blob: 937d35408afd35d32a2649c292220635c89667cf [file] [log] [blame]
//=== ObjCGenericsChecker.cpp - Path sensitive checker for Generics *- C++ -*=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This checker tries to find type errors that the compiler is not able to catch
// due to the implicit conversions that were introduced for backward
// compatibility.
//
//===----------------------------------------------------------------------===//
#include "ClangSACheckers.h"
#include "clang/AST/ParentMap.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
using namespace clang;
using namespace ento;
// ProgramState trait - a map from symbol to its specialized type.
REGISTER_MAP_WITH_PROGRAMSTATE(TypeParamMap, SymbolRef,
const ObjCObjectPointerType *)
namespace {
class ObjCGenericsChecker
: public Checker<check::DeadSymbols, check::PreObjCMessage,
check::PostObjCMessage, check::PostStmt<CastExpr>> {
public:
ProgramStateRef checkPointerEscape(ProgramStateRef State,
const InvalidatedSymbols &Escaped,
const CallEvent *Call,
PointerEscapeKind Kind) const;
void checkPreObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
void checkPostStmt(const CastExpr *CE, CheckerContext &C) const;
void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
private:
mutable std::unique_ptr<BugType> BT;
void initBugType() const {
if (!BT)
BT.reset(
new BugType(this, "Generics", categories::CoreFoundationObjectiveC));
}
class GenericsBugVisitor : public BugReporterVisitorImpl<GenericsBugVisitor> {
public:
GenericsBugVisitor(SymbolRef S) : Sym(S) {}
~GenericsBugVisitor() override {}
void Profile(llvm::FoldingSetNodeID &ID) const override {
static int X = 0;
ID.AddPointer(&X);
ID.AddPointer(Sym);
}
PathDiagnosticPiece *VisitNode(const ExplodedNode *N,
const ExplodedNode *PrevN,
BugReporterContext &BRC,
BugReport &BR) override;
private:
// The tracked symbol.
SymbolRef Sym;
};
void reportBug(const ObjCObjectPointerType *From,
const ObjCObjectPointerType *To, ExplodedNode *N,
SymbolRef Sym, CheckerContext &C,
const Stmt *ReportedNode = nullptr) const {
initBugType();
SmallString<64> Buf;
llvm::raw_svector_ostream OS(Buf);
OS << "Incompatible pointer types assigning to '";
QualType::print(To, Qualifiers(), OS, C.getLangOpts(), llvm::Twine());
OS << "' from '";
QualType::print(From, Qualifiers(), OS, C.getLangOpts(), llvm::Twine());
OS << "'";
std::unique_ptr<BugReport> R(new BugReport(*BT, OS.str(), N));
R->markInteresting(Sym);
R->addVisitor(llvm::make_unique<GenericsBugVisitor>(Sym));
if (ReportedNode)
R->addRange(ReportedNode->getSourceRange());
C.emitReport(std::move(R));
}
};
} // end anonymous namespace
PathDiagnosticPiece *ObjCGenericsChecker::GenericsBugVisitor::VisitNode(
const ExplodedNode *N, const ExplodedNode *PrevN, BugReporterContext &BRC,
BugReport &BR) {
ProgramStateRef state = N->getState();
ProgramStateRef statePrev = PrevN->getState();
const ObjCObjectPointerType *const *TrackedType =
state->get<TypeParamMap>(Sym);
const ObjCObjectPointerType *const *TrackedTypePrev =
statePrev->get<TypeParamMap>(Sym);
if (!TrackedType)
return nullptr;
if (TrackedTypePrev && *TrackedTypePrev == *TrackedType)
return nullptr;
// Retrieve the associated statement.
const Stmt *S = nullptr;
ProgramPoint ProgLoc = N->getLocation();
if (Optional<StmtPoint> SP = ProgLoc.getAs<StmtPoint>()) {
S = SP->getStmt();
}
if (!S)
return nullptr;
const LangOptions &LangOpts = BRC.getASTContext().getLangOpts();
SmallString<64> Buf;
llvm::raw_svector_ostream OS(Buf);
OS << "Type '";
QualType::print(*TrackedType, Qualifiers(), OS, LangOpts, llvm::Twine());
OS << "' is infered from ";
if (const auto *ExplicitCast = dyn_cast<ExplicitCastExpr>(S)) {
OS << "explicit cast (from '";
QualType::print(ExplicitCast->getSubExpr()->getType().getTypePtr(),
Qualifiers(), OS, LangOpts, llvm::Twine());
OS << "' to '";
QualType::print(ExplicitCast->getType().getTypePtr(), Qualifiers(), OS,
LangOpts, llvm::Twine());
OS << "')";
} else if (const auto *ImplicitCast = dyn_cast<ImplicitCastExpr>(S)) {
OS << "implicit cast (from '";
QualType::print(ImplicitCast->getSubExpr()->getType().getTypePtr(),
Qualifiers(), OS, LangOpts, llvm::Twine());
OS << "' to '";
QualType::print(ImplicitCast->getType().getTypePtr(), Qualifiers(), OS,
LangOpts, llvm::Twine());
OS << "')";
} else {
OS << "this context";
}
// Generate the extra diagnostic.
PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
N->getLocationContext());
return new PathDiagnosticEventPiece(Pos, OS.str(), true, nullptr);
}
void ObjCGenericsChecker::checkDeadSymbols(SymbolReaper &SR,
CheckerContext &C) const {
if (!SR.hasDeadSymbols())
return;
ProgramStateRef State = C.getState();
TypeParamMapTy TyParMap = State->get<TypeParamMap>();
for (TypeParamMapTy::iterator I = TyParMap.begin(), E = TyParMap.end();
I != E; ++I) {
if (SR.isDead(I->first)) {
State = State->remove<TypeParamMap>(I->first);
}
}
}
static const ObjCObjectPointerType *getMostInformativeDerivedClassImpl(
const ObjCObjectPointerType *From, const ObjCObjectPointerType *To,
const ObjCObjectPointerType *MostInformativeCandidate, ASTContext &C) {
// Checking if from and to are the same classes modulo specialization.
if (From->getInterfaceDecl()->getCanonicalDecl() ==
To->getInterfaceDecl()->getCanonicalDecl()) {
if (To->isSpecialized()) {
assert(MostInformativeCandidate->isSpecialized());
return MostInformativeCandidate;
}
return From;
}
const auto *SuperOfTo =
To->getObjectType()->getSuperClassType()->getAs<ObjCObjectType>();
assert(SuperOfTo);
QualType SuperPtrOfToQual =
C.getObjCObjectPointerType(QualType(SuperOfTo, 0));
const auto *SuperPtrOfTo = SuperPtrOfToQual->getAs<ObjCObjectPointerType>();
if (To->isUnspecialized())
return getMostInformativeDerivedClassImpl(From, SuperPtrOfTo, SuperPtrOfTo,
C);
else
return getMostInformativeDerivedClassImpl(From, SuperPtrOfTo,
MostInformativeCandidate, C);
}
/// Get the most derived class if From that do not loose information about type
/// parameters. To has to be a subclass of From. From has to be specialized.
static const ObjCObjectPointerType *
getMostInformativeDerivedClass(const ObjCObjectPointerType *From,
const ObjCObjectPointerType *To, ASTContext &C) {
return getMostInformativeDerivedClassImpl(From, To, To, C);
}
static bool storeWhenMoreInformative(ProgramStateRef &State, SymbolRef Sym,
const ObjCObjectPointerType *const *Old,
const ObjCObjectPointerType *New,
ASTContext &C) {
if (!Old || C.canAssignObjCInterfaces(*Old, New)) {
State = State->set<TypeParamMap>(Sym, New);
return true;
}
return false;
}
void ObjCGenericsChecker::checkPostStmt(const CastExpr *CE,
CheckerContext &C) const {
if (CE->getCastKind() != CK_BitCast)
return;
QualType OriginType = CE->getSubExpr()->getType();
QualType DestType = CE->getType();
const auto *OrigObjectPtrType = OriginType->getAs<ObjCObjectPointerType>();
const auto *DestObjectPtrType = DestType->getAs<ObjCObjectPointerType>();
if (!OrigObjectPtrType || !DestObjectPtrType)
return;
ASTContext &ASTCtxt = C.getASTContext();
// This checker detects the subtyping relationships using the assignment
// rules. In order to be able to do this the kindofness must be stripped
// first. The checker treats every type as kindof type anyways: when the
// tracked type is the subtype of the static type it tries to look up the
// methods in the tracked type first.
OrigObjectPtrType = OrigObjectPtrType->stripObjCKindOfTypeAndQuals(ASTCtxt);
DestObjectPtrType = DestObjectPtrType->stripObjCKindOfTypeAndQuals(ASTCtxt);
const ObjCObjectType *OrigObjectType = OrigObjectPtrType->getObjectType();
const ObjCObjectType *DestObjectType = DestObjectPtrType->getObjectType();
if (OrigObjectType->isUnspecialized() && DestObjectType->isUnspecialized())
return;
ProgramStateRef State = C.getState();
SymbolRef Sym = State->getSVal(CE, C.getLocationContext()).getAsSymbol();
if (!Sym)
return;
// Check which assignments are legal.
bool OrigToDest =
ASTCtxt.canAssignObjCInterfaces(DestObjectPtrType, OrigObjectPtrType);
bool DestToOrig =
ASTCtxt.canAssignObjCInterfaces(OrigObjectPtrType, DestObjectPtrType);
const ObjCObjectPointerType *const *TrackedType =
State->get<TypeParamMap>(Sym);
// If OrigObjectType could convert to DestObjectType, this could be an
// implicit cast. Do not treat that cast as explicit in that case.
if (isa<ExplicitCastExpr>(CE) && !OrigToDest) {
if (DestToOrig) {
// Trust explicit downcasts.
// However a downcast may also lose information. E. g.:
// MutableMap<T, U> : Map
// The downcast to MutableMap loses the information about the types of the
// Map (due to the type parameters are not being forwarded to Map), and in
// general there is no way to recover that information from the
// declaration. In order to have to most information, lets find the most
// derived type that has all the type parameters forwarded.
const ObjCObjectPointerType *WithMostInfo =
getMostInformativeDerivedClass(OrigObjectPtrType, DestObjectPtrType,
C.getASTContext());
if (storeWhenMoreInformative(State, Sym, TrackedType, WithMostInfo,
ASTCtxt))
C.addTransition(State);
return;
}
// Mismatched types. If the DestType specialized, store it. Forget the
// tracked type otherwise.
if (DestObjectPtrType->isSpecialized()) {
State = State->set<TypeParamMap>(Sym, DestObjectPtrType);
C.addTransition(State);
} else if (TrackedType) {
State = State->remove<TypeParamMap>(Sym);
C.addTransition(State);
}
return;
}
// Handle implicit casts and explicit upcasts.
if (DestObjectType->isUnspecialized()) {
assert(OrigObjectType->isSpecialized());
// In case we already have some type information for this symbol from a
// Specialized -> Specialized conversion, do not record the OrigType,
// because it might contain less type information than the tracked type.
if (!TrackedType) {
State = State->set<TypeParamMap>(Sym, OrigObjectPtrType);
C.addTransition(State);
}
return;
}
// The destination type is specialized.
// The tracked type should be the sub or super class of the static destination
// type. When an (implicit) upcast or a downcast happens according to static
// types, and there is no subtyping relationship between the tracked and the
// static destination types, it indicates an error.
if (TrackedType &&
!ASTCtxt.canAssignObjCInterfaces(DestObjectPtrType, *TrackedType) &&
!ASTCtxt.canAssignObjCInterfaces(*TrackedType, DestObjectPtrType)) {
static CheckerProgramPointTag IllegalConv(this, "IllegalConversion");
ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &IllegalConv);
reportBug(*TrackedType, DestObjectPtrType, N, Sym, C);
return;
}
if (OrigToDest && !DestToOrig) {
// When upcast happens, store the type with the most information about the
// type parameters.
const ObjCObjectPointerType *WithMostInfo = getMostInformativeDerivedClass(
DestObjectPtrType, OrigObjectPtrType, ASTCtxt);
if (storeWhenMoreInformative(State, Sym, TrackedType, WithMostInfo,
ASTCtxt))
C.addTransition(State);
return;
}
// Downcast happens.
// Trust tracked type on unspecialized value -> specialized implicit
// downcasts.
if (storeWhenMoreInformative(State, Sym, TrackedType, DestObjectPtrType,
ASTCtxt)) {
C.addTransition(State);
}
}
static const Expr *stripCastsAndSugar(const Expr *E) {
E = E->IgnoreParenImpCasts();
if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
E = POE->getSyntacticForm()->IgnoreParenImpCasts();
if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
E = OVE->getSourceExpr()->IgnoreParenImpCasts();
return E;
}
// This callback is used to infer the types for Class variables. This info is
// used later to validate messages that sent to classes. Class variables are
// initialized with by invoking the 'class' method on a class.
void ObjCGenericsChecker::checkPostObjCMessage(const ObjCMethodCall &M,
CheckerContext &C) const {
const ObjCMessageExpr *MessageExpr = M.getOriginExpr();
SymbolRef Sym = M.getReturnValue().getAsSymbol();
if (!Sym)
return;
Selector Sel = MessageExpr->getSelector();
// We are only interested in cases where the class method is invoked on a
// class. This method is provided by the runtime and available on all classes.
if (MessageExpr->getReceiverKind() != ObjCMessageExpr::Class ||
Sel.getAsString() != "class")
return;
QualType ReceiverType = MessageExpr->getClassReceiver();
const auto *ReceiverClassType = ReceiverType->getAs<ObjCObjectType>();
QualType ReceiverClassPointerType =
C.getASTContext().getObjCObjectPointerType(
QualType(ReceiverClassType, 0));
if (!ReceiverClassType->isSpecialized())
return;
const auto *InferredType =
ReceiverClassPointerType->getAs<ObjCObjectPointerType>();
assert(InferredType);
ProgramStateRef State = C.getState();
State = State->set<TypeParamMap>(Sym, InferredType);
C.addTransition(State);
}
static bool isObjCTypeParamDependent(QualType Type) {
// It is illegal to typedef parameterized types inside an interface. Therfore
// an
// Objective-C type can only be dependent on a type parameter when the type
// parameter structurally present in the type itself.
class IsObjCTypeParamDependentTypeVisitor
: public RecursiveASTVisitor<IsObjCTypeParamDependentTypeVisitor> {
public:
IsObjCTypeParamDependentTypeVisitor() : Result(false) {}
bool VisitTypedefType(const TypedefType *Type) {
if (isa<ObjCTypeParamDecl>(Type->getDecl())) {
Result = true;
return false;
}
return true;
}
bool getResult() { return Result; }
private:
bool Result;
};
IsObjCTypeParamDependentTypeVisitor Visitor;
Visitor.TraverseType(Type);
return Visitor.getResult();
}
// A method might not be available in the interface indicated by the static
// type. However it might be available in the tracked type. In order to properly
// substitute the type parameters we need the declaration context of the method.
// The more specialized the enclosing class of the method is, the more likely
// that the parameter substitution will be successful.
static const ObjCMethodDecl *
findMethodDecl(const ObjCMessageExpr *MessageExpr,
const ObjCObjectPointerType *TrackedType, ASTContext &ASTCtxt) {
const ObjCMethodDecl *Method = nullptr;
QualType ReceiverType = MessageExpr->getReceiverType();
const auto *ReceiverObjectPtrType =
ReceiverType->getAs<ObjCObjectPointerType>();
// Do this "devirtualization" on instance and class methods only. Trust the
// static type on super and super class calls.
if (MessageExpr->getReceiverKind() == ObjCMessageExpr::Instance ||
MessageExpr->getReceiverKind() == ObjCMessageExpr::Class) {
// When the receiver type is id, Class, or some super class of the tracked
// type, look up the method in the tracked type, not in the receiver type.
// This way we preserve more information.
if (ReceiverType->isObjCIdType() || ReceiverType->isObjCClassType() ||
ASTCtxt.canAssignObjCInterfaces(ReceiverObjectPtrType, TrackedType)) {
const ObjCInterfaceDecl *InterfaceDecl = TrackedType->getInterfaceDecl();
// The method might not be found.
Selector Sel = MessageExpr->getSelector();
Method = InterfaceDecl->lookupInstanceMethod(Sel);
if (!Method)
Method = InterfaceDecl->lookupClassMethod(Sel);
}
}
// Fallback to statick method lookup when the one based on the tracked type
// failed.
return Method ? Method : MessageExpr->getMethodDecl();
}
// When the receiver has a tracked type, use that type to validate the
// argumments of the message expression and the return value.
void ObjCGenericsChecker::checkPreObjCMessage(const ObjCMethodCall &M,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
SymbolRef Sym = M.getReceiverSVal().getAsSymbol();
if (!Sym)
return;
const ObjCObjectPointerType *const *TrackedType =
State->get<TypeParamMap>(Sym);
if (!TrackedType)
return;
// Get the type arguments from tracked type and substitute type arguments
// before do the semantic check.
ASTContext &ASTCtxt = C.getASTContext();
const ObjCMessageExpr *MessageExpr = M.getOriginExpr();
const ObjCMethodDecl *Method =
findMethodDecl(MessageExpr, *TrackedType, ASTCtxt);
// It is possible to call non-existent methods in Obj-C.
if (!Method)
return;
Optional<ArrayRef<QualType>> TypeArgs =
(*TrackedType)->getObjCSubstitutions(Method->getDeclContext());
// This case might happen when there is an unspecialized override of a
// specialized method.
if (!TypeArgs)
return;
for (unsigned i = 0; i < Method->param_size(); i++) {
const Expr *Arg = MessageExpr->getArg(i);
const ParmVarDecl *Param = Method->parameters()[i];
QualType OrigParamType = Param->getType();
if (!isObjCTypeParamDependent(OrigParamType))
continue;
QualType ParamType = OrigParamType.substObjCTypeArgs(
ASTCtxt, *TypeArgs, ObjCSubstitutionContext::Parameter);
// Check if it can be assigned
const auto *ParamObjectPtrType = ParamType->getAs<ObjCObjectPointerType>();
const auto *ArgObjectPtrType =
stripCastsAndSugar(Arg)->getType()->getAs<ObjCObjectPointerType>();
if (!ParamObjectPtrType || !ArgObjectPtrType)
continue;
// Check if we have more concrete tracked type that is not a super type of
// the static argument type.
SVal ArgSVal = M.getArgSVal(i);
SymbolRef ArgSym = ArgSVal.getAsSymbol();
if (ArgSym) {
const ObjCObjectPointerType *const *TrackedArgType =
State->get<TypeParamMap>(ArgSym);
if (TrackedArgType &&
ASTCtxt.canAssignObjCInterfaces(ArgObjectPtrType, *TrackedArgType)) {
ArgObjectPtrType = *TrackedArgType;
}
}
// Warn when argument is incompatible with the parameter.
if (!ASTCtxt.canAssignObjCInterfaces(ParamObjectPtrType,
ArgObjectPtrType)) {
static CheckerProgramPointTag Tag(this, "ArgTypeMismatch");
ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag);
reportBug(ArgObjectPtrType, ParamObjectPtrType, N, Sym, C, Arg);
return;
}
}
QualType StaticResultType = Method->getReturnType();
// Check whether the result type was a type parameter.
bool IsDeclaredAsInstanceType =
StaticResultType == ASTCtxt.getObjCInstanceType();
if (!isObjCTypeParamDependent(StaticResultType) && !IsDeclaredAsInstanceType)
return;
QualType ResultType = Method->getReturnType().substObjCTypeArgs(
ASTCtxt, *TypeArgs, ObjCSubstitutionContext::Result);
if (IsDeclaredAsInstanceType)
ResultType = QualType(*TrackedType, 0);
const Stmt *Parent =
C.getCurrentAnalysisDeclContext()->getParentMap().getParent(MessageExpr);
if (M.getMessageKind() != OCM_Message) {
// Properties and subscripts are not direct parents.
Parent =
C.getCurrentAnalysisDeclContext()->getParentMap().getParent(Parent);
}
const auto *ImplicitCast = dyn_cast_or_null<ImplicitCastExpr>(Parent);
if (!ImplicitCast || ImplicitCast->getCastKind() != CK_BitCast)
return;
const auto *ExprTypeAboveCast =
ImplicitCast->getType()->getAs<ObjCObjectPointerType>();
const auto *ResultPtrType = ResultType->getAs<ObjCObjectPointerType>();
if (!ExprTypeAboveCast || !ResultPtrType)
return;
// Only warn on unrelated types to avoid too many false positives on
// downcasts.
if (!ASTCtxt.canAssignObjCInterfaces(ExprTypeAboveCast, ResultPtrType) &&
!ASTCtxt.canAssignObjCInterfaces(ResultPtrType, ExprTypeAboveCast)) {
static CheckerProgramPointTag Tag(this, "ReturnTypeMismatch");
ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag);
reportBug(ResultPtrType, ExprTypeAboveCast, N, Sym, C);
return;
}
}
/// Register checker.
void ento::registerObjCGenericsChecker(CheckerManager &mgr) {
mgr.registerChecker<ObjCGenericsChecker>();
}