsetFromSP = 128 + OFFSET; |
| static const int FirstOptionalOutgoingArgOffsetFromSP = 176 + OFFSET; |
| }; |
| |
| |
| //--------------------------------------------------------------------------- |
| // class UltraSparcCacheInfo |
| // |
| // Purpose: |
| // Interface to cache parameters for the UltraSPARC. |
| // Just use defaults for now. |
| //--------------------------------------------------------------------------- |
| |
| class UltraSparcCacheInfo: public MachineCacheInfo { |
| public: |
| /*ctor*/ UltraSparcCacheInfo (const TargetMachine& target) : |
| MachineCacheInfo(target) {} |
| }; |
| |
| |
| //--------------------------------------------------------------------------- |
| // class UltraSparcMachine |
| // |
| // Purpose: |
| // Primary interface to machine description for the UltraSPARC. |
| // Primarily just initializes machine-dependent parameters in |
| // class TargetMachine, and creates machine-dependent subclasses |
| // for classes such as InstrInfo, SchedInfo and RegInfo. |
| //--------------------------------------------------------------------------- |
| |
| class UltraSparc : public TargetMachine { |
| private: |
| UltraSparcInstrInfo instrInfo; |
| UltraSparcSchedInfo schedInfo; |
| UltraSparcRegInfo regInfo; |
| UltraSparcFrameInfo frameInfo; |
| UltraSparcCacheInfo cacheInfo; |
| public: |
| UltraSparc(); |
| virtual ~UltraSparc() {} |
| |
| virtual const MachineInstrInfo &getInstrInfo() const { return instrInfo; } |
| virtual const MachineSchedInfo &getSchedInfo() const { return schedInfo; } |
| virtual const MachineRegInfo &getRegInfo() const { return regInfo; } |
| virtual const MachineFrameInfo &getFrameInfo() const { return frameInfo; } |
| virtual const MachineCacheInfo &getCacheInfo() const { return cacheInfo; } |
| |
| // compileMethod - For the sparc, we do instruction selection, followed by |
| // delay slot scheduling, then register allocation. |
| // |
| virtual bool compileMethod(Method *M); |
| |
| // |
| // emitAssembly - Output assembly language code (a .s file) for the specified |
| // module. The specified module must have been compiled before this may be |
| // used. |
| // |
| virtual void emitAssembly(const Module *M, ostream &OutStr) const; |
| }; |
| |
| |
| #endif |