blob: c9c02d0afd549850f7e88ab5cdb8696624a2706b [file] [log] [blame]
//==- UninitializedValues.cpp - Find Unintialized Values --------*- C++ --*-==//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Ted Kremenek and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements Uninitialized Values analysis for source-level CFGs.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/UninitializedValues.h"
#include "clang/Analysis/CFGVarDeclVisitor.h"
#include "clang/Analysis/CFGStmtVisitor.h"
#include "DataflowSolver.h"
using namespace clang;
//===--------------------------------------------------------------------===//
// Dataflow initialization logic.
//===--------------------------------------------------------------------===//
namespace {
class RegisterDeclsAndExprs : public CFGVarDeclVisitor<RegisterDeclsAndExprs> {
UninitializedValues::AnalysisDataTy& AD;
public:
RegisterDeclsAndExprs(const CFG& cfg, UninitializedValues::AnalysisDataTy& ad)
: CFGVarDeclVisitor<RegisterDeclsAndExprs>(cfg), AD(ad)
{}
void VisitVarDecl(VarDecl* D) {
if (AD.VMap.find(D) == AD.VMap.end())
AD.VMap[D] = AD.NumDecls++;
}
void BlockStmt_VisitExpr(Expr* E) {
if (AD.EMap.find(E) == AD.EMap.end())
AD.EMap[E] = AD.NumBlockExprs++;
}
};
} // end anonymous namespace
void UninitializedValues::InitializeValues(const CFG& cfg) {
RegisterDeclsAndExprs R(cfg,this->getAnalysisData());
R.VisitAllDecls();
UninitializedValues::ValTy& V = getBlockDataMap()[&cfg.getEntry()];
V.DeclBV.resize(getAnalysisData().NumDecls);
V.ExprBV.resize(getAnalysisData().NumBlockExprs);
}
//===--------------------------------------------------------------------===//
// Transfer functions.
//===--------------------------------------------------------------------===//
namespace {
class TransferFuncs : public CFGStmtVisitor<TransferFuncs,bool> {
UninitializedValues::ValTy V;
UninitializedValues::AnalysisDataTy& AD;
public:
TransferFuncs(UninitializedValues::AnalysisDataTy& ad) : AD(ad) {
V.DeclBV.resize(AD.NumDecls);
V.ExprBV.resize(AD.NumBlockExprs);
}
UninitializedValues::ValTy& getVal() { return V; }
bool VisitDeclRefExpr(DeclRefExpr* DR);
bool VisitBinaryOperator(BinaryOperator* B);
bool VisitUnaryOperator(UnaryOperator* U);
bool VisitStmt(Stmt* S);
bool VisitCallExpr(CallExpr* C);
bool BlockStmt_VisitExpr(Expr* E);
static inline bool Initialized() { return true; }
static inline bool Unintialized() { return false; }
};
bool TransferFuncs::VisitDeclRefExpr(DeclRefExpr* DR) {
if (VarDecl* VD = dyn_cast<VarDecl>(DR->getDecl())) {
assert ( AD.VMap.find(VD) != AD.VMap.end() && "Unknown VarDecl.");
return V.DeclBV[ AD.VMap[VD] ];
}
else
return Initialized();
}
bool TransferFuncs::VisitBinaryOperator(BinaryOperator* B) {
if (CFG::hasImplicitControlFlow(B)) {
assert ( AD.EMap.find(B) != AD.EMap.end() && "Unknown block-level expr.");
return V.ExprBV[ AD.EMap[B] ];
}
return VisitStmt(B);
}
bool TransferFuncs::VisitCallExpr(CallExpr* C) {
VisitStmt(C);
return Initialized();
}
bool TransferFuncs::VisitUnaryOperator(UnaryOperator* U) {
switch (U->getOpcode()) {
case UnaryOperator::AddrOf: {
// Blast through parentheses and find the decl (if any). Treat it
// as initialized from this point forward.
for (Stmt* S = U->getSubExpr() ;; )
if (ParenExpr* P = dyn_cast<ParenExpr>(S))
S = P->getSubExpr();
else if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(S)) {
if (VarDecl* VD = dyn_cast<VarDecl>(DR->getDecl())) {
assert ( AD.VMap.find(VD) != AD.VMap.end() && "Unknown VarDecl.");
V.DeclBV[ AD.VMap[VD] ] = Initialized();
}
break;
}
else {
// Evaluate the transfer function for subexpressions, even
// if we cannot reason more deeply about the &-expression.
return Visit(U->getSubExpr());
}
return Initialized();
}
default:
return Visit(U->getSubExpr());
}
}
bool TransferFuncs::VisitStmt(Stmt* S) {
bool x = Initialized();
// We don't stop at the first subexpression that is Uninitialized because
// evaluating some subexpressions may result in propogating "Uninitialized"
// or "Initialized" to variables referenced in the other subexpressions.
for (Stmt::child_iterator I=S->child_begin(), E=S->child_end(); I!=E; ++I)
if (Visit(*I) == Unintialized())
x = Unintialized();
return x;
}
bool TransferFuncs::BlockStmt_VisitExpr(Expr* E) {
assert ( AD.EMap.find(E) != AD.EMap.end() );
return V.ExprBV[ AD.EMap[E] ] = Visit(E);
}
} // end anonymous namespace
//===--------------------------------------------------------------------===//
// Merge operator.
//
// In our transfer functions we take the approach that any
// combination of unintialized values, e.g. Unitialized + ___ = Unitialized.
//
// Merges take the opposite approach.
//
// In the merge of dataflow values (for Decls) we prefer unsoundness, and
// prefer false negatives to false positives. At merges, if a value for a
// tracked Decl is EVER initialized in any of the predecessors we treat it as
// initialized at the confluence point.
//
// For tracked CFGBlock-level expressions (such as the result of
// short-circuit), we do the opposite merge: if a value is EVER uninitialized
// in a predecessor we treat it as uninitalized at the confluence point.
// The reason we do this is because dataflow values for tracked Exprs are
// not as control-dependent as dataflow values for tracked Decls.
//===--------------------------------------------------------------------===//
namespace {
struct Merge {
void operator()(UninitializedValues::ValTy& Dst,
UninitializedValues::ValTy& Src) {
assert (Dst.DeclBV.size() == Src.DeclBV.size()
&& "Bitvector sizes do not match.");
Dst.DeclBV |= Src.DeclBV;
assert (Dst.ExprBV.size() == Src.ExprBV.size()
&& "Bitvector sizes do not match.");
Dst.ExprBV &= Src.ExprBV;
}
};
} // end anonymous namespace
//===--------------------------------------------------------------------===//
// External interface (driver logic).
//===--------------------------------------------------------------------===//
void UninitializedValues::CheckUninitializedValues(const CFG& cfg) {
typedef DataflowSolver<UninitializedValues,TransferFuncs,Merge> Solver;
UninitializedValues U;
{ // Compute the unitialized values information.
Solver S(U);
S.runOnCFG(cfg);
}
// WarnObserver O;
Solver S(U);
for (CFG::const_iterator I=cfg.begin(), E=cfg.end(); I!=E; ++I)
S.runOnBlock(&*I);
}