| //===- FunctionInlining.cpp - Code to perform function inlining -----------===// |
| // |
| // This file implements inlining of functions. |
| // |
| // Specifically, this: |
| // * Exports functionality to inline any function call |
| // * Inlines functions that consist of a single basic block |
| // * Is able to inline ANY function call |
| // . Has a smart heuristic for when to inline a function |
| // |
| // FIXME: This pass should transform alloca instructions in the called function |
| // into malloc/free pairs! Or perhaps it should refuse to inline them! |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/IPO.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include "llvm/Module.h" |
| #include "llvm/Pass.h" |
| #include "llvm/iTerminators.h" |
| #include "llvm/iPHINode.h" |
| #include "llvm/iOther.h" |
| #include "llvm/Type.h" |
| #include "Support/Statistic.h" |
| #include <algorithm> |
| |
| static Statistic<> NumInlined("inline", "Number of functions inlined"); |
| using std::cerr; |
| |
| // InlineFunction - This function forcibly inlines the called function into the |
| // basic block of the caller. This returns false if it is not possible to |
| // inline this call. The program is still in a well defined state if this |
| // occurs though. |
| // |
| // Note that this only does one level of inlining. For example, if the |
| // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now |
| // exists in the instruction stream. Similiarly this will inline a recursive |
| // function by one level. |
| // |
| bool InlineFunction(CallInst *CI) { |
| assert(isa<CallInst>(CI) && "InlineFunction only works on CallInst nodes"); |
| assert(CI->getParent() && "Instruction not embedded in basic block!"); |
| assert(CI->getParent()->getParent() && "Instruction not in function!"); |
| |
| const Function *CalledFunc = CI->getCalledFunction(); |
| if (CalledFunc == 0 || // Can't inline external function or indirect call! |
| CalledFunc->isExternal()) return false; |
| |
| //cerr << "Inlining " << CalledFunc->getName() << " into " |
| // << CurrentMeth->getName() << "\n"; |
| |
| BasicBlock *OrigBB = CI->getParent(); |
| |
| // Call splitBasicBlock - The original basic block now ends at the instruction |
| // immediately before the call. The original basic block now ends with an |
| // unconditional branch to NewBB, and NewBB starts with the call instruction. |
| // |
| BasicBlock *NewBB = OrigBB->splitBasicBlock(CI); |
| NewBB->setName("InlinedFunctionReturnNode"); |
| |
| // Remove (unlink) the CallInst from the start of the new basic block. |
| NewBB->getInstList().remove(CI); |
| |
| // If we have a return value generated by this call, convert it into a PHI |
| // node that gets values from each of the old RET instructions in the original |
| // function. |
| // |
| PHINode *PHI = 0; |
| if (!CI->use_empty()) { |
| // The PHI node should go at the front of the new basic block to merge all |
| // possible incoming values. |
| // |
| PHI = new PHINode(CalledFunc->getReturnType(), CI->getName(), |
| NewBB->begin()); |
| |
| // Anything that used the result of the function call should now use the PHI |
| // node as their operand. |
| // |
| CI->replaceAllUsesWith(PHI); |
| } |
| |
| // Get a pointer to the last basic block in the function, which will have the |
| // new function inlined after it. |
| // |
| Function::iterator LastBlock = &OrigBB->getParent()->back(); |
| |
| // Calculate the vector of arguments to pass into the function cloner... |
| std::map<const Value*, Value*> ValueMap; |
| assert((unsigned)std::distance(CalledFunc->abegin(), CalledFunc->aend()) == |
| CI->getNumOperands()-1 && "No varargs calls can be inlined yet!"); |
| |
| unsigned i = 1; |
| for (Function::const_aiterator I = CalledFunc->abegin(), E=CalledFunc->aend(); |
| I != E; ++I, ++i) |
| ValueMap[I] = CI->getOperand(i); |
| |
| // Since we are now done with the CallInst, we can delete it. |
| delete CI; |
| |
| // Make a vector to capture the return instructions in the cloned function... |
| std::vector<ReturnInst*> Returns; |
| |
| // Populate the value map with all of the globals in the program. |
| Module &M = *OrigBB->getParent()->getParent(); |
| for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) |
| ValueMap[I] = I; |
| for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I) |
| ValueMap[I] = I; |
| |
| // Do all of the hard part of cloning the callee into the caller... |
| CloneFunctionInto(OrigBB->getParent(), CalledFunc, ValueMap, Returns, ".i"); |
| |
| // Loop over all of the return instructions, turning them into unconditional |
| // branches to the merge point now... |
| for (unsigned i = 0, e = Returns.size(); i != e; ++i) { |
| ReturnInst *RI = Returns[i]; |
| BasicBlock *BB = RI->getParent(); |
| |
| // Add a branch to the merge point where the PHI node would live... |
| new BranchInst(NewBB, RI); |
| |
| if (PHI) { // The PHI node should include this value! |
| assert(RI->getReturnValue() && "Ret should have value!"); |
| assert(RI->getReturnValue()->getType() == PHI->getType() && |
| "Ret value not consistent in function!"); |
| PHI->addIncoming(RI->getReturnValue(), BB); |
| } |
| |
| // Delete the return instruction now |
| BB->getInstList().erase(RI); |
| } |
| |
| // Check to see if the PHI node only has one argument. This is a common |
| // case resulting from there only being a single return instruction in the |
| // function call. Because this is so common, eliminate the PHI node. |
| // |
| if (PHI && PHI->getNumIncomingValues() == 1) { |
| PHI->replaceAllUsesWith(PHI->getIncomingValue(0)); |
| PHI->getParent()->getInstList().erase(PHI); |
| } |
| |
| // Change the branch that used to go to NewBB to branch to the first basic |
| // block of the inlined function. |
| // |
| TerminatorInst *Br = OrigBB->getTerminator(); |
| assert(Br && Br->getOpcode() == Instruction::Br && |
| "splitBasicBlock broken!"); |
| Br->setOperand(0, ++LastBlock); |
| return true; |
| } |
| |
| static inline bool ShouldInlineFunction(const CallInst *CI, const Function *F) { |
| assert(CI->getParent() && CI->getParent()->getParent() && |
| "Call not embedded into a function!"); |
| |
| // Don't inline a recursive call. |
| if (CI->getParent()->getParent() == F) return false; |
| |
| // Don't inline something too big. This is a really crappy heuristic |
| if (F->size() > 3) return false; |
| |
| // Don't inline into something too big. This is a **really** crappy heuristic |
| if (CI->getParent()->getParent()->size() > 10) return false; |
| |
| // Go ahead and try just about anything else. |
| return true; |
| } |
| |
| |
| static inline bool DoFunctionInlining(BasicBlock *BB) { |
| for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { |
| if (CallInst *CI = dyn_cast<CallInst>(&*I)) { |
| // Check to see if we should inline this function |
| Function *F = CI->getCalledFunction(); |
| if (F && ShouldInlineFunction(CI, F)) { |
| return InlineFunction(CI); |
| } |
| } |
| } |
| return false; |
| } |
| |
| // doFunctionInlining - Use a heuristic based approach to inline functions that |
| // seem to look good. |
| // |
| static bool doFunctionInlining(Function &F) { |
| bool Changed = false; |
| |
| // Loop through now and inline instructions a basic block at a time... |
| for (Function::iterator I = F.begin(); I != F.end(); ) |
| if (DoFunctionInlining(I)) { |
| ++NumInlined; |
| Changed = true; |
| } else { |
| ++I; |
| } |
| |
| return Changed; |
| } |
| |
| namespace { |
| struct FunctionInlining : public FunctionPass { |
| virtual bool runOnFunction(Function &F) { |
| return doFunctionInlining(F); |
| } |
| }; |
| RegisterOpt<FunctionInlining> X("inline", "Function Integration/Inlining"); |
| } |
| |
| Pass *createFunctionInliningPass() { return new FunctionInlining(); } |