| //==- UninitializedValues.cpp - Find Unintialized Values --------*- C++ --*-==// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Ted Kremenek and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements Uninitialized Values analysis for source-level CFGs. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Analysis/UninitializedValues.h" |
| #include "clang/Analysis/CFGVarDeclVisitor.h" |
| #include "clang/Analysis/CFGStmtVisitor.h" |
| #include "DataflowSolver.h" |
| |
| using namespace clang; |
| |
| //===--------------------------------------------------------------------===// |
| // Dataflow initialization logic. |
| //===--------------------------------------------------------------------===// |
| |
| namespace { |
| |
| class RegisterDeclsAndExprs : public CFGVarDeclVisitor<RegisterDeclsAndExprs> { |
| UninitializedValues::AnalysisDataTy& AD; |
| public: |
| RegisterDeclsAndExprs(const CFG& cfg, UninitializedValues::AnalysisDataTy& ad) |
| : CFGVarDeclVisitor<RegisterDeclsAndExprs>(cfg), AD(ad) |
| {} |
| |
| void VisitVarDecl(VarDecl* D) { |
| if (AD.VMap.find(D) == AD.VMap.end()) |
| AD.VMap[D] = AD.NumDecls++; |
| } |
| |
| void BlockStmt_VisitExpr(Expr* E) { |
| if (AD.EMap.find(E) == AD.EMap.end()) |
| AD.EMap[E] = AD.NumBlockExprs++; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| void UninitializedValues::InitializeValues(const CFG& cfg) { |
| RegisterDeclsAndExprs R(cfg,this->getAnalysisData()); |
| R.VisitAllDecls(); |
| UninitializedValues::ValTy& V = getBlockDataMap()[&cfg.getEntry()]; |
| V.DeclBV.resize(getAnalysisData().NumDecls); |
| V.ExprBV.resize(getAnalysisData().NumBlockExprs); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Transfer functions. |
| //===--------------------------------------------------------------------===// |
| |
| namespace { |
| |
| class TransferFuncs : public CFGStmtVisitor<TransferFuncs,bool> { |
| UninitializedValues::ValTy V; |
| UninitializedValues::AnalysisDataTy& AD; |
| public: |
| TransferFuncs(UninitializedValues::AnalysisDataTy& ad) : AD(ad) { |
| V.DeclBV.resize(AD.NumDecls); |
| V.ExprBV.resize(AD.NumBlockExprs); |
| } |
| |
| UninitializedValues::ValTy& getVal() { return V; } |
| |
| bool VisitDeclRefExpr(DeclRefExpr* DR); |
| bool VisitBinaryOperator(BinaryOperator* B); |
| bool VisitUnaryOperator(UnaryOperator* U); |
| bool VisitStmt(Stmt* S); |
| bool VisitCallExpr(CallExpr* C); |
| bool BlockStmt_VisitExpr(Expr* E); |
| |
| static inline bool Initialized() { return true; } |
| static inline bool Unintialized() { return false; } |
| }; |
| |
| |
| bool TransferFuncs::VisitDeclRefExpr(DeclRefExpr* DR) { |
| if (VarDecl* VD = dyn_cast<VarDecl>(DR->getDecl())) { |
| assert ( AD.VMap.find(VD) != AD.VMap.end() && "Unknown VarDecl."); |
| return V.DeclBV[ AD.VMap[VD] ]; |
| } |
| else |
| return Initialized(); |
| } |
| |
| bool TransferFuncs::VisitBinaryOperator(BinaryOperator* B) { |
| if (CFG::hasImplicitControlFlow(B)) { |
| assert ( AD.EMap.find(B) != AD.EMap.end() && "Unknown block-level expr."); |
| return V.ExprBV[ AD.EMap[B] ]; |
| } |
| |
| return VisitStmt(B); |
| } |
| |
| bool TransferFuncs::VisitCallExpr(CallExpr* C) { |
| VisitStmt(C); |
| return Initialized(); |
| } |
| |
| bool TransferFuncs::VisitUnaryOperator(UnaryOperator* U) { |
| switch (U->getOpcode()) { |
| case UnaryOperator::AddrOf: { |
| // Blast through parentheses and find the decl (if any). Treat it |
| // as initialized from this point forward. |
| for (Stmt* S = U->getSubExpr() ;; ) |
| if (ParenExpr* P = dyn_cast<ParenExpr>(S)) |
| S = P->getSubExpr(); |
| else if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(S)) { |
| if (VarDecl* VD = dyn_cast<VarDecl>(DR->getDecl())) { |
| assert ( AD.VMap.find(VD) != AD.VMap.end() && "Unknown VarDecl."); |
| V.DeclBV[ AD.VMap[VD] ] = Initialized(); |
| } |
| break; |
| } |
| else { |
| // Evaluate the transfer function for subexpressions, even |
| // if we cannot reason more deeply about the &-expression. |
| return Visit(U->getSubExpr()); |
| } |
| |
| return Initialized(); |
| } |
| |
| default: |
| return Visit(U->getSubExpr()); |
| } |
| } |
| |
| bool TransferFuncs::VisitStmt(Stmt* S) { |
| bool x = Initialized(); |
| |
| // We don't stop at the first subexpression that is Uninitialized because |
| // evaluating some subexpressions may result in propogating "Uninitialized" |
| // or "Initialized" to variables referenced in the other subexpressions. |
| for (Stmt::child_iterator I=S->child_begin(), E=S->child_end(); I!=E; ++I) |
| if (Visit(*I) == Unintialized()) |
| x = Unintialized(); |
| |
| return x; |
| } |
| |
| bool TransferFuncs::BlockStmt_VisitExpr(Expr* E) { |
| assert ( AD.EMap.find(E) != AD.EMap.end() ); |
| return V.ExprBV[ AD.EMap[E] ] = Visit(E); |
| } |
| |
| } // end anonymous namespace |
| |
| //===--------------------------------------------------------------------===// |
| // Merge operator. |
| // |
| // In our transfer functions we take the approach that any |
| // combination of unintialized values, e.g. Unitialized + ___ = Unitialized. |
| // |
| // Merges take the opposite approach. |
| // |
| // In the merge of dataflow values (for Decls) we prefer unsoundness, and |
| // prefer false negatives to false positives. At merges, if a value for a |
| // tracked Decl is EVER initialized in any of the predecessors we treat it as |
| // initialized at the confluence point. |
| // |
| // For tracked CFGBlock-level expressions (such as the result of |
| // short-circuit), we do the opposite merge: if a value is EVER uninitialized |
| // in a predecessor we treat it as uninitalized at the confluence point. |
| // The reason we do this is because dataflow values for tracked Exprs are |
| // not as control-dependent as dataflow values for tracked Decls. |
| //===--------------------------------------------------------------------===// |
| |
| namespace { |
| struct Merge { |
| void operator()(UninitializedValues::ValTy& Dst, |
| UninitializedValues::ValTy& Src) { |
| assert (Dst.DeclBV.size() == Src.DeclBV.size() |
| && "Bitvector sizes do not match."); |
| |
| Dst.DeclBV |= Src.DeclBV; |
| |
| assert (Dst.ExprBV.size() == Src.ExprBV.size() |
| && "Bitvector sizes do not match."); |
| |
| Dst.ExprBV &= Src.ExprBV; |
| } |
| }; |
| } // end anonymous namespace |
| |
| //===--------------------------------------------------------------------===// |
| // External interface (driver logic). |
| //===--------------------------------------------------------------------===// |
| |
| void UninitializedValues::CheckUninitializedValues(const CFG& cfg) { |
| |
| typedef DataflowSolver<UninitializedValues,TransferFuncs,Merge> Solver; |
| |
| UninitializedValues U; |
| |
| { // Compute the unitialized values information. |
| Solver S(U); |
| S.runOnCFG(cfg); |
| } |
| |
| // WarnObserver O; |
| Solver S(U); |
| |
| for (CFG::const_iterator I=cfg.begin(), E=cfg.end(); I!=E; ++I) |
| S.runOnBlock(&*I); |
| } |