| //===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// This tablegen backend emits code for use by the GlobalISel instruction |
| /// selector. See include/llvm/CodeGen/TargetGlobalISel.td. |
| /// |
| /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen |
| /// backend, filters out the ones that are unsupported, maps |
| /// SelectionDAG-specific constructs to their GlobalISel counterpart |
| /// (when applicable: MVT to LLT; SDNode to generic Instruction). |
| /// |
| /// Not all patterns are supported: pass the tablegen invocation |
| /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped, |
| /// as well as why. |
| /// |
| /// The generated file defines a single method: |
| /// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const; |
| /// intended to be used in InstructionSelector::select as the first-step |
| /// selector for the patterns that don't require complex C++. |
| /// |
| /// FIXME: We'll probably want to eventually define a base |
| /// "TargetGenInstructionSelector" class. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenDAGPatterns.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/MachineValueType.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Error.h" |
| #include "llvm/Support/LowLevelTypeImpl.h" |
| #include "llvm/Support/ScopedPrinter.h" |
| #include "llvm/TableGen/Error.h" |
| #include "llvm/TableGen/Record.h" |
| #include "llvm/TableGen/TableGenBackend.h" |
| #include <string> |
| #include <numeric> |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "gisel-emitter" |
| |
| STATISTIC(NumPatternTotal, "Total number of patterns"); |
| STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG"); |
| STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped"); |
| STATISTIC(NumPatternEmitted, "Number of patterns emitted"); |
| |
| cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel"); |
| |
| static cl::opt<bool> WarnOnSkippedPatterns( |
| "warn-on-skipped-patterns", |
| cl::desc("Explain why a pattern was skipped for inclusion " |
| "in the GlobalISel selector"), |
| cl::init(false), cl::cat(GlobalISelEmitterCat)); |
| |
| namespace { |
| //===- Helper functions ---------------------------------------------------===// |
| |
| /// This class stands in for LLT wherever we want to tablegen-erate an |
| /// equivalent at compiler run-time. |
| class LLTCodeGen { |
| private: |
| LLT Ty; |
| |
| public: |
| LLTCodeGen(const LLT &Ty) : Ty(Ty) {} |
| |
| void emitCxxConstructorCall(raw_ostream &OS) const { |
| if (Ty.isScalar()) { |
| OS << "LLT::scalar(" << Ty.getSizeInBits() << ")"; |
| return; |
| } |
| if (Ty.isVector()) { |
| OS << "LLT::vector(" << Ty.getNumElements() << ", " << Ty.getSizeInBits() |
| << ")"; |
| return; |
| } |
| llvm_unreachable("Unhandled LLT"); |
| } |
| |
| const LLT &get() const { return Ty; } |
| }; |
| |
| class InstructionMatcher; |
| class OperandPlaceholder { |
| private: |
| enum PlaceholderKind { |
| OP_MatchReference, |
| OP_Temporary, |
| } Kind; |
| |
| struct MatchReferenceData { |
| InstructionMatcher *InsnMatcher; |
| StringRef InsnVarName; |
| StringRef SymbolicName; |
| }; |
| |
| struct TemporaryData { |
| unsigned OpIdx; |
| }; |
| |
| union { |
| struct MatchReferenceData MatchReference; |
| struct TemporaryData Temporary; |
| }; |
| |
| OperandPlaceholder(PlaceholderKind Kind) : Kind(Kind) {} |
| |
| public: |
| ~OperandPlaceholder() {} |
| |
| static OperandPlaceholder |
| CreateMatchReference(InstructionMatcher *InsnMatcher, |
| StringRef InsnVarName, StringRef SymbolicName) { |
| OperandPlaceholder Result(OP_MatchReference); |
| Result.MatchReference.InsnMatcher = InsnMatcher; |
| Result.MatchReference.InsnVarName = InsnVarName; |
| Result.MatchReference.SymbolicName = SymbolicName; |
| return Result; |
| } |
| |
| static OperandPlaceholder CreateTemporary(unsigned OpIdx) { |
| OperandPlaceholder Result(OP_Temporary); |
| Result.Temporary.OpIdx = OpIdx; |
| return Result; |
| } |
| |
| void emitCxxValueExpr(raw_ostream &OS) const; |
| }; |
| |
| /// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for |
| /// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...). |
| static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) { |
| MVT VT(SVT); |
| if (VT.isVector() && VT.getVectorNumElements() != 1) |
| return LLTCodeGen(LLT::vector(VT.getVectorNumElements(), VT.getScalarSizeInBits())); |
| if (VT.isInteger() || VT.isFloatingPoint()) |
| return LLTCodeGen(LLT::scalar(VT.getSizeInBits())); |
| return None; |
| } |
| |
| static std::string explainPredicates(const TreePatternNode *N) { |
| std::string Explanation = ""; |
| StringRef Separator = ""; |
| for (const auto &P : N->getPredicateFns()) { |
| Explanation += |
| (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str(); |
| if (P.isAlwaysTrue()) |
| Explanation += " always-true"; |
| if (P.isImmediatePattern()) |
| Explanation += " immediate"; |
| } |
| return Explanation; |
| } |
| |
| static std::string explainRulePredicates(const ArrayRef<Init *> Predicates) { |
| std::string Explanation = ""; |
| StringRef Separator = ""; |
| for (const auto *P : Predicates) { |
| Explanation += Separator; |
| |
| if (const DefInit *PDef = dyn_cast<DefInit>(P)) { |
| Explanation += PDef->getDef()->getName(); |
| } else |
| Explanation += "<unknown>"; |
| } |
| return Explanation; |
| } |
| |
| std::string explainOperator(Record *Operator) { |
| if (Operator->isSubClassOf("SDNode")) |
| return " (" + Operator->getValueAsString("Opcode") + ")"; |
| |
| if (Operator->isSubClassOf("Intrinsic")) |
| return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str(); |
| |
| return " (Operator not understood)"; |
| } |
| |
| /// Helper function to let the emitter report skip reason error messages. |
| static Error failedImport(const Twine &Reason) { |
| return make_error<StringError>(Reason, inconvertibleErrorCode()); |
| } |
| |
| static Error isTrivialOperatorNode(const TreePatternNode *N) { |
| std::string Explanation = ""; |
| std::string Separator = ""; |
| if (N->isLeaf()) { |
| Explanation = "Is a leaf"; |
| Separator = ", "; |
| } |
| |
| if (N->hasAnyPredicate()) { |
| Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")"; |
| Separator = ", "; |
| } |
| |
| if (N->getTransformFn()) { |
| Explanation += Separator + "Has a transform function"; |
| Separator = ", "; |
| } |
| |
| if (!N->isLeaf() && !N->hasAnyPredicate() && !N->getTransformFn()) |
| return Error::success(); |
| |
| return failedImport(Explanation); |
| } |
| |
| //===- Matchers -----------------------------------------------------------===// |
| |
| class OperandMatcher; |
| class MatchAction; |
| |
| /// Generates code to check that a match rule matches. |
| class RuleMatcher { |
| /// A list of matchers that all need to succeed for the current rule to match. |
| /// FIXME: This currently supports a single match position but could be |
| /// extended to support multiple positions to support div/rem fusion or |
| /// load-multiple instructions. |
| std::vector<std::unique_ptr<InstructionMatcher>> Matchers; |
| |
| /// A list of actions that need to be taken when all predicates in this rule |
| /// have succeeded. |
| std::vector<std::unique_ptr<MatchAction>> Actions; |
| |
| /// A map of instruction matchers to the local variables created by |
| /// emitCxxCaptureStmts(). |
| std::map<const InstructionMatcher *, std::string> InsnVariableNames; |
| |
| /// ID for the next instruction variable defined with defineInsnVar() |
| unsigned NextInsnVarID; |
| |
| public: |
| RuleMatcher() |
| : Matchers(), Actions(), InsnVariableNames(), NextInsnVarID(0) {} |
| RuleMatcher(RuleMatcher &&Other) = default; |
| RuleMatcher &operator=(RuleMatcher &&Other) = default; |
| |
| InstructionMatcher &addInstructionMatcher(); |
| |
| template <class Kind, class... Args> Kind &addAction(Args &&... args); |
| |
| std::string defineInsnVar(raw_ostream &OS, const InstructionMatcher &Matcher, |
| StringRef Value); |
| StringRef getInsnVarName(const InstructionMatcher &InsnMatcher) const; |
| |
| void emitCxxCapturedInsnList(raw_ostream &OS); |
| void emitCxxCaptureStmts(raw_ostream &OS, StringRef Expr); |
| |
| void emit(raw_ostream &OS); |
| |
| /// Compare the priority of this object and B. |
| /// |
| /// Returns true if this object is more important than B. |
| bool isHigherPriorityThan(const RuleMatcher &B) const; |
| |
| /// Report the maximum number of temporary operands needed by the rule |
| /// matcher. |
| unsigned countTemporaryOperands() const; |
| }; |
| |
| template <class PredicateTy> class PredicateListMatcher { |
| private: |
| typedef std::vector<std::unique_ptr<PredicateTy>> PredicateVec; |
| PredicateVec Predicates; |
| |
| public: |
| /// Construct a new operand predicate and add it to the matcher. |
| template <class Kind, class... Args> |
| Kind &addPredicate(Args&&... args) { |
| Predicates.emplace_back( |
| llvm::make_unique<Kind>(std::forward<Args>(args)...)); |
| return *static_cast<Kind *>(Predicates.back().get()); |
| } |
| |
| typename PredicateVec::const_iterator predicates_begin() const { return Predicates.begin(); } |
| typename PredicateVec::const_iterator predicates_end() const { return Predicates.end(); } |
| iterator_range<typename PredicateVec::const_iterator> predicates() const { |
| return make_range(predicates_begin(), predicates_end()); |
| } |
| typename PredicateVec::size_type predicates_size() const { return Predicates.size(); } |
| |
| /// Emit a C++ expression that tests whether all the predicates are met. |
| template <class... Args> |
| void emitCxxPredicateListExpr(raw_ostream &OS, Args &&... args) const { |
| if (Predicates.empty()) { |
| OS << "true"; |
| return; |
| } |
| |
| StringRef Separator = ""; |
| for (const auto &Predicate : predicates()) { |
| OS << Separator << "("; |
| Predicate->emitCxxPredicateExpr(OS, std::forward<Args>(args)...); |
| OS << ")"; |
| Separator = " &&\n"; |
| } |
| } |
| }; |
| |
| /// Generates code to check a predicate of an operand. |
| /// |
| /// Typical predicates include: |
| /// * Operand is a particular register. |
| /// * Operand is assigned a particular register bank. |
| /// * Operand is an MBB. |
| class OperandPredicateMatcher { |
| public: |
| /// This enum is used for RTTI and also defines the priority that is given to |
| /// the predicate when generating the matcher code. Kinds with higher priority |
| /// must be tested first. |
| /// |
| /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter |
| /// but OPM_Int must have priority over OPM_RegBank since constant integers |
| /// are represented by a virtual register defined by a G_CONSTANT instruction. |
| enum PredicateKind { |
| OPM_ComplexPattern, |
| OPM_Instruction, |
| OPM_Int, |
| OPM_LLT, |
| OPM_RegBank, |
| OPM_MBB, |
| }; |
| |
| protected: |
| PredicateKind Kind; |
| |
| public: |
| OperandPredicateMatcher(PredicateKind Kind) : Kind(Kind) {} |
| virtual ~OperandPredicateMatcher() {} |
| |
| PredicateKind getKind() const { return Kind; } |
| |
| /// Return the OperandMatcher for the specified operand or nullptr if there |
| /// isn't one by that name in this operand predicate matcher. |
| /// |
| /// InstructionOperandMatcher is the only subclass that can return non-null |
| /// for this. |
| virtual Optional<const OperandMatcher *> |
| getOptionalOperand(StringRef SymbolicName) const { |
| assert(!SymbolicName.empty() && "Cannot lookup unnamed operand"); |
| return None; |
| } |
| |
| /// Emit C++ statements to capture instructions into local variables. |
| /// |
| /// Only InstructionOperandMatcher needs to do anything for this method. |
| virtual void emitCxxCaptureStmts(raw_ostream &OS, RuleMatcher &Rule, |
| StringRef Expr) const {} |
| |
| /// Emit a C++ expression that checks the predicate for the given operand. |
| virtual void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule, |
| StringRef OperandExpr) const = 0; |
| |
| /// Compare the priority of this object and B. |
| /// |
| /// Returns true if this object is more important than B. |
| virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const { |
| return Kind < B.Kind; |
| }; |
| |
| /// Report the maximum number of temporary operands needed by the predicate |
| /// matcher. |
| virtual unsigned countTemporaryOperands() const { return 0; } |
| }; |
| |
| /// Generates code to check that an operand is a particular LLT. |
| class LLTOperandMatcher : public OperandPredicateMatcher { |
| protected: |
| LLTCodeGen Ty; |
| |
| public: |
| LLTOperandMatcher(const LLTCodeGen &Ty) |
| : OperandPredicateMatcher(OPM_LLT), Ty(Ty) {} |
| |
| static bool classof(const OperandPredicateMatcher *P) { |
| return P->getKind() == OPM_LLT; |
| } |
| |
| void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule, |
| StringRef OperandExpr) const override { |
| OS << "MRI.getType(" << OperandExpr << ".getReg()) == ("; |
| Ty.emitCxxConstructorCall(OS); |
| OS << ")"; |
| } |
| }; |
| |
| /// Generates code to check that an operand is a particular target constant. |
| class ComplexPatternOperandMatcher : public OperandPredicateMatcher { |
| protected: |
| const OperandMatcher &Operand; |
| const Record &TheDef; |
| |
| unsigned getNumOperands() const { |
| return TheDef.getValueAsDag("Operands")->getNumArgs(); |
| } |
| |
| unsigned getAllocatedTemporariesBaseID() const; |
| |
| public: |
| ComplexPatternOperandMatcher(const OperandMatcher &Operand, |
| const Record &TheDef) |
| : OperandPredicateMatcher(OPM_ComplexPattern), Operand(Operand), |
| TheDef(TheDef) {} |
| |
| static bool classof(const OperandPredicateMatcher *P) { |
| return P->getKind() == OPM_ComplexPattern; |
| } |
| |
| void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule, |
| StringRef OperandExpr) const override { |
| OS << TheDef.getValueAsString("MatcherFn") << "(" << OperandExpr; |
| for (unsigned I = 0; I < getNumOperands(); ++I) { |
| OS << ", "; |
| OperandPlaceholder::CreateTemporary(getAllocatedTemporariesBaseID() + I) |
| .emitCxxValueExpr(OS); |
| } |
| OS << ")"; |
| } |
| |
| unsigned countTemporaryOperands() const override { |
| return getNumOperands(); |
| } |
| }; |
| |
| /// Generates code to check that an operand is in a particular register bank. |
| class RegisterBankOperandMatcher : public OperandPredicateMatcher { |
| protected: |
| const CodeGenRegisterClass &RC; |
| |
| public: |
| RegisterBankOperandMatcher(const CodeGenRegisterClass &RC) |
| : OperandPredicateMatcher(OPM_RegBank), RC(RC) {} |
| |
| static bool classof(const OperandPredicateMatcher *P) { |
| return P->getKind() == OPM_RegBank; |
| } |
| |
| void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule, |
| StringRef OperandExpr) const override { |
| OS << "(&RBI.getRegBankFromRegClass(" << RC.getQualifiedName() |
| << "RegClass) == RBI.getRegBank(" << OperandExpr |
| << ".getReg(), MRI, TRI))"; |
| } |
| }; |
| |
| /// Generates code to check that an operand is a basic block. |
| class MBBOperandMatcher : public OperandPredicateMatcher { |
| public: |
| MBBOperandMatcher() : OperandPredicateMatcher(OPM_MBB) {} |
| |
| static bool classof(const OperandPredicateMatcher *P) { |
| return P->getKind() == OPM_MBB; |
| } |
| |
| void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule, |
| StringRef OperandExpr) const override { |
| OS << OperandExpr << ".isMBB()"; |
| } |
| }; |
| |
| /// Generates code to check that an operand is a particular int. |
| class IntOperandMatcher : public OperandPredicateMatcher { |
| protected: |
| int64_t Value; |
| |
| public: |
| IntOperandMatcher(int64_t Value) |
| : OperandPredicateMatcher(OPM_Int), Value(Value) {} |
| |
| static bool classof(const OperandPredicateMatcher *P) { |
| return P->getKind() == OPM_Int; |
| } |
| |
| void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule, |
| StringRef OperandExpr) const override { |
| OS << "isOperandImmEqual(" << OperandExpr << ", " << Value << ", MRI)"; |
| } |
| }; |
| |
| /// Generates code to check that a set of predicates match for a particular |
| /// operand. |
| class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> { |
| protected: |
| InstructionMatcher &Insn; |
| unsigned OpIdx; |
| std::string SymbolicName; |
| |
| /// The index of the first temporary variable allocated to this operand. The |
| /// number of allocated temporaries can be found with |
| /// countTemporaryOperands(). |
| unsigned AllocatedTemporariesBaseID; |
| |
| public: |
| OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx, |
| const std::string &SymbolicName, |
| unsigned AllocatedTemporariesBaseID) |
| : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName), |
| AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {} |
| |
| bool hasSymbolicName() const { return !SymbolicName.empty(); } |
| const StringRef getSymbolicName() const { return SymbolicName; } |
| void setSymbolicName(StringRef Name) { |
| assert(SymbolicName.empty() && "Operand already has a symbolic name"); |
| SymbolicName = Name; |
| } |
| unsigned getOperandIndex() const { return OpIdx; } |
| |
| std::string getOperandExpr(StringRef InsnVarName) const { |
| return (InsnVarName + ".getOperand(" + llvm::to_string(OpIdx) + ")").str(); |
| } |
| |
| Optional<const OperandMatcher *> |
| getOptionalOperand(StringRef DesiredSymbolicName) const { |
| assert(!DesiredSymbolicName.empty() && "Cannot lookup unnamed operand"); |
| if (DesiredSymbolicName == SymbolicName) |
| return this; |
| for (const auto &OP : predicates()) { |
| const auto &MaybeOperand = OP->getOptionalOperand(DesiredSymbolicName); |
| if (MaybeOperand.hasValue()) |
| return MaybeOperand.getValue(); |
| } |
| return None; |
| } |
| |
| InstructionMatcher &getInstructionMatcher() const { return Insn; } |
| |
| /// Emit C++ statements to capture instructions into local variables. |
| void emitCxxCaptureStmts(raw_ostream &OS, RuleMatcher &Rule, |
| StringRef OperandExpr) const { |
| for (const auto &Predicate : predicates()) |
| Predicate->emitCxxCaptureStmts(OS, Rule, OperandExpr); |
| } |
| |
| /// Emit a C++ expression that tests whether the instruction named in |
| /// InsnVarName matches all the predicate and all the operands. |
| void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule, |
| StringRef InsnVarName) const { |
| OS << "(/* "; |
| if (SymbolicName.empty()) |
| OS << "Operand " << OpIdx; |
| else |
| OS << SymbolicName; |
| OS << " */ "; |
| emitCxxPredicateListExpr(OS, Rule, getOperandExpr(InsnVarName)); |
| OS << ")"; |
| } |
| |
| /// Compare the priority of this object and B. |
| /// |
| /// Returns true if this object is more important than B. |
| bool isHigherPriorityThan(const OperandMatcher &B) const { |
| // Operand matchers involving more predicates have higher priority. |
| if (predicates_size() > B.predicates_size()) |
| return true; |
| if (predicates_size() < B.predicates_size()) |
| return false; |
| |
| // This assumes that predicates are added in a consistent order. |
| for (const auto &Predicate : zip(predicates(), B.predicates())) { |
| if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate))) |
| return true; |
| if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate))) |
| return false; |
| } |
| |
| return false; |
| }; |
| |
| /// Report the maximum number of temporary operands needed by the operand |
| /// matcher. |
| unsigned countTemporaryOperands() const { |
| return std::accumulate( |
| predicates().begin(), predicates().end(), 0, |
| [](unsigned A, |
| const std::unique_ptr<OperandPredicateMatcher> &Predicate) { |
| return A + Predicate->countTemporaryOperands(); |
| }); |
| } |
| |
| unsigned getAllocatedTemporariesBaseID() const { |
| return AllocatedTemporariesBaseID; |
| } |
| }; |
| |
| unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const { |
| return Operand.getAllocatedTemporariesBaseID(); |
| } |
| |
| /// Generates code to check a predicate on an instruction. |
| /// |
| /// Typical predicates include: |
| /// * The opcode of the instruction is a particular value. |
| /// * The nsw/nuw flag is/isn't set. |
| class InstructionPredicateMatcher { |
| protected: |
| /// This enum is used for RTTI and also defines the priority that is given to |
| /// the predicate when generating the matcher code. Kinds with higher priority |
| /// must be tested first. |
| enum PredicateKind { |
| IPM_Opcode, |
| }; |
| |
| PredicateKind Kind; |
| |
| public: |
| InstructionPredicateMatcher(PredicateKind Kind) : Kind(Kind) {} |
| virtual ~InstructionPredicateMatcher() {} |
| |
| PredicateKind getKind() const { return Kind; } |
| |
| /// Emit a C++ expression that tests whether the instruction named in |
| /// InsnVarName matches the predicate. |
| virtual void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule, |
| StringRef InsnVarName) const = 0; |
| |
| /// Compare the priority of this object and B. |
| /// |
| /// Returns true if this object is more important than B. |
| virtual bool isHigherPriorityThan(const InstructionPredicateMatcher &B) const { |
| return Kind < B.Kind; |
| }; |
| |
| /// Report the maximum number of temporary operands needed by the predicate |
| /// matcher. |
| virtual unsigned countTemporaryOperands() const { return 0; } |
| }; |
| |
| /// Generates code to check the opcode of an instruction. |
| class InstructionOpcodeMatcher : public InstructionPredicateMatcher { |
| protected: |
| const CodeGenInstruction *I; |
| |
| public: |
| InstructionOpcodeMatcher(const CodeGenInstruction *I) |
| : InstructionPredicateMatcher(IPM_Opcode), I(I) {} |
| |
| static bool classof(const InstructionPredicateMatcher *P) { |
| return P->getKind() == IPM_Opcode; |
| } |
| |
| void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule, |
| StringRef InsnVarName) const override { |
| OS << InsnVarName << ".getOpcode() == " << I->Namespace |
| << "::" << I->TheDef->getName(); |
| } |
| |
| /// Compare the priority of this object and B. |
| /// |
| /// Returns true if this object is more important than B. |
| bool isHigherPriorityThan(const InstructionPredicateMatcher &B) const override { |
| if (InstructionPredicateMatcher::isHigherPriorityThan(B)) |
| return true; |
| if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this)) |
| return false; |
| |
| // Prioritize opcodes for cosmetic reasons in the generated source. Although |
| // this is cosmetic at the moment, we may want to drive a similar ordering |
| // using instruction frequency information to improve compile time. |
| if (const InstructionOpcodeMatcher *BO = |
| dyn_cast<InstructionOpcodeMatcher>(&B)) |
| return I->TheDef->getName() < BO->I->TheDef->getName(); |
| |
| return false; |
| }; |
| }; |
| |
| /// Generates code to check that a set of predicates and operands match for a |
| /// particular instruction. |
| /// |
| /// Typical predicates include: |
| /// * Has a specific opcode. |
| /// * Has an nsw/nuw flag or doesn't. |
| class InstructionMatcher |
| : public PredicateListMatcher<InstructionPredicateMatcher> { |
| protected: |
| typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec; |
| |
| /// The operands to match. All rendered operands must be present even if the |
| /// condition is always true. |
| OperandVec Operands; |
| |
| public: |
| /// Add an operand to the matcher. |
| OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName, |
| unsigned AllocatedTemporariesBaseID) { |
| Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName, |
| AllocatedTemporariesBaseID)); |
| return *Operands.back(); |
| } |
| |
| OperandMatcher &getOperand(unsigned OpIdx) { |
| auto I = std::find_if(Operands.begin(), Operands.end(), |
| [&OpIdx](const std::unique_ptr<OperandMatcher> &X) { |
| return X->getOperandIndex() == OpIdx; |
| }); |
| if (I != Operands.end()) |
| return **I; |
| llvm_unreachable("Failed to lookup operand"); |
| } |
| |
| Optional<const OperandMatcher *> |
| getOptionalOperand(StringRef SymbolicName) const { |
| assert(!SymbolicName.empty() && "Cannot lookup unnamed operand"); |
| for (const auto &Operand : Operands) { |
| const auto &OM = Operand->getOptionalOperand(SymbolicName); |
| if (OM.hasValue()) |
| return OM.getValue(); |
| } |
| return None; |
| } |
| |
| const OperandMatcher &getOperand(StringRef SymbolicName) const { |
| Optional<const OperandMatcher *>OM = getOptionalOperand(SymbolicName); |
| if (OM.hasValue()) |
| return *OM.getValue(); |
| llvm_unreachable("Failed to lookup operand"); |
| } |
| |
| unsigned getNumOperands() const { return Operands.size(); } |
| OperandVec::iterator operands_begin() { return Operands.begin(); } |
| OperandVec::iterator operands_end() { return Operands.end(); } |
| iterator_range<OperandVec::iterator> operands() { |
| return make_range(operands_begin(), operands_end()); |
| } |
| OperandVec::const_iterator operands_begin() const { return Operands.begin(); } |
| OperandVec::const_iterator operands_end() const { return Operands.end(); } |
| iterator_range<OperandVec::const_iterator> operands() const { |
| return make_range(operands_begin(), operands_end()); |
| } |
| |
| /// Emit C++ statements to check the shape of the match and capture |
| /// instructions into local variables. |
| void emitCxxCaptureStmts(raw_ostream &OS, RuleMatcher &Rule, StringRef Expr) { |
| OS << "if (" << Expr << ".getNumOperands() < " << getNumOperands() << ")\n" |
| << " return false;\n"; |
| for (const auto &Operand : Operands) { |
| Operand->emitCxxCaptureStmts(OS, Rule, Operand->getOperandExpr(Expr)); |
| } |
| } |
| |
| /// Emit a C++ expression that tests whether the instruction named in |
| /// InsnVarName matches all the predicates and all the operands. |
| void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule, |
| StringRef InsnVarName) const { |
| emitCxxPredicateListExpr(OS, Rule, InsnVarName); |
| for (const auto &Operand : Operands) { |
| OS << " &&\n("; |
| Operand->emitCxxPredicateExpr(OS, Rule, InsnVarName); |
| OS << ")"; |
| } |
| } |
| |
| /// Compare the priority of this object and B. |
| /// |
| /// Returns true if this object is more important than B. |
| bool isHigherPriorityThan(const InstructionMatcher &B) const { |
| // Instruction matchers involving more operands have higher priority. |
| if (Operands.size() > B.Operands.size()) |
| return true; |
| if (Operands.size() < B.Operands.size()) |
| return false; |
| |
| for (const auto &Predicate : zip(predicates(), B.predicates())) { |
| if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate))) |
| return true; |
| if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate))) |
| return false; |
| } |
| |
| for (const auto &Operand : zip(Operands, B.Operands)) { |
| if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand))) |
| return true; |
| if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand))) |
| return false; |
| } |
| |
| return false; |
| }; |
| |
| /// Report the maximum number of temporary operands needed by the instruction |
| /// matcher. |
| unsigned countTemporaryOperands() const { |
| return std::accumulate(predicates().begin(), predicates().end(), 0, |
| [](unsigned A, |
| const std::unique_ptr<InstructionPredicateMatcher> |
| &Predicate) { |
| return A + Predicate->countTemporaryOperands(); |
| }) + |
| std::accumulate( |
| Operands.begin(), Operands.end(), 0, |
| [](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) { |
| return A + Operand->countTemporaryOperands(); |
| }); |
| } |
| }; |
| |
| /// Generates code to check that the operand is a register defined by an |
| /// instruction that matches the given instruction matcher. |
| /// |
| /// For example, the pattern: |
| /// (set $dst, (G_MUL (G_ADD $src1, $src2), $src3)) |
| /// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match |
| /// the: |
| /// (G_ADD $src1, $src2) |
| /// subpattern. |
| class InstructionOperandMatcher : public OperandPredicateMatcher { |
| protected: |
| std::unique_ptr<InstructionMatcher> InsnMatcher; |
| |
| public: |
| InstructionOperandMatcher() |
| : OperandPredicateMatcher(OPM_Instruction), |
| InsnMatcher(new InstructionMatcher()) {} |
| |
| static bool classof(const OperandPredicateMatcher *P) { |
| return P->getKind() == OPM_Instruction; |
| } |
| |
| InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; } |
| |
| Optional<const OperandMatcher *> |
| getOptionalOperand(StringRef SymbolicName) const override { |
| assert(!SymbolicName.empty() && "Cannot lookup unnamed operand"); |
| return InsnMatcher->getOptionalOperand(SymbolicName); |
| } |
| |
| void emitCxxCaptureStmts(raw_ostream &OS, RuleMatcher &Rule, |
| StringRef OperandExpr) const override { |
| OS << "if (!" << OperandExpr + ".isReg())\n" |
| << " return false;\n"; |
| std::string InsnVarName = Rule.defineInsnVar( |
| OS, *InsnMatcher, |
| ("*MRI.getVRegDef(" + OperandExpr + ".getReg())").str()); |
| InsnMatcher->emitCxxCaptureStmts(OS, Rule, InsnVarName); |
| } |
| |
| void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule, |
| StringRef OperandExpr) const override { |
| OperandExpr = Rule.getInsnVarName(*InsnMatcher); |
| OS << "("; |
| InsnMatcher->emitCxxPredicateExpr(OS, Rule, OperandExpr); |
| OS << ")\n"; |
| } |
| }; |
| |
| //===- Actions ------------------------------------------------------------===// |
| void OperandPlaceholder::emitCxxValueExpr(raw_ostream &OS) const { |
| switch (Kind) { |
| case OP_MatchReference: |
| OS << MatchReference.InsnMatcher->getOperand(MatchReference.SymbolicName) |
| .getOperandExpr(MatchReference.InsnVarName); |
| break; |
| case OP_Temporary: |
| OS << "TempOp" << Temporary.OpIdx; |
| break; |
| } |
| } |
| |
| class OperandRenderer { |
| public: |
| enum RendererKind { OR_Copy, OR_Imm, OR_Register, OR_ComplexPattern }; |
| |
| protected: |
| RendererKind Kind; |
| |
| public: |
| OperandRenderer(RendererKind Kind) : Kind(Kind) {} |
| virtual ~OperandRenderer() {} |
| |
| RendererKind getKind() const { return Kind; } |
| |
| virtual void emitCxxRenderStmts(raw_ostream &OS, RuleMatcher &Rule) const = 0; |
| }; |
| |
| /// A CopyRenderer emits code to copy a single operand from an existing |
| /// instruction to the one being built. |
| class CopyRenderer : public OperandRenderer { |
| protected: |
| /// The matcher for the instruction that this operand is copied from. |
| /// This provides the facility for looking up an a operand by it's name so |
| /// that it can be used as a source for the instruction being built. |
| const InstructionMatcher &Matched; |
| /// The name of the operand. |
| const StringRef SymbolicName; |
| |
| public: |
| CopyRenderer(const InstructionMatcher &Matched, StringRef SymbolicName) |
| : OperandRenderer(OR_Copy), Matched(Matched), SymbolicName(SymbolicName) { |
| } |
| |
| static bool classof(const OperandRenderer *R) { |
| return R->getKind() == OR_Copy; |
| } |
| |
| const StringRef getSymbolicName() const { return SymbolicName; } |
| |
| void emitCxxRenderStmts(raw_ostream &OS, RuleMatcher &Rule) const override { |
| const OperandMatcher &Operand = Matched.getOperand(SymbolicName); |
| StringRef InsnVarName = |
| Rule.getInsnVarName(Operand.getInstructionMatcher()); |
| std::string OperandExpr = Operand.getOperandExpr(InsnVarName); |
| OS << " MIB.add(" << OperandExpr << "/*" << SymbolicName << "*/);\n"; |
| } |
| }; |
| |
| /// Adds a specific physical register to the instruction being built. |
| /// This is typically useful for WZR/XZR on AArch64. |
| class AddRegisterRenderer : public OperandRenderer { |
| protected: |
| const Record *RegisterDef; |
| |
| public: |
| AddRegisterRenderer(const Record *RegisterDef) |
| : OperandRenderer(OR_Register), RegisterDef(RegisterDef) {} |
| |
| static bool classof(const OperandRenderer *R) { |
| return R->getKind() == OR_Register; |
| } |
| |
| void emitCxxRenderStmts(raw_ostream &OS, RuleMatcher &Rule) const override { |
| OS << " MIB.addReg(" << RegisterDef->getValueAsString("Namespace") |
| << "::" << RegisterDef->getName() << ");\n"; |
| } |
| }; |
| |
| /// Adds a specific immediate to the instruction being built. |
| class ImmRenderer : public OperandRenderer { |
| protected: |
| int64_t Imm; |
| |
| public: |
| ImmRenderer(int64_t Imm) |
| : OperandRenderer(OR_Imm), Imm(Imm) {} |
| |
| static bool classof(const OperandRenderer *R) { |
| return R->getKind() == OR_Imm; |
| } |
| |
| void emitCxxRenderStmts(raw_ostream &OS, RuleMatcher &Rule) const override { |
| OS << " MIB.addImm(" << Imm << ");\n"; |
| } |
| }; |
| |
| class RenderComplexPatternOperand : public OperandRenderer { |
| private: |
| const Record &TheDef; |
| std::vector<OperandPlaceholder> Sources; |
| |
| unsigned getNumOperands() const { |
| return TheDef.getValueAsDag("Operands")->getNumArgs(); |
| } |
| |
| public: |
| RenderComplexPatternOperand(const Record &TheDef, |
| const ArrayRef<OperandPlaceholder> Sources) |
| : OperandRenderer(OR_ComplexPattern), TheDef(TheDef), Sources(Sources) {} |
| |
| static bool classof(const OperandRenderer *R) { |
| return R->getKind() == OR_ComplexPattern; |
| } |
| |
| void emitCxxRenderStmts(raw_ostream &OS, RuleMatcher &Rule) const override { |
| assert(Sources.size() == getNumOperands() && "Inconsistent number of operands"); |
| for (const auto &Source : Sources) { |
| OS << "MIB.add("; |
| Source.emitCxxValueExpr(OS); |
| OS << ");\n"; |
| } |
| } |
| }; |
| |
| /// An action taken when all Matcher predicates succeeded for a parent rule. |
| /// |
| /// Typical actions include: |
| /// * Changing the opcode of an instruction. |
| /// * Adding an operand to an instruction. |
| class MatchAction { |
| public: |
| virtual ~MatchAction() {} |
| |
| /// Emit the C++ statements to implement the action. |
| /// |
| /// \param RecycleVarName If given, it's an instruction to recycle. The |
| /// requirements on the instruction vary from action to |
| /// action. |
| virtual void emitCxxActionStmts(raw_ostream &OS, RuleMatcher &Rule, |
| StringRef RecycleVarName) const = 0; |
| }; |
| |
| /// Generates a comment describing the matched rule being acted upon. |
| class DebugCommentAction : public MatchAction { |
| private: |
| const PatternToMatch &P; |
| |
| public: |
| DebugCommentAction(const PatternToMatch &P) : P(P) {} |
| |
| void emitCxxActionStmts(raw_ostream &OS, RuleMatcher &Rule, |
| StringRef RecycleVarName) const override { |
| OS << "// " << *P.getSrcPattern() << " => " << *P.getDstPattern() << "\n"; |
| } |
| }; |
| |
| /// Generates code to build an instruction or mutate an existing instruction |
| /// into the desired instruction when this is possible. |
| class BuildMIAction : public MatchAction { |
| private: |
| const CodeGenInstruction *I; |
| const InstructionMatcher &Matched; |
| std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers; |
| |
| /// True if the instruction can be built solely by mutating the opcode. |
| bool canMutate() const { |
| for (const auto &Renderer : enumerate(OperandRenderers)) { |
| if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) { |
| if (Matched.getOperand(Copy->getSymbolicName()).getOperandIndex() != |
| Renderer.index()) |
| return false; |
| } else |
| return false; |
| } |
| |
| return true; |
| } |
| |
| public: |
| BuildMIAction(const CodeGenInstruction *I, const InstructionMatcher &Matched) |
| : I(I), Matched(Matched) {} |
| |
| template <class Kind, class... Args> |
| Kind &addRenderer(Args&&... args) { |
| OperandRenderers.emplace_back( |
| llvm::make_unique<Kind>(std::forward<Args>(args)...)); |
| return *static_cast<Kind *>(OperandRenderers.back().get()); |
| } |
| |
| void emitCxxActionStmts(raw_ostream &OS, RuleMatcher &Rule, |
| StringRef RecycleVarName) const override { |
| if (canMutate()) { |
| OS << " " << RecycleVarName << ".setDesc(TII.get(" << I->Namespace |
| << "::" << I->TheDef->getName() << "));\n"; |
| |
| if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) { |
| OS << " auto MIB = MachineInstrBuilder(MF, &" << RecycleVarName |
| << ");\n"; |
| |
| for (auto Def : I->ImplicitDefs) { |
| auto Namespace = Def->getValueAsString("Namespace"); |
| OS << " MIB.addDef(" << Namespace << "::" << Def->getName() |
| << ", RegState::Implicit);\n"; |
| } |
| for (auto Use : I->ImplicitUses) { |
| auto Namespace = Use->getValueAsString("Namespace"); |
| OS << " MIB.addUse(" << Namespace << "::" << Use->getName() |
| << ", RegState::Implicit);\n"; |
| } |
| } |
| |
| OS << " MachineInstr &NewI = " << RecycleVarName << ";\n"; |
| return; |
| } |
| |
| // TODO: Simple permutation looks like it could be almost as common as |
| // mutation due to commutative operations. |
| |
| OS << "MachineInstrBuilder MIB = BuildMI(*I.getParent(), I, " |
| "I.getDebugLoc(), TII.get(" |
| << I->Namespace << "::" << I->TheDef->getName() << "));\n"; |
| for (const auto &Renderer : OperandRenderers) |
| Renderer->emitCxxRenderStmts(OS, Rule); |
| OS << " for (const auto *FromMI : "; |
| Rule.emitCxxCapturedInsnList(OS); |
| OS << ")\n"; |
| OS << " for (const auto &MMO : FromMI->memoperands())\n"; |
| OS << " MIB.addMemOperand(MMO);\n"; |
| OS << " " << RecycleVarName << ".eraseFromParent();\n"; |
| OS << " MachineInstr &NewI = *MIB;\n"; |
| } |
| }; |
| |
| InstructionMatcher &RuleMatcher::addInstructionMatcher() { |
| Matchers.emplace_back(new InstructionMatcher()); |
| return *Matchers.back(); |
| } |
| |
| template <class Kind, class... Args> |
| Kind &RuleMatcher::addAction(Args &&... args) { |
| Actions.emplace_back(llvm::make_unique<Kind>(std::forward<Args>(args)...)); |
| return *static_cast<Kind *>(Actions.back().get()); |
| } |
| |
| std::string RuleMatcher::defineInsnVar(raw_ostream &OS, |
| const InstructionMatcher &Matcher, |
| StringRef Value) { |
| std::string InsnVarName = "MI" + llvm::to_string(NextInsnVarID++); |
| OS << "MachineInstr &" << InsnVarName << " = " << Value << ";\n"; |
| InsnVariableNames[&Matcher] = InsnVarName; |
| return InsnVarName; |
| } |
| |
| StringRef RuleMatcher::getInsnVarName(const InstructionMatcher &InsnMatcher) const { |
| const auto &I = InsnVariableNames.find(&InsnMatcher); |
| if (I != InsnVariableNames.end()) |
| return I->second; |
| llvm_unreachable("Matched Insn was not captured in a local variable"); |
| } |
| |
| /// Emit a C++ initializer_list containing references to every matched instruction. |
| void RuleMatcher::emitCxxCapturedInsnList(raw_ostream &OS) { |
| SmallVector<StringRef, 2> Names; |
| for (const auto &Pair : InsnVariableNames) |
| Names.push_back(Pair.second); |
| std::sort(Names.begin(), Names.end()); |
| |
| OS << "{"; |
| for (const auto &Name : Names) |
| OS << "&" << Name << ", "; |
| OS << "}"; |
| } |
| |
| /// Emit C++ statements to check the shape of the match and capture |
| /// instructions into local variables. |
| void RuleMatcher::emitCxxCaptureStmts(raw_ostream &OS, StringRef Expr) { |
| assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet"); |
| std::string InsnVarName = defineInsnVar(OS, *Matchers.front(), Expr); |
| Matchers.front()->emitCxxCaptureStmts(OS, *this, InsnVarName); |
| } |
| |
| void RuleMatcher::emit(raw_ostream &OS) { |
| if (Matchers.empty()) |
| llvm_unreachable("Unexpected empty matcher!"); |
| |
| // The representation supports rules that require multiple roots such as: |
| // %ptr(p0) = ... |
| // %elt0(s32) = G_LOAD %ptr |
| // %1(p0) = G_ADD %ptr, 4 |
| // %elt1(s32) = G_LOAD p0 %1 |
| // which could be usefully folded into: |
| // %ptr(p0) = ... |
| // %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr |
| // on some targets but we don't need to make use of that yet. |
| assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet"); |
| OS << "if ([&]() {\n"; |
| |
| emitCxxCaptureStmts(OS, "I"); |
| |
| OS << " if ("; |
| Matchers.front()->emitCxxPredicateExpr(OS, *this, |
| getInsnVarName(*Matchers.front())); |
| OS << ") {\n"; |
| |
| // We must also check if it's safe to fold the matched instructions. |
| if (InsnVariableNames.size() >= 2) { |
| for (const auto &Pair : InsnVariableNames) { |
| // Skip the root node since it isn't moving anywhere. Everything else is |
| // sinking to meet it. |
| if (Pair.first == Matchers.front().get()) |
| continue; |
| |
| // Reject the difficult cases until we have a more accurate check. |
| OS << " if (!isObviouslySafeToFold(" << Pair.second |
| << ")) return false;\n"; |
| |
| // FIXME: Emit checks to determine it's _actually_ safe to fold and/or |
| // account for unsafe cases. |
| // |
| // Example: |
| // MI1--> %0 = ... |
| // %1 = ... %0 |
| // MI0--> %2 = ... %0 |
| // It's not safe to erase MI1. We currently handle this by not |
| // erasing %0 (even when it's dead). |
| // |
| // Example: |
| // MI1--> %0 = load volatile @a |
| // %1 = load volatile @a |
| // MI0--> %2 = ... %0 |
| // It's not safe to sink %0's def past %1. We currently handle |
| // this by rejecting all loads. |
| // |
| // Example: |
| // MI1--> %0 = load @a |
| // %1 = store @a |
| // MI0--> %2 = ... %0 |
| // It's not safe to sink %0's def past %1. We currently handle |
| // this by rejecting all loads. |
| // |
| // Example: |
| // G_CONDBR %cond, @BB1 |
| // BB0: |
| // MI1--> %0 = load @a |
| // G_BR @BB1 |
| // BB1: |
| // MI0--> %2 = ... %0 |
| // It's not always safe to sink %0 across control flow. In this |
| // case it may introduce a memory fault. We currentl handle this |
| // by rejecting all loads. |
| } |
| } |
| |
| for (const auto &MA : Actions) { |
| MA->emitCxxActionStmts(OS, *this, "I"); |
| } |
| |
| OS << " constrainSelectedInstRegOperands(NewI, TII, TRI, RBI);\n"; |
| OS << " return true;\n"; |
| OS << " }\n"; |
| OS << " return false;\n"; |
| OS << " }()) { return true; }\n\n"; |
| } |
| |
| bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const { |
| // Rules involving more match roots have higher priority. |
| if (Matchers.size() > B.Matchers.size()) |
| return true; |
| if (Matchers.size() < B.Matchers.size()) |
| return false; |
| |
| for (const auto &Matcher : zip(Matchers, B.Matchers)) { |
| if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher))) |
| return true; |
| if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher))) |
| return false; |
| } |
| |
| return false; |
| } |
| |
| unsigned RuleMatcher::countTemporaryOperands() const { |
| return std::accumulate( |
| Matchers.begin(), Matchers.end(), 0, |
| [](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) { |
| return A + Matcher->countTemporaryOperands(); |
| }); |
| } |
| |
| //===- GlobalISelEmitter class --------------------------------------------===// |
| |
| class GlobalISelEmitter { |
| public: |
| explicit GlobalISelEmitter(RecordKeeper &RK); |
| void run(raw_ostream &OS); |
| |
| private: |
| const RecordKeeper &RK; |
| const CodeGenDAGPatterns CGP; |
| const CodeGenTarget &Target; |
| |
| /// Keep track of the equivalence between SDNodes and Instruction. |
| /// This is defined using 'GINodeEquiv' in the target description. |
| DenseMap<Record *, const CodeGenInstruction *> NodeEquivs; |
| |
| /// Keep track of the equivalence between ComplexPattern's and |
| /// GIComplexOperandMatcher. Map entries are specified by subclassing |
| /// GIComplexPatternEquiv. |
| DenseMap<const Record *, const Record *> ComplexPatternEquivs; |
| |
| void gatherNodeEquivs(); |
| const CodeGenInstruction *findNodeEquiv(Record *N) const; |
| |
| Error importRulePredicates(RuleMatcher &M, ArrayRef<Init *> Predicates) const; |
| Expected<InstructionMatcher &> |
| createAndImportSelDAGMatcher(InstructionMatcher &InsnMatcher, |
| const TreePatternNode *Src) const; |
| Error importChildMatcher(InstructionMatcher &InsnMatcher, |
| TreePatternNode *SrcChild, unsigned OpIdx, |
| unsigned &TempOpIdx) const; |
| Expected<BuildMIAction &> createAndImportInstructionRenderer( |
| RuleMatcher &M, const TreePatternNode *Dst, |
| const InstructionMatcher &InsnMatcher) const; |
| Error importExplicitUseRenderer(BuildMIAction &DstMIBuilder, |
| TreePatternNode *DstChild, |
| const InstructionMatcher &InsnMatcher) const; |
| Error |
| importImplicitDefRenderers(BuildMIAction &DstMIBuilder, |
| const std::vector<Record *> &ImplicitDefs) const; |
| |
| /// Analyze pattern \p P, returning a matcher for it if possible. |
| /// Otherwise, return an Error explaining why we don't support it. |
| Expected<RuleMatcher> runOnPattern(const PatternToMatch &P); |
| }; |
| |
| void GlobalISelEmitter::gatherNodeEquivs() { |
| assert(NodeEquivs.empty()); |
| for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv")) |
| NodeEquivs[Equiv->getValueAsDef("Node")] = |
| &Target.getInstruction(Equiv->getValueAsDef("I")); |
| |
| assert(ComplexPatternEquivs.empty()); |
| for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) { |
| Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent"); |
| if (!SelDAGEquiv) |
| continue; |
| ComplexPatternEquivs[SelDAGEquiv] = Equiv; |
| } |
| } |
| |
| const CodeGenInstruction *GlobalISelEmitter::findNodeEquiv(Record *N) const { |
| return NodeEquivs.lookup(N); |
| } |
| |
| GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK) |
| : RK(RK), CGP(RK), Target(CGP.getTargetInfo()) {} |
| |
| //===- Emitter ------------------------------------------------------------===// |
| |
| Error |
| GlobalISelEmitter::importRulePredicates(RuleMatcher &M, |
| ArrayRef<Init *> Predicates) const { |
| if (!Predicates.empty()) |
| return failedImport("Pattern has a rule predicate (" + |
| explainRulePredicates(Predicates) + ")"); |
| return Error::success(); |
| } |
| |
| Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher( |
| InstructionMatcher &InsnMatcher, const TreePatternNode *Src) const { |
| // Start with the defined operands (i.e., the results of the root operator). |
| if (Src->getExtTypes().size() > 1) |
| return failedImport("Src pattern has multiple results"); |
| |
| auto SrcGIOrNull = findNodeEquiv(Src->getOperator()); |
| if (!SrcGIOrNull) |
| return failedImport("Pattern operator lacks an equivalent Instruction" + |
| explainOperator(Src->getOperator())); |
| auto &SrcGI = *SrcGIOrNull; |
| |
| // The operators look good: match the opcode and mutate it to the new one. |
| InsnMatcher.addPredicate<InstructionOpcodeMatcher>(&SrcGI); |
| |
| unsigned OpIdx = 0; |
| unsigned TempOpIdx = 0; |
| for (const EEVT::TypeSet &Ty : Src->getExtTypes()) { |
| auto OpTyOrNone = MVTToLLT(Ty.getConcrete()); |
| |
| if (!OpTyOrNone) |
| return failedImport( |
| "Result of Src pattern operator has an unsupported type"); |
| |
| // Results don't have a name unless they are the root node. The caller will |
| // set the name if appropriate. |
| OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx); |
| OM.addPredicate<LLTOperandMatcher>(*OpTyOrNone); |
| } |
| |
| // Match the used operands (i.e. the children of the operator). |
| for (unsigned i = 0, e = Src->getNumChildren(); i != e; ++i) { |
| if (auto Error = importChildMatcher(InsnMatcher, Src->getChild(i), OpIdx++, |
| TempOpIdx)) |
| return std::move(Error); |
| } |
| |
| return InsnMatcher; |
| } |
| |
| Error GlobalISelEmitter::importChildMatcher(InstructionMatcher &InsnMatcher, |
| TreePatternNode *SrcChild, |
| unsigned OpIdx, |
| unsigned &TempOpIdx) const { |
| OperandMatcher &OM = |
| InsnMatcher.addOperand(OpIdx, SrcChild->getName(), TempOpIdx); |
| |
| if (SrcChild->hasAnyPredicate()) |
| return failedImport("Src pattern child has predicate (" + |
| explainPredicates(SrcChild) + ")"); |
| |
| ArrayRef<EEVT::TypeSet> ChildTypes = SrcChild->getExtTypes(); |
| if (ChildTypes.size() != 1) |
| return failedImport("Src pattern child has multiple results"); |
| |
| // Check MBB's before the type check since they are not a known type. |
| if (!SrcChild->isLeaf()) { |
| if (SrcChild->getOperator()->isSubClassOf("SDNode")) { |
| auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator()); |
| if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") { |
| OM.addPredicate<MBBOperandMatcher>(); |
| return Error::success(); |
| } |
| } |
| } |
| |
| auto OpTyOrNone = MVTToLLT(ChildTypes.front().getConcrete()); |
| if (!OpTyOrNone) |
| return failedImport("Src operand has an unsupported type"); |
| OM.addPredicate<LLTOperandMatcher>(*OpTyOrNone); |
| |
| // Check for nested instructions. |
| if (!SrcChild->isLeaf()) { |
| // Map the node to a gMIR instruction. |
| InstructionOperandMatcher &InsnOperand = |
| OM.addPredicate<InstructionOperandMatcher>(); |
| auto InsnMatcherOrError = |
| createAndImportSelDAGMatcher(InsnOperand.getInsnMatcher(), SrcChild); |
| if (auto Error = InsnMatcherOrError.takeError()) |
| return Error; |
| |
| return Error::success(); |
| } |
| |
| // Check for constant immediates. |
| if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) { |
| OM.addPredicate<IntOperandMatcher>(ChildInt->getValue()); |
| return Error::success(); |
| } |
| |
| // Check for def's like register classes or ComplexPattern's. |
| if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) { |
| auto *ChildRec = ChildDefInit->getDef(); |
| |
| // Check for register classes. |
| if (ChildRec->isSubClassOf("RegisterClass")) { |
| OM.addPredicate<RegisterBankOperandMatcher>( |
| Target.getRegisterClass(ChildRec)); |
| return Error::success(); |
| } |
| |
| // Check for ComplexPattern's. |
| if (ChildRec->isSubClassOf("ComplexPattern")) { |
| const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec); |
| if (ComplexPattern == ComplexPatternEquivs.end()) |
| return failedImport("SelectionDAG ComplexPattern (" + |
| ChildRec->getName() + ") not mapped to GlobalISel"); |
| |
| const auto &Predicate = OM.addPredicate<ComplexPatternOperandMatcher>( |
| OM, *ComplexPattern->second); |
| TempOpIdx += Predicate.countTemporaryOperands(); |
| return Error::success(); |
| } |
| |
| if (ChildRec->isSubClassOf("ImmLeaf")) { |
| return failedImport( |
| "Src pattern child def is an unsupported tablegen class (ImmLeaf)"); |
| } |
| |
| return failedImport( |
| "Src pattern child def is an unsupported tablegen class"); |
| } |
| |
| return failedImport("Src pattern child is an unsupported kind"); |
| } |
| |
| Error GlobalISelEmitter::importExplicitUseRenderer( |
| BuildMIAction &DstMIBuilder, TreePatternNode *DstChild, |
| const InstructionMatcher &InsnMatcher) const { |
| // The only non-leaf child we accept is 'bb': it's an operator because |
| // BasicBlockSDNode isn't inline, but in MI it's just another operand. |
| if (!DstChild->isLeaf()) { |
| if (DstChild->getOperator()->isSubClassOf("SDNode")) { |
| auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator()); |
| if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") { |
| DstMIBuilder.addRenderer<CopyRenderer>(InsnMatcher, |
| DstChild->getName()); |
| return Error::success(); |
| } |
| } |
| return failedImport("Dst pattern child isn't a leaf node or an MBB"); |
| } |
| |
| // Otherwise, we're looking for a bog-standard RegisterClass operand. |
| if (DstChild->hasAnyPredicate()) |
| return failedImport("Dst pattern child has predicate (" + |
| explainPredicates(DstChild) + ")"); |
| |
| if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) { |
| auto *ChildRec = ChildDefInit->getDef(); |
| |
| ArrayRef<EEVT::TypeSet> ChildTypes = DstChild->getExtTypes(); |
| if (ChildTypes.size() != 1) |
| return failedImport("Dst pattern child has multiple results"); |
| |
| auto OpTyOrNone = MVTToLLT(ChildTypes.front().getConcrete()); |
| if (!OpTyOrNone) |
| return failedImport("Dst operand has an unsupported type"); |
| |
| if (ChildRec->isSubClassOf("Register")) { |
| DstMIBuilder.addRenderer<AddRegisterRenderer>(ChildRec); |
| return Error::success(); |
| } |
| |
| if (ChildRec->isSubClassOf("RegisterClass")) { |
| DstMIBuilder.addRenderer<CopyRenderer>(InsnMatcher, DstChild->getName()); |
| return Error::success(); |
| } |
| |
| if (ChildRec->isSubClassOf("ComplexPattern")) { |
| const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec); |
| if (ComplexPattern == ComplexPatternEquivs.end()) |
| return failedImport( |
| "SelectionDAG ComplexPattern not mapped to GlobalISel"); |
| |
| SmallVector<OperandPlaceholder, 2> RenderedOperands; |
| const OperandMatcher &OM = InsnMatcher.getOperand(DstChild->getName()); |
| for (unsigned I = 0; I < OM.countTemporaryOperands(); ++I) |
| RenderedOperands.push_back(OperandPlaceholder::CreateTemporary( |
| OM.getAllocatedTemporariesBaseID() + I)); |
| DstMIBuilder.addRenderer<RenderComplexPatternOperand>( |
| *ComplexPattern->second, RenderedOperands); |
| return Error::success(); |
| } |
| |
| if (ChildRec->isSubClassOf("SDNodeXForm")) |
| return failedImport("Dst pattern child def is an unsupported tablegen " |
| "class (SDNodeXForm)"); |
| |
| return failedImport( |
| "Dst pattern child def is an unsupported tablegen class"); |
| } |
| |
| return failedImport("Dst pattern child is an unsupported kind"); |
| } |
| |
| Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer( |
| RuleMatcher &M, const TreePatternNode *Dst, |
| const InstructionMatcher &InsnMatcher) const { |
| Record *DstOp = Dst->getOperator(); |
| if (!DstOp->isSubClassOf("Instruction")) { |
| if (DstOp->isSubClassOf("ValueType")) |
| return failedImport( |
| "Pattern operator isn't an instruction (it's a ValueType)"); |
| return failedImport("Pattern operator isn't an instruction"); |
| } |
| auto &DstI = Target.getInstruction(DstOp); |
| |
| auto &DstMIBuilder = M.addAction<BuildMIAction>(&DstI, InsnMatcher); |
| |
| // Render the explicit defs. |
| for (unsigned I = 0; I < DstI.Operands.NumDefs; ++I) { |
| const auto &DstIOperand = DstI.Operands[I]; |
| DstMIBuilder.addRenderer<CopyRenderer>(InsnMatcher, DstIOperand.Name); |
| } |
| |
| // Figure out which operands need defaults inserted. Operands that subclass |
| // OperandWithDefaultOps are considered from left to right until we have |
| // enough operands to render the instruction. |
| SmallSet<unsigned, 2> DefaultOperands; |
| unsigned DstINumUses = DstI.Operands.size() - DstI.Operands.NumDefs; |
| unsigned NumDefaultOperands = 0; |
| for (unsigned I = 0; I < DstINumUses && |
| DstINumUses > Dst->getNumChildren() + NumDefaultOperands; |
| ++I) { |
| const auto &DstIOperand = DstI.Operands[DstI.Operands.NumDefs + I]; |
| if (DstIOperand.Rec->isSubClassOf("OperandWithDefaultOps")) { |
| DefaultOperands.insert(I); |
| NumDefaultOperands += |
| DstIOperand.Rec->getValueAsDag("DefaultOps")->getNumArgs(); |
| } |
| } |
| if (DstINumUses > Dst->getNumChildren() + DefaultOperands.size()) |
| return failedImport("Insufficient operands supplied and default ops " |
| "couldn't make up the shortfall"); |
| if (DstINumUses < Dst->getNumChildren() + DefaultOperands.size()) |
| return failedImport("Too many operands supplied"); |
| |
| // Render the explicit uses. |
| unsigned Child = 0; |
| for (unsigned I = 0; I != DstINumUses; ++I) { |
| // If we need to insert default ops here, then do so. |
| if (DefaultOperands.count(I)) { |
| const auto &DstIOperand = DstI.Operands[DstI.Operands.NumDefs + I]; |
| |
| DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps"); |
| for (const auto *DefaultOp : DefaultOps->args()) { |
| // Look through ValueType operators. |
| if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) { |
| if (const DefInit *DefaultDagOperator = |
| dyn_cast<DefInit>(DefaultDagOp->getOperator())) { |
| if (DefaultDagOperator->getDef()->isSubClassOf("ValueType")) |
| DefaultOp = DefaultDagOp->getArg(0); |
| } |
| } |
| |
| if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) { |
| DstMIBuilder.addRenderer<AddRegisterRenderer>(DefaultDefOp->getDef()); |
| continue; |
| } |
| |
| if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) { |
| DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue()); |
| continue; |
| } |
| |
| return failedImport("Could not add default op"); |
| } |
| |
| continue; |
| } |
| |
| if (auto Error = importExplicitUseRenderer( |
| DstMIBuilder, Dst->getChild(Child), InsnMatcher)) |
| return std::move(Error); |
| ++Child; |
| } |
| |
| return DstMIBuilder; |
| } |
| |
| Error GlobalISelEmitter::importImplicitDefRenderers( |
| BuildMIAction &DstMIBuilder, |
| const std::vector<Record *> &ImplicitDefs) const { |
| if (!ImplicitDefs.empty()) |
| return failedImport("Pattern defines a physical register"); |
| return Error::success(); |
| } |
| |
| Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) { |
| // Keep track of the matchers and actions to emit. |
| RuleMatcher M; |
| M.addAction<DebugCommentAction>(P); |
| |
| if (auto Error = importRulePredicates(M, P.getPredicates()->getValues())) |
| return std::move(Error); |
| |
| // Next, analyze the pattern operators. |
| TreePatternNode *Src = P.getSrcPattern(); |
| TreePatternNode *Dst = P.getDstPattern(); |
| |
| // If the root of either pattern isn't a simple operator, ignore it. |
| if (auto Err = isTrivialOperatorNode(Dst)) |
| return failedImport("Dst pattern root isn't a trivial operator (" + |
| toString(std::move(Err)) + ")"); |
| if (auto Err = isTrivialOperatorNode(Src)) |
| return failedImport("Src pattern root isn't a trivial operator (" + |
| toString(std::move(Err)) + ")"); |
| |
| // Start with the defined operands (i.e., the results of the root operator). |
| Record *DstOp = Dst->getOperator(); |
| if (!DstOp->isSubClassOf("Instruction")) |
| return failedImport("Pattern operator isn't an instruction"); |
| |
| auto &DstI = Target.getInstruction(DstOp); |
| if (DstI.Operands.NumDefs != Src->getExtTypes().size()) |
| return failedImport("Src pattern results and dst MI defs are different (" + |
| to_string(Src->getExtTypes().size()) + " def(s) vs " + |
| to_string(DstI.Operands.NumDefs) + " def(s))"); |
| |
| InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(); |
| auto InsnMatcherOrError = createAndImportSelDAGMatcher(InsnMatcherTemp, Src); |
| if (auto Error = InsnMatcherOrError.takeError()) |
| return std::move(Error); |
| InstructionMatcher &InsnMatcher = InsnMatcherOrError.get(); |
| |
| // The root of the match also has constraints on the register bank so that it |
| // matches the result instruction. |
| unsigned OpIdx = 0; |
| for (const EEVT::TypeSet &Ty : Src->getExtTypes()) { |
| (void)Ty; |
| |
| const auto &DstIOperand = DstI.Operands[OpIdx]; |
| Record *DstIOpRec = DstIOperand.Rec; |
| if (!DstIOpRec->isSubClassOf("RegisterClass")) |
| return failedImport("Dst MI def isn't a register class"); |
| |
| OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); |
| OM.setSymbolicName(DstIOperand.Name); |
| OM.addPredicate<RegisterBankOperandMatcher>( |
| Target.getRegisterClass(DstIOpRec)); |
| ++OpIdx; |
| } |
| |
| auto DstMIBuilderOrError = |
| createAndImportInstructionRenderer(M, Dst, InsnMatcher); |
| if (auto Error = DstMIBuilderOrError.takeError()) |
| return std::move(Error); |
| BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get(); |
| |
| // Render the implicit defs. |
| // These are only added to the root of the result. |
| if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs())) |
| return std::move(Error); |
| |
| // We're done with this pattern! It's eligible for GISel emission; return it. |
| ++NumPatternImported; |
| return std::move(M); |
| } |
| |
| void GlobalISelEmitter::run(raw_ostream &OS) { |
| // Track the GINodeEquiv definitions. |
| gatherNodeEquivs(); |
| |
| emitSourceFileHeader(("Global Instruction Selector for the " + |
| Target.getName() + " target").str(), OS); |
| std::vector<RuleMatcher> Rules; |
| // Look through the SelectionDAG patterns we found, possibly emitting some. |
| for (const PatternToMatch &Pat : CGP.ptms()) { |
| ++NumPatternTotal; |
| auto MatcherOrErr = runOnPattern(Pat); |
| |
| // The pattern analysis can fail, indicating an unsupported pattern. |
| // Report that if we've been asked to do so. |
| if (auto Err = MatcherOrErr.takeError()) { |
| if (WarnOnSkippedPatterns) { |
| PrintWarning(Pat.getSrcRecord()->getLoc(), |
| "Skipped pattern: " + toString(std::move(Err))); |
| } else { |
| consumeError(std::move(Err)); |
| } |
| ++NumPatternImportsSkipped; |
| continue; |
| } |
| |
| Rules.push_back(std::move(MatcherOrErr.get())); |
| } |
| |
| std::stable_sort(Rules.begin(), Rules.end(), |
| [&](const RuleMatcher &A, const RuleMatcher &B) { |
| if (A.isHigherPriorityThan(B)) { |
| assert(!B.isHigherPriorityThan(A) && "Cannot be more important " |
| "and less important at " |
| "the same time"); |
| return true; |
| } |
| return false; |
| }); |
| |
| unsigned MaxTemporaries = 0; |
| for (const auto &Rule : Rules) |
| MaxTemporaries = std::max(MaxTemporaries, Rule.countTemporaryOperands()); |
| |
| OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n"; |
| for (unsigned I = 0; I < MaxTemporaries; ++I) |
| OS << " mutable MachineOperand TempOp" << I << ";\n"; |
| OS << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n"; |
| |
| OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n"; |
| for (unsigned I = 0; I < MaxTemporaries; ++I) |
| OS << ", TempOp" << I << "(MachineOperand::CreatePlaceholder())\n"; |
| OS << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n"; |
| |
| OS << "#ifdef GET_GLOBALISEL_IMPL\n" |
| << "bool " << Target.getName() |
| << "InstructionSelector::selectImpl(MachineInstr &I) const {\n" |
| << " MachineFunction &MF = *I.getParent()->getParent();\n" |
| << " const MachineRegisterInfo &MRI = MF.getRegInfo();\n"; |
| |
| for (auto &Rule : Rules) { |
| Rule.emit(OS); |
| ++NumPatternEmitted; |
| } |
| |
| OS << " return false;\n" |
| << "}\n" |
| << "#endif // ifdef GET_GLOBALISEL_IMPL\n"; |
| } |
| |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| |
| namespace llvm { |
| void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) { |
| GlobalISelEmitter(RK).run(OS); |
| } |
| } // End llvm namespace |